82 research outputs found

    Sustainable Environmental Strategies for Shrinking Cities Based on Processing Successful Case Studies Facing Decline Using a Decision-Support System

    Get PDF
    Since the middle of the last century post-industrial cities around the world have been losing population and shrinking due to the decline of their structural growth models, showing important socioeconomic transformations. This is a negative phenomenon but one that cities can benefit from. The aim of this work is to verify what type of measures against urban decline would be most suitable if applied to a specific case study. To do this, international cases of shrinking cities where successful measures were already carried out facing decline: (i) are collected, (ii) are classified based on several influencing criteria, and (iii) are grouped under similar alternatives against the decline. Measures and criteria focused on achieving sustainability are emphasized. Alternatives are then prioritised using an Analytic Hierarchy Process designed at several hierarchical levels. The results are discussed based on the construction of sustainable future scenarios according to the optimal alternatives regarding the case study, improving the model validity. The work evidences that environmental and low-cost measures encouraging the economy and increasing the quality of life, regardless of the city size-population range where they were performed, may be the most replicable. Future research lines on the integration of the method together with other decision-support systems and techniques are provided

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Open Data and Models for Energy and Environment

    Get PDF
    This Special Issue aims at providing recent advancements on open data and models. Energy and environment are the fields of application.For all the aforementioned reasons, we encourage researchers and professionals to share their original works. Topics of primary interest include, but are not limited to:Open data and models for energy sustainability;Open data science and environment applications;Open science and open governance for Sustainable Development Goals;Key performance indicators of data-aware energy modelling, planning and policy;Energy, water and sustainability database for building, district and regional systems; andBest practices and case studies

    Innovation in Energy Systems

    Get PDF
    It has been a little over a century since the inception of interconnected networks and little has changed in the way that they are operated. Demand-supply balance methods, protection schemes, business models for electric power companies, and future development considerations have remained the same until very recently. Distributed generators, storage devices, and electric vehicles have become widespread and disrupted century-old bulk generation - bulk transmission operation. Distribution networks are no longer passive networks and now contribute to power generation. Old billing and energy trading schemes cannot accommodate this change and need revision. Furthermore, bidirectional power flow is an unprecedented phenomenon in distribution networks and traditional protection schemes require a thorough fix for proper operation. This book aims to cover new technologies, methods, and approaches developed to meet the needs of this changing field

    Spatiotemporal Big Data Analytics for Future Mobility

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2019. Major: Computer Science. Advisor: Shashi Shekhar. 1 computer file (PDF); xii, 161 pages.Recent years have witnessed the explosion of spatiotemporal big data (e.g. GPS trajectories, vehicle engine measurements, remote sensing imagery, and geotagged tweets) which has a potential to transform our societies. Terabytes of earth observation data are collected every day from thousands of places across the world. Modern vehicles are increasingly equipped with rich sensors that measure hundreds of engine variables (e.g., emissions, fuel consumption, speed, etc) annotated with timestamps and location data for every second of the vehicle’s trip. According to reports by McKinsey and Cisco, leveraging such data is potentially worth hundreds of billions of dollars annually in fuel savings. Spatiotemporal big data are also enabling many modern technologies such as on-demand transportation (e.g. Uber, Lyft). Today, the on-demand economy attracts millions of consumers annually and over $50 billion in spending. Even more growth is expected with the emergence of self-driving cars. However, spatiotemporal big data are of volume, velocity, variety, and veracity that exceed the capability of common spatiotemporal data analytic techniques. My thesis investigates spatiotemporal big data analytics that address the volume and velocity challenges of spatiotemporal big data in the context of novel applications in transportation and engine science, future mobility, and the on-demand economy. The thesis proposes scalable algorithms for mining “Non-compliant Window Co-occurrence Patterns”, which allow the discovery of correlations in spatiotemporal big data with a large number of variables. Novel upper bounds were introduced for a statistical interest measure of association to efficiently prune uninteresting candidate patterns. Case studies with real world engine data demonstrated the ability of the proposed approaches to discover patterns which are of interest to engine scientists. To address the high velocity challenge, the thesis explored online optimization heuristics for matching supply and demand in an on-demand spatial service broker. The proposed algorithms maximize the matching size while also maintaining a balanced provider utilization to ensure robustness against variations in the supply-demand ratio and that providers do not drop out. Proposed algorithms were shown to outperform related work on multiple performance measures. In addition, the thesis proposed a scalable matching and scheduling algorithm for an on-demand pickup and delivery broker for moving consumers with multiple candidate delivery locations and time intervals. Extensive evaluation showed that the proposed approach yields significant computational savings without sacrificing the solution quality
    corecore