151 research outputs found

    Drawing from motion capture : developing visual languages of animation

    Get PDF
    The work presented in this thesis aims to explore novel approaches of combining motion capture with drawing and 3D animation. As the art form of animation matures, possibilities of hybrid techniques become more feasible, and crosses between traditional and digital media provide new opportunities for artistic expression. 3D computer animation is used for its keyframing and rendering advancements, that result in complex pipelines where different areas of technical and artistic specialists contribute to the end result. Motion capture is mostly used for realistic animation, more often than not for live-action filmmaking, as a visual effect. Realistic animated films depend on retargeting techniques, designed to preserve actors performances with a high degree of accuracy. In this thesis, we investigate alternative production methods that do not depend on retargeting, and provide animators with greater options for experimentation and expressivity. As motion capture data is a great source for naturalistic movements, we aim to combine it with interactive methods such as digital sculpting and 3D drawing. As drawing is predominately used in preproduction, in both the case of realistic animation and visual effects, we embed it instead to alternative production methods, where artists can benefit from improvisation and expression, while emerging in a three-dimensional environment. Additionally, we apply these alternative methods for the visual development of animation, where they become relevant for the creation of specific visual languages that can be used to articulate concrete ideas for storytelling in animation

    An Automated Build System for Articulated Characters

    Get PDF
    Rigging is the process of designing and implementing the manipulation architecture for an animated three-dimensional character. Rigs that give the animator the most control tend to be the most difficult to set up and maintain. Due to the linear nature of some elements of rigging, the more complicated a rig, the more time-intensive--and therefore more expensive--to achieve a high quality rig. A solution to complex rig iterability is to automate as much of the process as possible. The topic of this thesis is a framework for modular rigging automation, with a focus on quick and efficient rig iteration. A rigger is able to design a rig from predefined module elements (rig blocks) or quickly script new blocks. A rig is deconstructed into these elemental blocks and merged into a single rig script to regenerate the rig and attach a character\u27s geometry

    Animating Unpredictable Effects

    Get PDF
    Uncanny computer-generated animations of splashing waves, billowing smoke clouds, and characters’ flowing hair have become a ubiquitous presence on screens of all types since the 1980s. This Open Access book charts the history of these digital moving images and the software tools that make them. Unpredictable Visual Effects uncovers an institutional and industrial history that saw media industries conducting more private R&D as Cold War federal funding began to wane in the late 1980s. In this context studios and media software companies took concepts used for studying and managing unpredictable systems like markets, weather, and fluids and turned them into tools for animation. Unpredictable Visual Effects theorizes how these animations are part of a paradigm of control evident across society, while at the same time exploring what they can teach us about the relationship between making and knowing

    Simulation FX: Cinema and the R&D Complex

    Get PDF
    This study looks at the ongoing development of tools and practices used to animate nonlinear physical phenomena, such as the crash of ocean waves or the movement of human hair, in the visual effect and animation industries. These tools and practices are developed in a nexus between public funding, research universities, the film industry, and various other sectors, such as aerospace and meteorology. This study investigates how technological development became integrated with film production, and in turn how epistemic paradigms were shared between the film industry, scientific research institutions and other industries. At the heart of these animation tools and practices, and the networks of institutions that developed them, is a way of thinking that seeks to make use of unpredictable nonlinear complexity by shaping it toward specific applications. I observe this in the way animation and visual effect studios seek the realistic appearance of nonlinear natural movement through simulation, while also implementing technologies and practices to direct the look of these simulations. I also observe this in a variety of related examples, from the way the concept of research and development unites science and application, to the way management science promotes hands off approaches that preserve the unpredictable nature of creative work. My methods consist of charting the circulation of ideas, technologies, moving images and people through contact zones such as the computer science special interest group ACM SIGGRAPH, using archival research of trade communications, scholarly publications and conference proceedings, as well as interviews with industry workers

    Mixing tone mapping operators on the GPU by differential zone mapping based on psychophysical experiments

    Get PDF
    © 2016 In this paper, we present a new technique for displaying High Dynamic Range (HDR) images on Low Dynamic Range (LDR) displays in an efficient way on the GPU. The described process has three stages. First, the input image is segmented into luminance zones. Second, the tone mapping operator (TMO) that performs better in each zone is automatically selected. Finally, the resulting tone mapping (TM) outputs for each zone are merged, generating the final LDR output image. To establish the TMO that performs better in each luminance zone we conducted a preliminary psychophysical experiment using a set of HDR images and six different TMOs. We validated our composite technique on several (new) HDR images and conducted a further psychophysical experiment, using an HDR display as the reference that establishes the advantages of our hybrid three-stage approach over a traditional individual TMO. Finally, we present a GPU version, which is perceptually equal to the standard version but with much improved computational performance

    Underwater God Rays from a Custom Volume Renderer

    Get PDF
    Peanut Butter Jelly, directed by Alexander Beaty, is a 51 second computer-animated short film produced by Digital Production Arts. The plot focuses on a fight sequence between a pirate jelly fish and a flyboy jelly fish over a peanut butter jar. The production demanded a photo-realistic computer generated underwater environment, which lead to the need for a custom built volume renderer to render high quality god rays. This thesis illustrates the requirement for a customized volume renderer for the production, the algorithm, and the implementation of the renderer. It also describes a tool created for Maya 2012 which gives the artist, artistic control to change the render settings

    THE REALISM OF ALGORITHMIC HUMAN FIGURES A Study of Selected Examples 1964 to 2001

    Get PDF
    It is more than forty years since the first wireframe images of the Boeing Man revealed a stylized hu-man pilot in a simulated pilot's cabin. Since then, it has almost become standard to include scenes in Hollywood movies which incorporate virtual human actors. A trait particularly recognizable in the games industry world-wide is the eagerness to render athletic muscular young men, and young women with hour-glass body-shapes, to traverse dangerous cyberworlds as invincible heroic figures. Tremendous efforts in algorithmic modeling, animation and rendering are spent to produce a realistic and believable appearance of these algorithmic humans. This thesis develops two main strands of research by the interpreting a selection of examples. Firstly, in the computer graphics context, over the forty years, it documents the development of the creation of the naturalistic appearance of images (usually called photorealism ). In particular, it de-scribes and reviews the impact of key algorithms in the course of the journey of the algorithmic human figures towards realism . Secondly, taking a historical perspective, this work provides an analysis of computer graphics in relation to the concept of realism. A comparison of realistic images of human figures throughout history with their algorithmically-generated counterparts allows us to see that computer graphics has both learned from previous and contemporary art movements such as photorealism but also taken out-of-context elements, symbols and properties from these art movements with a questionable naivety. Therefore, this work also offers a critique of the justification of the use of their typical conceptualization in computer graphics. Although the astounding technical achievements in the field of algorithmically-generated human figures are paralleled by an equally astounding disregard for the history of visual culture, from the beginning 1964 till the breakthrough 2001, in the period of the digital information processing machine, a new approach has emerged to meet the apparently incessant desire of humans to create artificial counterparts of themselves. Conversely, the theories of traditional realism have to be extended to include new problems that those active algorithmic human figures present

    Realistic Hair Simulation: Animation and Rendering

    Get PDF
    International audienceThe last five years have seen a profusion of innovative solutions to one of the most challenging tasks in character synthesis: hair simulation. This class covers both recent and novel research ideas in hair animation and rendering, and presents time tested industrial practices that resulted in spectacular imagery

    Appearance-based image splitting for HDR display systems

    Get PDF
    High dynamic range displays that incorporate two optically-coupled image planes have recently been developed. This dual image plane design requires that a given HDR input image be split into two complementary standard dynamic range components that drive the coupled systems, therefore there existing image splitting issue. In this research, two types of HDR display systems (hardcopy and softcopy HDR display) are constructed to facilitate the study of HDR image splitting algorithm for building HDR displays. A new HDR image splitting algorithm which incorporates iCAM06 image appearance model is proposed, seeking to create displayed HDR images that can provide better image quality. The new algorithm has potential to improve image details perception, colorfulness and better gamut utilization. Finally, the performance of the new iCAM06-based HDR image splitting algorithm is evaluated and compared with widely spread luminance square root algorithm through psychophysical studies
    corecore