5 research outputs found

    An Accurate and Scalable Role Mining Algorithm based on Graph Embedding and Unsupervised Feature Learning

    Get PDF
    Role-based access control (RBAC) is one of the most widely authorization models used by organizations. In RBAC, accesses are controlled based on the roles of users within the organization. The flexibility and usability of RBAC have encouraged organizations to migrate from traditional discretionary access control (DAC) models to RBAC. The most challenging step in this migration is role mining, which is the process of extracting meaningful roles from existing access control lists. Although various approaches have been proposed to address this NP-complete role mining problem in the literature, they either suffer from low scalability or present heuristics that suffer from low accuracy. In this paper, we propose an accurate and scalable approach to the role mining problem. To this aim, we represent user-permission assignments as a bipartite graph where nodes are users and permissions, and edges are user-permission assignments. Next, we introduce an efficient deep learning algorithm based on random walk sampling to learn low-dimensional representations of the graph, such that permissions that are assigned to similar users are closer in this new space. Then, we use k-means and GMM clustering techniques to cluster permission nodes into roles. We show the effectiveness of our proposed approach by testing it on different datasets. Experimental results show that our approach performs accurate role mining, even for large datasets

    Thin Hypervisor-Based Security Architectures for Embedded Platforms

    Get PDF
    Virtualization has grown increasingly popular, thanks to its benefits of isolation, management, and utilization, supported by hardware advances. It is also receiving attention for its potential to support security, through hypervisor-based services and advanced protections supplied to guests. Today, virtualization is even making inroads in the embedded space, and embedded systems, with their security needs, have already started to benefit from virtualization’s security potential. In this thesis, we investigate the possibilities for thin hypervisor-based security on embedded platforms. In addition to significant background study, we present implementation of a low-footprint, thin hypervisor capable of providing security protections to a single FreeRTOS guest kernel on ARM. Backed by performance test results, our hypervisor provides security to a formerly unsecured kernel with minimal performance overhead, and represents a first step in a greater research effort into the security advantages and possibilities of embedded thin hypervisors. Our results show that thin hypervisors are both possible and beneficial even on limited embedded systems, and sets the stage for more advanced investigations, implementations, and security applications in the future

    Algorithmic Results for Clustering and Refined Physarum Analysis

    Get PDF
    In the first part of this thesis, we study the Binary 0\ell_0-Rank-kk problem which given a binary matrix AA and a positive integer kk, seeks to find a rank-kk binary matrix BB minimizing the number of non-zero entries of ABA-B. A central open question is whether this problem admits a polynomial time approximation scheme. We give an affirmative answer to this question by designing the first randomized almost-linear time approximation scheme for constant kk over the reals, F2\mathbb{F}_2, and the Boolean semiring. In addition, we give novel algorithms for important variants of 0\ell_0-low rank approximation. The second part of this dissertation, studies a popular and successful heuristic, known as Approximate Spectral Clustering (ASC), for partitioning the nodes of a graph GG into clusters with small conductance. We give a comprehensive analysis, showing that ASC runs efficiently and yields a good approximation of an optimal kk-way node partition of GG. In the final part of this thesis, we present two results on slime mold computations: i) the continuous undirected Physarum dynamics converges for undirected linear programs with a non-negative cost vector; and ii) for the discrete directed Physarum dynamics, we give a refined analysis that yields strengthened and close to optimal convergence rate bounds, and shows that the model can be initialized with any strongly dominating point.Im ersten Teil dieser Arbeit untersuchen wir das Binary 0\ell_0-Rank-kk Problem. Hier sind eine bin{\"a}re Matrix AA und eine positive ganze Zahl kk gegeben und gesucht wird eine bin{\"a}re Matrix BB mit Rang kk, welche die Anzahl von nicht null Eintr{\"a}gen in ABA-B minimiert. Wir stellen das erste randomisierte, nahezu lineare Aproximationsschema vor konstantes kk {\"u}ber die reellen Zahlen, F2\mathbb{F}_2 und den Booleschen Semiring. Zus{\"a}tzlich erzielen wir neue Algorithmen f{\"u}r wichtige Varianten der 0\ell_0-low rank Approximation. Der zweite Teil dieser Dissertation besch{\"a}ftigt sich mit einer beliebten und erfolgreichen Heuristik, die unter dem Namen Approximate Spectral Cluster (ASC) bekannt ist. ASC partitioniert die Knoten eines gegeben Graphen GG in Cluster kleiner Conductance. Wir geben eine umfassende Analyse von ASC, die zeigt, dass ASC eine effiziente Laufzeit besitzt und eine gute Approximation einer optimale kk-Weg-Knoten Partition f{\"u}r GG berechnet. Im letzten Teil dieser Dissertation pr{\"a}sentieren wir zwei Ergebnisse {\"u}ber Berechnungen mit Hilfe von Schleimpilzen: i) die kontinuierliche ungerichtete Physarum Dynamik konvergiert f{\"u}r ungerichtete lineare Programme mit einem nicht negativen Kostenvektor; und ii) f{\"u}r die diskrete gerichtete Physikum Dynamik geben wir eine verfeinerte Analyse, die st{\"a}rkere und beinahe optimale Schranken f{\"u}r ihre Konvergenzraten liefert und zeigt, dass das Model mit einem beliebigen stark dominierender Punkt initialisiert werden kann
    corecore