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Abstract

Peanut Butter Jelly, directed by Alexander Beaty, is a 51 second computer–animated short

film produced by Digital Production Arts. The plot focuses on a fight sequence between a pirate jelly

fish and a flyboy jelly fish over a peanut butter jar. The production demanded a photo–realistic

computer generated underwater environment, which lead to the need for a custom built volume

renderer to render high quality god rays. This thesis illustrates the requirement for a customized

volume renderer for the production, the algorithm, and the implementation of the renderer. It also

describes a tool created for Maya 2012 which gives the artist, artistic control to change the render

settings.

ii



Dedication

I like to dedicate my work in memory of my friend, teacher and mentor The Late Mr. Thilak

Daniel.

iii



Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Jerry Tessendorf, for provid-

ing support and inspiration throughout my research. This thesis would not be possible without the

background knowledge and guidance from Dr. Jerry Tessendorf and his Production Volume Render-

ing course. I thank Dr. House and Dr. Davis for not only serving as members on my committee,

but also giving me the background knowledge I would need to implement my thesis. I would like

to thank Alexander Beaty, the director of Peanut Butter Jelly, who carried out his vision and gave

me an opportunity to be a part of this remarkable creation. I thank DPA alumnus Kacey Coley,

for giving his deep image class which helped a lot in rendering godrays as deep images. I also like

to thank the entire Peanut Butter Jelly team and DPA 891 group who gave me lot of constructive

feedback. Finally, I want to thank my parents, my sister and her family who has been a great moral

support.

iv



Table of Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Visual Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Peanut Butter Jelly Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



List of Figures

1.1 An example of godrays occuring in a natural environment . . . . . . . . . . . . . . . 1
1.2 Underwater light rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 God rays from the motion picture Finding Nemo, Pixar Animation studios, 2003 . . 3
1.4 Pirates of the Caribbean: The Curse of the Black Pearl, ILM studios, 2003 . . . . . . 4
1.5 Shark Tale, DreamWorks Animation, 2004 . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Coral reef in Philippines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Visual illustration of Peanut Butter Jelly which includes the key components of the

short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Storyboard of different shots from Peanut Butter Jelly . . . . . . . . . . . . . . . . . 9

3.1 Ray Marching Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Reflection and Refraction of a light ray . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Maya scene with the ocean surface, light and the camera which are the inputs for the

renderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Refraction of light rays from trianlge vertices . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Representation of caustic volume with specular and caustic triangles . . . . . . . . . 15

4.1 r,s and t values on a caustic volume . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 One intersection point on the caustic volume, another on the specular triangle . . . . 20
4.3 Only one intersection point on the caustic volume . . . . . . . . . . . . . . . . . . . . 20
4.4 Only one intersection point on the specular triangle . . . . . . . . . . . . . . . . . . 21
4.5 Maya user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 God rays with artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 God rays color corrected in nuke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Shot 01 final image with god rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Shot 02 final image with god rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 Shot 17 final image with god rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6 Godrays rendered as deep image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



Chapter 1

Introduction

Figure 1.1: An example of godrays occuring in a natural environment
[8]

God rays, or Crepuscular rays, are shafts of sunlight that appear to originate from the point

in the sky where the sun is located. These light rays are usually created when the sun is partly

covered by a shadow inducing object like clouds, trees and buildings, and seem to converge at a
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point. In fact they are parallel shafts of sunlight and their convergence is a perspective effect as

shown in Figure 1.1. Light shafts are also frequently observed in underwater scenes when looking

up toward the water surface and the sun above. As water is a much denser medium than air, light

interacts differently with water. The water surface has a great effect on light below the surface. Light

rays refracted from the water surface can converge and diverge, scattering from water molecules and

suspended atmospheric particles, generating the god ray appearance. An example of underwater

light rays is shown in Figure 1.2

Figure 1.2: Underwater light rays
[10]

In computer graphics, lighting plays a key role in adding realism to the scene. It enhances the

mood and emotion of a scene. Many optical effects are involved with underwater lighting including

caustics, shaft of rays, reflections and refractions, and help to achieve highest degree of realism. The

light shafts are not only and interesting optical illusion, but also add a dramatic effect to the scene.

There are several different approaches to render underwater god rays. One technique is to
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model the rays as geometric shafts [12]. Another method to get this effect is by sampling lights

within a volume shader [7]. Matte painting techniques are also widely used to create god rays which

can be added as a layer in compositing.

God rays have been used in many feature and animation films, for example, Titanic (1997),

Double Jeopardy (1999), Finding Nemo (2003)(Figure1.3), Pirates of the Caribbean: The Curse of

the Black Pearl (2003) (Figure1.4), Shark Tale (2004)(Figure1.5), Superman Returns (2006).

Figure 1.3: God rays from the motion picture Finding Nemo, Pixar Animation studios, 2003

In the above examples from feature and animated films, the light shafts are one of the

important components providing authenticity to the underwater scene. Peanut Butter Jelly is a

student production in which the entire story takes place undersea. The film required high quality

visuals and realistic underwater looks which necessitated the design of a custom volume renderer.

This thesis presents the design and implementation of the custom volume renderer to render

god rays. Chapter 2 describes the student production Peanut Butter Jelly, it’s workflow and the

need for creating a custom volume renderer. Background information in Chapter 3 defines Fresnel

refraction and other important concepts in this paper which are essential for the renderer. Chapter

4 explains the implementation of the rendering algorithm and the tool created for Maya to access

the renderer in DPA pipeline. Results of using the renderer for the production Peanut Butter Jelly
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are discussed in Chapter 5.

Figure 1.4: Pirates of the Caribbean: The Curse of the Black Pearl, ILM studios, 2003
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Figure 1.5: Shark Tale, DreamWorks Animation, 2004
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Chapter 2

Visual Development

Peanut Butter Jelly, directed by Alexander Beaty, is a computer–animated short film pro-

duced by Digital Production Arts. The plot focuses on a fight sequence between a pirate jelly fish

and a flyboy jelly fish who are fighting over a peanut butter jar. The production was scheduled to

be a one year project beginning in the month of January, 2014 with a team of 13 volunteer members.

As the entire story occurs underwater, it demanded high quality visuals to generate photo realistic

ocean environment. The story happens to take place in a Philippines coral reef under 40 feet depth

and with clear visibility of water. The length of the short was framed to be 51 seconds with the

expectation of professional quality output rather than a student level production.

The production used the DPA pipeline following a specific workflow to get the final output.

The first stage of production involved visual development including research, storyboarding, char-

acter design and building the story arc. An adequate amount of research was done for the visual

development of the film to create an authentic underwater ambiance 2.1. After substantial research

and gathering sufficient reference images, the look of the film was finalized. A visual illustration

of a shot which has all the key elements of the short film is shown in Figure 2.2. The next step

of the workflow was storyboarding the entire story arc using sketches. Some of the storyboards by

Alexander Beaty are shown in Figure 2.3

The sequence of steps following storyboarding were character design, environment design,

modeling, surfacing, layout, animation, fx and lighting. The key components for a realistic computer

generated (CG) ocean environment scene include lighting, particulate matter, haziness, caustics,

reflections and refractions.
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(a) Underwater scene

(b) Coral reef

Figure 2.1: Coral reef in Philippines
[2]
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Figure 2.2: Visual illustration of Peanut Butter Jelly which includes the key components of the short

One kind of lighting effect which makes a CG undersea scene believable is godrays. As

discussed in Chapter 1, there are different methods to render underwater godrays. In modeling

geometric shafts [12], line primitives are generated as a grid of rays from the water surface and

intersected with the scene. The light shafts produced from this method are perpendicular lines and

do not look like underwater god rays because light shafts in real world can converge at a point. The

movement of god rays generated by sampling lights inside a volume [7] is not dynamic and does not

have varying structures for the light shafts. Matte painting is a tedious process, as each frame has

to be hand drawn, and it is not physically based. The results of those methods are not convincing

enough to produce a high quality aquatic scene. This instigated the need for an alternate method

for generating high quality underwater godrays which has fine detail, proper structure, and good

motion to enhance the look of the film. Volume rendering techniques can be used to achieve high

quality output images to generate effects elements such as fog, smoke, fire, water splashes and other

natural phenomena [16], hence a custom volume renderer was designed to render fine quality light

shafts for Peanut Butter Jelly.
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(a) Shot 01

(b) Shot 03

(c) shot 06

Figure 2.3: Storyboard of different shots from Peanut Butter Jelly
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Chapter 3

Background

A volume is a 3D scalar field which has values at any point in 3D space. Volume rendering

is a technique which displays the 3D information as a 2D image. The 3D data can be density,

velocity, color or light intensity. This data is stored in 3D grids. The rendering technique commonly

used in any volume renderer is ray marching [13]. In order to render the volume, there has to be a

camera in the scene through which the 3D data can be viewed. For each pixel, a ray is generated

which traverses through the volume. When it marches through the 3D data, it collects the color

information at regular intervals. When the color values at regular intervals are accumulated, the

final value is the color of that particular pixel. This is called ray marching, as shown in Figure 3.1.

To produce realistic underwater godrays, the renderer should take in to account the physical

properties of the actual natural phenomena, which include characteristics of light and properties of

Figure 3.1: Ray Marching Technique
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Figure 3.2: Reflection and Refraction of a light ray

water. A light ray can travel from one medium to another medium. The basic characteristic of

a light ray is that it is reflected and refracted when it hits an interface. When a light ray travels

from one medium to another medium with different refractive indices, a certain fraction of light is

reflected and the remaining light is refracted into the next medium. Occurrences of this phenomenon

can easily be observed when light enters and leaves some sort of transparent medium. The angle of

incidence is the angle between the incident ray and the surface normal, while the angle of refraction

is measured between the surface normal and the refracted ray. The different parameters when a

light reflects and refracts on a surface are illustrated in Figure 3.2. For this project, the light source

is a directional light representing the sun, the first medium is air and the second medium is water.

The index of refraction for air is one and for water is 1.33. The wave roughened water surface has

the effect on light below the surface of creating visible rays or shafts of light called godrays.

The amount of light reflected back to the atmosphere and the amount of light refracted into

the ocean can be determined using Fresnel’s equation. The relationship between the incident angle

and the transmitted angle is given by Snell’s law, which states that the ratio of the sines of incident

angle and transmitted angle is equal to the ratio of the opposite refractive indices of the medium.

Snell’s law is represented as:
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sin θt =

(
nair
nwater

)
× sin θi (3.1)

where, θi is angle of incidence, θt is angle of refraction, nair is refractive index of air, nwater is

refractive index of water.

To render underwater light shafts, a triangulated ocean surface mesh with waves, a direc-

tional light source, and a camera are given as inputs to the volume renderer (Figure 3.3). The ocean

surface mesh was generated in maya using a tool created by Samuel Bryce, which uses FFT waves

based on Dr. Tessendorf’s technique [15]. The tool conveniently allowed parameter variations such

as the resolution of the surface, the shortest and the longest wave, and the cusp factor as inputs to

FFT waves. In all elements that can be rendered as volumes, the density of the volume affects the

transitivity of the light, contributing to the apparent depth of the 2D image. Hence, the density of

volumes are generally stored in a 3D grid, and a ray marching technique is used to render the images.

For rendering god rays, the camera lies under the ocean. As water is the volume, the density factor

is constant and there is no need for 3D grids to store the data. Light rays originating from the light

source are parallel rays above the ocean surface. The vertices of the triangles are considered to be

the points of intersection on the ocean surface. When incident on the triangles, a certain amount

of light is refracted through the triangle vertices and enters the ocean volume, as shown in Figure

3.4. The refracted rays from each vertex can be calculated using Snell’s law. The refracted ray for

a vertex on a triangle is given by the equation

d̂t = d̂i nr + n̂ B (3.2)

where, d̂t is refracted ray from the vertex, d̂i is incident light ray from the parallel light source and

n̂ is normal of the triangle vertex.

B = −nr × cos θi ±

√1− n2r + n2r × cos2 θi√
1− n2r × sin2 θi


nr =

(
nair
nwater

)

where, nair is refractive index of air and nwater is refractive index of water.
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Figure 3.3: Maya scene with the ocean surface, light and the camera which are the inputs for the
renderer

For each triangle in the ocean surface mesh, three refracted rays are calculated. Similar to

a technique used by Watt [17], a beam of light is projected from each triangle, with the refracted

rays as edges of the three sides shaft. Each side surface of the shaft is a bilinear patch, becuase the

points on the refracted rays used to form the shaft sides are non-coplanar points. While it is simple

to calculate an intersection between a ray and a planar surface, finding an intersection between a ray

and a bilinear patch involves much more computational complexity. In order to render the image, a

ray is generated from the camera for each pixel. The equation of the ray is given as:

~X (r) = ~Xcam + n̂p r (3.3)

where, ~Xcam is the position of the camera and n̂p is the direction of the pixel.

If the ray from the camera hits the projection of the light shaft, the intersection points

are calculated and a triangle is projected which contains the intersection point. Now, there will be

two triangles and the bottom projected triangle is usually called a caustic polygon while the actual

ocean surface triangle is called a specular polygon. The caustic volume is the volume bounded by

the specular and caustic polygons [11]. Each side of the caustic volume is defined by two points on

the specular triangle and two points on the caustic triangle which forms a quadrilateral surface in

three dimensional space as shown in Figure 3.5. If a pixel ray intersects the light shaft, there will be

13



Figure 3.4: Refraction of light rays from trianlge vertices

two intersection points. There are four different cases for finding the intersection points. They are,

1. Two points on the caustic volume.

2. One point on the caustic volume and one point on the specular polygon.

3. One point on the caustic volume and one point on the camera.

4. One point on the specular polygon and one point on the camera.

The methods for calculating intersection points are different for each case, and will be

discussed in detail in Chapter 4. After calculating the intersection points, the amount of light

accumulated at those two intersection points are evaluated. As stated in Watt’s method [17], the

intensity of the caustic polygon is proportional to the area of the specular polygon divided by the

area of the caustic polygon. It is calculated using the formula,

Lv = Ls ×
(
As
Ac

)
(3.4)
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Figure 3.5: Representation of caustic volume with specular and caustic triangles

where Lv is the calculated light intensity, Ls is the sun intensity which is the intensity of light source,

As is the area of the specular triangle and Ac is the area of the caustic triangle.

Similarly another caustic polygon is projected for the second intersection point and the

light intensity is calculated. Once the light values at those two points are calculated, the color

contribution from the triangle for that one pixel ray is calculated using the formula

Color = e−ρκr1
∫ r2

r1

dr L (r) ρ κ e
−
∫ r2

r1
dr′ ρ κ

(3.5)

In order to get the volume render, the light intensity at the two intersection points is

integrated between r1 and r2, producing the total light accumulated between those two points.

Because the density is constant between these two points, ray marching is unnecessary and the

integral can be evaluated analytically as:

Color =

(
r2 − r1
M

)
e−b(r1+s1) ×

[
L1

(
1− e−bM

)
− (L2 − L1) e−bM +

L2 − L1

bM

(
1− e−bM

)]
(3.6)

where,

b = ρκ

M = (r2 − r1 + s2 − s1)

ρ is the density of water, κ is the transmisivity, r1 is the distance between the camera and the first
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intersection point, r2 is the distance between the camera and the second intersection point, s1 is the

distance between the first intersection point and the closest edge in the specular triangle, s2 is the

distance between the second intersection point and the closest edge in the specular triangle.

Scattering and absorption of light in the water reduces visibility exponentially as the distance

from the viewer increases. This attenuation is very color-dependent, and produces the bias toward

a blue-green color. In the rendering equation, the attenuation factor b is responsible for reduction

of visibility. The factor b is a color component and has three different values for the RGB channels.

The value for this parameter was provided by the Peanut Butter Jelly project [9], as 0.0758 for the

red channel, 0.02197 for the green channel and 0.0025 for the blue channel. As the value of the red

channel is higher, the contribution of red color will be less in the final color calculation.

Once the color is calculated for that triangle, the next triangle from the ocean surface is

selected and the process repeated. When all the ocean surface triangles are checked for intersection

for that one pixel ray, the accumulated color values are the color of that pixel. After calculating

color values for all of the pixels, they are stored as an image.

This renderer also allows storing the image as a deep image. Deep images have a format that

stores RGBA values at the actual distance from the camera. The advantage of using deep images is

that two images rendered seperately without holdout mattes can be composited with proper holdouts

into a single image with the help of the depth information. OpenEXR 2.0, [6] includes the deep

image format used in this renderer. The values r1 and r2 calculated for each triangle after the

intersection test are the depth values provided to the deep image.

To apply this renderer for the Peanut Butter Jelly production, a tool was needed to provide

a user interface. A tool for Maya 2012 was created, with purpose of allowing any artist working

in the production to setup a scene and render god rays. The tool allowed the user to change and

specify the input parameters needed by the command line renderer. It also managed the rendered

images so that the assets are stored in a directory conforming to the DPA pipeline. The description

of the Maya tool is given in Chapter 4.
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Chapter 4

Implementation

The implementation steps involved in rendering god rays are as follows:

1. Read the ocean surface obj file.

2. Calculate refracted rays for each vertex of a triangle based on parallel rays from source.

3. For a pixel ray, perform the intersection test with the triangle.

4. Calculate light intensity at the intersection points.

5. Compute color value contributed by that triangle and accumulate.

6. Repeat the process with the next triangle.

7. Move to the next pixel and repeat step 3–6.

The triangulated ocean surface mesh is one of the inputs for the renderer. An obj file parser,

written in C++, reads the ocean surface obj file and stores the vertices and normals. For each

triangle, the edges are also calculated and stored. Using equation 3.2, refracted rays are computed

for each vertex. A caustic volume can be projected whose sides are formed with the refracted rays

from three vertices of a triangle.

After calculating the refracted rays, a ray is emitted from the camera along the direction

of each pixel. An intersection test is made in order to find whether the pixel ray hits the caustic

voulme or the ocean surface triangle. Any point on the caustic volume which intersects with the

pixel ray will satisfy the equation,

17



Figure 4.1: r,s and t values on a caustic volume

~Xcam + n̂pr − ~y(t) + d̂(t) s = 0 (4.1)

where, ~Xcam is camera position, n̂p is direction of pixel ray, ~y(t) is a point on the edge of the specular

triangle, r is the distance from camera to the intersection point, r > 0, s is the closest distance from

the intersection point to the triangle edge, s > 0, d̂(t) is the direction of ~y(t), and t is a barycentric

coordinate of a point on the edge.

To solve the above equation, the values of r, s and t must be calculated. The values of r

and s can be obtained in terms of the variable t as below.

r =
n̂p ·

(
~y (t)− ~Xcam

)
−
(
n̂p · d̂ (t)

)
d̂ (t) ·

(
~y (t)− ~Xcam

)
1−

(
n̂p · d̂ (t)

)2 (4.2)

s =

(
n̂p · d̂ (t)

)
n̂p ·

(
~y (t)− ~Xcam

)
− d̂ (t) ·

(
~y (t)− ~Xcam

)
1−

(
n̂p · d̂ (t)

)2
18



(4.3)

In order to find the values of r and s, the value of t has to be calculated simultaneously.

The solution for the parameter t is obtained using root finding. The equation to be solved in order

to find the value of t is,

f(t) =
(
~y(t)− ~Xcam

)
·
(
n̂p × d̂ (t)

)
= 0 (4.4)

where, ~y(t) is a point on the edge of the specular triangle, ~Xcam is the position of the camera, n̂p is

direction of pixel ray and d̂t is the direction of y(t).

The secant method [5] was used in order to find the solution for t. It is based on approxi-

mating the function by secant lines [4]. For this approach, two initial approximations are taken in

to account assuming they are close to the solution. As the value of t determines a point on the edge

of the triangle, the two inital values are taken as the two vertices on either side of the edge. After

the first iteration, the result from the previous iteration is used as the approximation for the next

iteration. The process is repeated until the value of t converges on an accurate answer. If there is

no solution which satisfies the equation, then iteration will not converge and there is no intersection

point, which means the light shaft from that triangle is not in the path of the pixel ray. If there is

a solution, the values of r and s are obtained by substituting the value of t in equations 4.2 and 4.3

respectively. There has to be two intersection points in order to calculate the color of the pixel.

As discussed in chapter 3, there are four different cases to be considered when doing the

intersection test. In the first case, both the intersection points can be on the caustic volume (Figure

4.1). The second intersection point can be calculated using the same approach discussed above on

one of the other two sides of the caustic volume formed from the other edges of the triangle. The

second case to be considered is that the second intersection point can be on the specular triangle

itself (Figure 4.2). The intersection point is calculated using a ray triangle intersection test. For this

renderer, a fast, minimum storage ray/triangle intersection method was used [14]. If an intersection

point is on the specular triangle, the value of t is zero and the light intensity at that point is equal

to the intensity of the light source. This is because the specular triangle is the ocean surface and

there will be no light decay on the surface.
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Figure 4.2: One intersection point on the caustic volume, another on the specular triangle

Figure 4.3: Only one intersection point on the caustic volume
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Figure 4.4: Only one intersection point on the specular triangle

There are certain cases in which there is only one intersection point, either on the caustic

volume (Figure 4.3) or on the specular triangle (Figure 4.4). The first intersection point is considered

to be the position of the camera and the second intersection point is the point found using intersection

test. This happens when the camera is within a light shaft. If there is an intersection point, a caustic

triangle can be formed. The intersection point is a point on the caustic triangle and the area is given

by the formula,

A = |~e1(s)× ~e2(s) · ~e0(s)| (4.5)

where, ~e0, ~e1, and ~e2 are the edges of the specular triangle, s is the closest distance from the

intersection point to the specular triangle edge. When the intersection point is on the caustic

volume, the value of s is calculated using equation 4.3. When the intersection point is on the

specular triangle, the value of s is zero. Thus the area of the caustic triangle and the specular

triangle are the same. For case 3 and 4, when one of the intersection point is the camera itself, the

value of s is calculated using the equation:

~y = ~Xcam − ~p0 − u~e1 − v~e2 (4.6)

where, ~y is a vector from the position of the camera to the specular triangle and the magnitude of

~y is the value of s which is the closest distance between the camera and the specular triangle. ~p0 is
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a vertex and ~e1, ~e2 are edges of the specular triangle. u and v are barycentric coordinates and they

must satisfy three conditions. They are,

1. 0 ≤ u ≥ 1

2. 0 ≤ v ≥ 1

3. 0 ≤ u+v ≥ 1

If any one of the above condition fails, the value of s can be calculated using next method based on

equation:

~y = ~Xcam − ~pi −m~ei (4.7)

where,

m =

(
~Xcam − ~pi

)
· ~ei

|~ei|2
(4.8)

~pi is a vertex and ~ei is an edge on the specular triangle. The value of m is calculated for all

three vertices and the corresponding edges of the specular triangle and substitute in equation 4.7.

The absolute minimum value of equation 4.7 of all three values provided m satisfies the condition

0 ≤ m ≥ 1, is the value of s. If m value does not satisfy the condition for all three vertices, then the

minimum value of the distance from the camera to one of the vertex of the specular triangle is value

of s. The area of the caustic triangle is calculated by substituting the value of s in equation 4.5.

After calculating the area of the caustic triangle, the light intensity value at the intersection

point can be calculated by dividing the area of specular triangle by the above result. This is

represented as L1 for first intersection point and L2 is computed in a same way for the second

intersection point. Using the light intensity value at the two intersection points and the distance

from camera to the points, the color value can be computed using the equation 3.6 in chapter 3.

Once the color calculations are computed for one triangle, the same process is repeated for the other

triangles in the mesh. If there is color contribution from any other triangle for that pixel ray, the

color values from each triangle are added together unless its a deep image. The process is reproduced

for the next pixel and after repeating the procedure for all pixels, the values are stored as an image.

The renderer also provides an option for the user to render the god rays as a deep image. The

deep image format uses deep points in addition to pixels. For storing the image as a deep image, the
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depth information has to be stored in the image along with the red, blue, green and alpha channel.

A deep image C++ class provided by DPA student Kacey Coley was used to render deep images.

As the program has already computed the distance r from the camera to the intersection point,

the value is stored as the depth for each deep point. The difference in procedure between the 2D

rendering and deep rendering is that there is no need for accumulating color for a single pixel when

creating a deep image.

The volume renderer was written in C++. As Peanut Butter Jelly was a team production,

anyone who was working on the short would be able to render godrays. A maya tool with a graphics

user interface(GUI) allow users to manipulate the input parameters. The user interface is shown in

Figure 4.5.

The first text box allows the user to select the directory which has the ocean surface obj

files. The output directory points to the asset location where the final images are rendered and

stored. If the useDPAPipe option is checked, the tool creates the asset location following the DPA

pipeline. The string in the asset name text box will be the name of the directory and the base name

for the frames followed by version and frame number. In the camera attributes section, the camera

text box lists all the available cameras in the scene as a drop down list with the render camera as

default. As the camera can be animated in Maya, the renderer needs to keep track of the position,

aim vector and up vector of the camera for each frame. The maya tool for the renderer gets the

attributes of the rendering camera in maya for each frame and matches it with the camera attributes

present in the renderer. The tool also gets the image resolution and the frame range from render

settings. It also lists all the lights available in the scene. When a light is selected, the position

and color of the light are obtained from its’ property menu. In the Other parameters section, the

variable index of refraction (IOR) is the value for the second medium, which has the default value

1.33 for water. The parameter max iterations is the maximum number of iterations used for root

finding to find the solution for variable t and the color shift value is the attenuation factor b used in

color calculation. A sequence of obj files were used for water surface and for each frame an obj file

is read. Scripts are generated for each frame and the jobs registered with the queue similar to that

for other types of render tasks.
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Figure 4.5: Maya user interface
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Chapter 5

Peanut Butter Jelly Results

The motivation to build this custom volume render was to generate god rays in support of

the production of Peanut Butter Jelly. High quality visuals of godrays help to establish an authentic

underwater environment. A rendered frame of god rays, color corrected in nuke is shown in Figure

5.2. The god rays generated using the custom renderer has fine and varying structures. The intensity

of the color has a realistic gradient effect from the top of the image to the bottom as the intensity of

the light decreases with depth. The quality of light shafts depends on size of the specular triangle.

The structure of god rays can be sharp when there are many smaller triangles on the ocean surface

mesh. The sides of the caustic volume are bilinear patches and the intersection test on each patch

involves high computational complexity. Thus the quality and the rendering time depends on the

number of triangles present in the ocean surface mesh. In order to generate high quality renders of

god rays, the ocean surface mesh used for the production was of high quality, with more than 130000

triangles. The time to render a single frame on an 8 core machine varied from 18 – 21 hours. Peanut

Butter Jelly had 18 shots with the total frame count of 1211 and the god rays volume renderer

was used in all of the shots. As the resources present in DPA lab were not sufficient to render

god rays for all the frames within the production time, the Clemson University Palmetto Linux

cluster was used for the rendering process. The Palmetto cluster is Clemson University’s primary

high-performance computing (HPC) resource [3], which has 1978 compute nodes and 20,728 cores.

The libraries necessary for the custom volume render were installed on Palmetto along with the

renderer C++ code. Pbs scripts were generated using the maya tool, transferred to the Palmetto

cluster and submitted to the queue. Upon completion, the frames were transferred from Palmetto
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to the DPA pipeline assets. More than 42 years were spent on rendering god rays on Palmetto. The

algorithm can be improved in the future by using a bounding volume hierarchy (bvh) [1] technique

for intersection tests to decrease the rendering time.

During intial test cases, there were lot of distracting artifacts when the light shafts were

very close to the camera. A sample image which has artifacts is shown in Figure 5.1. By setting

the near plane of the camera to a distance not close to the camera, the artifacts could be eliminated

with acceptible image quality. For Peanut Butter Jelly, the near plane parameter is a user input for

the command line renderer.

Even though the renderer was built for the Peanut Butter Jelly production, it was incorpo-

rated into the DPA pipeline so that it can be reused in future productions. The results produced by

combining god rays into the final image made drastic differences in the look of the shot. The final

images of shot 01, shot 02 and shot 17 of the Peanut Butter Jelly film are shown in Figure 5.3 5.4

and Figure 5.5.

The renderer is also capable of rendering god rays as a deep image. To render an image as

a deep image, the depth information is stored along with the red, green, blue and alpha channels.

The depth is stored as deep points in addition to the pixels which has the color. The file size of a

single deep image is extremely large, as it stores the depth information and color value for every

intersection point. The production did not use the deep image feature as the 2D image satisified the

production need. Figure 5.6 is a perspective view in nuke of a frame in which godrays are rendered

as deep image.
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Figure 5.1: God rays with artifacts

Figure 5.2: God rays color corrected in nuke
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Figure 5.3: Shot 01 final image with god rays

Figure 5.4: Shot 02 final image with god rays
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Figure 5.5: Shot 17 final image with god rays

Figure 5.6: Godrays rendered as deep image
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