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1. Overview of the Articles in This Special Issue

An increasing number of data sources and models to handle them call for transparency
and openness in assessing their goodness and practical use for people. The simplest and
most robust tools to collect, process, and analyse data to offer solid data-based evidence for
future projections in building and district and regional system planning are of interest. For
this purpose, and following the success of the first Special Issue “Open Data and Energy
Analytics”, the Special Issue “Open Data and Models for Energy and Environment” has
been launched, intended for energy engineers and planners. Among a very high number
of submissions, 10 articles were selected for acceptance and published.

The first paper by Noussan and Neirotti [1] provides a quantification of the potential
influence of different charging strategies on the average emission factor of the electricity
supplied to electric vehicles. The next paper by Prina et al. [2] is related to the application
of the EPLANOPT model to the Italian energy system, showing the difficulties to meet the
Paris Agreement target of limiting the temperature increase to 1.5 ◦C.

The third paper in this special issue, by Neshat et al. [3], presents an optimization
framework of a multi-mode wave energy converter to be tested in a small island in the
west of Sicily, Italy, in the Mediterranean Sea. Cardone and Gargiulo [4], in the fourth
paper of this special issue, describe a semiempirical model of a scroll compressor to
predict the power consumption and the mass flow rate by considering leakages and
mechanical losses. The next paper, by Amini et al. [5], performs a parametric study on wave
energy converter layouts, investigating the distance influence and the effect of rotation
regarding significant wave direction in each arrangement compared to the predefined
layout. The sixth paper of this special issue, by Chiosa et al. [6], proposes an innovative
anomaly detection and diagnosis methodology to automatically detect anomalous energy
consumption in buildings, in addition to performing a diagnosis on the sub-loads that are
responsible for anomalous patterns. In the next paper, Henrich et al. [7] analyse the impact
of energy models in decision making processes for energy transitions in ten municipalities
in the Netherlands. In the eight paper, Manfren et al. [8] review the role of energy modelling
and analytics for energy transitions in the construction sector. Skeie and Gustavsen [9]
investigate the use of geospatial data to improve the level of definition of weather variables
used in data-driven building thermal performance characterization. Finally, in the tenth
paper, Agostinelli et al. [10] illustrate the use of cyber-physical systems, Internet of things,
and machine learning to achieve optimized energy management for a residential district
in Rome.

Author Contributions: Conceptualization, B.N.; writing—original draft preparation, B.N., M.M. and
M.N.; writing—review and editing, B.N., M.M. and M.N. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.
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Abstract: Electric vehicles, when coupled to electricity generation from renewable energy sources,
can become a viable solution to decarbonize the transport sector. However, given the high variability
of electricity mixes on a daily and seasonal basis, high-resolution profiles are needed for a precise
analysis of the impacts of electric vehicles in terms of greenhouse gases emissions. This paper
presents a comparison of different charging profiles evaluated on 10 European countries over four
years, to highlight the effects of national electricity mixes and of the type of charging location on the
specific emissions of EVs charging. This study, based on three archetypal charging profiles, provide
a quantification of the potential influence of different charging strategies on the average emission
factor of the electricity supplied to electric vehicles. The results show that the variability related to
charging profiles is generally limited, with an average variation range of 6% for any given country
and year, while in several countries the variability from one year to another is much larger, with an
average range of 18% for any given country and charging profile.

Keywords: electric vehicles; electricity mix; charging profile; emissions; energy

1. Introduction

Electrification of final sectors is among the main studied solution to mitigate the climate-change
related issues together with the pollutant emissions in urban environments. In fact, the electricity
sector is experiencing a steep growth rate in final energy consumption, and its renewable share is
increasing [1]. At the same time, renewable energy sources (RESs) stress the stability and balance of
the grid, due to their unpredictable and variable production.

The transport sector is among those that could see a significant increase of electricity penetration,
increasing its RES use [2] and helping the grid balancing [3]. Moreover, electrification of transport
leads to significant benefits related to the decrease of some pollutants in cities. These factors are giving
an important boost to the electric vehible (EV) market [4], to radically convert the environmental
impact of the transport sector [5] and their interaction with new technologies [6,7].

Electric vehicles (EVs) are not new technology, since they first appeared during the nineteenth
century, but they were overcome by internal combustion engines thanks to their better reliability and
available range. Moreover, in 1908 Henry Ford spread the gasoline engine vehicles around the globe
with his affordable and revolutionary Ford Model T [8], putting an end to the EV market. Today,
thanks to the new conditions discussed above, there are around 5 million electric cars running on the
roads, marking a +40% increase with respect to the 3 million of 2018, with China as leading market [9],
followed by the United States and the northern EU regions [10], confirming the current evolution trend
towards the electric mobility. The global COVID-19 crisis of early 2020, together with the current low
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oil prices, is having a short-term impact on this positive trend, but the medium- and long-term effects
are not yet clear.

Due to the increasing amount of electrical energy derived from fluctuating resources, the timing
of electricity demand is getting high importance to fully exploit the electrification benefit potential,
since production and consumption profiles show large variations on a daily, weekly and seasonal basis.
This oscillating behaviours lead to significant variations of the actual energy mix during even in small
time windows, with consequent variability of the main energy indicators used to assess the impact of
final energy sectors, such as the Primary Energy Factor (PEF) or the CO2 emission factor (EF) [11].

Accurate temporal analyses have been carried on in different works [12,13]. In [12], the authors
present the discrepancy between the annual energy mix, which is often used as reference, and the real
energy mix of the actual consumption of different heat pumps based on hourly calculations. In [13],
the temporal changes in electricity conversion factors supporting a life cycle assessment (LCA) are
evaluated, underling the importance of dynamic conversion factors to correctly estimated the entire life
cycle impact of a process. Fluctuating RESs are also producing undesired effects related to grid stability.
Transport electrification has been pinpointed as a possible solution to reduce the stress and improve
the grid reliability [14], especially at the distribution level. A smart integration and management of
the charging strategies could bring important benefits for the network operators. At the same tame,
unplanned and uncontrolled management of future EVs charging may produce severe impacts over
the electric network in terms of efficiency and reliability [15].

In order to properly forecast the impact on the grid, both in terms of RES electricity usage
and grid stability issues, detailed analyses based on different charging profiles are needed. Since
EV adoption is still at an early stage, there is a small amount of real profiles freely available [16],
and they are generally limited to specific conditions (e.g., private fleets, limited geographical coverage,
single user type, etc.). Thus, large part of modelling and simulation studies has been performed with
artificial charging profiles created making different assumptions or using stochastic and mathematical
techniques. In [17], a two-step modelling framework extracts information from a small amount
of real data, in order to create reliable charging profiles to asses the potential impact on the grid.
Similarly, [18,19] use stochastic simulations to generate realistic profiles based on real data collection.
In particular, in [19] the authors underline the difference between the week and week-end consumption
patterns, and they stress the importance of a stochastic approach to effectively manage the EV charging
periods. This last finding is supported also in [20], where a data-driven machine-learning algorithm is
used to replicate historical loads pattern and effectively manage the power system to avoid disservice.
Schauble et al. [21] deeply investigated three large datasets in order to underline the large information
hidden in charging patterns data, with the aim of spotlighting the most important ones to be used to
create reliable profiles. The resulting load profiles are in line with other scientific works. Nevertheless,
validation and generalization of the resulting profiles are reported as difficult tasks to be performed
due to the wide differences between the analysed data and the observed fleets. Instead, in [22], a user
behaviour simulation is used to test potential price incentives. The results highlight that variable
pricing can be used to modify the user behaviour and so the charging profiles allowing for a more
secure profile forecasting.

While much attention has been paid to charging profiles variation related to grid stability,
a comprehensive assessment of the impact on greenhouse gas (GHG) emissions on multiple countries
is still lacking. In this paper, we evaluate this impact by considering detailed temporal analyses for
both electricity generation and EVs’ charging profiles. The EVs’ electrical consumption, based on
three main charging archetypes, will be compared with several national energy production mixes
on an hourly basis, to evaluate the differences between the average annual energy mix and the
actual EV consumption patterns. In order to forecast the potential benefit of transport electrification,
different countries with specific production portfolios have been considered (Austria, France, Germany,
Switzerland, Italy, Netherlands, United Kingdom, Ireland, Denmark, Poland).
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2. Methods

The high-resolution analysis of the GHG emissions related to the electricity supplied to EVs
requires multiple steps. Different charging profiles and electricity generation mixes are considered
and compared, to calculate the weighted average of the hourly emission factors based on different
generation technologies. This section presents a description of the methods and the hypotheses that
have been used.

2.1. EVs’ Charging Profiles

The charging profiles considered in this study have been chosen with the aim of comparing
archetypal profiles related to EV charging in three different locations: at home, at work and in public
charging stations (usually associated with different services, such as restaurants, shopping centers,
cinemas, etc.). The profiles are the result of an analysis based on several data from real charging
profiles in Germany, based on a complex model that considered different car segments, households
characteristics and charging behaviours, to build up representative profiles for home, work and public
charging [23]. The profiles are based on an available power of 3.7 kW for home and work chargers,
and 22 kW for public charging points.

The profiles have been normalized on the total demand of a weekday for each type of charging,
to analyze comparable results considering the same amount of energy supplied to a vehicle. Figure 1
represents the three different profiles compared for a weekday and a weekend, measuring the
contribution of each hour of the day on the total charging over a weekday. An alternative approach may
have been the analysis of a large number of real-world EV charging profiles, which may be collected
by charging station companies or EV fleet owners. Unfortunately, the availability of statistically
significant datasets for research purposes remains limited, and they are often limited in terms of
charging locations, temporal spanning and country spanning, which may result in a limited variability.
For this reason, this work has been performed on standard profiles defined from literature studies,
but future developments of this work may assess the effect of considering real data on the results.

Figure 1. Different electric vehicle (EV) charging profiles.

Another potential limitation lies in the fact that the considered profiles are representative for
Germany and may differ from a country to another. Again, this approximation is in part related to
the unavailability of a large set of data over different countries, especially considering the limited
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penetration of EVs. Nevertheless, we believe that the assumptions on which these charging behaviours
have been build can still be an acceptable representation for the European countries that are being
considered in this study.

All the results are presented in relative terms, considering the electricity mixes that lead to specific
emission factors for the electricity supplied to EVs, differentiated per each country and type of profile.
The resulting emission factors may be used to quantify the impact of the electricity supply to different
EVs, with a greater accuracy in comparison with the common practice of considering average annual
performance indicators.

2.2. Electricity Generation Mixes

Together with EV charging profiles, the quantification of actual emission factors requires
also high-resolution electricity generation mixes, which have been calculated for several countries.
The methodology is described below.

2.2.1. Data Sources

The power generation data per each country has been retrieved from the European Network
Transmission Operators for Electricity (ENTSOE) Transparency Platform [24], which makes production
data freely available for most European countries. The ENTSOE platform groups together 43
transmission system operators (TSOs) from 36 countries (complete list available at [25]). The main
objective of the ENTSOE project is to ensure an optimal functioning of the electricity market as well
as support the implementation of the ambitious EU targets on renewable energy and climate change
policies [26,27]. Finally, it represents the largest open EU dataset on electricity, including generation
data, actual load data and production forecasts for some sources. For some countries, the geographical
detail is even higher, with some information available at the level of the different bidding zones,
which vary from a country to another.

The analysis performed in this research work has been limited to the generation profiles and
electricity mixes at the country level, without taking into account the additional information related
to import/export data. To increase the accuracy of the estimation, a deeper investigation of traded
electricity may lead to slightly different results. However, to obtain meaningful results it would be
necessary to consider all the countries that have international power trading, and in some cases not all
the necessary data are available.

2.2.2. Data Processing

We took 10 European countries into account in this work, namely: Austria, Denmark, France,
Germany, Ireland, Italy, Netherlands, Poland, Switzerland and the United Kingdom. The generation
data were available with 60, 30 and 15 min timestamps, depending on the country. The wide variety of
the energy production portfolio of these regions will highlight the effect of EV profiles in very different
electricity production mixes. The power generation by source was collected for the years 2016 to 2019
in order to highlight the differences that may occur among the years, thus considering the variability
of the generation mix within each country. The data presented a large number of energy sources
(hard coal, brown coal, wind on/off-shore, etc.) but in order to get meaningful electricity mixes to be
compared among the different countries they were aggregated into 11 main sources: biomass, coal,
geothermal, hydro, natural gas, nuclear, oil, solar, waste, wind and other.

The dataset presented a certain amount of “NA” data, both representing missing values as well
as the lack of a specific generation technology in any specific country (e.g., Nuclear power in Italy
or Denmark is always represented by NA values). Since no detailed information was reported for
all the considered countries, all the NA were replaced with zeroes, being aware of the potential
under-estimation that can arise from this simplification.

The data were elaborated to build an hourly dataset by calculating the hourly average power for
each source in each country, to perform a comparable analysis across all the available countries.
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Moreover, the hourly share per energy source Sharei,h was calculated as the ratio between the
energy produced by a specific source i and the total energy produced in the considered hourly
time interval Etot,h:

Sharei,h =
∑i Ei,h

Etot,h
(1)

The hourly shares are used to calculate the emission factors described in the following sections.
A general comparison of the electricity mixes in different countries is reported in Figure 2, where

the average values for the year 2019 are reported for each country. The RES category includes solar,
hydro, wind, biomass and geothermal, while the fossil one includes coal, gas, oil and other. Electricity
generation from waste is allocated in equal parts to fossil and RESs, in accordance to statistical rules
that are applied in some countries, to account for the biological share of municipal solid waste.

The chart shows the considerable variability of electricity mixes across countries, which in turn
could lead to significant differences in the emissions related to EV charging. While only 2019 is
represented in the chart, additional differences arise from one year to the other, as will be better
discussed in the following sections. It has also to be noted that the categories fossil and RES include
different sources that have a broad range of specific emission factors as well as other characteristics
(e.g., availability, predictability, dispatchability etc.).

Figure 2. Average electricity mixes in 2019 on an annual basis in different European countries.

2.2.3. Data Quality Issues

ENTSOE dataset is the largest and most comprehensive source of data about the European
electricity market, but data quality has been criticized due to lack of completeness and
consistency [28,29].

The EU report [29] is focusing on four main issues: data completeness, accuracy, timeliness and
user-friendliness. A detailed analysis is carried on based on online surveys with users, interviews
with experts, statistical analyses of the data in 2015/2016 and other documents in the literature.
The main outcomes are that the generation and load data present inconsistency and missing values
with poor documentation about the reasons ad the origin of these gaps. As an example, in the
Aggregated Generation per Type data the “Other” category is abused. Natural Gas Combined Cycle
(NGCC) plants are aggregated in “Other” instead of “Natural Gas”, probably due to the efficiency
difference with the usual gas plants as also highlighted in [30]. Moreover, this choice was not explicitly
documented in the dataset, but has been discovered by the authors of [30] only after a specific inquiry.
This choice, of course, can lead to major errors when computing the emission factor (EF) or the primary
energy factor (PEF) of different countries in which this kind of plants have a significant share of
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electricity generation (e.g., Italy). For this reason, in our work the parameters related to this category
have been mostly related to NGCC plants.

Nevertheless, a data quality improvement has been highlighted over the years, especially in 2018
and 2019, and different countries present coherent data with official national data [29]. Finally, it is
worth to mention that ENTSOE developed and maintains the platform and the database, but it is not
directly responsible for the quality of the data. The data providers are the National transmission system
operators (TSOs), sometimes supported by other organizations which, after a proper intermediate
service for data cleaning and organization, submit the electricity data. Sometimes the TSO does not
have direct access to very small plants data or do not take into account the back-up plants (the ones
that are turned on just in specific cases) leading to the underestimation of the generation from specific
sources [30]. This is a problem especially for distributed solar plants, whose generation may not be
correctly represented in ENTSOE data, since each country has different methods and categories to
evaluate and quantify the energy generation from final users.

2.3. Emission Factors

Hourly emission factors for electricity were calculated on the basis of the actual electricity mix
of power generation in each country, as described in the previous section, for the years 2016–2019
considered in this analysis. The analysis is limited to domestic generation in the country, since the
calculation of the share of imported electricity would have considerably complicated the analysis,
with limited additional benefits. Moreover, it would have been necessary to consider other countries
for which not all the required data were available.

The hourly emission factors e fh were calculated as a weighted average of the electricity generation
by different sources, in accordance with the following equation:

e fh =
∑i e fi ∗ Eh,i

Eh
(2)

where e fi are the electricity emission factors for the different energy sources, and Eh,i is the hourly
electricity production from each source and Eh is the total electricity generated in this hour.

Emission factors have been calculated by taking into account direct emissions as well as LCA
emissions, based on specific average coefficients available in the literature, reported in Table 1. The LCA
data have been chosen from international standards, by considering the values provided by IPCC [31],
which is the leading reference for emission factors. A different approach has been chosen for the direct
emissions, since data have been obtained by real calculations for the Italian power plants in operation
in 2019 [32]. We believe that this approach reflects better the operational conditions of power plants
in European countries, although the availability of differentiated coefficients for each country would
further improve our results. The emissions factors include the contribution of CO2, N2O and CH4,
and they are expressed in gCO2eq/kWh.

An approximation is introduced by choosing average emissions factors by energy source, which
may be variable both across countries and across and within years. Considering any energy source,
but especially fossil fuels, the electricity emission factor is related to the conversion efficiency of the
plant, which shows variations related to the technology, the size of the plants, the outdoor temperature
and other design and operational parameters. Moreover, in combined heat and power (CHP) plants the
emissions may be allocated properly considering both heat and electricity [33], and multiple methods
are available based on different parameters.

Thus, a more precise approach would require to calculate the actual efficiency of each power
plant in each given hour, based on a number of data on fuel consumption and heat production that are
unfortunately not available over such a wide range of countries and with the required high temporal
detail. Still, we believe that using annual average data from real plants represents a better estimation
than considering nominal values from power plants design parameters. A future research work

8



Energies 2020, 13, 2527

focused on a single country may provide additional information on the potential variability related to
annual operations and CHP allocation methods.

Table 1. Emission factors for electricity generation from different sources [31,32].

gCO2eq/kWhel Direct Emissions LCA Emissions

Biomass 0 230
Coal 870 910
Gas 368 490
Geothermal 0 38
Hydro 0 24
Nuclear 0 12
Oil 545 650
Other 368 490
Solar 0 45
Waste 555 620
Wind 0 11

3. Results and Discussion

3.1. Calculation of Hourly Emission Factors

The first step of the analysis led to the calculation of hourly emission factors, which show
significant ranges of variation, as reported in Figure 3 for direct emissions. With the exception of
Switzerland, which was totally relying on RES (mostly hydro) and nuclear energy, the other countries
showed a very large range of emission factors that was the result of seasonal and daily variations
in their electricity mixes. These results underline the importance of performing a more detailed
assessment considering actual EV charging profiles rather than considering simple average annual
emission factors.

Figure 3. Comparison of direct hourly emission factors in selected European countries.

This variability also emerged while considering the daily patterns of the hourly emission factors
of the electricity generation, as reported in Figure 4. Considering some random working days
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(e.g., the second Wednesday for selected months in 2019) it is clear that the generation mix in each day
showed a different behaviour for each country, which was related to multiple factors. The calculation
of an annual emission factor starting from hourly resolution allowed us to take into account this
variability, but at the same time provided a single indicator that quantified the combined effect of this
variability when considering an entire year.

It is important to remember that some results may be affected of the quality of the available data
that has been discussed in the previous sections, especially for 2016.

Figure 4. Comparison of direct hourly emission factors for selected days (the second Wednesday of
different months in 2019.)

3.2. Variability of Emission Factors

As described above, annual emission factors for the electricity supplied to EVs have been
calculated for each country considering three different EV charging profiles, and evaluating them in
four different years. The combined results, highlighting the variability of direct and LCA emission
factors for each country, are showed in Figure 5. A summary of the main information related to the
range of variation for each country is also reported in Table 2.

While in some countries the variations remain under 10% (in Switzerland, Poland and Italy),
in other cases the maximum variation from the mean can reach values higher than 20%, due to the
combined effect of different charging profiles on the demand side as well as different electricity
generation mixes on the supply side. Considering all the combinations, the increase of emissions
when considering the LCA perspective is on average around 56 g/kWh (with variations in the range
15–97 g/kWh), which represents a 30% increase of the direct emissions. Still, with the exception of
Switzerland, which totally relies on nuclear and hydropower, the largest share of GHG emissions in
the other countries is related to direct emissions from power plants.

10
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Figure 5. Variability of annual emission factors of EV charging in each country (with variable year and
charging profile).

Table 2. Variation of annual emission factors over charging profile and years for each country

gCO2eq/kWhel Direct Emission Factor LCA Emission Factor

Mean Min Max Range vs. Mean Mean Min Max Range vs. Mean

Austria 96.9 83.1 111.4 −14%/15% 147.5 129.1 166.2 −13%/13%
Denmark 264.0 189.7 346.4 −28%/31% 332.4 251.8 389.0 −22%/21%
France 41.0 31.6 54.0 −23%/32% 65.2 55.8 79.8 −14%/22%
Germany 363.1 288.7 410.6 −20%/13% 417.1 342.1 466.3 −18%/12%
Ireland 351.6 296.5 405.5 −16%/15% 418.0 363.6 475.8 −13%/14%
Italy 269.7 244.7 295.1 −9%/9% 354.5 329.0 383.7 −7%/8%
Netherlands 277.1 181.6 413.6 −34%/49% 365.3 253.7 510.5 −31%/40%
Poland 742.2 720.2 759.2 −3%/2% 786.6 766.8 804.7 −3%/2%
Switzerland 0.0 0.0 0.0 - 16.7 15.5 17.4 −7%/4%
United Kingdom 227.2 186.8 263.1 -18%/16% 301.7 265.4 333.2 −12%/10%

While the variation of the emission factors for electricity from a country to another has been
widely discussed in the literature, these results point out that significant variations also existed when
considering the variations within a single country, due to a combined effect of different electricity
mixes over the years and for different profiles. The problems related to the quality of data discussed
above may also have an impact on the highest variability ranges, and the availability of better data in
the next years may help in isolating this potential effect.

Moreover, Figure 6 illustrates an additional seasonal variability related to the monthly emission
factors, that have been calculated for each month, year and country. This chart illustrates the fact
that the very same charging profiles had different impacts depending on the period of the year that
was considered. While in some cases there might be some variations related to the car usage over the
year (e.g., vacation periods, different leisure activities, etc.), in general it can be assumed that private
car use remains relatively constant over the year. For this reason, the main results of our work were
considered on an annual basis rather than on a monthly basis.
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Figure 6. Monthly emission factors of EV charging in each country and each month.

3.3. Variations in a Single Year

To further evaluate the relative weight of annual variations and charging profiles in the variability
of the annual emission factors, an analysis focusing on a single year can allow to highlight the effect of
the latter aspect. For this reason, Figure 7 reports a comparison of emission factors for each profile
considering the data of 2019, that were the most recent available. Moreover, given the issues of data
quality discussed above, 2019 appeared to be less affected by these potential inaccuracies. However,
it is important to note that the analysis on the other years resulted in very similar results.

Figure 7. Annual emission factors of EV charging considering different profiles, year 2019.

The chart shows clearly that the emissions associated with the Work profile are higher in all the
countries but Italy, for both direct emissions and LCA emissions. This charging profile is strongly
concentrated in the beginning of the morning, when people arrive to their work location and plug-in
their electric cars. In most countries the morning hours are already characterized by a peak of electricity
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consumption, which may require the operation of dispatchable fossil plants to guarantee the energy
supply. For this reason, a better approach would be to develop strategies to distribute the peak demand
over a higher number of hours, considering the fact that people will remain to work for large part of
the day. However, it is important to underline that future conditions may vary, in particular with the
possible implementation of electricity storage and other flexibility options. The charging profile with
minimum impact varies from a country to another, with a slight majority of countries showing lower
impacts for Public charging.

Moreover, when considering the range of variation of the different profiles against the mean value,
we observe that it remains rather limited for any given country and year. With the exception of the
Netherlands in 2016, which may also be affected by some low-quality data, all the other combinations of
country and year show ranges of variation (calculated as the ratio between the difference of maximum
and minimum values and the average value) lower than 10% (with an average value of 6% and a
minimum value of 1%). On the other hand, when considering the variations of the emission factor of
each charging profile over the years for any given country, the ranges of variations are significantly
higher. Excluding the values for the Netherlands, due to the potential issues with data quality for 2016,
the average range of variation is 18%, much higher than the 6% variation associated to the profiles.

Thus it is clear that, within the data considered in this study, the variation related to the year has
a higher impact that the variation associated to the charging profiles. Given the fact that the three
charging profiles that we have chosen are already representing very different behaviours, we expect that
a sensitivity analysis would still confirm this limited variability, when evaluating aggregated profiles.

Another interesting result is that in most cases, the three different charging profiles result in higher
annual emission factors in comparison with the mean emission factor for each country, calculated
as a simple average of all the hourly values over the year. This result suggests that these charging
profiles end up in slightly higher emissions than those that can be calculated by using simplified
values, which would then underestimate these impacts. At the same time, the differences remain
generally limited, suggesting that also quite different profiles may not lead to dramatic changes in the
emissions associated to EVs charging.

On the top of that, it is useful to remind that the aggregated EV charging profile in any country
is generally a mix of the different profiles that have been considered here, since users are generally
relying on multiple EV charging solutions. As a result, the combined effect on the average EV charging
profile in a country may be even more similar to the average value of the electricity mix for this country.
Still, the information of the effectiveness of different profiles may remain an important insight for
policy choices to support specific charging strategies.

These results suggest that under the current conditions the potential benefits of smart charging
strategies based on emission savings may remain limited, although in future power systems
characterized by higher shares of RES their role may prove to be very effective. Moreover, smart
charging solutions are often designed to fulfill other benefits, such as avoiding excessive loads on
the grid or provide flexibility services. Those aspects may thus represent a higher priority for the
definition of proper charging profiles, given the limited variability of GHG emissions.

A final note is the fact that all the calculations in this work are performed with the current
conditions of the electricity networks and generation mixes. The future will likely be characterized by
an increase of the role of variable RESs, but at the same time the energy demand by EVs, in the case of
large penetrations, may have a direct impact on the electricity dispatching and on the power mixes.
In many countries these demand may remain marginal in comparison with other sectors, and it may
also be compensated by energy efficiency measures in other applications, but further work may be
required to assess the potential importance of this aspect.

4. Conclusions

This research work presents an analysis of the annual emission factor of different EV charging
profiles by considering an hourly time step over one year. The analysis is performed on 10 different
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European countries and four years of operation, by comparing three alternative charging profiles that
are representative of EV charging at home, at the work location and in public charging facilities.

The results show that in addition to the well-know variability between countries, which is related
to the different mixes of electricity generation, there is an additional variability related to both the
profiles and the years of operation. In particular, for some countries this latter effect appears to be
more strong than for the charging profiles.

However, while there is generally an agreement on the importance of supporting smart charging
strategies for EVs, the results of this study show that when assessing the effect of different charging
profiles in a given country and a given year, the variability remains limited, with an average range of
variation around 6%. Thus, the difference of different charging strategies appears lower than expected.
Still, other optimized profiles may provide better results, but they need to be specifically considered in
each different case.

On the other hand, for any given country and charging profile, the variation of the year of analysis
resulted in an average range of variation of 18%, highlighting the significant variability in the electricity
mix of these European countries over the years. This fact underlines the importance of considering
multiple years when estimating the emissions related to the use of EVs in any given country, accounting
for the potential uncertainty related to varying electricity mixes over the years.

The results of this study provide a preliminary assessment of the difference in GHG emissions
associated to multiple EV charging profiles. The results of this work may be strengthened by
considering a large amount of real EV profiles rather than the archetypal profiles considered in
this work. This could provide additional insights on the variability across multiple changing strategies.
Unfortunately, statistically significant datasets from real cases and from multiple countries are seldom
available for research purposes. Additionally, an improvement of the time resolution going beyond
the hourly data that have been used here could provide additional insights, especially when applied to
fast-charging systems.
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CHP combined heat and power
EF emissions factor
GHG greenhouse gases
LCA life cycle assessment
NGCC natural gas combined cycle
PEF primary energy factor
RES renewable energy sources
TSO transmission system operator
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Abstract: The modeling of energy systems with high penetration of renewables is becoming more
relevant due to environmental and security issues. Researchers need to support policy makers
in the development of energy policies through results from simulating tools able to guide them.
The EPLANopt model couples a multi-objective evolutionary algorithm to EnergyPLAN simulation
software to study the future best energy mix. In this study, EPLANopt is applied at country level
to the Italian case study to assess the best configurations of the energy system in 2030. A scenario,
the result of the optimization, is selected and compared to the Italian integrated energy and climate
action plan scenario. It allows a further reduction of CO2 emissions equal to 10% at the same annual
costs of the Italian integrated energy and climate action plan scenario. Both these results are then
compared to climate change scenarios through the carbon budget indicator. This comparison shows
the difficulties to meet the Paris Agreement target of limiting the temperature increase to 1.5 ◦C.
The results also show that this target can only be met through an increase in the total annual costs in
the order of 25% with respect to the integrated energy and climate action plan scenario. However,
the study also shows how the shift in expenditure from fossil fuels, external expenses, to investment
on the national territory represents an opportunity to enhance the national economy.

Keywords: energy scenarios; photovoltaics; wind; EPLANopt; multi-objective optimization;
climate-change

1. Introduction

Energy system modeling [1] is a relevant discipline in supporting policy-makers in the definition
of the energy strategy. Different European countries have already published energy strategies to meet
the European climate and energy targets for 2030 [2]. Among them, there is also Italy which is selected
as the case study in this paper [3].

With the aim of using an energy system model to develop different scenarios for the considered
case study, the main characteristics of energy system models have been analyzed in order to choose the
proper model. In particular, two features of energy system models are identified as being relevant in the
scenario development process. These are the following: high temporal resolution and sector-coupling.

The hourly time-step is largely considered as high temporal resolution in energy system
modeling [4]. It is particularly important when modeling energy systems with high penetration
of variable renewable energy sources (VRES). Poncelet et al. [4] showed the importance of time
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resolution in energy system modeling. They demonstrated how the resolution in time should be
prioritized compared to the resolution in techno-economic detail and how the use of a low number of
time-slices (usually 12 time-slices) produces a generation mix error that cannot be considered negligible.

The second important characteristic is sector coupling. Several papers showed the advantages of
sector coupling modeling compared to the single specific sector modeling approach. In this regard,
it is important to mention the contribution of Aalborg University in the definition of the smart energy
system concept that showed the advantages of studying the interactions and synergies between different
energy sectors to maximize efficiency and reduce costs [5,6]. H. Lund in [6] and D. Connolly et al. [7]
conceptualized the smart energy system definition highlighting the opportunities and synergies among
different energy sectors. In [8], B.V. Mathiesen et al. analyzed the smart energy system concept focusing
on the integration of the transport sector.

In [9], B. Nastasi et al. highlighted the importance of hydrogen as an energy vector to link the
electricity and heating sectors. M. G. Prina et al. [10] showed the advantages of sector coupling at
district heating level. R. Bramstoft et al. [11], through the studying of the decarbonization pathways
of Sweden at 2050, showed the advantages of the integrated modeling of transportation, electricity,
gas, fuel refinery and heat systems. S. Ben Amer et al. [12] used the Balmorel model on the Greater
Copenhagen case study integrating the electricity and heating sectors. V. Heinisch et al. [13] showed
the advantages of coupling the electricity, heating and transport sectors focusing on urban areas.
M. Pavičević et al. [14] studied the potential of sector-coupling at European level and found out how
the transport sector coupled to the power sector guarantees the highest flexibility potential in terms of
power curtailment, load shedding and congestion. H. Lund et al. [15] underlined the importance of
moving beyond the electricity-only approach and towards an integrated cross-sector approach.

A model which reflects these characteristics is the software EnergyPLAN [5,16,17] developed by
Aalborg university [17], Denmark. EnergyPLAN software is a bottom-up single-node simulation model
which allows the evaluation of different future alternatives of the energy system through the testing of
different energy mixes. It implements an hourly time-step to properly describe energy systems with
high penetration of renewables. Several studies coupled an optimization algorithm to the EnergyPLAN
software; therefore, using the EnergyPLAN software for the simulation and dispatch over the year and
an optimization algorithm for expansion capacity evaluation. This approach is largely diffuse due to
the characteristics of EnergyPLAN software which requires a very short computational time. This is
due to its heuristic modeling based on internal predefined priorities.

I. Batas Bjelić et al. [18] presented a single-objective (SO) optimization model coupled to
EnergyPLAN and selecting the flexibility options only in the electricity sector. M. S. Mahbub et al. in [19]
and in [20] presented a multi-objective (MO) optimization tool considering as flexibility options within
the decision variables, only heat pumps. The EPLANopt model [21,22] developed by Eurac research
through the coupling of the simulation software EnergyPLAN and a multi-objective optimization
algorithm is applied at regional level in [23] selecting as flexibility options, heat pumps, batteries and
power to gas. The EPLANopt tool is open-source and the full code is available at [24]. The EPLANopt
model is characterized by an hourly time-step, single-node approach and by sector-coupling, i.e.,
the main sectors of the energy system (electricity, heating and transport sectors) are all implemented
in the model. With a similar approach the EPLANopt model is applied in this study at the Italian
energy system.

In particular, the aim of this paper is the following: (i) the creation of an energy system model
which reflects the Italian integrated energy and climate action plan at 2030 (Piano Nazionale Integrato
Clima e Energia—PNIEC [3]). This is useful to validate the model on the achievement of the energy
targets and at the same time to estimate the total annual costs of the energy system. This latter is
important information for the comparison with different scenarios. (ii) Through the expansion capacity
optimization model, EPLANopt, this work aims to inspect future scenarios under total annual costs and
CO2 emissions minimization. The comparison of these scenarios with the Italian integrated energy and
climate action plan allows the understanding of other alternatives to the energy system able to further
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decrease CO2 emissions. (iii) The last scope is to compare the scenarios, result of the optimization
process and the Italian integrated energy and climate action plan scenario with the climate change
scenarios. Through this comparison the aim is to understand if these scenarios are in line with the
Paris Agreement target [25] of limiting the temperature increase to 1.5 ◦C. This comparison is possible
thanks to the use of the carbon budget indicator.

One challenge of energy system modeling is the connection between bottom-up energy system
models and the impacts of energy transition on the environmental sphere. Considering climate change
scenarios in energy system modeling is usually performed through the integration of top-down and
bottom-up approaches with different degrees of linking between the two methodologies. For example,
M. Rocco et al. [26] realized a soft-link between the open-source energy optimization model (OSEMOSYS)
and a linear input-output model (IO) to evaluate the environmental impact of future energy scenarios.
S. D. Tuladhar [27] realized a hard-link between a bottom-up and top-down model by means of an
iterative process with the aim of climate change analysis. Other examples of hybrid models, results
of the integration between bottom-up and top-down, are integrated assessment models (IAMs) [28]
which present close loops between climate, impacts, economy and energy modules. This paper aims at
implementing a simplified and fast method to connect the results of a bottom-up energy system model
with climate change scenarios. Future steps will be dedicated to the integration of EPLANopt with a
top-down model to assess the impacts on the economy and the environment.

The paper has the following structure: a materials and methods section presents the EPLANopt
model, its main characteristics and the carbon budget indicator; a section on the Italian case study
presents the assumptions and sources of the input data used for the case study; a results section shows
the outcomes of the model and conclusive remarks are given in the last section. The work presented
in this paper received funding from the FESR 1042 “Integrids” project and by institutional funding.
The funding body did not influence the case study, assumptions or the choice of the model.

2. Materials and Methods

The materials and methods section is structured as follows: (i) the EPLANopt model, why it is
chosen and its main characteristics; (ii) EnergyPLAN software main general features; (iii) explanation
of the multi-objective optimization analysis used in EPLANopt; (iv) specific characteristics of the
EnergyPLAN software to this particular case study and (v) the carbon budget methodology and how the
results from the bottom-up energy system model EPLANopt are connected to climate change scenarios.

EPLANopt [21,22] is a bottom-up short-term energy system model which is selected because it
allows the implementation of multi-objective optimization without losing resolution in time and in
sector-coupling [29], which, as already mentioned, are relevant characteristics for describing energy
systems with high penetration of renewables. Bottom-up models accurately describe the energy system
internal relationships and allow the user to evaluate the future alternatives of the energy system and
the potential synergies between energy sectors. These models do not usually describe the interactions
between the energy sectors and the economics of a nation, region or municipality. These models differ
from the top-down approach [30] which instead are characterized by less details in the energy sector
but describe the relations with other interconnected sectors such as employment, social growth, public
welfare, et cetera. Short-term models inspect the alternatives of the energy system in a future target
year. These differ from long-term models [31] which study and assess the entire transition between the
current state of the energy system up to a future target year.

The EPLANopt model is the result of a coupling between the EnergyPLAN software [5,16,17]
and an expansion capacity optimization algorithm. The EnergyPLAN software is a deterministic
simulation model, it is suited to describe future scenarios with high penetration of VRES, it simulates
a one-year period with an hourly time-step and it integrates the three primary sectors of the energy
system. The model was applied at different scales: at European level [32], at national level [33–40],
at regional level [41], to towns and municipalities [10,42] and to small islands [43–45].
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The multi-objective expansion capacity optimization algorithm is based on a multi-objective
evolutionary algorithm (MOEA) [46–48] which allows the assessment of the Pareto front of optimal
solutions. The multi-objective approach allows the modeler to find optimal solutions in terms of
simultaneous minimization or maximization of different indicators. Therefore, the multi-objective
optimization approach allows the simultaneous assessment not only of an economic objective, as usually
adopted in single-objective expansion capacity optimization problems, but also considering an
environmental one. The considered objectives for this particular case are the minimization of the
total annual costs and the minimization of annual CO2 emissions. Equation (1) shows the objective
functions of the multi-objective minimization problem. The main constraints describe how the value
of the decision variables should remain in a fixed range defined by the decision variables’ lower DV

(L)
i

and upper DV
(U)
i

bounds. Other constraints such as balance between demand and generation at
each time-step or storage behavior with initial content equal to final content are defined within the
EnergyPLAN software.

Optimization function min

(

Annual_Costs [M€]
Annual_CO2_Emissions [Mt]

)

(1)

Subject to DV
(L)
i
≤ DVi ≤ DV

(U)
i

The operational simulation of the year is performed through EnergyPLAN software while the
expansion capacity optimization is achieved through the MOEA. The total annual costs are considered
by EnergyPLAN as the sum between annualized investment costs, fixed operation costs and variable
costs. These latter are divided into fuel costs and electricity exchange costs.

The MOEA creates an initial population of random individuals. The population is the set of different
solutions which will be tested by the optimization algorithm to find the optimum. Each individual is
made up of a list of values for the decision variables. For each decision variable, the value is found in
the range defined by a minimum, DV

(L)
i

, and a maximum bound, DV
(U)
i

. The MOEA then inspects
and evaluates each solution (thus each individual) by running the simulation model, in this case
EnergyPLAN. EnergyPLAN is run on the selected future target year, replacing the values of the decision
variables which characterized the solution in the EnergyPLAN input file of the baseline. EnergyPLAN
returns the values of different indicators. Two of them, total CO2 emissions and total annual costs,
are chosen as objective functions. Each individual or solution is compared to the others based on these
two indicators. Through the use of operators typical of genetic algorithms (such as selection, crossover
and mutation) the optimization algorithm moves forward creating a new population of individuals.
These steps are repeated until the convergence is reached and the final Pareto front is found.

EnergyPLAN is adopted in this study with the following specific characteristics: (i) The version is
12.1; (ii) the technical simulation option is selected; (iii) dump charge is chosen for electric mobility;
and (iv) power-to-gas is modeled through two main variables, the hydrogen produced and the capacity
of the electrolyzer. The electrolyzer will start producing hydrogen in the time-step in which there
is over-generation of electricity from VRES and injecting it into the gas grid. This is implemented
in EnergyPLAN through the electro-fuels sheet; CO2 hydrogenation section, by setting to zero the
parameters of the carbon recycling and the electrolyzer efficiency equal to 0.7. The variables SynGridGas
[TWh/year] under output section, which corresponds to the produced hydrogen, and the MaxCap
variable under the flexibility section, which represents the capacity of the electrolyzer are chosen
within the optimization. The decision variables are the technologies on which the expansion capacity
optimization analysis is performed. These two variables, produced hydrogen and capacity of the
electrolyzer, are chosen as decision variables together with a list of other technologies such as variable
renewable energy sources, electric storage, et cetera. The complete list is introduced in Section 3.
The optimization algorithm varies their values in order to find the best energy mix for the considered
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case study, hence, finding the right combination of excess electricity production, size of the electrolyzer,
produced hydrogen, et cetera.

As mentioned in the introduction, the aim of the paper is also to connect and compare the
scenarios obtained through the optimization methodology to climate-change scenarios. In order to
achieve this task, there is the need to introduce the remaining carbon budget concept. It is defined by
J. Rogelj et al. [49] as the “Finite total amount of CO2 that can be emitted into the atmosphere by human
activities while still holding global warming to a desired temperature limit”. In [49], J. Rogelj et al.
estimate the remaining carbon budget on a global level equal to 480 Gt CO2. This amount represents
the overall quantity of CO2 emissions that can be emitted for a 50% probability of limiting global
warming to 1.5 ◦C (within 2100 above pre-industrial levels, 1850–1990). Assuming that each person
on earth has the same carbon budget, the overall carbon budget for the considered case study, Italy,
results in 3.8 Gt.

3. Italian Case Study

This section is dedicated to the description of the input data and assumptions regarding the
selected case study. It is structured as follows: (Section 3.1) The first section concentrates on the baseline,
the required data for its characterization and the assumptions. The baseline is a scenario which reflects
the current state of the energy system for a reference year. (Section 3.2) The second section focuses on
the Italian integrated energy and climate action plan and its definition in the EnergyPLAN software.
(Section 3.3) The third section describes the decision variables and their ranges. The decision variables
are the technologies on which the expansion capacity optimization analysis is performed. Their ranges
define the domain of the optimization problem. For each decision variable the range is defined by
a minimum bound, the value in the reference year and a maximum bound, the maximum potential
for the source. Moreover, this section explains the assumptions introduced on energy efficiency of
buildings, electric mobility, energy efficiency in the industry sector, et cetera. (Section 3.4) The fourth
section defines the optimization problems and their assumptions.

3.1. Baseline

The first step consists of the creation of the Baseline which is the scenario reproducing the Italian
energy system for a specific reference year. In this study the reference year is 2015 and the application
case study is the Italian energy system. The created scenario is called Baseline 2015. It is characterized
by an input file of EnergyPLAN which collects all the information of the Italian energy system for the
year 2015: energy demand, installed power and capacity of different sources, efficiencies, emission
factors, fuel costs, investment and operation and maintenance (O&M) costs.

The Baseline 2015 is created by the Heat Roadmap Europe 4 (HRE4) project [50] which provides
the 2015 EnergyPLAN input file for 14 EU member countries (Italy included) [51]. This 2015 HRE4
baseline is modified using more precise data taken from Italian authorities: GSE [50], RSE [52] and
Terna [53]. Table 1 summaries the main open sources used to collect the input data divided into
the electricity, heating and mobility sectors. The data are mainly generation and consumption data,
thus including capacities, efficiencies and time-series.

Table 1. Sources used for the development of the 2015 baseline for Italy.

Sector Data Source References

Electricity Capacity of renewables GSE [54]
Hourly profile for renewables Terna, GSE [53,54]

Capacity for other technologies Terna [55]
Electricity demand Terna, HRE [50,53]

Heating Generation and consumption data HRE [50]

Mobility Consumption data HRE [50]
Electric vehicles demand and charge profile RSE [52]
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The electricity sector produced by HRE4 is the most modified and adapted in this work.
M. Noussan et al. [56], starting from open data, presented a data analysis of the electricity generation
at the Italian level, by considering some performance indicators based on primary energy consumption,
share of renewable energy sources and CO2 emissions. The same open data sources are used to update
the EnergyPLAN input file for the Italian case study in 2015.

Renewable energy installed power is taken from the statistic report of GSE (Italian authority on
renewable energy and energy efficiency) [54]. Hourly distributions profiles of renewable energy sources
are taken from Terna transparency reports [53]. Terna is the Italian transmission system operator.
However, these distributions are influenced by the commissioning and entry into service of new plants
during the year. This affects the hourly distribution because, at the end of the year, the generation is
characterized by a different installed capacity from the one at the beginning of the year. In order to get
rid of this increasing factor, a linear increase of the installed capacity of each renewable energy source
is assumed between the beginning and end of the year. The artificial value of capacity in each time-step
t is given by Equation (2). Cm,t is the capacity of technology m at time-step t. Cstart

m is the capacity of
technology m at the beginning of the considered year while Cend

m is the capacity of technology m at the
end of the considered year. 8784 are the hours in a year (EnergyPLAN considers a leap year).

Cm,t = Cm,t−1 + t·
Cstart

m −Cend
m

8784
(2)

The generation of each renewable energy source in each time-step t is rescaled to take into
consideration this increase in capacity over the year. Equation (3) shows the new hourly power output
of technology m. P′m,t is the new rescaled power output of technology m. PTerna

m,t is the old power
output of technology m taken from the Terna data (values that should be purged from the increasing
capacity over the year).

P′m,t = PTerna
m,t ·

Cend
m

Cm,t
(3)

The new generation value is equal to the equivalent power output that would have been produced
in the time-step t by the total capacity installed at the end of the year. Another modification of the
existing Heat Roadmap Europe data is required: the equivalent hours of the hourly distribution must
coincide with the value from GSE. Equivalent hours express the full load hours of a certain source.
Equation (4) shows how the equivalent hours are calculated, where Pm is the total power output of
technology m over the year and Cm is the capacity of technology m.

heq,m =
Pm

Cm
(4)

Table 2 shows the equivalent hours of the main Italian renewable energy sources and the final five
year average value. This average value is chosen for the modification of the hourly distribution data
with the aim to reconcile the year by year variability of these renewable energy sources.

Table 2. Equivalent hours for renewable energy sources in Italy: Photovoltaic (PV), wind power, river
hydro and geothermal. Values from 2011 to 2015.

Equivalent Hours PV Wind Power Hydro (River) Geothermal

Equivalent hours 2011 1325 1563 4060 7324
Equivalent hours 2012 1312 1855 4379 7243
Equivalent hours 2013 1241 1793 4392 7321
Equivalent hours 2014 1211 1767 4454 7206
Equivalent hours 2015 1225 1683 4374 7534

Average equivalent hours 1263 1732 4332 7325
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The method to correct the hourly distribution data is taken from the EnergyPLAN documentation.
This method is shown in Equation (5) where FACRES is a correction factor. This value is unknown and
has to be found in order to obtain a value of equivalent hours for the new distribution equal to the
average equivalent hours of Table 2.

Pm,t = P′m,t ·
1

1− FACRES·(1− P′m,t)
(5)

A last modification that needs to be done is caused by the EnergyPLAN leap year approach.
In order to generate hourly distributions of 8784 elements it is necessary to create an imaginary 29th
February for the year 2015. This day is created by copying the previous day’s distributions.

Once all of these modifications are implemented, it is possible to calculate the hourly distributions
to be used in EnergyPLAN (Equation (6). Pnom

m is the nominal power or installed capacity of technology
m in the year 2015. PePLAN

m,t is the final hourly distribution with values between 0 and 1.

PePLAN
m,t =

Pm,t

Pnom
m

(6)

Figure 1 shows an elaboration of the hourly distributions for PV, wind power, geothermal and
river hydro in the years from 2011 to 2015. The representative day for each month is implemented
calculating the average of the values of the same hours on all the days of that month. This type of graph
is useful to highlight seasonal and intra-day variability. It shows the potential integration between
PV and wind power. In fact while PV has a higher generation in summer wind power produces the
most in the winter season. Geothermal is almost constant and river hydro has its peak during the end
of spring and the beginning of summer. It is important to highlight that the seasonal variability of
river hydro could change in the future as a result of climate change and melting of the glaciers [57].
The installed power of PV in 2015 was equal to 18,892 MW. Wind power installed power was 9162 MW
and geothermal was 821 MW. Hydro power is divided into three categories: pumped hydro storage,
reservoir hydro power and river hydro. River hydro is characterized by a small reservoir in the order
of a few hours. The installed power of river hydro was equal to 5332 MW in 2015. As it is possible to
see from Figure 1, the river hydro profile has a daily cycle with two peaks: one in the morning and
the other one in the evening. This is typical of the daily electricity demand profile and suggests that
these plants within the day can modulate their production in response to the demand and the prices
of electricity.

Other renewable energy sources such as biomass plants and reservoir hydro power can modulate
their output power. Biomass power plants’ installed capacity in Italy is equal to 4057 MW. In this work,
biomass power plants are modeled within VRES using a constant distribution profile. In support of
this assumption, these types of plants, even if potentially they can produce and modulate their power
to follow the load, are usually forced to produce at maximum constant output power in order to exploit
the maximum of their abilities. Equation (7) shows how the new artificial capacity C′bio is calculated.
Cbio was the actual capacity for biomass power plants in 2015. hbio

eq expresses the actual equivalent
hours of biomass power plants and 8784 are the total hours in a leap year. The CO2 emissions from
biomass are considered zero (as in the Heat Roadmap Europe baseline and scenarios).

C′bio = Cbio
·

hbio
eq

8784
(7)

Reservoir hydro power was characterized by an installed power of 9425 MW in 2015.
In EnergyPLAN, reservoir hydro power has a dedicated component. However, this component
is used to model pumped hydro storage; thus, like the biomass power plants, reservoir hydro power is
modeled into the VRES category assuming a constant hourly profile of generation. Equation (7) is
applied to reservoir hydro power to find the new artificial capacity.
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Figure 1. Representative day per month for PV, wind power, geothermal and river hydro in the years
from 2011 to 2015.

Italian fossil fuel power plants are constituted mostly of combined cycle gas turbine (CCGT)
systems burning natural gas. These plants have the highest efficiencies among fossil fuel power
plants and are also flexible in load modulation. However, the increase in electricity generation from
renewables has brought a reduction in the utilization of these systems with a drastic drop in recent
years of their equivalent hours [58] (from 4000–6000 to 1000–2000 hours). Fossil fuel power plants are
modeled in EnergyPLAN in the power plant (PP2) component with a value of overall capacity taken
from Terna [59], a value of average efficiency taken from Heat Roadmap Europe [52] and the relative
quantities of each type of burnt fuel. The overall fossil fuel power plants installed capacity of the 2015
Italian energy system is 63,863 MW, the sum of the installed capacity of CCGTs and coal power plants.
The efficiency of the average fossil fuel power plant is 0.455 and the percentages of burnt fuel types are
the following: 39% coal and 61% natural gas.

For electricity storage the only technology present in the energy system of 2015 was pumped
hydro storage. This technology has already reached its maximum potential and for future installation
of electric storage other technologies must be taken into account. In Italy, in 2015, the pumped
hydro-storage installed plants allow the achievement of 700.76 GWh of available storage capacity,
6175 MW of pumps and 7815 MW of installed turbines. These data are the aggregated results of internal
analysis developed by Politecnico di Milano. The average charging efficiency is set at 0.85 while the
average discharging efficiency equal to 0.9. S. Mazzoni et al. [60] investigated the techno-economic
impact of different storage technologies demonstrating how the use of these technologies leads to
primary energy savings and high efficiency.

The overall electricity demand is the sum of various contributions: the generic electricity demand,
electricity demand from the heating sector, electricity demand from the cooling sector and electricity
demand from the mobility sector. Figure 2 shows the representative day per month of the overall
electricity demand in the years from 2011 to 2015. It is possible to observe the two-peak daily profile,
one in the morning and one in the evening. The highest values of electricity demand are in July when
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cooling requirements become more relevant. The total electricity demand in 2015 is equal to 316.9 TWh
after transmission losses deduction, Terna data [55].

 

Figure 2. Representative day per month for electricity demand from 2011 to 2015.

For the heating and cooling sector, M. Noussan et al. [61] presented an insightful analysis on
building heating systems for the most populated Italian region by means of open data. However, from a
national perspective there is a lack of updated open data. Therefore, the Heat Roadmap Europe 2015
baseline is taken as it is without changes. Few modifications in the mobility sector are implemented
instead. Benini et al. [52] analyzed the Italian mobility sector identifying an electricity demand from
the mobility sector in 2015 equal to 0.87 TWh. The same report also provides the hourly distribution of
electricity demand from electric mobility (shown in Figure 3). This profile is assumed to be the same
for each day of the year.

 

Figure 3. Hourly profile of electricity demand from electric mobility.

In 2015, Italy imported 43.7 TWh of electricity [53]. This is modeled in EnergyPLAN through the
import component that allows setting the total amount of import and its hourly distribution during
the year.

The Italian EnergyPLAN Baseline 2015 is validated comparing the final CO2 output emissions with
the amount estimated by different references shown in Figure 4. These values span from a minimum
of 330.7 t of CO2 emissions reported by the International Energy Agency [62] to a maximum of
339.95 estimated by the UNFCCC [63]. The value obtained after creating and running the EnergyPLAN
Baseline 2015 input file is equal to 334.7 t of CO2 emissions and thus fully included in the range given
by the different analyzed sources.
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Figure 4. Comparison of annual CO2 emissions between the value obtained through simulation in the
Baseline 2015 and those given by other different sources: UNFCCC [63], OECD [64], BP [65], IEA [62]
and ISPRA [66].

3.2. PNIEC 2030 Scenario

The second step is the definition of the EnergyPLAN input file for the Italian integrated energy
and climate action plan [3]. All the input values are taken from the Italian integrated energy and
climate action plan document. The resulting scenario is called PNIEC 2030 scenario. The major
transformations regard the electricity sector in which an increase of renewable energy penetration is
foreseen, mainly photovoltaics and wind power technology, capable of covering 55% of gross final
electricity consumption. The same indicator for the baseline year is equal to 34%. Moreover, the PNIEC
2030 scenario implements 40 GWh of stationary batteries. It is characterized by 10% penetration of
electric mobility and an increase of the consumption of advanced biomethane in the transport sector.
It also foresees an increase of energy efficiency of buildings equal to 15% by 2030.

3.3. Decision Variables and Assumptions

The third step is the definition of the decision variables and their ranges. This information is
provided by Table 3. The choice of the decision variables is driven by the technologies which the
Italian integrated energy and climate action plan concentrates on. They are rooftop PV, utility scale PV,
wind power, lithium-ion batteries, power-to-gas, advanced bio-methane in the transport sector and
energy efficiency of buildings and heat pumps in the heating sector.
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Table 3. List of decision variables and their lower DV
(L)
i

and upper DV
(U)
i

bounds.

Decision Variables CurrentValue (2015), DV
(L)
i

MaximumPotential DV
(U)
i

Residential PV (GW) 15 120

Utility scale PV (GW) 4 70

Wind power (GW) 9 49

Lithium-ion batteries (GWh) 0 600

Power to gas, H2 produced (%) 0 15

Power to gas, Electrolyzer max capacity (GW) 0 30

Advanced biomethane (TWh) 3 15

Energy efficiency of buildings (%) 0 75

Heat pumps (%) 0 100

The maximum potential is determined for each VRES through an analysis of the technical
availability of installable capacity. For other variables such as lithium-ion batteries and power-to-gas
electrolyzers, a number large enough to perform the optimization and small enough not to enlarge the
domain of the optimization too much by increasing the computation time without an added value was
selected. The assumptions on the potential are the following:

• Solar PV. For residential rooftop PV a couple of studies, Taylor et al. [67] and Vartiainen et al. [68],
together with internal studies of Eurac research based on the Solar Tyrol project [69] identified a
share of 2 kW per person as the maximum rooftop PV potential. Considering roughly 60 million
inhabitants in Italy the final maximum potential for residential PV is assumed to be 120 GW.
For what concerns utility scale PV, the maximum potential is taken from a study of the Energy
Strategy Group [70] which studied the potential for the Italian territory evaluating the brownfield
sites and unutilized rural areas. The overall estimated value is equal to 70 GW. An analysis of
the land use for solar power by 2030 was realized by F. Mancini et al. [71]. They demonstrated
how the use of 10% of the soil already consumed could be sufficient to achieve the set objectives
by 2030.

• On-shore wind power. Hoefnagels et al. [72] in the framework of the RE-shaping project estimated
a maximum potential of 49 GW for Italy.

• Lithium-ion batteries. The maximum potential is evaluated through a series of simulations. A value
above 600 GWh brings higher costs without any benefits in terms of renewable energy integration.

• Power to gas is managed through two variables: the produced hydrogen and the capacity of the
electrolyzer. The produced hydrogen maximum potential is assumed to be 15% of the overall
natural gas consumption. The maximum size of the electrolyzer is taken high enough to exploit the
full potential of power-to-gas and low enough to contain the domain of the optimization problem.

• The installation of heat pumps is allowed only after a deep energy refurbishment of buildings.
This decision variable is the percentage of the overall buildings that switched their heating system
from boilers to heat pumps. For this reason, its maximum potential is 100%.

• The energy efficiency of buildings: the potential of energy efficiency by means of passive solutions
is bound to the energy efficiency cost curve and is equal to 75%. The energy efficiency cost
curve and the way it is implemented in the source code of EPLANopt is explained in a previous
publication [21].

Other assumptions in the heating sector are: domestic hot water (DHW) in buildings reached
by district heating network is supplied by district heating itself. For the other individual buildings,
only the heating demand can be reduced through energy efficiency refurbishment, while DHW share
instead is not influenced by energy efficiency and kept constant. The optimization decides which
share of renovated buildings should install heat pumps. In the individual sector, at the increase of the
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energy efficiency share, heat pumps substitute different types of boilers with the following priorities:
(1) coal boilers, (2) oil boilers, (3) electric boilers, (4) natural gas boilers and (5) biomass boilers. A more
detailed explanation of the modeling approach taking into account energy efficiency of buildings is
provided by previous studies [21,23].

The costs related to electric mobility is considered in the model. Starting from the study of the
Enel foundation [73], the cost of the electric vehicles (EV) infrastructure is estimated for different shares
of penetration of battery electric vehicles (BEV). Figure 5 shows these costs which increase linearly at
the increasing of the EV penetration. These costs take into account the infrastructural costs of electric
mobility for urban and sub-urban areas and the costs for different type of charging stations.
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Figure 5. Infrastructural costs of electric mobility: data from the Enel foundation [73] and linear
interpolation to extend these costs at higher penetration of EV.

The model also considers a decrease in energy consumption from the industry sector. Starting
from the historical data provided by the Odyssee-Mure database [74] a logarithmic interpolation is
implemented to inspect the business as a usual scenario for energy efficiency in the industry sector.
The value is integrated in the model which therefore considers 9% of energy efficiency in the industry
sector with respect to the energy consumption of 2015, the year of the baseline (See Figure 6).
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logarithmic interpolation.
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Additional assumptions are the following: (i) constant demographic situation from 2015 to
2030; (ii) export price for electricity equal to 35 €/MWh [75]; (iii) import price for electricity equal to
45 €/MWh [75]; (iv) emission factor of imported electricity equal to 270 kg/MWh [76] in 2030. (v) The
electricity generation from river hydro is assumed to slightly increase from 23.1 to 24.8 TWh, while
the generation from dammed hydro remain constant [3]. The generation from geothermal increases
from 6.0 to 7.1 TWh [3]. The electricity production from biomass power plants decreases from 19.4
to 15.7 TWh [3]. (vi) Transport demand in terms of driven km and modal split is assumed constant,
(vii) power to gas costs are those of the electrolyzer installed capacity (400 €/kW, lifetime = 15, O&M =
3% of the investment cost). Other costs of the power to gas flexibility option are not included because
the injection of hydrogen goes directly into the existing gas grid.

3.4. Optimization Problems Definition

The fourth step is the definition of the optimization problems interesting to the current analysis.
Two optimization problems are formulated to study the impact of different levels of penetration of
electric mobility. The electric mobility share is set as an exogenous variable and the optimization
problem is run to find the optimal solutions under the considered assumptions. The evaluated
optimization problems are the following:

- One case considering 10% electric mobility
- One case considering 20% electric mobility

Different levels of penetration of electric mobility are considered by simply introducing some
conversion factors in kWh/100 km for each fuel based vehicle [77] assuming the transport demand in
terms of driven km is constant. The values used are the following: 52.78 kWh/100 km for petrol fuelled
cars, 46.11 kWh/100 km for gasoil fuelled cars and 13.61 kWh/100 km for electric vehicles. The use
of these conversion factors allows the evaluation of the electricity demand generated from electric
mobility. This value is set in EnergyPLAN in order to evaluate the hourly operational simulation and
the impacts on the overall energy system.

4. Results

The results of the two optimization problems are depicted in Figure 7. It shows the Baseline
2015, the PNIEC 2030 and the Pareto fronts of optimal solutions for the cases with 10 and 20% electric
mobility penetration. One scenario is selected on the 20% electric mobility Pareto front with the same
costs of the PNIEC 2030 scenario. It is named Advanced 2030. The graph allows the following remarks:

(i) The PNIEC 2030 scenario produces a relevant reduction of CO2 emissions compared to the Baseline
2015. This reduction is in line with the CO2 emissions reduction target in 2030. The PNIEC 2030
scenario is found by Italian authorities through an optimization process but the assumptions on
costs and efficiencies of the energy system components are not public. Therefore, it is important
to validate the model and the PNIEC 2030 scenario. This result allows this validation which is
added to the validation of the Baseline 2015 on CO2 emissions.

(ii) The PNIEC 2030 scenario, characterized by 10% electric mobility penetration, is almost placed on
the Pareto front characterized by 10% electric mobility. Thus, it is a solution close to the optimum.
As already mentioned, the PNIEC 2030 scenario is found as a result of an optimization process by
Italian authorities. In this study, the difference between the PNIEC 2030 scenario and the Pareto
front with 10% electric mobility can be a consequence of different costs assumptions.

(iii) With the same cost of the PNIEC 2030 scenario it is possible to reach higher CO2 emissions
reduction by selecting a solution on the Pareto front with 20% electric mobility. The Advanced
2030 scenario showed that at the same costs of the PNIEC 2030 there are solutions which further
reduce the CO2 emissions. In this case the Advanced 2030 scenario produces a further reduction
of 10%.
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(iv) Another consideration that needs to be done is on the impact of electric mobility. The increase of
electric mobility from 10 to 20% together with the optimal energy mix found by the optimization
algorithm allows a further reduction of the CO2 emissions.

Figure 7. Total annual costs and CO2 emissions for the evaluated scenarios: Baseline 2015, PNIEC 2030,
Pareto fronts and Advanced 2030.

The analysis of the results focuses on the Advanced 2030 scenario and on the comparison with the
PNIEC 2030 and Baseline 2015. In particular, the comparison of the scenarios with similar costs (PNIEC
2030 and Advanced 2030) allows the study of the best choices to decarbonize the energy system.

Table 4 shows the characteristics of the considered scenarios with the comparison of the values
of the main decision variables. This shows how the Advanced 2030 scenario, when compared to the
PNIEC 2030 scenario, presents a higher installed capacity of VRES and higher energy efficiency of
buildings, with a lower value of capacity of stationary batteries and advanced biomethane production.
Another difference is the penetration of electric mobility: 10% for the PNIEC 2030 scenario and 20% for
the Advanced 2030 scenario. This results in an overall aggregated capacity of batteries in the electric
vehicles which is higher in the Advanced 2030 scenario. The value of the installed capacity of batteries
for electric vehicles is calculated to give an idea of the overall size. The assumptions for this calculation
are the following: 39 million cars are considered and an average size of 50 kWh battery per car [78].

Table 4. Values of the main technologies in the different scenarios.

Scenarios PV
Wind
Power

Stationary
Batteries

Batteries
of EV

Advanced
Biomethane

Energy Efficiency
of Buildings

Baseline 2015 19 GW 9 GW 0 GWh 0 GWh 3 TWh 0%

PNIEC 2030 59 GW 23 GW 40 GWh 200 GWh 15 TWh 15%

Advanced 2030 86 GW 48 GW 0 GWh 400 GWh 3 TWh 30%

Figure 8 shows the evolution of the electricity demand in a week in summer and in winter for
the three solutions: Baseline 2015, PNIEC 2030 and Advanced 2030. It is possible to observe the
increase of electricity demand due to energy efficiency of buildings and the substitution of electric
boilers with heat pumps and electric mobility. Power-to-gas electricity demand is equal to zero
because the optimization does not choose it to decarbonize the energy system. The main reason is the
limited amount of available over-generation from renewables that can be used by power-to-gas for
the hydrogen generation. This over-generation can be noted in Figure 9 which shows the electricity
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generation from the different sources. The over-generation is present mostly in summer and partly
exploited by the existing pumped hydro storage systems.

 

Figure 8. Hourly electricity demand: different contributions for two weeks of the year (one in summer
and one in winter) for the scenarios Baseline 2015, PNIEC 2030 and Advanced 2030.

 

Figure 9. Hourly electricity dispatch for two weeks of the year (one in summer and one in winter) for
the scenarios Baseline 2015, PNIEC 2030 and Advanced 2030.

Figure 10 shows the annual electricity generation from different sources for the tree different
scenarios. The electricity generation from coal disappears in the PNIEC 2030 and Advanced 2030
scenarios due to the coal phase-out foreseen by the Italian integrated energy and climate action plan
can be noted. The Advanced 2030 scenario is characterized by higher installed power of VRES and
therefore a lower generation from gas power plants. The electricity demand is equal to 315.7 TWh in
the Baseline 2015, 340 TWh in the PNIEC 2030 scenario and 343.6 TWh in the Advanced 2030 scenario.
This is due to the higher share of electric mobility and energy efficiency of buildings with heat pumps
installation in the Advanced 2030 scenario.
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Figure 10. Annual electricity generation for the scenarios Baseline 2015, PNIEC 2030 and Advanced 2030.

Figure 11 shows the annual energy consumption for the scenarios Baseline 2015, PNIEC 2030
and Advanced 2030 with the percentages of renewables for each sector. Compared to the PNIEC 2030
scenario, the Advanced 2030 scenario is characterized by higher renewable energy sources (RES) share
in the electricity sector coupled to an electrification of the heating and transport sector.

Figure 11. Annual energy consumption in electricity, heat, industry and transport sectors for the
scenarios Baseline 2015, PNIEC 2030 and Advanced 2030.
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Figure 12 shows the total annual costs structure in the three considered scenarios: Baseline 2015,
PNIEC 2030 and Advanced 2030. The Advanced 2030 compared to the PNIEC 2030 shows a reduction
of the fossil fuel costs and an increase in the costs of VRES installed power and energy efficiency
of buildings.

Figure 12. Total annual costs for the scenarios Baseline 2015, PNIEC 2030 and Advanced 2030.

Figure 13 allows a consideration on the nature of the costs which change in these three scenarios.
Moving from the Baseline 2015 to the Advanced 2030 scenario, the costs for fossil fuels decrease and
the possible domestic value creation increases. This latter represents the possible investments in the
territory which could boost the local economy.

 

Figure 13. Subdivision of annual costs in the scenarios Baseline 2015, PNIEC 2030 and Advanced 2030.

In Section 2 the remaining carbon budget value is estimated for Italy. Figure 14 shows (i) the
historical trend of CO2 emissions of Italy from 1990 to 2018, (ii) the remaining carbon budget assuming
a linear decrease from the value of 2018, (iii) the PNIEC 2030 and Advanced 2030 scenarios. The graph
shows how the CO2 emissions reduction in the PNIEC 2030 is not in line with the carbon budget limit.
This is assuming a linear decrease of the CO2 emissions. Following the trajectory of the PNIEC 2030
would require a drastic decrease of the emissions after 2030. The results show that the Advanced 2030
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scenario improves the CO2 emissions reduction compared to the PNIEC 2030, but it is still higher than
the carbon budget limit, assuming a linear reduction.

Figure 14. CO2 emissions historical data and comparison between the PNIEC 2030, Advanced 2030
scenarios and the scenario defined by the remaining carbon budget.

This highlights the necessity of a more drastic transition. This can be achieved through the
selection of an optimized scenario, among those obtained through the EPLANopt multi-objective
method, with higher total annual costs and lower CO2 emissions. Knowing the carbon budget limit,
it is possible, thanks to the Pareto curve, to identify the scenario in line with the carbon budget.
This scenario would require an increase of the total annual costs compared to the integrated energy
and climate action plan scenario equal to about 25%.

5. Conclusions

The EPLANopt model allows the multi-objective investment optimization of the energy system.
It is based on the EnergyPLAN model which considers an hourly time resolution and a sector-coupling
approach. The EPLANopt energy system model is applied to the Italian case study to compare the
Italian integrated energy and climate action plan (PNIEC 2030 scenario) with scenarios obtained
through the optimization process.

Among the optimized scenarios, one with costs similar to the Italian integrated energy and
climate action plan scenario is identified (Advanced 2030 scenario). It allows a further reduction
of CO2 emissions equal to 10% at the same annual costs. The integrated energy and climate action
plan and the optimized scenario with the same costs were compared in the analysis of the results.
The optimized scenario presents a higher share of renewables in the electricity sector together with
a higher degree of electrification of the heating and transport sectors. It is important to underline
that the difference between the Advanced 2030 scenario and the PNIEC 2030 scenario can arise from
different costs assumptions.

The two scenarios were compared to climate-change scenarios through the use of the carbon
budget concept. The results highlighted how both the integrated energy and climate action plan
scenario and the Advanced 2030 scenario are far from the carbon budget limit. The results show that
the Advanced 2030 scenario improves the CO2 emissions reduction if compared to the integrated
energy and climate action plan scenario, but it is not enough to meet the carbon budget limit. In order
to meet this target, there is the need for a more drastic scenario in terms of CO2 emissions reduction.
Moving on to the Pareto front it is possible to select the first optimal scenario in line with the CO2

emission reduction driven by the carbon budget limit, assuming a linear decrease, and with the lowest
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costs. This scenario requires an increase of the overall costs equal to 25% with respect to the integrated
energy and climate action plan scenario.

The results also showed the economic opportunity represented by energy transition. The study of
the nature of the costs showed how, moving from the Baseline 2015 to the Advanced 2030 scenario,
the costs for fossil fuels decrease and the possible domestic value creation increases. This represents an
opportunity of development of investments in the territory and a boost to local economy. Therefore,
even if the study showed the need for an energy system characterized by higher costs compared to the
Baseline 2015, it also highlighted the opportunities represented by the energy transition.

Future steps will concentrate on the integration of the bottom-up EPLANopt model with a
top-down approach in order to evaluate the different policies needed to support the energy transition.
This integration of a top-down into a bottom-up approach will also allow a more detailed analysis
of the nature of the expenses and investments of the energy system evaluating the impacts on the
territory and the local economy.
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Abstract: To advance commercialisation of ocean wave energy and for the technology to become
competitive with other sources of renewable energy, the cost of wave energy harvesting should be
significantly reduced. The Mediterranean Sea is a region with a relatively low wave energy potential,
but due to the absence of extreme waves, can be considered at the initial stage of the prototype
development as a proof of concept. In this study, we focus on the optimisation of a multi-mode wave
energy converter inspired by the CETO system to be tested in the west of Sicily, Italy. We develop a
computationally efficient spectral-domain model that fully captures the nonlinear dynamics of a wave
energy converter (WEC). We consider two different objective functions for the purpose of optimising
a WEC: (1) maximise the annual average power output (with no concern for WEC cost), and (2)
minimise the levelised cost of energy (LCoE). We develop a new bi-level optimisation framework
to simultaneously optimise the WEC geometry, tether angles and power take-off (PTO) parameters.
In the upper-level of this bi-level process, all WEC parameters are optimised using a state-of-the-art
self-adaptive differential evolution method as a global optimisation technique. At the lower-level,
we apply a local downhill search method to optimise the geometry and tether angles settings in
two independent steps. We evaluate and compare the performance of the new bi-level optimisation
framework with seven well-known evolutionary and swarm optimisation methods using the same
computational budget. The simulation results demonstrate that the bi-level method converges faster
than other methods to a better configuration in terms of both absorbed power and the levelised cost
of energy. The optimisation results confirm that if we focus on minimising the produced energy cost
at the given location, the best-found WEC dimension is that of a small WEC with a radius of 5 m and
height of 2 m.

Keywords: bi-level optimisation method; evolutionary algorithms; renewable energy; wave energy
converter; geometric parameters; power take-off; levelised cost of energy
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1. Introduction

Renewable energy is the fastest-growing new energy source globally. As an example, in the
United States, the growth rate of this technology increased by 100% between 2000 and 2018 [1]. On a
global scale, renewable energy technologies produced 26.2% of the global electricity demand in 2018,
and this is expected to climb to 45% by 2040 [1]. A large number of investigations have been applied
in order to optimise various characteristics of renewable energy systems such as dealing with the
uncertainty in renewable energy accessibility, support decision-making in the built environment [2] and
the appropriation of energy storage operations for dampening the chaotic problems [3]. Among the
different renewable energy sources, ocean wave energy is the cleanest, safest, most reliable and
predictable source of renewable energy [4] with a power density significantly higher than that of
solar and wind [5]. However, wave energy technology is not fully developed, and their commercial
penetration is still shallow. This is because the costs involved in producing energy using ocean waves
are currently much higher than those for other renewables [6]. Therefore, in the last decade, a large
number of investigations have been carried out to optimise wave energy converter (WEC) design
and dimensions [7–12], power generation settings (PTO) [13,14], and the position of WECs in a wave
farm [15–19].

The wave energy resource around the globe has been divided into six major classes depending on
the wave energy potential, directional and spectral characteristics, and extreme waves [20]. However,
it has been noted [20] that while wave energy developers mainly target wave climates with the highest
energy content (class 5 and 6), other resource classes can provide additional benefits to the technology
development. For example, the Mediterranean Sea due to its enclosed nature has low wave power
availability [21–23] and belongs to the resource class 1 but the absence of extreme wave heights makes
this region attractive for the initial prototype testing.

Shape optimisation is important for all types of wave energy conversion systems, including
oscillating water columns [24]), and over-topping designs [25]. The majority of efforts, to date,
have been restricted to analysing a few specific shapes. The main reason for this is that the
computational demands of searching and evaluating all feasible designs are high. Vantorre et al. [26]
evaluated and compared the performance of a set of geometries for a heaving point absorber in a
Belgian coastal area. These included a hemisphere and some conical geometries. The authors proposed
that the best power efficiency was related to a cylindrical extension with a 90◦ cone. Later work
by Goggins and Finnegan [27] contemplated a vertical cylinder of various heights and radii under
wave conditions off the west coast of Ireland. They found that the most substantial significant heave
velocity response was that of a trimmed cylinder with a hemisphere joined to its foundation, with a
whole draft to the aspect ratio of 2.5. In other recent publications, a wide range of asymmetrical
buoy designs has been proposed, including a concave buoy face which is better able to absorb
power than a flat or convex model [28]. Another recommendation of a surface described by bi-cubic
B-spline [29] outperforms conventional WEC models. However, in these studies, the main objective
was to maximise the harnessed power of the WEC, and the authors did not consider the design,
installation and maintenance costs of these asymmetric converters.

Other work has taken into account the trade-offs between absorbed power and the cost of building
and deploying the WECs. These analyses have considered the cost-efficiency or levelised cost of energy
(LCoE) [30]. This metric is one of the most reliable indices for the evaluation of energy investments.
Recently, Piscopo et al. [31] combined an LCoE minimisation with a power take-off (PTO) control
optimisation based on point-absorber dimensions in five Mediterranean Sea sites. This refined earlier
work, optimising LCoE through optimisation of both WEC geometry and PTO settings [32,33].

In this work, we consider a single fully submerged, three-tether, cylindrical wave energy
converter. This WEC is under development by Carnegie Clean Energy Limited, Australia. Two initial
attempts [12,34] were performed to investigate the impact of different geometries and PTO parameters
on power efficiency and the LCoE. However, in these prior works, only some predefined geometries
were studied, and the results showed that in the cylinder-shaped WEC, an optimal tethers angle
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depends on the ratio between the buoy height and radius. However, optimisation procedures were not
adequately outlined [34]. In another study [12], the performance of a few conventional optimisation
methods was investigated in order to maximise the absorbed power and minimise the LCoE.

This paper improves upon previous research by expanding the findings of [12] to include another
two state-of-the-art meta-heuristics including the Grey Wolf Optimiser [35] (GWO) and a self-adaptive
version of differential evolution (LSHADE-EpSin [36]). Moreover, we propose two novel bi-level
optimisation methods consisting of a global search method that works in the upper-level combined
with a local search method in the lower-level. In total, nine optimisation methods are applied and
compared in order to maximise the absorbed power and minimise the LCoE in a real wave regime
from the southern coast of Marettimo (an island in the Mediterranean Sea). We also improve previous
research by modelling waves regimes with a higher granularity of wave-directions.

The experimental outcomes show that a bi-level optimisation technique consisting of a
self-adaptive differential evolution search (LSHADE-EpSin) interleaved with Nelder–Mead (NM)
simplex direct search outperforms previous heuristic methods used in prior works in terms of
convergence rate, higher absorbed power output, and lower levelised cost of energy.

The paper is structured as follows. Section 2 outlines the design of the WEC and the model
that is applied to simulate both the absorbed power and LCoE. In the next section, the optimisation
problem is described, and Section 4 represents the proposed meta-heuristic methods. The optimisation
achievements are presented and considered in Section 5. Finally, Section 6 presents the conclusions of
this work and canvasses future work.

2. Modelling

2.1. Wave Energy Converter

A wave energy converter chosen for this case study is a fully submerged cylindrical buoy
connected to three tethers to absorb wave power from its motion in multiple degrees-of-freedom
(or multiple modes), namely surge, heave and pitch. As shown in Figure 1, the geometry of this WEC
is determined by the radius a and height H of the cylinder, tethers inclination angle αt, and the angle
αap that defines the tether attachment point (from the centre of mass of the buoy). The submergence
depth (distance from the undisturbed water level to the top of the buoy) is considered fixed and
equal to 2 m regardless of the buoy size. The mass of the buoy is taken as half the displaced mass of
water mb = 0.5ρwV (the density of water is ρw = 1025 kg/m3, and the buoy volume is V = πa2H).
The hollow buoy houses three direct mechanical drive power take-off units (each connected to the
tether). Each PTO acts as a spring-damper system where stiffness and damping coefficients can be
adjusted for each sea state.

αap
H

αt

a x

z

y

Figure 1. A three-tether wave energy converter.

2.2. Wave Climate

A potential wave energy development site located near the west coast of Marretimo Island
(Italy) in the Mediterranean Sea is chosen for this analysis. According to the WXSD classification [20],
this wave climate belongs to resource class 1 due to its low energy content (6.4 kW/m). The k-means
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clustering method has been applied to extract 10 sea states that represent this wave climate as shown
in Figure 2 and listed in Table 1. A weighted aggregation of these 10 irregular sea states are used
to calculate the annual average power production of the WEC. It is assumed that all waves are
unidirectional and propagate in the positive x-direction.
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Figure 2. The wave climate at the Marettimo deployment site, Italy (12.04◦E, 37.96◦N, 6.38 kW/m
mean annual wave power resource) [37]: (a) wave scatter diagram, and (b) clustering of the wave data
where crosses correspond to ten representative states.

Table 1. Ten irregular sea states that represent the Marettimo deployment site.

Sea State Tp, s Hs, m Probability O, %

1 3.82 0.24 8.06
2 5.13 0.44 14.62
3 6.20 0.61 17.80
4 7.18 0.90 18.01
5 8.30 0.73 12.10
6 8.43 1.92 9.58
7 9.68 1.08 8.68
8 10.24 2.76 5.78
9 11.56 1.46 3.30

10 12.99 3.69 2.07

2.3. Equations of Motion

The following time-domain model describes the WEC response under the wave and PTO loads:

Mẍ(t) = Fexc(t) + Frad(t) + Fvisc(t) + Fbuoy(t) + Ftens(t), (1)

where the x ∈ R
6×1 is the buoy position vector in Oxyz coordinate system, M is a mass matrix, Fexc

is the wave excitation force, Frad is the wave radiation force, Fvisc is the viscous drag force, Fbuoy is
the buoyancy force, Ftens is the tether tension force expressed in the Cartesian space that includes the
pre-tension force and control (PTO) forces. The force acting along the k-th tether can be modelled
as Ft,k = Ft0 + Kpto∆ℓk + Bpto∆ℓ̇k (k = 1 . . . 3) being proportional to the tether extension ∆ℓ, the rate
of change of the tether length ∆ℓ̇ and includes the initial tension Ft0. The PTO stiffness Kpto and
damping Bpto coefficients take the same values for all three tethers. The transformation between the
buoy velocity ẋ and the tether velocity vector q̇ = [∆ℓ̇1 ∆ℓ̇2 ∆ℓ̇3]

T has a form of q̇(t) = J−1(x)ẋ(t),
where J−1(x) ∈ R

3×6 is the inverse kinematic Jacobian that depends on the buoy position at each
time instance [34]. So the tether force vector can be converted to the Cartesian space according to
Ftens = −J−TFt.

The time-domain model in Equation (1) has a relatively high computation time and may not be
suitable for optimisation purposes when a large number of evaluations are required. If to assume
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that all processes are Gaussian, it is possible to derive a spectral-domain model that can capture all
required nonlinear forces using statistical linearisation technique [38,39]. The spectral-domain model
approximates the system dynamics in the frequency domain by replacing all nonlinear terms with
equivalent linear matrices [40]. The dynamic model in Equation (1) has two sources of nonlinearity:
the viscous drag force Fvisc and the generalised tether tension force Ftens. Due to the fact that geometric
nonlinearity contained within Ftens is much weaker than the quadratic nonlinearity in Fvisc, Ftens

can be linearised around the zero position without loss of accuracy for the proposed configuration.
If nonlinear effects from tethers become relevant, the equivalent terms can be derived as shown
in [38,41,42]. Moreover, it should be noted that other nonlinear forces can be included in the model
but omitted in this study, e.g., nonlinear Froude–Krylov force that becomes relevant when the buoy
experiences large motion amplitudes [43]. As a result, a nonlinear dynamic Equation (1) is replaced by
the equivalent frequency domain model:

[

−ω2 (M + A(ω)) + iω
(

B(ω) + Bpto + Beq

)

+ Kpto

]

x̂(ω) = F̂exc(ω), (2)

where x(t) = Re{x̂ eiωt}, the radiation force is expressed using the frequency dependent added
mass A(ω) and radiation damping matrix B(ω), F̂rad(ω) = −

(

−ω2A(ω) + iωB(ω)
)

x̂(ω), the tether
tension force is linearised as F̂tens(ω) = −(iωBpto + Kpto)x̂(ω) (see [44] for more details), and the
viscous drag force is replaced by F̂visc(ω) = −iωBeqx̂(ω). The equivalent damping term Beq is
unknown and determined iteratively (for each wave condition separately) using the procedure
explained in [38]:

Beq = −
〈

∂Fvisc

∂ẋ

〉

, (3)

where 〈·〉 indicates mathematical expectation, and the viscous force is interpreted as:

Fvisc = −1
2

ρwCdAd(||ẋ|| ⊙ ẋ), (4)

ρw is the density of water, Cd and Ad are the matrices of the drag coefficients and the cross-section areas
of the buoy perpendicular to the direction of motion respectively, and ⊙ represents the Hadamard
product (element-wise multiplication). Note that only the body velocity (not the relative fluid/body
velocity) has been considered in the drag force formulation. A detailed methodology of how to
incorporate the wave-particle velocity into the spectral-domain model is demonstrated in [45].

The following iterative procedure is used to estimate Beq and approximate the response of the
WEC in irregular waves:

Step 1. Define the sea state and corresponding incident wave spectrum Sη(ω).
Step 2. Compute the power spectral density (PSD) matrix of the excitation force:

SF(ω) = Sη(ω)f̂exc(ω)f̂∗exc(ω), (5)

where f̂exc is the vector of excitation force coefficients, and ()∗ denotes the conjugate transpose
of a vector/matrix.

Step 3. Calculate the WEC response matrix assuming Beq = 06×6 in the first iteration:

H(ω) =
[

−ω2 (M + A(ω)) + iω
(

B(ω) + Bpto + Beq

)

+ Kpto

]−1
. (6)

Step 4. Establish the power spectral density matrix of the buoy motion:

Sx(ω) = H(ω)SF(ω)H∗(ω). (7)
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Step 5. Calculate the covariance matrix of the WEC velocity:

σ
2
ẋ = cov[ẋ, ẋ] =

∫ ∞

0
ω2Sx(ω)dω. (8)

Step 6. Estimate the equivalent damping matrix Beq using the analytical expression from [38]:

Beq = −
〈

∂Fvisc

∂ẋ

〉

=
1
2

√

8
π

ρwCdAdσ
2
ẋ. (9)

Step 7. Check the convergence criteria:

|Beq[n]− Beq[n − 1]| < δ. (10)

where n corresponds to the iteration number, and the threshold is set to δ = 0.01. If this
condition is not satisfied, go to Step 3.

It can take up to 10 iterations to estimate Beq and the WEC response in irregular waves.
Once calculated, the average power absorbed by each PTO unit k = 1 . . . 3 is calculated as [38]:

P̄k = Bptoσ2
q̇k

, (11)

where σ2
q̇k

is the variance of the tether length rate change q̇:

σ2
q̇k
=

∫ ∞

0
ω2Sqk

(ω)dω, (12)

and the transformation between the Cartesian coordinate system and the tether space is obtained
using Sq(ω) = J−1

0 Sx(ω)J−T
0 , where J−1

0 = J−1(x0) is linearised about the nominal operating position
x0 = 06×1.

The total power generated by three PTO units in an irregular wave with the significant wave
height Hs and peak wave period Tp is:

P̄(Hs, Tp) = Bpto

3

∑
k=1

σ2
q̇k
(Hs, Tp). (13)

The expected average annual power production from the WEC for a specific deployment site is
estimated as:

PAAP = ∑
Hs

∑
Tp

O(Hs, Tp) · P̄(Hs, Tp), (14)

where the matrix O(Hs, Tp) contains the occurrence probability of each sea state within the
wave climate.

To demonstrate that the spectral-domain model is an effective tool that can fully capture
the nonlinear dynamics of the considered WEC while significantly decreasing the computation
time, a comparison of average power estimated using three different models is shown in
Figure 3. The frequency-domain model is implemented based on Equation (2) assuming Beq = 0,
the spectral-domain model is specified in Equation (2) where Beq is estimated iteratively for each
sea state, and the time-domain model is represented by Equation (1). Good agreement is achieved
between the spectral-domain and time-domain models, while the frequency domain model significantly
overestimates power generation potential of the WEC.
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Figure 3. Power production of a three-tether WEC in irregular waves estimated using three different
models: frequency-, spectral-, and time-domain. Parameters of the WEC are a = 5.5 m, H = 5.5 m,
αap = αt = 45 deg, Kpto = 200 kN/m, Bpto = 150 kN/(m/s)), irregular waves have the significant
wave height of Hs = 3 m and modeled using the Pierson–Moskowitz spectrum.

2.4. Economic Model

Levelised cost of energy (LCoE) is used to measure the economic attractiveness of the proposed
energy project. Due to the lack of publicly available information of the detailed cost estimations for
wave energy technology, [46] proposed to approximate LCoE by the following equation:

LCOE
(

e

kWh

)

= RDC ×
(

Energy (MWh)
Mass (kg)

)−0.5
, (15)

where RDC is a site-specific coefficient that is set to 1 in this study, the characteristic mass of the system
includes the mass of the buoy and the anchoring system.

The characteristic mass of the WEC is calculated using the following assumptions:

- The mass of the buoy is calculated based on a given geometry as mb = 0.5ρwπa2H;
- The needed mass of the anchoring system (three piles) relays on the tether tension associated

with buoyancy and the wave force, and can be approximated by mas ≈ 0.116F
peak
t using case

presented in [47] as a reference. The tether peak force (99% = 2.57σFt
) is estimated from the

spectral-domain model.

As a consequence, the LCoE model applied in this research is:

LCOE =

(

8760PAAP

mb + mas

)−0.5
. (16)

2.5. Implementation

To estimate the power output and LCoE for any WEC geometry, Equation (2) is solved in MATLAB.
The mass matrix has a diagonal form M = diag(mb, mb, mb, Ixx, Iyy, Izz) with moments of inertia
calculated for the cylindrical body. Hydrodynamic parameters of the WEC, including the added
mass A(ω), hydrodynamic damping B(ω), and excitation force vector F̂exc(ω) are estimated using
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a semi-analytical model [48,49]. Beq is calculated based on the iterative procedure explained in
Section 2.3.

Even though only one geometric shape (vertical cylinder) is used in the study, the magnitude
of the viscous drag force, and the corresponding Beq, are highly dependent of the ratio between
the cylinder height to its diameter, especially for the heave mode. Therefore, it order to develop an
optimisation procedure that can accommodate WEC geometries with various aspect ratios (H/a),
the drag coefficient in heave is expressed as a function Cd3 = −0.12(H/a) + 1.2 based on published
data [50] shown in Figure 4. Drag coefficients in other directions are not sensitive to the cylinder aspect
ratio and are kept fixed Cd1 = Cd2 = 1 for surge and sway, and Cd4 = Cd5 = 0.2 for roll and pitch.
The irregular waves from Table 1 are modelled using the Bretschneider (modified Pierson–Moskowitz)
spectrum according to [51].

Figure 4. Drag coefficient of the cylindrical body in axial flow as a function of its aspect ratio H/a.

3. Optimisation Configuration Models

In this research, The optimisation decision variables of the cylinder are including the radius
of the buoy a, the aspect ratio that is considered as the proportion of the height over the radius of
the buoy (H/a), two tether angles (attachment αap and inclination angle αt), two vectors of power

take-off parameters, damping and stiffness coefficients represented bpto = [B
(1)
pto, B

(2)
pto, . . . , B

(N)
pto ]

T and

kpto = [K
(1)
pto, K

(2)
pto, . . . , K

(N)
pto ]

T, respectively. The length of each PTO vector is N = 10. The whole
number of decision designs are 24 which should be optimised in the following:

z1 = [a, H, αt, αap, kpto ∈ R
N×1, bpto ∈ R

N×1]. (17)

z2 = [a, (H/a), αt, αap, kpto ∈ R
N×1, bpto ∈ R

N×1]. (18)

We apply two fitness functions in order to maximise the power output and minimise the LCoE.

(i) The average annual produce power output computed utilising Equation (14), that is maximised as

fO1 = arg max
z

PAAP(z), subject to: z1 ∈ [zmin, zmax] (19)

(ii) The LCoE is minimised using the below equation that is specified in Equation (16):

fO2 = arg min
z

LCOE(z), subject to: z2 ∈ [zmin, zmax] (20)

Table 2 shows the ranges of all design variables which are involved in the optimisation process.
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Table 2. Boundary constraints of the cylinder parameters.

Parameter Unit Min Max Length

radius, a m 1 20 1
height, H m 1 30 1
aspect ratio, (H/a) 0.4 2 1
Tether inclination angle, αt deg 10 80 1
Tether attachment angle, αap deg 10 80 1
PTO stiffness, Kpto N/m 103 108 10
PTO damping, Bpto N/(m/s) 103 108 10

4. Optimisation Algorithms

In this paper, we focus on two widespread optimisation strategies in order to maximise
harnessed power and minimise the levelised cost of energy (LCoE) of a fully-submerged three-tether
WEC. The first approach applies optimisation algorithms to all decision variables simultaneously.
These design variables consist of the buoy geometry parameters (radius a, height H and aspect ratio
(H/a)), the tether angles (inclination angle αt and the tether attachment angle αap), and the PTO
parameters (spring stiffness kpto and damping coefficients kpto). In total, there are 24 parameters that
are optimised all-at-once.

The second strategy is to apply bi-level optimisation methods [52], which solve the problem
using a two-level optimisation procedure, where one optimisation problem is nested within the other.
The outer optimisation task is generally regarded as the upper-level optimisation problem, and the
interior one is recognised as the lower-level optimisation problem. A significant characteristic of
the bi-level optimisation problem is that the fitness functions of each level may be partly defined by
variables advised by other levels. Following this strategy, we propose two bi-level optimisation
methods and compare their performance with seven other well-known global search methods.
The details of the optimisation algorithms performed for each strategy are outlined in Table 3.

Table 3. The details of the optimisation methods settings. All approaches are restricted to the same
evaluation number.

Methods Settings

Nelder–Mead [53] Nelder–Mead simplex direct search (NM)
1+1EA [54] mutation step sizes are σa = ξ1 × (Ua − La), σH = ξ1 × (UH − LH),

σαt = σαap = ξ1 × (Uαt − Lαt ), σKpto
= σBpto

= ξ2 × (UKpto
− LKpto

),
and Probability mutation rate= 1

N , ξ1 = 0.3, ξ2 = 0.01
CMA-ES [55] with the default settings and λ = 13;

PSO [56] with λ = 25, c1 = 1.5, c2 = 2, ω = 1 ( decreased with a damping ratio
w f = 0.99 exponentially);

GWO [35] with λ= 25, α = 2 (linearly decreased to zero)
DE [57] with λ = 25, F = 0.5, Pcr = 0.8

SaDE [58] with λ = 25, LP = 50, NumSt = 4

LSHADE-EpSin [36] λ = 25, historical memory size H = 5, NumLS = 10

Bi-level-1 SaDE +NM, WEC’s dimensions and tether angles are optimised in the
lower-level, default settings of SaDE

Bi-level-2 LSHADE-EpSin + NM, WEC’s dimensions and tether angles are optimised
in the lower-level, default settings of LSHADE-EpSin

4.1. All-at-Once Optimisation

Various factors associated with WEC design, tether angles and PTO parameters combined to form
a non-convex, dynamic, constrained and large-scale optimisation problem. These challenges serve as
our primary motivation for applying the meta-heuristics like evolutionary and swarm optimisation
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algorithms. We apply and compare the performance of seven well-known meta-heuristics that reliably
optimise all decision variables of WECs all-at-once. This optimisation process leads to maximise the
produced power and minimise the levelised cost of energy. The optimisation methods applied in this
research include 1+1EA [59]; Differential Evolution (DE) [57], Covariance matrix adaptation evolution
strategy (CMA-ES) [55], Particle Swarm Optimisation (PSO) [56], Grey Wolf Optimiser (GWO) [35] and
two state-of-the-art self-adaptive optimisation methods including SaDE [58] and LSHADE-EpSin [36].

4.1.1. L-SHADE with an Ensemble Pool of Sinusoidal Parameter Adaptation (LSHADE-EpSin)

The Differential Evolution (DE) algorithm, and its adaptive and self-adaptive variants, are simple
and robust evolutionary algorithms. Researchers from various fields of science and engineering have
applied DE algorithms to various optimisation problems, notwithstanding problems with characteristic
such being continuous, multi-modal, combinatorial or mixed variable. DE is able to obtain superior
optimisation results across widely encountered real-world engineering problems [60,61]. Among a
wide range of self-adaptive DE algorithms, LSHADE-EpSin performs outstandingly in solving
different benchmarks and real-world problems [36]. LSHADE-EpSin is a modified version of the
L-SHADE algorithm [62] with linear population size reduction and an ensemble pool of sinusoidal
parameter adaptations. L-SHADE is a developed version of the SHADE algorithm [63] that practices a
history-based parameter adaptation trajectory based on the JADE algorithm [64] which proposed the
novel mutation strategy (current/to/pbest).

Mutation Strategy with External Archive

In LSHADE-EpSin, one of the best-performing mutation strategies for generating promising
mutant vectors during the optimisation process is current-to-pbest/1 which is initially proposed by
JADE. This mutation strategy can be seen in Equation (21).

vi,g = xi,g + Fi,g(xpbest,g − xi,g) + Fi,g(xr1,g − xr2,g) (21)

where xpbest,g is chosen from the best solutions N × p(p ∈ [0, 1]) of the current parent population
(g). xr1,g is randomly taken from the population and xr2,g is randomly chosen from a combination
of the current population and the external archive (A). The external archive keeps a record of the
lower-ranking parents recently replaced by offspring.

Ensemble of Parameter Adaptation

An ensemble of parameter configurations is used in LSHADE-EpSin to control the adaptation of
parameters. The adaptive parameters are associated with a combination of two sinusoidal formulas
to adjust the scaling factor. Firstly, a non-adaptive sinusoidal adjustment technique is used to adjust
the scale factor (Fi,g) which decreases during the optimisation process. Equation (22) shows this
non-adaptive technique.

Fi,g =
1
2
× (sin(2π × f req × gs1 + π)× itermax − gs1

itermax
+ 1) (22)

where f req describes a pre-defined frequency for the sinusoidal function and iter denotes the current
generation number (gs1 <= itermax

2 ). The second strategy for the adjustment of the scale factor is an
adaptive sinusoidal adjustment method. This formulation can be seen in Equation (23).

Fi,g =
1
2
× (sin(2π × f req × gs1)×

gs1

itermax
+ 1) (23)

where f req is an adaptive frequency based on a Cauchy distribution and a successful history-based
of settings. iter denotes the current generation number. One of the most effective DE parameter
adaptation techniques is recording an archive of both mutation factors and probabilities of crossover
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based on their success during the optimisation process. The control parameters history-based was
proposed by Zhang et al. [64] in JADE. In each generation of JADE, in order to generate an offspring,
we have an array of the crossover probability rate that is produced based on a normal distribution
of the mean (µCR) and variance at 0.1. The successful crossover probabilities (SCR) are recorded and
updated at each generation. The µCR is initialised by 0.5 and in the next generation it is updated by
Equation (24).

µCR = (1 − c)× µCR + c × meanA(SCR) (24)

where c is a constant generated between 0 and 1 randomly and meanA is a simple arithmetic mean.
Likewise, the mutation factor Fi of each xi is separately generated at each generation, as stated in a
Cauchy distribution with the mean µF and scale parameter 0.1. (Equation (25))

Fi = randci(µF, 0.1) (25)

where the randci is the Cauchy distribution. All successful mutation factors are archived and point out
as a set of SF at the end of each generation. The value of µF is updated using Equation (26).

µF = (1 − c)× µF + c × meanL(SF) (26)

where meanL is the Lehmer mean [65] and computed as follows:

meanL(SF) =
∑F∈SF

F2

∑F∈SF
F

(27)

Linear Population Size Reduction

The LSHADE-EpSin algorithm benefits from a linear reduction in population size to fit the
population size (N) iteratively at each generation as exposed in the following equation:

Ng+1 = Round[

(

Nmin − Nmax

itermax

)

× iter + Nmax] (28)

where Nmin is the minimum population size, and initialised at 4 that is required to make the
current-to-pbest mutation strategy. The four required solutions are xi, x

p
best, xr1 and xr2 . The mutant

vector of this strategy is generated using Equation (29).

Vi,g = xi,g + Fi × (x
p
best,g − xi,g) + Fi(xr1,g − xr2,g) (29)

Local Search

In order to extend the exploitation capability of LSHADE-EpSin, a stochastic local search is
proposed that works based on Gaussian Walks. The local search is activated when the population
size is less than 20 (Nini = 25), and 25 random samples are evaluated to exploit the neighbourhood
of the best-found design among the current population. The Gaussian walks applied can be seen in
Equation (30).

yi = N (µb, σ) + (r1 × xbest − r2 × xi) (30)

where xbest is the best-found solution in the local search and µb is equal to xbest. r1 and r2 are two
uniform random numbers from the range of [0, 1]. Besides, the standard deviation (σ) of this Gaussian
Walks is calculated using Equation (31).

σ =
log(iter)

iter
× (xi − xbest) (31)
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4.2. Bi-Level Optimisation

In this paper, we propose two bi-level optimisation methods, including Bi-level-1 (SaDE+NM)
and Bi-level-2 (LSHADE-EpSin+NM). We also provide a general formulation in order to maximise
the harnessed power and minimise the LCoE of a cylindrical wave energy converter. These proposed
approaches comprise two levels of optimisation tasks where one optimisation process is nested
within the other. The exterior optimisation method (which is a global search method) is referred to
as the leader’s (upper level) optimisation process. In the upper level, we apply two self-adaptive
meta-heuristics, including Self-adaptive DE (SaDE) and LSHADE-EpSin. Both methods improve the
ability of an adaptive learning strategy to fine-tune the control parameters and mutation strategy and
demonstrate a considerable performance in optimising real engineering problems [66,67].

In the second level, the internal method is recognised as the follower’s (lower level) optimisation
process. In the current study, the inner method is a Nelder–Mead (NM) simplex search method [68].
NM simplex is a downhill local search method, and it is straightforward to hybridise combine with
other meta-heuristic methods. The primary reason for such hybridisation (or for using NM as the
lower-level in a bi-level method) is to tune a more suitable trade-off between global optimality and
computational budgets [69,70].

Figure 5 shows that the proposed bi-level optimisation framework consists of a global search
method designed to optimise all decision variables in the upper-level, and both geometry parameters
(radius and height) that given from upper-level decision vector are optimising in the lower-level.
To adjust the geometry parameters of the cylinder, we use a local search method. The best-found
geometry configuration in the lower-level will be replaced in the upper-level decision variables.

Upper level decision designs

{α, H, αt , αap , Kpto , Bpto }

Upper level search space

Lower level search space
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Figure 5. A general sketch of the bi-level optimisation applied in order to maximise the produced power.

The pseudo-code of the proposed Bi-level-2 algorithm is shown in Algorithm 1. It can be seen
that the algorithm is divided into two primary sections. At the top level, we have a self-adaptive DE
(LSHADE-EpSin) employing two strategies to adjust the control parameters. These strategies are (1)
adaptive sinusoidal increasing adjustment and (2) non-adaptive sinusoidal decreasing adjustment.
The benefit of this ensemble approach is that it allows the algorithm to converge to a sufficient
balance [36] between searching the neighbourhood of current bet-found solutions and the exploration
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of non-visited search space zones. In the lower-level, there are two nested inner local search methods.
The initial local search is used to explore the search space of the cylinder dimensions (radius and
height) where other decision variables are fixed. Next, both tether angles (inclination and attachment)
are optimised using the second local search. In order to save computational budget, we define
a performance criterion for both local search methods. This condition evaluates the local search
performance; if the obtained power improvement cannot satisfy the criterion, Bi-level-2 will withdraw
the local optimisation process and allocate the remaining budget to the global search method.

Tuning the Local Search

One of the significant parameters of the bi-level optimisation method is the maximum evaluation
number (Maxeval) of the local search (NM). Tuning this variable plays an important role in obtaining a
greater balance between saving on the computational budget and converging to the local optimum
as much as possible. In order to tune the Maxeval , we perform the local search to optimise the WEC
geometry parameters (a, H) and keep the other decision variables fixed. This experiment iterates ten
times with different initial solutions. Meanwhile, the same tuning process runs to optimise both tether
angles. Figure 6 shows the convergence curves of these experiments. We observe that the local search
converges rapidly to a local optimum in the geometry and tether angles optimisation processes after
20 and 40 iterations, respectively on average. Therefore, we set the Maxeval of the local search to 20
and 40 iterations.
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Figure 6. The effect of computational budget on tuning the local search iterations. (a) dimension
optimisation (a, H) , (b) Tether angles optimisation (αt, αap).

5. Optimisation Results and Discussions

5.1. Multi-Modality of Search Space

In order to characterise the search space, we perform an experiment using a Nelder–Mead (NM)
search method. Twenty random initial configurations are generated and NM is applied to optimise the
absorbed power output. Figure 7 shows the trajectory of the NM performance during the optimisation
process. It can be seen that the majority of the trajectories in the cylinder dimension (subplot (a))
converged to a specific area of the search space as expected. This is because large WECs can harness
more power than small ones. The second observation is that the PTO search space is not uni-modal
and each trajectory converged to different configurations (subfigure (c,d,e)).
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(a) (b)

(c) (d) (e)

Figure 7. Twenty independent NM runs with the random initial solutions. (a) The NM’s trajectory in
the cylinder’s dimension (radius and height) optimisation, (b) 3D NM’s trajectory in the cylinder’s
dimension and the absorbed power. (c) NM’s trajectory in the initial value of the damping (Bpto) and
spring (Kpso) array. (d,e) two examples of 3D NM’s trajectory in Bpto and Kpso.

5.2. Power Landscape Analysis

With regard to evaluating the impact of each buoy design variable on the level of produced power,
we perform a sensitivity analysis experiment. Here, we assume both tether angles are kept fixed at
45◦; note that this size is not optimal, because tether angles should be adjusted based on the buoy’s
dimensions, as recommended by prior works [34]. Moreover, the search space of the Kpto and Bpto

parameters are discretised, where each interval is 106. In the next step, for each discrete configuration
of PTO parameters, we evaluate the importance of the cylinder dimensions (a, H) using a grid search
technique where the discretisation step size is 1 (m).

The results are shown in Figure 8, which includes 400 sub-figures. Each sub-figure represents the
relationship of the cylinder radius and height sizes with the absorbed power, where the Kpto and Bpto

are fixed. It is important to note that a variation in the size of the radius has a more substantial effect
on the power output than a variation in the cylinder height. In this wide power landscape, we can
see that the maximum produced powers are achieved when the PTO parameters are assigned around
107, and the buoy radius and height sizes are large. However, it should be noted that the effect of PTO
parameters on the absorbed power is more significant than the size of the cylinder dimensions.
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Algorithm 1 Bi-level Optimisation method (LSHADE-EpSin+NM)

procedure BI-LEVEL OPTIMISATION METHOD

Initialization

P = {〈a1, H1, αt1 , αap1
, K1

1, ..., K10
1 , B1

1, ..., B10
1 〉, . . .

. . . , 〈aN , HN , αtN
, αapN

, K1
N , ..., K10

N , B1
N , ..., B10

N 〉} ⊲ initial population

M:µF =µCR=0.5 ⊲ initialise memory of first control settings

M f req:µfreq = 0.5,Imp − rated = Imp − rateα = 1 ⊲ initialise memory of second control settings

Upper-Level (Global search method)

for iter in itermax do ⊲ termination criteria

if iter > itermax
2 then

Call second control parameter settings

SF = SCR = ∅ ⊲ Reset successful mean vectors

ri = rand(1, H) ⊲ Generate a random index, H is memory size

Fi = randc(µFri
, 0.1),CRi = randn(µCRri

, 0.1)

end if

if iter ≤ itermax
2 then

Call first control parameter settings

c = rand(0, 1)

if c < 0.5 then

Fi =
1
2 × (sin(2π × f req × iter + π)× itermax−iter

itermax
+ 1)

else

Fi =
1
2 × (sin(2π × f req × iter)× iter

itermax
+ 1)

end if

Generate CRi same as first control parameters (Equation 23)

end if

for i = 1 to N do

Generate p = rand(0, 1)× n, n = 0.1 × N

vi = xi + Fi × (xpbest − xi) + Fi × (xr1 − xr2) ⊲ Mutation current-to-pbest/1

u
j
i,iter =















v
j
i,iter, if (rand < CRi) or (j == jrand)

P
j
i,iter, Otherwise

⊲ Binomial Crossover

Pi,iter+1 =















ui,iter, if (f (ui,iter) > f (Pi,iter)) Maximisation

Pi,iter, Otherwise
⊲ Selection

Store successful Fi and CRi

end for

Update the memory according to used settings

Update the population size by Equation (28)

Ndi f f = Ng − Ng+1

Sort Piter based on the fitness function

Remove worst solutions Ndi f f from Piter AND Select the best solution Pbest

Lower-Level (Local search method)

if Imp − rated> 0.001% then ⊲ Optimise Cylinder dimension

Pbest(a, H) = Nelder − Mead(Pbest(a, H), Maxeval)

Compute improvement rate Imp − rated

end if

if Imp − rateα> 0.001% then ⊲ Optimise tether angles

Pbest(αt, αap) = Nelder − Mead(Pbest(αt, αap), Maxeval)

Compute improvement rate Imp − rateα

end if

Update Pbest
iter by the best-found NM configurations

end for

end procedure
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Figure 8. A power landscape of the cylinder with the fixed angles αt, αap = 45 and various dimensions
and PTO parameters.

5.3. The Annual Average Power Output Maximisation

In this section, we describe the optimisation results of our cylinder design experiments in order
to maximise the annual average power output. Furthermore, we compare the performance of the
optimisation algorithms outlined above in terms of best-found designs and speed of convergence.

Table 4 reports the best-found cylinder designs using seven meta-heuristics and two new bi-level
optimisation methods that produced the highest power output among all ten runs. Furthermore,
it can be seen that Bi-level-2 performs better than other applied optimisation methods and that it
can produce a considerable amount of power of 279 kW. The second observation is that almost all
(8 out of 9) optimisation methods converged to the cylinder of 15 m radius with the largest possible
height of 30 m. However, it should be noted that producing electricity using such large WECs can be
expensive, due to the high manufacturing costs. In terms of the angles and PTO settings, a large range
of values is proposed by all optimisation methods even though the maximised power output is not
dramatically different. This fact proves that it is not straightforward to optimise a multi-mode WEC
due to the strong dependencies between angles, PTO parameters, and the hydrodynamic model which
dominates the power absorption (heave, surge or pitch).

Table 4. Best-found design parameters in order to maximise the average annual absorbed power.

Parameter 1+1EA CMA-ES PSO GWO DE SaDE LSHADE-EpSin Bi-Level-1 Bi-Level-2

a [m] 16.62 16.10 19.99 16.68 15.46 15.50 15.49 15.61 14.51
H [m] 30 30 14.80 30 30 30 30 30 30
αt [deg] 70 26 60 14 48 26 39 50 10
αap [deg] 10 13 63 28 10 11 29 40 67
∑

NK

i=1 Kpto(×107) 0.665 0.863 3.796 1.51 1.894 2.883 0.882 0.665 0.514
∑

NB

i=1 Bpto(×107) 2.765 3.928 4.676 1.51 3.775 4.036 2.479 2.095 1.129

PAAP [kW] 259 248 239 261 259 261 262 265 279

Table 5 presents the average best-found power output per each run for all optimisation methods.
Bi-level-2 is not only capable of finding the best design configuration; it also performs the best average
power output (Figure 9a) compared with other meta-heuristics. In terms of the convergence rate,
Figure 10a depicts the applied optimisation method experiments during the 5000 evaluations. As we
can see, GWO and LSHADE-SeSin rapidly converge to considerable settings; however, they could
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not sustain this upward trajectory and converge near locally optimal designs. Obviously, the fastest
convergence rate is allocated to Bi-level-2.

Table 5. Performance comparison of various optimisation methods based on the maximum, minimum
and average power output and LCoE of the best-found design per each experiment.

Power [MW]

1+1EA CMA-ES PSO GWO DE SaDE LSHADE-EpSin Bi-Level-1 Bi-Level-2

Mean 0.2325 0.2329 0.2208 0.2537 0.2501 0.2537 0.2541 0.2551 0.2612
Min 0.1941 0.2121 0.1934 0.2467 0.2327 0.2498 0.2473 0.2526 0.2544
Max 0.2590 0.2476 0.2392 0.2615 0.2589 0.2610 0.2621 0.2610 0.2792
STD 0.0234 0.0117 0.0181 0.0049 0.0087 0.0036 0.0046 0.0032 0.0088

LCoE

1+1EA CMA-ES PSO GWO DE SaDE LSHADE-EpSin Bi-Level-1 Bi-Level-2

Mean 0.0443 0.0303 0.0678 0.0315 0.0334 0.0309 0.0280 0.0295 0.0268
Min 0.0316 0.0284 0.0556 0.0297 0.0282 0.0277 0.0248 0.0267 0.0243
Max 0.0599 0.0382 0.0794 0.0335 0.0514 0.0329 0.0361 0.0324 0.0285
STD 0.0109 0.0036 0.0071 0.0014 0.0079 0.0019 0.0041 0.0019 0.0012

5.4. LCoE Minimisation

In this section, we describe the second applied objective function related to LCoE and
approximated as a ratio of the generated energy to the significant mass of the system. The best-found
LCoE values and their relevant cylinder configurations which are obtained using nine meta-heuristic
approaches are shown in Table 6. Interestingly, all optimisation methods (except PSO) converged to a
narrow range of radii between 5 and 7.3 m, with the smallest possible aspect ratio of 0.4. This geometry
leads to the fact that the power generation will be dominated by the heave mode rather than surge.
Moreover, this is clearly seen from the optimised values of the tether angles as to absorb power from the
vertical motion, the tether angles should be closer to vertical leading to αt < 35◦. Another important
finding is that the power production of WECs optimised for LCoE is relatively low leading to 28.3 kW.

Figure 9b shows the box-and-whiskers plot for the best configurations of the WEC which
deliver the minimum LCoE for each run for nine search heuristics. It can be seen that the
performance of Bi-level-2 is more reliable than that of the other meta-heuristic algorithms we
applied. Both LSHADE-EpSin and Bi-level-1 show the next best average performances by 0.028
and 0.0295, respectively.

Investigating the convergence trajectories (Figure 10) from this experiment in the real wave model,
it is clear that Bi-level-2 converges faster than other optimisation methods. It is noteworthy that among
the seven optimisation methods in the all-at-once strategy, the LSHADE-EpSin convergence speed is
substantially better than the others due to both adaptive and non-adaptive strategies in order to adjust
the control parameters as well as to conduct an embedded local search in the initial iterations. However,
it can be seen that the convergence rate of GWO is considerable in the initial 1000 evaluations.

In order to see the convergence performance of Bi-level optimisation algorithms, the search
trajectory of the best agent in each generation for all decision variables is shown in Figure 11. Initially,
we can see the high convergence ability of Bi-level-2 compared with DE in order to find and converge
to the optimal range of both radius and height. Meanwhile, It can be observed that Bi-level-2 tends to
explore promising areas of the tether angle search space broadly, and finally, to exploit the best values.

55



Energies 2020, 13, 5498

Table 6. Best-found design parameters in order to minimise the LCoE.

Parameter 1+1EA CMA-ES PSO GWO DE SaDE LSHADE-EpSin Bi-Level-1 Bi-Level-2

a [m] 7.31 6.40 14.32 7.00 7.38 6.57 5.00 6.15 5.00
H/a 0.40 0.40 0.40 0.4 0.40 0.40 0.40 0.40 0.40
αt [deg] 28 29 10 10 31 25 35 31 34
αap [deg] 10 11 10 31 14 11 10 12 10
∑

NK

i=1 Kpto(×107) 0.647 0.919 3.90 0.651 3.50 0.383 2.094 0.77 2.071
∑

NB

i=1 Bpto(×107) 0.577 0.332 3.52 0.847 1.15 0.481 1.350 0.256 1.914

LCoE 0.0316 0.0284 0.0556 0.0297 0.0287 0.0277 0.0248 0.0267 0.0243
PAAP [kW] 53.1 43.6 131 51.4 64.8 50.6 27.1 43.5 28.3
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Figure 9. Each method runs 10 times. (a) Average annual produced power, (b) Levelised cost of
energy (LCoE).
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Figure 10. The average convergence rate comparison of the absorbed power and LCoE of the cylinder.
Each method runs 10 times. (a) Average annual produced power, (b) Levelised cost of energy (LCoE).
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Figure 11. Search history and trajectory of the best solution per each population in all decision variables.
(a) the optimisation process (power maximisation) of DE, (b) Bi-level-2.

6. Conclusions

In this paper, two new bi-level optimisation methods are proposed with the aim of maximising the
harnessed power output. These methods are also designed to minimise the levelised cost of energy of
a fully-submerged, cylindrical WEC with three tethers for the wave climate of a Mediterranean sea site
in the west of Sicily, Italy (featuring unidirectional irregular waves). The optimisation of a combination
of WEC radius, height, tether inclination and attachment angles, and power take-off parameters is a
relatively computationally expensive (5000 evaluations take around 15 h), multi-modal, large-scale
and complex problem. These characteristics provided the principal motivation for investigating
and proposing a faster and more reliable optimisation technique. With this in mind, we applied
a bi-level strategy to optimise the design variables at various levels. A global search method was
used at the upper level to optimise the parameters of the whole WEC’s. Furthermore, in the lower
level, a Nelder–Mead (NM) simplex search method was applied to adjust the geometry settings and
tether angles. To systematically compare the effectiveness of the proposed optimisation method,
we considered seven state-of-the-art evolutionary and swarm algorithms. The experimental results
showed that the bi-level method can outperform other meta-heuristics in terms of both convergence
rate and the quality of WEC’s configuration. Moreover, according to the best-found configurations,
if we focus on maximising the harnessed power output without considering the costs, a large cylindrical
buoy is recommended. However, the cheapest energy can be delivered by a relatively small WEC with
a radius of 5 m and a height of 2 m.
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Abstract: This paper presents a virtual model of a scroll compressor developed on the one-dimensional
analysis software Simcenter Amesim®. The model is semi-empirical: it needs some physical details
of the modelled machine (e.g., the cubic capacity), but, on the other hand, it does not require the
geometrical features of the spirals, so it needs experimental data to calibrate it. The model also
requires rotational speed and the outlet temperature as boundary conditions. The model predicts the
power consumption and the mass flow rate and considers leakages and mechanical losses. After the
model presentation, this paper describes the test bench and the obtained data used to calibrate
and validate the model. At last, the calibration process is described, and the results are discussed.
The calculated values fit the experimental data also in extrapolation, despite the model is simple and
performs calculations within 7 s. Due to these characteristics, the model is suitable for being used in a
larger model as a sub-component.

Keywords: scroll-compressor; experimental validation; numerical model

1. Introduction

Scroll compressors are widely used in applications where noise pollution and low vibrations
are relevant factors, such as domestic refrigeration and domestic climatic control. Due to its unique
properties, these machines are given much attention by scientific and industrial researchers. Some works,
especially the oldest ones [1,2], are mainly focused on the theoretical functioning of those machines,
even though the final aim has always been the improvement of the scroll efficiency. The scroll
compressors efficiency-enhancing is pursued using different approaches, such as researching on the
design of rotor profiles to reduce volumetric losses [3,4] or investigating the cooling effects on the
compression work [5,6].

The latest most attractive research branches on scroll machines concern studies on the machine
behaviour into thermodynamics cycles [7], works on the performance of injecting water (or vapour)
compressors [8,9] and studies on the scroll expanders [10].

Many works on scroll compressors or expanders use a mathematical model that is generally
virtualised with a low-level programming language. Among them, some use a geometrical approach [11–15]
while others use semi-empirical methods [16–18]. Some details of one work for each group are briefly
illustrated below. Blunier et al. [14] presented a model written in very-high-speed-integrated-circuits
hardware description language (VHDL) code including the scroll’s geometrical features in it; the model
does not need any calibration. Winandy et al. [18] used the Engineering Equation Solver (EES) software
to virtualise the model equations. The model needs seven parameters to be obtained through a
calibration process on mass flow rate, power output and outlet temperature. The required data points
are obtained by themselves through several experimental runs.
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The use of commercial 0-1D fluid-dynamic code was not frequent for machines models, while they
are often used to simulate a whole thermodynamic cycle [18–20]. Ziliani et al. [19] used the commercial
software Amesim® ( Siemens PLM Software, Plano, TX, USA)to model an entire Organic Rankine Cycle
(ORC) plant where it is supposed to be used a screw or a scroll expander. The machines’ behaviour
was deduced by a Computational Fluid Dynamics (CFD) simulation (for the scroll compressor) and a
geometry-based simulation (for the screw compressor). Bracco et al. [20] used a similar approach for
their ORC plant simulation: their machine model needs four parameters, that are based on a combination
of some manufacturer information, experimental data and a self-made scroll simulation tool.

However, Bell et al. [21] recently (2020) developed an open-source platform (named PDSim)
specific for modelling positive-displacement compressors. Tanveer et al. [22] compared different
software on a reciprocating compressor finding that the PDSim suit has good potential. On the
other hand, Rak et al. [23] relied on a CFD analysis to model in detail a cooled scroll compressor,
thus considering heat transfer issues.

The main purpose of this work was the development of a fluid-dynamic model of a scroll
compressor and its experimental validation. The model does not consider the internal geometry of the
scroll, nor its kinematic behaviour. The model aim is to perform calculations in a few seconds so that it
can be used as a sub-component of a whole plant model. In this paper, an oil-less commercial scroll
compressor is modelled by a zero-dimensional semi-empirical model developed using the commercial
software Simcenter Amesim® (version 19.2). The compressor is viewed as a pneumatic system made
up by a series of peculiar reciprocating compressors with driven valves. Leakages and a keyed fan
power consumption are considered. The experimental activities are performed on a commercial oil-less
scroll compressor, at four rotational speed levels and six pressure levels.

2. The Scroll Compressor

The same timing scheme characterises all rotary machines. The rotors uncover ports and intercept
cells carved in the stator, carrying the working fluid from the inlet side to the outlet. As the cells have a
decreasing volume, a design pressure ratio βi is generated by the internal volume reduction (for roots
compressors βi = 1). The compression ratio β, required by the application, may overlap or not with the
compression ratio βi, that the machine can produce due to volume change of cells. Usually, regarding
the scroll compressors, there is a moving spiral and a fixed spiral. The moving spiral describes an orbit
around the base circle centre of the fixed. The spirals are thick circle involutes, and, in most cases,
they are equals. Many authors described the scroll geometry and kinematic characteristics in details
(e.g., Chen et al. [13]). The proposed model is not based on the geometry of the spirals, so this work
will not examine these issues.

Figure 1a shows a scroll compressor working scheme, while Figure 1b shows a rotary volumetric
compressor’s ideal cycle diagram. Referring to Figure 1, these machines make a first internal
compression (from state 0 to state 1) through volume reduction. Then, at the opening of the last internal
contacts of the machine, two volumes are put into communication: the last cell filled with gas in state 1
(p1, T1) and the discharge volume filled with gas in state 2 (p2, T2). Therefore, an instantaneous mixing
phase (at constant volume) starts: the state of the whole gas becomes an intermediate state (px, Tx).
In the next step of the machine rotors, while the volume of the last cell decreases, state 2 in the volume
Vm is restored.

An authors’ previous work [24] theoretically analysed the machine β ≥ βi field. It illustrated
an alternative representation of a generic ideal rotary compressor’s working scheme (see Figure 1).
The theoretical analysis confirmed that the two theoretical models are equivalent. It was demonstrated
that the proposed representation leads to a simpler but rigorous equation to calculate the ideal specific
work consumption (see Equation (1)).
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Figure 1. (a) Scroll functioning scheme; (b) rotary compressors’ diagram.

In this work, Equation (1) is used to give a theoretical validation to the proposed model, before
implementing real losses and calibrating it on experimental data.
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where k is the isentropic index, R is the gas constant (for air), T0 is the inlet temperature, TX is the
temperature in the state X, mc is the mass elaborated per cycle, mm is the mass in the discharge volume.
The other abbreviations are collected in Equation (2).
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3. Numerical Model

The numerical model is developed on Simcenter Amesim® software.
Referring to Figure 2, two pairs (A, B) of variable volumetric chambers are used to simulate

the scroll compressor. The volumetric variation does not follow the actual scroll chambers variation.
The model uses a simple sinusoidal function of the shaft rotation. The compression process is modelled
through the subsequent steps: the suction phase of chambers A1 and B1 stands for the scroll suction.
They are in phase opposition so that the system has the suction phase 360◦ long and the sum of their
cubic capacity is the scroll capacity. Three controlled valves for each pair of chambers are used to
simulate the openings of the scroll contacts. These valves are opened every 180◦. Focus on one pair of
chambers (e.g., chambers A1 and A2). The first valve stands for the contacts that enclose half scroll
suction chamber when it reaches its maximum capacity; the second valve separates the first chamber
from the second and it stands for the contacts that separate the scroll suction chambers from the other
scroll chambers. Then, the third valve stands for the contacts that separate the scroll compression
chamber from the discharge chamber. Chambers A2 and B2 are smaller than the others and they are in
phase opposition respective to chamber A1 and B1. When the second valve opens, the compression
phase begins due to the total volumetric decreasing achieved after the second valve opening.

 

β ≥ β

= − 1 − 1 + − 1 − 1 +

=        ;      =     ;   =  ++

Figure 2. Model code in Amesim environment. 
Figure 2. Model code in Amesim environment.
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An ideal electric engine imposes a constant speed to the whole model. In this work, electric losses
are neglected, because the experimental work input is measured downstream of the electric motor.

After the compression phase, the third valve opens and the second close. The discharge phase
and the suction phase start respectively in chambers 2 and 1. The other pair of chambers (e.g., B1 and
B2) are just the same, but they are in opposition of phase. Therefore, there is an entire suction and
discharge that lasts 2π radians long in a revolution. An ideal infinite volume simulates the compressor
discharge tank.

In this model, the heat losses are neglected, so the chambers are adiabatic. Therefore, the outlet
temperature, as well as the inlet temperature, are set based on the experimental data. According to
Yu Chen et al. [13] work there are two types of leakages: the flank leakages and the radial leakages.
The flank leakages are simulated by an imperfect closing of the valves (the valves V1, V2, V3 that
simulate the internal contacts). Therefore, when they should be closed, they are slightly opened.
The radial leakages are simulated by internal by-pass (R). The mass flow rate through the valves is
calculated via Equation (3) [25].

.
m = ACqCm

Pup
√

Tup

(3)

where A is the actual orifice area, Cq is Perry’s coefficient from his correlation [26], Cm is the flow
coefficient as also described by Szente et al. [25], Pup and Tup are the upstream pressure and temperature.

The mechanical losses (ML) are modelled as a fixed frictional loss (one constant to be estimated).
The keyed fan (KF) is simulated by a torque load function of the square of the rotational speed, so there
are three parameters (A, B, C) to be estimated (see also Equation (4)).

Torque load = Aω2 + Bω+ C (4)

At first, the model is tested on an ideal case, suppressing the elements KF, ML and R. The model
results are compared with the theoretical results of Equation (1), at different internal and total pressure
ratios. Figure 3 shows that there are no significant deviations between the scroll ideal performances
and the simplified numerical model. The maximum deviation obtained is always under 0.8% of the
theoretical values (the model calculation is always greater than the theoretical value). These differences
are caused by some small pressure losses still present in the model, and, secondary, by the model outlet
tank, that the code treats as an infinite volume (the theoretical calculation is under the assumption of
an outlet tank of 105 times the scroll cubic capacity). Overall, the proposed model is congruent with
the theory, so, enabling KF, ML and R, it should be able to simulate real scrolls. The values of these
elements’ parameters are estimated through a calibration process based on experimental data.

π

=

 = + +    

Figure 3. Comparison between theory and the proposed model. 
Figure 3. Comparison between theory and the proposed model.
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4. Results

4.1. Experimental Activities

4.1.1. Experimental Setup

Figure 4a shows the experimental test bench used, Figure 4b illustrates its scheme and Table 1
collects the details on its main components. The machine tested is a 2.1 kW oil-free scroll compressor (C)
taken from the ATLAS COPCO SF2 clean air generator (ATLAS COPCO, Nacka, Sweden). The required
power is given by a three-phase oscillating-casing electrical asynchronous motor (EM). The motor
is connected to an inverter that controls the motor speed modifying the current frequency. A load
cell measures the required torque (Tq): the motor oscillating-casing is constrained by the load cell
through an arm of a known length, so the product of the sensed force and the arm length is equal to
the torque given by motor. A trapezoidal belt connects the compressor to the motor with a unitary
transmission ratio (TB). The encoder (RPM) is integral with the compressor axis, measuring the
compressor speed. The compressor original cooling fan is a centrifugal fan (KF), and it is keyed on
the scroll axis. A turbine flow meter (V) measures the air volumetric flow rate at the suction of the
compressor. Two K-type thermocouples (T) (mounted through a T-joint) measure the temperatures,
both at the inlet and outlet pipe of the machine. The outlet thermocouple is mounted at 15 cm from
the outlet port, due to the compressor built-in external fins. A piezo-resistive sensor (p) is linked to
the calm reservoir (TANK) at the outlet to measure the required average pressure imposed on the
compressor. The circuit ends with a regulator valve (RV) to control the outlet pressure. The data are
digitalized by data acquisition system made up by a NI-DAQ USB 6259 (National Instrument, Austin,
TX, USA) and a NI-FieldPoint cFP 1808 coupled with a cFP-TC-120 module that provides built-in cold
joint correction for the thermocouples. All data are processed by a self-made software realized in
LabVIEW™ (version 15.5, National Instrument, Austin, TX, USA) code.
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Figure 4. (a) Test bench; (b) test bench scheme.
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Table 1. Test bench elements.

Symbol Element Details Accuracy

EM Electric engine
C Compressor 2.1 kW scroll compressor

TB Transmission belt Trapezoidal transmission belt.
Transmission ratio = 1:1

p Pressure sensor Piezo-resistive sensor ±4%

Tq Torque sensor Strain-gauge force sensor applied to the
electric engine’s known length arm ±0.011 Nm

RPM Encoder 500 pulse per round
RV Regulation valve
T Temperature sensor K-type thermocouple ±1.5 K
V Volumetric flow rate sensor Turbine flow meter ±3%

KF Keyed fan Centrifugal cooling fan
TANK Dumping tank

4.1.2. Experimental Plan

The test campaign considered in this work consists of four runs, each performed at total pressure
ratios (β) from 2 to 7 and then from 7 to 2. Each run is performed at a different constant speed: 1000,
1500, 2000 and 2500 RPM. Once the compressor speed is set, the pressure in the outlet tank is controlled
through the regulation valve. Starting from the lowest pressure ratio, when the desired value is reached,
the acquisition system waits until the outlet temperature is stationary and then saves the data. Then,
the regulation valve is tightened to achieve the next desired pressure ratio. The process is repeated
until the pressure ratio reaches 7, and the system saves the data. Then, compressor state is modified
reaching a pressure ratio of 7.5 (approaching the limits of the test bench). After 5 min, the process is
repeated from pressure ratio 7 to 2. Despite the different thermal dynamics between the rising and the
falling part of the run, the next paragraphs show that the measured data are close to each other.

4.1.3. Experimental Results

Figure 5 presents the working fluid (air) temperature versus the total pressure ratio and for various
rotational speed. The experimental reproducibility is average: the higher error is below 5%. It is
shown that the temperature is an increasing function of both compression ratio and rotational speed.
The temperature is still increasing due to both the rising of the compressed mass flow rate and the rise
of frictional losses, despite a higher rotational speed causes a higher cooling flow rate (generated by
the keyed fan).

 

β

 

Figure 5. Experimental data: outlet temperature.
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The mass flow rate and power consumption experimental data are shown together with the
simulated data (the model results will be discussed in the next paragraphs): Figure 6 shows the
compressor mass flow rate and Figure 7 shows the power consumption with the fan. According to
Figure 6, the higher the pressure in the delivery tank, the lower the mass flow rate. This effect is heavier
for low rotation speed. This tendency is caused by both the temperature effect (the whole machine
temperature is higher at higher compression ratios) and the leakages (a higher-pressure gradient across
the gaps leads to more air leaked). The experimental reproducibility is good: the higher error is below
3%, and the absolute errors are under 0.1 g/s.

 

 

 and  =

β β
β

Figure 6. Model validation: mass flow rate.
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β β
β

Figure 7. Complete model validation: power consumption.

Figure 7 shows the power consumption data of compressor for all experimental tests, calculated
via Equation (5), where Mexp and ωexp are the measured torque and the measured rotational speed.
The experimental reproducibility is average: the higher error is below 5%

Pexp = Mexpωexp (5)

Both the power and the temperature are increasing functions of both compression ratio and
rotational speed.
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4.2. Model Results

4.2.1. Model Calibration and Validation: Leakages

In the model, the adiabatic process simplified hypothesis is done, supposing that the fan cooling
affects only the final stage of the compression process (i.e., the curve X-2 shown in Figure 1). The first
step of the calibration process is to determine the leakages. In the model (see Figure 3), the flank
gaps are modelled as an imperfect closing of the internal contacts (the valves V1–V3) while the radial
leakages are modelled as a by-pass. The model requires the orifice area for each of them. These areas
are not the physical areas of the scroll gaps, but their model representation. It is possible to determine
them using the experimental data on the mass flow rate. It can be postulated that both the centrifugal
force and the increasing temperature would reduce the internal clearances. Therefore, the influence of
the rotor speed over the leakages must be considered.

The calibration is performed using experimental data at β = 2 and β = 6 at 1000, 2000 and 2500 RPM.
All the other experimental points are used to validate the model. In particular, the β = 7 points are used
to verify the model consistency outside the calibration data field, while the 1500 RPM experimental
points are used to evaluate the model consistency in simulating the scroll running at another rotational
speed. The calibration points temperatures are set based on the experimental data. In other cases,
the temperatures are based on a linear regression of the values measured at β = 2 and β = 6. As for
the 1500 RPM temperatures, they are based on a linear regression of the values determined at 1000,
2000 and 2500 RPM. Similarly, the orifice areas are estimated anew for each rotor speed. For the
validation at 1500 RPM, the orifice areas are calculated based on a linear regression of the values
determined at 1000, 2000 and 2500 RPM. Figure 6 shows the model compliance with the real scroll
in terms of mass flow rate after the calibration process (coloured dots for the experimental data and
coloured lines the calculated one).

4.2.2. Model Calibration and Validation: Mechanical Losses

A new set of experimental runs were performed to calculate the mechanical losses (modelled by
the ML block). This experimental set-up is characterised by the absence of the keyed fan. In this way,
we get the difference between the experimental power consumption and the simulated one (once the
KF block is suppressed, see Equation (6)).

MML block =
Pexperimental

ω
− Mmodel scroll (6)

The machine temperatures were higher than the previous case, so the higher pressure ratio tested
is 4. As the thermal conditions were altered, the spirals thermal deformation is different; therefore,
a new leakages calibration was needed. Figure 8 shows the accordance between the model and the
new experimental set (the one without the fan) after the new calibration. It is possible to determine the
value of the ML torque confronting the power consumption experimental data with the model output.
The torque can be assumed as a constant independent by the rotational speed as the mechanical losses
are just simple friction losses (there are no other auxiliaries nor inertial forces).

4.2.3. Model Calibration and Validation: Keyed Fan

The speed effect on the torque losses (ML) was neglected, so the mechanical loss is set to constant.
As previously said, the keyed fan (KF) power consumption is modelled by a torque load function
of the square of the rotational speed, so there are three parameters (A–C) to be estimated (see also
Equation (2)). Once these parameters are determined, they are set as constant, independent from both
the speed and the pressure ratio. As previously, the data at β = 2 and β = 6 at 1000, 2000 and 2500 RPM
are used to calibrate, the others are used to validate. Figure 7 shows the comparison between the
experimental power consumption (coloured dots) and the calculated one (coloured lines), after the
calibration process. The figure shows the power consumption as a function of the pressure ratio and
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the rotational speed. In addition, the 1500 RPM and all β = 7 experimental data are well predicted by
the model. The model complies with experimental data, but some deviations remain. These deviations
are higher for lower rotational speed (that are further from the real compressor nominal speed and
further from adiabatic behaviour).

 

β
β

 =  −  

 

β β

β

Figure 8. Comparison of mass flow rates and power consumption between the model and the real
compressor without the keyed fan.

5. Conclusions

In the first part of the paper, the key features of a scroll compressor are presented. Then a
numerical model developed in Simcenter Amesim® is presented: the model includes leakages and
mechanical losses. Despite that the integrated keyed cooling fan power consumption is considered,
its cooling effect is neglected, and the compressor is considered adiabatic. To partially overcome this
limitation, the outlet temperature is set as a boundary condition using experimentally derived values.
The model was preliminary tested on ideal cases (no losses or leakages). Then, the experimental
activity is presented: a series of experimental runs were performed on a commercial scroll compressor.
Four levels of rotational speed (1000, 1500, 2000, 2500 RPM) and six levels of the pressure ratio (2–7)
were considered. The experimental data are reproducible as the errors are under 5%. Finally, the model
is calibrated on the experimental data. Six points are used to calibrate the model (at β = 2 and β = 6
at 1000, 2000 and 2500 RPM), while the other 26 are used to validate. After the proper calibration
of the leakages, mechanical losses and fan power consumption, the model can follow the scroll’s
real behaviour.

The model does not consider the actual scroll geometry and kinematic. This feature could be both
an advantage or a limitation: it is a limitation because it is not possible to calculate any inner quantity
nor instantaneous quantities (e.g., instantaneous torque); it is an advantage when the geometrical
features are unknown. Moreover, the calculations last less than seven seconds. Overall, the model is
not suitable as a machine design aid, but, on the other hand, it can be used as a component for a whole
plant simulation.
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Abbreviations

cp Isobaric specific heat capacity [kJ/kgK]
cv Isochoric specific heat capacity [kJ/kgK]
H Enthalpy [kJ]
h Specific enthalpy [kJ/kg]
k Isentropic index
M Torque [Nm]
mc Inlet air mass [kg]
mm Mass inside discharge volume [kg]
p Pressure [Pa]
R Gas constant [kJ/kgK]
T Temperature [K]
V Volume [m3]
v Specific volume [m3/kg]
Vc Inlet volume [cm3]
Vc’ Last closed cell volume [cm3]
Vm Discharge volume [cm3]
W Work [kJ]
w Specific work [kJ/kg]
0 Inlet state point
1 End of internal compression state point
X End of isochoric compression state point
2 End of global compression state point
β Total compression ratio p2/p0
βi Internal compression ratio p1/p0
βX2 p2/pX

ρi Internal volumetric compression ratio
ω Rotational speed [rad/s]
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Abstract: Ocean wave energy is a broadly accessible renewable energy source; however, it is not fully
developed. Further studies on wave energy converter (WEC) technologies are required in order to achieve
more commercial developments. In this study, four CETO6 spherical WEC arrangements have been
investigated, in which a fully submerged spherical converter is modelled. The numerical model is applied
using linear potential theory, frequency-domain analysis, and irregular wave scenario. We investigate a
parametric study of the distance influence between WECs and the effect of rotation regarding significant
wave direction in each arrangement compared to the pre-defined layout. Moreover, we perform a
numerical landscape analysis using a grid search technique to validate the best-found power output of
the layout in real wave models of four locations on the southern Australian coast. The results specify the
prominent role of the distance between WECs, along with the relative angle of the layout to dominant
wave direction, in harnessing more power from the waves. Furthermore, it is observed that a rise in the
number of WECs contributed to an increase in the optimum distance between converters. Consequently,
the maximum exploited power from each buoy array has been found, indicating the optimum values of
the distance between buoys in different real wave scenarios and the relative angle of the designed layout
with respect to the dominant in-site wave direction.

Keywords: layout assessment; wave energy conversion; renewable energy; real wave model

1. Introduction

Wave energy is expected to contribute towards the development of a carbon-free electricity generation.
The theoretical computation of wave energy potential over the oceans is projected to be in the order of
1–10 TW [1], which can cover the current global energy demand [2]. This tremendous potential has
attracted attention from research societies, which have proved that harnessing electric power from
ocean waves is possible [3,4]. Wave energy converters (WEC) are planned to be stationed in an
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array constituted of many converters -similar to offshore wind turbines. The initial developments of
the analytical modeling of hydrodynamic forces on submerged buoys can be found in [5]. However,
it has been further developed since then. The next stage of studies was focused on enhancing the
design and power take off system of a single buoy [6]. The next studies bring the idea of WEC’s array
by conducting a comparative study on different configurations [7]. The proceeding research phase
concentrated on finding the optimal value for WEC’s array parameters (such as optimal position or
layout) using either numerical, parametric or optimisation-based solutions [8–11], as this story falls in
this category. The position of converters in the array which is scattered through the array has a direct
relationship with the performance of the array because hydrodynamic interactions between them can be
constructive or destructive. These interactions depend on the configuration of the array. Consequently,
this is the main reason to investigate these interactions in order to apply them to reinforce the total power
output. There are many relevant publications with this subject by several R&D units across Europe in the
past by the pioneering works [12–16], and it is still an interesting research field, as several investigations
have been published recently [17–20] . Furthermore, the identification of techno-economically feasible
decarbonisation paths and sustainability transitions have been investigated by [21–23]. Some of the related
research projects that considered the performance of arrays or converters’ distance were undertaken
by [9,24–26] and the effects of nonlinear mooring forces via a time-domain analysis and the influence
of interactions between WECs are well described in [27,28], respectively. Table 1 demonstrates a brief
survey of some of the recent literature on the various aspects of WECs including layouts, PTO and design
optimisation. Some of the mentioned research has used hindcast wave models; however, different layout
configurations were considered regarding real wave scenarios in this study.

Table 1. A briefly survey some of the recent literature on the layout, Power Take-Off (PTO) parameters and
design optimisation of wave energy converters.

Objective WECs Type WECs Number Method Year References

Design & PTOs submerged 2 Experimental observations 2020 [17]

Layout & PTOs fully-submerged 4, 16 Cooperative EAs 2020 [18]

Design & PTOs fully-submerged 1 Hybrid EAs 2020 [29]

Layout fully-submerged 50, 100 Multi-strategy EAs 2020 [30]

Design & PTOs heaving WEC 1 Evolutionary and GA 2020 [19]

PTOs oscillating wave surge converter 1 GA 2020 [20,31]

Design sloped-motion WEC 1 Heuristic optimization 2020 [32]

PTOs oscillating water column-based 1 Water cycle algorithm 2020 [33]

PTOs hinged-type WECs 1 Experimental observations 2020 [34]

PTOs oscillating wave surge converter 1 GA and ML 2020 [35]

Layout submerged 25 PSO 2020 [36]

Design submerged flat plate 1 GA 2019 [37]

Design & Layout cylindrical heaving WECs 3, 5, 7 GA 2019 [38]

Design submerged 2 GA 2019 [39]

Layout fully-submerged 4, 16 Smart heuristic 2019 [40]

Layout fully-submerged 4, 16 Nuro-adaptive EA 2019 [41]

PTOs freely floating 2 EAs 2019 [42]

Design hinge-barge WEC 2 gradient-based method 2019 [43]

Design fully-submerged 1, 2, 3 GA, PSO 2019 [44]

Layout & PTOs fully-submerged 16 Hybrid EAs 2019 [45]

Layout & PTOs fully-submerged 4, 9 Heuristics 2019 [46]

Feasibility Study&Design oscillating wave surge converter 3 Numerical and GWO 2019 [47]

Layout heaving WEC 1 GWO 2019 [48]

Layout heave-constrained cylinder 5 improved GA 2018 [49]
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Table 1. Cont.

Objective WECs Type WECs Number Method Year References

Layout fully-submerged 4, 16 Local search 2018 [50]

Layout oscillating WEC 3, 5, 8 improved DE 2018 [51]

Layout &LCoE fully-submerged 4, 9, 36 Multi-objective EAs 2018 [52]

PTOs submerged 1 Hidden GA 2018 [53]

Layout & PTOs submerged 4, 7, 9, 14 hybrid GA 2018 [54]

Layout semi-submerged 1000 approximate analytical method 2015 [9]

Layout submerged 32 randomized geometries 2013 [26]

Layout floating + partially submerged 4 sensitivity analysis 2014 [25]

Design & Layout submerged 4 sensitivity analysis 2017 [24]

Design point-absorbing WECs 100 analytical multiple scattering 2015 [55]

Design& Layout floating over-topping WECs 9 Down-scaling techniques 2018 [56]

Design& PTOs heaving WEC 9, 16, 25 sensitivity analysis 2012 [57]

The CETO6 is a fully-submerged point absorber wave energy converter that is manufactured, installed,
and updated by Carnegie Clean Energy Ltd. The prospective location of the WECs array is off the coast of
Albany due to its exposure to open ocean wave conditions [58]. This study has been conducted based on
the numerical simulation of this converter’s array. Our concentration is particularly on the arrangement
optimisation of WEC arrays and shows the effectiveness of the inter-distance among WECs to produce
more power. In order to establish an array of WECs, an optimal layout is chosen to maximise the power
conversion; however, the number of WECs is a significant factor. We evaluate various numbers of WECs
as an array, arrangements and separations, and report the performance of the layouts using q-factor,
power of each converter and total power output. The distances between the WECs, and the array size are
constrained, which is a more realistic approach for studying WEC arrays. Finally, a landscape numerical
analysis is performed with regard to evaluating the position effect of each WEC in the array’s power
output using a grid search approach.

It should be noticed that such research has not been investigated in the mentioned real wave scenarios
(Perth, Adelaide, Sydney, and Tasmania) regarding this parametric study. Therefore, the main motivation
of this study is to evaluate the output performance of the simulated CETO6 arrays to find a suitable layout
with optimal distance, and the rotation angle to the dominant wave direction in these specific case studies.
Moreover, the investigation coverage is more comprehensive than in other research studies by exploiting
wave power using a ten-degree resolution covering the whole area of study, compared to, Bozzi et al. [24]
presented the implementation and evaluation of a few numbers of WEC separation distances (5, 10, 20 and
30 buoy diameters) and incident wave directions (30◦ apart).

This paper is structured into five sections. Section 2 presents a brief description of the hydrodynamic
WEC array interaction model, modeling the wave climate and the equations used to compute the produced
power. Section 3 expresses the layout assessment routine and presents the strategy to explore the optimal
position of the WECs in the array. Section 4 discusses the array layout investigation results in terms of
performance and optimal array layout solutions. Subsequently, Section 5 summarises the principal finding
of the paper.

2. Numerical Modelling

2.1. Wave Energy Converter

In this study, a CETO6 wave energy converter with a three-tethered mooring system is considered
which has a fully submerged spherical buoy attached to the seabed by the tethers, as shown in
Figure 1. This model is developed in MATLAB and was modified in 2020 [59]. The WEC details are:
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buoy radius = 5 (m), submergence depth = 3 (m), water depth = 50 (m), buoy mass = 376 (t), buoy volume
= 523.6 (m3), tether angle = 55 (degree), PTO stiffness = 2.7 × 105 (N/m), PTO damping= 1.3 × 105 (Ns/m).

Figure 1. Schematic representation of the CETO6 modelled point absorber wave energy converter (adapted
from [60]).

This buoy, which is floating at sea, moves in six degrees of motion. However, due to the converter’s
spherical shape, its displacement is in three degrees of freedom which are surge, heave, and sway. Based on
these degrees, the motion equation can be written on the frequency domain.

ΣF = mz̈,

= Fm + Fhs + W + FR + FPTO + FWk
+ FVD

(1)

where Fm is the mooring force, Fhs is the hydro-static force resulting from buoyancy, W is the body
weight, FR represents added mass and wave damping forces, force resulted by PTO system is FPTO,
FWk

represents the vertical components of the wave exciting force and FVD is the vertical viscous drag
force [61]. This equation is used in order to describe a time-domain response of the WECs in waves,
and can be rewritten as:

(m + A∞)z̈ +
∫ t

0
Krad(t − τ)ż(τ)dτ + Cz = Fexc + Fpto + Fhs (2)

where m is a buoy mass, A∞ is the infinite-frequency added mass coefficient, C is the hydro-static stiffness,
Krad(t) is the radiation impulse response function, Fexc is the wave excitation force, Fpto is the load
force exerted on the buoy from the power take-off system [62]. Free surface elevation height results
from a linear superposition consisting of some wave characteristics in irregular waves. This is usually
determined by a wave spectrum which describes the distribution of energy in a vast number of wave
frequencies. Significant wave height and peak period are utilized as the basic identification of the wave in
the spectrum. The irregular excitation force can be calculated as the real part of an integral term across all
wave frequencies as follows.

Fexc = R

[

∫ ∞

0

√

2S(ωr)Fx ei(ωrt+φ)dωr

]

=
∫ +∞

−∞
η(τ) fe(t − τ)d(τ) (3)
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where R denotes the real part of the equation, Fx is the excitation vector consists of amplitude and phase
of the wave, S is the wave spectrum, φ is the stochastic phase angle, ητ represents water elevation and fe is
the element of force vector [48]. The load force of PTO is modeled as a linear spring-damper system.

Fpto = −Bpto ż − Kptoz (4)

Fhs =− Khs,min(z − zmin)u(zmin − z)

− Khs,max(z − zmax)u(z − zmax) (5)

where in Equation (4) Kpto and Bpto are control parameters which represent stiffness and damping of
PTO and in Equation (5) u is the Heaviside step function, Khs,min and Khs,max are the hard stop spring
coefficients, and zmin and zmax are the stroke limits which are related to the nominal position of the
converter. It is important to note that, for computing useful absorbed energy, the effect of this force is not
considered [63].

In order to calculate the energy produced by each buoy, the sum of three forces is
necessary: wave excitation(Fexc,p(t)), force of radiation (Frad,p(t)), and power take off force (Fpto,p(t)).
The scattered irregular waves are included in the wave field when computing the excitation force.
Furthermore, the stiffness and damping parameters of the PTO system at the end of each tether along
with hydrodynamical parameters are taken in order to compute the total power output of an array. To
calculate the average power absorbed by the array, several variables have to be taken in to account, as
follows.

Pn(H, T) =
∫ 2π

0

∫ ∞

0
2Sn(ω)D(β)p(β, ω)dωdβ (6)

where Pn(H, T) is the average power absorbed by the array in a regular wave of unit amplitude, Sn(ω) is
the irregular wave spectrum which is calculated with the Bretschneider spectrum and D(β) represents the
directional spreading spectrum, particularly for this site which is come from the wave rose [64]. ω is the
wave frequency and p(β, ω) is the power function of each submerged buoy defined by Equation (7).

p(β, ω) =
1
2

Dptoω2Γ(β, ω)2 (7)

where Γ(β, ω) is the response amplitude operator (RAO) of the productive degree of freedom of the buoy
obtained by solving the equation of motion from Equation (2), and Dpto is the Power Take-Off (PTO)
damping. The wave angle is based on the z(β, ω) [40], which can be calculated by equation (2) at the
beginning of this section. The array at a certain test site is generated by total mean annual power Parray,
and to calculate that, the contribution of energy absorption from a wave climate in each state can be
summarized as:

Parray =
Ns

∑
n=1

On(Hs, Tp)Pn(H, T) (8)

where Ns is a number of chosen sea state, Hs is the significant wave height and Tp is the peak wave
period for each sea state, On(Hs, TP) represents the probability of occurrence of sea state which stems from
the wave scatter diagram and Pn(Hs, Tp) is a power which the array produces in the nth sea state [40].
Significant wave height and peak wave period are statistics of a sea state which can refer to the condition
of the ocean/sea surface. To calculate Pn(Hs, Tp) in irregular waves, it is necessary to sum all power
contributions in each frequency and significant wave direction.
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2.2. Wave Resource

According to previous works [40,45], four different sea sites were chosen for this study. The wave
height directional distribution (wave rose) can be seen in Figure 2, at the chosen locations (as an example,
the wave condition at the Sydney site is shown). The wave rose shows that the significant wave directions
are from 15 degrees to 190 degrees, where 90 percent of the incident waves travelled. Consequently,
the dominant wave direction is from the south.

Figure 2. The wave rose plot at Sydney.

Each array is constrained by the maximum area and the minimum distance between WECs. Firstly the
minimum separation between buoys (R′) has to be 50 m to provide a safe pass for vessels. Secondly,
although the area grows by increasing the number of buoys, it has to be constrained within the area Ω,
where Ω = l × ω, l = ω =

√
N × 120,000 m [45].

The Bretschneider spectrum is used for modeling irregular waves in this study. This spectrum is
a modified Pierson-Moskowitz spectrum which is based on significant wave height and peak period.
These two parameters are highly dependent on wind speed and its direction [65].

S( f ) =
H2

m0
4 (1.057 fp)

4 f−5exp
[

−5
4
(

fp

f )
4
]

(9)

where Hm0 and fp are the significant wave height and the frequency of the peak wave period, respectively.

2.3. Array Interaction Criteria

The optimal designs of the array for four different locations in Australia use power matrices of various
configurations (i.e., different layout geometry, WEC distance and relative angles regarding dominant
wave direction wave directions). To be more precise, the goal is to select the best site for each layout
configuration with the optimal separation among WECs and rotation angle, namely, the one that provides
the highest annual energy output per each converter. For this aim, based on the number of WECs, different
layouts can be deployed with various orientations and separation among converters. Note that there
are certain constraints for distances, and this depends on the number of WECs. Similarly, the number of
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converters in an array allows configurations to be chosen. Hence, it is crucial to measure the effectiveness
of interactions between converters by the q-factor coefficient. The q-factor is shown to be an important
evaluation criterium such that if q > 1, then it has a positive effect on the total energy of an array; otherwise,
the interactions are destructive.

q =
Parray

NPisolated
(10)

where Pisolated is the power that an isolated WEC generates, N is the number of converters [41].
As Equation (10) indicates, there is a direct relationship between q-factor and power output of each
array; however, both of them have to be studied separately, due to different objectives of finding optimal
values for each parameter. The maximum feasible amount of q-factor is investigated to achieve the best
constructive effects of interactions of buoys in an array. On the flip side, since the power output of a WEC
array plays a significant role in the assessment of the system’s response to energy consumption needs
in coastal areas, this parameter is considered along with the q-factor. The equation below calculates the
mean q-factor by considering the number of converters, variety of wave directions and allowable distance
within a 5 m interval.

mean q-factor(each wave scenario) =
∑

maxα
i=0 ∑

l
j=50 q f actor(i,j)

total number of cases
(11)

where α is the direction of wave n 10-degrees resolution, except when N is 5, the interval changes to
9 degrees ranging from 0–63 degrees and l is the maximum allowable distance between buoys within the
area. This mean q-factor coefficient will be considered to find the best location for the max q-factor over
different angles and distances.

3. Layout Assessment Routine

According to the mentioned equations in Section 2, the following outcomes are obtained.
Four different layouts are considered regarding the number of buoys, and they are thoroughly described
in detail. By looking at the mentioned literature, it is evident that using more converters results in more
potential destructive interaction. Specifically, the q-factor may decrease when the number of buoys
rises to greater than five [54]. Therefore, we decided to choose the five buoy layout as the maximum
complexity for the model; however, evaluating the larger wave farm characteristics is a part of our future
research plan. Furthermore, the symmetric design is proposed for the layouts based on the following
reasons: (i) To find a single variable to handle, the buoy-buoy distance must remain constant for each
configuration. Thus, the symmetric configuration fulfills this requirement in our assessment, like in
previous studies [66]. (ii) To cover the whole area of study in power absorption assessment process,
the array rotates 10 degrees, regarding the dominant wave direction, in each evaluation. The asymmetric
effect of the array configuration rules out the duplicate assessment, resulting in less computational cost.

In the first step, There are two buoys in this array, and one line connecting them. The dominant wave
direction indicates the direction in which most waves travel. However, in the calculation of power output
from each buoy or an array, the significant wave directions are used. These are directions from where
90 percent of the waves are traveling. Furthermore, the resolution size of the evaluation is 15 degrees,
by which we detect the dominant direction of the waves.

The dominant wave direction is obtained by considering one-third of the maximum waves in the
wave rose. The angle between dominant wave direction and a hypothetical line is considered to be alpha
(α), which is clearly illustrated in Figure 3. The interval of alpha is chosen to be tested every 10 degrees;
therefore, there would be 18 different alpha ranging from 0 to 170 degrees. This range has been considered
to prevent the extra calculation of results that have already been calculated. When there are three buoys to
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consider in an array, one of the most common geometries is the equilateral triangle. If some lines are used
for connecting these buoys, angles between vertexes of the triangle will be 60. There is a line from this
converter perpendicular to the line, which connects the two other buoys. The angle between the dominant
wave direction and this perpendicular line is alpha, shown in Figure 3, and this parameter has twelve
degrees from 0 to 110, which changes every 10 degrees. A regular quadrilateral is taken into account
to configure four buoys. To describe alpha in this layout, firstly, the dominant wave direction needs to
be determined. Secondly, a hypothetical line should be drawn from one converter to the furthest one.
For example, if the converters are numbered clockwise and the closest buoy to the front wave is buoy
number one, the line should be drawn from 1 to 3, exactly like in Figure 3. Finally, the angle between this
line and dominant wave direction is alpha, and the range of this is from 0 to 80 degrees, which has nine
different amounts with equal intervals.

In this layout, five similar converters form an array are shown in the shape of a regular pentagon.
The dominant wave direction is illustrated in Figure 3 with a blue arrow. Converters are numbered
clockwise, and the first number starts from the closest buoy to the front wave. As shown in Figure 3,
each converter has the longest distance with two buoys. In this case, the furthest converter to buoy number
1 is number 3 and 4. If a perpendicular line is drawn from the first converter to the connecting line between
furthest converters, the angle between the dominant wave direction and the perpendicular line represents
alpha. The range for alpha is from 0 to 63 in 9-degree intervals, so there are eight alphas to test in this
layout. Distances are also assumed to change every five meters between the allowable period. In the end,
three measurements, which are the power output of each buoy, array power, and q-factor, are taken in
each step for all layouts, separately. The details of all results are discussed comprehensively in Section 5.

Figure 3. Layout Setup of (a) 2 buoys array (linear), (b) 3 buoys array (triangle-shape), (c) 4 buoys array
(square-shape) and (d) 5 buoys array (pentagon-shape), with regard to dominant wave direction.
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4. Results and Discussions

This section represents the results of different array layouts when the number of buoys rises from 2 to
5 in considered locations on the Australian coast. The results demonstrate the sensitivity of the array power
and the q-factor due to the changes in buoy-buoy distance and rotation angle. It is worth mentioning that
there are 16 conditions in this study, which will be discussed in detail as follows. To choose the optimal
degree in this section, one of the most important variables is alpha, whose optimum value leads to the
average maximum amount of the power output.

4.1. Sensitivity of Two-Buoy Array Performance To Distance

Figure 4 shows the sensitivity analysis of the array power output to the different buoy-buoy distances.
It can be seen that Tasmania has the most wave array power, which is almost 0.534 Mw where the α is
80 degrees and the buoy-buoy distance is 160 m. The 60-degree angle line, which has the most average
power, rises with a sinusoidal trend from the beginning to 200 m. Then, it increases gradually. The second
location is Sydney, which has a considerable array power. Although its array power is 0.218 Mw, which is
far less than Tasmania, the maximum average array power occurs in 130 degrees with a similar trend to the
mentioned location. The maximum power that Sydney’s layout determines is achievable when the distance
is around 400 m. Adelaide and Perth are similar in terms of the array power range, which is roughly from
0.18 to 0.196 Mw. As the green line in these figures shows, when the rotation angle and buoy-buoy distance
are 40 degrees and 165 m, respectively, both reach the highest array power. The maximum average of array
power can be witnessed in 20 degrees in Adelaide and 30 in Perth. In the two mentioned sites, it is apparent
that figure lines follow different trends. To compare, when α is 20 degrees, and buoy-buoy distance is
100 m, the first peak of the array power is observed in Adelaide. Next, it falls until the distance goes
over 150 m. The first peak in Perth happens when the distance is near 60 m. Then, it remains unchanged
for the next 60 m. After significant growth, it reaches around 0.194 Mw with 160 m buoy-buoy distance.
Overall, it is remarkable that the maximum power can be harnessed in three locations when the distance is
160 m.
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Figure 4. Array power of the two-buoy layout over different distances in four wave models.
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4.2. Sensitivity of Three-Buoy Array Performance to Distance

It can be seen that in Figure 5, the most obvious inferred outcome is that, the longer distance between
WECs leads to more extracted power output. However, widening the area might not be proficient because
the line only rises 0.2 Mw by increasing the distance from 250 to 500 m. The maximum harnessed power
output can be seen when α is 10 degrees, except in Sydney, which is 110. The range of array power is quite
narrow in the mentioned locations, where only a 0.05 Mw gap can be witnessed among 12 tested angles.
The main reason for obtaining the similar results among different angles’ experiments can be explained
as follows. Where the three converters are placed in equilateral triangle geometry, there would always
be two buoys in the zone of radiation. Therefore, the changes in α cannot produce considerable effects.
By comparing the power output of WECs over the changes of distances, we can see the same overall trend
has been followed in all studied locations. A sharp rise in array power can be achieved by increasing the
distance up to 100 m, followed by a gradual rise by increasing the distance up to the maximum allowed
size. It can be mentioned that differences between maximum distance in each layout relate to the area
constraints, which have already been discussed in Section 2.
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Figure 5. Array power of the three-buoy layout over different distances in four wave models.

4.3. Sensitivity of Four-Buoy Array Performance to Distance

The geometry chosen for four converters is a square shape. α values in this layout range from 0 to
80 degrees with 10-degree intervals. The highest harnessed array power is 1.05 Mw in Tasmania, while the
lowest one observed in the Perth layout is around 0.387 Mw. Turning to the rotation angle, for Perth and
Sydney, the angle is 40 degrees to extract the maximum average array power; however, for Tasmania and
Adelaide, α is 0 and 80 degrees in order of appearance. Considering the distances between WECs, it is
interesting that where the buoy-buoy distance is between 150 and 200 m, the maximum wave array power
can be exploited in Perth, Adelaide, and Tasmania. However, in Sydney, it seems that in this α, the array
power evens off after reaching the highest amount. Hence, the minimum distance between WECs is more
cost beneficial for considering layout design 160 m of distance takes into account. In contrast, in Adelaide
and Tasmania, a 160 or 170-m distance seems to be the best distance between converters. This amount is a
bit greater in Perth, where the highest array power is firstly seen in the 180-m distance (Figure 6).
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Figure 6. Array power of the four-buoy layout over different distances in four wave models.

4.4. Sensitivity of Five-Buoy Array Performance to Distance

In this study, the configuration of five converters is chosen as a regular pentagon array. This is because
there is no difference between each WEC, and the range of rotation angles is restricted to be between 0 and
63 with eight different angles. The maximum averaged array power in all four case studies is witnessed
when the α is either 18 or 63 degrees. To be more precise, in Tasmania and Perth, the α is 18 degrees,
and for the other two, it is 63 degrees. Also, it is evident that when the distance is between 200 and 250 m,
the maximum power output is harnessed in all wave scenarios; and the optimal choice can be found in the
mentioned range consequently. As Figure 7 shows, the trend of all case studies are similar, except in the
18-degree’s line in Tasmania and Perth, where the array power reduces gradually after the peak, instead of
leveling at the peaks power. By comparing this result with recent similar studies, we can see the same
trend of absorbed power by raising the distance between WECs in each layout up to an optimal value,
after which the results were roughly stable [54,67].
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Figure 7. Array power of the five-buoy layout over different distances in four wave models.
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4.5. Sensitivity Analysis of q-Factor to the Relative Angle of Rotation

The interaction of converters is measured with a well-known parameter called q-factor. A sensitivity
analysis has done by monitoring the q-factor distribution over different rotation angles of the WECs in each
layout. Since the interaction of the buoys in each layout could be constructive or destructive, the q-factor
is calculated per 5 m of distance between converters. Figures 8–11 show the distribution of results of
calculated q-factors over different relative angles (α) in a box chart, describing the values as they spread
across the entire range. In each angle, there is a box that reveals the amount of fifty percent of q-factor
results. Also, the middle line indicates the mean value of all results. The other amounts of q-factor, which
are far from the mean values (i.e., the greatest 25 percent and the least 25 percent of the results), are shown
by two lines located above and below the rectangular box.

There is a lot of similarity between Adelaide and Perth in terms of their q-factors, but Sydney and
Tasmania have different trends. In both Adelaide and Perth, as Figure 8 and 9 show in two-buoy layout,
a fluctuating pattern is witnessed which indicates the importance of the rotation angle of the array power
with respect to the dominant wave direction. Thus, when α is between 30 and 40 degrees, the highest
q-factor is achieved, and the layout design process should be followed by choosing the best buoy-buoy
distance in the mentioned angle. The distinction between q-factors in the three-buoy layout is negligible
due to the effects of dominant wave direction on the equilateral triangle layout, in which one converter
affects two others by radiated waves. The maximum q-factor can be seen in the 30 and 40 degrees area.
In the four-buoy layout, when α is 40 degrees, the q-factor is around 1 in both locations. Among the
9 discussed dominant wave directions, the highest q-factors are seen when α is 20, 40, or 60 degrees,
and the average q-factor in each direction is a bit over 0.96. In the five-buoy layout, it is clear that the
average q-factors are between 0.95 and 0.98, and the highest q-factors happen when α is either 20, 30, 60,
or 70 degrees, and the range of q-factors is from 0.85 to 0.98. It is important to note that in the mentioned
degrees, q-factors are mostly close to the highest amount because the average line is on top of each box.
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Figure 8. q-factor results distribution and mean value per five meters of the Wave Energy Converters (WECs)’
distance over rotation angle due to significant wave direction in the Perth wave model. (Fifty percent of results
near the mean value are plotted in a box, the range of other results is shown by a dashed line).
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Figure 9. The q-factor results distribution and mean value every five meters of WECs’ distance over rotation
angle due to the significant wave direction in the Adelaide wave model. (Fifty percent of results near the
mean value are plotted in a box, the range of the other results is shown by a dashed line).

In Tasmania, due to the symmetry between WECs and small effects of changing α in q-factor for the
three-buoy and five-buoy layout, changes are not considerable. The average q-factor in each rotation angle
is approximately 0.98 and 0.96, respectively. When α is between 40 and 90 degrees in the two-buoy layout,
q-factors in each distance are between 0.95 and 1.005. The maximum averaged array power occurs at
20 degrees. In the four-buoy layout, maximum q-factors are observed in four rotation angles, which are 0,
20, 40, and 60 degrees. Further details can be found in Figure 10.
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Figure 10. The q-factor results distribution and mean value per five meters of WECs’ distance over rotation
angle due to significant wave direction in Tasmania wave model. (Fifty percent of results near the mean
value are plotted in a box, the range of other results are shown by a dashed line).
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Looking at Sydney in Figure 11, in the two-buoy layout, it is evident that maximum q-factors happen
when α is either between 110 and 120 degrees or 130 and 140. One of the distinctions compared to the
mentioned locations is that the lowest q-factor is seen at 40 degrees. In the three-buoy and four-buoy layout,
the average q-factor in each α is around 0.98 and 0.97, respectively, and its changes are not recognizable in
all 12 tested angles. The q-factors in the five-buoy layout ranged from 0.84 to 0.98. The closest q-factor
values to 1 are found at 10 and 50 degrees. Moreover, it can be inferred that when α is 30 or 70 degrees,
the related q-factors are near 0.98. These results would help further feasibility studies of the WECs’
array analysis by presenting the possible range of achievable q-factors in Perth, Adelaide, Tasmania,
and Sydney ports.
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Figure 11. q-factor results distribution and mean value per five meters of WECs’ distance over rotation
angle due to significant wave direction in the Sydney wave model. (Fifty percent of results near the mean
value are plotted in a box, the range of the other results is shown by a dashed line).

4.6. Landscape Analysis

Figures 12–15 reveal the power for each buoy in four different layouts. Overall, it is inferred that the
asymmetry in arrays makes the power more predictable in each distance and rotation angle. The illustrated
plots in this section indicate four kinds of buoy layout for each area in Adelaide, Tasmania, Sydney,
and Perth. For each layout, the Colour-bar presents the amount of total power per buoy. This amount
has been shown in the form of a contour. In general, there is a similar pattern for studied locations by
considering the configuration of the arrays. The maximum amount of extracted energy is more likely to be
found in the 5-buoy layout. Moreover, the power of each converter in the center area is not considerable,
and the maximum amounts of the exploited energy found for higher buoy-buoy distances. The asymmetry
of these energy distributions is high as well, but Perth is an exception. To observe abrupt changes,
an increase in the resolution of distance and angles are needed. Take the 2-buoy layout in Adelaide
as another example of non-asymmetric layout; the distribution of the incident waves over different
angles implied such non-asymmetric contour of exploited energy. The reason behind the asymmetry in
other layouts would be that by increasing the number of buoys, possible shadowing effects proportional
to each rotation angle occur in every layout. In some placements of the 2-buoy layout, as the array
experiences different rotation angles, the buoys may see the same dominant wave direction; however,
in some angles, the shadowing effect of one buoy over the other can play a crucial role in reducing the
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energy. This shadowing effect of buoys to each other becomes more drastic, as the number of buoys
increases because, in each angle, there is more chance of interaction between at least two buoys. To describe
blue spots it should be noted that in this research, the minimum separation between buoys is considered to
be 50 m. Then, by assessing the different angles, the configuration of the array rotates over the center point,
such that the lowest amounts of energy may be witnessed in the middle of the figures by interpolation.

Taking a look at Figure 12, it is interesting that the order of maximum power for each layout is around
0.1 to 0.105 Mw in most areas. However, this range increases in the two-buoy layout, so more areas
with dark red colour can be seen. In this figure, asymmetry in each layout is more evident than in the
other locations.

Figure 12. Exploited energy distribution of the WECs array over entire area in Sydeny wave scenario.

There are many similarities between Adelaide and Perth in Figures 13 and 14. For instance, in a
two-buoy layout, their contour has resemblance, and the range of power is identical. Furthermore,
more power is extracted in Perth based on these plots. To compare the four-buoy layout, Adelaide has
more symmetrical power distribution, and the chance of reaching 1 Mw power is more in Adelaide in
general. Finally, there is a small difference between choosing Perth or Adelaide as the installation site
among the other surveyed sites.
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Figure 13. Exploited energy distribution of the WECs array over the entire area in the Perth wave scenario.

Figure 14. Exploited energy distribution of the WECs array over the entire area in the Adelaide
wave scenario.
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The highest amount of power can be exploited from converters in Tasmania, which is obvious
in Figure 15. Although seemingly green areas in the two-buoy layout cover the majority of the zone,
the power that belongs to the green areas is very close to the other layouts of the orange ones. The chance
of extracting over 0.27 Mw power is seen in the five-buoy and four-buoy layouts. It is worth considering
the three-buoy layout power when the X axis is over 250 m, which reveals the potential of this layout
under certain conditions. Likewise, when the Y axis is less than 150 or more than 350, this potential is met.

Figure 15. Exploited energy distribution of the WECs array over the entire area in the Tasmania
wave scenario.

4.7. Interaction Based Layout Selection

Figure 16 shows the maximum and mean value of the q-factors in a given number of buoys in
each wave model. The most significant observations inferred from Figure 16 are addressed as follows.
The maximum q-factor in Tasmania and Sydney is less than in the other locations because of the lack of
constructive interactions to compare to the other layouts. The mean q-factors are also higher in Perth and
Adelaide in all locations for the same reason. Turning to the maximum q-factor, it is apparent that the
highest constructive interactions in the two-buoy layout occur in Adelaide. However, in Sydney’s wave
scenario, installing buoys, whether separately or in an array, is almost the same because the q-factor equals
1 in the best-case scenario. Although this amount is over 1 in all locations of the four buoy layout, Sydney
is an exception. In the three-buoy layout and five-buoy layout, only the q-factor of Perth is more than 1.
It is worth considering that the latter has the least maximum q-factor. These results confirm results from
previous studies on the decrease of q-factor after increasing the number of WECs arrays, specifically after
incorporating more than five buoys [54]. Turning to the mean q-factor, it is evident that by increasing
the number of buoys, this variable decreases, and a reduction of almost 0.07 is seen by adding a buoy.
Also, this measure is observed to be a trend because constructive interactions are more likely to be seen in
Perth and Adelaide. These interactions will occur if the α, buoy-buoy distance, and the geometry of layout
are appropriately chosen.
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Finally, it has to be noticed that further details and numbers are written in Table 2, which enables
a comparison between each location. The bold numbers in Table 2 represent constructive interactions
between converters. Therefore, in those cases, installing an array is more efficient.
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Figure 16. Comparison of maximum and mean q-factor in different wave scenarios in each layout.

Table 2. best solutions related to maximum q-factor in each wave scenario.

Parameter Perth Adelaide Sydney Tasmania

Two-buoy layout maximum q-factor 1.0091 1.0163 1.0003 1.003

α(degrees) 40 0.00 130 80

distance(meter) 160 165 400 160

Three-buoy layout maximum q-factor 1.0026 0.9987 0.9939 0.9976

α(degrees) 10 10 10 10

distance(meter) 445 445 445 405

Four-buoy layout maximum q-factor 1.0053 1.0046 0.9958 1.0019

α(degrees) 60 60 60 20

distance(meter) 485 485 485 485

Five-buoy layout maximum q-factor 0.9949 0.9899 0.9849 0.9905

α(degrees) 18 63 45 18

distance(meter) 250 275 450 250
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5. Conclusions

Investigating for an appropriate arrangement an array layout constitutes a complicated problem in
wave energy projects. Wave energy converters can reinforce each other to provide more power output in
the form of an array if the distance among them is efficiently adjusted and the arrangement of the layout
appropriately defined. In this paper, we analyzed the CETO6-project WECs separation in an array with
different numbers of devices and arrangements. In order to assess the impact of various wave models,
we perform and compare all numerical analyses in four real wave scenarios including the Sydney, Perth,
Adelaide, and Tasmania sea sites. According to the numerical analysis, there is a direct relationship
between the number of converters and optimal inter-distance among them and also relative angle to the
significant wave direction. Greater separation between converters leads to more array harnessed power
output. However, the most exploited energy can be achieved in 2 buoy layout with a 165 m buoy-buoy
distance. A sensitivity analysis has revealed that the q-factor distribution differed due to different rotation
angles of the WECs array. Moreover, the maximum q-factor output analysis showed that results in a
two-buoy layout in all scenarios, tree-buoy layout in Perth and four-buoy layout in all scenarios (excluding
Tasmania) are far higher than the other locations’ q-factor, and this parameter is almost the same in the
five-buoy layout sea sites. However, the landscape analysis-approved maximum amount in terms of the
extracted net power output was found in the 5-buoy layout in the Tasmania wave scenario.
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Abstract: Recently, the spread of smart metering infrastructures has enabled the easier collection of
building-related data. It has been proven that a proper analysis of such data can bring significant
benefits for the characterization of building performance and spotting valuable saving opportunities.
More and more researchers worldwide are focused on the development of more robust frameworks
of analysis capable of extracting from meter-level data useful information to enhance the process of
energy management in buildings, for instance, by detecting inefficiencies or anomalous energy be-
havior during operation. This paper proposes an innovative anomaly detection and diagnosis (ADD)
methodology to automatically detect at whole-building meter level anomalous energy consumption
and then perform a diagnosis on the sub-loads responsible for anomalous patterns. The process
consists of multiple steps combining data analytics techniques. A set of evolutionary classification
trees is developed to discover frequent and infrequent aggregated energy patterns, properly trans-
formed through an adaptive symbolic aggregate approximation (aSAX) process. Then a post-mining
analysis based on association rule mining (ARM) is performed to discover the main sub-loads which
mostly affect the anomaly detected at the whole-building level. The methodology is developed and
tested on monitored data of a medium voltage/low voltage (MV/LV) transformation cabin of a
university campus.

Keywords: building energy management; energy information systems; anomaly detection and
diagnosis; classification tree; symbolic aggregate approximation; association rule mining

1. Introduction

The building sector is globally recognized as one of the most energy-intensive, and
its energy demand continues to increase as a result of a combination of various factors
such as extreme climatic events, increased demand for energy services, and in particular
those related to air conditioning and quality of the built environment. According to the
International Energy Agency (IEA) for the EU member states, buildings are responsible for
around 21% of primary energy consumption [1].

As a result, this sector is currently among the most strategic ones for reducing global
energy demand, improving energy efficiency, and achieving specific decarbonization
targets. In the last years, the great focus on buildings has also been encouraged by the
introduction of a robust regulatory framework that puts in evidence the importance of
a more responsible building energy management. In this perspective, the technological
advancements that characterized the world of IoT (Internet of Things) and ICT (information
and communication technology) has played a fundamental role in determining an ever-
increasing spread of advanced monitoring and automation infrastructures in buildings,
making it is possible to collect a huge amount of data and information related to the real
performance in the operation of such complex systems.
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The analysis of data collected represents a huge opportunity to identify and define
effective energy-saving strategies and to optimize building performance in operation [2,3].
This process can be considered as the starting point of all the activities that are aimed at
reducing the gap between the actual and expected building energy performance that is
often generated by incorrect occupant behavior, equipment faults, and wrong or ineffective
control strategies of energy systems [4].

Moreover, thanks to the growing availability of open access building data sets [5–7],
analysts can quantitatively compare different processes of analysis, evaluating algorithm
performance and assessing building energy performance in a more objective and transpar-
ent way [8].

Nonetheless, professional figures involved in the energy management process of build-
ings are now facing great difficulties in managing these large amounts of data and setting
their analyses in a systematic way in order to extract useful knowledge and consequently
the desired value.

For this purpose, energy management and information systems (EMISs) can be em-
ployed. EMISs belong to the rapidly evolving family of tools that monitor, analyze, and
control building energy use and system performance, often leveraging advanced data
analytics-based technologies. According to [9], the first classification of EMISs distinguishes
such systems considering if their functionalities are enabled at the meter or system-level.
The first category of EMISs considers data measurements at a high level (e.g., data related
to the total load or of the main sub-loads) while system-level EMISs are focused on more
detailed data related to the operation of specific systems or components. energy informa-
tion systems (EISs) are part of EMIS and integrate software solutions conceived for the
analysis of meter-level monitored data of buildings that are not usually collected through
building automation systems (BAS). EISs typically enable predictive pattern recognition
analysis for performing essential tasks in building energy management such as energy
consumption forecasting, anomaly detection and diagnosis, advanced benchmarking, load
profiling, and schedule optimization of building energy systems [4].

Among these tasks, anomaly detection and diagnosis has been the most underdevel-
oped for application on meter-level data.

Anomaly detection and diagnosis (ADD) in buildings is often related to fault detection
and diagnosis (FDD) analysis conducted at system/component-level where the scale of
analysis is small (e.g., air handling unit components). However, in most real cases, just a few
aggregate variables related to the total energy consumption of the building are monitored
and collected. Improving the building energy performance by analyzing aggregate data
is challenging, especially if several factors such as occupant behavior, comfort levels,
operational schedules of systems may generate different energy consumption patterns
not always easily inferable. In this context, an EIS tool capable to automatically detect
anomalous energy trends in building energy consumption allows energy managers to be
promptly informed when the building is not behaving as expected and to avoid inefficient
energy management procedures.

In the process of ADD, pattern recognition techniques play a key role in the analysis of
patterns and trends in high-dimensional time series of building energy consumption [10].
There are three main expected goals behind ADD analysis in buildings that can be sum-
marised as follows:

• Identification of typical load patterns in whole-building energy consumption time series.
• Detection of anomalous load patterns when typical ones are violated over time.
• Diagnosis of the detected anomalies by means of inference analysis performed on the

main sub-loads.

According to the aforementioned objectives, this work proposes an EIS tool capable of
performing ADD analysis in buildings by exploiting meter-level data. ADD procedures
are usually performed offline and on small subsets of historical data, but more and more
interest is growing in developing an automatic framework of analysis for online imple-
mentations. For this purpose in this paper, an innovative ADD methodology conceived
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for application in a real testbed (i.e., the university campus of Politecnico di Torino) is
presented. The proposed methodology enables the automatic detection of energy anoma-
lies at the whole-building level and their diagnosis at the sub-load level, revealing which
sub-load/sub-loads are responsible for the anomalies detected. According to the objective
of this paper, the next paragraph reports and discusses the literature concerning the imple-
mentation of ADD processes in buildings and presents the main contributions introduced
in this work.

Related Work and Contribution of the Paper

ADD is extremely valuable for improving building energy performance and promising
in terms of cost reduction potential if implemented in currently adopted EISs [11]. Despite
the great potential offered by ADD at different levels of investigation in buildings, the
implementation of this kind of analysis has been majorly focused at the system/component-
level (e.g., heating, ventilation, and air conditioning (HVAC) systems), often neglecting
applications at whole-building. This trend has been justified by the great availability of
system-level data collected by building automation systems (BASs) in buildings. However,
extracting any kind of meaningful information from BASs (especially from the outdated
ones) can be a complicated task usually characterized by limitations on the data availability.
Conversely, the collection of meter-level data in buildings is often performed by means
of modern IoT devices that make monitored data easily available as never before. In this
context, EIS tools focused on the analysis of meter-level data (especially ADD analysis) are
becoming a very fast-growing market in the context of building analytics technologies.

According to the literature, the field of ADD in buildings is progressively leveraging
on the application of data analytics techniques [12] for addressing both detection and
diagnosis tasks.

The first task is often accomplished through the use of classification, regression, and
pattern recognition techniques capable of providing estimations of the building energy
consumption in normal operation according to specific boundary conditions (e.g., outdoor
climatic conditions). The estimations are then used as a reference baseline for detecting
the occurrence of abnormal patterns in the time series that significantly differs from the
majority of processed data and/or from the expected trend [13].

For what concerns the implementation of supervised techniques for anomaly detection,
in [14] the building energy consumption anomalies are identified comparing the actual
consumption with the prediction of a hybrid artificial neural network (ANN) model.
A similar approach is adopted in [15], where a deep neural network autoencoder was
used to create a prediction model able to successfully detect abnormal energy patterns
in the building operational data of an educational building in Hong Kong. Similarly, a
general anomaly detection process is also proposed in [16], where the authors employed
a variational recurrent autoencoder. Among supervised techniques also classification
algorithms proved to be effective in anomaly detection. A robust methodology based
on classification trees (CT) was proposed in [17]. In more detail, in that study, a set of
classifiers were used for predicting the occurrence of categorical patterns in the time series
of the total building electrical load, making it possible to detect a potential anomaly in the
case of misclassification (i.e., the same concept of residual analysis in the case of regression
models). The study underlined the prediction capabilities of CT algorithms and, most of
all, the possibility of exploiting their interpretable nature in anomaly detection problems
by extracting useful “if-then” decision rules.

In the context of unsupervised learning for anomaly detection, clustering, and as-
sociation rule mining (ARM) are the most used techniques [18,19]. In [20], the authors
used k-means clustering to automatically discover anomalies in whole-building energy
consumption among daily load profiles characterized by an infrequent trend. In [21],
an agglomerative hierarchical clustering-based strategy and three different dissimilarity
measures were used to identify typical electrical usage profiles that enabled the detection
of the abnormal ones.
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As previously stated, the use of decision rules in the form of “if-then” implications is
extremely valuable in anomaly detection. Following an unsupervised approach, this can be
achieved by extracting association rules from building an operational dataset. association
rules mining (ARM) algorithms have been widely used to discover abnormal patterns in
the energy consumption of buildings and systems and then to enhance their performance.
ARM allows discovering causal relationships between events also in the time domain [22].
This kind of algorithm is particularly suitable in extracting hidden knowledge from large
databases, as it is reported in [23], where an extensive rules extraction is performed to
detect energy wastes in the operation of a lighting system. Similarly, in [10], an improved
ARM-based method was employed to discover and detect abnormal operational patterns
of HVAC systems installed in a commercial building in Shenzhen (China).

More sophisticated approaches for anomaly detection consist of combining several
techniques to maximize the amount of knowledge discovered and automatize the process
of analysis.

The study conducted in [24] introduced the concept of collective anomaly detection,
described as an event that is considered anomalous only if considered in relation to other
events. In the proposed framework, ARM, performed through the Apriori algorithm, was
used to extract the most frequent items from a time series related to smart grid operation.
Then, anomalous behavior was identified through clustering analysis, considering silhou-
ette indicator as a quality metric. Also, in [25], an anomaly detection process based on
an ensembling technique was proposed. In detail, typical building operational patterns
were identified by means of clustering analysis, and then an ARM algorithm was used
to discover an anomalous load of a cooling chiller system installed in a building in Hong
Kong. In [26], a multi-step clustering analysis was performed for removing anomalous
daily load profiles from the energy consumption time series of a university campus. Then
a regression model was developed on the anomaly-free dataset, combining artificial neural
network (ANN) and regression tree (RT), to be used in online applications for detecting the
occurrence of anomalous trends in the electrical energy consumption.

Another crucial aspect that arises from the literature review deals with the use of
data reduction and transformation methods for (i) reducing the computational cost of
the analysis, (ii) easily extracting the main patterns from time series, (iii) improving the
effectiveness of supervised and unsupervised algorithms in detecting anomalies. In fact,
directly analyzing raw data of time series could be extremely onerous, making difficult
the handling and the characterization of the data under investigation. In this perspective,
dimensionality reduction can be used with a low computational cost, for example, for
removing irrelevant patterns and redundancy from energy consumption datasets. As
reviewed in [12], various techniques were explored to enable the classification of data as
normal or anomalous, such as principal component analysis (PCA) [27], linear discriminant
analysis (LDA) [28], singular variable decomposition (SVD) [29].

In this context, symbolic aggregate approximation (SAX) [30] is one of the most
promising techniques available to reduce the size of a time series without losing key
information [31]. The SAX algorithm is conceived for the reduction of the time series
through a piecewise technique and on its transformation into symbolic strings. Frequent
symbolic sub-sequences in the whole sequence can then be extracted and defined as
motifs (i.e., normal patterns), while infrequent ones can be isolated and labeled as discords
(i.e., potential anomalies). In [31], SAX was used to discover patterns in time series related
to the energy consumption of the International Commerce Centre (ICC) in Hong Kong and
to recognize inefficient operating conditions that could cause energy wastes. Also, in [20],
SAX was used for enabling the extraction of infrequent operating patterns in the energy
consumption time series of a school campus and an office building. In particular, discords
were detected, setting a minimum frequency threshold to the occurrence of SAX symbol
sub-sequences representative of the original daily load profiles. In [17], an enhanced
version of SAX called adaptive SAX (aSAX) was used for minimizing the information loss
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due to the reduction and transformation of energy consumption time series and recognizing
motif and discord symbolic patterns by means of classification models.

Once the detection of anomalies in energy consumption is performed, a diagnosis
analysis makes it possible to identify the main causes associated with them. The field
of anomaly diagnosis has been widely explored in buildings but with a greater focus
on system-level applications rather than whole-building level. Also, this research field
largely benefits from the use of data analytics techniques following both supervised and
unsupervised approaches. The study in [32] proposed a process based on the development
of a CT for diagnosing anomalies in the operation of air handling unit (AHU) components.
Moreover, in [22], a CT was used for diagnosing up to 11 typical faults in AHU with an
accuracy higher than 90%. Indeed, similarly to previously presented studies focused on
anomaly detection, also the diagnosis analysis often exploits algorithms that allow the
extraction of decision rules. Such a condition is particularly favorable for the final user due
to the high interpretability of the diagnosis process, which meaningfulness can then be
easily validated by domain expertise. To this aim also ARM algorithms can be employed
as reported in [33–36].

On the basis of the literature review, in most of the cases, only meter level anomaly de-
tection is performed at the whole-building level without any further analysis for identifying
anomaly causes among sub-loads at a lower level.

The work presented in this paper aims to bridge this literature gap by introducing a
novel hierarchical multi-level approach in the ADD process. The proposed methodology
allows to perform the anomaly detection phase at the whole-building level, and only
if an anomalous pattern is detected, an event-based diagnostic process is activated for
finding root causes at the sub-load level. The event-based hierarchical approach in anomaly
diagnosis makes it possible to reduce the computational cost of the analysis and also to
rationalize the number and the quality of feedback generated by the ADD tool during
operation. Indeed, the final user is not required to visually inspect the trends of all sub-
loads in real-time, but he/she is alerted only when interesting events occur, i.e., when
specific anomalous conditions among the sub-loads trends generate a divergence of the
total load from the expected pattern.

This work combines different advanced data analytics techniques with the aim of
maintaining the output of the ADD process human-readable and interpretable while
providing accurate results.

The paper considers as a case study the energy consumption data gathered from
a monitoring infrastructure installed in the university campus of Politecnico di Torino.
The data refer to the electrical energy consumption of a medium voltage/low voltage
(MV/LV) transformation cabin that serves different buildings/zones of the campus. In
particular, about ten sub-loads of the cabin are available for developing the introduced
hierarchical ADD process. The methodology leverages the reduction and transformation
of the analyzed time series through an enhanced and adaptive process based on symbolic
aggregate approximation (aSAX) as presented in [17]. The aSAX transformation enabled a
reduction of the dataset and an effective identification of unexpected operational energy
consumption patterns at the sub-daily time windows level. Furthermore, the diagnosis of
the abnormal patterns detected at the total load level (i.e., MV/LV transformation cabin)
was provided by implementing an association rule mining (ARM) algorithm on the sub-
load time series. In this context, the main innovative aspects introduced by the present
paper can be summarised as follows:

• In order to further enhance the pattern recognition process enabled by the aSAX-based
process introduced in [17], different features of the energy consumption time series
were encoded in symbols in addition to the mean value evaluated in each time window
for data reduction purposes. In particular, the encoding of trend features of the time
series was performed, allowing an improved characterization of energy consumption
behavior and making it possible to reduce the information loss that is always related
to the application of temporal abstraction processes such as aSAX. In addition, both
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the number of time windows and alphabet size for the encoding of the time series in
symbols were tuned during the analysis through a fully automatic process.

• The identification of the normal energy consumption pattern is evaluated for specific
time periods during the day (i.e., aSAX time windows) by means of classification mod-
els capable of estimating the most probable symbol encoded through the aSAX-based
process. In particular, globally optimal evolutionary trees were used to accomplish this
task. The use of evolutionary trees introduce a twofold advantage in the classification
task: (i) the results obtained from their application are fully interpretable as they can be
translated in “if-then” decision rules, (ii) the achievable accuracy in high-dimensional
problems can be significantly higher than the performance of standard decision trees
(e.g., locally optimal classification trees [37]).

• The anomaly diagnosis is performed at the sub-load level by implementing an un-
supervised data analytics technique based on an ARM algorithm. The diagnostic
process is capable of automatically updating an anomaly library in the form of “if-
then” association rules extracted from historical data. This opportunity allows the
developed ADD tool to evolve during building operation, significantly increasing
its generalizability.

• The whole methodology was conceived for being applied in a real testbed paying
attention to its generalizability and scalability to other buildings. In this perspective,
the developed ADD process is capable of self-tuning its hyper-parameters ensuring
a robust performance in online implementations. As a reference, the algorithms
for both detection and diagnosis of the energy anomalies can be easily retrained
periodically or considering an event-based approach (e.g., the occurrence of a not
pre-identified anomaly).

The rest of the paper is organized as follows. Section 2 provides an overview and
a brief theoretical description of the data analytics methods used for conducting ADD
analysis. Section 3 presents and describes the case study considered for the analysis.
Section 4 introduces the methodological framework on the basis of the ADD analysis
performed. Eventually, Sections 5 and 6 presents and discusses the results obtained, while
in Section 7, the concluding remarks and future research perspectives are reported.

2. Description of the Data Analysis Methods

In this section, the data analytics methods employed in this work are briefly described.
The method description is not intended to be exhaustive, but it is aimed to underline the
usefulness in the framework of this study and building energy data exploitation.

2.1. Adaptive Symbolic Aggregate Approximation (aSAX)

Meter-level data measurements are collected in the so-called time series: a two-
dimensional matrix where each row corresponds to a single observation in time and
the column to a measured variable [31]. The sampling frequency determines the time
interval between two consecutive observations, and for building applications, it is usually
in the order of minutes. As a consequence, the resulting high-dimensional time series is
often computationally expensive to be stored and analyzed in its original form. In this
context, many dimensionality reductions and transformation techniques were proposed
in the literature; one of the most widely used is the symbolic aggregate approximation
(SAX), which makes it possible to compress time series while preserving its fundamental
characteristics [30]. This process segments the original time series in sub-sequences, each of
them is summarised with a single numerical value (e.g., mean value) that is then encoded
into the alphabetic symbol and finally combined into a string. The resulting string is
much shorter than the original time series and enables the application of various pattern
recognition techniques while reducing the computational cost. In the last years, some
variations to the original algorithm have been proposed in the literature, especially with the
aim of generalizing some initial assumptions (e.g., data distribution) and facing information
loss issues always generated from the reduction and transformation of time series. In the
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author’s opinion, one of the greatest improvements to the SAX was introduced through
the so-called adaptive symbolic aggregate approximation (aSAX) [38]. In the following, the
main steps of aSAX process are presented, with specific reference to their implementation
in the present work.

• Chunking: The original time series (y(t) = {y1, . . . yn}) of length n is divided into
N non-overlapping sub-sequences (T = {T1, . . . TN}) chosen for the specific context.
In the case of energy consumption time series, the selection of the length of the sub-
sequences is influenced by the periodicity of the energy pattern observed, and for
building applications, it is usually set to 24 h. Each sub-sequence is further divided
into W segments called time windows (τ = {τ1, . . . τW}). The parameter W is word
size. During this process, it is possible to choose time windows with equal or different
length, based on user preference [17,39];

• Feature extraction: In this step, an aggregated numerical feature is calculated starting
from the sub-sequence of the original time series that falls in the generic time window
τi, and this value is considered as representative of all the data points included in
that window. Aggregated features can extract some important characteristics of the
time series while losing some other information. The analyst chooses which feature
is the most significant and whether one or more features are needed for the purpose
of the study. The most used and known approach is called piecewise aggregate
approximation (PAA), which performs a constant approximation of the original time
series y(t) by replacing the values that fall into the same time window τ with their
mean [40]. Many other statistical features can be extracted (mean, variance, kurtosis,
skewness) not only from the time domain but even from other domains such as the
frequency one [41]. A feature representing important characteristics of time series is,
for example, the trend angle [42]. This feature is particularly effective in describing
the time series trend, and it was employed in this study. In detail, given a time series
y(t) = {y1, . . . yn} of length n in a given time window τ = {t1, . . . tn}, defined ∆q(t1)
and ∆q(tn) the first order distance between the initial and final point with the time
series mean, can be defined a trend triangle as shown as in Figure 1. The trend angle
feature θ, green in Figure 1, is defined with the following equation:

θ = atan
(

∆q(tn)− ∆q(t1)

n

)

(1)
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Figure 1. Definition of trend feature triangle and trend angle for a generic time series (y(t)).

The trend angle domain ranges continuously from −90◦ to 90◦. If the trend angle
value is approximately zero (θ ≈ 0), the trend is stationary; if it is positive (θ > 0), the trend
is rising; vice versa if it is negative (θ < 0), the trend is descending.
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• Encoding: this step consists of setting an alphabet size α and assigning an alphabetic
character to each time window, according to where the extracted numerical feature
lies within a set of breakpoints (β = {β1, . . . βα-1}) identified according to the shape
of the feature distribution. The aSAX algorithm [38] finds the optimal positions of
breakpoints through an iterative process by minimizing the distance among all the data
points included between two consecutive breakpoints and their centroid (calculated
average center). Eventually, the symbol can be assigned for each window (τ), creating
a word of length W for the given sub-sequence (Ti). The original numerical time series
y(t) is then transformed into an alphabetic string (y(α)) of length W∗N.

Figure 2 shows an example of time series temporal abstraction conducted with the
aSAX process. An electrical load time series (y(t) = {y1, . . . y192} (black line)) with a 15 min
sampling frequency, is divided into two sub-sequences Ti and Ti+1 of 24 h each. In this
example, five-time windows (W = 5) of unequal length are identified for each sub-sequence,
and the alphabet size is set to five (α = 5), meaning that four breakpoints β = {β1, β2, β3, β4}
are identified. The time series is then approximated through PAA (red segments), and for
each segment, the corresponding symbol is assigned. The PAA values distribution is shown
on the right side of the figure in red and the breakpoints, evaluated through the aSAX, in
dashed blue lines. The original time series for the time window (Ti+1) is converted from a
numerical vector into an alphabetic string “a-b-d-c-a”, reducing it from a 96-dimensional
object to a 4-dimensional one.
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Figure 2. Example of an adaptive symbolic aggregate approximation (aSAX) process applied to an
electrical load time series (T = 24 h, W = 5, α = 5).

2.2. Recursive Partitioning and Globally Optimal Evolutionary Tree

Classification is the task of assigning a class label to unlabelled data instances through
a classifier model, providing prediction or description of a given dataset [43]. The classifi-
cation model is created through an inductive learning algorithm using a training set, which
is a data frame with attributes and labeled instances. Once the model has been created,
its performance is evaluated on a test set through the comparison between the predicted
and real labels. The decision tree is the most commonly used model for classification,
thanks to its understandable graphical representation. Depending on the type of target
attribute, discrete categorical or continuous numerical, a decision tree is called, either
a classification tree or regression tree, respectively. The tree consists of a root, internal
nodes, and leaves, all connected by branches. The construction of a tree classifier can be
performed through different algorithms; in this framework, recursive partitioning and
globally optimal evolutionary tree are considered.

The most commonly used recursive partitioning method is the classification and
regression tree (CART), which is a binary decision tree based on the splitting of the instances
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in purer subsets (i.e., nodes) through decision rules [44]. It proceeds in a forward step-wise
approach by maximizing homogeneity in each child node, yielding to a local optimal tree.

Conversely, the so-called evolutionary decision tree is based on a stochastic algo-
rithm that aims to construct a globally optimum classification model [37]. This pro-
cess randomly initializes the root node split, then at each iteration, variation opera-
tors (i.e., split, prune, major split rule mutation, minor split rule mutation, crossover) are
applied. The survivor is selected, and the process is repeated until the stopping criterion
is satisfied. The evolutionary tree algorithm used in this paper is implemented in the R
package “evtree” [37].

One of the most important hyper-parameter that can be set for this algorithm is the
variation operator probability, which refers to the probability that a given variation operator
is chosen at a generic iteration. The default operator probability considered is c20m40sp40,
meaning that the algorithm has a 20% probability of selecting the crossover operator, a 40%
probability for selecting one of the mutation operators (20% for minor split rule mutation
and 20% for major split rule mutation) and a 40% probability for selecting one of the split
(with 20% probability) or the prune operators (with 20% probability).

The advantage of an evolutionary tree algorithm is that it tends to offer higher accuracy
in prediction than recursive partitioning algorithms [37] while maintaining the same
interpretable tree structure.

2.3. Association Rules Mining (ARM)

ARM is a widely used technique that allows extracting static causal relationships and
correlations between attributes in a dataset. The objective is to find a group of variables
(items) that frequently occur together in a database. This technique can only handle
categorical variables, and it is usually computationally costly. One of the most used ARM
algorithms is the iterative Apriori algorithm based on a frequent itemset that allows the
extraction of static rules from a categorical transactional dataset [45]. Association rules
are defined between a set of items (or itemset) in the form A ⇒ B, where A is the itemset
called antecedent (LHS = left-hand side of the rule) and B consequent (RHS = right-hand
side of the rule) and A ∩ B = ∅. Rule extraction is usually restricted to only an item in
the consequent.

Some user-defined parameters (confidence, support, and lift) need to be set in order
to evaluate the significance of the obtained rules and filter out the less important. A
domain expert sets those parameters according to each specific case. The support is
calculated as the probability of the intersection between the antecedent A and consequent B
(supp(A ⇒ B) = P(A ∩ B)), expressing the co-occurrence of the two events. The confidence
(conf (A ⇒ B) = P(B|A)), defined as the conditional probability between A and B, allows
assessment of the reliability of a rule. It gives the probability of the consequent event in
all transactions containing the antecedent. The lift is the ratio between the confidence
and support of consequent B (lift(A ⇒ B) = P(B|A) / P(B)). When the lift is higher than
1, it means that B is positively correlated with A, while if the lift is lower than 1, it
suggests a negative correlation; otherwise, if the lift is equal to 1, there is no correlation
at all. This parameter is particularly important since it allows one to select the most
interesting rules [31]. In this paper, the ARM Apriori algorithm was used to extract
interesting associations between the total building load and its sub-loads, especially during
events detected as anomalous. This data analytics method was perfectly integrated with
the outcome of the aSAX and classification processes, of which the results consist of
categorical values.

3. Case Study

The case study analyzed refers to the energy consumption of a MV/LV transformer
cabin identified as “substation C”, that serves a part of the main campus of Politecnico di
Torino (PoliTo), an Italian university located in Turin. Data related to the total electrical
load and to some sub-loads are available with 15 min timesteps from 1 January 2015 to 31
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December 2019. The hierarchical structure of the available data is shown in Figure 3: the
first level refers to the total electrical load of substation C, while the second level shows the
available sub-loads. In addition, the load breakdown in terms of average annual energy
consumption was provided.
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                     Figure 3. Hierarchical structure of the electrical load database under study.

In particular, a bar and a canteen were at the disposal of students and campus staff and
accounted for 2.75% and 16.03%, respectively, of the total electrical energy consumption of
substation C. The university data center accounted for 13.16% of the total energy consump-
tion. The administration offices (rectory) corresponded to 3.83% of energy consumption
and the mathematics department (DIMAT) for 2.21%. A large share of energy consumption
(12.22%) was related to the mechanical room. The equipment located in this room included
hot and chilled water circuits and auxiliaries such as recirculation pumps. The chilled
water was provided by two chillers of nominal electrical power of 220 kW and a rated
cooling capacity of 1120 kW, and a reversible water-water heat pump, with nominal a
power and cooling capacity of 165 kW and 590 kW, respectively.

The remaining energy consumption was aggregated under a unique instance tagged
as “Unlabelled_load” as showed in Figure 3. It accounted for 48.76% of the total energy
consumption, and since it was not directly measured, cannot be assigned to a specific
sub-load.

4. Methodological Framework

In this section the conceived ADD methodology is presented and described. The
proposed methodology aims to develop a two-level ADD analysis capable of making in a
first step a high-level detection on total electrical load time series (at meter level) and in
a second step performing the anomaly diagnosis on sub-loads (at sub-meter level). The
methodology follows the flow chart structure shown in Figure 4.
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Figure 4. Flow chart explaining the adopted methodology.

In particular, four steps of analysis are considered.

• Pre-processing: The first step consists of pre-processing data that was aimed at remov-
ing punctual anomalies and inconsistencies from the datasets. The dataset used in this
study included electrical load data (collected from substation C) from 1 January 2015 to
31 December 2019 with a 15 min sampling frequency. Negative measurements were re-
moved a priori. Nearly-zero values of electrical load related to continuously operating
systems (refrigerators, emergency lighting) were considered inconsistent and removed.
Statistical outliers (e.g., data affected by transmission problems) were also identified
and removed by means of boxplot analysis. Then all statistical inconsistencies and
missing values are replaced through a linear interpolation;

• Temporal abstraction of the time series: In the second step of the analysis, the tem-
poral abstraction of the electrical load time series was performed according to the
procedure introduced in [17]. Temporal abstraction consists of the reduction and
transformation of the time series in a sequence of alphabetic symbols. In particu-
lar, a recursive partitioning regression tree (RT) was used to identify sub-daily time
windows with an unequal length for dimensionality reduction, considering the total
electrical load from 2015 to 2019 as a numerical target and the hours of the day as
a predictive attribute, as performed in [17]. Once time windows were evaluated,
the PAA approximation is performed. The breakpoint identification was carried
out through the aSAX method procedure by choosing the appropriate alphabet size
through a k-means clustering process. The identification of the optimal number of
clusters (i.e., alphabet size) was implemented through the R package “NbClust” [46];

• Anomaly detection at total electrical load level: Anomaly detection was performed
on the encoded total electrical load time series of substation C. In each sub-daily
time window, the total electrical load symbol obtained through aSAX was predicted
through a globally optimal evolutionary tree [37], using as explanatory attributes
contextual information such as calendar variables (day type and holiday) and energy
variables (electrical demand of sub-loads). The model was developed through a test-
train-validation process and was able to predict the expected symbol in each time
widow with high accuracy. However, when the model failed to correctly predict
the symbol in a time window, the occurrence of a potential anomaly was assumed.
Referring to Figure 5, the predicted symbol is the one with the higher occurrence in a
given leaf node (green bar). All other symbols were infrequent and then potentially
anomalous (yellow and red bars). Given the interest in detecting higher electrical load
than normal, only the tree leaves nodes that showed infrequent symbols corresponding
to a high electrical load (red bars in Figure 5) were considered and investigated in the
following diagnostic phase;
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• Diagnosis at sub-load level: Once the classification models were developed, a post-
mining phase was performed. The post-mining phase was aimed at searching histori-
cal relationships between misclassified total electrical load symbols and specific trends
of sub-loads occurred in same time window. The process is described in Figure 6. The
anomalous symbols identified in the training phase of the models were extracted and
stored in a categorical data frame (Step-1 in Figure 6). From time series of sub-loads,
the mean value and the trend angle were extracted. They were categorised through
the aSAX process and then added to the categorical data frame (Step-2 in Figure 6).
This data frame was then transformed into a transactional database on which ARM
was applied (Step-3 in Figure 6). The LHS is composed of the additional categori-
cal variables related to sub-loads, while RHS contains only the total electrical load
anomalous symbol. ARM automatically extracts a set of rules which connects the
historical infrequent behaviour of the total electrical load with the sub-load conditions.
This process was implemented through the R package “arules” [47]. Resulting rules
were then sorted and filtered setting appropriate interest measures parameters such
as support, confidence and lift (Step-4 in Figure 6). Filtered rules were then stored
within an anomaly library where they were ranked to show which sub-load condi-
tion (for example high electrical load or significantly uptrend) was responsible for
the anomalous total electrical load behaviour. The tool gives a critical insight of the
historical energy behaviour and, when implemented in real time load analysis, can
provide useful feedback on which energy management actions are needed.
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Figure 5. Interpretation of anomaly detection results.
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Figure 6. Sub-meter level diagnosis methodology description.

5. Results

The previously described methodology was applied to the case study presented in
Section 3. The quantitative analysis of data was performed through the statistical software
R [48], and results related to each stage are reported in the following sections.

5.1. Pre-Processing

The pre-processing phase allowed to handle missing values and to remove outliers.
The procedure was applied to the total electrical load and sub-loads dataset.

In particular, punctual outliers due to data transmission problems were detected,
removed, and replaced through linear interpolation. The carpet plots of the total electrical
load of substation C are reported in Figure 7a (one for each year considered). It can be seen
that the building energy systems were usually turned on at 6:00 and turned off at 19:00.
The electrical load increased from the night baseload until 8:00 when teaching activities
and office activities began and started decreasing after 16:00. This pattern was visible for
every working day (from Monday to Friday) with an average electrical load (from 8:00 to
16:00) of more than 300 kW. During the weekend, on the other hand, there was a significant
decrease in the average electrical load to 100 kW, mainly due to the weekly university
break and the absence of teaching and office activities. The same carpet plot representation
is reported in Figure 7 for some representative sub-loads. Figure 7b shows the electrical
load of the mechanical room in the years from 2015 to 2019. Because of the intensive use
of the chillers in summer, the highest monthly average electrical load was reached in July
with a value of about 100 kW. During the winter months, the electrical load was not zero
because of the electrical demand of the recirculation pumps. Figure 7c shows the electrical
load of the campus canteen. Also, this load is strongly dependent on the weekly university
occupancy schedule. In fact, a significant decrease in the average electrical load was visible
during weekends, when the campus was unoccupied, and no teaching or office activity
took place.
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5.2. Time Series Abstraction

In order to perform the data transformation and dimensionality reduction, the original
time series of the electrical load was split into 24 h intervals since a daily periodical pattern
was observed.

The time windows of daily load profiles were evaluated through a RT, considering the
total electrical load as a numerical target and the hours of the day as a predictive attribute.
The total electrical load from 2015 to 2019 was analyzed.

Holidays and weekends were excluded from the analysis since they usually present
profiles that are flat or with low variance, and include those days in the model would
have reduced the accuracy of the results. The splitting criterion adopted was based on
the variance reduction around the numerical target’s mean in each leaf node. In this way,
the daily pattern was split into homogeneous consumption time windows. As a stopping
criterion, a minimum number of objects in the child nodes at each split was set in order to
have a time window length of at least 2 h.

The RT automatically identified the optimal number of windows thanks to a cost
complexity pruning process. This procedure allowed us to choose the best tree by generat-
ing a fully expanded tree and then prune it iteratively. According to [17], this procedure
enables the identification of an optimal trade-off between misclassification error and model
complexity. The selection of the optimal tree size was performed according to the one
standard error rule (i.e. 1-SE rule) [49].

The resulting tree had five leaves, which corresponded to five sub-daily time windows,
which are summarised in Table 1. It can be seen that the first and fifth-time windows
corresponded to the night hours during which the university was closed and not occupied.
On the opposite, the remaining time windows correspond to occupied hours of the campus.

Table 1. Sub-daily time windows for total electrical load.

ID Time Window Duration

1 00:00–06:29 6 h 30 min
2 06:30–08:59 2 h 30 min
3 09:00–15:44 6 h 45 min
4 15:45–19:14 3 h 30 min
5 19:15–23:59 4 h 45 min

Once the time windows were identified, the PAA was performed in order to prepare
the dataset for the encoding through the aSAX process.

A fundamental parameter to be set in the aSAX process is the alphabet size (α), which
determines how many symbols are going to be used for the encoding, and as a consequence,
also the number of breakpoints to search. While in the literature, the alphabet size is usually
selected according to domain expertise [17,20,31], in this framework, an unsupervised
technique consisting of k-means partitive clustering was used. In particular, the reduced
data of the time series (through PAA) were clustered in order to find homogeneous groups
and determine the optimal number of breakpoints. For this purpose, during the clustering
process, several cluster quality indices, embedded in the R package NbClust [46], were
calculated in order to assess the optimal number of clusters (k) according to a majority rule
approach, setting a search space between k = 3 and k = 8. The results obtained suggested
the partition with k = 6 as the optimal one, then determining the setting of the alphabet
size value also equal to 6.

In detail, the positions of breakpoints, calculated under equally probability assumption,
were used as initialization of the aSAX iterative algorithm [38]. As shown in Figure 8, those
breakpoints (dotted lines) were not able to divide the distributions effectively, producing
narrow intervals at low values and wider intervals for higher values of the reduced PAA
time series. The final adaptive breakpoints (solid lines) were evaluated once a tolerance of
10−10 on the representation error was reached (after about 60 iterations).
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Figure 8. Step by step identification of adaptive breakpoints through the aSAX algorithm applied to the total electrical load.

Figure 9 shows the carpet plot and histograms, referring to the encoded total electrical
load time series. In particular, Figure 9a shows that in the first and fifth-time window,
the most frequent symbols were “a” and “b”, which corresponded to a low electrical
load during night hours. In the second and fourth-time windows, corresponding to early
morning and late afternoon, there was a prevalence of medium electrical load identified
with the symbol “d” describing the switch-on/off of the systems. In the third time window,
the symbols “e” and “f” were the most frequent since the electrical load in the middle of
the day is the highest.
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Figure 9. aSAX representation of the total electrical load: (a) carpet plots (b) histogram distributions of symbols along the
time windows and years.
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Figure 9b shows the histograms of electrical load symbols divided by time windows
and years. From this representation was evident how the load patterns had changed during
the years from 2015 to 2019. In particular, in the first and fifth-time windows, a change
of pattern from the symbol “b” to the symbol “a” was visible due to a lower baseload
during night hours, when the campus was unoccupied. This behavior could be related to
the refurbishment of buildings and/or systems served by substation C. The same trend
was seen in the third time window where a change of pattern from the symbol “f” to
the symbol “e” was visible, resulting in a lower electrical load during peak hours. This
behavior suggests that the energy performance of the campus was improving over time.
Further considerations about changes in the load patterns of the campus have been made
in the following when the selection of a proper training period for the classification models
is discussed.

5.3. Anomaly Detection at Total Electrical Load Level

For each time window, a globally optimal evolutionary tree was developed in order to
further investigate the dependency of the total electrical load (i.e., target variable) from the
boundary conditions (i.e., predictive variables).

To create a model that automatically learns new patterns as the building energy con-
sumption changes, a training period that is consistent with the recent past was selected. In
fact, as previously discussed, older patterns of energy consumption strongly differed from
more recent ones, and including them in the learning training set could have compromised
the capabilities of the models in terms of accuracy on the validation set. Therefore, the
classification models were trained and tested on 2018 data and for simulating an online
deployment of the process were validated on the first month of 2019. In particular, the 2018
dataset was split, with 80% placed into the train set and 20% into the test set, through a
random sampling process.

The attributes considered in the evolutionary classification trees are listed in the
following:

• Day type: input ordinal categorical variable representative of each day of the week
with values from 1 (Monday) to 7 (Sunday);

• Holiday: input binary categorical variable YES/NO capable of distinguishing working
from non-working days;

• Total Power pre: mean total electrical load (in kW) calculated in the previous time
window to the one considered for the classification (numerical input variable);

• Canteen: mean electrical load (in kW) of the canteen calculated in the time window
considered for the classification (numerical input variable);

• Mechanical room: mean electrical load (in kW) of the mechanical room calculated in
the time window considered for the classification (numerical input variable);

• Symbol: target categorical variable representative of the encoded symbol of the total
electrical load in a time window.

The choice to use as predictive values some sub-loads and not others was driven
by a sensitivity analysis and by their percentage weight on the total electrical load. The
canteen and the mechanical room weights were 12.22% and 16.03%, respectively, on the
total electrical load (Figure 3). Moreover, among the labeled sub-loads, they showed the
highest variance in 2018, as well as significant variations during the day. It is clear how
they could be extremely useful in characterizing the relationships that existed between the
normal operation of the substation C and their electrical demand.

For all the time windows, the maximum depth of the classification tree was set to 6,
the minimum number of observations in each node was set to 20, and the default setting
c20m40sp40 for variation operators was assumed (20% crossover, 40% mutation, and 40%
split/prune).

Since the evolutionary algorithm and the splitting process were randomly initialized,
the seed for the random number generator was set in the code in order to replicate the
analysis easily.
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Figure 10 shows the tree resulting from the training phase for the second time window.
It shows that it effectively classified in each leaf node the most frequent symbol from the
others while maintaining a readable and understandable structure. The developed set
of evolutionary trees (one for each time window) was aimed at extracting very accurate
decision rules so that in the leaf node, a high occurring symbol can be found. If this
condition is satisfied, the low occurring symbols can be considered as potential anomalies
for the considered time window. Those potential anomalies could then be subject to further
investigation in order to understand which sub-load can be assumed as the cause for that
infrequent behavior (anomaly diagnosis).
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Figure 10. Globally optimum classification tree for the second time window (06:30–08:59).

Decision rules extracted from each tree (one for each time window) are reported in
Table 2. It can be observed that the input variables used for the classification tree were
able to explain the occurrence of each symbol with strong accuracy. Furthermore, it can be
noticed that time window one was not associated with any decision rule. This window was
found to be characterized by a very high occurrence (over 97% over the training period)
of a single symbol. In this case, the available input variables were not able to further
characterize the occurrence of other symbols.

The model performance for each time window is shown in Table 3. The table also
reports that the overall accuracy in training testing and validation was 88.91%, 86.22%, and
89.03%, respectively. The results obtained suggest high generalizability for the classification
models and the absence of overfitting issues.
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Table 2. Decision rules extracted from globally optimal trees created in each time window on the training period.

Time Window Node Decision Rule Symbol Accuracy

00:00–06:29 1 - ⇒ a 97.3%

06:30–08:59 2 IF Holiday = Yes ⇒ a 92.0%

5 IF Holiday = No AND Mechanical room < 85.84 kW AND Canteen <
96.4 kW ⇒ b 82.1%

6 IF Holiday = No AND Mechanical room < 85.84 kW AND Canteen ≥
96.4 kW ⇒ d 89.7%

8 IF Holiday = No AND Mechanical room ≥ 85.84 kW AND Canteen <
108.4 kW ⇒ c 71.4%

9 IF Holiday = No AND Mechanical room ≥ 85.84 kW AND Canteen ≥
108.4 kW ⇒ e 86.5%

09:00–15:44 3 IF Canteen < 54.4 kW AND Holiday = Yes ⇒ a 96.0%

5 IF Canteen < 54.4 kW AND Holiday = No AND Total Power pre <
257.1 kW ⇒ b 76.5%

6 IF Canteen < 54.4 kW AND Holiday = No AND Total Power pre ≥
257.1 kW ⇒ c 85.0%

8 IF Canteen ≥ 54.4 kW AND Canteen < 143.5 kW ⇒ e 73.9%
10 IF Canteen ≥ 143.5 kW AND Mechanical room < 38 kW ⇒ e 86.0%
11 IF Canteen ≥ 143.5 kW AND Mechanical room ≥ 38 kW ⇒ f 81.1%

15:45–19:14 2 IF Total Power pre < 388.8 kW ⇒ a 87.4%
4 IF Total Power pre ≥ 388.8 kW AND Total Power pre < 614 kW ⇒ d 86.5%
5 IF Total Power pre ≥ 388.8 kW AND Total Power pre ≥ 614 kW ⇒ d 85.4%

19:15–23:59 2 IF Holiday = Yes ⇒ a 96.0%
4 IF Holiday = No AND Day Type = {6,7} ⇒ a 97.2%
6 IF Holiday = No AND Day Type = {1,2,3,4,5} AND Canteen < 16.5 kW ⇒ a 85.5%
7 IF Holiday = No AND Day Type = {1,2,3,4,5} AND Canteen ≥ 16.5 kW ⇒ b 87.6%

Table 3. Accuracy results from a comparison between test and validation.

Time Window
Training

(80% 2018)
Test

(20% 2018)
Validation
(Jan. 2019)

00:00–06:29 97.30% 96.89% 100%
06:30–08:59 87.33% 82.19% 93.55%
09:00–15:44 83.56% 79.45% 58.06%
15:45–19:14 86.64% 86.30% 96.77%
19:15–24:00 89.72% 86.30% 96.77%

Mean 88.91% 86.22% 89.03%

5.4. Diagnosis at Sub-Load Level

Once the classification models were created, the subset of anomalous symbols (higher
than expected symbols) included in each node was transformed into a transactional
database that contains the categorical target variable (total electrical load symbol) and some
additional explanatory variables related to the sub-loads.

To extract those additional categorical variables, the sub-loads were subjected to the
same time series abstraction process described for the total electrical load in Section 5.2.
Using the same time window discretization as the total electrical load and the same al-
phabet size (α = 6), each time series of the available sub-loads was encoded through the
aSAX process.

In order to further enrich information about sub-loads, the trend angle was also
extracted and encoded (see Figure 11).

117



Energies 2021, 14, 237
2021, , x FOR PEER REVIEW 20 of 28 

 

 

 
                        ‐            
                           

                              ‐
                                     

            α                      ‐
                         

                       
                  −        
                          ‐
             

 
                              ‐      

      ‐          

                         
                                ‐

                           

Figure 11. Results of trend angle aSAX encoding applied to the rectory sub-load: (a) identification of adaptive breakpoints
through the aSAX algorithm, (b) encoded trend angle carpet plot for 2018 and 2019.

This feature allows tracking of the trend of the time series in each time window, mak-
ing it possible to know if the load is increasing, decreasing, or it is stable. In this case, the
alphabet size was set to three (α = 3) in order to reflect those three possible trends (respec-
tively encoded as Up, Down, and Stable). The initial breakpoints, calculated under equally
probability assumption, were used as initialization of aSAX iterative algorithm, and the
final adaptive breakpoints were evaluated once a tolerance of 10−10 on the representation
error was reached. Then the Apriori ARM algorithm was applied to the transactional
database structured, as depicted in Figure 12.
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Figure 12. Representation of the transactional databases used for the extraction of association rules. LHS: left-hand side of
the rule; RHS: right-hand side of the rule.

In particular, the RHS was the anomalous total electrical load symbol extracted from
the leaf node of the classification tree for a specific time window, while the LHS was
composed of all possible combinations of electrical load symbols and trend angles symbols
of sub-loads. The minimum and the maximum number of items in a transaction was set
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in order to obtain rules with one or maximum of two items in the LHS. The minimum
support to mine rules was set to 0.005, and the minimum confidence to 0.005. Redundant
rules, equally or less predictive of a more general rule with the same confidence [50], were
removed, and the remaining ones were represented in a scatter plot (Figure 13). The scatter
plot helps the analyst to understand how interesting rules were filtered out by setting
lift(A ⇒ B) > 1 and conf (A ⇒ B) > 0.5. Those rules were then stored in the anomaly library,
where they were ranked according to the lift value. LHS of those rules represents the
sub-load conditions that were found to be significantly influencing the abnormal total
electrical load.
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Figure 13. Diagnosis procedure of extracting, filtering, and selecting only relevant association rules from node five of the
second time window.

An example of the procedure is shown in Figure 13 for node five of the second
time window. In this node, the most frequent symbol was “b”, and the only infrequent
interesting symbol (higher electrical load) was “c”. The transactional database was then
constructed: the LHS was composed of the additional categorical variables related to sub-
loads (electrical load symbol and trend angle symbol), while RHS contained only the total
electrical load anomalous symbol (symbol “c”). ARM automatically extracts 338 rules, of
which 180 resulted redundantly, and 158 rules were significant. After filtering, only 19 rules
were stored in the anomaly library. In this particular case, the most frequent items in the
anomaly library were: mechanical room symbol “d”; canteen symbol “c”; rectory symbol
“d”. For example, among the 19 rules considered, rule four (IF sym_Mechanical_room =
“d” AND sym_Canteen = “c” ⇒ sym_Total_Power = “c”) had a lift value of about five and
confidence of 100%. It means that if during the operation of the ADD process this rule was
matched, then the diagnosis was extremely robust, given that the anomaly detected was
already present in the analyzed historical database.

5.5. Deployment of the ADD Tool

The methodology was conceived to be implemented in a real-time data acquisition
tool connected to a smart metering infrastructure. The metering infrastructure continuously
collects data, and once a time window ends, the symbol of the total electrical load was
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calculated through aSAX and compared to the one predicted by the globally optimal tree.
Three possible cases could then occur:

• The actual symbol was the same as the predicted one. This means that given the
boundaries conditions, the total electrical load of that time window is behaving as
expected, then no further diagnosis is requested;

• The actual symbol was different from the predicted symbol and indicated a lower
electrical load than expected. This means that even though the total electrical load of
that time window is not behaving as expected, no further diagnosis is required. This
is due to the focus of the methodology for which an anomaly is related only to higher
consumption than expected;

• The actual symbol was different from the predicted symbol and indicated a higher
electrical load than expected. This means that given the boundaries conditions, the
total electrical load of that time window is higher than expected, and then a further
investigation is needed.

In the latter case, the diagnosis analysis is enabled. Given the boundary conditions,
the corresponding leaf node of the evolutionary tree is identified, and the tool automatically
retrieves the library of association rules extracted on the historical dataset for that specific
anomaly condition (i.e., a specific symbol of the total electrical load). The following
step was then to extract the additional features from sub-loads and encoding them in
symbols/categorical values. Once all the potential LHS items had been computed, a scan
of the rules included in the anomaly library was performed to detect any perfect match.
If a perfect match of a rule exists, it means that a full diagnosis of the anomaly could
be performed considering that the same anomaly condition (i.e., the relation between
anomalous total load and sub-loads) was present in the historical dataset. Otherwise, if a
perfect match does not exist, a partial match with the single item was searched. In the case
of a partial match, the diagnostic capability is not as strong as for the perfect rule match.
However, useful insight can be obtained about new possible configurations of sub-loads
that could be included in the anomaly library during future updates. In order to make the
whole ADD process flexible in learning new patterns, a full retraining of the classification
models and anomaly library is supposed to be performed every month, considering a
historical dataset of one year.

The deployment of the methodology was performed on the validation set that con-
sisted of the data referred to in January 2019. The process of detection through the evolu-
tionary tree was performed on all-time windows. Only for reference, it was considered
the classification performance achieved in the second time window for the whole month.
The confusion matrix related to the classifier is reported in Figure 14. In particular, it
can be seen that the classification tree achieved an accuracy of 93.55%, and only one time
the actual symbol was different from the predicted one revealing a higher electrical load
than expected, respectively “c” instead of “b”. In particular, the anomaly occurred on 4
January 2019.
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Figure 14. Confusion matrix for the globally optimal classification tree predicting January 2019 total
electrical load symbol in the 2nd time window. Red square: the detected anomalous behavior.
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Once identified the day and the time window of the anomaly, the corresponding
tree’s leaf node was identified as well. In the example, the anomalous symbol of the total
electrical load of 4 January 2019 was detected in the tree leaf node five. The diagnosis
process was then enabled, and the sub load conditions were compared with the anomaly
reference library. In the considered example, there was not a perfect rule match but a partial
one on the following items:

• Printshop electrical load symbol “c”.
• Mechanical room electrical load symbol “c”.
• Canteen electrical load symbol “c”.
• Canteen trend angle symbol “UP”.

As previously discussed, a partial match is not as strong as a perfect rule match
but provides useful suggestions to be considered for conducting the anomaly diagnosis.
This aspect was demonstrated through further graphical analysis, reported in Figure 15.
The figure shows a comparison between the anomalous and normal pattern of the total
electrical load and the loads related to the mechanical room, printshop, and canteen. Only
the second time window is reported in the plot. In particular, in red, the anomalous data
related to the 4 January 2019 are reported, while in green are shown the frequent “normal”
patterns of the given loads extracted from the training period (part of 2018). Along with
the actual electrical loads (solid lines) were reported the relative PAA segments (dashed
lines) and, for the “normal” pattern, the standard deviation (grey areas).
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Figure 15. Comparison between the actual (red lines) and expected (green lines) electrical load with the relative standard
deviation (grey areas) on 4 January 2019. The dashed green and red lines represent the PAA segments for the actual and
expected load respectively. The blue horizontal solid line on the top graph represents the aSAX breakpoint related to the
total power.
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The combined effect of the three sub-loads (i.e., mechanical room, printshop, canteen)
led to an overall electrical load higher than expected. The mean total electrical load
rose from 236 kW (symbol “b”) to 283 kW (symbol “c”), and it was easy to verify that
the identified sub-loads contributed almost 90% to the power shift upward of the total
electrical load. It is worth noting that although the printshop presented an anomalous
electrical load pattern, the observed profile (red line) did not significantly deviate from the
normal one (green line).

6. Discussion of the Results

This paper focused on the development of ADD methodology able to analyze meter-
level electrical load data in order to detect anomalous patterns and perform a diagnosis
process on sub-loads. This methodological framework was conceived to be highly scalable
and reliable in order to be implemented in energy data monitoring infrastructure for
supporting a prompt detection of anomalies avoiding energy wastes over time.

The time window size and alphabet size for the aSAX encoding are key parameters.
In [20] is reported an interesting sensitivity analysis based on these two parameters, show-
ing that a trade-off between window numbers and alphabet size has to be found in order
to minimize the variance between patterns and resolution needed. In this paper, the time
window number was chosen by using an RT and the alphabet size by a k-means clustering
evaluation. Once those parameters are set, the aSAX encoding procedure can be considered
completely automatic. Moreover, the conducted analysis showed that considering the trend
angle as an additional feature, a robust sub-loads characterization could be performed
without adding computational burden.

Moreover, the selection of the predictive variables for the globally optimal classifi-
cation tree needs particular attention. The overall energy consumption of a building is
strongly related to the occupancy schedule, environmental conditions, thermo-physical
features of the building, and the behavior of users. For this reason, those variables should
be all included in the classification model and could help in describing infrequent but
non-anomalous patterns. On the other hand, trustworthy values are difficult to retrieve
or measure with continuity. Surely, the inclusion of those variables could qualitatively
increase the model predictions.

A further interesting aspect of being considered is related to the data that should
be used for training and how often training is needed. It is well known that building
electrical load varies over the years due to the electrification of end-uses and the seek of the
higher performance of appliances and facilities. For this reason, a good trade-off between
retraining rate and computational effort should be performed. In our study, we validated
the model in the first month of 2019 in order to assess its accuracy.

In addition, in order to prove the effectiveness of monthly retraining of the tool,
a comparison was performed between two different deployment approaches. The first
deployment considered was static, with the hypothesis of using the same classification
models trained in 2018 for six months in 2019. The second deployment was dynamic,
considering monthly retraining of the classification models with a one-year moving window
training set. Results showed that the average classification accuracy was 82.85% for the
dynamic deployment and was 78.77% for the static one. Therefore, with a dynamic
deployment, the anomaly detection capabilities improved, given that the classifiers are able
to learn new patterns that change over time. Following the same reasoning, the authors
propose to implement a monthly update also for the association rules included in the
anomaly library.

7. Conclusions and Future Work

This paper proposed a multiple-step ADD methodology to automatically detect at
whole-building meter level anomalous energy consumption and then perform a diagnosis
on the sub-loads responsible for that anomalous pattern. Frequent and infrequent electrical
load patterns, properly transformed through an adaptive symbolic aggregate approxima-
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tion process, were discovered by means of globally optimum evolutionary classification
trees. Association rule mining was employed to discover the main sub-loads, which mostly
affected the anomaly detected at the whole-building level.

In the future, the ADD process presented in this paper is expected to be implemented
online within the energy information system of Politecnico di Torino and supplied through
an energy data analytics dashboard developed with the R packages “shiny” [51] and
“shinydashboard” [52]. Figure 16 reports a demo of the dashboard that is currently under
construction and under offline testing. Moreover, the authors aim to integrate this ADD
process together with other complementary tools able to perform electrical load forecasting
and energy performance tracking (i.e., benchmarking).
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Figure 16. Energy data analytics dashboard developed by the building automation and energy data analytics (BAEDA) Lab,
which implements the anomaly detection and diagnosis (ADD) procedure presented in this paper.

Further research will also be focused on the testing of alternative configurations of
algorithms (i.e., data clustering, forecasting) with respect to the one considered in this
study. In fact, the proposed algorithms cannot always be assumed as the best solution
for performing such kind of analysis on energy consumption time series. As a reference,
the aSAX transformation, the development of classification trees, and the extraction of
association rules perfectly match with the need to provide a fully interpretable tool to the
final user. However, this constraint, in some cases, can also determine an information loss
and accuracy decrease. For this reason, a future analysis may well consider the use of more
sophisticated algorithms (e.g., deep learning algorithms) that are characterized by their
non-interpretable nature but makes it possible to achieve higher performance in detecting
and diagnosing energy anomalies. This option still remains valuable if an explanation
layer is included in the analytical process. Nowadays, such a task corresponds to the main
goal of the machine learning field of the so-called explainable artificial intelligence (XAI),
which offers new opportunities for effectively embedding advanced algorithms in AI-based
energy management solutions where explanations of the black-box model predictions are
often compulsory.
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Abstract: In 2018, the Dutch national government announced its decision to end natural gas extraction.
This decision posed a challenge for local governments (municipalities); they have to organise a heat
supply that is natural gas-free. Energy models can decrease the complexity of this challenge, but some
challenges hinder their effective use in decision-making. The main research question of this paper is:
What are the perceived advantages and limitations of energy models used by municipalities within
their data-driven decision-making process concerning the natural-gas free heating transition? To
answer this question, literature on energy models, data-driven policy design and modelling practices
were reviewed, and based on this, nine propositions were formulated. The propositions were tested
by reflecting on data from case studies of ten municipalities, including 21 experts interviews. Results
show that all municipalities investigated, use or are planning to use modelling studies to develop
planning documents of their own, and that more than half of the municipalities use modelling studies
at some point in their local heating projects. Perceived advantages of using energy models were
that the modelling process provides perspective for action, financial and socio-economic insights,
transparency and legitimacy and means to start useful discussions. Perceived limitations include
that models and modelling results were considered too abstract for analysis of local circumstances,
not user-friendly and highly complex. All municipalities using modelling studies were found to
hire external expertise, indicating that the knowledge and skill level that municipal officials have is
insufficient to model independently.

Keywords: energy modelling; heating transition; modelling practices; data-driven policy design;
local policy; municipality; multi-model ecologies

1. Introduction

1.1. The Dutch Heating Transition

In 2016, the heating and cooling sector accounted for half of the EU’s energy con-
sumption [1]. In The Netherlands, 53% of the national heat supply is provided by natural
gas [2]. In March 2018, the Dutch national government announced its decision to end
natural gas extraction from the Groningen gas field by 2030 [1] to help reach the climate
goals of the Paris Agreement and to reduce the negative impact of natural gas extraction
in the province of Groningen [2]. This is also referred to as the so-called ‘heating transi-
tion’ in The Netherlands and was later defined by the RVO (The Netherlands Enterprise
Agency) as removing natural gas from industry, the built environment and the agricultural
sector [2], and replacing it by (sustainable) heating alternatives. According to the Climate
Agreement, the main climate policy program in The Netherlands, a sufficient level of
sustainable heating must be made available to replace the natural gas supply and to meet
the climate change mitigation target of reducing CO2 emissions by 3.4 megatons in the
built environment. To reach this goal, 1.5 million existing residential homes have to be
supplied with sustainable heating by 2030 [3].
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However, this is challenging because decision-making and policymaking in this
transition are far from simple, as actors, technology and institutions interact in a complex
manner [1]. The heating transition requires a change of the supply of renewable energy, the
infrastructure, residential heating systems and of thermal insulation in residential houses,
which all raise questions about the division of costs and the freedom of choice [4]. Next to
these dependencies, the heating transition poses significant financial challenges. Natural
gas is currently cheaper than sustainable alternatives and residents do not always have
sufficient funds available to provide the needed investments or to deal with increased
living expenses [5].

To organise this complex transition, every municipality is expected to formulate a
“Transition Vision Heat” (See Table A1, Appendix A, Glossary) and an implementation
plan in their local government plans, to show how they will organise a heat supply that
is natural gas-free and affordable, according to the Environment and Planning Act. This
means that municipalities are expected (by the national government) to take a leading
role in the heating transition. This is new for municipalities and requires them to collect
new knowledge, expertise and competences. To this end, the national government has
set up Test Beds for Natural Gas-Free districts (i.e., pilot projects) and a knowledge and
learning programme to learn and experiment [3] within the National Programme for
Natural Gas-Free Districts. The latter has a 120 million euro budget.

1.2. The Use of Energy Models in Data-Driven Policymaking

To enable the heating transition, municipalities need to answer questions such as,
which heating source would lead to low end-user costs, low societal costs and low CO2
emissions? To evaluate the effect and impact of potential policy measure or decisions on,
for example, a preferred technology for natural gas-free heating in city districts, evidence-
based policymaking entails the derivation of fact-based knowledge to support the decision
making by policymakers. One way to approach evidence-based policymaking is with
data-driven policies. A data-driven policy uses data and tools for processing and analysing
data to design policies and to facilitate collaboration with citizens to co-create [6]. Currently,
municipalities make limited use of data and data processing and analysis tools for decision-
making support. This is partly due to a lack of guidelines. New guidelines are to be
developed that can make use of new data sources and tools [6]. Historically, the first
decision-making support tool developed for environmental planning was the multi-criteria
decision aid (MCDA). The MCDA is considered a qualitative decision support tool [7]. One
drawback of MCDA tools is that they do not allow for analysis to compare whether doing
an action is better than doing nothing [8]. In the last years, the number of quantitative
tools to support decision-makers has been growing, which include energy models. The
advantage of energy models, compared to more qualitative tools such as MCDA, include
a higher degree of traceability, easier implementation in computing environments and
better opportunities for ex-ante analysis [8]. Dutch municipalities are increasingly trying to
include energy models when designing policy for the heating transition are energy models.
In the present study, an energy model is defined as a computer model of an energy system
that introduces a structured way of thinking about the implications of changing parts of
the system [9]. Energy models may help analysts and policymakers to better understand
the increasingly complex energy sector. However, clear guidelines on how to use these
models while designing policies are still lacking.

Next to a lack of guidelines on how to integrate energy models, practitioners, such as
policymakers, also experience challenges with energy models themselves. This hinders
the use of energy models for policy design and decision-making [10]. When interpreting
modelling results, caution is needed, because when modelling, it is unavoidable to make
use of assumptions and estimates, which may not be valid under all circumstances [11,12].
According to a recently published research report, in The Netherlands [10] no less than six
different models focusing on the heating transition sometimes provide different results
for the same research question, due to differences in approach, assumptions and input
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data. This makes it difficult for policymakers to interpret, understand and trust modelling
results.

Another significant challenge of current energy models is that they fail to take into
account social aspects. This is problematic since the heating transition is highly dependent
on humans and their intentions. Social aspects, such as behaviour and attitude of the
public, affect proposed or implemented policies and should, therefore, not be ignored [13].
At present, building owners (either citizens/homeowners, institutional investors, private
landlords or housing associations) have the right and responsibility to make investment
decisions about the heating supply of their buildings [14]. In other words, they need to be
incentivised to change their current gas-based heat supply. For this reason, building owners
and local communities form an essential part of the heating system and their contribution
to the heating transition, by deciding to adopt sustainable heating technologies and/or
thermal insulation for their homes, is key in making the transition happen.

1.3. Research Focus

The present study focuses on the use of energy models in local heating transition
projects to assess to what extent energy models are used in the decision-making process,
how, and which advantages and limitations this has. The present paper aims to provide
insight into the practice of energy modelling and insight into the needs and challenges of
practitioners when using energy models in the heating transition. Thus far, no academic
studies have addressed these issues. Insights therein can provide a starting point for
more structured guidelines of effective energy modelling. The research question of this
study was, therefore, as follows: What are the perceived advantages and limitations of
using energy models for municipalities within their data-driven decision-making process
concerning the natural-gas free heating transition? To answer the research question, a
review of the literature and multiple embedded case studies was conducted in which
different heating transition projects in ten Dutch municipalities were investigated. The
scope was limited to energy models used by practitioners in the Dutch heating transition,
as further explained in Section 3.

The paper is structured as follows. In Section 2, a literature review is presented on the
use of energy models in heating transition projects, as well as on data-driven policy design
and good modelling practices. Section 2 concludes with a set of theoretical propositions.
In Section 3, research design and methodology are presented. In Section 4, the results of
the analysis are presented. This includes testing of key propositions regarding the use of
energy modelling. In Section 5, the results are discussed, and the academic merit of the
present study is presented. The paper ends with a conclusion, the limitations of the study
and suggestions for future research.

2. Literature Review

2.1. Data-Driven Policymaking

To plan for a transition to sustainable heating in the built environment, municipalities
need data and evidence to support their decision-making processes [10]. One way to
approach this is by formulating data-driven policies. Multiple studies agree that using
a data-driven approach using new data sources and tools, such as energy models, can
improve policymaking practices [6,13,15–18], but a systematic approach to do so is still
missing [6,13]. Moreover, various studies express concerns about the capabilities of policy-
makers and stakeholders to deal with new data sources and technologies [16,18]. Thus far,
no academic studies have been conducted addressing how the use of energy models affects
practitioners within the heating transition, indicating a research gap. In addition, multiple
studies call for more clear guidelines for the use of new data and tools by governmental
institutions [6,13,19]. Argyrous [20] offers some guidelines on ensuring transparency and
accountability, but only Koussouris et al. [17] offer concrete suggestions for practitioners
besides ensuring the governmental organisation has the right expertise.
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2.2. Challenges of Using Energy Models in Heating Transition Policymaking

Considering the academic literature regarding the use of energy models to support
policymaking in the heating transition one thing becomes clear: there is a large variety
of models and tools being used to support decision making within the energy transition,
and few comparisons are being made between these models and tools. An overview
of the literature found describing different modelling methods used for a sustainable
heating transition is shown in Table A2, Appendix B (relevant findings for the present
study). Reviewing this sample [1,21–41] shows that although modelling approaches have
the potential to reduce the uncertainty of complex social issues, there is currently no
systematic approach on how to apply models to make policy decisions and how to consider
not only objective facts but also social and socio-economic factors. As the complexity of
heating transition projects is partly due to the dependency on social factors such as human
behaviour, models which consider not only objective techno-economic factors but also
social and socio-economic factors, could increase the value of modelling approaches in
heating transition projects [13,22,35,38,39].

Furthermore, the literature shows a large variety of models that are currently used,
based on different theories and mathematical principles. A few common challenges can
be recognised among this variety. First, the correctness and sensitivity of assumptions.
Second, the transparency and usability for practitioners. Third, the need to integrate both
economic, environmental and social factors. Another interesting aspect concerns the lack of
energy modelling research, particularly in the heating transition of The Netherlands. Thus
far, in this country, only one academic study was conducted addressing a model focused
on the heating transition [1].

Although there is limited academic literature available, grey literature is abundant. A
whitepaper by Nikolic et al. [19] offers general principles for good modelling practice and
red flags that indicate inadequate modelling practices. It concludes that there is a need for
modelling guidelines that are more practical and easier to communicate, and that there is a
need for more interaction between academia and practitioners. Both Nikolic et al. [19] and
De Ridder et al. [42] suggest that municipalities need to develop more internal knowledge
to understand and make use of models. Diran et al. [43,44] claim that better access to
data regarding buildings, infrastructure and energy production is needed to utilise current
energy models, especially within the utility sector. Figure 1 presents an overview of the
energy models and tools regarding the heating transition as used in The Netherlands.

 

Figure 1. Overview of Dutch energy models used for decision-making support in the heating
transition. Image translated and adapted from [45].
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A study by Brouwer et al. [10] compares six models that are often used by municipali-
ties, i.e., the Vesta MAIS (Multi Actor Impact Simulation) model, the CEGOIA model, the
Energy Transition Model (ETM), a DWA model and the Caldomus model. The character-
istics of these models are discussed in Table 1. The study [10] reveals that these models
provide significantly different results for the same research question due to differences in
assumptions and modelling approach. Differences identified [10] include differences in
building types and geographical borders, differences in renovations to improve surpassing
energy label ‘B’; differences in costs of all-electric networks; differences in the order of
steps within the approach; different assumptions regarding the scarcity of heat sources and
different assumptions regarding learning curves; different heating technologies included;
and differences in optimisation research questions.

Table 1. Overview of the six energy models often used by municipalities for heating transition policymaking.

Model a Developer b Type of Model c Format Availability Geographical Scope

Vesta MAIS

PBL (English: Dutch
Planning Bureau for

the living
environment)

Techno-economic
optimisation

C++
(GeoDMS
software)

Open access National, regional,
city, neighbourhood

CEGOIA CE Delft Techno-economic
optimisation Excel model Model owned by

CE Delft
National, regional,

city, neighbourhood

Energietransitie model
(ETM) (English:

Energy
Transition Model)

Quintel Techno-economic
simulation Website Open access

International,
national,

regional, city

Warmtetransitie model
(WTM) (English:

Heating
Transition Model)

Over Morgen Techno-economic
optimisation Unknown Model owned by

Over Morgen Unknown

Integraal kostenmodel
(IKM) (English:

Integral cost model)

DWA (A Dutch
engineering
consultancy)

Techno-economic
optimisation Excel model Model owned

by DWA Regional, city

Wijkwarmtemodel
(WWM) (English:

District heating model)
DWA Techno-economic

optimisation Excel model Model owned
by DWA Neighbourhood

Caldomus Innoforte Techno-economic
optimisation Excel model Model owned

by Innoforte
Regional, city,

neighbourhood
a English translation provided by the authors. b English translation provided by the authors. c Optimisation models find the optimal
solution for a chosen criterion and constraints, whereas simulation models merely allow the end-user to explore how a system responds to
different inputs.

2.3. Propositions on the Use of Energy Models by Municipalities

Based on the literature it can be deduced that clear guidelines for the use of energy
models are missing and that there are serious concerns about the lack of expertise regarding
energy models and data management at public organisations. Among energy models used
for energy policy design, there are challenges regarding the correctness and sensitivity of
assumptions, regarding the transparency and usability for practitioners (such as policy-
makers) and regarding the need to integrate more social factors. Moreover, although there
is grey literature available, there is a lack of academic research about the use of energy
models by municipalities. Based on the literature reviewed, propositions were formulated
regarding current practices, advantages and limitations of municipalities using energy
models in the heating transition. Table 2 presents these propositions with argumentative
justifications provided for each of them. Note that some of these propositions were for-
mulated in an if-then structure to improve readability. However, this structure only has
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conversational implication and is not in line with formal logical implication, i.e., if X then
Y” is only false in case “X” is true and “Y” is false.

Table 2. Overview of the theoretical propositions and their respective justifications.

Proposition Justification

1. Different municipalities use different energy models (if any)
with different aims.

Due to the large share of energy models available that use
different approaches and assumptions and that have a different

focus [10], it is expected that different municipalities will use
different energy models with different aims.

2. If energy models are complex to use, then practitioners will
make limited use of them while planning for the

heating transition.

Current energy models are not usable for non-experts, such as
practitioners [21,28]. It is therefore expected that practitioners
make limited use of energy models due to the complexity of

energy models.

3. If energy models do not integrate social or socio-economic
factors, then practitioners will make limited use of them while

planning for the heating transition.

The complexity of heating projects is partly due to the
dependency on social factors such as human behaviour and that

models which consider not only-objective but also social and
socio-economic factors could increase the value of modelling
approaches in heating transition projects [13,22,31–35,38,39].

Therefore, it is expected that practitioners currently make limited
use of energy models because energy models currently used do

not include social factors.

4. If assumptions within energy models are uncertain, than
this will decrease the trust within energy models

for practitioners.

The correctness and sensitivity of assumptions influence trust and
willingness of practitioners to use energy models in their heating

transition projects [10].

5. If data is uncertain or unavailable, then this will decrease
the trust within energy models for decision making

among practitioners.

More data is needed about buildings, infrastructure and energy
production to utilise current energy models [44].

6. Practitioners seek the help of external parties to use and
interpret energy models.

Current energy models are often not usable for non-experts, such
as practitioners [21,28]. Therefore, it is expected that practitioners

seek external expertise when using an energy model.

7. External parties have commercial reasons to not be
transparent about their energy model design.

According to the data-driven approach and good modelling
practices discussed in the literature review, models and modelling
studies require a high degree of transparency [19,20]. Since many
energy model developers are commercial parties, it is expected

that external parties sometimes have commercial reasons to not be
fully transparent.

8. Practitioners need new (in-house) expertise to effectively
use energy models

Municipalities need to develop more internal knowledge and
expertise to understand and make use of models [10,18–20,42].

9. Interactive visualisation and different interfaces for
different stakeholders improve the usability of energy models.

Interactive visualisation can help in making models and their
results more understandable for non-experts [17].

3. Research Design

3.1. Embedded Case Study Research Design

To answer the research question, multiple embedded case studies were conducted.
Based on the embedded case study design of Yin [46], the nine propositions formulated
based on the literature review, guided design, data collection and analysis will be reflected
upon [46]. In the present study, multiple cases represented a variety of heating transition
projects. Key actors involved included heating transition practitioners and energy model
developers. Practitioners, such as policymakers and project managers, are closely involved
in the heating transition project of the municipality and/or in the development of the local
heating vision document. Energy model developers are involved in the developing models
that are used by municipalities.
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3.2. Case Selection

The first generation of pilot projects from the National Programme for Natural Gas-
Free Districts (see Table A1, Appendix A), consisting of 27 municipalities, served as an
initial source of case study selection. It was predicted that these cases would produce
similar results or contrasting results for anticipatable reasons. All of these projects started
at a similar time in 2018, received government funding and had a similar manner of
publicly documenting their progress. Differences in results between these projects are
expected to be based on the size of the municipality, based on specific neighbourhood
characteristics of the pilot projects and on different energy models that are used. In
total, ten municipalities participated in the present study. This entailed a sample of
three large municipalities (>100,000 residents), five medium-sized municipalities (>30,000
residents) and two small municipalities (<30,000 residents), across ten provinces (out of
twelve provinces in the country; showing high geographical variation), with ten different
approaches to natural gas alternatives analysis, and a variety of different selected heating
alternatives. Table 3 presents an overview of the ten municipalities that participated and
the potential alternatives for natural gas for their respective pilot projects, based on the
information that was published in the project implementation reports of 2018.

3.3. Pattern Matching

To enable reflection from the empirical study to the theoretical propositions, the
“pattern matching” technique was used. According to Yin [46], pattern matching is one
of the most desirable techniques used in case study analysis. Pattern matching entails
comparing empirically-based patterns with the predicted patterns made before collecting
data, e.g., the theoretical propositions. The ATLAS.ti 8 [47] software was used to support
the process of pattern matching. As there is a risk of collecting too little data with this
approach [46] data were also collected on emerging themes that were present in the
academic and grey literature but that were not captured in the propositions. After finalising
the empirical study, each of the nine propositions will be reviewed separately and will be
either confirmed or rejected based on confirmatory evidence that follows from the empirical
analysis, as described in Section 3.4.

Table 3. Overview of the ten case studies, presenting the size and the proposed alternative heating technology options of
each of the municipalities analysed.

# Municipality Number of Residents (2019)
The Technological Heating Alternative Proposed for the

Local Project

1 Loppersum 9614 [48] Heating network, heat pumps and thermal energy storage [49]

2 Tytsjerksteradiel 31,780 [48] Individual heat pumps [50]

3 Assen 67,963 [48] Unknown [51]

4 Noordoostpolder 46,849 [48] Heat network [52]

5 Katwijk 65,302 [48] Aquathermic solution, Medium-Temperature Heat Network [53]

6 Rotterdam 644,618 [48] High-temperature Heat Network (possibly later
Medium-Temperature) [54]

7 Utrecht 352,866 [48] High-Temperature heat network and heat pumps [55]

8 Eindhoven 231,642 [48] Heat Network [56]

9 Brunssum 28,103 [48] Low-Temperature Heat network [57]

10 Middelburg 48,544 [48] High-Temperature Heat network [58]

3.4. Data Collection, Treatment and Analysis

The types of data per case study that were used concerned: (1) governmental reports
(for example heating transition implementation plans); (2) in-depth interviews with prac-
titioners from municipalities and; (3) in-depth interviews with model developers. The
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information of these three sources was converged in a triangulating fashion. The docu-
ments (such as project implementation plans and model guidelines) provided secondary
data that were used to structure the interviews. Only publicly available documents were
used. Twenty-one in-depth, (expert) interviews provided primary data of the case studies.

All twenty-one interviewees were provided with informed consent forms and all
interviewees provided, among others, permission for the use of their statements for the
present study. An anonymised overview of respondents is shown in Tables A3 and A4,
Appendix C. All interviews were conducted via video call or telephone, and audio was
recorded. Interviews with both practitioners (14) and model developers (7) were fully
transcribed. Transcripts were provided to the interviewees after the interviews and in-
terviewees were given ample opportunity to read and alter the transcript. All interviews
were conducted between the first of May and the first of September of 2020. The average
duration of individual interviews was 55 min.

The interviews were semi-structured with open-ended questions to allow for in-depth
analysis. Although a set of pre-defined questions was used, interviewees were also given
the opportunity to explore questions in greater depth and to introduce new topics. This
type of in-depth interviews, according to Roller [45], increases the credibility of the data by
reducing response bias (distortion due to the tendency of interviewees to provide answers
that are considered socially accessible) and by reducing satisficing (providing an easy ‘I do
not know’ answer). The data collection process, including the informed consent forms, was
approved by the Ethical Committee of the Technology, Policy and Management faculty at
Delft University of Technology.

Analysis of the interview transcripts was completed by thematic coding. Atlas.ti
8 [47] (computer-aided qualitative data analysis software) was used to perform the coding
process and to create coding reports. A semantic analysis was conducted, meaning that
data was coded at face value, i.e., at the explicit meaning. Thematic coding is viewed as a
relatively simple qualitative method that offers a high level of flexibility. Quotations were
created based on the theoretical propositions and the research questions, and a code was
assigned to each quotation. As proposed in standards for theoretical thematic analysis [59],
an initial set of codes was set-up to guide analysis of the transcripts. The coding frame,
as expected, did not fully cover all aspects related to the topic and was adapted and
supplemented where needed with codes such as ‘motivation residents’ and ‘not familiar
with energy models’. These adaptations were made rather inductively, meaning that the
‘open coding’ function of Atlas.ti 8 [47] was used to add codes during the first round of
coding. After this first round of coding, all codes and their frequency were assessed to
see whether splitting or merging of codes was necessary. To transform the raw data into
meaningful information, all quotes were given an English title; code groups were created
to show the relation between several codes and so-called network figures were created
to show the focus of different quotes within one code. Moreover, code-occurrence tables
(see Tables A5 and A6 in Appendices D and E) were made to quantify the findings, which
reduced the subjectivity of result interpretation.

4. Results

The interviews conducted with practitioners yielded 820 quotes divided over 36 the-
matic codes. Seven interviews were conducted with model developers. These interviews
yielded 561 quotes divided over 53 thematic codes (See for an overview of codes and
code-occurrence Appendices B and C). The results of the case studies were used to either
validate or reject the propositions (Section 2.3; Table 2). The findings regarding the testing
of the propositions are presented in Table 4. The findings will be discussed in more detail
in Sections 4.1–4.8 below.
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Table 4. An overview of the findings that confirm or reject the propositions made.

Proposition Confirmed/Rejected

1. Different municipalities use different energy models (if any) with different aims. confirmed

2. If energy models are complex to use, then practitioners will make limited use of them while planning for
the heating transition. confirmed

3. If energy models do not integrate social or socio-economic factors, then practitioners will make limited
use of them while planning for the heating transition. rejected

4. If assumptions within energy models are uncertain, then this will decrease the trust within energy
models for practitioners. unclear

5. If data is uncertain or unavailable, then this will decrease the trust within energy models for heating
transition decision making of practitioners. unclear

6. Practitioners seek the help of external parties to use and interpret energy models. confirmed

7. External parties have commercial reasons to not be transparent about their energy model design. unclear

8. Practitioners need new (in-house) expertise to effectively use energy models. confirmed

9. Interactive visualisation and different interfaces for different stakeholders improve the usability of
energy models. confirmed

4.1. Different Municipalities Use Different Energy Models with Different Aims

The proposition ‘Different municipalities use different energy models (if any) with
different aims’ was confirmed based on the case studies. Six different energy models were
used by the ten municipalities studied to support decision-making for heating transition
pilot projects or the design of the Transition Vision Heat: the Vesta MAIS model, the
CEGOIA model, the Caldomus model, DWA models (the IKM and the WWM), the ETM
and the WTM). This is in line with [10] which mentioned these six models as the most
used models for the Dutch heating transition. Moreover, two national modelling studies
based on one or more of these energy models were used, the ‘Startanalyse’ (Start Analysis
in English; translation by the authors) and the ‘Openingsbod’ (Opening Offer in English;
translation by the authors) (see Table A1, Appendix A). In the case studies, these models
were only seldom used by practitioners, with the only exception in this sample pertaining
the municipality of Utrecht, where a modelling team was deployed to use the Vesta MAIS
model to develop heat scenarios. More in general, municipalities were found to use
models and modelling studies to support the decision-making process, to provide more
legitimacy towards residents or as a basis for more detailed heating transition business
cases. No socio-technical energy transition modelling methodologies or agent-based
modelling methodologies were found though, indicating that these were not considered
important in the current planning and implementation of the heating transition at the local
level. All models, except for the ETM, were optimisation models. The ETM did not offer
an automated optimisation function. All models, except for the ETM, aimed to find the
heating alternative with the lowest societal costs.

4.2. Complexity and User-Friendliness of Energy Models

The propositions ‘If energy models are complex to use, then practitioners will make
limited use of them while planning for the heating transition’, and ‘Practitioners seek
the help of external parties to use and interpret energy models’ were confirmed based
on the case studies analysed. The results showed that the use of energy models was not
necessarily limited, seven out of the ten heating transition pilot projects investigated used
an energy model in their decision-making process and seven out of seven Transition Vision
Heat projects used or were planning on using an energy model. However, six interviewees
mentioned there were issues regarding the complexity and user-friendliness of energy
models that hindered effective usage in heating transition projects. Four out of seven model
developers claimed that practitioners often did not have the right background or the time
to master these complex tools independently. According to the same four interviewees,
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large-sized municipalities usually had more time and resources to learn how to use a model
than their small-sized peers. If a third party conducted the modelling process, large-sized
municipalities were therefore generally better able to critically reflect on the results. All
seven municipalities from this sample that used energy models in their heating transition
projects used third parties at some point during their heating transition projects to conduct
modelling studies. Third-party expertise was used at all scope levels, Regional Energy
Strategy development (see Table A1, Appendix A), Transition Vision Heat development
and pilot projects. Municipalities were found to hire external parties to provide modelling
calculations, home inspections, modelling result interpretation or to provide studies, for
example into available heat sources. These findings confirm that there are indeed challenges
with the complexity and user-friendliness of energy models and that these are usually
overcome by seeking help from external parties.

4.3. Integration of Social or Socio-Economic Factors into Energy Models

The proposition ‘If energy models do not integrate social or socio-economic factors,
then practitioners will make limited use of them while planning for the heating transition’
was rejected based on the case study analysis. All fourteen practitioners interviewees
agreed that social and socio-economic factors are important and influence the success of
heating transition projects. Three municipalities were found to use social or socio-economic
data or information or were planning to use this to identify coupling opportunities (oppor-
tunities to combine activities for the heating transition with other improvement opportu-
nities in a neighbourhood, such as sewer system updates, building renovations or traffic
alterations), and two municipalities used or were planning to use social or socio-economic
information to determine the prioritisation of neighbourhoods for heating transition ac-
tivities. On the other hand, none of the practitioners or model developers interviewed
claimed that social or socio-economic factors influenced the choice of heating alternatives,
which is the focus of the six energy models municipalities of the sample used. The choice of
heating alternative was based on the lowest societal costs in all municipal heating transition
projects within the present study. All seven energy model developers agreed that that
social, political and psychological aspects influence heating transition projects. However,
all claimed that these factors should not and/or could not be included in their respective
models and that it would be better to consider these factors alongside the techno-economic
modelling results in energy modelling studies.

4.4. Unavailable Data and Uncertain Assumptions

The proposition ‘If assumptions within energy models are uncertain than this will
decrease the trust within energy models for practitioners’ could neither be confirmed
nor rejected based on the empirical results. Energy model developers were found to use
different assumptions, and two energy model developers claimed that these are usually the
reason why results between different energy models differ. Practitioners offered critiques
of assumptions of models or modelling studies, in particular about assumptions regarding
energy labels and the use of renewable gas. However, the impact this had on trust in
energy models did not become clear in the interviews. The interviews showed that if
practitioners did not agree with assumptions used in models or modelling studies that they
requested model developers to change said assumptions or that they opted for a different
model that used different assumptions. All seven model developers stated that they tried
to be transparent about the assumptions they used and that, in collaboration with the
practitioners, assumptions can be altered during the modelling process.

The proposition ‘If data is uncertain or unavailable, then this will decrease the trust
within energy models for heating transition decision making of practitioners’ could not
be confirmed nor be rejected. Data played an important role for municipalities and model
developers in developing heating transition plans, and even though data was sometimes
unavailable, this study offered no proof that this decreased the trust of practitioners in
energy models. If municipalities decided to use a model, this energy model proved to be
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more useful if it was fed with local data. Unavailable data that could be useful according
to practitioners and model developers is data about energy use per connection, data about
the willingness to pay of residents and data about the potential impacts on the electricity
grid. One energy model developer mentioned that the data collection process at public
organisations was too time-consuming and two energy model developers mentioned that
they ran into issues with the energy use data available from Statistics Netherlands (‘CBS’
in Dutch). These data were aggregated due to privacy laws and was often deemed too
inaccurate to use for heating transition projects. Similarly, two energy model developers
and one practitioner stated that the data from the Basic registration of addresses and
buildings (BAG) (See Table A1, Appendix A) regarding energy labels provided too little
insight into the level of thermal insulation present at residential houses. One of the most
uncertain data sets used for heating transition projects was data about available heat
sources. All model developers agreed that the datasets for heat source data were uncertain
and that extra research was always needed to assess the local situation. However, whereas
four energy models used the availability of heat sources as a determining factor for the
choice of a natural gas alternative, two models did not use heat source availability as a
determining factor.

4.5. The Use of Third Party Modelling Expertise

The proposition ‘Practitioners need new (in-house) expertise to effectively use energy
models’ was confirmed based on the case studies. Only one municipality was yet capable
of modelling scenarios individually. Others relied on the modelling expertise of third
parties. Even if a municipality outsourced the modelling process, a minimum knowledge
level was required to correctly interpret and critically reflect on results. According to
energy model developers, practitioners, with only a few exceptions, did not meet this
minimum condition. This also caused practitioners to propose incorrect or unsuitable
research questions to model developers.

The proposition ‘interactive visualisation and different interfaces for different stake-
holders could improve the usability of energy models’ was also confirmed based on the
case studies. Three energy model developers had developed interactive models, maps or
tools that, according to them, helped clients such as practitioners to better understand and
interpret the modelling results. No statements from practitioners were gathered on the
advantages of interactive models.

The proposition ‘External parties have commercial reasons to not be transparent about
their energy model design’ could neither be confirmed nor be rejected. Two energy model
developers stated that it was not always possible to gain access to underlying assumptions,
data and parameters of models from other commercial agencies. However, all six models
in this study were compared to each other in the benchmark study [10], indicating that
model developers were at least willing to be transparent towards independent researchers.
Moreover, one national modelling study compared the results and underlying assumptions,
datasets and parameter sensitivities of multiple models (of which two were commercial).
Besides, transparency was only mentioned as a limiting factor by one practitioner. Hence,
one could state that even though transparency, especially at commercial model develop-
ers, could be improved, it did not seem to be a limiting factor for municipalities to use
energy models.

4.6. Advantages and Limitations of Using Energy Models

According to the academic literature, energy modelling can aid in decision making
and policymaking because it introduces a structured way of thinking about the implica-
tions of changing parts of the system [9]. The case studies provided more concrete benefits
and limitations of using energy models for decision making in the Dutch heating transi-
tion. Practitioners stated that the use of energy models within heating transition projects
provided perspective for action, financial insight, transparency and legitimacy, concrete
propositions to residents and sparked useful discussions. Besides, one practitioner stated
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that nationally available modelling studies provided validation and robustness of (other)
modelling results. Most of these advantages are related to creating public support for policy.
Practitioners also mentioned limitations of using energy models. Interviewees argued
that energy modelling results were considered too abstract, too general or too simplified
for local analysis. In addition, models were considered not user-friendly and complex.
Practitioners mentioned that modelling results provided no insight into available heat
sources, limited insight into the impact of nearby heat networks and no or limited insight
into end-user costs. Another challenge mentioned was that the Statistics Netherlands (‘CBS’
in Dutch) neighbourhood definitions do not provide a logical division of the city, which,
among others, created the need to conduct a reality check after modelling to filter out odd
results, especially for the utility sector.

4.7. Collaboration with Housing Associations, Network Operators and Citizen-Led
Energy Cooperatives

Moreover, from the case studies, insights were gathered that suggest that collaboration
with housing associations and network operators is important during heating transition
projects to prepare implementation plans and to find coupling opportunities. Housing
associations were considered important as they often have property within the municipality
and because they have renovation plans that may or may not align with the municipal
heating transition plans. Network operators were considered important because they
are responsible for underground infrastructure and network reinforcements. Therefore
they have to be made aware of the municipal heating transition plans, and they have to
provide input about the current limitations of the infrastructure for specific heating options.
Moreover, citizen-led energy cooperatives play an important role in heating transition pilot
projects. In five out of thirteen interviews, it was mentioned that collaboration with citizen-
led energy cooperatives is considered important. In one small and one medium-sized
municipality, energy cooperatives even provided project leaders for heating transition
pilot projects. For Transition Vision Heat development at larger municipalities citizen-led
energy cooperatives were found to exercise less influence. Close collaboration with energy
model developers happened only in municipalities that have established modelling teams
that model energy systems independently; for this sample, those included the two largest
municipalities (>300,000 residents).

4.8. The Use of Comparative Analysis and Multi-Model Ecologies

As mentioned, different models sometimes result in different outcomes, which can
create confusion and uncertainty at practitioners. One practitioner interviewed explicitly
mentioned experiencing such confusion. Three model developers of this sample actively
used comparative analysis to reduce this issue, and one national energy modelling study,
the ‘Openingsbod’, also offered comparative analysis. In such an analysis, differences
in methodology, assumptions, data and results of different energy models or modelling
studies are compared to one another. This indicated where result differences originate from
and provided an overview of the robustness of results across models. One practitioner
claimed that the latter helped in determining a priority of neighbourhoods to start with
heating transition projects.

Finally, three practitioners mentioned the challenge of matching up heating transition
plans at different levels of abstraction, which were found to influence each other and that
were sometimes developed simultaneously and with different energy models. To decrease
this challenge, one energy model developer tried to position his model in such a manner
that he could assess how plans would fit together. This energy model developer envisioned
a multi-model ecology in which their model provided a broad energy perspective and
where other energy models would offer more detailed calculations on, for example, heating
transition visions, heating transition business cases and the effects on power networks.
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5. Discussion

5.1. Reflection vis-à-vis the Academic Literature

The present study has provided a more concrete image of the role of energy models in
data-driven policymaking and decision-making in the heating transition. The literature
review showed that modelling approaches have the potential to reduce the uncertainty
and complexity of heating transition projects. The present study provided a concrete
overview of the advantages of using energy models in heating transition decision making as
experienced by practitioners and model developers. The advantages found seem to indicate
that although energy models do not necessarily make a heating transition project less
complex, they at least offer means to make legitimate choices. The advantages identified
are in line with the advantages of data-driven policy design mentioned by Koussouris
et al. [17] who stated that tools such as energy models, simplify decision-making processes,
even under complicated conditions, by facilitating the opportunity to model complex
processes and the opportunity to collaborate with different actors involved, and those
mentioned by Adam et al. [15] who stated that providing evidence for the effectiveness of
policy choices is one of the cornerstones of legitimate policymaking.

The results of the present study could provide a starting point for recommendations
targeting policymakers and model developers to facilitate more effective use of energy
models in heating transition decision-making. Such targeted recommendations were
not found in the literature and could help towards designing a systematic approach for
integrating energy models in data-driven policymaking, which is needed and currently
lacking [6,13].

Moreover, the results of this study suggest that offering comparative model analysis
would help practitioners to deal with the myriad of sometimes contrasting models, mod-
elling studies and modelling results available and that setting up a multi-model ecology
might decrease the challenges of aligning heating transition projects at different abstraction
levels. This is in line with Manfren et al. [60] who state that multi-model ecologies could
help in creating the integration between top-down and bottom-up modelling perspectives.
Furthermore, it aligns with Nikolic et al. [61] who state that multi-model ecologies help
get a more coherent and less biased understanding of the ”right thing” to do in energy
transition decision making as using multiple models allows multiple perspectives to be
explored and be brought together.

Although this study confirmed certain advantages of using energy models it also
shed light on the limitations of using energy models for decision-making. Designing
modelling scenarios is considered a time-consuming and costly task. Modelling results are
not absolute truths but rather results subject to calculation rules and assumptions, and if a
model or its outcomes are incorrect, one might be worse off than when not using a model
to begin with [19]. According to energy model developers interviewed in the present study,
not all practitioners understood the limitations of energy models and interpreted modelling
results as absolute truths.

Finally, the literature review suggested that it is problematic that current heating
transition models do not include social and/or socio-economic factors, as the transition is
highly dependent on humans and their behaviour [13]. However, the present study showed
that practitioners were not always sure how social or socio-economic data should influence
the choice of a heating alternative or the prioritisation of neighbourhoods. Moreover,
accessing these data was sometimes difficult due to privacy restrictions. Model developers
did not see added value in including social or socio-economic factors within their heating
transition models, which all had a techno-economic focus. Their models were focused on
finding the lowest societal and/or end-user costs for different heating alternatives and
did not include social factors, as affordability for residents is seen as one of the main
challenges of the Dutch heating transition [5]. The costs of a heating alternative are, as
far as known, not only depending on social or socio-economic factors. Something that
could be depending on such factors, for example, concerns the degree of participation and
technology adoption rates.
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In the present study, not one municipality was found using model methodologies
focused on assessing social interactions, such as Agent-Based Modelling, System Dynamic
Modelling or Socio-Technical Energy Transition Modelling. Instead, municipalities used
models with a mere techno-economic focus and assessed social and socio-economic data
alongside the results of these modelling efforts to identify coupling opportunities and/or
to determine prioritisation of neighbourhoods.

5.2. The Influence of National Agreements and Municipality Size

All municipalities that provided information about their Transition Vision Heat plan-
ning design in the present study used or were planning to use models/modelling studies.
This was expected as it was agreed in the national Climate Agreement of 2019 [3,62] that
municipalities would use the ‘Startanalyse’ and its guidelines [63] to design their Transition
Vision Heat. According to the Climate Agreement, this would provide all stakeholders with
a “uniform frame of reference regarding the impact of the various natural gas alternatives in
a district” [3]. This agreement might have incentivised municipalities to use energy models
when designing their Transition Vision heat. However, three pilot projects did not use
energy models to choose a natural gas alternative. The pilot projects analysed, all started
before this statement was made in the climate agreement and before the ‘Startanalyse’ and
its guidelines [63] were published. Therefore, practitioners in pilot projects might have
been less familiar with available models and modelling studies, might have had less access
to models and modelling studies and/or might have been less incentivised to use available
models or modelling studies.

Secondly, pilot projects that did not use an energy model to choose a heating alternative
had a few things in common. All three pilot projects were located in villages with less
than 2000 residents. All of them had active citizen-led energy cooperatives, two pilots
were organised by the local energy cooperative, two pilot project leaders were not familiar
with energy models, and two pilot projects entailed only or mostly detached houses, from
before 1940 with poor thermal insulation levels. Two practitioners claimed that they did
not feel that they needed an energy model because the choice for a heating alternative
could be made with common sense and information about the residential characteristics.
This indicates that an energy model might not always be considered necessary or desirable
for heating transition decision-making and that it is important to consider when the use
of an energy model would be beneficial and when other sources of evidence might be
sufficient to support decision-making.

6. Conclusions

6.1. Answering the Research Question

This study aimed to answer the research question ‘What are the perceived advan-
tages and limitations of using energy models for municipalities within their data-driven
decision-making process concerning the natural-gas free heating transition?’. To answer
this question, a literature review and embedded multiple case study research were con-
ducted, which included different heating transition projects in ten Dutch municipalities.

Results inter alia show that energy models observed in the present study were mostly
initiated and used by consultancy agencies to support Dutch municipalities in designing
heating transition plans. Over half of the municipalities analysed were found to use
models or modelling studies at some point during their respective heating transition
pilot projects. All cases that provided information about local Transition Vision Heat
development were using or planning to use models or modelling studies for the design of
their vision document.

Models that were used pertained to the CEGOIA model, the Vesta MAIS model, DWA
models, the ETM and the WTM. Modelling studies that were used concerned the ‘Open-
ingsbod’ and the ‘Startanalyse’. Municipalities that did not utilise models or modelling
studies for their pilot projects belonged to the four smallest municipalities analysed in the
present study, indicating a negative relation between municipality size and model usage.
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All municipalities that used models or modelling studies requested external expertise at
some point during the modelling process, indicating that the knowledge and skill level at
municipalities was not sufficient to do this independently. This was confirmed by model
developers who also stated that the knowledge level of practitioners is often insufficient to
interpret results of modelling studies conducted by third parties.

Advantages of using models in heating transition projects mentioned in the interviews
were that the modelling process and its results provided perspective for action, financial
and socio-economic insights, transparency and legitimacy towards residents, concrete
propositions for residents and means to start useful discussions. However, interviewees
also mentioned several limitations. First, models and modelling results were found too
abstract, too general or too simplified for local analysis, not user-friendly and were con-
sidered complex. Results were difficult to interpret for non-experts such as practitioners,
and interactive models could provide practitioners with a better understanding of the
answer and help with getting a feeling for parameter sensitivity. Second, modelling results
provided too little insight into end-user costs and the effects on the electricity grid. Third,
data sets regarding energy use, thermal insulation levels and heat sources proved to be
insufficient for local analysis, and there was no consensus between model developers and
practitioners about the different assumptions regarding green gas availability and energy
labels used in different models.

This study also showed that model developers deemed it unpractical to integrate
social and socio-economic factors in the energy models discussed, but agreed that this
data should be incorporated in modelling studies/reports. Model developers usually did
this by collecting social or socio-economic data and by presenting this data next to the
modelling results to provide context for further decision-making.

Finally, the results suggest that offering comparative model analysis would help
practitioners to deal with the myriad of sometimes contrasting models, modelling studies
and modelling results available and that setting up a multi-model ecology might decrease
the challenges of aligning heating transition projects at different abstraction levels.

6.2. Limitations

The external validity of the empirical results is limited by the context in which the
present study was conducted, in selected municipalities in The Netherlands. This was a
scoping choice motivated by the case study design and time constraints of the present study.
The representativeness of these results to other geographical, political and cultural contexts
might therefore be fairly limited. It is expected that representativeness will particularly be
limited for countries where the heating transition is not organised in a decentral manner
or where there are not multiple (national) energy models available to analyse the costs of
this transition.

Limited access to background information on some commercial energy models limited
the reflection on technical aspects of the models reviewed in the case studies. In the present
study, the capabilities, limitations, underlying assumptions of models were only compared
at the surface level, based on publicly available reports and the challenges and advantages
mentioned by interviewees. This limited access to background information limited the
potential for in-depth model comparison. On the other hand, the time constraints of this
research and the focus on user experiences and the modelling process rather than the actual
energy models also limited this potential. This choice was made because limited access to
the background information of (commercial) models was foreseen and because there are
already other studies, such as [10], that focus on in-depth model comparison.

The data collection tools chosen, interviews and thematic coding, also have their
respective limitations. Interviews and thematic coding are research tools that require a
high degree of interpretation from the researcher. During the coding process, quotes had to
be translated and interpreted. The literal transcripts, the coding process and the coding
reports ensured quotes were methodologically analysed and that it was possible to review
the original quotes.
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The present study used multiple sources of evidence in a triangulating fashion to
decrease the subjectivity of the answers and to check their consistency over time. A
remarkable observation was that within the pilot projects observed the views and plans of
interviewees did not always align with the views as exhibited in the implementation plans
of the pilot project, due to advancing insights.

6.3. Recommendations for Future Research

The present study did not provide an answer as to when heating transition projects
should and when they should not use energy models to guide their heating transition
decision-making process. The discussion offered some criteria that might indicate projects
that do not need energy models such as municipality size, residential housing characteris-
tics and the presence of an energy cooperative. It is therefore recommended to conduct
more research into which criteria could indicate that projects would have an advantage of
using an energy model. It is recommended to conduct more case studies, with different
types of heating transition projects, to explore this topic. In addition, it is suggested to
also include case studies that utilise other decision support tools, such as MCDA tools, in
order to assess the relative advantages and limitations of energy models when compared
to other tools.

Furthermore, it is recommended to further study the impact of social and socio-
economic factors. The literature review revealed that that social and socio-economic
factors are highly important for heating transition decision-making processes, but currently,
the impact of social and socio-economic data within Dutch heating transition projects is
limited and at best influences the prioritisation of neighbourhoods. More research into
certain factors, for example, income or the presence of energy cooperatives, could provide
insight into the correlation of these factors with heating transition project progress and
into the potential value of models that include such factors. Such insights would not only
benefit the Dutch heating sector but might also benefit a range of international energy
transition projects. On the one hand, this might entail desk research into socio-technical
transitions and models (such as Socio-Technical Energy Transition, System Dynamics or
Agent-Based models). On the other hand, it might address practical case studies that test
socio-technical transition theories and models within heat or energy transition projects.
Ideally, such case studies are not restricted to The Netherlands but also include projects in
countries with significantly different heating systems, energy markets, institutions, social
and socio-economic values to compare and corroborate results.

Finally, it is recommended to conduct more research into the field of multi-model
ecologies (e.g., systems of interacting models). The present study has shown the need for
comparative analysis, for modelling at different abstraction levels and for assessing the
impact of choices regarding the heating transition in other disciplines, such as electrical
infrastructure and social welfare. More research into multi-model ecologies can benefit
both the Dutch and the international academic modelling field as it offers the opportunity
to add value to existing models, for example by making them more interactive with other
national or international models. Nikolic et al. [61] and Manfren et al. [60] offer the first
set of principles, challenges and guidelines that provide a conceptual basis for multi-
model ecologies. Currently, the ‘Mondaine Suite’ project [64] is one of the first projects
that is aiming to realise a multi-model ecology by developing a coupling mechanism for
different (Dutch) energy models. However, this project does not yet couple Socio-Technical
Energy Transition models, System Dynamics or Agent-Based models, which might offer
an interesting opportunity for future research to include more social and behavioural
components into multi-modal ecologies.
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Appendix A

Table A1. Glossary and definitions of Dutch (policy) concepts and abbreviations used in the present study.

Concept Abbreviation Definition Used

Startanalyse SA

The ‘Startanalyse’ (Start Analysis in English) is a national modelling study
conducted with the Vesta MAIS model by PBL. The Startanalyse is presented

together with guidelines for local analysis (Handreiking) in a guidebook
(Leidraad) for Dutch municipalities.

Openingsbod OB

The ‘Openingsbod’ (opening offer in English) is a modelling study initiated by
Stedin, a Dutch network operator. The study was developed as a tool to

quicken decision making in the Dutch heating transition. The study compares
the modelling approach and the results of three different energy models.

Programme for Natural
Gas-Free Districts PAW

A joint programme of the Ministry of the Interior and Kingdom Relations, the
Ministry of Economic Affairs and Climate Policy, the Association of

Netherlands Municipalities and the Association of Regional Water Authorities
that, among others, provides subsidies and requirements for the Test Beds for

Natural Gas-Free Districts (pilot projects) [3].

Regional Energy Strategy RES

“Within the RES, public authorities work alongside social partners, network
managers the business community and, where possible, residents to develop

regionally supported choices. The RES aims to realise the generation of
renewable electricity (35 TWh), to realise the heating transition in the built

environment (from fossil to sustainable sources) and to realise the necessary
storage and energy infrastructure” [3].

Transition Vision Heat TVW

The TVW is a policy document in which a municipal council has to establish a
realistic schedule within which to transition away from natural gas [3]. The

focus of the first TVW is on the period until 2030 and every municipality has to
show which building will become natural gas free or insulated, with which

electrical infrastructure and when [65].

Neighbourhood
Implementation Plans WUP

A WUP is the follow up of the TVW and indicates how a municipality will
make a specific neighbourhood natural gas-free by transitioning to sustainable

heating and cooking systems.

Basic registration of
addresses and buildings BAG

The BAG-dataset is a national dataset. Municipalities are responsible for
providing data for the BAG-dataset, the dataset is maintained by the Dutch

Cadastre, Land Registry and Mapping Agency
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Appendix B

Table A2. Overview of the literature found describing different modelling methods used for sustainable heating transi-
tion projects.

Model Type Studies Relevant Findings for This Study

Agent-based model [1,22,23] These studies emphasise the importance of trying to incorporate social factors
within modelling.

TIMES (The Integrated MARKAL-EFOM
System) energy model (linear optimisation) [24–26] The maximum surplus assumption used in the model is often challenged.

Simulation model (using Long-rangeEnergy
Alternatives Planning (LEAP software) [27]

All stakeholders involved could run and modify the model themselves and even
modify it according to their needs. The model has a large sensitivity for a

multitude of assumptions

METIS simulation model [28] A current understanding of quantitative tools by policymakers is often missing

HOMER optimisation [29]
Most models and tools currently used do not provide both economic and
environmental analysis of energy systems, which can lead to the design of

sub-optimal systems

Housing Stock Energy Model (HSEM) [30]
Many HSEMs are lacking in transparency and modularity and that they are
often limited in scope and limited in their utility. Behavioural responses are

blurred in HSEMs.

Optimisation model [31–35]
The results of the model will always depend on the focus of the optimisation

and that there are not many models yet that can incorporate economic,
environmental and social factors at the same time.

Dynamic system modelling [36] Analyses behaviour over time by identifying elements within the system and
their mutual correlations.

PRIMES (Price-Induced Market Equilibrium
System) model [37] The study does not seem to involve social or behavioural aspects. Analysis of

energy systems is based on the inputs from GIS mapping

Eco-district heat kit optimisation model [21] This study attempted to make the model usable for non-experts.

Socio-Technical Energy Transition
(STET) models [38,39]

(Optimisation) Models tend to simplify their depiction of societal and political
factors. STET models try to integrate both quantitative modelling and

conceptual socio-technical transitions

Area-based model [40] Emphasises the importance of modelling at the sub-city scale as this enables,
among others, more accurate quantification of demand increases.

Econometric model [41] Suggests that we should combine spatial attributes with econometric models.

Appendix C

Table A3. An overview of the respondents from municipal heating transition projects.

Municipality Interviewee Interviewee Function

1 01 Part-time project leader pilot project
2 02 Project leader pilot project
2 03 Project manager TVW
3 04 Environment manager pilot project
4 05 Project leader pilot project
5 06 Project manager TVW
5 07 Project leader pilot project
6 08 Project manager pilot project
6 09 Project manager TVW
7 10 Project leader pilot project
8 11 Process director pilot project
9 12 Project leader pilot project
9 13 Project manager TVW
10 14 Project leader pilot project
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Table A4. An overview of the respondents from mode development firms involved in municipal
heating transition projects.

Model Development Firm Interviewee Interviewee Function

1 15 Partner and modeller
2 16 Consultant natural resources
3 17 Senior Consultant
4 18 Consultant and technical expert model
5 19 Researcher climate, air and energy
6 20 Consultant heating transition
7 21 Director and modeller

Appendix D

Table A5. The code-occurrence table shows an overview of the 37 thematic codes, the respective code
frequencies and the number of transcripts that quotes were identified in.

Code Code Frequency # Transcripts

Approach 149 11
Third-party expertise 79 13

Coupling opportunities 70 13
Model/modelling study used 65 13

Motivation residents 52 12
Analysis tools used 51 12

Project progress 51 13
Data 43 9

Collaboration 42 13
Participation activities 42 12

Information Respondent 37 13
(Envisioned) natural gas alternative 35 10

Incentivizing Residents 30 5
Financial arrangement residents 27 9

Added value pilot project 25 1
Limitations approach: 22 9

Future approach 21 8
Limitations model: Vesta 19 5

Responsibility municipality 17 7
Added value model: CEGOIA 13 3
Limitations model: CEGOIA 11 4

Limitations models in general 11 5
Other reasons to opt for a heating alternative 8 3

Added value analysis tool: Resident questionnaire 7 1
Added value modelling study: Openingsbod 6 2

Limitations model: DWA 4 1
Added value model: Caldomus 4 2

Added value model: DWA 3 2
Added value modelling study: Startanalyse 3 3

Limitations model: Caldomus 3 1
Added value analysis tool: Greenvis 2 1

Not familiar with energy models 2 2
Added value analysis tool: Resident meetings 1 1

Limitations analysis tool: Resident game 1 1
Added value analysis tool: Susteen 1 1
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Appendix E

Table A6. The code occurrence table shows an overview of the 53 thematic codes, their respective code frequency and the
number of transcripts that quotes were identified in and the code group.

Code Code Frequency # Transcripts Code Group

Modelling and Consultancy approach 100 7 Consultancy and modelling approach
Collaboration 68 7 Collaboration and Competition

data 46 7
Challenges modelling approach 45 6 Consultancy and modelling approach

Inclusion of socio-economic factors 43 7 Consultancy and modelling approach
Information about assumptions 37 7 Consultancy and modelling approach

Information about parameter sensitivity 34 7 Consultancy and modelling approach
Information about input data 32 7 Consultancy and modelling approach

Feedback channels 30 6 Consultancy and modelling approach
Result interpretation 28 6 Consultancy and modelling approach

Coupling opportunities 22 5 Consultancy and modelling approach
Users and Uses of Vesta MAIS 19 2 Uses and Users models
Limitations Vesta MAIS model 18 5 Limitations model

Information respondent 17 5
Advantages modelling approach 17 6 Consultancy and modelling approach

Information Caldomus 15 2 General information model/modelling study
Users and uses ETM 13 2 Uses and Users models

Information model ETM 13 1 General information model/modelling study
Limitations Startanalyse 13 4 Limitations modelling stud

Advantage Vesta MAIS model 13 2 Advantages model
Influence of municipality size 12 4
Limitations CEGOIA model 12 4 Limitations model
Information DWA Model(s) 11 1 General information model/modelling study

Planned changes Caldomus model 11 1 Limitations model
Connection RES, TVW, WUP 12 3 Consultancy and modelling approach

Competition 9 2 Collaboration and competition
Information model: CEGOIA 9 2 General information model/modelling study

Information Startanalyse 7 3 General information model/modelling study
Limitations Caldomus model 6 1 Limitations model
Planned changes Startanalyse 6 2 Limitations modelling stud

Advantage ETM 6 1 Advantages model
Information WTM 6 1 General information model/modelling study

Advantage Startanalyse 6 2 Advantages modelling study
Information Vesta Mais 5 2 General information model/modelling study

Limitations ETM 5 1 Limitations model
Users and uses of CEGOIA 5 1 Uses and Users models
Uses and users Startanalyse 5 2 Uses and users modelling studies

Advantage Openingsbod 4 2 Advantages modelling study
Users and uses WTM 4 1 Uses and Users models

Advantage CEGOIA model 3 1 Advantages model
Planned changes ETM 3 1 Limitations model

Planned changes CEGOIA model 3 1 Limitations model
Users and uses of the Caldomus model 3 1 Uses and Users models

Advantage WTM 3 1 Advantages model
Users and Uses DWA model(s) 3 1 Uses and Users models

Information Openingsbod 2 1 General information model/modelling study
Limitations DWA model(s) 2 1 Limitations model

Advantage Caldomus model 2 1 Advantages model
Uses and Users Openingsbod 2 1 Uses and users modelling studies

Limitations WTM 1 1 Limitations model
Information modelling study: Openingsbod 1 1 General information model/modelling study

Advantage DWA model(s) 1 1 Advantages model
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Abstract: Decarbonisation and efficiency goals set as a response to global warming issue require
appropriate decision-making strategies to promote an effective and timely change in energy systems.
Conceptualization of change is a relevant part of energy transitions research today, which aims at
enabling radical shifts compatible with societal functions and market mechanisms. In this framework,
construction sector can play a relevant role because of its energy and environmental impact. There is,
however, the need to move from general instances to specific actions. Open data and open science,
digitalization and building data interoperability, together with innovative business models could
represent enabling factors to accelerate the process of change. For this reason, built environment
research has to address the co-evolution of technologies and human behaviour and the analytical
methods used for this purpose should be empirically grounded, transparent, scalable and consistent
across different temporal/spatial scales of analysis. These features could potentially enable the
emergence of “ecosystems” of applications that, in turn, could translate into projects, products and
services for energy transitions in the built environment, proposing innovative business models that
can stimulate market competitiveness. For these reasons, in this paper we organize our analysis
according to three levels, from general concepts to specific issues. In the first level, we consider the
role of building energy modelling at multiple scales. In the second level, we focus on harmonization
of methods for energy performance analysis. Finally, in the third level, we consider emerging
concepts such as energy flexibility and occupant-centric energy modelling, considering their relation
to monitoring systems and automation. The goal of this research is to evaluate the current state of
the art and identify key concepts that can encourage further research, addressing both human and
technological factors that influence energy performance of buildings.

Keywords: energy transitions; energy modelling; energy analytics; data-driven methods; building
performance analysis energy efficiency; energy flexibility; occupant-centric design; open energy data

1. Introduction

In recent years, a notable research effort has been devoted to the conceptualisation
of sustainability transitions [1] and, more specifically for energy, to the identification of
“complementarities” at multiple levels [2,3]. Transition processes embody the necessity of
radical-shifts and they represent an opportunity for innovation and entrepreneurship [4],
with a clear focus on issues such as global warming and decarbonisation of energy sys-
tems [5]. In these innovation processes, the role of intermediaries and strategic niches
appears to be crucial. In fact, understanding how actors can control and accelerate the
energy transition is a key issue for research today [6] and intermediaries can play a fun-
damental role in this direction [7]. Intermediaries (i.e., public, non-profit, and private
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third-parties [8]) are actors which facilitate relations between key actors and enable knowl-
edge sharing and pooling [9].The opportunities for the construction industry in this sense
are relevant, because of the impact of built environment in terms of raw resources, energy
and carbon emissions [10], but also because of the potential to exploit innovative technolo-
gies within emerging paradigms such as circular economy [11]. There is, however, the need
to move from general instances to specific actions. These actions have to enable radical
shifts compatible with societal functions and market mechanisms; for this reason, in this
research we focus on energy modelling and analytics that can provide critical insights in
this sense. At present, it possible to identify multiple enabling factors for radical shifts and
acceleration of the process of change. First, the evolution of practices focused on concepts
such as open data, open innovation, open science [12–14] and, in particular, open energy
modelling principles [15,16]. Second, advances in building data interoperability (techni-
cal, informational and organizational) [17] and data availability at multiple levels, using
technologies such as the Internet of Things (IoT) [18–20] and cyber-physical systems [21],
which can enable, in turn, innovation in end-user energy delivery [22], and in energy
infrastructures [23]. Third, the increasing decentralization of energy systems where the
co-evolution of built environment and energy infrastructures [24] plays a fundamental role,
that can be investigated by means of “soft-linking” of energy modelling approaches, from
planning to operation [25]. Finally, innovative business models proposing concepts such
as prosumer [26] and prosumager [27], which are determining changes in the way energy
market works and energy trading takes place, for example using Peer-to-Peer automated
exchange mechanisms, exploiting Blockchain technologies [28].

In this rapidly evolving framework, research aimed at radical changes in energy
systems and built environment needs to consider the enabling factors reported above and
to acknowledge the limitations and bottlenecks in view of energy efficiency and carbon
reduction goals. The aim of this paper is to discuss to what extent and in what ways energy
modelling and analytics can support the process of change for energy transitions in the
construction sector. In Section 2 we illustrate the background of the research, explaining
the fundamental elements that motivate it.

2. Background and Motivation

Energy transitions involve the transformation of the network of players and organi-
sations traditionally working in the energy sector (e.g., policy-makers, regulators, trans-
mission and distribution authorities, etc.) as well as the change of the role of customers,
from passive to active (i.e., prosumers [26] and prosumagers [27]).In fact, socio-technical
innovations are critically dependent on the possibility to access new information, knowl-
edge and resources, which are key enablers for the development of innovative products
and services [29], within a market mechanism. Construction sector can be conceptualized,
for example, by considering three fundamental domains [30]: project, product and service.
All these domains are going to be deeply influenced by socio-technical changes in energy
transitions, which will transform the way buildings are designed, built and managed.
Sharing knowledge among actors is crucial when addressing building energy performance
in a comprehensive way, considering both human and technical factors [31]. In fact, the
impact of occupants has to be considered from multiple stand-points [32] and users’ be-
haviour can determine both “re-bound” [33] and “pre-bound” effects [34,35], that can
create a substantial difference between expected and measured performance, which can be
inscribed in the general category of “performance gaps” [36–38]. A “performance gap” can
be found in all the stages of building life cycle [39] and the use of standardized assumption
in modelling, e.g., to create Energy Performance Certificates, has to be critically questioned
when using them to estimate actual energy consumption and potential savings [40].

Additionally, the dynamic interaction between building and energy infrastructures [41,42]
has to be considered as well for multiple reasons (e.g., operational constraints, limitations
of the penetration of renewables, innovative business model for the electricity market, etc.)
and in light of possible developments in terms of “soft-linking” of energy models [25].
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Finally, considering building performance from a whole life cycle perspective (indeed
critical for emerging paradigms such as circular economy [11]), embodied energy in ma-
terials, technologies and processes represents another potential “performance gap” to
be considered [43,44]. In fact, all these potential gaps create risks and lack of credibility
when investing in energy efficiency and sustainability measures. Therefore, monitoring,
verifying and tracking performance (i.e., energy, emission and cost in particular) using
robust, transparent and empirically grounded methods is essential to evaluate the effective-
ness of measures and share knowledge regarding practices. This, in turn, can contribute
to investment de-risking and stimulate the growth of business “ecosystems” in energy
and sustainability transitions, particularly for the construction sector. Additionally, the
co-benefits of energy efficiency measures (e.g., improved indoor environmental quality,
health, productivity, pollution reduction, etc.) [45] have to be considered both by policy
makers and investors, to weight properly cost and benefits. Following the general trend
towards open science, briefly outlined in Section 1, the research community in the energy
field has stressed in recent years the fundamental importance of open energy data and
models [46,47] and we can envisage an evolution towards systems of model [48] designed
to address key problems in energy transitions, eventually taking advantage of “soft-linking”
approaches [25,49]. Rather than being designed for separate applications, models can be
potentially conceived and work like “ecosystems” [48] of interconnected applications,
based on open data and modelling standard [46] where the researchers are opening their
modelling “black-boxes” [47]. Indeed, transparent and robust models can become part
of innovative business strategies, leading to techno-economically feasible pathways in
transitions(thereby enabling a radical change to happen in practice). In fact, this review is
part of a more extensive research work focused on “Buildings-as-Energy-Service” concept,
in which separate literature reviews were conducted to explore both social and physical
science perspectives on this topic. The concepts emerging from the reviews represent the
basic elements of a Cognitive Mapping [50] process. The aim of this process is to create
an inter-disciplinary research environment (a cognitive framework) [51] that is essential
for innovation processes, where creativity is stimulated by the participation of user in
the process of knowledge creation and sharing [52]. In Section 3 we describe the research
methodology used to identify the role of energy modelling and analytical techniques in
relation to the issues mentioned above.

3. Research Methodology

Considering the issues briefly outlined in Sections 1 and 2, the objective of this review
study is to identify and analyse the features of energy modelling and analytical techniques
that could be enabling factors in energy transition processes. The two fundamental research
questions posed in this study are the following. First, what are the modelling techniques
that can meet the criteria that will be described later in this section? Second, what are the
essential characteristics (of modelling approaches) that can contribute to reduce the level
of fragmentation of knowledge? The modelling framework proposed as outcome of the
research attempts to reduce the level of fragmentation of the highly diversified body of
knowledge available and to help in the conceptualization of processes of change (energy
transition) by identifying opportunities, together with limitations and bottlenecks.

In this research both qualitative and quantitative data are analysed and it is therefore
a “mixed approach” [53]. For this reason, we used concepts from Grounded Theory [54] as
a reference for our research, in which both qualitative and quantitative data are utilised
(“all is data” [55]). In brief, Grounded Theory (GT) can be defined as a “a set of integrated
conceptual hypotheses systematically generated to produce an inductive theory about a
substantive area” [56] and as “theory that was derived from data, systematically gathered
and analysed through the research process” [57]. The results of a GT study are “a set of
concepts, related to each other in an interrelated whole” [58].

The limitations of such approach depend on the fact that the selection in literature sam-
pling depend on the subjective judgment (point of view) of the researcher and cannot stand
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outside of it [58]. However, the process can become more transparent and reproducible by
stating the steps and the criteria used in it. In this research, we followed seven steps:

(1) Definition of knowledge domains of interest;
(2) Stratified search using domain and keywords in Web of Science database (WoS);
(3) Initial selection of pertinent literature on WoS;
(4) Definition of additional criteria for inclusion/exclusion of literature;
(5) Initial verification of literature using title, keywords and abstract;
(6) Final selection of literature;
(7) Detailed analysis of literature.

The fundamental knowledge domain of interest is “Building Energy Performance”
(step 1) and the keywords considered initially are “Building stock”, “Uncertainty” and
“Flexibility” (step 2), to address fundamental topics in research. “Building stock” is chosen
to identify examples of building energy modelling at multiple scales (e.g., for planning and
policy, utility scale studies, etc.). “Uncertainty” is chosen to identify studies that analyse
the critical dimension of energy performance uncertainty, which may create risks and lack
of credibility for efficiency practices, starting from fundamental principles in Measurement
and Verification (M&V) and Monitoring & Targeting (M&T). “Flexibility” is chosen to
identify research regarding the interaction between building and infrastructures, which
is strictly related to their technological co-evolution. The results obtained in step 2 are
summarized in Table 1.

Table 1. Knowledge domain, keywords and criteria for literature selection.

Domain of
Interest

Domain and
Keywords

Sources in
WoS Database

Sources in
Categories:

Architecture
Construction

Planning

Motivation for
Criteria Selection

Source in
Final Selection

“Building Energy
Performance”

“Building Energy
Performance”

AND
“Building stock”

1335 870

Building energy
modelling for

energy planning
and policy targets,

utility scale
analysis,

parametric
building

performance
studies.

52

“Building Energy
Performance”

AND
“Uncertainty”

1551 705

Methods based on
M&V and M&T

principles that can
help tracking

energy
performance

transparently (and
reducing

uncertainty) and
that can be applied

at multiple
temporal and
spatial scales.

123

“Building Energy
Performance”

AND
“Flexibility”

1027 237

Strategies to
control buildings
and enhance their
energy flexibility

strategies in
relation to energy

demand in
end-uses and

user behaviour.

68
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In order to obtain the final literature selection, additional criteria have been introduced
and re-sampling of literature has been conducted iteratively until “theoretical saturation”
was reached. Theoretical saturation term indicates “the phase of qualitative data analysis in
which the researcher has continued sampling and analysing data until no new data appear
and all concepts of the theory are well-developed and their linkages to other concepts
are clearly described” [59].The criteria used in re-sampling have been summarized and
motivated in Table 2. They are derived from previous research in the area of energy
modelling [24,60] and consider the general trends towards the use of open data for energy
research [46] and the necessity to increase of transparency in energy modelling [47]. In other
words, the criteria introduced represent, in our opinion, limiting factors and constraints for
the creation of “ecosystems” of models [48], which are briefly outlined in Section 2.

Table 2. Additional criteria introduced for energy modelling literature selection.

Criteria Description Motivation for Criteria Selection

Empirical Grounding
Based on empirical data, and
tested on a relevant number

of cases.

Reducing risk of investment in energy
transitions and ensure the credibility

of policies by means of evidence.

Harmonization

Methodologies in which
redundancies and overlapping
features are removed, ideally

based on protocols
and standard.

Avoid redundancy, multiplication of
efforts and unnecessary increase of

complexity of procedures. Streamline
the implementation of models and

procedures.

Scalability
Capability of analysing

problems at multiple temporal
and spatial scales.

Ability to work coherently and
consistently on multiple temporal and

spatial scales.

Interpretability

Ability to detect relevant
cause-effect relationship, ideally

combing statistical analysis
techniques with physical

understanding of phenomena.

Physical interpretation can help
extract insights that are fundamental
for the continuous improvements of

processes and technologies.

Re-configurability

Able to be used in multiple
stages of the building life-cycle,

for example for design and
operation, sharing similar

underlying principles.

Creating a certain degree of continuity
in the data analysis workflow during

the life-cycle of projects.

In Section 4 the results of the review process are presented, structuring them according
to three levels of analysis (related to the domain and keyword chosen, as explained before
in this section) that correspond to the development, by means of iterative sampling, of the
key concepts reported in Table 1. The overall research process is synthesized graphically
in Figure 1.

Figure 1. Diagram synthesizing the research process.
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4. Results and Discussion

In this section we discuss how energy modelling and analytical tools could support
energy transition processes for the construction industry, highlighting relevant insights
for research across the three levels of analysis introduced in Section 3. The three levels
proposed are indeed a strategy to perform a decomposition of the problem, going from
general principles to specific issues that are emerging within the research framework. In
Section 4.1 we analyse the topic of building energy performance analysis at multiple scales
and its implications (e.g., in energy and planning policy, utility scale studies, etc.), which
introduces the issues at general level (first level of analysis). In Section 4.2 we present
harmonized methodologies (based on M&V principles and considering possible extensions)
to analyse energy performance in buildings and we synthesize their characteristics (second
level of analysis). Finally, in Section 4.3, we introduce innovative topics such as energy
flexibility (infrastructures’ interaction) and occupant-centric (users’ interaction) energy
modelling, which will contribute to redefine how buildings are actually designed and
operated in the future (third level of analysis). Overall, throughout these three levels
we show how many of the ongoing research developments are deeply related to the
fundamental elements that motivate our research and are described in Section 2.

4.1. Building Energy Performance Analysis at Multiple Scales

Comprehensive reviews of building energy models have been published in recent
years [61–63] and, while energy performance is particularly relevant, more comprehen-
sive approaches to building performance analysis [64] are crucial for the evolution of the
building sector. As anticipated, the analysis of building energy performance requires an
understanding of both human and technical factors [31], and this confirms the inherent
socio-technical dimension of energy modelling and analytics. It is therefore necessary to
structure energy performance analysis with respect to both human and technical factors.
In turn, this is important, for example, to address properly the gap between design and
measured performance, i.e., the performance gap [36–38], introduced in Section 2. Further,
the concept of statistical “Reference Buildings” [65] (RB) must be introduced to enable
building performance benchmarking at multiple scales. RB models represent the common
typologies, technologies and end-uses in the building stock, identified through statistical
analysis and expert knowledge (e.g., on building technologies, types of end-uses, user
behaviour, etc.) on a large-scale base. Building data are usually multi-level data, which
makes it difficult to access the full information needed to describe in detail the performance
of building stock. However, building energy modelling data can be organised in a hierar-
chical and standardized way; examples in this sense can be found at the EU level in the
legislation on the definition of cost-optimal performance levels [66] and in EU Building
Stock Observatory [67]. Further, in the US, technical standardisation has been tested with
the definition of RB models [68,69], accounting also for the costs of various technological
options [70].The role of energy modelling cycles and the importance of the level of de-
tail (from conceptual to final design) are considered by the standard ASHRAE 209 [71].
Additionally, the use of hierarchical structures in datasets for building energy modelling
can be found, for example, in performance gap studies [37], in the analysis of impact of
automation systems [72], and in occupancy modelling [73].Further, with respect to build-
ing energy model calibration on measured data, we can find examples using multi-level
data [74] and exploiting macro-parameters [75] (i.e., lumped quantities) to facilitate and
guide the uncertainty and sensitivity analysis, together with the use of archetypes [76] (i.e.,
RB for a certain construction typology), and of additional information such as monitored
internal temperature profiles [77].At the state of the art, multiple modelling options are
available, depending on the scope of the analysis process, which range from physics based
(“law driven”) “white-box” models to statistics and machine leaning based (“data driven”)
“black-box” models. An analysis of the suitability of the different modelling strategies has
been proposed by Koulamas et al. [78] and, more specifically for model calibration, by
Manfren et al. [79]. Indeed, it is possible to use models to simulate performance (forward
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modelling) and to estimate model inputs from measured performance (inverse modelling)
in multiple ways. Therefore, using forward and inverse modelling techniques [24] in a syn-
ergic way for calibration purposes is crucial. In this context, advanced techniques such as
Bayesian analysis can help reconstructing built stock data under uncertainty [80–82], using
probabilistic ranges for the model input parameters. The possibility to benchmark building
performance on a large scale base [83,84] can increase the effectiveness of policies and can
guarantee better decision-making processes, not only for policy makers but for multiple
stakeholders (e.g., designers, energy managers, investors, etc.). In fact, the progressive
convergence of bottom-up and top-down perspectives in energy modelling and planning
for building stock [61] can contribute to the development of “soft-linking” approaches
between various types of models [25] and, consequently, ensure consistency of actions
in transition processes at multiple levels. Overall, a systematic statistical approach to
building performance analysis [85] can be crucial to the evolution of design and operation
paradigms for building stock. In recent years we assisted to an increasing commitment
towards energy efficiency in buildings which led to the definition of paradigms such as
Passive House [86], NZEB [87,88], and PEB [89], considering just the most relevant. Indeed,
the possibility to deploy these paradigms at scale is subject to technical and economic
constraints. In this sense, the use of statistical “Reference Buildings” can support techno-
economic optimization studies [65,90], utility scale analysis of design [91] and operation of
buildings [92] and energy planning at national scale [68–70], where innovative building
paradigms are proposed and implemented. In terms of computation, the necessity of
performing parametric (or probabilistic) simulation studies [93–95] is emerging and the
algorithmic definition of simplified building models [96–98] can be exploited for building
stock modelling at city scale [99–101] and regional scale [102]. In Table 3 we synthesize
the outcomes of literature analysis regarding building energy performance analysis at
multiple scales, highlight the main target of the different studies and their scale of analysis,
namely national, regional, urban and stock. The latter indicates, in general, studies that are
proposing building performance analysis on multiple typologies and end-uses.

Table 3. Building energy performance analysis—Target and spatial scale of analysis.

Source Year
Target of Analysis Spatial Scale of Analysis

Energy Planning
and Policy

Utility Level Study
Parametric Building

Analysis
National Regional Urban Stock

Deru et al. [68] 2011 ✔ ✔

Thornton et al. [70] 2011 ✔ ✔

Goel et al. [69] 2011 ✔ ✔

Ballarini et al. [102] 2017 ✔ ✔

Delmastro et al. [99] 2016 ✔ ✔

Ghiassi et al. [100] 2017 ✔ ✔

Delmastro et al. [101] 2020 ✔ ✔

Goel et al. [91] 2018 ✔ ✔

Meng et al. [92] 2017 ✔ ✔

Pernigotto et al. [96] 2014 ✔ ✔

Dogan et al. [97] 2016 ✔ ✔

Dogan et al. [98] 2016 ✔ ✔

Goel et al. [103] 2016 ✔ ✔

Badiei et al. [104] 2019 ✔ ✔

The examples reported before are clearly not exhaustive but they are used to illustrate
the potential role of building energy performance analysis at large scale, using modelling
methods that are transparent and reproducible, build upon (or compatible with) technical
standardization. These topics are developed further in Section 4.2, consider two funda-
mental dimensions: the quantification of the impact of energy efficiency measures and
the ability model dynamic behaviour (i.e., load profiles). Finally, at the beginning of this
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Section we stressed the importance of a precise hierarchy for multi-level building energy
modelling data. Another important aspect is that of “vertical integration” of information
in energy modelling, from user up to infrastructures (e.g., user, individual spaces within
the room, individual rooms, building zones, whole building, meter, energy infrastructure).
Examples of research in this direction can be found in IEA Annexes on “Energy Flexibility
in Buildings” [105] and “Occupant-Centric Building Design and Operation” [106]. These
fundamental aspects of current research are discussed more in detail in Section 4.3.

4.2. Harmonizing Methodologies to Analyse Energy Performance

Appropriate spatial and temporal resolution of data is necessary to track building
energy performance at multiple scales and energy metering data constitute, of course,
the basic information layer. There is the need for harmonized methods that can ensure
robust evidence (empirically grounded and validated) for efficiency measures (not only for
research, but also for policy), by means of reliable statistics regarding the actual impact of
efficient technologies [107,108] and especially by means of performance benchmarking of
efficiency measures [109,110]. The term “harmonized” is used here to indicate, in general,
methodologies in which redundancies and overlapping features are removed; harmonized
methods can help documenting performance transparently, for example by tracking evi-
dence of energy efficiency savings (and also related carbon and cost savings) in time and
detecting the impact of influencing factors. Measurement and Verification (M&V) proto-
cols [111,112] and methods represent the backbone in this sense and important research
initiatives have been conducted in recent years to enhance and extend their applicabil-
ity, such as the Uniform Methods Project (UMP) and other related projects [109,110,113].
The goal of these projects was harmonising the methods for the quantification of energy
savings for different efficiency measures, both in residential and commercial buildings.
Multiple measures (technologies) are included (HVAC, HP/chillers, CHP, lighting, enve-
lope, variable-frequency drives, etc.). Another important project, focused on de-risking
investment in energy efficiency, is the Investor Confidence Project (ICP) [114]. As already
mentioned, the methods used in these projects represent an extension of the ones that
can be found in M&V protocols [111,112] and technical standards [115–117], in which
thresholds (expressed as statistical KPIs, representing the “goodness of fit”) are given for
the acceptability of models as calibrated [118] on measured data. Finally, open software is
available [113,119,120] as a basis for further development that can potentially be enabled
by open science principles (i.e., transparency and reproducibility of results, among others).

In general, these approaches are based on energy interval data (dependent variable)
and weather data (independent variables) along with other independent variables (e.g.,
dummy variables for models of various occupancy and operational regimes) which can be
derived from contextual knowledge and information. Instead of using energy data directly,
it is possible to use the energy signature [115], which is the average power over the number
of hours of operation in the interval considered. The most important independent variable
for weather normalization of energy consumption is outdoor air temperature [121,122]
and these methods are affine to variable-base degree days methods [92,123]. Temperature
response methods are reviewed by Fazeli et al. [124]. Conceptual simplicity is one of
their advantages (among others), compared to other meta-modelling techniques [125,126].
Automated model selection techniques [119,127] can be applied as well to compare the
performance of multiple modelling options, using statistical KPIs representing their “good-
ness of fit”. From an analytical perspective, it is important to be able to connect both the
design and the operation phase analysis [128,129] in order to ensure consistency in the use
of energy performance analysis techniques over the different phases of the life cycle [130].
In this way reliable limits for performance measured or estimated [131] can be produced
and used against benchmarks, allowing a continuous improvement process (i.e., Plan Do
Check Act is one of the key principles of Energy Management Systems [132]).

Far from being merely instruments for weather normalisation of energy use (i.e., out-
door temperature dependence), harmonised approaches can also help modelling dynamic
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loads (e.g., demand response) [109], ideally clustering operating conditions for typical pro-
files [133–135] to obtain specific insights on recurrent operating schedules (e.g., depending
on the type of end-use).

In reality, understanding load dynamics at multiple scales is crucial for providing
accurate estimates of the impact of flexibility measures that can inform policy [136] by
creating a “soft link” between modelling approaches. Load modelling techniques can
be used to complement “traditional” optimization approaches in cases where they are
no longer sufficient and several operational configurations need to be studied [137]. Fur-
thermore, the possibility of evaluating the thermal, electrical and fuel requirements with
harmonised methods can extend further the principle of “soft-linking” of energy mod-
els in multi-commodity systems [138–142]. In this sense, harmonised methods should
complement (in terms of general principles) open science-based approaches to energy
research [16] because of their transparency. In addition, they may help to address related
issues such as energy demand forecasts in future climate change scenarios [143–145] and
definition of load profiles evolution due to efficiency measures and behavioural change,
which are fundamental for optimizing decentralised energy systems in buildings [146] and
communities [138,147,148].

In short, harmonised approaches can be used to discuss two main aspects of energy
modelling research in a rigorous and transparent manner: the quantification of the effect of
energy efficiency measures and the reconstruction of dynamic behaviour (i.e., time series
modelling), such as load profiles analysis. Table 4 below provides a comparison of the main
features of regression-based modelling methods that can meet the constraints set out in
Section 3. We consider different types of end-uses, namely residential and non-residential,
and different types of energy services, namely heating, cooling, domestic hot water (DHW),
and appliances. First of all, the selected and reviewed literature reflects, in large part,
empirically based studies in which the authors used operation phase data. The research is
performed in all cases using regression-based (interpretable) methods that are significantly
consistent with the harmonisation and standardisation principles outlined in this section.
In terms of temporal scalability, the papers are categorised with respect to monthly, daily
and hourly data. In certain cases, sub-hourly data are used, but we classify them as hourly
data since this is the highest resolution considered by the model calibration thresholds
proposed in the standards and protocols [118]; in any case, this resolution is adequate to
capture the essence of building dynamic energy behaviour. In terms of spatial scalability,
we consider building subsystems (building fabric and technological systems), building
as a whole, building stock, and community and city scale. For the latter, the term design
corresponds substantially to planning; the operational phase data are used as a basis for
making accurate forecasts for the future. In addition, whole building energy balance is used
in most situations, although in some cases (e.g., evaluation of building fabric characteristics)
the energy balance at the zone or room level is used. Finally, with the term approximate
physical approximation, we suggest the possibility of using regression coefficients to
estimate physical quantities. Overall, the table illustrates how harmonized/standardized
regression-based methods can cover several temporal and spatial scales of analysis and
how they can theoretically combine design and operational phase performance analysis
into the same analytical workflow (thereby satisfying re-configurability criteria, reported
in Table 2). Finally, regression models can be used for both residential and non-residential
end-uses to study energy services (heating, cooling, DHW, appliances) in multiple ways
and can provide insights up to building system level when sub-metering data (e.g., thermal,
electric) are available, while enabling, at the same time, the aggregation of results on a
large scale base for building stock modelling.
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Table 4. Harmonized regression-based modelling approaches for building performance analysis.

Source Year

End-Use Energy Services Temporal Scale Spatial Scale Interpretation Phase
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Lammers et al. [149] 2011 ✔ ✔ ✔ ✔ ✔ ✔ ✔

Hallinan et al. [150] 2011 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Hallinan et al. [151] 2011 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Danov et al. [152] 2011 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Masuda and Claridge [153] 2012 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Bynum et al. [154] 2012 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Masuda and Claridge [121] 2014 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Paulus et al. [127] 2015 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Lin and Claridge [122] 2015 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Hitchin and Knight [155] 2016 ✔ ✔ ✔ ✔ ✔ ✔ ✔

Jalori and Reddy [156] 2015 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Paulus [119] 2017 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Abushakra and Paulus [157] 2016 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Bauwens and Roels [158] 2014 ✔ ✔ ✔ ✔ ✔ ✔

Erkoreka et al. [159] 2016 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Giraldo-Soto et al. [160] 2018 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Uriarte et al. [161] 2019 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Busato et al. [162] 2012 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Busato et al. [163] 2013 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Krese et al. [164] 2018 ✔ ✔ ✔ ✔ ✔ ✔
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Table 4. Cont.

Source Year

End-Use Energy Services Temporal Scale Spatial Scale Interpretation Phase
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Sjögren et al. [165] 2009 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Vesterberg et al. [166] 2014 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Meng and Mourshed [92] 2017 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Meng et al. [167] 2020 ✔ ✔ ✔ ✔ ✔ ✔ ✔

Oh et al. [168] 2020 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Westermann et al. [169] 2020 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Pasichnyi et al. [170] 2019 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Qomi et al. [171] 2016 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Afshari et al. [172] 2017 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Afshari et al. [173] 2017 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Allard et al. [129] 2018 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Tronchin et al. [128] 2018 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Manfren and Nastasi [131] 2020 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Catalina et al. [174] 2008 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Hygh et al. [175] 2012 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Asadi et al. [176] 2014 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Al Gharably et al. [177] 2016 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Ipbüker et al. [178] 2016 ✔ ✔ ✔ ✔ ✔ ✔

Goel et al. [103] 2016 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
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The possibility to employ advanced harmonized analytical techniques could, in prin-
ciples, contribute to the development of innovative business models built upon Energy
Performance Contracting (EPC) [179] principles, where dynamic operational conditions
are clustered [134] and multiple regression models are combined together [156] to inves-
tigate performance, integrating data at multiple spatial and temporal resolutions, while
retaining an approximated physical interpretation. Further, the graphical representation of
regression-based methods can be combined with other visualization strategies used for
energy (and exergy) flows at multiple scales, from building systems and sub-systems [180],
to networks in multi-energy systems [181]. Physical-statistical (i.e., “grey-box”) formula-
tions [158,173,182–185], can extend the inherent capabilities of these modelling approaches
even further and provide additional insights that may be particularly valuable in a contin-
uous improvement logic, while retaining scalability [183,184].

Despite the variety of possible model formulations, we believe that data-driven ap-
proaches should use energy modelling definitions and quantities that are consistent with
those proposed in the current technical standardization [186] to improve the comparability
of results and consistency with policy objectives, for which standardisation plays a key
role. For this reason, we report hereafter in Table 5 some experimental protocols (harmo-
nized or standardized) with examples of applications at component level and building
zone level. Indeed, the table highlights the potential continuity and integration of these
experimental methods to estimate thermo-physical properties of building components and
zones. Ideally, they could partially overlap with methods presented in Table 4, for example
by alternating short-term measurement at higher frequency with long-term measurement
at lower frequency [157] during building life cycle.

Table 5. Experimental protocols and applications.

Source Year

Type of Experimental Protocol Application Data Acquisition
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Francis et al. [187] 2015 ✔ ✔ Subhourly 72 h

Rasooli and Itard [188] 2018 ✔ ✔ Subhourly 72 h

Erkoreka et al. [159] 2016 ✔ ✔ Subhourly 72 h, multiple periods

Uriarte et al. [161] 2019 ✔ ✔ Subhourly 72 h multiple periods

Bauwens et al. [158] 2014 ✔ ✔ Daily 2/3 weeks

Jack et al. [107] 2017 ✔ ✔ Daily 2/3 weeks

Alzetto et al. [189] 2018 ✔ ✔ Subhourly 1 night

Meulemans [190] 2018 ✔ ✔ Subhourly 1 night

Ahmad et al. [191] 2019 ✔ ✔ Subhourly 1 night

Rémi et al. [192] 2014 ✔ ✔ Subhourly 5–15 days

Thébault et al. [193] 2018 ✔ ✔ Subhourly 4 days

In QUB and ISABELE methods, the definitions used are in line with current techni-
cal standardisation; the physical parameters are represented by lumped quantities (thus
reducing the number of parameters needed) and the model formulation greatly reduces
the complexity compared to a physical “white-box” model, briefly recalled in Section 4.1.
“White-box” models are detailed models based on physical laws used mainly for simu-
lations during the design process and validated in accordance with energy simulation
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test standards [194,195].The potential contact point between “white-box” detailed mod-
elling and “grey-box” (physical-statistical) lumped modelling parameters can be found in
multi-level building energy model calibration [74] where “macro-parameters” (aggregated,
lumped quantities) [75] are used to validate more detailed models, together with additional
information such as internal temperature profiles [77] and other contextual information.

Indeed, the potential advantages of “grey-box” models are that they can be derived
(and verified) from the basic concepts of energy analysis [196,197], built by using highly
standardised rules [188], and they can employ efficient state-space [198] and analytical
formulations [199]. Examples of validation of “grey-box” models using simulation test
standards at the state of the art have been published by Lundström et al. [195] and Micha-
lak [194,200]; a “grey-box” model for the detection of thermo-physical properties by inverse
modelling has been implemented also in EnergyPlus, a detailed “white-box” modelling
software [201]. Juricic et al. [202] considered the effect of natural weather variability in
the identification of building envelope characteristics using these model types, show-
ing how approximately two weeks of data are sufficient to achieve adequate accuracy.
Finally, Baasch et al. [203] compared the performance of different “grey-box” methods
in the derivation of thermo-physical properties from smart thermostat data acquisition
(i.e., directly from temperature data instead of energy and temperature data), showing
promising results.

“Grey-box” models can be also converted to “black-box” (i.e., statistical and machine
learning models) for specific applications, for example control [204] or monitoring of inter-
nal conditions [205,206].“Black box” models are computationally efficient but they need to
be trained on data before being deployed. As a result, “grey-box” models can be viewed as
an intermediate stage between “white-box” and “black-box” models, and many examples
of implementations have been found in recent years, ranging from experimental test facili-
ties for building technologies [207] and construction components [208], to incorporation
into the Building Information Modeling (BIM) workflow [209], and even to integrated
room automation [210].

In addition, regression-based and “grey-box” model capabilities can be used in the
Bayesian analysis framework. Bayesian analysis is suitable, for example, to ‘reconstruct’
building data (by estimating its characteristics) under uncertainty [80–82] or to evaluate
the robustness of “grey-box” model estimates with respect to variable operating condi-
tions [211] using Monte Carlo simulation methods [212], to reproduce realistically uncertain
operating conditions.

What appears to be important for future research in this area is to increase the trans-
parency of the modelling process by means of harmonised methodologies (using uniform
rules and interpretable models as shown above) in order to verify and monitor output effi-
ciently and to boost their level of automation without increasing complexity unnecessarily.
Furthermore, the role of building automation [72,213] and monitoring systems [214,215]
is crucial to understand the real dynamic behaviour of buildings by means of detailed
data that can of course, complement energy metering, which represents the basic level of
knowledge. Surrogate physical-statistical models (i.e., “grey-box” models) can be imple-
mented also as “digital twins” (i.e., digital reproductions of the dynamic behaviour of their
physical counterparts) at the level of construction technologies [216,217]. As a conclusion,
in this Section we highlighted how harmonized methods for energy performance analysis
are essential from multiple stand-points and how statistical and physical-statistical ap-
proaches are crucial for the evolution of energy research in buildings. Indeed, the methods
reported and discussed in this Section can complement research on energy demand in
end-uses based on epidemiology concept [218,219], providing however robust evidence on
the performance of technologies and systems using empirically grounded methods, based
on M&V principles.

163



Energies 2021, 14, 679

4.3. Energy Flexibility and Occupant-Centric Energy Modelling

Energy flexibility in buildings [105] and occupant-centric energy modelling [106] for
building design and operation are important research topics at present and they are directly
addressing changes in fundamentals components of energy systems, such as users and
energy infrastructures. Therefore, the topics discussed in this Section are complementing
the ones in Section 4.1, focused on the potential of building performance analysis at scale,
and Section 4.2, focused on harmonised methods for energy performance analysis (static
and dynamic), showing how innovative concepts can contribute to reshape building design
and operation strategies in the future. The analysis of the “mismatch” between building
load profiles and on-site generation profiles (e.g., using PV power generation) has received
a great deal of attention in recent years [41], due to the necessity of managing electric
grid with increasing penetration of renewables. In this context, the concept of energy
flexibility has been introduced to account for the dynamic interaction between end-user and
electric infrastructures. Energy flexibility can be defined as the ability to control demand
and supply according to consumer needs, grid conditions and climate [220]; an extensive
review on this concept has been written by Reynders et al. [42]. There exist multiple options
for increasing flexibility at the energy system level [136] and “soft-linking” of modelling
approaches is increasingly important for energy planning and operation purpose [25,137].
More specifically, flexibility in buildings depends on the ability to use storage resources
and to act on devices (including HVAC) after a trigger (e.g., time, power, energy price,
etc.). Heating Ventilation and Air Conditioning (HVAC)systems are crucial because of their
impact on the overall consumption of buildings and because of the potentially active role
in energy infrastructure for demand response [221] and for absorbing surplus of energy
from renewables [222]. From a technical perspective, energy flexibility in buildings can
be exploited to shape building load profiles or to maximize the amount of energy that is
self-consumed on-site [223,224], thereby increasing the matching between demand and
on-site generation. The flexibility potential can be determined by the thermal inertia of
building construction components (thermal mass) and by the presence of technical systems
with storage (thermal and/or electric). Indeed, the exploitation of on-site renewables in
buildings requires the adoption of technologies such as photovoltaics, heat pumps and
energy storage [225]. Further, on the infrastructure side, flexibility requires an evolution
of standardization of communication protocols to ensure efficient operation [226] and the
results in this sense can determine a relevant change for the electric energy system as a
whole [227], which may be combined with (and pushed forward by) consumer centric
innovations in business models [228]. Specific KPIs [229] are required to describe flexibility
potential and a large part of research at the state of the art concentrates on strategies to
unlock it by means of control strategies [229,230], considering also related topics such as
appropriate levels of modelling complexity and effort for their implementation [231]. In
Table 6 we report an analysis of control strategies aimed at building flexibility for different
end-uses and services using the same abbreviations as in Table 4. In Table 6 we consider the
control objective in relation to flexibility, namely Load Shaping (LS) and On-site Renewable
Maximization (ORM), following the arguments reported above. Additionally, the control
types considered are Rule-Base Control (RBC), Optimal Control (OC) and Model Predictive
Control (MPC). In Rule-Base Control rules are designed to fulfil a certain control objective
but are not designed to achieve optimization of the overall system behaviour. In Optimal
Control the control strategy is defined as an objective function to be optimized but doesn’t
include a prediction for the future. In Model Predictive Control the strategy is defined by
means of an optimization performed with a certain control horizon (usually 24/48h); a
comprehensive review on MPC has been written by Drgona et al. [232]. Further, we indicate
the technical elements on which control strategies are focused. Also in this case, control
strategies can be used for both residential and non-residential buildings a can exploit
flexibility of heating, cooling and DHW demand by using the thermal storage capabilities
of building fabric and technical system (e.g., water storage tanks). What appears to be
fundamental, both in predictive and non-predictive cases, is the definition of dynamic
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operating schedules and set-points trajectories that are constrained by comfort requirements
for heating and cooling services. However, the implementation of a detailed comfort
model is challenging, due to the characteristics of control-oriented modelling approaches,
and, for this reason, simplifications are generally considered when defining operational
boundaries (i.e., the constraints for operation). Finally, the dynamic interaction with the
grid is particularly important when dynamic tariffs are present and optimized control
strategies have to consider the cost of imported and exported energy on a dynamic base.

Table 6. Control strategies aimed at building flexibility for different end-uses and services.
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De Coninck et al. [233] 2014 ✔ ✔
LS,

ORM RBC ✔ ✔ ✔

Klein et al. [234] 2015 ✔ ✔ ✔
LS,

ORM RBC ✔ ✔ ✔

Le Dréau and Heiselberg [235] 2016 ✔ ✔ LS RBC ✔ ✔

Dar et al. [236] 2014 ✔ ✔ ✔
LS,

ORM RBC ✔ ✔ ✔ ✔

Reynders et al. [237] 2015 ✔ ✔ LS RBC ✔

Turner et al. [238] 2015 ✔ ✔ LS RBC ✔ ✔ ✔

Esfehani et al. [239] 2016 ✔ ✔ ✔
LS,

ORM RBC ✔ ✔

Alimohammadisagvand et al. [240] 2016 ✔ ✔ ✔ LS RBC ✔ ✔

Salpakari and Lund [241] 2016 ✔ ✔ ✔ ✔
LS,

ORM
RBC,
OC ✔ ✔ ✔ ✔ ✔

Masy et al. [242] 2015 ✔ ✔ ✔ ✔ LS RBC,
OC ✔ ✔ ✔

Psimopoulos et al. [224] 2019 ✔ ✔ ✔ ✔ LS RBC ✔ ✔ ✔ ✔ ✔ ✔

Bee et al. [223] 2019 ✔ ✔ ✔ ✔ LS RBC ✔ ✔ ✔ ✔ ✔

Oliveira Panão et al. [243] 2019 ✔ ✔ LS RBC ✔ ✔ ✔

Vivian et al. [244] 2020 ✔ ✔ ✔ LS RBC ✔ ✔ ✔ ✔

De Coninck and Helsen [245] 2016 ✔ ✔ LS OC ✔ ✔ ✔

Halvgaard et al. [246] 2012 ✔ ✔ LS MPC ✔ ✔ ✔

Maasoumy Haghighi [247] 2013 ✔ ✔ ✔ LS MPC ✔ ✔ ✔

Corbin and Henze [248] 2017 ✔ ✔ ✔ ✔ LS MPC ✔ ✔ ✔ ✔

Corbin and Henze [249] 2017 ✔ ✔ ✔ ✔
LS,

ORM MPC ✔ ✔ ✔ ✔

Lindelöf et al. [250] 2015 ✔ ✔ LS MPC ✔ ✔

Garnier et al. [251] 2015 ✔ ✔ ✔ LS MPC ✔ ✔ ✔

Kandler et al. [252] 2015 ✔ ✔
LS,

ORM MPC ✔ ✔ ✔

Blum et al. [253] 2019 ✔ ✔ ✔ ✔ LS MPC ✔ ✔ ✔ ✔

It is worth noticing that there exists a potential methodological continuity between
M&V practices at the state of the art, presented in Section 4.2, and innovative control
strategies that represent an evolution of weather compensated control. This can be achieved,
for example, using dynamic re-setting of heating and cooling curves [234] and machine
learning algorithms whose performance can be tested and compared transparently in
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different weather conditions [250]. In general, by integrating regression modelling and
clustering, it is possible to analyse variations of dynamic operational trajectories [134,156].
User behaviour has a huge impact on all the building services reported in Table 3 and, in
recent years, an increasing research effort has been put on “Occupant-Centric Building
Design and Operation” [106], as already mentioned before in the text.In particular, extensive
reviews on this broad topic have been published recently [32], describing tools, methods
and applications; more specific reviews have been dedicated to occupancy and behaviour
modelling [254] and to occupant-centric control strategies [255]. The practical necessity to
adapt modelling strategies in response to the purpose of the specific study (e.g., design,
management, etc.) is indicated with the term “fit-for-purpose” [73]. Considering energy
performance in a whole life cycle perspective, the variability of people behaviour and
occupancy patterns has to be considered already at the early design stage, in particular
in high efficiency and Nearly Zero Energy Buildings (NZEBs) [256]. After that, in the
operation stage, occupancy can be measured in different ways [257] and data can be
used to conduct realistic simulations [258]. In any case, as reported before, modelling
occupancy patterns and user behaviour may require strategies that are customized (i.e.,
“fit-for-purpose”) for the specific problem to be addressed: one possible solution is that
of generating parametric or probabilistic occupancy profiles and modelling all the related
variables (e.g., internal gains due to people and appliances, air change rates, etc.) in a
transparent way [259,260]. This approach has been used, for example, to analyse building
performance gap [261]. Realistic occupancy profiles are fundamental to address not only
energy services but also to investigate related issues such as thermal comfort [262], Indoor
Environmental Quality (IEQ) [263–265] and electric load profiles [266], among others.

As a conclusion, what appears to be important for future research in this area is
increasing the transparency of the modelling process and linking it to harmonized method-
ologies (presented in Section 4.2) to verify and track performance efficiently without
increasing unnecessarily the complexity of models themselves (i.e., maintaining an appro-
priate balance). Further, the role of building automation and monitoring systems is critical
to understand the real dynamic behaviour of buildings. For example, data collected by
monitoring systems [214,215] and/or automation systems [72,213] enable the performance
characterization of envelope [160] and technical systems [267], together with occupancy
patterns [257], already mentioned. Building performance monitoring and modelling can
exploit also advances in IoT technologies [268] and open software [269], leading to innova-
tive applications for energy and environmental management [270]. The possibility to rely
on a combination of simulation methods and empirically grounded techniques for M&V
can open interesting research opportunities in these areas.

4.4. Summary of Research Findings

In this section we describe the concepts emerging from studies that are in the inter-
sections of the three levels of analysis presented in Sections 4.1–4.3, respectively. For this
reason, we report in Table 7 the source, the level of analysis and the relevant concepts
for the integration of energy modelling and data analytical processes. First, we can see
how statistical reference buildings and parametric modelling represent the necessary ba-
sis for building energy modelling at multiple scales [80–82,103]. After that, “white-box”
and “grey-box” modelling approaches can be integrated using a hierarchical multi-level
approach [74] where “macro-parameters” [75] (aggregated, lumped quantities) are used as
a mean to validated/calibrate more detailed model [80,118]. In turn, “grey-box” models
based on regression and time series can guarantee empirically grounded “boundaries”
for the estimation of building performance (providing harmonized methods) that may be
used in multiple applications, while retaining a physical interpretation of the coefficients.
The interpretability of models can provide multiple insights that can be exploited for the
continuous improvement of technologies and practices (i.e., the PDCA approach [132]).
Additionally, by combining regression, time series and clustering [134,156] it could possible
to identify recurrent patterns in user behaviour [73,106] and in infrastructures’ interac-
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tion [25,105,136], with a more precise quantification of the actual flexibility achievable.
Both aspects (user behaviour and infrastructures’ interaction) have to be considered in
innovative business models for buildings where traditional Energy Performance Contract-
ing is combined with innovative features [179] to ensure competitiveness and adequate
level of services. Finally, data from automation and monitoring systems [72,160,213–215]
are necessary to enable in depth analysis of performance, even though dynamic energy
metering can be considered as the fundamental layer of information [214,215].

Table 7. Articles at the intersection of levels of analysis.

Source Level Year Pattern Identified Paper Title

Calleja Rodríguez et al. [75] #1#2 2013 Reference building approach
and parametric modelling

UK office buildings archetypal model as methodological
approach in development of regression models for

predicting building energy consumption from heating and
cooling demands

Goel et al. [103] #1#2 2016 Reference building approach
and parametric modelling

Streamlining Building Efficiency Evaluation with DOE’s
Asset Score Preview

Zhao et al. [81] #1#2 2016 Reference building approach
and parametric modelling

Reconstructing building stock to replicate energy
consumption data

Lim et al. [82] #1#2 2017 Reference building approach
and parametric modelling

Review on stochastic modeling methods for building stock
energy prediction

Booth et al. [80] #1#2 2013 Multi-level calibration A hierarchical bayesian framework for calibrating
micro-level models with macro-level data

Yang and Becerik-Gerber [74] #1#2 2015 Multi-level calibration A model calibration framework for simultaneous multi-level
building energy simulation

Fabrizio et al. [118] #2#3 2015 Multi-level calibration Methodologies and advancements in the calibration of
building energy models

Guyot et al. [77] #1#2 2020 Multi-level calibration Building energy model calibration: A detailed case study
using sub-hourly measured data

Jalori et al. [134] #2#3 2015
Regression-based approaches at
multiple temporal and spatial

scale of analysis

A new clustering method to identify outliers and diurnal
schedules from building energy interval data

Jalori et al. [156] #2#3 2015
Regression-based approaches at
multiple temporal and spatial

scale of analysis

A unified inverse modeling framework for whole-building
energy interval data: Daily and hourly baseline modeling

and short-term load forecasting

Ligier et al. [179] #2#3 2017
Regression-based approaches at
multiple temporal and spatial

scale of analysis

Energy Performance Contracting Methodology Based upon
Simulation and Measurement

Meng et al. [92] #1#2 2017
Regression-based approaches at
multiple temporal and spatial

scale of analysis

Degree-day based non-domestic building energy analytics
and modelling should use building and type specific base

temperatures

Gaetani et al. [73] #1#3 2016 User behavioural analysis Occupant behavior in building energy simulation: Towards
a fit-for-purpose modeling strategy

IEA-EBC [106] #1#3 2017 User behavioural analysis IEA EBC-Annex 79-Occupant-Centric Building Design and
Operation

IEA-EBC [105] #1#3 2014 Flexibility and dynamic
interaction with infrastructures EBC Annex 67 Energy Flexible Buildings

Lund et al. [136] #1#3 2015 Flexibility and dynamic
interaction with infrastructures

Review of energy system flexibility measures to enable high
levels of variable renewable electricity

Dominkovic et al. [25] #1#3 2020 Flexibility and dynamic
interaction with infrastructures

Implementing flexibility into energy planning models:
Soft-linking of a high-level energy planning model and a

short-term operational model

Ahmad et al. [214] #2#3 2016 Automation systems,
measurements, sensors

Building energy metering and environmental
monitoring—A state-of-the-art review and directions for

future research

Aste et al. [72] #1#2#3 2017 Automation systems,
measurements, sensors

Building Automation and Control Systems and performance
optimization: A framework for analysis

Carstens et al. [215] #2#3 2018 Automation systems,
measurements, sensors

Measurement uncertainty in energy monitoring: Present
state of the art

Giraldo-Soto et al. [160] #2#3 2018 Automation systems,
measurements, sensors

Monitoring system analysis for evaluating a building’s
envelope energy performance through estimation of its heat

loss coefficient

Serale et al. [213] #2#3 2018 Automation systems,
measurements, sensors

Model Predictive Control (MPC) for enhancing building and
HVAC system energy efficiency: Problem formulation,

applications and opportunities
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As explained above, energy modelling and data analytical processes can be integrated
in systems of models. Ideally, the creation of systems of standardized or harmonized
“surrogate” physical-statistical models (i.e., “grey-box” models), which can be implemented
in cyber-physical systems could represent a major breakthrough for energy modelling
research. It can guarantee, for example, the possibility to act coherently at multiple levels
in energy systems, using data analytics as a common background, and to create a certain
degree continuity of performance analysis process during building life cycle, from design
to operation phase. As discussed in Section 4.2, this result may be achieved by means of
regression-based modelling approaches that combine conceptual simplicity and ease of
implementation with adequate performance, in terms of analytics. In the next Section with
indicate future research work that can be based on the outcomes of this research.

5. Further Work

Further research work could focus on knowledge mapping to enhance the integration
and transparency of data within a modelling framework for energy in buildings, able
to act at multiple levels. In Section 4.4 we described the points of contact between the
multiple levels of analysis considered and we indicated how “surrogate” physical-statistical
models (i.e., “grey-box” models that can be implemented in cyber-physical systems) could
potentially work in “ecosystems” of applications. “Ecosystems” of models can address
different types of end-uses (i.e., residential and non-residential), technological domains (i.e.,
heating, cooling, DHW, appliances) and applications (e.g., energy management, control,
fault detection, environmental monitoring, etc.) while sharing a set of common underlying
principles and rules. In this sense, surrogate models can act as “digital twins,” that is
to say digital reproductions of the dynamic behaviour of their physical counterparts (or
systems). Harmonization and technical standardization play an essential role to avoid
redundancy, multiplication of efforts and unnecessary increase of complexity of procedures.
In fact, this could be the case of technical issues affecting multiple levels of information in
the built environment, such as energy efficiency and flexibility or behavioural modelling
and occupant-centric design and operation, described in Section 4.3. As mentioned in the
introduction, building data interoperability [17] using common data exchange formats is
necessary to increase the digitalisation and automation of buildings. The use of semantic
web technologies [271] and standards based on IFC could support not only design but
also operation (e.g., energy and environmental monitoring) [272], employing “surrogate”
modelling strategies (physical/statistical, “grey-box”) [209] compatible with the above
mentioned principles. Finally, as introduced in Section 2, the research presented in this
paper is part of a broader investigation, focused on the concept of “Buildings-as-Energy-
Service”: new forms of knowledge integration are needed to develop innovative services
and products that can work as “ecosystems” and exploit this concept.

6. Conclusions

Energy transitions involve the transformation of the network of players and organisa-
tions that have traditionally worked in the energy sector along with new roles for customers.
Radical innovation in the energy sector will have an impact on multiple domains in the
construction sector (e.g., project, product and service). In this paper, we reviewed ongoing
research on energy modelling and analytical tools that could support energy transition
processes for the construction sector. In particular, we discussed how harmonised methods
for analysing and tracking energy performance (Section 4.2) and innovative concepts such
as flexibility and occupant-centric design and operation (Section 4.3) could contribute to a
radical change in the built environment, using similar principles of analysis for actions that
involve multiple scales (Section 4.1).The review process has been articulated according to
three levels of analysis, introduced in Section 3 and reported in Section 4, ranging from
general concepts to specific issues and we provided a summary of research findings as a
set of interrelated concepts (Section 4.4). Overall, we identified criteria for energy mod-
elling and analytical techniques (i.e., empirically grounding, scalability, harmonization,
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interpretability and re-configurability), that, in our opinion, constitute constraints to the
creation of “ecosystems” of energy models aimed at supporting energy transition processes
at multiple levels in the built environment. Regarding the first level of analysis (Section 4.1),
systems of models can contribute to the creation of robust empirically grounded studies
regarding efficiency for energy policy and utility scale actions. With respect to the second
level (Section 4.2), they can be used to integrate data at multiple temporal and spatial
scales, streamlining the analytical workflow (starting from consolidated M&V and M&T
practices) and they can provide approximated physical interpretation of results, thereby
increasing the transparency of modelling. Finally, in the third level (Section 4.3) they can
help increasing energy flexibility in the interaction with infrastructures and improving the
level of energy services in an occupant centric (design and operation) perspective. In all the
levels considered in this review, we stressed the importance of studies that are empirically
grounded and that can provide robust evidence for informing future research and policy.

As discussed in Section 5, these principles can constitute the basis for further research
work, focused on developing specific applications built on top of them. In fact, the research
proposed is part of a broader research activity focused on the “Buildings-as-Energy-Service”
concept and the creation of a Tool Kit for knowledge integration regarding this topic, with
the support of Cognitive Mapping technique. New forms of knowledge integration are
needed to develop innovative services and products and this Tool Kit may be used to
engage multiple users in the process of knowledge creation and sharing. Conceptualization
is fundamental in innovation studies for energy and sustainability transitions but while
general concepts can be clearly understood, what is still unclear is how these concepts can
then translate into specific projects, products and services for energy transitions in the built
environment, using innovative business models. Tools for knowledge integration can give
a contribution in this sense.

Further, the problem of data accessibility has to be considered as well. The lack of
detailed data or inadequate data reliability due to non-standardized collection procedures
can be addressed using harmonized methodologies (described in Section 4.2). At present,
this is causing a knowledge gap that undermines informed policy choices in the energy
transition process (as well as in many other processes). Sensors, the Internet of Things
(IoT), together with processes of automation and digitalisation described in this paper,
could enable access to a greater amount of data for the building stock. In this context, it
will be important to create open data repositories about technology, energy demand for
end uses and weather data. Standardized and up-to-date data could enable transparent
and consistent modelling processes at multiple scales of analysis, partially reducing the
effort and stimulating the development of innovative energy technologies and services.

As a conclusion, in this paper we proposed a reflection on concepts that can help struc-
turing future R&D activities and we highlighted a potential way to increase transparency,
robustness and reproducibility in modelling by linking general principles emerging from
the state of the art of research, to specific applications, employing harmonized methods as
the core element. We believe that sharing information and making it more transparent and
easily accessible can support multiple communities involved in R&Dfor energy transitions
overcoming social and technical issues that may hinder the radical shifts that are necessary
for long-term built environment sustainability.
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232. Drgoňa, J.; Arroyo, J.; Figueroa, I.C.; Blum, D.H.; Arendt, K.; Kim, D.; Ollé, E.P.; Oravec, J.; Wetter, M.; Vrabie, D.L.; et al. All you
need to know about model predictive control for buildings. Annu. Rev. Control. 2020, 50, 190–232. [CrossRef]

233. De Coninck, R.; Baetens, R.; Saelens, D.; Woyte, A.; Helsen, L. Rule-based demand-side management of domestic hot water
production with heat pumps in zero energy neighbourhoods. J. Build. Perform. Simul. 2013, 7, 271–288. [CrossRef]

234. Klein, K.; Kalz, D.; Herkel, S. Grid impact of a net zero energy building with BiPV using different energy management strategies.
In Proceedings of the International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban
Scale, Lausanne, Switzerland, 9–11 September 2015; pp. 579–584.

235. Le Dréau, J.; Heiselberg, P. Energy flexibility of residential buildings using short term heat storage in the thermal mass. Energy

2016, 111, 991–1002. [CrossRef]
236. Dar, U.I.; Sartori, I.; Georges, L.; Novakovic, V. Advanced control of heat pumps for improved flexibility of Net-ZEB towards the

grid. Energy Build. 2014, 69, 74–84. [CrossRef]
237. Reynders, G.; Diriken, J.; Saelens, D. A generic quantification method for the active demand response potential of structural

storage in buildings. In Proceedings of the 14th International Conference of IBPSA-Building Simulation, Hyderabad, India, 7–9
December 2015; pp. 1986–1993.

238. Turner, W.J.N.; Walker, I.S.; Roux, J. Peak load reductions: Electric load shifting with mechanical pre-cooling of residential
buildings with low thermal mass. Energy 2015, 82, 1057–1067. [CrossRef]

239. Esfehani, H.H.; Kriegel, M.; Madani, H. Load balancing potential of ground source heat pump system coupled with thermal
energy storage: A Case Study for Berlin. In Proceedings of the CLIMA 2016, 12th REHVA World Congress, Aalborg, Denmark,
22–25 May 2016.

240. Alimohammadisagvand, B.; Jokisalo, J.; Kilpeläinen, S.; Ali, M.; Sirén, K. Cost-optimal thermal energy storage system for a
residential building with heat pump heating and demand response control. Appl. Energy 2016, 174, 275–287. [CrossRef]

241. Salpakari, J.; Lund, P. Optimal and rule-based control strategies for energy flexibility in buildings with PV. Appl. Energy 2016, 161,
425–436. [CrossRef]

242. Masy, G.; Georges, E.; Verhelst, C.; Lemort, V.; André, P. Smart grid energy flexible buildings through the use of heat pumps and
building thermal mass as energy storage in the Belgian context. Sci. Technol. Built Environ. 2015, 21, 800–811. [CrossRef]

243. Panão, M.J.O.; Mateus, N.M.; Da Graça, G.C. Measured and modeled performance of internal mass as a thermal energy battery
for energy flexible residential buildings. Appl. Energy 2019, 239, 252–267. [CrossRef]

244. Vivian, J.; Chiodarelli, U.; Emmi, G.; Zarrella, A. A sensitivity analysis on the heating and cooling energy flexibility of residential
buildings. Sustain. Cities Soc. 2020, 52, 101815. [CrossRef]

245. De Coninck, R.; Helsen, L. Quantification of flexibility in buildings by cost curves—Methodology and application. Appl. Energy

2016, 162, 653–665. [CrossRef]
246. Halvgaard, R.; Poulsen, N.K.; Madsen, H.; Jorgensen, J.B. Economic Model Predictive Control for building climate control in

a Smart Grid. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20
January 2012; pp. 1–6.

247. Maasoumy Haghighi, M. Controlling Energy-Efficient Buildings in the Context of Smart Grid: A Cyber Physical System Approach;
Technical Report No. UCB/EECS-2013-244; University of California: Berkley, CA, USA, 2014.

248. Corbin, C.D.; Henze, G. Predictive control of residential HVAC and its impact on the grid. Part I: Simulation framework and
models. J. Build. Perform. Simul. 2016, 10, 294–312. [CrossRef]

249. Corbin, C.; Henze, G. Predictive control of residential HVAC and its impact on the grid. Part II: Simulation studies of residential
HVAC as a supply following resource. J. Build. Perform. Simul. 2017, 10, 365–377. [CrossRef]

250. Lindelöf, D.; Afshari, H.; Alisafaee, M.; Biswas, J.; Caban, M.; Mocellin, X.; Viaene, J. Field tests of an adaptive, model-predictive
heating controller for residential buildings. Energy Build. 2015, 99, 292–302. [CrossRef]

251. Garnier, A.; Eynard, J.; Caussanel, M.; Grieu, S. Predictive control of multizone heating, ventilation and air-conditioning systems
in non-residential buildings. Appl. Soft Comput. 2015, 37, 847–862. [CrossRef]

252. Kandler, C.; Wimmer, P.; Honold, J. Predictive Control and Regulation Strategies of Air-to-Water Heat Pumps. Energy Procedia

2015, 78, 2088–2093. [CrossRef]
253. Blum, D.H.; Arendt, K.; Rivalin, L.; Piette, M.; Wetter, M.; Veje, C. Practical factors of envelope model setup and their effects on

the performance of model predictive control for building heating, ventilating, and air conditioning systems. Appl. Energy 2019,
236, 410–425. [CrossRef]

254. Dong, B.; Yan, D.; Li, Z.; Jin, Y.; Feng, X.; Fontenot, H. Modeling occupancy and behavior for better building design and
operation—A critical review. Build. Simul. 2018, 11, 899–921. [CrossRef]

255. Naylor, S.; Gillott, M.; Lau, T. A review of occupant-centric building control strategies to reduce building energy use. Renew.

Sustain. Energy Rev. 2018, 96, 1–10. [CrossRef]

178



Energies 2021, 14, 679

256. Carpino, C.; Mora, D.; Arcuri, N.; De Simone, M. Behavioral variables and occupancy patterns in the design and modeling of
Nearly Zero Energy Buildings. Build. Simul. 2017, 22, 860–888. [CrossRef]

257. Caucheteux, A.; Sabar, A.E.; Boucher, V. Occupancy measurement in building: A litterature review, application on an energy
efficiency research demonstrated building. Int. J. Metrol. Qual. Eng. 2013, 4, 135–144. [CrossRef]

258. Naspi, F.; Arnesano, M.; Stazi, F.; D’Orazio, M.; Revel, G.M. Measuring Occupants’ Behaviour for Buildings’ Dynamic Cosimula-
tion. J. Sens. 2018, 2018, 2756542. [CrossRef]

259. Cecconi, F.R.; Manfren, M.; Tagliabue, L.C.; Ciribini, A.L.C.; De Angelis, E. Probabilistic behavioral modeling in building
performance simulation: A Monte Carlo approach. Energy Build. 2017, 148, 128–141. [CrossRef]

260. Tagliabue, L.C.; Manfren, M.; Ciribini, A.L.C.; De Angelis, E. Probabilistic behavioural modeling in building performance
simulation—The Brescia eLUX lab. Energy Build. 2016, 128, 119–131. [CrossRef]

261. De Menezes, A.C.K.; Cripps, A.; Bouchlaghem, D.; Buswell, R.A. Predicted vs. actual energy performance of non-domestic
buildings: Using post-occupancy evaluation data to reduce the performance gap. Appl. Energy 2012, 97, 355–364. [CrossRef]

262. Aragon, V.; Gauthier, S.; Warren, P.; James, P.A.B.; Anderson, B. Developing English domestic occupancy profiles. Build. Res. Inf.

2019, 47, 375–393. [CrossRef]
263. Zangheri, P.; Pagliano, L.; Armani, R. How the comfort requirements can be used to assess and design low energy buildings:

Testing the EN 15251 comfort evaluation procedure in 4 buildings. In Proceedings of the ECEEE 2011 Summer Study “Energy
Efficiency First: The Foundation of a Low-Carbon Society”, Hyeres, France, 6–11 June 2011; pp. 1569–1579.

264. Fabbri, K.; Tronchin, L. Indoor Environmental Quality in Low Energy Buildings. Energy Procedia 2015, 78, 2778–2783. [CrossRef]
265. Manfren, M.; Nastasi, B.; Piana, E.A.; Tronchin, L. On the link between energy performance of building and thermal comfort: An

example. AIP Conf. Proc. 2019, 2123, 20066. [CrossRef]
266. Sarfraz, O.; Bach, C.K. Equipment power consumption and load factor profiles for buildings’ energy simulation (ASHRAE

1742-RP). Sci. Technol. Built Environ. 2018, 24, 1054–1063. [CrossRef]
267. Gunay, B.; Shen, W.; Yang, C. Characterization of a building’s operation using automation data: A review and case study. Build.

Environ. 2017, 118, 196–210. [CrossRef]
268. Saini, J.; Dutta, M.; Marques, G. Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review. Int. J.

Environ. Res. Public Health 2020, 17, 4942. [CrossRef]
269. Martín-Garín, A.; Millán-García, J.; Baïri, A.; Millán-Medel, J.; Sala-Lizarraga, J. Environmental monitoring system based on an

Open Source Platform and the Internet of Things for a building energy retrofit. Autom. Constr. 2018, 87, 201–214. [CrossRef]
270. Lucchi, E. Environmental Risk Management for Museums in Historic Buildings through an Innovative Approach: A Case Study

of the Pinacoteca di Brera in Milan (Italy). Sustainability 2020, 12, 5155. [CrossRef]
271. Pauwels, P.; Zhang, S.; Lee, Y.-C. Semantic web technologies in AEC industry: A literature overview. Autom. Constr. 2017, 73,

145–165. [CrossRef]
272. Corry, E.; Pauwels, P.; Hu, S.; Keane, M.; O’Donnell, J. A performance assessment ontology for the environmental and energy

management of buildings. Autom. Constr. 2015, 57, 249–259. [CrossRef]

179





energies

Article

Utilising Open Geospatial Data to Refine Weather Variables for
Building Energy Performance Evaluation—Incident Solar
Radiation and Wind-Driven Infiltration Modelling

Kristian Skeie * and Arild Gustavsen

����������
�������

Citation: Skeie, K.; Gustavsen, A.

Utilising Open Geospatial Data to

Refine Weather Variables for Building

Energy Performance

Evaluation—Incident Solar Radiation

and Wind-Driven Infiltration

Modelling. Energies 2021, 14, 802.

https://doi.org/10.3390/en14040802

Academic Editor: Benedetto Nastasi

Received: 16 December 2020

Accepted: 22 January 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Architecture and Technology, Norwegian University of Science and Technology, Alfred Getz vei 3,
7491 Trondheim, Norway; arild.gustavsen@ntnu.no
* Correspondence: kristian.skeie@ntnu.no

Abstract: In building thermal energy characterisation, the relevance of proper modelling of the
effects caused by solar radiation, temperature and wind is seen as a critical factor. Open geospatial
datasets are growing in diversity, easing access to meteorological data and other relevant information
that can be used for building energy modelling. However, the application of geospatial techniques
combining multiple open datasets is not yet common in the often scripted workflows of data-driven
building thermal performance characterisation. We present a method for processing time-series from
climate reanalysis and satellite-derived solar irradiance services, by implementing land-use, and
elevation raster maps served in an elevation profile web-service. The article describes a methodology
to: (1) adapt gridded weather data to four case-building sites in Europe; (2) calculate the incident
solar radiation on the building facades; (3) estimate wind and temperature-dependent infiltration
using a single-zone infiltration model and (4) including separating and evaluating the sheltering
effect of buildings and trees in the vicinity, based on building footprints. Calculations of solar
radiation, surface wind and air infiltration potential are done using validated models published
in the scientific literature. We found that using scripting tools to automate geoprocessing tasks
is widespread, and implementing such techniques in conjunction with an elevation profile web
service made it possible to utilise information from open geospatial data surrounding a building site
effectively. We expect that the modelling approach could be further improved, including diffuse-
shading methods and evaluating other wind shelter methods for urban settings.

Keywords: thermal building performance; satellite-based solar radiation data; meteorological reanal-
ysis data; ISO 52016-1; single-zone infiltration

1. Introduction

Meteorological data like temperature, wind speed, and solar radiation are essential
input for characterising buildings’ thermal performance. Ideally, these elements are mea-
sured locally using a well-maintained weather station near the building site or on the
building itself. The increasing availability of high-resolution geospatial data, gridded
weather data and adequate modelling techniques (including web-services) can provide an
alternative approach to estimating local climatic building boundary conditions in the built
environment [1,2]. Using assimilated data-sources has several advantages, e.g., making it
possible to supplement low-cost air temperature observations, that are relatively common
to measure on-site, with other weather variables that are more difficult to capture or predict
in a simple way. Such as solar irradiance data from services built on remote sensing of sky
conditions, or wind speed estimations from numerical weather prediction (NWP)-models
in forecast or reanalysis-mode. Reanalysis is a method to reconstruct the past weather by
combining modelling of the atmospheric dynamics and physics of the earth climate sys-
tems with historical observations. Daily updated information about the past weather and
historical climate is available via Copernicus Climate Change Service (C3S) Climate Data

181



Energies 2021, 14, 802

Store (CDS) such as the ECMWF (European Centre for Medium-Range Weather Forecasts)
fifth-generation global reanalysis (ERA5) and the soon to be released Copernicus Regional
Reanalysis for Europe (CERRA). Advancements in temporal and spatial resolutions and
dedicated land surface analysis, like ERA5-Land [3], may extend the popularity and appli-
cation to many fields [4]. Some meteorology institutions are also developing hourly surface
analysis products on a regional level, combining their operational mesoscale models for
weather forecasting with observations and making the assimilated products available as
gridded datasets free-of-charge [5]. However, with the use of any gridded weather data
product for building energy performance evaluation, comes a need to adjust the data to fit
local building boundary conditions [1,2].

Plenty of methods exist to downscale or bias-correct gridded weather data and to in-
clude local effects from the terrain, vegetation and buildings in solar and wind assessments.
Downscaling techniques reaching the meso and micro-scale span from simple analytical
or statistical methods to running high-resolution NWP-models informed by global reanal-
ysis [6], or even computational fluid dynamics (CFD) codes uncoupled or coupled with
atmospheric models [7]. When it comes to including local sheltering effects, tools vary
significantly in the overall approach and temporal and spatial resolution. With increasing
interest in local renewable energy generation and urban scale modelling, numerous re-
search efforts have been initiated to develop and refine tools and methods to support wind
energy analysis, façade and rooftop solar potential assessments, urban building energy
modelling and urban micro-climate studies [8–10]. The diversity of methods and tools
logically reflect the wide variety of use cases, but also evident are the multiple ways to
represent surfaces and other features in geospatial datasets (e.g., terrain, tree canopies,
roofs and facades). Workflows integrated with graphical information system (GIS)-tools
operating on two-dimensional raster maps that supply the surface elevation are preva-
lent [10]. Modern toolkits offer to automate geoprocessing tasks through Python scripts
and web-mapping services [11,12]. To encompass height information, e.g., point-clouds,
into full 3D-processing, often requires time-consuming manual work and expertise [13,14].
Although more and more mapping agencies and local authorities are releasing point cloud
data or 3D-building models according to Open Geospatial Consortium (OGC) standards,
these are mostly limited to city-scale, province, or municipality levels. 3D-building models
and point clouds also risk being outdated if not updated at frequent intervals.

In the following, we use high-resolution height data from airborne laser scanning
which is becoming widely available in the form of pre-processed digital surface and terrain
models covering large land surface areas on a regional or national scale [15]. Despite that
these datasets may suffer from the same problems as above, they may easily be served in a
web-service and supplemented by building footprints with user-specified heights in the
nearby area of interest. Footprints are broadly available as open data from authorities or
volunteered geoinformation and usually produced at more frequent intervals [13].

The application of geospatial techniques combining multiple open datasets is not
common in the often-scripted workflows of data-driven building thermal performance
characterisation.

This work aims to investigate ways to adapt site-specific climate data for building
thermal energy analysis, by identifying suitable open geospatial datasets that can be served
in a web-service and demonstrate a scripted workflow that can be implemented to calculate
solar and wind effects on buildings facades. We present a method for processing time-series
from climate reanalysis and satellite-derived solar irradiance services, by implementing
land-use, and elevation raster maps served in an elevation profile web-service. Building
footprints from OpenStreetMap Overpass API complement the analysis by separating
buildings and trees in the vicinity.

1.1. Outline

This paper first addresses how much we can adapt gridded weather data to local
building boundary conditions using only building location (latitude, longitude) and a
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selection of free/open geospatial datasets covering Europe. A comparison between obser-
vations and the ERA5 reanalysis and CAMS-Rad satellite service is shown for a low-rise
building localised in a relatively open landscape in the south of Germany. Including a sur-
face wind downscaling method using weighted surface roughness derived from land-use
maps. Next, we investigate what detailed geospatial data was found for our three other
residential buildings in Norway, UK and Belgium. These are located in more urban settings,
where shading and wind sheltering of nearby obstructions have a more significant impact.
The four case studies are used to evaluate the proposed methods to assess solar radiation
distribution on the facades and wind and temperature-dependent infiltration; Two factors
influenced by nearby topography and obstructions that are not always considered physi-
cally in data-driven building energy performance evaluation. We focus on the influence of
sheltering of nearby obstacles, buildings, and trees in either case, using the methods:

(1) The Alberta single-zone air infiltration model [16], including a concept of wind
shadow on building facades, projected downstream by upwind obstacles [17].

(2) Solar irradiance modelling according to EN-ISO 52010:2017, including direct and
circumsolar beam façade surface shading from obstacles as outlined in EN-ISO
52016:2017.

1.2. Identifying Suitable Open Geospatial Datasets and Previous Works

Open geospatial datasets are growing in diversity, from crowdsourcing efforts to
data produced by authorities and scientific collaborations [18]. Developments around
open spatial infrastructures ease access to meteorological data and other relevant spatial
information. Open data and modelling are valuable, as building monitoring data is often
limited. Buildings are complex systems because their energy use and indoor conditions vary
dynamically under the influence of weather, occupancy and component performance [19].
The drive towards a more sustainable built environment and low carbon transition of
the energy system give rise to challenges that can only be met by multi-disciplinary
knowledge [20,21]. Interaction of open data and models may become fundamental for
monitoring, verifying and tracking performance at multiple levels [21].

Many geospatial datasets are available via the EU Copernicus Earth observation
programme which has operated a policy of open data since its inception. INSPIRE (In-
frastructure for Spatial Information in Europe) is a related EU initiative that aims to ease
access to public data through standardisation of spatial data among member states. Two of
Copernicus regional products, the Digital Elevation Model (DEM) over Europe (EU-DEM),
and the CORINE land cover (CLC) maps are relevant examples of pan-European coopera-
tion [22,23]. CLC maps have been used to derive surface roughness classes in numerous
wind resource studies [24,25]. The EU-DEM is a hybrid product based on the larger SRTM
and ASTER GDEM datasets produced by NASA Earthdata and Japan Space Systems [26],
two of many global and freely available DEM’s. These are satellite sensor-based models
representing the first-return earth surface (including trees, buildings) at a relatively coarse
resolution (from ca. 30 m) and accuracy (ca. 5 m to several hundred) [27]. Still, they
have been used in solar resource map creation and operating a service that returns a site’s
horizon profile, available from JRC’s PVGIS website [28].

Lately, more and more light detection and ranging (LiDAR) data obtained from
state-funded airborne laser scanning (ALS) are published around the world under free
licenses. Pre-built digital elevation models are distributed in high resolution as digital
surface models (DSMs) and digital terrain models (DTMs) covering entire regions and
countries. In Europe, the INSPIRE Geoportal keeps track of downloadable elevation
data [15]. For example, in Norway, both post-processed LiDAR point cloud data and digital
surface model data are made openly available by the Norwegian Mapping Authority under
CC-BY licensing [29]. Pre-built DSM and DTM-tiles in 1-m resolution covering the whole
country can be downloaded amounting to a combined download of ca. 2.5 TB in GeoTIFF
format. This national model is updated sector-wise when new surveys are produced.
For the other countries in the study, DSM’s and DTM’s in 1 m resolution published under

183



Energies 2021, 14, 802

open government licenses were available for the UK, and the region of Flanders, Belgium.
In parts of Germany, datasets are still proprietary and come at a cost [30].

Many researchers have shown that high-resolution LiDAR data in its point-cloud
form is enabling determination of building geometry and shading from the surrounding
environment. Nonetheless, composed DSMs (of 1 m resolution) have proven up to the task
to capture the slope and aspect of basic roof shapes (without variation in the architecture
of the roof) required to estimate solar potential on rooftops [31,32]. At least two different
2.5D solar models are previously published detecting vertical façades from 1 m DSM pixels
and either estimating wall irradiances under clear-sky [33,34] or based on observations of
global horizontal radiation [35]. Another feature of the second model is the inclusion of
vegetation which is found to be crucial when modelling irradiance on walls in an urban
setting, especially where building heights are relatively low [35].

A model resolution of 1 m is interesting, as it allows handling large areas, but still
maintain a file-size that is easy to store and work with by splitting data in raster tiles.
Another reason to consider digital surface and terrain models over higher-resolution Li-
DAR point cloud data is that considerable work and expertise [36], has gone into creating
the DSM’s and DTM’s to meet the requirements of the commissioner. Airborne imagery,
stereography or orthophotos are also often overlaid in the creation. Likewise, imagery
integration is recommended for creating 3D building geometry from LiDAR point clouds
to capture objects more accurately [18–20], underlining that expertise in data fusion, pro-
cessing, and acquisition is needed. Other recent developments show that micro-drones [37]
or mobile ground-based laser surveying can be used for detailed building shape and façade
mapping [38], indicating new workflows and applications to the building industry.

Other works make use of building ground plans or roof perimeters obtained through
user-contributed data such as OpenStreetMap or derived from administrative databases to
extrude lower detail building models from the ground and up, or DSM’s with or without
terrain and surface model data available [10]. Some cities and local authorities are openly
distributing 3D city-scale models at higher detail level or building cadastral data at greater
accuracy then what can be expected by crowdsourced content [39,40].

However, all of the datasets above suffers from the same challenges: acquisition
and that the most recent dataset available may be outdated. Evaluating design or as-
built building energy performance as part of commissioning requires recent height-data.
There are also other applications than energy evaluation where better assessments of local
climatic conditions can positively influence the building design process or operation-phase.
Building information and geospatial assessment techniques can be used to reduce climate-
induced damages on buildings, improve user quality, and improve the balance between
climatic adaptation demands and other demands [41]. When it comes to design-studies,
the buildings under consideration may not even be built yet. Therefore, the proposed
approach will need to be easily updated when new DSM/DTM’s are available for an area.
It will also need to have multiple ways to input building footprint and height information
and separate between ground, buildings and other tall obstacles like trees to overcome the
identified gaps.

2. Methods

This section gives a brief overview of the methods, the code design and implementa-
tion. Calculation details and input data are provided in the Appendices A and B. A public
Github repository will be published with the full code when the paper is published. Exist-
ing packages and scripts used in the workflow include:

• Obtaining reanalysis data from the Copernicus CDS using the ecmwf R package [42]
• Solar radiation from the CAMS-Rad service using the rOpenSci camsRad client [43]
• Self-hosting elevation and land cover data in an Open Topo Data server [44]
• Modules to create horizon profiles from a viewpoint by calling elevation services [45]
• Solar irradiance transposition model according to the ISO 52010 standard [46]
• Wind speed interpolation using key portions of the R-code printed in [47] (p. 45)
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• The code implemented in the workflow relies on many additional popular Python
and R packages such as rcpp, ncdf4, gdal, pyProj, shapely and netCDF4.

Table 1 provides an overview of the different datasets, spatialisation techniques and
analytical models used in this study to process weather data sourced from the climate
reanalysis and satellite irradiance service in order to evaluate local solar and wind effects
on buildings facades.

Table 1. An overview of open geospatial data sources that cover different spatial scales.

Description Weather Data Acquisition Downscaling Area of Local Study

Scale Large scale (>10 km) Medium scale Small scale (<1 km)

User input Latitude, longitude Latitude, longitude Latitude, longitude and
building information

Datasets Climate reanalysis,
Satellite irradiance

Land cover maps,
Satellite DEM

Building footprints,
LiDAR DSM/DTM

Data resolution 5 to 30 km 30 to 100 m <1 m

Data sources Copernicus Climate &
Atmosphere Data Store

Copernicus programme, and
the JRC (PVGIS)

National authorities and
crowdsourced (OSM)

Modelling techniques Bilinear interpolation, nearest
neighbour selection

2-layer wind model [48],
Perez transposition model

Wind shadow method [17],
ISO shading method

The workflow needed to obtain the local data has largely been automated (Figure 1).
First, the area of the local study is defined by the geographic position. LiDAR DSM and
DTM raster maps in local projections were downloaded from national mapping services and
stored on the server. New rasters containing only DSM data within building footprints were
created from Open Street Map (OSM) building layers by calling the Overpass Application
Programming Interfaces (API) and an open map layer from the UK Ordnance survey (OSM
building outlines were not available for the area of interest in the UK at the time of study
(mid-2020)). The local area LiDAR raster datasets were stored as .tif and the building
footprints as .shp files. The rasters were served together with the EU-DEM and CLC land
cover maps via the elevation API configured to return JSON strings of height (or land
type classes) along paths resolved to sets of latitude and longitude points. The service
“Open Topo Data REST API” relies on Python’s gdal and pyProj packages for conversion
between latitude, longitude, and local map projections in meter [44]. Scripting was adjusted
to handle specifying latitude and longitude in decimal degrees with six decimal places
precision (translating to 0.11 m at the equator) and to include datum shifts, ensuring more
accurate conversions between latitude, longitude and local map projections (in meter).

Figure 1. Proposed workflow to assess local sheltering using the wind shadow method and the solar
shading model in Section 2.4.
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Before running the path profiling scrips, we define the footprint of the case building
from the centre point in decimal degrees (lat, lon) by the length of the building envelope
in the x-direction, length in the y-direction (in meter) and building rotation (in degrees).
We specify the intermediate distance of mapping points for each façade and calculate their
respective projection lines in all directions. Figure 2 shows the building and façade centre
viewpoints used for the path profiling calculations (in green). In this way, it is irrelevant if
the building is represented on the surface raster and building footprint shape layers or not.

Figure 2. The building façade geometry for solar shading and wind shelter calculations was created
from three inputs: length in the x-direction, length in the y-direction (in meter) and building rotation.
The latitude and longitude were selected to be the centre-point that the envelope is rotated around.

2.1. Environmental Variables

2.1.1. Environmental Variables Derived from Reanalysis Data

Meteorological data (Table 1) were derived from the ERA5 atmospheric reanalysis of
the global climate released by the European Centre for Medium-Range Weather Forecasts
(ECMWF) as part of the Copernicus Climate Change Service (CDS). A comprehensive
description of ERA5 is provided by Hersbach et al. [49]. ERA5 provides validated estimates
for each hour of the day, worldwide, with a two to three months delay and leading back to
1979, or as recent as up to a couple of days ago through the preliminary dataset ERA5T.

Table 2 also shows selected variables from “ERA5-Land” another current dataset
produced by ECMWF with around four times finer spatial resolution (~9 km grid spacing
compared to the ~31 km grid of ERA5). It is a simulation of the land surface components of
ERA5 forced by ERA5′s lower atmospheric fields, currently without coupling or additional
data assimilation, meaning that observations only influence the simulation indirectly
through the forcing [50].

Table 2. Climate variables acquired from ERA5 and ERA5-land reanalysis and the model transformation. The name of each
variable used in the comparison study is shown on the same line as the sourced variables according to their short names in
the Copernicus CDS.

Description Name ERA5 ERA5land Transformation

External air temperature at 2 m θe 2t 2t Kelvin to centigrade
Wind speed at 10 m U10m 10u, 10v 10u, 10v U10m =

√
10u2 + 10v2

Wind from direction at 10 m D10m 10u, 10v 10u, 10v D10m = atan2(10u, 10v) + π

Forecasted surface roughness z0;M fsr
Ground albedo without snow cover αgr ssr, ssrd fal * αgr = max(1 − ssr/ssrd, fal)
Snow cover fsn snowc
Ground albedo with snow cover αgr;sn asn αgr;sn = fsn·

(

asn − αgr
)

+ αgr
Surface thermal radiation downwards ϕstrd strd Joule to Watt-hours
Sky temperature θsky θsky= (ϕstrd/σ)0.25 − 273.15 K

* fal is a diagnostic broadband albedo, whereas the true ground value is calculated by: αgr = 1—ssr/ssrd [51]. To account for increased
reflectance when the ground is covered by snow, the ERA5-Land surface model parameters: snow cover and snow albedo were included:
αgr;sn = snowc·asn + (1 − snowc)· αgr.
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We used nearest-neighbour and bilinear interpolation to create hourly time-series for
each site-location. Figure 3 shows the four case studies’ location relative to the ERA5 grid
points and each grid tile’s relative weighting. The ERA5-land data were also interpolated
to the site (not shown).

Figure 3. Locations of cases (a) Holzkirchen DE, (b) Trondheim NO, (c) Gainsborough UK, and (d)
Brussels BE, and nearest ERA5 grid cells (red lines) overlaid over local area maps. The percentages
illustrate the resulting bilinear weighting of the adjacent cells. Map data from OpenStreetMap.

2.1.2. Environmental Variables Derived from Remote Sensing

For solar radiation, it is possible to use surface downwelling radiation from the reanal-
ysis, but several studies show that better products exist to account for clouds’ variability.
Services that combine solar models with remote sensing techniques provide greater tem-
poral and spatial resolution. An overestimation of solar radiation is often observed in
reanalysis, and an underestimation is observed in satellite methods [52].

Solar irradiance data were acquired from Copernicus Atmosphere Monitoring Service:
CAMS Radiation Service (CAMS-Rad) version 3.2 [53]. CAMS-Rad’s satellite-based solar
irradiance data are available at a spatial resolution of ~5 km over central Europe in 15-min
time steps from 2004 until the present time (up to two days ago) and covers the field of
view of the Meteosat satellite (Europe, Africa and the Middle East). An account of the
radiative transfer scheme in CAMS-Rad is provided by Qu et al. [54]. We used the camsRad
R-package [43] to obtain 1-min time-series of direct normal, global horizontal and diffuse
horizontal irradiance for clear-sky and cloudy conditions. The dataset was then resampled
to 10-min intervals for the shading calculations.

2.2. Downscaling

2.2.1. Local Wind Speed Estimation

The ERA5 reanalysis is already being applied in wind energy assessment, showing
improvements over previously released global and regional reanalysis datasets [55–57].
In several recent studies, dynamical downscaling of ERA5 data using the high-resolution
Weather Research and Forecasting (WRF) model has demonstrated an added value of
introducing a higher spatial resolution [6,57,58]. The near-surface wind speeds in the
reanalysis are advised not to be used directly to indicate surface wind conditions at a
site [56], as the relatively low spatial resolution lacks the local representativity of the
site surroundings. This recommendation is reflected by a word of caution in the API-
documentation:

“Care should be taken when comparing this variable with observations because wind
observations vary on small space and time scales and are affected by the local terrain,
vegetation and buildings that are represented only on average in the ECMWF Integrated
Forecasting System.”

In fact, the 10-m near-surface winds in ERA5 are parametrised as the potential wind
in open terrain [59], which can differ substantially from the model representation over
the whole grid cell [60]. Overland, exposure correction in ERA5 is done taking the lowest
model level winds (at a height above the surface that is less influenced by underlining
terrain) and applying vertical interpolation to 10 m through a logarithmic wind profile
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including stability indices (Monin-Obhukov theory). An open-terrain surface roughness
(0.03 m) is used in the transformation [60].

In an attempt to better represent surface conditions, a simple analytical downscaling
method is used. First presented by Wieringa [59], the “2L-method” consists of a two-layer
model of the atmospheric boundary level to account for the difference in surface roughness
from one location to another. It is to be used in combination with roughness lengths
obtained through anemometric analysis or a surface roughness map. We used parts of
the code as printed in [47] and a surface roughness conversion table (see Appendix C)
for our implementation. Other more sophisticated models reported in the literature are
included in the widely used commercial software WAsP, WindSim, and windPRO. There
are similarities between the procedures implemented in WAsP, the 2L-method, and another
simple model by De Rooy and Kok [61–63]. The latter was recently used to create a
1 km gridded dataset for Germany of hourly surface variables using station records and a
regional climate reanalysis model [4]. Other authors have successfully combined WAsP
and statistical approaches [6,64]. These simple downscaling methods are not claimed to
represent the full complexity of the boundary layer. The 2L-method has mainly been used
to create wind resource maps and determining extreme open-water winds [47,48,62,65].
It was first developed as an interpolation method for surface wind measurements [59] and
has later been developed by Verkaik [66,67] and by Wever and Growen [68]. Evaluations
over land have revealed mixed results, outlining that the roughness lengths significantly
impact model performance and that the use of uniform (non-directional) roughness values
leads to large errors [47,65–67].

We follow the approach of Verkaik [66,67] using a high-resolution land-use map with
derived surface roughness values together with a simplified footprint model to downscale
model wind. In the lower level, the surface wind is transformed into the so-called blending
height, where local disturbances have been blended out (Figure 4). Next, the wind speed
in the upper layer is determined by using the NWP-model grid cell roughness value and
geostrophic resistance laws [59]. At the height of the boundary layer, the wind speed is
interpolated between model grid points to site. The wind speed at the blending height is
calculated using regional surface roughness length and transformed back to surface height
(10-m) using local roughness length in the given wind direction.

Figure 4. The 2-layer downscaling model concept applied to the reanalysis model surface wind.

If the surface roughness used in the upwards and downwards transformation in the
upper layer are identical (the model grid cell roughness and the regional roughness is set to
the same value), the 2-layer model reduces to a neutral logarithmic wind profile conversion
via blending height [59]. In the result section, we refer to this common conversion as the
1L-method:

Uloc = U10m

ln
(

zbh
z0;WMO

)

ln
(

zloc
z0;loc

)

ln
(

10
z0;WMO

)

ln
(

zbh
z0;loc

) , z0;WMO = 0.03 m (1)
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where zloc is the local height to use in the conversion (10 m or roof height), zbh is the
blending height, U10m is the wind speed from reanalysis, z0;loc is the local roughness length
at the target location and z0;WMO is the open-terrain surface roughness (Equation (1)).

For the land cover classification, we use the CORINE land use (CLC) map covering the
entire Europe. The map was stored in the elevation path profile web-service. The returned
land cover classes along paths (with an intermediate spacing of 100 m) were used to assign
their relative roughness using tables from literature (see Appendix C). The details of the
regional and local roughness length calculation and the footprint model is given in the
Appendix C.

2.2.2. Transforming Solar Irradiance Data Using a Satellite DEM

In CAMS Radiation Service, the irradiance calculations are done under the assumption
of a flat terrain within the satellite pixel, without considering the diffuse parts masked
or reflected by surrounding slopes [53]. In this study, no attempts are made to calculate
the diffuse part reflected by the surrounding slopes, but it could be possible to use the
satellite-derived DEM to calculate reflections. For the direct irradiance, to account for
shading from local hills or mountains, we combined the matrices with the terrain shading
angle from the JRC’s PVGIS API, selecting the two’s maximum shading angle in each
sector. The PVGIS horizon angles were interpolated to match sectors of 2.5◦, from the
native 7.5◦ sectors corresponding to half-hour intervals. A distance of 10 km was assumed.
Except for the PVGIS horizon profile API, no existing services were found to consider local
hill-shading effects. Still, many web-based height map services provide tools to create
elevation profiles manually along user-defined paths. We also want to test to what extent
services that calculate terrain shading angle from satellite-derived DEM’s can supplement
or substitute higher-resolution DSM’s/DTM’s covering the nearby building vicinity.

2.3. Transformations to Local Building Boundary Conditions Using Detailed Surface Models

2.3.1. Wind Shadow Sheltering on Facades by Nearby Upwind Obstacles

The wind shadow model to calculate wind sheltering effects on building air-infiltration
is implemented into a Python script in the following work. The main concept of this
simple empirical model first presented in Walker, Wilson and Forests 1996 paper [17],
is a wind shadow projected downstream by upwind obstacles to determine the effect of
wake velocity on the building surfaces. It applies a Gaussian-shaped weighting reduction,
projected and weighted on the facades, that extends beyond the width of the obstacle in
the far wake region. In the following, we apply the calculated directional sheltering factor
to scale the wind speed in the infiltration model as intended in the original paper, not
trying to solve the full wind profile with urban canyon effects, localised flow accelerations,
vertical spread and other effects, which would be possible with CFD-simulation or with the
three-dimensional diagnostic urban wind models described in the Appendix B that share
the empirical parameterisation for far wakes [69,70]. In complexity level, the analytical
model implemented here is more similar to the extensive work focusing on deriving wind
conditions in urban environments using morphometric approaches [71].

The method calculates an effective mean wind speed Uλ based on the unobstructed
wind speed U, multiplied by the shelter factor λw which takes a value between 1 (no
shelter) to 0 (complete shelter), or 1 to 0.3 in a physical setting where large buildings are
immediately adjacent [16]:

Uλ = U·λw(θ) (2)

where the shelter factor λw(θ) is expressed as a function of wind direction angle θ.
The authors of the wind shadowing method make it clear that the coefficients to find

λw and Uλ (Equation (2)), were not based on measured wake velocities, but on measured
sheltered and unsheltered façade surface pressures. See Appendix B for further discussion.

The other unique feature of the model is a flapped notch wake used to simulate the
effect of wind direction fluctuations on near wake spread and growth. The notch wake
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indicated by notch centreline velocity in Figure 5, is flapped over a range of wind angles
assuming a Gaussian distribution of wind direction about the mean angle θ:

λw(θ) =
61

∑
j=1

f
(

φj, θ, σθ

)

·λw

(

φj

)

(3)

where the standard deviation of the wind distribution σθ is estimated based on a function
that changes with averaging time, e.g., 10◦ for a time-step of 1 h [17], which translates into
a range φj of +/− 30◦ for each side of the mean wind angle θ (Equation (3)).

Figure 5. The concept of a Gaussian-shaped wake extending beyond a (a) wide obstacle of
8 × 8 × 10 m (b) narrow obstacle of 2 × 2 × 10 m.

Figure 5 illustrates how narrow and wide objects differ in notch wake velocity deficit
and how fast the wake assumes a Gaussian profile behind the obstacle. A standard
deviation of σθ = 10◦ was used for the calculations (Equation (3)).

As described in Appendix B, to determine the scaling length, the obstacles’ aspect ratio
is considered (calculating a characteristic dimension in the wind direction), but not includ-
ing the roof pitch or edges of the obstacle relative to the wind direction, or the geometrical
relationship between the two objects in consideration. These and other simplifications of
the three-dimensional flows are discussed in the paper [17] and wind-tunnel experiments
that evaluate the model [72]. Other studies show that although the assumption of wake
symmetry may be a reasonable approximation for simple cubes oriented normal to the
wind, for more complex geometries the functional form of the velocity deficit in the far
wake is neither symmetric nor Gaussian [73,74]. For situations where the obstacle has pro-
truding edges in the wind direction, standing vortices are formed that may lead to velocity
deficits that differ significantly from what is predicted by a simple wake model [74].

In our implementation, the effective distance between the obstacle and the facade
is calculated differently for the wind shadow coming into the facade, fully immersed,
and out of the facade. When the projection line intersects with the façade, the distance
is calculated from the intersection point to the obstacle’s edge. For the particular case,
when the wind direction is perpendicular to the façade, the mid façade point is used in the
distance calculation, which is the situation described in the paper.

For each façade, j, the effective shelter λw;j is found by a weighting of sheltered and
unsheltered portions of the wall:

λw = 1 − (1 − λw;c)

(

Ls

Lw

)

(4)

where λw;c;j is the shelter factor on the wake centerline, Lw;j is the length of the façade, and
Ls;j is the sheltered façade length (Equation (4)). The sheltered façade length and distance
between the obstacle and the façade (the wake distance) will differ for each wall and wind
angle. Every façade and obstacle are considered independently, and upwind walls do not
shelter downwind building walls on the same building, as these effects are accounted for
in the pressure coefficients [17].

The footprint of the building under consideration was defined as described in Figure 2.
The nearby building footprints (including calculated mean building height information)
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were imported from building shape layers and analysed with Python’s shapely library.
Trees and vegetation can be included as points (narrow obstacles), but this was not tested
as there were no tall trees located within 2–3 building heights in the prevailing wind
direction of either case building. Finally, we evaluate the maximum sheltering factor on
each façade for every wind direction resulting in a combined directional sheltering factor
for the building.

2.3.2. Approach to Calculate Sheltering from Surface Digital Elevation Models (DEM)

For the shading study, we created path profiling scripts using the gdal library for
Python and later found Python modules of [45] and shifted to use these modules together
with the elevation API. Calling the API repeatedly, one can use a façade sub-division, yet we
restricted the evaluation to a single point per façade. For each case building, the digital
elevation maps hosted in the elevation API covered a radius of at least 100 m around the
building. Focusing on obstacles in the close surroundings is in agreement with Lingfors [31]
who found that for roof surfaces a radius of 50 m is satisfactory with little impact on annual
direct irradiance beyond 75 m. Further procedure:

(1) Surface height and distance were evaluated extending at least e = 100 m outwards
in each façade direction, using a spacing n of 1 m and a sector angle s of 2.5 degrees,
creating matrices of dimension (e/n) · (360/s), see also Figure 2 for illustration.

(2) In the next step, the terrain reference height (above mean sea level) for the building
and the façade height was used to calculate each sector’s maximum obstacle angle.
We return the height and distance to this obstacle along with the obstacle height angle
based on projection lines from mid-façade height, creating three arrays of (360/s)
values for each façade. Knowing the façade orientations, the length of these arrays
can optionally be reduced by half (to 180/s sectors).

(3) To account for shading from local hills or mountains, we combined the matrices with
the terrain shading angle from the EU-DEM mapping (up to 10 km) and the PVGIS
API, selecting the maximum shading angle in each sector. The PVGIS horizon angles
were interpolated to match sectors of 2.5◦, from the native 7.5◦ sectors correspond-
ing to half-hour intervals. A distance of 10 km was assumed to calculate PVGIS
terrain height.

(4) A fixed sky view factor was calculated for each façade orientation based on the
mid-façade height horizon angle. Finally, the variable percentage of façade surface
shaded by obstacles was calculated based on the full façade height, solar height and
solar azimuth position according to the ISO52010 methodology. The selected 2.5◦

sectors correspond to 10 min intervals, making it straight forward to apply to 10-min
time-series.

We start evaluating the horizon angle a few meters away from the façade to avoid
heightmap slope artefacts or exclude trees or other nearby obstructions that are not shield-
ing the entire façade. For the lower resolution DEMs, starting the evaluation, e.g., 5 m
away also help to reduce how precisely the façade lines need to be defined relative to the
underlying surface DEMs. Following the methodology laid out in the EN ISO 52016-1:2017
standard, it is suggested that building self-shading or “side-fins” are assessed separately.

2.3.3. Solar Shading by Nearby Objects

We follow the procedure of EN ISO 52016-1:2017 for calculation of solar shading reduc-
tion factors of nearby (and distant) objects. The standard differentiates between shading
reduction factor by objects and on or close by the building itself like overhangs, sides and
rebates. In the present work, we did not consider building self-shading. The standard
gives two methods to assess shading of diffuse radiation; either disregard shading of the
diffuse or use a sector-based evaluation applied to the Perez transposition model. In this
anisotropic model, the diffuse part is separated into sky diffuse, circumsolar, horizon band
and ground reflected irradiance (EN ISO 52010:2017 calculation method). The technical
report accompanying the standard also outlines how some sky patch dome models are
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compatible with the Perez model. An example of implementing a sky patch model with
Perez surface transposition and LiDAR data for shading analysis is found in [35]. As objects
may not only block solar irradiance on a surface, but may also reflect solar radiation (e.g.,
hills, trees, other buildings, or other parts of the same building), the three-dimensional
problem quickly calls for more advanced methods, e.g., ray-tracing supported by GPU ac-
celeration. For simplicity, we follow the first approach in the standard, which is equivalent
to a situation where the radiation reflected or transmitted by objects in the environment is
equal to the diffuse radiation blocked by these object.

The direct radiation (including circumsolar) is fully or partially blocked by a factor
Fsh if the object is between the sun and surface (Figure 6).

Figure 6. Shading of direct and circumsolar beam irradiance and the vertical shading factor.

2.4. Including Environmental Variables and Local Sheltering Effects

In the following section, we discuss models that can be used pre-process weather
variables in order to capture the thermal tie between indoor temperature, and boundary
conditions, in this case, incident solar insolation and temperature- and wind-dependent
air-leakages across the building envelope which result in infiltration losses.

2.4.1. Infiltration Losses

Infiltration is the uncontrolled air leakage through cracks and other unintentional
openings in the building envelope introducing outdoor air into a building. Many infil-
tration models for residential buildings have been developed based on statistical fits of
infiltration data. By considering that weather is the dominant driving force, infiltration
flow can be assumed to be linearly dependent on the outside-inside temperature difference
and wind-speed [75]. However, the simplicity of regression is not without limitations.
The fitted coefficients carry little physical meaning, and the collinearity between heat trans-
mission across the building envelope and infiltration losses driven by the indoor-outdoor
temperature difference may lead to identifiability issues.

An empirical single-zone infiltration model accounts for infiltration, relying on phys-
ical parameters and building information, the AIM-2 model. We use the model form
presented by Lundström in [58], where the calculated potential specific infiltration flow
rate Q∗inf [Pan] multiples with the infiltration coefficient Cinf [l/(s Panm2)] which can
be estimated by inverse approaches or obtained from fan pressurisations tests. A litera-
ture review of studies using the model and the differences in our implementation to [58]
are presented in Appendix B. The single-zone infiltration models’ performance is mainly
sensitive to the highly uncertain distribution of air leakages across the envelope and the
parameters used for converting wind data measured at a weather station to the building
site and local wind shelter effects from typography and nearby buildings. This uncertainty
can be reduced by wind measurements on-site. However, shelter coefficient may still
apply as a simplified approach to account for direct wind shielding caused by trees and
neighbouring buildings located within 2–3 building heights of the building facades [16,17].
To estimate local wind velocity Uloc, AIM-2 uses unobstructed wind speed transformed
to building eave height at the building site. A power law wind profile conversion was
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used in the original AIM-2 model, whereas a logarithmic wind profile conversion can be
found in the implementation in the popular building energy simulation software ESP-r [76].
Furthermore, the wind shelter coefficient λw of 0–1 is multiplied by the wind speed at roof
height. Both the authors of AIM-2 and the LBL infiltration method recommends making
this shelter effect directional based on wind direction [16,75].

An engineering approach to make the wind sheltering directional is proposed by
Walker and Wilson [16] and can be found reprinted in the ASHRAE Handbook of design
guidelines [77]:

λw(θ) = 0.5·
(

(λw;1 + λw;3)· cos2 θ + (λw;1 − λw;3)· cos θ + (λw;2 + λw;4)· sin2 θ + (λw;2 − λw;4)· sin θ
)

, (5)

where λw(θ) is the shelter factor for the particular wind direction θ, and λw;j is the shelter
factor when the wind direction is normal to a wall j (estimated perpendicular to each side
building side) which can be estimated from sheltering class tables in literature [78].

We compare this interpolation approach (Equation (5)) to the wind sheltering model
in the result section.

2.4.2. Solar Heat Irradiance on Facades

The solar irradiance is calculated as a weighted mean vertical input according to the
proportions of total solar gains expected for each façade orientation. This input can be used
in simplified thermal models that are suitable to determine building heat transmission
losses (HTC) [79]. When measuring and accounting for solar gains in steady-state whole
building heat loss experiments, one approach is weighting each façade by their respective
glazing proportions. Stamp et al. found that for north-south oriented dwellings, vertical
south-facing or weighted means provide the most accurate results to determine heat trans-
mission losses (HTC), whilst estimating solar gains from global horizontal measurements
overestimated HTC [80]. For east-west facing dwellings, mean or weighted means may
provide more accurate results than a single vertical measurement in the dominant direction,
particularly where there are local shading effects [80]. The presence and operation of solar
shading devices represent a considerable uncertainty.

3. Results and Discussion

The proposed method is applied to four buildings:

• The TWIN detached house oriented directly towards south at the Fraunhofer IBP test
site in Holzkirchen, Germany.

• The ZEBLL Living Lab detached house oriented south with 4◦ westward tilt on the
main campus of NTNU, Trondheim, Norway.

• The GBORO south-facing apartment end-unit oriented 12◦ eastwards in Gainsbor-
ough, UK.

• The UKULE townhouse oriented 71◦ westwards from the south in a historic part of
Brussels, Belgium.

Figure 7 illustrates that nearby buildings do not shade the east, south, and west
façades of the TWIN house, at the 15. of February ca. 9:30 in the morning, 12:30 mid-day
and 15.30-afternoon local time (or any other time in winter). The ZEBLL house at the
NTNU campus, on the other hand, is shaded in the afternoon on this day from a nearby
building located west of the house. We evaluate the shading model by using data from a
pyranometer on the south façade in Section 3.2.

Figure 7. Shading of east, south and west facades on the 15. February with solar position 135◦ (SE),
180◦ (S) and 225◦ (SW). (a) TWIN, Holzkirchen, DE; (b) ZEBLL, Trondheim, NO.
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3.1. Comparison of Sourced Weather Data to Observations at the Holzkirchen Site

The key weather variables sourced from the reanalysis and the satellite irradiance
service are presented, by comparing a two and a half month-long winter period to obser-
vations at the Fraunhofer IBP test site in Holzkirchen. The weather data was collected at
the IBP’s weather station at 1-min intervals, provided as 10-min averages for the period 7
December 2018 to 28 February 2019 as part of IEA EBC Annex 71. The 10-min data were
processed to hourly observations for the following analysis.

3.1.1. Air Temperature and Sky Longwave Irradiance

The air temperature and sky longwave irradiance from reanalysis are seen to represent
the diurnal cycle (Figure 8). The ERA5-Land temperature at 2-m scores somewhat better
on central performance metrics (0.33 ◦C, 2.04 ◦C and 1.36 ◦C) compared to ERA5′s (1.32 ◦C,
2.27 ◦C and 1.61 ◦C) for mean bias difference, root mean square error and mean absolute
difference respectively. The errors are largest under cold spells. Both products underpredict
the temperature under cold conditions, which is a feature of NWP models, they struggle to
represent cold temperatures in stable conditions well [81].

Figure 8. Observed outdoor temperature and longwave sky radiation at the Holzkirchen site compared to the ERA5
reanalysis for the period 7 December 2018 to 28 February 2019.

The longwave sky irradiance and the sky temperature, calculated from the ERA5
longwave sky irradiance and air temperature (using the conversion in Table 2) correlate to
local measurements on most of the days. In Figure 9, the distribution and sorted values in
ascending order (black) reveal a bias across the distribution. These quantile-quantile plots
are helpful to determine if the distributions are similar. The actual hourly values aligned in
time are shown as coloured point samples. The reanalysis does not match observed hourly
temperature in the lower end, but the distributions are similar, so more confidence can be
placed for longer periods (e.g., monthly averages).

3.1.2. Wind Speed and Direction

As described in the method section, the near-surface 10-m wind in the reanalysis is
not itself a direct output of the model: instead, the lowest predicted model level wind is
post-processed using an exposure correction to better represent observed 10-m wind in
open terrain [60]. In this case, the wind mast’s local surroundings match the condition of
open unobstructed terrain in the prevailing wind direction, making a direct comparison
possible. When comparing the reanalysis data to site-observations, there is a clear bias
in the reanalysis (Figure 10). Both products generally capture the hourly fluctuations
reasonably but a consistent underprediction effect is observed.
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Figure 9. Observed outdoor temperature and sky temperature (computed from longwave radiation)
at the Holzkirchen site compared to the ERA5 reanalysis for the period 7 December 2018 to 28
February 2019.

Figure 10. Observed wind speed and direction 10 m above ground at the Holzkirchen site compared to the ERA5 reanalysis
for the period 7 December 2018 to 28 February 2019.

By applying the 2L-method, the 10 m near-surface wind from ERA5 is bias-adjusted,
leading to a better match with the observed wind (Figure 11). More details on the correction
factors are presented in the downscaling chapter. As with the temperature comparison,
the actual hourly values aligned in time are shown as coloured point samples and sorted
in ascending order (black) to see model bias across the theoretical distribution (Q-Q plot).
A Weibull distribution is overlaid on top of each scatter plot, displaying the observations
series in grey and the reanalysis in colours.

After the bias correction, the Weibull scale parameter is increased from 3.1 m/s to
3.8 m/s, compared to the observed 4.0 m/s. The mean bias difference is reduced from
−0.85 m/s to −0.2 m/s, and the mean absolute difference is improved by 0.4 m/s from 1.2
to 0.8 m/s.

3.1.3. Global Horizontal and Diffuse Irradiance

The global horizontal and diffuse irradiance observed at the site compares quite well
to the satellite-derived irradiance from the CAMS-Rad service (Figure 12) on most days.
There is a series of days in February, towards the end of the period, where diffuse irradiance
is overpredicted, and the global horizontal is underpredicted. These are clear-sky days
not interpreted as such by the satellite-model product. Earlier in the period, the cloud
cover appears to be predominantly overcast (global horizontal and diffuse irradiance are
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equal), but some day-to-day variability can be spotted in both observations and satellite
irradiances.

Figure 11. Observed wind speed and direction 10 m above ground at the Holzkirchen site compared
to the ERA5 reanalysis for the period 7 December 2018 to 28 February 2019.

Figure 12. Observed global horizontal (GHI) and diffuse irradiance (Gdif) at the Holzkirchen site compared to the variables
from CAMS radiation service for the period 7 December 2018 to 28 February 2019.

3.1.4. Snow Depth and Ground Surface Albedo

The snow model depth in the ERA5-Land grid cell matches the observed depth quite
well (Figure 13). The calculated snow broadband albedo adjusted for snow cover (equation
in Table 2) is compared to the measurements from two pyranometers on-site, filtered by
solar azimuth height (only displaying values when the sun is 5◦ above the horizon) to
account for uncertainty at sunrise and sunset. The uncertainty in the measurements is
likely to be high at low radiation intensity, so applying more precise criteria could improve
the correlation.

3.1.5. Vertical Solar Irradiance on Facades

The TWIN buildings and weather station at the Holzkirchen site lie unobstructed in a
flat open terrain making it impossible to evaluate the shading model with measurements
from this site. It is still included to show the calculated horizontal and vertical solar
irradiance compared to observations, as TWINS is the only case with measurements in all
four façade orientations. On the particular day selected for analysis, clear sky conditions
can be observed from ca. 10:00 in the morning (Figure 14). Even if the global horizontal
irradiance from CAMS-Rad matches observations well, the calculated irradiance on each
façade orientation is underestimated. We can observe that the diffuse fraction on the

196



Energies 2021, 14, 802

vertical appears to be underestimated in every facade direction even when using clear-sky
irradiance as input to the solar transposition model. Possible explanations are due to how
diffuse radiation is parametrised in the Perez anisotropic sky model (including model
attenuation coefficients), the assumption that diffuse sky irradiance is isotropic in the
shading calculations (each surface sees 50% of the sky) and physical effects caused by
terrestrial reflectance or measurement errors. Due to fresh snow, the modelled ground
reflectance was set to a high value of 0.70 at this day (calculated from the ERA5-Land
snow cover).

Figure 13. Observed snow depth and ground reflectance (calculated from ground reflected short wave radation) at the
Holzkirchen site compared to the ERA5 reanalysis forecasted albedo for the period 7 December 2018 to 28 February 2019.
The dashed blue line shows the calculated snow albedo of Table 2.

Figure 14. Observed global horizontal (GHI) and total vertical irradiance measured in each direction
for a sunny day in winter at the Holzkirchen site compared to the calculated surface irradiances
using the (a) CAMS radiation service as input. The (b) clear sky data are based on the CAMS-Rad
McClear service.

3.2. Comparison of Sourced Weather Data to Observations at the NTNU Campus

Vertical Solar Irradiance on Facades

The ZEBLL campus building also features pyranometers measuring global horizontal
irradiance on the roof and total vertical irradiance on the south façade. This building has
its largest windows towards south, and the view from the wall-mounted sensor is shown
in Figure 15. In winter, the afternoon sun is obstructed by large buildings towards west,
well-captured by the shading model (Figure 16).
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Figure 15. Panoramic view from a vertical sensor positioned south, ZEB Living Lab, NTNU Campus.

Figure 16. Observed global horizontal (GHI) and total vertical irradiance measured from south
sensor position, ZEB Living Lab, NTNU campus compared to the calculated surface irradiances
using the CAMS radiation service as input. The CAMS-Rad irradiance over-evaluates cloud cover (a)
and clear sky (b).

The CAMS-Rad irradiance over-evaluates cloud cover on this particular day (Figure 16a,
but a better match can be seen in the clear sky irradiance from the CAMS-Rad McClear model
(Figure 16b). The discrepancy on how vertical solar irradiance is calculated is likely due to
surfaces partially shaded by trees before noon (Figure 15), because only buildings and terrain
are considered in this particular diagram. The difference between observed hourly global
horizontal irradiance and what is interpreted by the satellite product as mostly diffuse sky
irradiance on this particular morning, also exemplifies how surface shading is left unaffected
when cloud cover is predominant over the hour in the satellite product. Improving the shading
calculations to include diffuse shading and not only effects on direct surface radiation.

3.3. Horizon Angle and Solar Radiation

3.3.1. Horizon Profile Using a Satellite-Derived Pan-European Surface Height Model

The proposed workflow for solar and wind assessment has in common that the
same datasets are used on a local level, but in different ways. Moreover, that available
dataset for downscaling to medium scale covers all of Europe (or global datasets), whereas
the local effects are only assessable using local area height maps or building footprint
vector map-layers with user contributed height-specification. Although there are initia-
tives of standardisation and contribution within the INSPIRE framework, including OSM
contribution, and a community-led project to derive a pan-European terrain model on-
line [82], high-resolution models involve more complex issues that are less pronounced
in lower-resolution models due to the already high uncertainty. The EU-DEM v.1 prod-
uct is evaluated to a vertical accuracy of 2.9 m RMSE, with higher values for the Nordic
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countries (e.g., 5.75 m RMSE for Norway) [83]. EU-DEM v1.1 used in this study is an
improvement over the first version, but it has not been validated yet [23]. In order to use
different datasets together, we implemented datum conversion and height adjustment to
the different national height systems [82]. For Norway, the difference between the national
height and the one used in EU-DEM was less than 1 cm, but for Belgium, the offset is as
much as 2.31 m.

We tested combinations of height information from the EU-DEM model and the
local high-resolution DSM’s. However, when mapping from the EU-DEM model surface
height, which may very well be above the building height in steep terrain or in places
with low buildings and heigh vegetation, we did not find a significant benefit to use the
30-m resolution of EU-DEM compared to the existing horizon profile API of PVGIS, which
is a service that relies on a pre-processed global SRTM of 3 arc-seconds (around 90 m).
However, we found that if we have actual information about the building elevation height,
and create a buffer around the viewpoint (e.g., 50 to 100 m), we can create a horizon profile
that in some situations is roughly similar to the detailed DSM’s.

3.3.2. Horizon Profile Using Local High-Resolution Surface Height Models

Figure 17, shows the calculated horizon angle at mid-façade height using the maxi-
mum local terrain profile of the PVGIS API (thin black line) and the high-resolution digital
surface models filtered to buildings only (thick black line) or without filter (green), for the
various case buildings. The TWINS building (a) is located in an open flat area. ZEBLL (b)
is located in Norway where solar height at the summer solstice (red line) is lower than
the others, and in this case, vegetation towards north-east and larger campus buildings
westward block morning and afternoon sun. GBORO (c) is shaded by a neighbouring
townhouse distanced 7 m from the south façade, and UKULE (d) is also located in an urban
environment facing a street and a backyard with trees in the backyard.

Figure 17. Calculated horizon angle at mid-façade height using the maximum local terrain pro-
file of the PVGIS API (thin black line) and the digital elevation model DEM filtered to buildings
only (thick black line) or without filter (green) for the (a) TWINS, (b) ZEBLL (c) GBORO and (d)
UKULE buildings.
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Table 3 summarises the average calculated horizon height per façade, separated by
considering only buildings obstacles (abbreviated “Build.”) or all obstacles including
vegetation (abbreviated “Surf.”).

Table 3. Calculated average shading angle at mid-façade height filtered by terrain and building outlines, or without surface
filtering (including all trees or other obstacles from the surface DEM).

Mean Horizon TWINS ZEBLL GBORO UKULE

Angle from DEM Build. Surf. Build. Surf. Build. Surf. Build. Surf.

North façade (◦) 3.1 3.1 8.2 28.6 - - - -
East facade (◦) 1.8 2.0 6.8 29.2 11.2 11.2 11.8 12.6

South façade (◦) 1.4 1.8 8.9 12.7 19.4 19.4 - -
West façade (◦) 2.6 2.7 13.8 15.9 8.1 8.3 5.3 10.3

Figure 18 shows the clear-sky shade index per winter month by [31] defined as the
ratio of shaded and unshaded clear-sky irradiance (only direct and circumsolar beam is
included in the following). The impact of vegetation is presented as a range from fully
opaque (by an x mark) to fully transparent (by a cross mark) and a mix of the two (dot).

Figure 18. Monthly clear-sky shading index per façade for the winter months presented per façade
from left to right: (a) ZEBLL (b) GBORO (c) UKULE.

- For ZEBLL, the incoming direct radiation on the south and west façades is reduced
substantially (up to 60%) by buildings in winter, and if trees are included, they may
block beam insolation from south and east.

- For the GBORO case building, trees have no shading impact, but the south façade is
almost entirely in shadow from December to February, rapidly diminishing in March
as the mid-day solar angle climbs.

- For UKULE, which on average has moderate shading of vertical beam irradiance (ca.
20% reduction) on the two facades, the west façade is only shaded from vegetation.

By weighting the calculated surface radiation by the glazing ratios, we can estimate
the solar heat gains on the window facades in the winter months and estimate a total solar
aperture for the building.

3.4. Surface Roughness and Wind Sheltering

3.4.1. Unobstructed Height Adjusted Wind Speed

ERA5 has a model resolution of approximately 31 km and lack the local representa-
tivity of the site surroundings. To better represent surface conditions upwind influence,
a downscaling method is used in an attempt to increase the local accuracy. The method
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consists of a high-resolution land-use map with derived surface roughness values from
tables (Appendix A) and a simple two-layer model of the atmospheric boundary layer.

The analysis in Section 1 illustrated that 10-m surface wind speed at the Holzkirchen
site (TWINS) is underestimated in the reanalysis. An explanation can be found in the high
forecasted model surface roughness, indicating that the model grid box surface-average
does not represent the local site conditions. The forecasted z0;M = 1.5 m (Table 4) is a value
typically representative for forested areas. The site is located in an open agricultural area
bordering the nearby town of Holzkirchen to the north-west and a golf course towards
the south (Figure 9). The prevailing wind direction is west-south-west, and the first km
up-wind are open landscape. Further out forest surrounds the farmland, influencing the
regional scale weighted mean surface roughness plotted in Figure 17.

Table 4. Surface roughness from ERA5 grid cells and local value derived from the land cover maps.

Surface Roughness z0 (in Meter) TWINS ZEBLL GBORO UKULE

z0;M ERA5 forecasted in the nearest grid cell (31 km) 1.52 1.17 0.23 0.34
z0;WMO ERA5 open terrain roughness for U10 wind 0.03 0.03 0.03 0.03
z0;CLC Land cover map grid cell closest to site (100 m) 0.03 1.00 1.00 1.00

First, the forecasted surface roughness for each grid cell was extracted from the ERA5
reanalysis. Table 4 show the values for each site, together with the open terrain roughness
used to compute 10-m wind in ERA and the derived surface roughness from the closest grid
cell of the CORINE Land Cover (CLC) 2018 map paired with a table of roughness values
(Appendix C). The roughness length for the land use type “Sport and leisure facilities” was
adjusted to a lower value from 0.5 m to 0.03 m to represent the snow-covered golf course.

Next, the directional surface roughness from the footprint model applied to local scale
(up to 1.8 km), and regional scale (up to 9 km) scale are plotted (Figures 19–22). For TWINS
we can see that on the local level, the surface roughness is well approximated to 0.03 m
in the prevailing wind direction (SW), but the model level of 1.5 is many classes higher
than the regional level z0, except in the north direction (due to the proximity to forest).
The difference between the model average forecasted in the nearest grid cell (z0;M), and the
regional footprint model is less pronounced for cases (b) to (d) (Figures 20–22). However,
all display a considerably higher surface roughness on local-level than the open terrain
roughness (z0;WMO).

Figure 19. Derived surface roughness for TWINS site (a) in 10 km radius adapted from CLC map (© European Union,
Copernicus Land Monitoring Service 2018, European Environment Agency (EEA)); (b) Directional local and regional surface
roughness weighted by distance to building-site. Darker green colour indicates higher surface roughness values.
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Figure 20. Derived surface roughness for ZEBLL site (a) in 10 km radius adapted from CLC map2; (b) Directional local
and regional surface roughness weighted by distance to building-site. Darker green colour indicates higher surface
roughness values.

Figure 21. Derived surface roughness for GBORO site (a) in 10 km radius adapted from CLC map2; (b) Directional
local and regional surface roughness weighted by distance to building-site. Darker green colour indicates higher surface
roughness values.

Figure 22. Derived surface roughness for UKULE site (a) in 10 km radius adapted from CLC map2; (b) Directional
local and regional surface roughness weighted by distance to building-site. Darker green colour indicates higher surface
roughness values.

The resulting unobstructed surface winds transformed to roof height are used together
with the wind sheltering method in the estimation of infiltration loss (see Section 3.4.3).
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3.4.2. Wind Sheltering of Nearby Obstructions

The wind sheltering model results are shown below for the three cases (b) to (d) where
nearby buildings wake significantly impact surface conditions in the dominating wind
direction. For the campus building (Figure 23), obstacles downwind coincide with the
dominating south-west wind direction. Likely, these buildings will also influence the wind
direction and lead to more complex airflow patterns than captured by the model.

Figure 23. Air infiltration sheltering for the NTNU Living Lab (ZEBLL) case (a) Upwind obstacle
geometries in red (OSM building footprints) and building exterior facades in green overlaid on the
local DSM height map by Kartverket/CC-BY 4.0; (b) The combined directional shelter factor for the
four facades using the shelter model (red) and the table-values obtained for each building side (blue).

For the two other cases, GBORO and UKULE, located in urban/semi-urban setting,
the calculated maximum sheltering coefficient from building obstacles are more irregular
(Figure 24). Therefore, it fits less to the interpolated values (using Equation (5)) estimated
qualitatively for each building side from sheltering classes in literature [78]. Instead
of a selecting the sheltering factor manually from a table, one could use the model to
approximate the sheltering factor from obstacles located perpendicular to each façade
orientations (when the wind direction is normal to a wall).

Figure 24. Air infiltration sheltering (a) for the GBORO case-building; (b) and for the UKULE case
building. The combined directional shelter factor for the three exterior facades of either plotted over
the wind direction. Only the obstacles that yielded an impact to the shelter factor are enumerated.

In the presence of more tightly-spaced building obstacles, the limitations of the shelter-
model implementation become evident. First, overlapping sheltering is not considered,
which may be detrimental to performance. We have no way to assess skimming flow that
is usually accounted for in urban wind morphometric approaches by increasing the zero-
plane displacement height [71]. Secondly, with more complex and overlapping geometries,
the functional form of the velocity deficit in the far wake is not Gaussian [72–74]. In the
urban/semi-urban situation below, limiting the assessment to approximate the sheltering
factor in the four façade directions and interpolating using Equation (5) may be a more
physically sound and robust simplification.
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3.4.3. Infiltration Loss

In this section, the infiltration model results are plotted against the potential wind
speed of ERA5 at 10-m = height to illustrate the effect of the wind exposure and shelter
correction. The AIM-2 models physical model output, “infiltration potential” (a scalable
time-dependent variable) is multiplied by the results of air-pressurisation tests n50 value.
It could be replaced by either a design-value or a parameter estimation in an inverse
modelling approach. All the four cases (which are well-insulated and air-tight residential
buildings) have measured air-pressurisation n50 values of 1.0 air change rate per hour at
50 Pa pressure difference, except the last case d) with a lower value of 0.5 h−1.

The slope of the infiltration air change rate at 1 atm. pressure (Figure 25) is mainly
influenced by the n50 value, the shelter coefficient used in AIM-2 and what kind of exposure
correction is made from ERA5 10 m potential wind speed (in open terrain) to building roof
height, Urf.

Figure 25. Calculated infiltration rate (air change per hour) over six months in winter versus 10-m
wind speed in open terrain from reanalysis and estimated cumulative distribution (ECFD) (a) TWINS;
(b) ZEBLL; (c) GBORO; (d) UKULE.

• The black horizontal line is a common conversion of the n50 infiltration rate to 1 atm.
pressure, simply multiplying the n50 values by a constant of 0.07, a rule-of-thumb
conversion factor representative of a moderately sheltered building with more than
one exposed façade.

The first two AIM-2 model variants uses a 1-layer (1L) logarithmic transformation of
the wind speed (up to a blending height of 60 m) which is a common conversion method
in many Building Energy Simulation (BES) tools.

• The black dots show the infiltration rate with a neutral logarithmic correction to roof
height using the same surface roughness value of 0.03 m present in the reanalysis
surface wind.

• The grey crosses show the infiltration rate using a transformation from 10-m potential
wind to roof height using a local roughness value. The local surface roughness
obtained from the CLC-classification is 0.03 m for case (a) TWINS and 1.0 m for the
other cases (Table 4).
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In the last two AIM-2 model variants, the full 2-layer (2L) downscaling method
was used with and without the directional surface sheltering method. In the 2L-method,
the directional surface roughness upwind to the site is obtained for the required regional
and local footprint using derived surface roughness from the CLC-classification.

• The green points show the infiltration rate using the full 2L transformation of reanaly-
sis wind.

• The red points show the infiltration rate using the same 2L transformation with the
directional surface sheltering method to account for nearby obstructions.

For the first two model runs using fixed surface roughness, the variability of air change
comes from the outdoor indoor temperature difference, which is more pronounced at calm
wind conditions. This effect is explained by the AIM2-models sub-addition of stack and
wind-driven infiltration, where the stack effect loses significance at higher wind speeds.
At higher wind speeds, the wind direction plays a role when the two-layer downscaling
method is applied and through the wind shelter method in cases (b) to (d) where there are
buildings located in the prevailing wind direction (Figure 25).

The resulting infiltration loss over the six-month winter period is presented in the table
below in W/m2 K indoor-outdoor temperature difference and W/m2 assuming a constant
indoor temperature of 21 ◦C in the period (Table 5). Consistent with the hourly infiltration
air change rate (Figure 25), including shading from nearby obstacles significantly impacts
the average infiltration heat loss over the winter period for cases (b) to (d). Comparing
the average infiltration loss with nearby sheltering effect (final line) to the “rule-of-thumb”
approach of scaling n50 by a constant of 0.07 (first line), the mean differences between the
two are less than 30 % except for case b) ZEBLL.

Table 5. Infiltration loss calculated mean over the six month winter period per floor area in W/Km2 and assuming an
indoor temperature of 21 ◦C in W/m2 heated floor area.

Infiltration Heat Loss (a) TWINS (b) ZEBLL (c) GBORO (d) UKULE

Average Per Floor Area W/m2 K W/m2 W/m2 K W/m2 W/m2 K W/m2 W/m2 K W/m2

Constant n50 · 0.07 0.08 1.35 0.08 1.57 0.07 0.89 0.03 0.47
AIM2-1L, z0;WMO, λ = 1 0.06 1.00 0.04 0.87 0.09 1.11 0.04 0.60
AIM2-1L, z0;CLC, λ = 1 0.06 1.00 0.03 0.60 0.05 0.66 0.03 0.43
AIM2-2L, z0(θ), λ = 1 0.10 1.68 0.04 0.76 0.09 1.10 0.03 0.46
AIM2-2L, z0(θ), λ(θ) 0.10 1.63 0.03 0.67 0.06 0.78 0.02 0.33

4. Conclusions

In this paper we examine how open geospatial data can be used to refine weather
variables for building energy performance evaluation with focus on incident solar radi-
ation and wind-driven infiltration modelling. By using only building location (latitude,
longitude) and a selection of free/open geospatial datasets covering Europe, we were
able to acquire and adapt gridded weather data variables to local building boundary
conditions. The nearly three-month-long winter comparison of a building test-site in South-
Germany indicates that hourly surface variables from climate reanalysis and satellite-based
solar radiation can become a feasible supplement to local observations for heating season
building performance modelling and evaluation. However, the air temperature, vital to
heating analysis, did not fully capture the extreme lows. In Europe, local observations of
air-temperature and to some extent other weather variables are commonly available closer
to site than the resolution of the current global reanalysis datasets (as was the case for the
four case buildings). New regional surface products are expected to take advantage of ob-
servation stations’ density and reduce the need for site-correction techniques by featuring
higher spatial resolution.

To include local effects from the terrain, vegetation and buildings in solar and wind
assessments, 1-m resolution DSM’s and DTM’s from airborne laser scanning were acquired
for each case building. The separation of nearby vegetation and buildings is essential to
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model incident solar insolation on low-rise building facades. The impact of distinguishing
between the two was clear on the building-sites with trees. The separation was obtained
by pre-processing the DSM into a new raster based on building outlines, but this operation
could be made more efficient by using the Overpass API directly within the elevation
profile web service to obtain building footprints and filter between building obstacles and
vegetation. The building footprints (with building heights obtained from the DSM) were
also used to include wind sheltering effects in the infiltration calculations. Including wind
sheltering from nearby building obstacles in the AIM-2 model significantly impacts the
average infiltration heat loss over the winter period for three of the four cases. Based on
the four case studies, it seems like the approach work better for more open situations, other
approaches may be better suited for buildings situated in a more dense urban setting.

Overall, we found that using scripting tools to automate geoprocessing tasks in
conjunction with an elevation profile web service made it possible to utilise information
from open geospatial data surrounding a building site effectively. However, there are needs
for improvements to the methodology and risk of oversimplification. A next step could be
to include diffuse-shading models and evaluate other wind conversions to site and shelter
methods for urban settings. It appears that the often-scripted data-driven building thermal
evaluation workflows can benefit from using climatological and spatial tools and datasets,
especially to include local effects, but more practical evaluation studies are needed.
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Appendix A

Table A1. Building information and assumptions used to estimate solar irradiance on the facades. Façade glazing
distribution and azimuth orientation are given in a list form where the four cardinal directions (N E S W) are (180 90 0 -90)
degrees.

Parameter (N, E, S, W) TWINS ZEBLL GBORO UKULE

Facade height hk 4 m 2.8 m 5.0 m 6.5 m
Aperture above gr. h0;k 1.2 m 0.6 m 0.5 m 1.7 m
Façade azimuth az (◦) (180 90 0 -90) (176 86 -4 -94) (-168 112 12 -78) (-161 109 19 -71)

Glazing distribution fgl (.07 .21 .49 .23) (.19 .25 .40 .16) (0 .22 .39 .39) (0 .41 0 .59)
Window area Awi 23.9 m2 39.3 m2 14.7 m2 40.1 m2

Frame factor Ffr;wi 0.23 0.40 0.33 0.31
Transmittance ggl;n;wi 0.67 0.5 0.67 0.67
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Table A2. Building information and assumptions used in the building infiltration model.

Parameter Case 1 Case 2 Case 3 Case 4

Floors Nfl 2 1.5 2 4
Int. building height hb 5.2 m 3.4 m 5.5 m 11.3 m

Air tightness n50 1.0 h−1 1.0 h−1 1.0 h−1 0.5 h−1

Flow coefficient n 0.67 0.67 0.67 0.67
Indoor temperature 21 21 21 21

Appendix B

B.1. The AIM-2 Infiltration Model

A single zone infiltration model is used to account for building air-infiltration. Em-
pirical single-zone infiltration models were developed in the 1980s and have seen some
renewed interest in later years [84–88]. In most simplified infiltration models, the stack
and wind-induced infiltration rates are assessed and derived separately and then superpo-
sitioned for a total infiltration rate. Two of the most established models are the LBL and
AIM-2 models, adapted into simplified and advanced form in the ASHRAE Fundamentals
Handbook. AIM-2 was developed by Walker and Wilson (1990) for houses [16], and a
model implementation can be found in the BES software ESP-r [76].

The accuracy of the AIM-2 model to predict infiltration rates in dwellings can be
excellent (±10%) when the model parameters are well known according to validations by
the authors [78]. A separate validation study found a mean error of 16–27% assessing ten
single-family homes [89]. Another study found an average error of about 19% predicting
air infiltration rates for 16 detached houses under a wide range of weather conditions [84].
More recently, the AIM-2 model was utilised to predict infiltration rates in three stone-
churches in Sweden [85]. The median absolute prediction error was 25%. Considering
the model was not developed for large structures, a correction factor of 0.8 to account
for overprediction was shown to reduce the error from 25 to 11%. In another recent
study, the infiltration model was validated on a single building, obtaining a mean absolute
value error of 17–35% by using different parameters for envelope leakage distribution [86].
A methodology is presented in successive work to determine the air change rate in near-
real-time by combining the AIM-2 model with a tracer gas decay test method, reducing the
error to 10% [90].

Lundström implemented the AIM-2 model in a building energy model [87], recently
transformed to stochastic state-space form followed by a Bayesian calibration proce-
dure [91]. The stochastic approach includes a logistic function to model occupant induced
manual venting during heating and cooling season. Lundström presents the following
version to calculate infiltration loss φin f in [87], where the calculated potential specific
infiltration flow rate Q∗

inf [Pan] multiples with the infiltration coefficient Cinf [l/(s Panm2)]
which can be estimated or obtained from fan pressurisations tests.

φin f = Cin f ·Q∗
in f ·κ·ρa·(θe − θi), Q∗

in f = Q/Cin f (A1)

Q∗
in f =

(

(Q∗
s )

1
n + (Q∗

w)
1
n − 0.33·(Q∗

s ·Q∗
w)

1
2n

)n
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where, ρa is the density of outdoor air, κ is the heat capacity, and exponent n is the
building leakage flow coefficient of the orifice power law. Like many simple infiltration
models, AIM-2 uses a superposition technique where the infiltration flow rates due to wind
and stack effects, Q∗

s and Q∗
w, are added non-linearly in addition to an interaction term

(Equations (A1) and (A2)).
In [87], building height H is adjusted for buildings taller than two floors to H* (m),

resembling the correction factor used by [85] to account for over-prediction. Potential
infiltration rates due to stack and wind effects can be pre-calculated by either using the
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calculated indoor temperature from the previous time-step in [91] or by assuming a constant
pre-defined set-point temperature in [87].

Q∗
s = fs(∆Ps)

n = fs

(

9.806·H∗·pa·|θe − θi|
θi + 273.15

)n

(A3)

Q∗
w = fw(∆Pw)

n = fw

(

0.5·U2
loc·λ2

w·ρa

)n
(A4)

Assuming evenly distributed envelope leakage, no flue (chimney), and basement
or slab-on-grade foundation, the wind and stack factors reduces to fs = 0.25 [(Pa/K)n]
and fw = 0.22 [(Pa s2/m2)]. However, in this simplified form AIM-2 loses some of its
flexibility to utilise building and site-specific data. The leakage distribution input values
is a major source of uncertainty influencing AIM-2 and determining the values through
measurements is difficult [78]. Noting a lack of reliable data, one of the validation studies
shows that minor improvement is achievable (over the default uniform values) if certain
building characteristics are taken into consideration [84]. Based on the optimisation of the
leakage distribution (between ceilings, floors, and walls) on different groups of houses,
their study recommends using values provided in a guideline for estimating leakage
distribution parameters according to house types, number of storeys, and foundation type
by Lew [92]. The leakage distribution tables by Lew were implemented as cited in the
ESP-r source-code [76]. The full equations for fs and fw can be found in [78] including
model forms for building flues or crawl spaces.

B.2. The Wind Shadow Method

The concept of a Gaussian-shaped wake in Walker, Wilson and Forest’s wind shadow
method [17] is similar to a more commonly used shelter model “WEMOD” for far wake
effects by Taylor and Salmon [65] that can be found implemented in the QUICK-URB and
SkyHelios urban wind models [69,70]. Both QUICK-URB and SkyHelios are light-weight
diagnostic urban wind models that do not solve the full Navier-Strokes equations but are
based on empirical parameterisations, and mass conservation principles first compiled by
Röckle [93] and later improved with updated parameterisations like the WEMOD wake
model [69,70]. A difference between the wake model by Walker et al. and the WEMOD
model is that the latter was developed to adjust wind speed measurements in a single point
in space as opposed to being used on whole building facades. However, being of the same
family of models many of the assumptions and limitations apply to both.

The sheltering factors were derived from measured sheltered and unsheltered surface
pressures [17]. Therefore, the authors suggest that the surface pressure coefficients Cp of a
building shielded by adjacent obstacles could be predicted by correcting the Cp obtained
for an isolated building. This was later investigated in wind tunnel experiments using scale
building models with different shapes and surrounding conditions by Sawachi et al. [72].
Their results indicate that the influence of the upwind building on the Cp distribution of the
downwind building is clearly different inside and outside of the wind shadow. The best
correlations are shown when the distance of an adjacent building (obstacle) is more than
twice the obstacle’s height and width. It is suggested that when the adjacent building
obstacle is closer, the width of the wind shadow should be given a wider area, depending
on the depth of the shielding obstacle. Still, it is unclear from the paper whether they
applied the flapping technique or simply projected a shadow of constant width. Another
proposition is that the distance beyond where the shielding effect is negligible could be
defined more clearly by the full three- dimensional size and geometrical relationship
between the two objects in consideration [72].

For the scaling length in the model, a characteristic dimension of the obstacle is consid-
ered which is an empirical relationship between the smallest and the largest dimensions in
projected width or height (cast in the direction of the wind). The definition is supported by
former experimental studies. We refer to the original paper for the theoretical explanation
of model assumptions and the functional form of the wake decay [17].
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Appendix C

The roughness length table for each CLC type used in this work is published on the
Finish wind atlas website with distinctive values for summer and winter. The values for
winter are used.

To calculate the regional and local roughness length, a surface drag coefficient Cd;i
is averaged at the blending height which is a method to give weighting to the larger
roughness values [59,66]:

Cd;i =

(

κ

ln(zbh/z0)

)2
, κ = 0.4 (A5)

where zbh is the blending height and z0 is the roughness computed for each map point i
(100 m). A simple footprint model is used to scale the significance of roughness further
away from the site:

Cd =
WnCd;i

∑ Wn
, Wn = exp

(

− xn

D

)

(A6)

where the scaling factor D is 600 m for the local footprint and 3 km for regional footprint [66].
A source area of up to 3 times D is considered, resulting in an effective evaluation length of
1.8 km for the local scale and 9 km for the regional, which accounts for a total of 80% of
the integral of Wn (Equation (A6)). Other studies using this footprint model have reported
other distance weightings [48,63].
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Abstract: The research explores the potential of digital-twin-based methods and approaches aimed at
achieving an intelligent optimization and automation system for energy management of a residential
district through the use of three-dimensional data model integrated with Internet of Things, artificial
intelligence and machine learning. The case study is focused on Rinascimento III in Rome, an area
consisting of 16 eight-floor buildings with 216 apartment units powered by 70% of self-renewable
energy. The combined use of integrated dynamic analysis algorithms has allowed the evaluation of
different scenarios of energy efficiency intervention aimed at achieving a virtuous energy manage-
ment of the complex, keeping the actual internal comfort and climate conditions. Meanwhile, the
objective is also to plan and deploy a cost-effective IT (information technology) infrastructure able
to provide reliable data using edge-computing paradigm. Therefore, the developed methodology
led to the evaluation of the effectiveness and efficiency of integrative systems for renewable energy
production from solar energy necessary to raise the threshold of self-produced energy, meeting the
nZEB (near zero energy buildings) requirements.

Keywords: digital construction; artificial intelligence; digital twin; nZEB; energy management;
energy efficiency; edge computing

1. Introduction

The energy management of building systems and urban areas such as residential
districts is assuming an increasingly relevant role in the control and assessment of urban
development and refurbishment processes.

Digital predictive technologies and sensor-based control systems are becoming fun-
damental tools [1] supporting policies to reach near-zero requirements and targets for
buildings and urban districts. Nowadays, the integration of information communication
technologies (ICT) has an important role in the configuration of smart cities and in defining
digital strategies addressing social, public health, economic, environmental, and safety
issues [2].

The success of such digital transformations requires the ability to meet and manage
new emerging challenges [3]. Deep interactions between humans, infrastructures, and
technologies are increasingly created over time by the global consequences of urbanization
and the growth of human activities. Dealing with complexities related to sustainability mat-
ters, cities are implementing technological improvements achieving smarter performances
through the definition of smart cities that adhere to a smart growth agenda [4].

According to the above mentioned, it can be introduced the urban intelligence [5]
concept, providing insights into a number of issues currently faced by modern cities (i.e., air
pollution, communication network demand, congested traffic, water floods, etc.) through
the introduction of data from Internet of Things (IoT) sensors processed by intelligent and
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real-time advanced analytics. According to the United Nations prediction, 60% of cities
will have at least half a million inhabitants by 2030, leading to issues in cities such as the
increasing of network demand and crowd congestions [6].

In the future, progressively current problems in cities will be necessarily managed
through intelligent urban reasoning algorithms and suitable deployment data-model based
on urban intelligence systems, pervasive computing, communication, big data manage-
ment technologies, and artificial intelligence (AI), leading to a strong evolution in the
management of urban environments as well as in the quality of life in smart cities [7,8].

The configuration of city digital twins represents a giant leap forward for urban sus-
tainability from design to construction and maintenance basing on the implementation of
Industry 4.0 principles [9,10]. It is defined as a digital replica of a physical asset, collecting
information from sensors, drones, or other sensive IoT devices, applying advanced analyt-
ics, machine learning (ML), and AI obtaining real-time processed data about the lifecycle
process of physical assets.

In particular, digital twin (DT) ecosystems are related to three main entities: a physical
object, its virtual replica, and the connection between them in terms of collecting and
connecting real-time information. Such a digital ecosystem can effectively contribute to the
lifecycle management of both vertical and horizontal systems, in order to store, manage
and process big data about the urban environment in a three-dimensional data model as a
structured information system connected to the physical.

In this paper, the applications of such ICT-based digital approaches are related to
energy management systems, in order to predict real time situations, enriching and leading
to more effective decisions, obtaining the automation of repetitive tasks, and providing
added value with the optimization of decision-making processes.

In particular, the objective concerns the configuration of a solid methodology for an
increasingly intelligent system where the potential of ICT, IoT, big data and AI are combined
interacting with BIM (building information modeling) models (Figure 1), defining three-
dimensional information and predictive systems for energy management.

Figure 1. Rione Rinascimento III three-dimensional BIM model overview, consisting of encoded
functional blocks (FB) and building models (from C_0n to H_0n).

In fact, the connection between IoT devices, digital information models (BIM), and AI
defines an advanced smart-city ecosystem as an intelligent, ubiquitous, and sustainable
digital urban context [2] where real-time monitoring systems allow data connections and
processing anytime and anyplace [3,4].

More specifically, the project developed by CITERA Interdepartmental Centre of
Sapienza University of Rome explores the potential of digital-twin models integrated
with AI systems finding a specific application as an opportunity to apply the developed
methodology. The case study is related to the configuration of an effective DT model of a
residential district in Rome, increasing energy efficiency and identifying a cost-optional
solution for which both consumption and costs are expected to be reduced.

214



Energies 2021, 14, 2338

Therefore, the 3D information model was developed gradually from the territorial,
infrastructural (using Autodesk InfraWorks for geographic information systems) up to
the building scale (using Autodesk Revit for building information modeling). The model
resulted both as a microscopic and macroscopic digital database, containing static, dynamic,
geometric, and semantic data about buildings and their functional interactions.

As mentioned, a BIM approach was carried out focusing on energy management
model-uses and leveraging interoperability using IFC (industry foundation classes) models
for energy diagnosis purposes. Basing on such analysis, a smart-energy-grid manage-
ment system was developed combining BIM as-built models with IoT and AI obtaining a
substantial as-performed and up-to-date city digital twin.

2. Background

The objective of bringing the virtual and physical worlds together is focused to
better support decision-making, reducing risks and configuring a citizen engagement
tool, improving urban sustainability [9]. The introduction of DT in construction processes
addresses the improvement of decision-making focusing on well-informed and advanced
real-time “what-if” scenario assessments, reducing wastes of time and resources that are
typical in construction.

In this regard, the Newcastle University created a DT of the city dedicated to incidents
and disasters responding and prevention, running simulations of incidents such as burst
pipes, heavy rainfall or floods to evaluate the potential impact on communities over a 24 h
period [10].

Another effective example of smart-city DT currently ongoing is virtual Singapore,
which provides capabilities from virtual experimentations, test-bedding, and decision-
making up to research and development [11].

Moreover, a relevant experience is carried out by the Centre for Digital Built Britain
(CDBB) delivering a “smart digital economy for infrastructure and construction”, as a
transformation of the UK AEC (architecture engineering and construction) industry’s
approach about planning, building, maintenance and utilization of social and economic
infrastructures [12].

In addition, the ongoing project for the city digital twin of Atlanta creates a virtual
reality (VR)-based platform (built basing on the unity interactive and data-driven cross-
platform game engine) which contains a three-dimensional fully modeled city of Atlanta,
reproducing the entire city into a virtual space, facilitating spatial-temporal feedbacks
and interactions between the human/infrastructure systems and their virtual representa-
tions [13].

Focusing on the energy implementations, three significant experiences related to DT
developments integrated with AI systems can be mentioned, in order to define a systemic
approach for the present study, aiming at integrating the objectives of the single experiences
reported below.

The first concerns a microclimatic study on urban scale carried out in the Kalasatama
district by the Municipality of Helsinki, in which it is important to highlight the “Energy
and Climate Atlas”, defined as a city information model for studying and developing
strategies for the mitigation of climate changes and improving energy efficiency. The atlas
includes a number of specific information about the buildings, such as heating systems,
energy certification, electricity consumption, district heating, and water distribution. As
configured, the model helps to analyze a series of technological scenarios, allowing users
to define the solar energy potential of buildings, evaluating the possibility for reducing
carbon dioxide emissions or outlining cost-impact scenarios for different interventions [14].

In addition, it is important to investigate the behavior of energy-smart-grid systems
serving differentiated users managed by ML. As known, the main issue to be resolved
concerns the need to implement storage systems due to the characteristics of discontinuity
of renewable energy production.
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The ESS (energy storage system) management realized through a DT integrated with
ML systems can bring significant improvements leading to consequent bill savings, if
compared with the current systems based on predefined control systems of the electrical
power supply from the batteries.

In addition, the development of an energy management system (EMS) is fundamental.
As reported by Park, Byeon et al. [15] “an EMS reinforces operational functions such as
adjusting the amount and schedule of charging and discharging through the efficient
control of the ESS and power conditioning system (PCS) and manages the overall power
flow”. Moreover, it is connected with sensors and measurement equipment able to analyze
and monitor consumption patterns, managing information about power activities and
optimizing the overall efficiency.

Another extremely significant energy application of DT is the simulation and testing
of scenarios for energy-efficiency interventions aiming to achieve nZEB (near zero energy
buildings) requirements on buildings. Since most buildings today are already built, it
is necessary to underline the essential application of nZEB parameters on existing built
environments through the use of BIM-oriented 5D and 6D digital approaches [16].

The fifth and sixth dimensions of BIM are used and developed to promote stake-
holder’s collaboration, visualizing and evaluating different options with the configuration
of nZEBs, in terms of sustainability and energy efficiency parameters (6D), estimating
associated costs (5D) and technical issues [16].

From there, the advances in building data interoperability both at a technical and
organizational level enable relevant innovation in end–user energy delivery and optimiza-
tion [17] beside to open data availability, leveraging on technologies [18] such as the IoT
and cyber–physical systems.

3. Material and Methods

The case study of the present research analyzes digital ICT-based energy manage-
ment techniques applied to a 16 eight-floor buildings residential district called Rione
Rinascimento III, located in Rome, which represents the most significant Italian residential
implementation of a geothermal source heat pump (GSHP) system, that is currently the
largest in Europe.

3.1. The Urban Context

Rinascimento III (Figure 2) is configured as a building intervention characterizing
an energetically self-sufficient new portion of the city, integrated as much as possible
with the surrounding areas in terms of urban planning and services, and it is considered
of relevant significance since it is powered by a still not-commonly-deployed kind of
renewable energy system.

In the urban planning agreement between the Municipality of Rome and the private
owner, primary and secondary public works were planned, as well as the completion of
the Talenti Park area in front of the district. According to the Italian regulations, the new
district is included in the category of bioenergetic improvement interventions, which aim
at improving the bioclimatic performance of the settlement.

Moreover, the introduced Italian energy policies (such as Decree Law no. 63 of
4 June 2013) aim at a partial refunding up to 65% of the amount for energy requalification
expenses, consistently improving the use of renewable sources such as the geothermal one.

The geological characteristics of the Italian territory are particularly favorable for the
development of geothermal energy systems and could allow one to exploit low-enthalpy
resources at different depths and in numerous areas of the country.

According to the above mentioned, a research activity was developed by the CNR
(National Centre for Research) with a pilot project promoted in four Italian regions
(Calabria, Campania, Apulia, and Sicily), contributing to the increase of knowledge about
the use of geothermal resources, with the aim of providing useful information to start
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activities of exploration for the improvement of geothermal energy uses in the south of
Italy [19].

Figure 2. Master plan of the considered area (Rinascimento III) in Rome.

3.2. Linking Virtual to Physical

The concept of Construction 4.0 defines a framework where data-driven systems are
able to manage physical processes by configuring a virtual replica of the physical world and
achieving decentralized decision-making processes based on self-learning mechanisms [20].

Therefore, BIM models containing data and information useful for processing as-
sessments become able to communicate with the real systems using data from sensors,
developing learning capabilities, and being able to process the received information.

The collaboration between 3D information models and IoT devices is highly necessary
for a successful implementation of real-time DT purposes, as well as for energy manage-
ment optimizations. However, the implementation of IoT in real-world environments
configuring smart, ubiquitous, and live-interconnected systems (Figure 3) is currently
still restricted by technical barriers such as device battery life, network capacity, and
maintenance costs.

Figure 3. Block diagram of the IoT system.

The core functionality of IoT devices is to reliably collect and share data (such as
flow rates, temperatures, pressures, physical movements, distance, mass, etc.) from its
designated environment to the virtual world.

The hardware elements consist of a battery-powered sensor, an actuator, and a network
communication system in which the collected data are processed and consequently sent to
remote servers.

In the present application, the connection between the physical and virtual model is
made through sensors [21] able to monitor and communicate electrical power data such
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as power energy voltmeter ammeter for lighting and heating, ventilation and air condi-
tioning (HVAC) systems and smart plugs for electromotive equipment such as computers,
televisions, washing machines, and so forth (Table 1) [22].

Table 1. Review of the implemented IoT devices.

Communication
Technology

Functions
Technical

Parameters
Real-Time Monitoring

Smart plugs

Communication of the overall profile of
energy consumption to AI systems, in

order to provide data learning on every
single socket, defining a hierarchy of

energy priorities to be attributed to the
different zones of the apartment in case
of deficit in energy production systems.

220–240 V ~10 A, Max
2300 W

WiFi connection

Power
supply

Energy Power Meter

Functionality as above, the dual relay
switch with dual power metering, can

be installed into the wall under the
power socket or a standard light switch.

110~230 V AC
50 Hz~60 Hz

0~10 A.
0–2300 W

WiFi connection

Power
supply

Temperature and Humidity
Monitors

Temperature and humidity monitoring,
WiFi connected with other smart

devices enabling smart appliances
through app platforms.

0–60 ◦C
0–99% RH

QB/WSDJ2401-2019
Bluethoot 4.2 BLE

Temperature and
humidity

In this case, AI systems allow the DT to develop predictive capabilities, learning
from the events and improving outputs, ultimately taking and implementing autonomous
decisions based on the analysis carried out without human interventions.

Moreover, the AI system achieves a balanced condition between energy consump-
tion and energy production system’s performance parameters [23], adapting itself to the
environment in order to achieve the predefined objectives.

In other words, the system takes data from sensing devices, and it generates ap-
propriate and specific actions through reasoning systems, modifying the behavior of the
equipment in order to optimize energy consumptions. Specifically, it takes information
from IFC-BIM and CityGML-GIS (geographic information systems) models, constantly
updating them with real-time data as described in Figure 4.

Figure 4. Data flow and processing for digital-twin-based energy optimization.
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3.3. Data Interoperability

Principles of Industry 4.0 and data interoperability in the AEC sector are extensively
applicable on linking GIS and BIM models, providing data for real-time multiscale object-
oriented simulations of the built environment. As configured, GIS-BIM 3D city information
models and applications require common communication standards introducing problems
related to information integration and data interoperability at different domains and
scales [24].

In the specific case of information management in construction processes based on
BIM methodologies, interoperability consists in exchanging data from models to different
software and application platforms, implemented for different purposes and functionalities
throughout to the whole lifecycle.

The main objective of interoperability is to facilitate the interaction between different
and nonhomogeneous information systems, minimizing errors and aiming at reliability,
effectiveness, and optimization of resources.

For the above mentioned, different levels and approaches on interoperability, are de-
fined by the Information Technology Vocabulary (ISO/ISO/IEC 2382) [25] as the “capability
to communicate, execute programs, or transfer data among various functional units in a
manner that requires the user to have little or no knowledge of the unique characteristics
of those units” [26,27].

Industry foundation classes (IFC) were defined as a reference standard format for the
building industry to develop different advanced processes based on spatial data relations
between building components of a BIM model.

In the present application, specific processes can be scheduled for different activities,
objectives and domains (Table 2) since objects are connected to data entities and properties
such as name, geometry, identifications, material parameters, etc.

Table 2. Data domains and collection of the interoperability process.

Domain Data Collection Software Interoperability

1. Building information modeling
BIM objects, LOD 400

Autodesk Revit
IFC Standards1.1 Building energy modeling MC4 Suite for Revit

1.2 Computational fluid dynamics
(CFD) simulations Autodesk CFD

2. Geographic information systems BIM/GIS objects Autodesk InfraWorks IFC/City GML Standards
2.1 City information model

In the GIS field, CityGML was developed as a model standard representing geometric
and information relationships between geographic entities, being defined as the most
appropriate territorial modeling standard in different levels of detail. In addition, IFC and
CityGML standard were used, as they are currently the two semantic models dedicated
to the configuration of object-oriented information management systems, even though
research is still focused on information exchanging, linking IFC and CityGML toward an
advanced 3D city information model [28].

3.4. 6D BIM for Sustainability and Energy Efficiency

The study focuses on the Rinascimento III district (about 85,000 m2) which is a part of
Rione Rinascimento, consisting of 16 eight-floor buildings hosting about 900 apartment
units with 2500 inhabitants.

A significant part of the energy supplied to the building complex is self-produced
using renewable geothermal sources. For this reason, the following case study is considered
to be extremely relevant for approaching digital methodologies integrating DT and AI
systems for an efficient energy-smart-grid management.

According to the BIM Use Classification System developed by Penn State Univer-
sity [29] which basically categorizes BIM Uses (Figure 5) as the main purpose to be achieved
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when implementing BIM in construction processes, specific purposes and objectives for
BIM models were identified.

Figure 5. The components of a BIM use, adapted from ref. [29].

The definition of the main BIM purposes led to the identification of specific require-
ments for data implementation and model configuring.

Since the current application is based on the use of BIM and GIS models for energy
management purposes, priority was given to the implementation of specific data such as
well-defined technical parameters of the building envelope, thermal zones, rooms, HVAC
systems, and equipment, as well as specific data about localization, climate [30], boundary
conditions, etc., as information coming directly from the BIM system in the interoperability
process.

Moreover, BIM models can have different level of depth both geometrically and
informatively, depending on the BIM Uses and related objectives. According to the ISO
19650 [31] standard, LODs were defined, gradually moving toward a LOIN (level of
information need) perspective shifting from a prescriptive to a performance approach,
based on information granularity depending to predetermined specific BIM uses.

As mentioned, the production of the BIM models followed a number of phases
coming from a low degree of definition (LOD 100 [32]), useful in preliminary and outdoor
concept stages, up to a LOD 400 (Figure 4, right), according to the BIMForum, “2013 Level
of Development Specification” (AIA/AGC, 2013), [32] for indoor energy analysis and
simulations purposes as described in Figure 6.

Figure 6. The evolution phases of the BIM model LOD, according to the objective definitions and
energy uses.

As configured, the so-called sixth BIM dimension (6D) was achieved since the identi-
fied BIM use was connected to energy efficiency and sustainability analyses and simula-
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tions [33]. Developing a BIM-oriented methodology allowed to assess the energy perfor-
mance of the building system, providing relevant support to decision-making processes.

In this section, it is necessary to detail the data and boundary conditions necessary to
run the energy analysis through the 6D BIM model [33]. The thermal characteristics of the
building envelope technical systems as well as the related data contained in the BIM model
are reported in Table 3.

Table 3. Characteristics of the buildings’ thermal envelope in the BIM model.

Building Envelope Thickness (mm)
Thermal

Transmittance (W/m2K)
Solar Factor

Threshold Value 2021 (W/m2K)
(Italian Regulations)

Facade wall 445 0.29 - 0.32
Roof 480 0.26 - 0.26

Floor structure 300 0.44 - -
Basement floor 300 0.32 - 0.32

Windows 68 1.37 0.35 1.9

In this case, DT reproduces the energy characteristics of the building envelope and tech-
nical plants, which combine a component of renewable energy as described in Section 3.5.
In Table 4 the technical components of the main HVAC plants, as well as the controlled
mechanical ventilation system are reported.

Table 4. Building’s thermal system configuration detailed in the BIM model.

System Generator Distribution Terminal Equipment Energy

Heating and cooling GSHP (COP 3.8 winter/5.5 summer) Water Radiant floor Electricity
Ventilation Centrifugal fans Filtered air Air vent Electricity

Hot sanitary water Boiler (High efficiency) Water - Gas

3.5. Building Energy Model (BEM)

The main objective of the DT-based developed methodology is using data models
across different simulation and monitoring processes [34], combining data from different
sources (BIM, GIS, IoT, etc.) in a three-dimensional model, which is aligned almost in
real-time with the reproduced system [35,36].

In order to create a building energy model (BEM) [37], each component of the informa-
tion model was associated with the corresponding products in a BEM software connected to
BIM data (MC4 Suite for Revit), defining different thermal zones and boundary conditions.

Once the energy model was generated using a specific and authorized software, [38]
it followed the validation phase.

In particular, according to Italian regulation DLgs. 30 May 2008 on “calculation
methodologies and requirements for the execution of energy diagnoses and energy certifi-
cation of buildings” if the deviation between the values estimated by the model and the
real consumption does not exceed 5% on average, then the model is validated.

In the pilot project described in the present study, the building complex is supplied
by the largest European residential geothermal plant with GSHP (COP of 3.8 in winter
configuration and 5.5 in summer configuration), equipped with 200 vertical geoprobes,
150 m deep.

The components of the total energy consumption of Rinascimento district are reported
in the following schemes (Figure 7) and divided into four main categories: (1) winter air
conditioning; (2) summer air conditioning; (3) hot water; and (4) electric power supply.
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Figure 7. Total primary energy consumption and renewable energy sources (RES) energy production.

In fact, the energy production coming from renewable energy sources (RES) and
particularly from the geothermal plant could be estimated in about 6305 MWh/y on
9.979 MWh/y consumed, subdivided as shown in Figure 7. Consequently, 63% of the total
energy requirement of primary energy is produced by the geothermal system.

In this case study, the energy diagnosis was conducted on one single building (Figure 8)
of about 3648 m2, using the Revit Suite of Mc4 Software through BIM data, for a dynamic
simulation of the building behavior, supplied by a modular portion of the geothermal
plant. Since the highlighted building is currently the only one being fully occupied by
residents (who permitted the implementation of sensing devices for DT configuration), it
was selected for energy modeling and real-time monitoring.

Figure 8. Selected building for the performed energy analysis.

Moreover, since the geometry and spaces subdivision are almost identical for all
the buildings, the modeled building is expected to share similar boundary conditions
about solar radiation (Figure 9) and ventilation with the other five highlighted in Figure 8,
positioned on the outer perimeter of the district without any shading.

Figure 9. Solar radiation analysis.

222



Energies 2021, 14, 2338

The performed simulations led to the evaluation (according to the Italian classification
of Legislative Decree 48, 10 July 2020) [39] of an A2 class with a specific consumption of
26.8 kWh/m2y; the comparison with the real value building consumptions coming from
an average evaluation of 3 year bills (26.6 kWh/m2y) validated the simulation model.

The aim of the DT model was also to simulate the increasing of the RES production
percentage, in order to reach the goal for Rinascimento to become a near zero energy
district (nZED). The energy simulation in the model were performed considering new
installation of photovoltaic panels for the production of electricity and solar collectors for
the production of domestic hot water.

In particular, the model was implemented with the integration of 312 kWp of monocrys-
talline photovoltaic modules in the building façade able to produce 276,000 kWh/y of
electricity; and the realization of an area hosting 405 high-efficiency flat-plane solar collec-
tors able to produce 410,000 kWh/y.

The simulations outputs lead to a final result of 6991 MWh/y of energy coming from
renewable energy sources (RES) (geothermal+solar), which means about 70% of the district
energy consumption directly produced in place by the RES microgrid of the complex.

However, the obtained results so far were focused on the building as a whole, specify-
ing some different thermal zones created according to differences in use, occupation hours,
types of HVAC installed, or types of external envelope and sun exposure.

Considering the analysis on a smaller scale, focusing on indoor environmental qual-
ity [40] such as thermal-hygrometric conditions, the BIM model was detailed with HVAC
systems to develop computational fluid dynamics (CFD) analysis [41].

The standard k-ε model was deployed according to the limited need of calculation
power and time for iterations (less than 300) as well as for the absence of high-pressure
gradients in the rooms.

The following input conditions have been set:
Average outdoor air temperature equal to 5 ◦C; radiant floor water temperature equal

to 40 ◦C; underfloor heating surface temperature is between 24 and 29 ◦C; radiative model
discrete ordinates; and 1 s timestep.

Four control probes were temporary fixed and positioned in the center of each room
in a typical apartment at 1.50 m from the ground, which is the same height of the DT
temperature and humidity monitors fixed in all the apartment rooms (Figure 10).

Figure 10. Control probes positioning.

Fluid-dynamics analyses were developed from the BIM model to study the temper-
ature gradient and convective air flows in rooms, triggered by the operation of radiant
floors in winter heating mode in order to evaluate comfort parameters in each room,
experimenting data interoperability from BIM model to CFD analysis (Figure 11).

223



Energies 2021, 14, 2338

Figure 11. Temperature gradient and air velocity vectors in different rooms.

3.6. Artificial Intelligence

Machine learning is a form of AI providing systems the capability to learn from data
without the use of explicit programming. ML produces models where there are some
kind of regularity in data [42]. Like human children’s learning processes, it is driven by
“experience” [43].

As a general rule, training a model requires computer resources which are orders of
magnitude bigger than those required to execute the model [44,45].

In this specific case, data are collected and analyzed in order to devise one or more
model for energy-efficiency purposes using AI while allowing normal comfort and living
habits. The general architecture of the system is shown in Figure 12.

Figure 12. System architecture.

The goal was achieved through two phases: (1) design and implementation of the
infrastructure and (2) obtaining data, training, and model testing.

3.6.1. Design and Implementation of the Infrastructure

Energy data are simple time series of power consumption or production, coming from
real sensors in a given time lapse, each one transmitting data with its own application
programming interface (API); moreover, they are obviously located close to energy loads
or near power sources.

This means that data are not all in the same place at the same time, which is a necessary
condition to perform the analysis that led to the desired algorithms.

The first problem is therefore to plan and deploy a cost-effective IT (information
technology) infrastructure able to provide reliable data to be processed.

Each apartment was implemented with monitoring sensors, so that every device
energy consumption could be considered to define the control solution of the overall
energy requirement in each apartment.
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All the implemented metering sensors produce a huge amount of data requiring
significative computational resources to obtain acceptable analysis performances; therefore,
the best solution for reducing installation expenses would be to control the system acquiring
all the information in a data center or a service in a data center.

This architecture leads to the necessity of setting a local system for interconnecting IoT
sensors and actuators over a geographical network (such as the Internet), executing sort
of local computation and buffering data in case of connection blackout, using the known
“ubiquitous and pervasive computing” [46] techniques to deal with the computational
problems of centralized intelligence.

Following this approach, two distinct problems had to be solved designing the infras-
tructure:

• Have uniform data;
• Have data where they have to be physically processed.

The first element in the infrastructure is a subsystem able to cope with several trans-
mission protocols and time frames, whose output is the synchronized power consumption
(or production) of the smart metered devices. This subsystem accepts instruction from the
second element to switch on and off some of the controlled devices.

This element needs to be connected with all sensor networks; therefore, it has to be
physically placed next to them, minimizing transmission problems and monitoring local
environment even in absence of communication with the central control system. This kind
of elements is called “elettra” in the following section.

The second architecture element is another subsystem, composed of a different
“proxy”, and each proxy receives the outputs of the first subsystem as an input. The
proxies deliver the data to the central unit and receive back data from the same device,
taking care of bandwidth problems and unreliability of the network.

These proxies have to be physically close to the first subsystem while the central unit
can be remote; the central control system is a centralized unit able to store and process
data, operating building digital simulation models and delivering commands back to
the proxies.

The logic model of the designed infrastructure is based on three elements, as shown
in Figure 13.

Figure 13. Logic model of the infrastructure.

Following this logic infrastructure, a series of “cheap” small computer or SoC (system
on chip) had to be equipped, containing both the “elettra” and “proxy” subsystems; all
those computers are connected to a high-performing server in a data centre able to run
the software of the central control system. The operative concept of this infrastructure
is exemplified in Figure 14, where only a few energy consumer devices are reported as
an example.
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Figure 14. Operative concept.

Elements e1, e2, e3, e4, and e5 are the cheap computing containing the elettra subsystem
and the proxy, while elements c1 to c10 are energy load examples, and P1, P2 are photovoltaic
panels for electric power production and geothermal plant.

3.6.2. Obtain Data, Train, and Test Models

Once the data are stored in the central control system, they can be analyzed to build
digital numerical models able to simulate and optimize all the main parameters of the
smart energy grid. All data have a similar form, so that they can be viewed as a series of
{location, date-time, object, value}.

Considering a single location, using ML techniques and rule-based methods such as
association rule learning, it is possible to deduce which device is active at a certain time for
each selected location [46].

In the present application, it was not possible to consider all the locations as equivalent
one to the other, as detailed in Section 4.

A possible general solution is the adoption of best practices, which are hard to define
due to the different final uses (home, office, and mixed use) and layouts; if grouped by
location and similarities parameters, AI becomes able to automatize processes attributing
each location to the most appropriate group or cluster. Therefore, it is necessary to run a
ML technique known as “clustering” to automatically create groups of similar apartments
used for mathematical representation of each unit: to create the feature vector of each unit,
each and every energy consumer and producer was counted and grouped together by
type [47].

Given the vector representation of each apartment, we used the well-known unsu-
pervised technique known as K-means, to automatically extract groups of energy-similar
apartments.

After a period of observation, a sample for each homogeneous group in a single
location was chosen. These local samples were used to extract behavioral rules to be
applied to the others belonging to the sample group.

Analyzing the configuration of each location at a given time, it is possible to compare
any apartment “Ai” with the sample one “As”. As an example, a general association rule
can be expressed as follows: “at time tk, make a comparison of device type dj of flat i (dAij)
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with the correspondent device type of the reference one (d As j). If they are in a similar
status, then do nothing; otherwise, switch it on or off, so that it is in the same state of the
reference one’s.”.

An association rule is something in the form X → Y that in a smart grid should assume
the simplified form TheSolarPanel IsOn → TheWashingMachineIsOn. We achieved this
using the “Apriori Algorithm” which is an influential algorithm for mining frequent item
for Boolean association rules. It identifies the frequency of individual items in the dataset,
extending them to larger item sets, according to their appearance in the dataset [48].

Nevertheless, every automated system can easily fail if the digital representation of
the built environment does not match reality. Assuming that, inevitably during the lifetime
of an apartment, some smart plug will be connected to different devices, affecting the
digital model reliability and accuracy.

In order to keep the digital model continuously up-to-date, AI techniques transform
a power absorption curve of a single device in a sequence of characters named “energy
words of the device” [48], using analytical processes similar to those of text analyses; then,
a supervised learning method named “Naïve Bayes classifier” automatically identifies the
type of each energy load, so that the system can detect a mismatch between the digital
representation and what is actually connected to the network.

The dictionary of different energy words exceeded the size of 60,000, with the major
number appearing less than three time in the energy footprint; therefore, we set this
threshold to avoid dimensionality problems. The resulting predictive model elaborated
using the Naïve Bayes classifier was validated using both a 66% train 33% test split and a
10-fold cross validation technique, taking advantage of the tool named “Weka”, an open
source ML software (using the class weka.classifier.bayes.NaiveBayes).

4. Results

As a consequence of the energy efficiency improvement based on the implementation
of renewable energy systems, in winter conditions, the geothermal power plant supplies
every building both with heating and domestic hot water; solar collectors integrate the
system, while the photovoltaic system powers the external lighting system around the
perimeter of the buildings. In summer conditions, domestic hot water is produced through
solar collectors covering 100% of the actual needs, while the geothermal power plant only
works for the production of chilled water for cooling (through the absorber), while the
photovoltaic system powers the entire lighting system of the complex.

The energy diagnosis conducted on a single building using the BIM model through
the Revit Suite of Mc4 Software led to the transition from an A2 class (with a specific con-
sumption of 26.8 kWh/m2y) to an A4 class (with a specific consumption of 16.1 kWh/m2y).
Moreover, in order to further validate the results and the obtained energy diagnosis, the
calculation was also repeated with two other numerical simulation tools: (1) Termus BIM,
basing on the BIM model and (2) ArchiEnergy, a semidynamic software developed by
Sapienza University of Rome (Table 5).

Table 5. Energy diagnosis results (kWh/m2y): software comparison.

ArchiEnergy Termus BIM MC4 Software Standard Deviation (SD) Bills

Ante operam 28.6 24.9 30.2 2.7 26.6 *
Post operam 16.1 15.7 18.7 1.6 16.3 **

* Average of 3 year consumptions of the district; ** 3 month summer bills of the analyzed building.

Once the results and deviation values were obtained, they were evaluated and com-
pared to the following chart in Figure 15, which reports results from other energy diagnosis
conducted on similar building systems.
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Figure 15. Software comparison through energy diagnosis results on similar buildings.

From the analysis, it is shown that the diagnoses made with the energy software led
to similar results with a maximum deviation of 12%, and the difference between the two
BIM-based, Mc4 Suite for Revit and Termus BIM, is 5% (Table 5).

Moreover, the fluids-dynamic analysis performed in specific rooms of a single apart-
ment was confirmed by the data coming from sensors, showing that there is no discomfort
in any area due to the configuration of the radiant floor equipment.

In fact, large masses of moving air can be observed as previously shown in Figure 11.
This is mainly due to the temperature difference between the floor and the environment.
Convective motions affecting all the areas are generated; however, the temperature gradient
is fully compliant with the regulation requirements, and the air velocities are very low,
falling within the range of comfort conditions.

It was also monitored the temperature in each area, where the internal temperature
was initially 5 ◦C (equal to the external temperature), until the achievement of the internal
comfort temperature of 20 ◦C. The temperature transient is shown below (Figure 16).

Figure 16. Temperature transient.

It can be noticed that the air heating trend is almost the same for all the rooms, and
the comfort temperature is reached in about 1900 s (just over 30 min).

Moreover, another obtained result was the implementation of an intelligent energy
management model, i.e., an automatic ML system capable of modulating loads (mainly
electrical) according to the expected self-production of energy; for this purpose, information
from the European Copernicus [49] earth observation system are acquired in order to have
accurate predictive meteorological data.
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In this regard, the energy-smart-grid system realized with solar collectors and photo-
voltaic panels needs a set of rules to establish priorities regarding energy production and
consumption loads:

Production: electricity from solar sources, being totally free, must be the first to be
fed into the distribution network, followed by the energy coming from the geothermal
power plant (which needs electricity to power the circulation pumps); as a last option, it is
possible to use energy coming from the public electrical net or use gas.

Consumption: the priority of power supply must be given to the lighting system,
followed by the electromotive force circuit, while the air conditioning systems can be
regulated and modulated in the event of a lack of energy, by lowering or raising the
optimal temperature up to 2 ◦C.

Therefore, the AI system contributed to reach the goal of increasing the efficiency
of the entire energy system by more than 10%, limiting the dependence of the building
complex from the electricity and gas distribution networks to a maximum of 20% of the
total energy consumed. The system for energy loads forecasting and managing was created
in a single apartment (Figure 17) according to the following two logical steps: (a) the
creation of a synthetic method to group the plants based on the similarity of results in
terms of energy efficiency and (b) metering, evaluation, and analysis of consumption data
of the selected plant.

Figure 17. Energy loads forecasting and DT managing through AI.

The inevitable use mutability of the apartments was also considered, as well as the
variations in energy loads over time; consequently, an algorithm able to automatically
deduce which devices are used in each power outlet was adopted, analyzing the hourly
trend of current absorption.

Some energy sensors (as detailed in Material and Methods) were applied, and data
were collected in a central system. The different typology of energy loads was considered,
and then submetering was performed, as shown in Table 6 and Figure 18.
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Table 6. Working day energy metering in a typical apartment (Wh).

8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30

Boiler 42.99 51.54 15.52 36.61 112.38 71.21 69.27 51.65 12.23 111.32

Lights Room 1 16.00 24.15 24.19 24.26 24.29 24.15 06.12 24.19 24.23 24.75

Mini PC 9.89 14.01 14.34 8.72 13.11 11.63 11.19 12.22 14.22 12.17

Lights Room 2 90.98 106.17 105.46 103.77 104.77 104.73 104.63 104.94 103.93 104.89

Figure 18. Submetering in a typical apartment.

Energy consumption of each device varies according to its power absorption, as
shown in Table 6 and Figures 18 and 19, which report some controlled measures on a
typical working day, detailing both the apartment and the single rooms.
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Figure 19. Consumption submetering (Wh) in an office room.

The use of these energy sensors led to another result: the so-called “submetering”
It was possible to detect the biggest single load both in the apartment and in a single
room. In this way, the analysis and decision of how to save energy becomes simpler,
devising strategies affecting the most consuming items, effectively contributing to the
overall energy saving.

5. Discussion

The concept of DT is extremely transversal and widely suitable to both microscales
such as apartments and macroscales at the district levels. As the new and future build-
ings will be directed to near-zero-energy building standards (nZEB), or even zero-energy
buildings (ZEB), they therefore need tools suitable for the new design requirements, i.e.,
digital systems able to predict and simulate both global energy consumption and internal
behavior [50].

It is quite impossible to define a validation process able to ensure the reliability of the
calculation method by 100%.

For a full comprehension of the model and interoperability process accuracy, it was
necessary to proceed with a comparison methodology based on the overall final out-
puts, (kWh/m2y) between three different software (1) Termus BIM by Acca Software,
(2) ArchiEnergy from Sapienza University of Rome, and (3) Mc4 Suite for Revit.

The developed analysis was focused on the comparison of results coming from differ-
ent processes basing on both traditional and BIM approaches. On the one hand, Termus
BIM used IFC BIM standards, while in Mc4 Software a plug-in approach was developed
directly connecting the Revit BIM model with Mc4 analysis tools. On the other hand, the
ArchiEnergy software is a traditional system calculating energy consumption based on
inputs by the user about the plant and the building envelope.

Following the validation phase, the DT led to the evaluation of the smart-grid imple-
mentation effects. In particular, in Figure 20, the reduced energy consumption and the
relative reduced CO2 consumption coming from the Mc4 Suite for Revit analysis are shown.
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Figure 20. Results of the energy-efficiency interventions.

At the same time, the work carried out highlights how in highly urbanized contexts
characterized, it is very difficult to achieve high performances as required by the nZEB
Italian Decree [51], even if significant energy requalification interventions are developed,
improving both the building envelope and air conditioning systems.

As a consequence, it became necessary to consider building complexes not only as
consumers, but also as energy producers in a local, block, district, or neighborhood smart
grid: the concept of “prosumer”.

By such a logic, the role of AI in smart-grids management and optimization of both
energy production and consumption becomes decisive, being able to make reliable forecasts
on possible scenarios.

Analyzing similar energy efficiency interventions on buildings and residential com-
plexes, it is shown how efficient technologies are now available, well defined, and widely
known. Therefore, the parameters of selection between different interventions are essen-
tially (a) climatic parameters, (b) regulatory restrictions and constraints on interventions,
and (c) the availability of government grants for the use of RES, compensating the payback
time, which is still too long for certain technologies.

As previously shown, the use of BIM-based systems [16] for building energy efficiency
drives no substantial improvements in terms of accuracy of results compared to traditional
methodologies [18].

However, the real innovation contribution of DT-enabled systems concerns the defini-
tion of digital technologies able to reduce the gap between the expected performance of
buildings and their real behavior. These goals are mentioned in the strategies of National
and International R&D Programs such as Next Generation EU (Recovery and Resilience
Facilities) [52], Strategic Energy Technology (SET) Plan [53], and Italian National Integrated
Energy and Climate Plan (Dimension 5 Research, Innovation and Competitiveness) [54].

In this case, DT becomes a key element for research and development on second-
generation smart buildings entirely based on electricity consumption and characterized by
energy autonomy, high flexibility, block chain, and smart contract dialogue systems with
the grid, assisted by digital monitoring methods.

Artificial Intelligence

Although optimizations on energy consumption have been studied in depth [55],
when dealing with residential compounds or SOHO (small office home office) buildings,
we cannot directly borrow general solutions from research experiences [56,57]. In fact,
the overall consumption in these environments is the sum of small contributions by a
considerable amount and variety of devices [58], while, mostly in industrial environments,
there are generally few big powers draining that can be controlled one by one.
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Moreover, these small consumers are operated by people which do not follow any
procedure, since they have their personal habits: dealing with both technical and human
factors through data analysis techniques becomes a fundamental strategy [59].

DT was coupled with AI to investigate building behaviors as a whole, and super-
vised learning techniques are used to produce an efficient and intelligent storage system
management in the whole complex.

The problem of energy savings in buildings is strictly connected to the need of measur-
ing and controlling energy loads in an efficient way, which can evolve complex scenarios.
For instance, if nobody is at home and it is already late morning, both the coffee machine in
the kitchen and the air conditioning are wasting energy if they are still switched on, while
if someone is still there then both appliances should be still operational. Consequently,
several sensors and actuators can be involved and their data should be interconnected so
that an ad hoc algorithm derives the correct energy saving policy (e.g., a motion sensor
shares data with electrical relays able to switch on/off the correct devices).

Real-time building management system incorporate model-based control through
ML [60] to extend the use of mathematical models even to the management of human-
related factors. In fact, thermal, humidity, acoustical comfort, and occupants model are
combined and connected to ML.

While the first model depend on facts, the latter depend on humans: the behavioral
model is a probabilistic one [60]: the probability that an occupant takes specific behavioral
decisions or actions is defined as a function of the occupant’s characteristic and the current
environmental conditions, and “predicting the residents” actions toward a specific situation
is not easy”.

Considering the apartment microscale, instead of the whole building, our approach
was to envision the automatic definition of best practices [61]; if grouped by location and
similarities parameters, thanks to unsupervised learning techniques, it was possible to
automatize the processes of attributing each location to the most appropriate group or
cluster. In our approach, the most efficient and performing apartment for each group or
cluster was found considering the energy bill over a few months, confirmed by the energy
data collected over a given period [62].

Given these “sample” location, personal actions in apartments can be modeled with
behavioral rules [63]: the definition of rules was given using a formal logic that allows
exceptions [48] through AI, using Apriori algorithm to automatically learn the rules.

The automatic update of the BIM model to ensure the validity of the DT, based on an
up-to-date information model, was dealt with by using web services [64]. Specifically, it
was necessary to ensure that information about energy loads coming from smart plugs
were up-to-date in the model. A supervised learning technique (named “Naïve Bayes
classifier”) combined with a novel energy load information coding [65] was used to achieve
the goal.

6. Conclusions and Further Developments

The configured DT methodology gives buildings the capability of improving and
enriching their knowledge and available data, receiving input and signals from sensors that
constantly monitor them, developing self-learning capabilities and predictivity through
the integration with AI systems.

Moreover, the paper focuses on how the concept of DT is extremely transversal and
applicable both to macroscopic and microscopic scales (from district to apartment), as
demonstrated for the use of energy management systems. It can be related, for example, to
specific components of technological systems, to the digitalization of infrastructures and
real estate assets, to technological systems, or networks of technological systems, etc.

The objective of the research was to exploit ML systems to manage and to simulta-
neously integrate self-production and supply system in an energy smart grid, in terms of
both thermal and electrical loads.
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The results of the DT-based real-time monitoring are able to reduce the gap between
the energy performance of the buildings (simulated through energy diagnosis) and the real
building performance. This is possible thanks to data analysis, which allows one to get
more refined energy management strategies, even highlighting inadequate users’ behaviors
and policies.

As far as load forecasting is concerned, the configured DT is able to calculate thermal
loads on a daily basis [60], integrating them with algorithms capable to calculate in advance
building consumption based on historical data transmitted by sensors; in this way the sys-
tem, on the one hand, acquires real-time data from smart metering [61] and environmental
quality sensors; on the other hand, it integrates historical data (bills, consumption, etc.)
and IoT with a real-time simulation approach [62]. The purpose is aimed at updating and
refining the database, tailoring the energy profile of consumption on real users

These intelligent systems implemented also provide an active control on the energy
balance; in fact, once the system becomes sufficiently confident, it takes control itself of
the energy production systems, as well as of the loads modulation and regulation in order
to optimize the energy balance system, limiting nonessential loads in case of production
deficit.

Even the optimization of thermo-hygrometric wellbeing parameters in the indoor en-
vironment is considered as fundamental. In fact, through the analysis of data from environ-
mental quality sensors and after an appropriate self-learning period, the DT becomes able
even to set operations times and levels of the systems to optimize the thermo-hygrometric
wellbeing of users.

Moreover, spreading the proposed research to an urban approach, developments in
the BIM-GIS synergy, as both large- and small-scale digital information system configura-
tion, would allow for the integration of each urban energy cell with the national power
distribution grid, with particular focus on electric mobility and storage systems of smart
grids, urban metabolism, etc. Predictions about the impacts on neighboring areas and
profiling functional integrations would be performed, providing essential digital tools for
the implementation and real-time monitoring of municipal and district energy plans.

In addition, in this regard, further developments of the present research would reach
the optimization of the operations using a data model as a process core, replicating reality
in real time, limiting or even eliminating system malfunctioning, grid unbalance, or even
power breakdowns. With the aim of reducing malfunctions and breakdowns on energy
services, the proposed methodology would be applied even to the facility management of
HVAC and electrical plants toward configuring predictive maintenance systems.
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