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Abstract

In the first part of this thesis, we study the Binary `0-Rank-k problem which given a binary matrix A and
a positive integer k, seeks to find a rank-k binary matrix B minimizing the number of non-zero entries
of A − B. A central open question is whether this problem admits a polynomial time approximation
scheme. We give an affirmative answer to this question by designing the first randomized almost-linear
time approximation scheme for constant k over the reals, F2, and the Boolean semiring. In addition, we
give novel algorithms for important variants of `0-low rank approximation.

The second part of this dissertation, studies a popular and successful heuristic, known as Approximate
Spectral Clustering (ASC), for partitioning the nodes of a graph G into clusters with small conductance.
We give a comprehensive analysis, showing that ASC runs efficiently and yields a good approximation of
an optimal k-way node partition of G.

In the final part of this thesis, we present two results on slime mold computations: i) the continuous
undirected Physarum dynamics converges for undirected linear programs with a non-negative cost vector;
and ii) for the discrete directed Physarum dynamics, we give a refined analysis that yields strengthened
and close to optimal convergence rate bounds, and shows that the model can be initialized with any
strongly dominating point.
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Zusammenfassung

Im ersten Teil dieser Arbeit untersuchen wir das Binary `0-Rank-k Problem. Hier sind eine binäre Matrix
A und eine positive ganze Zahl k gegeben und gesucht wird eine binäre Matrix B mit Rang k, welche
die Anzahl von nicht null Einträgen in A − B minimiert. Wir stellen das erste randomisierte, nahezu
lineare Aproximationsschema vor konstantes k über die reellen Zahlen, F2 und den Booleschen Semiring.
Zusätzlich erzielen wir neue Algorithmen für wichtige Varianten der `0-low rank Approximation.

Der zweite Teil dieser Dissertation beschäftigt sich mit einer beliebten und erfolgreichen Heuristik, die
unter dem Namen Approximate Spectral Cluster (ASC) bekannt ist. ASC partitioniert die Knoten eines
gegeben Graphen G in Cluster kleiner Conductance. Wir geben eine umfassende Analyse von ASC, die
zeigt, dass ASC eine effiziente Laufzeit besitzt und eine gute Approximation einer optimale k-Weg-Knoten
Partition für G berechnet.

Im letzten Teil dieser Dissertation präsentieren wir zwei Ergebnisse über Berechnungen mit Hilfe von
Schleimpilzen: i) die kontinuierliche ungerichtete Physarum Dynamik konvergiert für ungerichtete lineare
Programme mit einem nicht negativen Kostenvektor; und ii) für die diskrete gerichtete Physikum Dynamik
geben wir eine verfeinerte Analyse, die stärkere und beinahe optimale Schranken für ihre Konvergenzraten
liefert und zeigt, dass das Model mit einem beliebigen stark dominierender Punkt initialisiert werden
kann.
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Philip for introducing me, in their fascinating lectures, to some of the most beautiful results in the areas
of complexity theory and hardness of approximation. I am also grateful to Benjamin Doerr and Thomas
Sauerwald for revealing in their exciting courses the vast and rich area of randomized algorithms.

I am profoundly indebted to my undergraduate mentors Krassimir Manev and Ivan Soskov, for
their fascinating lectures that lay the foundations and simultaneously revealed to me the beauty of the
theoretical computer science (TCS), and for encouraging and supporting me to pursue a doctoral degree
in TCS. I am grateful to Kerope Chakaryan, Chavdar Lozanov and Nedyu Popivanov for their their
impeccable lectures that introduced me to the beauty and the depth of mathematics. I also thank Peter
Armianov, Nikolay Bujukliev, Stefan Gerdgikov and Ivan Tonov, for the numerous inspiring discussions
and for guiding me in my early days through the realm of mathematics and computer science.

I thank all my collaborators from whom I learned numerous novel techniques and carefully-crated tools,
and most importantly positive mental attitude towards solving challenging problems. Namely, I thank
Frank Ban, Ruben Becker, Vijay Bhattiprolu, Vincenzo Bonifaci, Karl Bringmann, Gorav Jindal, Andreas
Karrenbauer, Euiwoong Lee, Kurt Mehlhorn, Richard Peng, Saurabh Sawlani and David P. Woodruff.

I am grateful to my friends Andi, Eig, Gorav, Sasho and Shay for all the inspiring discussions, for
sharing their pure scientific curiosity in unraveling seemingly simple yet challenging puzzles, for making
this journey pleasant and joyful, and especially for the boisterous jokes highlighting our cultural differences.
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Preface

In the first part of this thesis, we study NP-Hard variants of low rank approximation that are natural
for problems with no underlying metric. We consider the Binary `0-Rank-k problem which given a
binary matrix A ∈ {0, 1}m×n with m > n and a positive integer k, seeks to find a rank-k binary matrix
B ∈ {0, 1}m×n minimizing ‖A−B‖0, where ‖·‖0 denotes the number of non-zero entries. This problem
is known under many different names in different areas of computer science: `0-low rank approximation
in computational linear algebra, constrained binary matrix factorization in data mining, Boolean factor
analysis in machine learning, and matrix rigidity in computational complexity theory. A central open
question is whether the Binary `0-Rank-k problem admits a polynomial time approximation scheme
(PTAS).

In a joint work [BBB+18BBB+18, BBB+19BBB+19] with Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Euiwoong
Lee and David P. Woodruff, we give an affirmative answer to this question by designing the first PTAS
for the more general problem of `p-Rank-k for any p ∈ [0, 2). Approximately, Frank Ban and David P.
Woodruff contributed the PTAS for p ∈ (0, 2), Vijay Bhattiprolu and Euiwoong Lee contributed the
hardness results for p ∈ (1, 2) and finite fields of constant size, and Karl Bringmann and I contributed
the following PTAS for what we call the Generalized Binary `0-Rank-k problem.

In particular, we give the first randomized almost-linear time approximation scheme for the Generalized

Binary `0-Rank-k problem. Our algorithm finds a (1 + ε)-approximation in time (2/ε)2O(k)/ε2 ·mn1+o(1),

where o(1) hides a factor (log log n)
1.1
/ log n. This yields the first PTAS for the Binary `0-Rank-k problem

for constant k over the reals, F2, and the Boolean semiring. Even for the special case of rank k = 1 no
PTAS was known before. Our algorithmic techniques crucially rely on the fact that the Generalized
Binary `0-Rank-k problem is equivalent to a variant of clustering problem with constrained centers, and
the crux of our work is to extend existing algorithmic techniques for unconstrained clustering to the more
general setting of clustering with constrained centers.

Further, in a joint work [BKW17aBKW17a, BKW17bBKW17b] with Karl Bringmann and David P. Woodruff, we give
novel algorithms for the following important variants of `0-low rank approximation:

(a) a polynomial time algorithm for the Reals `0-Rank-k problem, if we allow for a bicriteria solution,
that outputs a matrix with larger rank O(k log(n/k)) and approximation factor O(k2 log(n/k));

(b) a sublinear time (2 + ε)-approximation algorithm for the Reals `0-Rank-1 problem;

(c) a sublinear time (1 + O(ψ))-approximation algorithm for the Binary `0-Rank-1 problem, where
ψ = ‖A‖0/OPT, and a matching sample complexity lower bound;

(d) an exact algorithm running in time 2O(OPT/
√
‖A‖0) poly(mn) for the Binary `0-Rank-1 problem.

The second part of this dissertation, studies a popular and successful heuristic, known as Approximate
Spectral Clustering (ASC), for partitioning the nodes of a graph G into clusters for which the ratio of
outside connections compared to the volume (sum of degrees) is small. ASC consists of the following two
subroutines: i) compute an approximate Spectral Embedding via the Power method; and ii) partition the
resulting vector set with an approximate k-means clustering algorithm. The resulting k-means partition
naturally induces a k-way node partition of G.

In a joint work [KM16KM16, KM18KM18] with Kurt Mehlhorn, we give a comprehensive analysis of ASC building
on the work of Peng et al. (2017), Boutsidis et al. (2015) and Ostrovsky et al. (2013). We show that ASC
runs efficiently and yields a good approximation of an optimal k-way node partition of G. Moreover, we
strengthen the quality guarantees of a structural result of Peng et al. by a factor of k, and simultaneously
weaken the eigenvalue gap assumption. Further, we demonstrate that ASC finds a k-way node partition
of G with the strengthened quality guarantees.

The final part of this thesis is a joint work [BBK+17BBK+17, BBK+18BBK+18] with Ruben Becker, Vincenzo Bonifaci,
Andreas Karrenbauer and Kurt Mehlhorn. We present two results on slime mold computations:



(1) Bonifaci, Mehlhorn and Varma (2012) showed that the continuous undirected Physarum dynamics, a
system of differential equations, converges for the shortest path problems. We demonstrate that the
dynamics actually converges for a much wider class of problem, namely undirected linear programs
with a non-negative cost vector.

(2) Combinatorial optimization researchers took the dynamics describing slime mold behavior as an
inspiration for an optimization method, and in a research line culminating with the work of Straszak
and Vishnoi (2016) showed that its discretization initialized with a feasible point can approximately
solve linear programs with positive cost vector. We give a refined analysis that yields strengthened and
close to optimal convergence rate bounds and shows that the discrete directed Physarum dynamics
can be initialized with any strongly dominating point.

During my doctoral studies, I was also involved in a project on sparsifying Random Walk Laplacian
(RWL) matrices. [JK15JK15] gives density-independent algorithms for special families of RWL matrices, and
this is a joint work with Gorav Jindal. [JKPS17aJKPS17a, JKPS17bJKPS17b] establishes a density-independent algorithm
for general RWL matrices, and this is a joint work with Gorav Jindal, Richard Peng and Saurabh Sawlani.

The following list consists of all publications during my doctoral studies:
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Conference Versions:
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Chapter 1

Introduction

Low rank approximation of an m×n matrix A is an extremely well-studied problem, where the goal is to
replace the matrix A with a rank-k matrix A′ which well-approximates A, in the sense that ‖A−A′‖ is
small under some measure ‖ · ‖. Since any rank-k matrix A′ can be written as U ·V , where U is m×k and
V is k×n, it suffices to store the k(m+n) entries of U and V , which is a significant reduction compared
to the mn entries of A. Furthermore, computing A′x = U(V x) takes time O(k(m+n)), which is much less
than the time O(mn) for computing Ax. We refer the reader to several surveys [KV09KV09, Mah11Mah11, Woo14Woo14]
for references to the many results on low rank approximation.

`0-low rank approximation When the measure ‖A−A′‖0 is the number of non-zero entries, we seek
a rank-k matrix A′ for which the number of entries (i, j) with A′i,j 6= Ai,j is as small as possible. This
can be seen as the Hamming distance between a matrix A and its best rank k approximation A′. The
`0-low rank approximation is natural for problems with no underlying metric, since the ‖ · ‖0 measure
directly answers the following question: if we are allowed to ignore outliers (or anomalies), what is the
best low-rank model we can get?

A well-studied case is when A is binary, but A′ and its factors U and V need not necessarily be binary.
This is called unconstrained Binary Matrix Factorization [JPHY14JPHY14]. There is also a large body of work
on the constrained version, in which not only the input matrix A is binary, but we also have the natural
restriction that the factors U, V are binary. That is, we study the following problem.

Binary `0-Rank-k Given a matrix A ∈ {0, 1}m×n and an integer k, compute matrices U ∈ {0, 1}m×k
and V ∈ {0, 1}k×n minimizing ‖A− U · V ‖0.

Note that we did not yet specify the ground field (or, more generally, semiring) that we are working
over, which affects the type of matrix multiplication used in U · V . Specifically, for A′ = U · V we can
write the entry A′i,j as the inner product of the i-th row of U with the j-column of V – and the specific
inner product function 〈., .〉 depends on the ground field.

Typical choices for the ground field are as follows. Let x, y ∈ {0, 1}k.

(i) Reals: For the ground field R, we get the standard inner product 〈x, y〉 =
∑k
i=1 xi ·yi ∈ {0, 1, . . . , k}.

This is rather unnatural, since no number > 2 can match any entry of A.

(ii) Modulo 2: For the ground field F2, the inner product is 〈x, y〉 =
⊕k

i=1 xi · yi ∈ {0, 1}. This is used,
e.g., in [Yer11Yer11, GGYT12GGYT12, DAJ+15DAJ+15, PRF16PRF16].

(iii) Boolean: Using the Boolean semiring {0, 1,∧,∨}, the inner product becomes 〈x, y〉 =
∨k
i=1 xi ∧ yi =

1−
∏k
i=1(1−xi ·yi) ∈ {0, 1}. This is used, e.g., in [BV10BV10, DAJ+15DAJ+15, MMG+08MMG+08, SBM03SBM03, SH06SH06, VAG07VAG07].

Note that for k = 1 all three inner products are the same.

Clustering with Constrained Centers We now demonstrate that the Binary `0-Rank-k problem is
equivalent to a clustering problem with constrained centers. Consider arbitrary matrices U ∈ {0, 1}m×k
and V ∈ {0, 1}k×n. Grouping the identical columns of V gives rise to a column partitioning, and let
Cy = {j ∈ [n] : V:,j = y} be the set of column indices corresponding to a vector y, for every y ∈ {0, 1}k.
Then, the expression ‖A− U · V ‖0 is equivalent to a clustering formulation whose centers are restricted

to the set SU
def
= {U · y ∈ {0, 1}m : y ∈ {0, 1}k}, and it reads

‖A− U · V ‖0 =

n∑
j=1

‖A:,j − U · V:,j‖0 =
∑

y∈{0,1}k

∑
j∈Cy

‖A:,j − U · y‖0.
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Observe that any column of U · V is in SU , and thus the choice of columns in V can be seen as selecting
constrained centers in SU . Formally, we rephrase the Binary `0-Rank-k problem as follows

min
U∈{0,1}m×k,V ∈{0,1}k×n

‖A− U · V ‖0 = min
U∈{0,1}m×k

n∑
j=1

min
V:,j∈{0,1}k

‖A:,j − U · V:,j‖0

= min
U∈{0,1}m×k

n∑
j=1

min
s∈SU

‖A:,j − s‖0.

This is a clustering problem, where the task is to choose a set of constrained centers SU , in order to minimize
the total `0-distance of all columns of A to their closest center in SU . The main difference to unconstrained
clustering problems is that the constrained centers in SU cannot be chosen independently, since these
centers satisfy a certain system of linear equations. Because of this dependence, the techniques used for
designing approximation schemes for unconstrained clustering problems are not directly applicable.

Applications The Binary `0-Rank-k problem arises in many fields of computer science, with different
ground fields being important in different areas. In computational linear algebra the problem is known
under the umbrella term “low rank matrix approximation” and used for compressing matrices, as described
above [KV09KV09, Mah11Mah11, Woo14Woo14, BKW17aBKW17a].

In complexity theory the problem is known as “matrix rigidity”, introduced by Grigoriev [Gri80Gri80]
and Valiant [Val77Val77], who showed that constructions of rigid matrices would imply circuit lower bounds,
see also [AW17AW17]. The decision problem of matrix rigidity has been studied from the viewpoint of
FPT [FLM+17FLM+17].

In data mining and machine learning, the problem is known as “(Constrained) Binary Matrix Factor-
ization” or “Boolean Factor Analysis” [MieMie, JPHY14JPHY14, DAJ+15DAJ+15, FGP18FGP18]. In these areas, the columns of U
could correspond to latent topics learned from the database A, and, more generally, the problem has numer-
ous applications including latent variable analysis, topic models, association rule mining, clustering, and
database tiling [SBM03SBM03, SH06SH06, VAG07VAG07, MV14MV14, GGYT12GGYT12]. The usage of the problem to mine discrete pat-
terns has also been applied in bioinformatics to analyze gene expression data [MGT15MGT15, SJY09SJY09, ZLD+10ZLD+10].
In these situations it is natural to consider binary matrices whenever the data is categorical, which is
often the case for text data [DAJ+15DAJ+15, MV14MV14, RPG16RPG16]. The special and important case in which A is
binary and k = 1 was studied in [KG03KG03, SJY09SJY09, JPHY14JPHY14], as their algorithm for k = 1 forms the basis
for their successful heuristic for general k, e.g. the PROXIMUS technique [KG03KG03].

Another special case of Binary `0-Rank-k is the Biclique Partition problem, see, e.g., [CIK16CIK16, FGP18FGP18].
Binary `0-Rank-k over F2 has been applied to Independent Component Analysis of string data in the
area of information theory [Yer11Yer11, GGYT12GGYT12, PRF16PRF16]. If we drop the requirement that U and V are
binary, and use the Frobenius norm as distance measure, we obtain the unconstrained Binary Matrix
Factorization [JPHY14JPHY14], which has applications to association rule mining [KG03KG03], biclustering structure
identification [ZLD+10ZLD+10, ZLDZ07ZLDZ07], pattern discovery for gene expression [SJY09SJY09], digits reconstruction
[MGNR06MGNR06], mining high-dimensional discrete-attribute data [KGR05KGR05, KGR06KGR06], market based clustering
[Li05Li05], and document clustering [ZLDZ07ZLDZ07].

An important related problem is robust PCA [CLMW11CLMW11], in which there is an underlying matrix A
that can be written as a low rank matrix L plus a sparse matrix S [CLMW11CLMW11]. Candès et al. [CLMW11CLMW11]
argue that both the components of L and S are of arbitrary magnitude, and we do not know the locations
of the non-zeros in S nor how many there are. Moreover, grossly corrupted observations are common
in image processing, web data analysis, and bioinformatics where some measurements are arbitrarily
corrupted due to occlusions, malicious tampering, or sensor failures. Specific scenarios include video
surveillance, face recognition, latent semantic indexing, and ranking of movies, books, etc. [CLMW11CLMW11].
These problems have the common theme of being an arbitrary magnitude sparse perturbation to a low
rank matrix with no natural underlying metric, and thus the `0-error measure is appropriate. In order to
solve the robust PCA in practice, Candès et al. [CLMW11CLMW11] relaxed the `0-error measure to the `1-norm.

It is of a fundamental importance for theory to understand the algorithmic guarantees and limits for
solving the `0-low rank approximation problem.

Algorithms for Binary `0-Rank-k Let us first discuss rank k = 1, in which case the real, F2, and
Boolean variants are all equal. A polynomial-time 2-approximation was designed by Shen et al. [SJY09SJY09],
and simplified by Jiang et al. [JPHY14JPHY14]. For k > 1, Dan et al. [DAJ+15DAJ+15] presented an nO(k)-time O(k)-
approximation over F2, and an nO(k)-time O(2k)-approximation over the Boolean semiring. The work of
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Chierichetti et al. [CGK+17CGK+17] for `p-low rank approximation, for p > 1, fails to give any approximation
factor for p = 0. Indeed, critical to their analysis is the scale-invariance property of a norm, which does
not hold for p = 0 since `0 is not a norm. To the best of our knowledge, these are the only known
approximation algorithms for this problem.

Hardness of Binary `0-Rank-k It is well-known that Binary `0-Rank-k is NP-hard, even for rank
k = 1 [GV15GV15, DAJ+15DAJ+15]. Further, if k is unbounded then even deciding whether matrix A has rank k
is NP-hard over the Boolean semiring [MieMie]. This suggests that the running time of any approximation
algorithm must depend at least exponentially on k.

Despite the high interest in the problem in linear algebra, data mining, machine learning, and com-
plexity theory, the approximability of the problem is wide open. In particular, this leaves the following
question open. Does the Binary `0-Rank-k problem have a polynomial time approximation scheme (PTAS)
for any constant k?

1.1 Generalized Binary `0-Rank-k

The results in this Section are proven in Chapter 22. In order to study the real, F2, and Boolean setting
in a unified way, we introduce the following more general problem.

Generalized Binary `0-Rank-k Given a matrix A ∈ {0, 1}m×n with m > n, an integer k, and an
inner product function 〈., .〉 : {0, 1}k × {0, 1}k → R, compute matrices U ∈ {0, 1}m×k and V ∈ {0, 1}k×n
minimizing ‖A− U · V ‖0, where the product U · V uses 〈., .〉. An algorithm for the Generalized Binary
`0-Rank-k problem is an α-approximation, if it outputs matrices U ∈ {0, 1}m×k and V ∈ {0, 1}k×n
satisfying ‖A− U · V ‖0 6 α ·minU ′∈{0,1}m×k,V ′∈{0,1}k×n ‖A− U ′ · V ′‖0.

As shown above, by choosing an appropriate inner product function 〈., .〉 which also runs in time O(k),
we obtain the Binary `0-Rank-k problem over the reals, F2, and the Boolean semiring. We assume that
the function 〈., .〉 can be evaluated in time 2O(k), in order to simplify our running time bounds.

Our main result is a randomized almost-linear time approximation scheme for the Generalized Binary
`0-Rank-k problem for any constant k. In particular, this yields the first PTAS for the Binary `0-Rank-k
problem for constant k over the reals, F2, and the Boolean semiring. Even for the special case of rank
k = 1 no PTAS was known before.

Theorem 1.1. (PTAS) For any error ε ∈ (0, 1/2), there is a (1 + ε)-approximation algorithm for the

Generalized Binary `0-Rank-k problem that runs in time (2/ε)2O(k)/ε2 ·mn1+o(1) and succeeds with constant

probability 11, where o(1) hides a factor (log log n)
1.1
/ log n.

Moreover, we show that our PTAS has a close to optimal running time, in the sense that the runtime
of any PTAS for the Generalized Binary `0-Rank-k problem must depend exponentially on 1/ε and doubly
exponentially on k, assuming the Exponential Time Hypothesis (ETH).

Theorem 1.2. (Hardness for Generalized Binary `0-Rank-k) Assuming the Exponential Time Hypothesis,

Generalized Binary `0-Rank-k has no (1+ε)-approximation algorithm in time 21/εo(1) ·2mo(1) . Further, for

any ε > 0, Generalized Binary `0-Rank-k has no (1 + ε)-approximation algorithm in time 22o(k) · 2mo(1) .

Further, we give a faster algorithm for the Binary `0-Rank-1 problem with standard inner product. In
the following, we assume 22 that we can access any entry Ai,j in constant time, and we can also enumerate
all non-zero entries in time O(‖A‖0).

Theorem 1.3. (PTAS for the Binary `0-Rank-1 problem with standard inner product) For any ε ∈ (0, 1/2)

there is an algorithm that runs in time (1/ε)O(1/ε2) · (‖A‖0 + m + n) · log3(mn), and outputs vectors
ũ ∈ {0, 1}m, ṽ ∈ {0, 1}n such that w.h.p. 33 ‖A− ũ · ṽT ‖0 6 (1 + ε) minu∈{0,1}m,v∈{0,1}n‖A− u · vT ‖0.

1 The success probability can be further amplified to 1− δ for any δ > 0 by running O(log(1/δ)) independent trials of
the preceding algorithm.

2 Depending on the specific storage scheme additional running time factors may be necessary. For instance, if we store
A by adjacency arrays, then enumerating all non-zero entries in time O(‖A‖0) is straightforward, while accessing any entry
Ai,j can be performed in time O(logn) by a binary search over the adjacency array for row i, so in this case the stated
running time has to be multiplied by a factor O(logn).

3 An event happens with high probability (w.h.p.) if it has probability at least 1− 1/nc for some c > 0.
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Chapter 1. Introduction

Note: Our results in Theorem 1.11.1 and Theorem 1.21.2 are in submission as of April 2018. Shortly after
posting our manuscript [BBB+18BBB+18] to arXiv on 16 July 2018, we became aware that in an unpublished
work Fomin et al. have independently obtained a very similar PTAS for Binary `0-Rank-k problem.
Their manuscript [FGL+18FGL+18] was posted to arXiv on 18 July 2018. Interestingly, [BBB+18BBB+18, FGL+18FGL+18]
have independently discovered i) a reduction between the Binary `0-Rank-k problem and a clustering
problem with constrained centers; ii) a structural sampling theorem extending [AS99AS99] which yields a
simple but inefficient deterministic PTAS; and iii) an efficient sampling procedure, building on ideas
from [KSS04KSS04, ABH+05ABH+05, ABS10ABS10], which gives an efficient randomized PTAS. Notably, by establishing an
additional structural result, Fomin et al. [FGL+18FGL+18] design a faster sampling procedure which yields a

randomized PTAS for the Binary `0-Rank-k problem that runs in linear time (1/ε)2O(k)/ε2 ·mn.

Further Related Work

Suppose A ∈ {0, 1}m×n and the inner product 〈., .〉 maps to {0, 1}. Then, matrix U · V has entries in

{0, 1}, and hence matrix B
def
= A−U ·V has entries in {−1, 0, 1}. In this case, the `0-distance, the `1-norm

of all entries, and the Frobenius norm ‖B‖F = (
∑m
i=1

∑m
j=1B

2
i,j)

1/2 are all equivalent:

‖B‖0 =

m∑
i=1

m∑
j=1

|Bi,j | = ‖B‖2F .

Here, we also allow inner product functions mapping to numbers other than {0, 1} (note that no such
number can match any entry in A).

The following problem is closely related to the Binary `0-Rank-k problem.

Hypercube Segmentation: Given a matrix A ∈ {0, 1}m×n and an integer k, we seek to compute
vectors u1, . . . , uk ∈ {0, 1}m maximizing the value

∑n
j=1 min16`6k(m − ‖A:,j − u`‖0) (or equivalently,

minimizing the expression
∑n
j=1 min16`6k ‖A:,j − u`‖0).

The problem is NP-hard even for k = 2 [Fei14Fei14]. Note that m− ‖A:,j − u`‖0 is the number of entries
that column A:,j and vector u` have in common. It can be checked that the optimum is always at least
mn/2, and thus approximating the maximization version is easier, in the sense that any α-approximation
algorithm for minimization implies an α-approximation for maximization. For the maximization version,
Kleinberg et al. [KPR04KPR04] designed a polynomial-time 0.878-approximation for any fixed k, which was
improved to an efficient PTAS for any fixed k by Alon and Sudakov [AS99AS99]. For the minimization version,
a PTAS was designed by Ostrovsky and Rabani [OR00OR00]. This was extended to several clustering problems
that are natural generalizations of Hypercube Segmentation [OR00OR00, ABS10ABS10]. An efficient PTAS is known
for a Euclidean variant of this clustering problem [BHI02BHI02].

Our results extend this line of work, since (the minimization version of) Hypercube Segmentation is a
special case of the Generalized Binary `0-Rank-k problem. Indeed, let π : {0, 1}k → {1, . . . , k} be any onto
function, e.g., π maps the i-th vector in {0, 1}k (w.r.t. any fixed ordering) to the number min{i, k}. We

define an inner product function 〈x, y〉 def
= xπ(y), i.e., y specifies a coordinate of the vector x. Consider the

matrix product A′ = U · V with respect to this inner product. Writing `j
def
= π(V:,j), we have A′i,j = Ui,`j .

In other words, the j-th column of A′ is equal to one of the columns of U , and we can choose which one.
Writing the columns of U as u1, . . . , uk yields the equivalence with Hypercube Segmentation.
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1.2. Binary `0-rank-1 With Small Optimal Value

1.2 Binary `0-rank-1 With Small Optimal Value

The results in this Section are proven in Chapter 33. Given a matrix A ∈ {0, 1}m×n, our goal is to compute
an approximate solution of the Binary `0-Rank-1 problem, and let us denote the optimal value by

OPT
def
= min

u∈{0,1}m, v∈{0,1}n
‖A− u · vT ‖0. (1.1)

In practice, approximating a matrix A by a rank-1 matrix uvT makes most sense if A is close to being
rank-1. Hence, the above optimization problem is most relevant in the case OPT� ‖A‖0. For this reason,
we focus in this section on the case OPT/‖A‖0 6 φ, for sufficiently small φ > 0.

We first give an algorithm that requires as an input a parameter φ > OPT/‖A‖0.

Theorem 1.4. Given A ∈ {0, 1}m×n with row and column sums, and given φ ∈ (0, 1
80 ] with OPT/‖A‖0 6

φ, we can compute in time O(min{‖A‖0+m+n, φ−1(m+n) log(mn)}) vectors ũ ∈ {0, 1}m and ṽ ∈ {0, 1}n
such that w.h.p. ‖A− ũ · ṽT ‖0 6 (1 + 5φ)OPT + 37φ2‖A‖0.

Then, we use a (2 + ε)-approximation algorithm for the Reals `0-Rank-1 problem that captures as a
special case the Binary `0-Rank-1 problem. We prove the following result in Chapter 44, see Section 4.24.2.

Theorem 1.5. Given A ∈ {0, 1}m×n with column adjacency arrays and OPT > 1, and given ε ∈ (0, 0.1],
we can compute w.h.p. in time

O

((n logm

ε2
+ min

{
‖A‖0, n+ ψ−1 log n

ε2

}) log2 n

ε2

)
a column A:,j and a vector z ∈ {0, 1}n such that w.h.p. ‖A−A:,j · zT ‖0 6 (2 + ε)OPT. Further, we can
compute an estimate Y such that w.h.p. (1− ε)OPT 6 Y 6 (2 + 2ε)OPT.

Using Theorem 1.41.4 in combination with Theorem 1.51.5, we obtain a (1+500ψ)-approximation algorithm
for the Binary `0-Rank-1 problem that does not need the parameter φ as an input.

Theorem 1.6. Given A ∈ {0, 1}m×n with column adjacency arrays and with row and column sums, for
ψ = OPT/‖A‖0 we can compute w.h.p. in time O(min{‖A‖0 +m+ n, ψ−1(m+ n)} · log3(mn)) vectors
ũ ∈ {0, 1}m and ṽ ∈ {0, 1}n such that w.h.p. ‖A− ũ · ṽT ‖0 6 (1 + 500ψ)OPT .

Our algorithm simultaneously improves the approximation factor and the running time. Further, it
even runs in sublinear o(‖A‖0) time, unlike all algorithms in previous works [SJY09SJY09, JPHY14JPHY14]. Notably,
when matrix A is very well approximated by a low rank matrix, i.e. ψ is a sub-constant, we obtain a
(1 + o(1))-approximation which is significantly better than the previous best known 2-approximations.

Moreover, we also show that the running time of our algorithm is optimal up to a poly log(mn) factor,
by proving that any (1 +O(ψ))-approximation algorithm succeeding with constant probability must read
Ω(ψ−1(m+ n)) entries of A in the worst case.

Theorem 1.7. Let C > 1. Given an n × n binary matrix A with column adjacency arrays and with
row and column sums, and given

√
log(n)/n � φ 6 1/100C such that OPT/‖A‖0 6 φ, computing a

(1 + Cφ)-approximation of OPT requires to read Ω(n/φ) entries of A (in the worst case over A).

Furthermore, a variant of the algorithm from Theorem 1.61.6 can also be used to solve exactly the Binary
`0-Rank-1 problem. This yields the following theorem, which in particular shows that the problem is in
polynomial time when OPT 6 O

(√
‖A‖0 log(mn)

)
.

Theorem 1.8. Given a matrix A ∈ {0, 1}m×n, if OPT/‖A‖0 6 1/240 then we can solve exactly the

Binary `0-Rank-1 problem in time 2O(OPT/
√
‖A‖0) · poly(mn).

1.3 Algorithms for Reals `0-Rank-k Problem

The results in this Section are proven in Chapter 44. We establish approximation algorithms for several
important variants of `0-low rank approximation, which significantly improve the running time and the
approximation factor of previous works. In some cases our algorithms even run in sublinear time, i.e.,
faster than reading all non-zero entries of the matrix. This is provably impossible for other measures
such as the Frobenius norm and more generally, any `p-norm for p > 0. For k > 1, our approximation
algorithms are, to the best of our knowledge, the first with provable guarantees for these problems.
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1.3.1 Preliminaries

For a matrix A ∈ Am×n with m > n and entries Ai,j , let Ai,: be its i-th row and A:,j be its j-th column.
An algorithm that on input a sufficiently dense matrix A, runs in time o(‖A‖0) is called sublinear. In

particular, we say that time Õ(m+ n) is sublinear, since in general m+ n� ‖A‖0. In this section, we
study variants of the following problem.

Reals `0-Rank-k Given a matrix A ∈ Rm×n and an integer k, compute matrices U ∈ Rm×k and
V ∈ Rk×n minimizing ‖A−U ·V ‖0. An algorithm for the Reals `0-Rank-k problem is an α-approximation,

if it outputs matrices Ũ ∈ Rm×k and Ṽ ∈ Rk×n satisfying

‖A− Ũ · Ṽ ‖0 6 α min
U∈Rm×k,V ∈Rk×n

‖A− U · V ‖0.

Input Formats We always assume that we have random access to the entries of the given matrix A,
i.e. we can read any entry Ai,j in constant time. For our sublinear time algorithms we need more efficient
access to the matrix, specifically the following two variants:

(1) We say that we are given A with column adjacency arrays if we are given arrays B1, . . . , Bn and
lengths `1, . . . , `n such that for any k ∈ {1, . . . , `j} the pair Bj [k] = (i, Ai,j) stores the row i containing
the k-th nonzero entry in column j as well as that entry Ai,j . This is a standard representation of matrices
used in many applications. Note that given only these adjacency arrays B1, . . . , Bn, in order to access
any entry Ai,j we can perform a binary search over Bj , and hence random access to any matrix entry
is in time O(log n). Moreover, we assume to have random access to matrix entries in constant time, and
note that this is optimistic by at most a factor O(log n).

(2) We say that we are given matrix A with row and column sums if we can access the numbers∑
j Ai,j for i ∈ [m] and

∑
iAi,j for j ∈ [n] in constant time (and, as always, access any entry Ai,j in

constant time). Notice that storing the row and column sums takes O(m+ n) space, and thus while this
might not be standard information it is very cheap to store.

In Subsection 4.2.54.2.5, we show that the first access type even allows to sample from the set of nonzero
entries uniformly in constant time.

Lemma 1.9. Given a matrix A ∈ Rm×n with column adjacency arrays, after O(n) time preprocessing
we can sample a uniformly random nonzero entry (i, j) from A in time O(1).

1.3.2 Reals `0-rank-k

Given a matrix A ∈ Rm×n, our goal is to compute an approximate solution of the Reals `0-rank-k problem,
and let us denote the optimal value by

OPT
def
= min

U∈Rm×k, V ∈Rk×n
‖A− U · V ‖0. (1.2)

We first give an impractical algorithm that runs in time nO(k) and achieves O(k2) factor approximation.
To the best of our knowledge this is the first approximation algorithm for the Reals `0-Rank-k problem
with non-trivial approximation guarantees.

Theorem 1.10. Given a matrix A ∈ Rm×n and an integer k, we can compute in time O(nk+1m2kω+1)
a set of k indices J (k) ⊂ [n] and a matrix Z ∈ Rk×n such that ‖A−A:,J(k) · Z‖0 6 O(k2) ·OPT.

To make our algorithm practical, we reduce the running time to poly(mn), with an exponent indepen-
dent of k, if we allow for a bicriteria solution. In particular, we allow the algorithm to output a matrix
A′ of larger rank O(k log(n/k)) and approximation factor O(k2 log(n/k)).

Theorem 1.11. Given a matrix A ∈ Rm×n and an integer k, there is an algorithm that in expected time
poly(m,n) outputs a subset of indices J ⊂ [n] with |J | = O(k log(n/k)) and a matrix Z ∈ R|J|×n such
that ‖A−A:,J · Z‖0 6 O(k2 log(n/k)) ·OPT.

Although, we do not obtain exactly rank k, many of the motivations for finding a low rank approx-
imation, such as reducing the number of parameters and fast matrix-vector multiplication, still hold if
the output rank is O(k log(n/k)). We are not aware of any alternative algorithms that achieve poly(mn)
time and any provable approximation factor, even for bicriteria solutions.
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1.3.3 Reals `0-rank-1

Given a rank-1 matrix A ∈ Rm×n, there is an algorithm that runs in time O(‖A‖0) and finds the exact
rank-1 decomposition uvT of A. Here, we focus on the case when A is not a rank-1 matrix.

The previous best algorithm due to Jiang et al. [JPHY14JPHY14] was based on the observation that there
exists a column u of A spanning a 2-approximation. Hence, solving the problem minv‖A− u · vT ‖0 for
each column u of matrix A yields a 2-approximation. The problem minv∈Rn‖A−u ·vT ‖0 decomposes into∑
i min

i
‖A:,i − viu‖0, where A:,i is the i-th column of A, and vi the i-th entry of vector v. The optimal

vi is the mode of the ratios Ai,j/uj , where j ranges over indices in {1, 2, . . . ,m} with uj 6= 0. As a result,
one can find a rank-1 matrix uvT providing a 2-approximation in time O(n‖A‖0), which was the best
known running time.

We design randomized algorithms for solving this problem. Let the optimal value be

OPT
def
= min

u∈Rm, v∈Rn
‖A− u · vT ‖0. (1.3)

Our algorithm yields a (2 + ε)-approximation and runs in nearly linear time in ‖A‖0, for any constant
ε > 0. Moreover, a variant of our algorithm even runs in sublinear time when OPT > (ε−1 log(mn))4 and
‖A‖0 > n(ε−1 log(mn))4.

Theorem 1.12. Given A ∈ Rm×n with column adjacency arrays and OPT > 1, and given ε ∈ (0, 0.1],
there is an algorithm that runs w.h.p. in time

O

((n logm

ε2
+ min

{
‖A‖0, n+ ψ−1 log n

ε2

}) log2 n

ε2

)
where ψ =

OPT

‖A‖0
,

and outputs a column A:,j and a vector z ∈ Rn such that w.h.p. ‖A − A:,j · zT ‖0 6 (2 + ε)OPT. The
algorithm also computes an estimate Y satisfying w.h.p. (1− ε)OPT 6 Y 6 (2 + 2ε)OPT.

This significantly improves upon the earlier O(n‖A‖0) time algorithm for not too small ε and ψ. Our
result should be contrasted to Frobenius norm low rank approximation, for which Ω(‖A‖0) time is required
even for k = 1, as otherwise one might miss a very large entry in A. Since `0-low rank approximation is
insensitive to the magnitude of entries of A, we bypass this general impossibility result.
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Chapter 2

A PTAS For Generalized Binary `0-Rank-k

Given a matrix A ∈ {0, 1}m×n with m > n, an integer k, and an inner product function 〈., .〉 : {0, 1}k ×
{0, 1}k → R, the Generalized Binary `0-Rank-k problem asks to find matrices U ∈ {0, 1}m×k and
V ∈ {0, 1}k×n minimizing ‖A−U ·V ‖0, where the product U ·V is them×nmatrixB withBi,j = 〈Ui,:, V:,j〉.
An algorithm for the Generalized Binary `0-Rank-k problem is an α-approximation, if it outputs matrices
U ∈ {0, 1}m×k and V ∈ {0, 1}k×n satisfying

‖A− U · V ‖0 6 α · min
U ′∈{0,1}m×k,V ′∈{0,1}k×n

‖A− U ′ · V ′‖0.

As shown in Chapter 11, by choosing an appropriate inner product function 〈., .〉 which also runs in time
O(k), we obtain the Binary `0-Rank-k problem over the reals, F2, and the Boolean semiring. We assume
that the function 〈., .〉 can be evaluated in time 2O(k), in order to simplify our running time bounds.

2.1 Technical Overview

2.1.1 PTAS For Generalized Binary `0-Rank-k

The Generalized Binary `0-Rank-k problem can be rephrased as a clustering problem with constrained
centers, whose goal is to choose a set of centers satisfying a certain system of linear equations, in order
to minimize the total `0-distance of all columns of A to their closest center. The main difference to usual
clustering problems is that the centers cannot be chosen independently.

We view the choice of matrix U as picking a set of “cluster centers” SU
def
= {U · y | y ∈ {0, 1}k}.

Observe that any column of U · V is in SU , and thus we view the choice of column V:,j as picking one of
the constrained centers in SU . Formally, we rephrase the Generalized Binary `0-Rank-k problem as

min
U∈{0,1}m×k,V ∈{0,1}k×n

‖A− U · V ‖0 = min
U∈{0,1}m×k

n∑
j=1

min
V:,j∈{0,1}k

‖A:,j − U · V:,j‖0

= min
U∈{0,1}m×k

n∑
j=1

min
s∈SU

‖A:,j − s‖0. (2.1)

Any matrix V gives rise to a “clustering” as partitioning CV = (Cy)y∈{0,1}k of the columns of V with
Cy = {j ∈ [n] | V:,j = y}. If we knew an optimal clustering C = CV , for some optimal matrix V , we could
compute an optimal matrix U as the best response to V . Note that

min
U∈{0,1}m×k

∑
y∈{0,1}k

∑
j∈Cy

‖A:,j − U · y‖0 =

m∑
i=1

min
Ui,:∈{0,1}k

∑
y∈{0,1}k

∑
j∈Cy

‖Ai,j − Ui,: · y‖0.

Therefore, given C we can compute independently for each i ∈ [m] the optimal row Ui,: ∈ {0, 1}k, by
enumerating over all possible binary vectors of dimension k and selecting the one that minimizes the
summation

∑
y∈{0,1}k

∑
j∈Cy‖Ai,j − Ui,: · y‖0.

What if instead we could only sample from C? That is, suppose that we are allowed to draw a constant
number t = poly(2k/ε) of samples from each of the optimal clusters Cy uniformly at random. Denote by

C̃y the samples drawn from Cy. A natural approach is to replace the exact cost above by the following
unbiased estimator:

Ẽ
def
=

∑
y∈{0,1}k

|Cy|
|C̃y|

·
∑
j∈C̃y

‖A:,j − U · y‖0.
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We show that with good probability any matrix U = U(C̃) minimizing the estimated cost Ẽ is close
to an optimal solution. In particular, we prove for any matrix V ∈ {0, 1}k×n that

EC̃ [‖A− U(C̃) · V ‖0] 6 (1 + ε) · min
U∈{0,1}m×k

‖A− U · V ‖0. (2.2)

The biggest issue in proving statement (2.22.2) is that the number of samples t = poly(2k/ε) is inde-
pendent of the ambient space dimension n. A key prior probabilistic result, established by Alon and
Sudakov [AS99AS99], gives an additive ±εmn approximation for the maximization version of a clustering
problem with unconstrained centers, known as Hypercube Segmentation. Since the optimum value of this
maximization problem is always at least mn/2, a multiplicative factor (1 + ε)-approximation is obtained.
Our contribution is twofold. First, we generalize their analysis to clustering problems with constrained
centers, and second we prove a multiplicative factor (1 + ε)-approximation for the minimization version.
The proof of (2.22.2) takes a significant fraction of this chapter.

We combine the sampling result (2.22.2) with the following observations to obtain a deterministic

polynomial time approximation scheme (PTAS) in time m · npoly(2k/ε). We later discuss how to further
improve this running time. Let U, V be an optimal solution to the Generalized Binary `0-Rank-k problem.

(1) To evaluate the estimated cost Ẽ, we need the sizes |Cy| of an optimal clustering C. We can guess

these sizes with an n2k overhead in the running time. In fact, it suffices to know these cardinalities

approximately, see Lemma 2.52.5, and thus this overhead 11 can be reduced to (t+ ε−1 · log n)2k .

(2) Using the (approximate) size |Cy| and the samples C̃y drawn u.a.r. from Cy, for all y ∈ {0, 1}k,

we can compute in time 2O(k)mn a matrix U(C̃) minimizing the estimated cost Ẽ, since the

estimator Ẽ can be split into a sum over the rows of U(C̃) and each row is chosen independently
as a minimizer among all possible binary vectors of dimension k.

(3) Given U(C̃), we can compute a best response matrix V (C̃) which has cost ‖A−U(C̃) ·V (C̃)‖0 6
‖A− U(C̃) · V ‖0, and thus by (2.22.2) the expected cost at most (1 + ε)OPT.

(4) The only remaining step is to draw samples C̃y from the optimal clustering. However, in time

O(n2kt) = npoly(2k/ε) we can enumerate all possible families (C̃y)y∈{0,1}k , and the best such
family yields a solution that is at least as good as a random sample. In total, we obtain a PTAS

in time m · npoly(2k/ε).

The largest part of this chapter is devoted to make the above PTAS efficient, i.e., to reduce the running

time from m ·npoly(2k/ε) to (2/ε)2O(k)/ε2 ·mn1+o(1), where o(1) hides a factor (log log n)
1.1
/ log n. By the

preceding outline, it suffices to speed up Steps (1) and (4), i.e., to design a fast algorithm that guesses
approximate cluster sizes and samples from the optimal clusters.

The standard sampling approach for clustering problems such as k-means [KSS04KSS04] is as follows. At
least one of the clusters of the optimal solution is “large”, say |Cy| > n/2k. Sample t columns uniformly
at random from the set [n] of all columns. Then with probability at least (1/2k)t all samples lie in Cy,
and in this case they form a uniform sample from this cluster. In the usual situation without restrictions
on the cluster centers, the samples from Cy allow us to determine an approximate cluster center s̃(y).
Do this as long as large clusters exist (recall that we have guessed approximate cluster sizes in Step (1),
so we know which clusters are large). When all remaining clusters are small, remove the n/2 columns
that are closest to the approximate cluster centers s̃(y) determined so far, and estimate the cost of these
columns using the centers s̃(y). As there are no restrictions on the cluster centers, this yields a good cost
estimation of the removed columns, and since the `0-distance is additive the algorithm recurses on the
remaining columns, i.e. on an instance of twice smaller size. We continue this process until each cluster
is sampled. This approach has been used to obtain linear time approximation schemes for k-means and
k-median in a variety of ambient spaces [KSS04KSS04, KSS05KSS05, ABS10ABS10].

The issue in our situation is that we cannot fix a cluster center s̃(y) by looking only at the samples C̃y,
since we have dependencies among cluster centers. We nevertheless make this approach work, by showing
that a uniformly random column r(y) ∈ [n] is a good “representative” of the cluster Cy with not-too-small
probability. In the case when all remaining clusters are small, we then simply remove the n/2 columns
that are closest to the representatives r(y) of the clusters that we already sampled from. Although these

1 In Section 2.32.3, we establish an efficient sampling procedure, see Algorithm 22, that further reduces the total overhead

for guessing the sizes |Cy | of an optimal clustering to (2k/ε)2
O(k) · (logn)(log logn)0.1 .

12



2.1. Technical Overview

representatives can be far from the optimal cluster centers due to the linear restrictions on the latter, we
show in Section 2.32.3 that nevertheless this algorithm yields samples from the optimal clusters.

We prove that the preceding algorithm succeeds with probability at least (ε/t)2O(k)·t
. Further, we

show that the approximate cluster sizes |C̃y| of an optimal clustering can be guessed with an overhead

of (2k/ε)2O(k) · (log n)(log logn)0.1 . In contrast to the standard clustering approach, the representatives r(y)

do not yield a good cost estimation of the removed columns. We overcome this issue by first collecting all
samples C̃ from the optimal clusters, and then computing approximate cluster centers that satisfy certain
linear constraints, i.e. a matrix U(C̃) and its best response matrix V (C̃). The latter computation runs
in linear time 2O(k) ·mn in the size of the original instance, and this in combination with the guessing

overhead, yields the total running time of (2/ε)2O(k)/ε2 ·mn1+o(1). For further details, we refer the reader
to Algorithm 22 in Subsection 2.3.22.3.2.

Our algorithm achieves a substantial generalization of the standard clustering approach and applies to
the situation with constrained centers. This yields the first randomized almost-linear time approximation
scheme (PTAS) for the Generalized Binary `0-Rank-k problem.

Theorem 1.11.1 (from page 55). (PTAS) For any error ε ∈ (0, 1/2), there is a (1 + ε)-approximation

algorithm for the Generalized Binary `0-Rank-k problem that runs in time (2/ε)2O(k)/ε2 ·mn1+o(1) and

succeeds with constant probability 22, where o(1) hides a factor (log log n)
1.1
/ log n.

Our running time is close to optimal, in the sense that the running time of any PTAS for the Generalized
Binary `0-Rank-k problem must depend exponentially on 1/ε and doubly exponentially on k, assuming
the Exponential Time Hypothesis (ETH). We show this in the following.

Theorem 1.21.2 (from page 55). (Hardness for Generalized Binary `0-Rank-k) Assuming the Exponential
Time Hypothesis, the Generalized Binary `0-Rank-k problem has no (1 + ε)-approximation algorithm in

time 21/εo(1) · 2mo(1) . Further, for any ε > 0, the Generalized Binary `0-Rank-k problem has no (1 + ε)-

approximation algorithm in time 22o(k) · 2mo(1) .

Regarding the dependence on ε, assume w.l.o.g. that m > n, and thus the input size is O(m). Even
for k = 1 the problem is known to be NP-hard [GV15GV15, DAJ+15DAJ+15]. Under ETH, no NP-hard problem

has an algorithm 33 in time 2m
o(1)

. We can restrict to ε > 1/m2, since any better approximation already
yields an optimal solution. It follows for k = 1 that the Generalized Binary `0-Rank-k problem has

no (1 + ε)-approximation algorithm in time 21/εo(1) · 2mo(1) . In other words, in order to improve our
exponential dependence on 1/ε to subexponential, we would need to pay an exponential factor in m.

Regarding the dependence on k, note that for any ε a (1+ε)-approximation algorithm for our problem
decides whether the answer is 0 or larger. In particular, over the Boolean semiring it solves the problem
whether a given bipartite graph can be covered with k bicliques. For this problem, Chandran et al. [CIK16CIK16]

proved that even for k = O(logm) there is no algorithm in time 22o(k) , unless ETH fails. It follows that

for any ε > 0, Generalized Binary `0-Rank-k has no (1 + ε)-approximation algorithm in time 22o(k) · 2o(m).
In other words, in order to improve our doubly exponential dependence on k, we would need to pay an
exponential factor in m. Together, this shows that our running time is close to optimal.

Organization In Subsection 2.2.22.2.2, we state our core sampling result. In Subsection 2.2.32.2.3, we give a
simple but inefficient deterministic PTAS for the Generalized Binary `0-Rank-k problem, which serves
as a blueprint for our efficient randomized PTAS. We present first the deterministic PTAS as it is
conceptually simple and exhibits the main algorithmic challenge, namely, to design an efficient sampling
procedure. In Subsection 2.2.42.2.4, we prove our core sampling result by extending the analysis of Alon and
Sudakov [AS99AS99] to clustering problems with constrained centers, and by further strengthening an additive
±εmn approximation guarantee to a multiplicative factor (1 + ε)-approximation. In Subsection 2.32.3, we
design an efficient sampling procedure, and this yields our efficient randomized PTAS. Our approach uses
ideas from clustering algorithms pioneered by Kumar et al. [KSS04KSS04] and refined in [KSS05KSS05, ABS10ABS10].

In Section 2.42.4, we give a faster randomized PTAS for the Binary `0-Rank-1 problem which improves
the algorithm in Theorem 1.11.1 and runs in time O((1/ε)1/ε2 · (‖A‖0 +m+ n) · log3(mn)).

2 The success probability can be further amplified to 1− δ for any δ > 0 by running O(log(1/δ)) independent trials of
the preceding algorithm.

3 ETH postulates that 3-SAT is not in time 2o(m). Here we only need the weaker hypothesis that 3-SAT is not in time

2m
o(1)

.
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2.2 Constant Size Sampling Suffices

2.2.1 Preliminaries

Chebyshev’s inequality We now give some basic facts. Let Z1, . . . , Zn be independent Bernoulli

random variables, with Zi ∼ Ber(pi). Let Z
def
= Z1 + . . .+ Zn and µ

def
= E[Z].

Lemma 2.1. For any ∆ > 0, we have Pr[|Z − µ| > ∆] 6 µ/∆2.

Proof. By independence, we have

Var(Z) =

n∑
i=1

Var(Zi) =

n∑
i=1

pi(1− pi) 6
n∑
i=1

pi = µ.

By Chebyshev’s inequality, for any ∆ > 0 it holds that Pr[|Z − µ| > ∆] 6 Var(Z)/∆2. The claim follows
by Var(Z) 6 µ.

Lemma 2.2. For any ∆ > 0, we have Pr[|Z − µ| > ∆] 6
√
n/∆.

Proof. As in the previous lemma’s proof, we have Pr[|Z − µ| > ∆] 6 Var(Z)/∆2, where Var(Z) 6 µ 6 n,
and thus Pr[|Z − µ| > ∆] 6 n/∆2. It also follows that Pr[|Z − µ| > ∆] 6

√
n/∆, since if

√
n/∆ < 1 we

have n/∆2 6
√
n/∆, and otherwise the inequality is trivial.

2.2.2 Sampling Theorem

We denote the optimal value of Generalized Binary `0-Rank-k by

OPT = OPTk
def
= min

U∈{0,1}m×k, V ∈{0,1}k×n
‖A− U · V ‖0.

Further, for a fixed matrix V ∈ {0, 1}k×n we let

OPTVk
def
= min

U∈{0,1}m×k
‖A− U · V ‖0,

and we say that a matrix U ∈ {0, 1}m×k is a best response to V , if ‖A− U · V ‖0 = OPTVk .

Given A ∈ {0, 1}m×n, an integer k, and an inner product 〈., .〉 : {0, 1}k×{0, 1}k → R, let V ∈ {0, 1}k×n
be arbitrary and U ∈ {0, 1}m×k be a best response to V , i.e.,

OPTVk
def
= ‖A− U · V ‖0 = min

U ′∈{0,1}m×k
‖A− U ′ · V ‖0.

Partition the columns of V (equivalently the columns of A) into sets

CVy
def
= {j : V:,j = y},

for all y ∈ {0, 1}k. For any row i, vector y ∈ {0, 1}k, and c ∈ {0, 1} we define by

Zi,y,c
def
= |{j ∈ CVy |Aij = c}| and Zi,y,6=c

def
= |{j ∈ CVy |Aij 6= c}|.

Then, the exact cost of a row i for any vector x ∈ {0, 1}k is given by

Ei,x
def
= ‖Ai,: − xT · V ‖0 =

∑
y∈{0,1}k

Zi,y,6=〈x,y〉. (2.3)

Observe that Ui,: ∈ {0, 1}k is a vector x minimizing Ei,x (this follows from U being a best response to

V ), and let Ei
def
= Ei,Ui,: .

We do not know the partitioning {CVy }y∈{0,1}k , however, as we will see later we can assume that (1)

we can sample elements from each CVy and (2) we have good approximations of the sizes |CVy | for all y.

For (1), to set up notation let C̃ = (C̃y)y∈{0,1}k be a family, where C̃y is a random multiset with

elements from CVy . Specifically, we will work with the following distribution DV,t for some t ∈ N: For any

14
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y ∈ {0, 1}k, if |CVy | < t let C̃y = CVy , otherwise sample t elements from CVy with replacement and let the

resulting multiset be C̃y.

For (2), we say that a sequence α = (αy)y∈{0,1}k is a sequence of δ-approximate cluster sizes if for

any y ∈ {0, 1}k with |CVy | < t we have αy = |CVy |, and for the remaining y ∈ {0, 1}k we have

|CVy | 6 αy 6 (1 + δ)|CVy |.

Then corresponding to Zi,y,c and Zi,y,6=c we have random variables

Z̃i,y,c
def
= |{j ∈ C̃y : Ai,j = c}| and Z̃i,y,6=c

def
= |{j ∈ C̃y : Ai,j 6= c}|.

Given C̃ and α, we define the estimated cost of row i and vector x ∈ {0, 1}k as

Ẽi,x
def
=

∑
y∈{0,1}k

αy

|C̃y|
Z̃i,y,6=〈x,y〉. (2.4)

If CVy = ∅ for some y ∈ {0, 1}k, then Z̃i,y,6=〈x,y〉 = 0 and we define the corresponding summand in (2.42.4) to

be 0. Observe that if the approximation αy is exact, i.e., αy = |CVy |, then Ẽi,x is an unbiased estimator
for the exact cost Ei,x.

We now simplify the problem to optimizing the estimated cost instead of the exact cost. Specifically,
we construct a matrix Ũ ∈ {0, 1}m×k by picking for each row i any

Ũi,: ∈ argmin{Ẽi,x : x ∈ {0, 1}k}.

Note that matrix Ũ depends on the input (A, k, 〈., .〉), on the sequence α, and on the sampled multisets

C̃ = (C̃y)y∈{0,1}k . When it is clear from the context, we suppress the dependence on A, k, 〈., .〉, and write

Ũ = Ũ(C̃, α). We generalize now (2.22.2), and show that this matrix yields a good approximation of the
optimal cost.

Theorem 2.3. For any matrix V ∈ {0, 1}k×n, let α be a sequence of ε
6 -approximate cluster sizes and

draw C̃ according to distribution DV,t for t = t(k, ε)
def
= 24k+14/ε2. Then we have

EC̃
[
‖A− Ũ(C̃, α) · V ‖0

]
6 (1 + ε)OPTVk .

We defer the proof of Theorem 2.32.3 to Section 2.2.42.2.4, and first show how it yields a simple but inefficient

deterministic PTAS for the Generalized Binary `0-Rank-k problem running in time m · npoly(2k/ε), see
Section 2.2.32.2.3. Then, in Section 2.32.3, we design a sampling procedure that improves the running time to

(2/ε)2O(k)/ε2 ·mn1+o(1), where o(1) hides a factor (log log n)
1.1
/ log n.

2.2.3 Simple PTAS

In this subsection, we show how Theorem 2.32.3 leads to a simple but inefficient deterministic PTAS, see
Algorithm 11, for the Generalized Binary `0-Rank-k problem.

A basic, but crucial property used in our analysis is that given a matrix A ∈ {0, 1}m×n, an integer k
and a matrix V , we can compute a best response matrix U minimizing ‖A − U · V ‖0 in time 2O(k)mn.
Indeed, we can split ‖A−U ·V ‖0 =

∑n
i=1‖Ai,:−Ui,: ·V ‖0 and brute-force the optimal solution Ui,: ∈ {0, 1}k

minimizing the i-th summand ‖Ai,: −Ui,: · V ‖0. Symmetrically, given U we can compute a best response
V in time 2O(k)mn. In particular, if (U, V ) is an optimal solution then U is a best response for V , and V
is a best response for U .

We now present the pseudocode of Algorithm 11.
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Algorithm 1 Simple deterministic PTAS for the Generalized Binary `0-Rank-k problem

Input: A matrix A ∈ {0, 1}m×n, an integer k, an inner product 〈., .〉, and ε ∈ (0, 1).

Output: Matrices Ũ ∈ {0, 1}m×k, Ṽ ∈ {0, 1}k×n such that ‖A− Ũ · Ṽ ‖0 6 (1 + ε)OPTk.

1. (Guess column set sizes) Let U, V be an optimal solution. Exhaustively guess all sizes |CVy | =: αy for

y ∈ {0, 1}k. There are n2k possibilities.

2. (Guess column multisets) Theorem 2.32.3 implies existence of a family C̃ = (C̃y)y∈{0,1}k such that

‖A − Ũ(C̃, α) · V ‖0 6 (1 + ε)OPTk, where each C̃y is a multiset consisting of at most t indices in

{1, . . . , n}. Exhaustively guess such a family C̃. There are nO(t·2k) possibilities.

3. (Compute Ũ) Now we know A, k, 〈., .〉, |CVy | for all y ∈ {0, 1}k, and C̃, thus we can compute the

matrix Ũ = Ũ(C̃, α), where row Ũi,: is any vector x minimizing the estimated cost Ẽi,x. Since each row

Ũi,: ∈ {0, 1}k can be optimized independently, this takes time 2O(k)mn. If we guessed correctly, we have

‖A− Ũ · V ‖0 6 (1 + ε)OPTk.

4. (Compute Ṽ ) Compute Ṽ as a best response to Ũ . This takes time 2O(k)mn. If we guessed correctly,
by best-response and Step 3, we have

‖A− Ũ · Ṽ ‖0 6 ‖A− Ũ · V ‖0 6 (1 + ε)OPTk.

5. Return the pair (Ũ , Ṽ ) minimizing ‖A− Ũ · Ṽ ‖0 over all exhaustive guesses.

The correctness of Algorithm 11 immediately follows from Theorem 2.32.3. The running time is dominated

by the exhaustive guessing in Step 2, so we obtain time m · npoly(2k/ε).

2.2.4 Proof of the Sampling Theorem 2.32.3

We follow the notation in Section 2.2.22.2.2, in particular V ∈ {0, 1}k×n is an arbitrary matrix and U ∈
{0, 1}m×k is a best response to V . We define Di,x as the difference of the cost of row i w.r.t. a vector x
and the cost of row i w.r.t. the optimal vector Ui,:, i.e.,

Di,x
def
= Ei,x − Ei = ‖Ai,: − xT · V ‖0 − ‖Ai,: − Ui,: · V ‖0 (2.5)

=
∑

y∈{0,1}k
Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉.

Note that a vector x is suboptimal for a row i if and only if Di,x > 0. By a straightforward splitting of
the expectation, we obtain the following.

Claim 2.4. For every V ∈ {0, 1}k×n, we have

EC̃
[
‖A− Ũ · V ‖0

]
= OPTVk +

m∑
i=1

∑
x∈{0,1}k
Di,x>0

Pr
[
Ũi,: = x

]
·Di,x.

Proof. We split ‖A− Ũ · V ‖0 =
∑m
i=1 ‖Ai,: − Ũi,: · V ‖0. This yields

EC̃
[
‖A− Ũ · V ‖0

]
=

m∑
i=1

EC̃
[
‖Ai,: − Ũi,: · V ‖0

]
=

m∑
i=1

∑
x∈{0,1}k

Pr
[
Ũi,: = x

]
· ‖Ai,: − xT · V ‖0.
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By definition of Di,x, we have

EC̃
[
‖A− Ũ · V ‖0

]
=

m∑
i=1

∑
x∈{0,1}k

Pr
[
Ũi,: = x

]
· (‖Ai,: − Ui,: · V ‖0 +Di,x)

=

m∑
i=1

(
‖Ai,: − Ui,: · V ‖0 +

∑
x∈{0,1}k

Pr
[
Ũi,: = x

]
·Di,x

)

= OPTVk +

m∑
i=1

∑
x∈{0,1}k

Pr
[
Ũi,: = x

]
·Di,x

= OPTVk +

m∑
i=1

∑
x∈{0,1}k
Di,x>0

Pr
[
Ũi,: = x

]
·Di,x.

Similarly to Di,x, we define an estimator

D̃i,x
def
= Ẽi,x − Ẽi,Ui,: =

∑
y∈{0,1}k

αy

|C̃y|
·
(
Z̃i,y,6=〈x,y〉 − Z̃i,y,6=〈Ui,:,y〉

)
. (2.6)

Note that Ũi,: is chosen among the vectors x ∈ {0, 1}k minimizing D̃i,x. Hence, our goal is to show that

significantly suboptimal vectors (with Di,x >
ε
3 · Ei) satisfy D̃i,x > 0 with good probability, and thus

these vectors are not picked in Ũ .
To this end, we split the rows i and suboptimal vectors x into:

L0
def
= {(i, x) : 0 < Di,x 6

ε

3
· Ei},

L1
def
= {(i, x) :

ε

3
· Ei < Di,x 6 Ei},

L2
def
= {(i, x) : Di,x > Ei}.

Observe that
∑

(x,i)∈L0
Pr
[
Ũi,: = x

]
·Di,x 6 ε

3 ·OPTVk . By Claim 2.42.4, we can ignore all tuples (i, x) ∈ L0,
since

EC̃
[
‖A− Ũ · V ‖0

]
6 (1 +

ε

3
)OPTVk +

∑
(i,x)∈L1∪L2

Pr
[
Ũi,: = x

]
·Di,x. (2.7)

Hence, our goal is to upper bound the summation
∑

(i,x)∈L1∪L2
Pr
[
Ũi,: = x

]
·Di,x.

We next establish a sufficient condition for Ũi,: 6= x, for any suboptimal vector x. Note that by
definition of Di,x we have

Di,x =
∑

y∈{0,1}k
Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉 =

∑
y∈Ŷi,x

Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉, (2.8)

where Ŷi,x
def
= {y ∈ {0, 1}k : 〈x, y〉 6= 〈Ui,:, y〉}. Similarly, for the estimator we have

D̃i,x =
∑

y∈{0,1}k

αy

|C̃y|
·
(
Z̃i,y,6=〈x,y〉 − Z̃i,y,6=〈Ui,:,y〉

)
=
∑
y∈Ŷi,x

αy

|C̃y|
·
(
Z̃i,y,6=〈x,y〉 − Z̃i,y,6=〈Ui,:,y〉

)
. (2.9)

Let Wi,x be the event that for every y ∈ Yi,x
def
= {y ∈ Ŷi,x : |C̃y| = t} and every c ∈ {0, 1}, we have∣∣∣∣∣Z̃i,y,c − |C̃y||CVy |

· Zi,y,c

∣∣∣∣∣ 6 ∆y, where ∆y
def
=

t ·Di,x

2k+2 · αy
.

We now show that conditioned on the event Wi,x, we have D̃i,x > 0 for any (i, x) ∈ L1 ∪ L2, and thus

Ũi,: 6= x.

Lemma 2.5. For any vector x ∈ {0, 1}k and row i ∈ [m], if event Wi,x occurs then it follows that

D̃i,x > 1
2 ·Di,x − ε

6 · Ei. In particular, if additionally Di,x >
ε
3 · Ei then D̃i,x > 0.
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Proof. Observe that Z̃i,y,6=c ∈ {Z̃i,y,0, Z̃i,y,1, Z̃i,y,0 + Z̃i,y,1} for any i, y, c. Since

E[Z̃i,y,0 + Z̃i,y,1] = |C̃y| = Z̃i,y,0 + Z̃i,y,1,

conditioned on the eventWi,x, for any y ∈ Yi,x, all three random variables Z̃i,y,0, Z̃i,y,1 and Z̃i,y,0 + Z̃i,y,1
differ from their expectation by at most ∆y. Hence, we have∣∣∣∣∣ αy|C̃y| Z̃i,y,6=〈x,y〉 − αy

|CVy |
Zi,y,6=〈x,y〉

∣∣∣∣∣ 6 Di,x

2k+2
.

The same inequality also holds for y ∈ Ŷi,x \ Yi,x, since then Z̃i,y,6=〈x,y〉 = Zi,y,6=〈x,y〉 and |C̃y| = |CVy | (by
definition of the distribution DV,t). In combination with (2.92.9) we obtain

D̃i,x > −Di,x

2
+
∑
y∈Ŷi,x

αy
|CVy |

·
(
Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉

)
. (2.10)

Let αy = (1 + γy)|CVy | with 0 6 γy 6 ε
6 for any y ∈ {0, 1}k. By (2.82.8), and since αy = |CVy | = |C̃y| for

every y ∈ Ŷi,x \ Yi,x (by definition of distribution DV,t), we have∑
y∈Ŷi,x

αy
|CVy |

(
Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉

)
= Di,x +

∑
y∈Yi,x

γy
(
Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉

)
> Di,x −

∑
y∈Yi,x

γyZi,y,6=〈Ui,:,y〉

> Di,x −
ε

6

∑
y∈{0,1}k

Zi,y,6=〈Ui,:,y〉 = Di,x −
ε

6
Ei.

Together with (2.102.10), we have D̃i,x > 1
2Di,x − ε

6Ei.

We next upper bound the probability of picking a suboptimal vector x.

Claim 2.6. For any x ∈ {0, 1}k with Di,x >
ε
3 · Ei, we have

Pr[Ũi,: = x] 6
∑
y∈Yi,x

min
c∈{0,1}

Pr
[
|Z̃i,y,c − E[Z̃i,y,c]| > ∆y

]
.

Proof. For any y ∈ {0, 1}k, we have

Z̃i,y,0 + Z̃i,y,1 = |C̃y| = E[Z̃i,y,0] + E[Z̃i,y,1].

Further, it holds that
|Z̃i,y,0 − E[Z̃i,y,0]| = |Z̃i,y,1 − E[Z̃i,y,1]|,

and thus

Pr
[
|Z̃i,y,0 − E[Z̃i,y,0]| 6 ∆y

]
= Pr

[
|Z̃i,y,1 − E[Z̃i,y,1]| 6 ∆y

]
= Pr

[
|Z̃i,y,0 − E[Z̃i,y,0]| 6 ∆y and |Z̃i,y,1 − E[Z̃i,y,1]| 6 ∆y

]
.

Since Ũi,: = x can only hold if D̃i,x 6 0, the claim follows by Lemma 2.52.5 and a union bound over
y ∈ Yi,x.
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In the following subsections, we bound the summation in (2.72.7) over the sets L1 and L2.

Case 1: Small Difference

We show first that |L1| is small (see Claim 2.72.7). Then, we use a simple bound for Pr[Ũi,: = x] which is
based on Lemma 2.22.2 (see Claim 2.82.8).

Claim 2.7. It holds that ∑
(i,x)∈L1

∑
y∈Yi,x

|CVy | 6 2k+2 ·OPTVk .

Proof. Fix (i, x) ∈ L1 and let y ∈ Yi,x. Note that since 〈x, y〉 6= 〈Ui,:, y〉 we have

{j ∈ CVy : Ai,j 6= 〈x, y〉} ∪ {j ∈ CVy : Ai,j 6= 〈Ui,:, y〉} = CVy .

Note that this union is not necessarily disjoint, e.g., if 〈x, y〉 6∈ {0, 1}. Since Ei,x = Di,x + Ei (by (2.52.5))
and Di,x 6 Ei (by definition of L1), we have∑

y∈Yi,x

|CVy | 6
∑
y∈Yi,x

Zi,y,6=〈x,y〉 + Zi,y,6=〈Ui,:,y〉 6 Ei,x + Ei 6 3Ei. (2.11)

Fixing x and summing over all i with (i, x) ∈ L1, the term Ei sums to at most OPTVk . Also summing
over all x ∈ {0, 1}k yields another factor 2k. Therefore, the claim follows.

Claim 2.8. It holds that ∑
(i,x)∈L1

Pr[Ũi,: = x] ·Di,x 6 ε
3 ·OPTVk .

Proof. Note that for any row i, vector y ∈ Yi,x, and c ∈ {0, 1}, the random variable Z̃i,y,c is a sum

of independent Bernoulli random variables, since the t samples from CVy forming C̃y are independent,

and each sample contributes either 0 or 1 to Z̃i,y,c. Hence, our instantiations of Chebyshev’s inequality,
Lemmas 2.12.1 and 2.22.2, are applicable. We use Lemma 2.22.2 to bound

Pr
[
|Z̃i,y,c − E[Z̃i,y,c]| > ∆y

]
6

√
t

∆y
.

Since ∆y = t ·Di,x/(2
k+2 · αy) and αy 6 (1 + ε

6 )|CVy | < 2|CVy |, we have

Pr
[
|Z̃i,y,c − E[Z̃i,y,c]| > ∆y

]
6

2k+3|CVy |√
t ·Di,x

,

and thus by Claim 2.62.6, we obtain

Pr[Ũi,: = x] 6
2k+3

√
t ·Di,x

∑
y∈Yi,x

|CVy |.

Claim 2.72.7 now yields

∑
(i,x)∈L1

Pr[Ũi,: = x] ·Di,x 6
2k+3

√
t

∑
(i,x)∈L1

∑
y∈Yi,x

|CVy | 6
22k+5

√
t

OPTVk .

Since we chose t > 24k+14/ε2, see Theorem 2.32.3, we obtain the upper bound ε
3OPTVk .
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Case 2: Large Difference

We use here the stronger instantiation of Chebyshev’s inequality, Lemma 2.12.1, and charge µ = E[Z̃i,y,c]

against OPTVk .

Claim 2.9. It holds that ∑
(i,x)∈L2

Pr[Ũi,: = x] ·Di,x 6
ε

3
·OPTVk .

Proof. Fix (i, x) ∈ L2 and let y ∈ Yi,x. As in the proof of Claim 2.82.8, we see that our instantiation of

Chebyshev’s inequality, Lemma 2.12.1, is applicable to Z̃i,y,c for any c ∈ {0, 1}. We obtain

Pr
[
|Z̃i,y,c − E[Z̃i,y,c]| > ∆y

]
6

E[Z̃i,y,c]

∆2
y

.

Note that E[Z̃i,y,c] = Zi,y,c · t/|CVy |, since |C̃y| = t. Using minc∈{0,1} Zi,y,c 6 Zi,y,6=〈Ui,:,y〉, we have

min
c∈{0,1}

Pr
[
|Z̃i,y,c − E[Z̃i,y,c]| > ∆y

]
6

t

|CVy |∆2
y

· Zi,y,6=〈Ui,:,y〉.

Since ∆y = t ·Di,x/(2
k+2 · αy) and αy 6 (1 + ε/6)|CVy | < 2|CVy |, we have

min
c∈{0,1}

Pr
[
|Z̃i,y,c − E[Z̃i,y,c]| > ∆y

]
6

22k+6 · |CVy |
t · (Di,x)2

· Zi,y,6=〈Ui,:,y〉.

Summing over all y ∈ Yi,x, Claim 2.62.6 yields

Pr[Ũi,: = x] 6
∑
y∈Yi,x

22k+6 · |CVy |
t · (Di,x)2

· Zi,y,6=〈Ui,:,y〉. (2.12)

We again use inequality (2.112.11), i.e.,
∑
y∈Yi,x |C

V
y | 6 Ei,x + Ei. Since Ei,x = Di,x + Ei (by (2.52.5)) and

Ei < Di,x (by definition of L2), we have |CVy | 6 3Di,x for any y ∈ Yi,x. Together with (2.122.12), and then
using the definition of Ei, we have

Pr[Ũi,: = x] ·Di,x 6
22k+8

t

∑
y∈Yi,x

Zi,y,6=〈Ui,:,y〉 6
22k+8

t
Ei,

Fixing x and summing over all i with (i, x) ∈ L2, the term Ei sums to at most OPTVk . Also summing
over all x ∈ {0, 1}k yields another factor 2k. Thus, it follows that

∑
(i,x)∈L2

Pr[Ũi,: = x] ·Di,x 6
23k+8

t
OPTVk .

Since we chose t > 23k+10/ε, see Theorem 2.32.3, we obtain the upper bound ε
3 ·OPTVk .

2.2.5 Finishing the Proof

Taken together, the above claims prove Theorem 2.32.3.

Proof of Theorem 2.32.3. By Claim 2.42.4, splitting into L0, L1 and L2, and using Claims 2.82.8 and 2.92.9, it follows
for any ε ∈ (0, 1) and

t = 24k+12/ε2 (2.13)

that the expected approximate solution satisfies

EṼ
[
‖A− Ũ · V ‖0

]
6 (1 +

ε

3
)OPTVk +

∑
(i,x)∈L1

Pr
[
Ũi,: = x

]
·Di,x +

∑
(i,x)∈L2

Pr
[
Ũi,: = x

]
·Di,x

6 (1 + ε)OPTVk .
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2.3 Efficient Sampling Algorithm

The conceptually simple PTAS in Section 2.2.32.2.3 has two running time bottlenecks, due to the exhaustive
enumeration in Step 1 and Step 2. Namely, Step 1 guesses exactly the sizes |CVy | for each y ∈ {0, 1}k,

and there are nO(2k) possibilities; and Step 2 guesses among all columns of matrix A the multiset family

C̃, guaranteed to exist by Theorem 2.32.3, and there are nO(t·2k) possibilities.
Since Theorem 2.32.3 needs only approximate cluster sizes, it suffices in Step 1 to guess numbers αy

with |CVy | 6 αy 6 (1 + ε
6 )|CVy | if |CVy | > t, and αy = |CVy | otherwise, where t = 24k+12/ε2. Hence, the

runtime overhead for Step 1 can be easily improved to (t+ ε−1 log n)2k .
To reduce the exhaustive enumeration in Step 2, we design an efficient sampling procedure, see

Algorithm 22, that uses ideas from clustering algorithms pioneered by Kumar et al. [KSS04KSS04] and refined
in [KSS05KSS05, ABS10ABS10]. Our algorithm reduces the total exhaustive enumeration in Step 2 and the guessing

overhead for the approximate cluster sizes in Step 1 to (2k/ε)2O(k) · (log n)(log logn)0.1 possibilities.
This section is structured as follows. We first replace an optimal solution (U, V ) by a “well-clusterable”

solution (U,W ), which will help in our correctness proof. In Subsection 2.3.22.3.2 we present pseudocode for
our sampling algorithm. We then prove its correctness in Subsection 2.3.32.3.3 and analyze its running time in
Subsection 2.3.42.3.4. Finally, we show how to use the sampling algorithm designed in Subsection 2.3.22.3.2 together
with the ideas of the simple PTAS from Subsection 2.2.32.2.3 to prove Theorem 1.11.1, see Subsection 2.3.52.3.5.

2.3.1 Existence of a (U, V, ε)-Clusterable Solution

For a matrix B ∈ {0, 1}m×n we denote by ColSupp(B) the set of unique columns of B. Note that if
the columns of U are linearly independent then U · ColSupp(V ) denotes the set of distinct columns of
U · V . In the clustering formulation of the Generalized Binary `0-Rank-k problem, as discussed in the
introduction (2.12.1), the set U · ColSupp(V ) corresponds to the set of cluster centers.

Given matrices U, V , we will first replace V by a related matrix W in a way that makes all centers of
U ·ColSupp(W ) sufficiently different without increasing the cost too much, as formalized in the following.

Lemma 2.10. For any U ∈ {0, 1}m×k, V ∈ {0, 1}k×n and ε ∈ (0, 1), there exists a matrix W ∈ {0, 1}k×n
such that ‖A− U ·W‖0 6 (1 + ε)‖A− U · V ‖0 and for any distinct y, z ∈ ColSupp(W ) we have

(i) ‖U · y − U · z‖0 > ε · 2−k · ‖A− U · V ‖0/min{|CWy |, |CWz |}, and

(ii) ‖A:,j − U · y‖0 6 ‖A:,j − U · z‖0 for every j ∈ CWy .
We say that such a matrix W is (U, V, ε)-clusterable.

Proof. The proof is by construction of W . We initialize W
def
= V and then iteratively resolve violations

of (i) and (ii). In each step, resulting in a matrix W ′, we ensure that ColSupp(W ′) ⊆ ColSupp(W ). We
call this support-monotonicity.

We can resolve all violations of (ii) at once by iterating over all columns j ∈ [n] and replacing W:,j

by the vector z ∈ ColSupp(W ) minimizing ‖A:,j − U · z‖0. This does not increase the cost ‖A− U ·W‖0
and results in a matrix W ′ without any violations of (ii).

So assume that there is a violation of (i). That is, for distinct y, z ∈ ColSupp(W ), where we can
assume without loss of generality that |CWy | 6 |CWz |, we have ‖U ·y−U ·z‖0 6 ε ·2−k · ‖A−U ·V ‖0/|CWy |.
We change the matrix W by replacing for every j ∈ CWy the column W:,j = y by z. Call the resulting
matrix W ′. Note that the cost of any replaced column j changes to

‖A:,j − U ·W ′:,j‖0 = ‖A:,j − U · z‖0 6 ‖A:,j − U · y‖0 + ‖U · y − U · z‖0
6 ‖A:,j − U ·W:,j‖0 + ε · 2−k · ‖A− U · V ‖0/|CWy |.

Since the number of replaced columns is |CWy |, the overall cost increase is at most ε · 2−k · ‖A− U · V ‖0.
Note that after this step the size of ColSupp(W ) is reduced by 1, since we removed any occurrence of
column y. By support-monotonicity, the number of such steps is bounded by 2k. Since resolving violations
of (ii) does not increase the cost, the final cost is bounded by (1 + ε)‖A− U · V ‖0.

After at most 2k times resolving a violation of (i) and then all violations of (ii), we end up with a
matrix W without violations and the claimed cost bound.
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2.3.2 The Algorithm Sample

Given A ∈ {0, 1}m×n, k ∈ N, ε ∈ (0, 1), and t ∈ N, fix any optimal solution U, V , i.e., ‖A−U ·V ‖0 = OPTk.
Our proof will use the additional structure provided by well-clusterable solutions. Therefore, fix any
(U, V, ε)-clusterable matrix W as in Lemma 2.102.10. Since ‖A − U ·W‖0 6 (1 + ε)‖A − U · V ‖0, we can
restrict to matrix W . Specifically, we fix the optimal partitioning CW of [n] for the purpose of the analysis
and for the guessing steps of the algorithm. Our goal is to sample from the distribution DW,t.

Pseudocode of our sampling algorithm SampleA,k,ε,t(M,N , R̃, C̃, α) is given below. The arguments
of this procedure are as follows. Matrix M is the current submatrix of A (initialized as the full matrix
A). Set N ⊆ {0, 1}k is the set of clusters that we did not yet sample from (initialized to {0, 1}k). The

sequence R̃ stores “representatives” of the clusters that we already sampled from (initialized to undefined

entries (⊥, . . . ,⊥)). The sequence C̃ contains our samples, so in the end we want C̃ to be drawn according

to DW,t (C̃ is initialized such that C̃y = ∅ for all y ∈ {0, 1}k). Finally, α contains guesses for the sizes of
the clusters that we already sampled from, so in the end we want it to be a sequence of ε

6 -approximate
cluster sizes (α is initialized such that αy = 0 for all y ∈ {0, 1}k). This algorithm is closely related to
algorithm “Irred-k-means” by Kumar et al. [KSS04KSS04], see the introduction for a discussion.

In this algorithm, at the base case we call EstimateBestResponseA,k(C̃, α), which computes matrix

Ũ = Ũ(C̃, α) and a best response Ṽ to Ũ . Apart from the base case, there are three phases of algorithm
Sample. In the sampling phase, we first guess some y ∈ N and an approximation αy of |CWy |. Then we

sample min{t, αy} columns from M to form a multiset C̃y, and we sample one column from M to form

R̃y. We make a recursive call with y removed from N and updated R̃, C̃, α by the values R̃y, C̃y, αy. As
an intermediate solution, we let U (1), V (1) be the best solution returned by the recursive calls over all
exhaustive guesses. In the pruning phase, we delete the nM/2 columns of M that are closest to R̃, and
we make a recursive call with the resulting matrix M ′, not changing the remaining arguments. Denote
the returned solution by U (2), V (2). Finally, in the decision phase we return the better solution between
U (1), V (1) and U (2), V (2).

Algorithm 2 Efficient Sampling

SampleA,k,ε,t(M, N , R̃, C̃, α)
let nM be the number of columns of M

set ν
def
= (ε/2k+4)2k+2−|N|

1. If N = ∅ or nM = 0: Return (Ũ , Ṽ ) = EstimateBestResponseA,k(C̃, α)

* Sampling phase *
2. Guess y ∈ N
3. Guess whether |CWy | < t:

4. If |CWy | < t: Guess αy
def
= |CWy | exactly, i.e. αy ∈ {0, 1, . . . , t− 1}

5. Otherwise: Guess ν · nM 6 αy 6 nM such that |CWy | 6 αy 6 (1 + ε
6 )|CWy |

6. If αy = 0: (U (y,αy), V (y,αy)) = EstimateBestResponseA,k(C̃, α)
7. Else
8. Sample u.a.r. min{t, αy} columns from M ; let C̃y be the resulting multiset 44

9. Sample u.a.r. one column from M ; call it R̃y
10. (U (y,αy), V (y,αy)) = SampleA,k,ε,t(M, N\{y}, R̃ ∪ {R̃y}, C̃ ∪ {C̃y}, α ∪ {αy})
11. Let (U (1), V (1)) be the pair minimizing ‖A− U (y,αy) · V (y,αy)‖0 over all guesses y and αy

* Pruning phase *
12. Let M ′ be matrix M after the deleting nM/2 closest columns to R̃,

i.e., the nM/2 columns M:,j with smallest values miny∈{0,1}k\N ‖M:,j − R̃y‖0
13. (U (2), V (2)) = SampleA,k,ε,t(M

′, N , R̃, C̃, α)

* Decision *
14. Return (U (`), V (`)) with the minimal value ‖A− U (`) · V (`)‖0 over ` ∈ {1, 2}.

4 Given a submatrix M of A, and t columns sampled u.a.r. from M , we denote by C̃y the resulting multiset of column
indices with respect to the original matrix A.
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Algorithm 3 Estimating Best Response

EstimateBestResponseA,k(C̃, α)

1. (Compute Ũ) Compute a matrix Ũ = Ũ(C̃, α), where row Ũi,: is any vector x minimizing the estimated

cost Ẽi,x. Note that each row Ũi,: ∈ {0, 1}k can be optimized independently.

2. (Compute Ṽ ) Compute Ṽ as a best response to Ũ .

3. Return (Ũ , Ṽ )

2.3.3 Correctness of Algorithm Sample

With notation as above, we now prove correctness of algorithm Sample.

Theorem 2.11. Algorithm SampleA,k,ε,t generates a recursion tree which with probability at least

( ε2t )
2O(k)·t has a leaf calling EstimateBestResponseA,k(C̃, α) such that

(i) α is a sequence of ε
6 -approximate cluster sizes (w.r.t. the fixed matrix W ), and

(ii) C̃ is drawn according to distribution DW,t.

The rest of this section is devoted to proving Theorem 2.112.11. Similarly as in the algorithm, we define
parameters

γ
def
= ε/2k+4 and νi

def
= γ2k+2−i.

Sort {0, 1}k = {y1, . . . , y2k} such that |CWy1 | 6 . . . 6 |CWy
2k
|. We construct the leaf guaranteed by the

theorem inductively. In each depth d = 0, 1, . . . we focus on one recursive call, see Algorithm 22,

SampleA,k,ε,t(M
(d), N (d), R̃(d), C̃(d), α(d)).

We consider the partitioning P (d) def
= {P (d)

y }y∈{0,1}k induced by the partitioning CW on M (d), i.e., P
(d)
y

is the set CWy restricted to the columns of A that appear in the submatrix M (d). We claim that we
can find a root-to-leaf path such that the following inductive invariants hold with probability at least

(ν0/t)
(2k−|N (d)|)(t+1):

I1. P
(d)
y = CWy for all y ∈ N (d), i.e., no column of an unsampled cluster has been removed,

I2. N (d) = {y1, . . . , y|N (d)|}, i.e., the remaining clusters are the |N (d)| smallest clusters,

I3. For any y ∈ {0, 1}k \ N (d) the value α
(d)
y is an ε

6 -approximate cluster size, i.e., if |CWy | < t we have

α
(d)
y = |CWy |, and otherwise |CWy | 6 α

(d)
y 6 (1 + ε

6 )|CWy |,

I4. For any y ∈ {0, 1}k \ N (d) the multiset C̃
(d)
y is sampled according to distribution DW,t, i.e., if

|CWy | < t then C̃
(d)
y = CWy and otherwise C̃

(d)
y consists of t uniformly random samples from CWy

with replacement, and

I5. For any y ∈ {0, 1}k \ N (d) the vector R̃
(d)
y satisfies ‖R̃(d)

y − U · y‖0 6 2‖A− U ·W‖0/|CWy |.

For shorthand, we let n(d) def
= nM(d) and ν(d) def

= ν|N (d)|.

Base Case: Note that the recursion may stop in Step 1 with N (d) = ∅ or n(d) = 0, or in Step 6 with

α
(d)
y = 0 for some guessed y ∈ N . Since we only want to show existence of a leaf of the recursion tree, in

the latter case we can assume that we guessed y = y|N (d)| and α
(d)
y = |CWy |, and thus we have |CWy | = 0.

Hence, in all three cases we have |CWy | = 0 for all y ∈ N (d), by invariant I2 and sortedness of y1, . . . , y2k .

Since we initialize C̃
(0)
y = ∅ and α

(0)
y = 0, we are done for all y ∈ N (d). By invariants I3 and I4, we are

also done for all y ∈ {0, 1}k \ N (d). The total success probability is at least

(ν0

t

)2k(t+1)

=
( ε

2k+4t

)2k(2k+2)(t+1)

=
( ε

2t

)2O(k)·t
.

The proof of the inductive step proceeds by case distinction.
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Case 1 (Sampling): Suppose |P (d)
y | > ν(d) · n(d) for some y ∈ N (d). Since P

(d)
y = CWy (by invariant

I1) and sortedness, we have |CWy | > ν(d)n(d) for y
def
= y|N (d)|. We may assume that we guess y = y|N (d)| in

Step 2, since we only want to prove existence of a leaf of the recursion tree. Note that there is a number
ν(d)n(d) 6 αy 6 n(d) with |CWy | 6 αy 6 (1 + ε

6 )|CWy | (in particular αy = |CWy | would work), so we can

guess such a number in Step 5. Together with Steps 3 and 4, we can assume that α(d+1) satisfies invariant
I3.

In Step 8 we sample a multiset C̃y of min{t, αy} columns from M . If |CWy | > t, we condition on

the event that all these columns lie in CWy . Then C̃y forms a uniform sample from CWy of size t. Since

|CWy | > ν(d)n(d), this event has probability at least (ν(d))t. Otherwise, if |CWy | = αy < t, we condition on

the event that all αy samples lie in CWy and are distinct. Then C̃y = CWy . The probability of this event
is at least (

1

n(d)

)αy
>

(
ν(d)

αy

)αy
>

(
ν(d)

t

)t
.

In total, C̃(d+1) satisfies invariant I4 with probability at least (ν(d)/t)t.

In Step 9 we sample one column R̃y uniformly at random from M . With probability at least ν(d), R̃y
belongs to CWy , and conditioned on this event Ey we have

ER̃y
[
‖R̃y − U · y‖0

∣∣∣ Ey] =
1

|CWy |
∑
j∈CWy

‖A:,j − U · y‖0 6
‖A− U ·W‖0
|CWy |

.

By Markov’s inequality, with probability at least ν(d)/2 we have ‖R̃y − U · y‖0 6 2‖A− U ·W‖0/|CWy |,
and thus invariant I5 holds for R̃(d+1).

Finally, since we did not change M (d), invariant I1 is maintained. We conditioned on events that
hold with combined probability at least (ν(d)/t)t · ν(d)/2 > (ν0/t)

t+1. Since we decrement |N (d)| by
removing y = y|N (d)| from N (d), we maintain invariant I2, and we obtain total probability at least

(ν0/t)
(2k−|N (d+1)|)(t+1).

Case 2 (Pruning): Suppose |P (d)
y | < ν(d) · n(d) for every y ∈ N (d). (Note that cases 1 and 2 are

complete.) In this case, we remove the n(d)/2 columns of M (d) that are closest to R̃(d), resulting in a

matrix M (d+1), and then start a recursive call on M (d+1). Since we do not change N (d), R̃(d), C̃(d), and
α(d), invariants I2-I5 are maintained.

Invariant I1 is much more difficult to verify, as we need to check that the n(d)/2 deleted columns do
not contain any column from an unsampled cluster. We first show that some column of a cluster we
already sampled from survives to depth d + 1 and has small distance to R̃(d) (see Claim 2.122.12). Then

we show that every column of a cluster that we did not yet sample from has large distance to R̃(d) (see

Claim 2.142.14). Since we delete the n(d)/2 closest columns to R̃(d), it follows that every column of a cluster
that we did not yet sample from survives.

Claim 2.12. There exists x ∈ {0, 1}k \ N (d) and column j ∈ P (d+1)
x with

‖A:,j − R̃(d)
x ‖0 6 2k+4‖A− U ·W‖0/n(d).

Proof. By Case 2, we have |P (d)
y | < ν(d) · n(d) for every y ∈ N (d), and since ν(d) 6 ν2k 6 2−k−2 it follows

that ∑
y∈N (d)

|P (d)
y | < 2kν(d)n(d) 6 n(d)/4.

Since |P (d)
y | > |P (d+1)

y | and
∑
y∈{0,1}k |P

(d+1)
y | = n(d)/2, we obtain

∑
y∈{0,1}k\N (d) |P (d+1)

y | > n(d)/4.

Hence, there is x ∈ {0, 1}k \ N (d) such that

|P (d+1)
x | > 2−k−2n(d). (2.14)
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By the minimum-arithmetic-mean inequality, there is j ∈ P (d+1)
x such that

‖A:,j − R̃(d)
x ‖0 6

1

|P (d+1)
x |

·
∑

j′∈P (d+1)
x

‖A:,j′ − R̃(d)
x ‖0

6 ‖R̃(d)
x − U · x‖0 +

1

|P (d+1)
x |

·
∑

j′∈P (d+1)
x

‖A:,j′ − U · x‖0,

where the last step uses the triangle inequality. For the first summand we use invariant I5, and for the

second we use that P
(d+1)
x is by definition part of an induced partitioning of CW on a smaller matrix,

and thus the summation is bounded by ‖A− UW‖0. This yields

‖A:,j − R̃(d)
x ‖0 6

(
2

|CWx |
+

1

|P (d+1)
x |

)
· ‖A− U ·W‖0.

By P
(d+1)
x ⊆ CWx and by (2.142.14), we obtain the claimed bound.

Claim 2.13. For any y ∈ {0, 1}k \ N (d) we have |CWy | > ν(d)n(d)/γ.

Proof. Since y 6∈ N , we sampled from this cluster in some depth d′ < d. In the call corresponding to d′,
we had N (d′) ⊇ N (d) ∪ {y} and thus |N (d′)| > |N (d)| + 1, and we had n(d′) > n(d). Since we sampled
from CWy in depth d′, Case 1 was applicable, and thus

|CWy |
(I1)
= |P (d′)

y | > ν(d′) · n(d′) = ν|N (d′)| · n
(d′)

> ν|Nd|+1 · n(d) = ν|Nd| · n(d)/γ = ν(d) · n(d)/γ.

Claim 2.14. For any y ∈ {0, 1}k \ N (d), z ∈ N (d), and j ∈ P (d)
z we have

‖A:,j − R̃(d)
y ‖0 > 2k+4‖A− U ·W‖0/n(d).

Proof. By triangle inequality, we have ‖U ·y−U ·z‖0 6 ‖A:,j−U ·y‖0+‖A:,j−U ·z‖0. Since j ∈ P (d)
z = CWz

and by property (ii) of (U, V, ε)-clustered (see Lemma 2.102.10), the first summand is at least as large as the
second, and we obtain

‖U · y − U · z‖0 6 2‖A:,j − U · y‖0.
We use this and the triangle inequality to obtain

‖A:,j − R̃(d)
y ‖0 > ‖A:,j − U · y‖0 − ‖R̃(d)

y − U · y‖0

>
1

2
‖U · y − U · z‖0 − ‖R̃(d)

y − U · y‖0.

For the first summand we use property (i) of (U, V, ε)-clustered (see Lemma 2.102.10), for the second we use
invariant I5. This yields

‖A:,j − R̃(d)
y ‖0 >

ε

2k+1
· ‖A− U · V ‖0

|CWz |
− 2‖A− U ·W‖0

|CWy |
.

Since y ∈ {0, 1}k \ N (d), Claim 2.132.13 yields |CWy | > ν(d)n(d)/γ. Since z ∈ N (d), by invariant I1, and since

we are in Case 2, we have |CWz | = |P
(d)
z | < ν(d) · n(d). Moreover, by the properties of (U, V, ε)-clustered

(see Lemma 2.102.10), we have ‖A− UW‖0 6 (1 + ε)‖A− U · V ‖0 and thus ‖A− U · V ‖0 > 1
2‖A− U ·W‖0.

Together, this yields

‖A:,j − R̃(d)
y ‖0 >

( ε

2k+2
− 2γ

)
· ‖A− U ·W‖0

ν(d)n(d)

=
ε

2k+3ν(d)
· ‖A− U ·W‖0

n(d)

> 2k+4 · ‖A− U ·W‖0
n(d)

,

since γ = ε/2k+4 and ν(d) 6 ν2k = γ2 6 ε/22k+7.

Together, Claims 2.122.12 and 2.142.14 prove that no column j ∈ P (d)
y with y ∈ N (d) is removed. Indeed,

we remove the columns with smallest distance to R̃(d), some column in distance 2k+4‖A − UW‖0/n(d)

survives, and any column j ∈ P (d)
y with y ∈ N has larger distance to R̃(d). It follows that invariant I1 is

maintained, completing our proof of correctness.

25



Chapter 2. A PTAS For Generalized Binary `0-Rank-k

2.3.4 Running Time Analysis of Algorithm Sample

We now analyze the running time of Algorithm 33.

Lemma 2.15. Algorithm EstimateBestResponse runs in time 2O(k)mn.

Proof. Note that if C̃ is drawn according to distribution DW,t, then its total size
∑
y∈{0,1}k |C̃y| is at

most n. Hence, we can ignore all calls violating this inequality. We can thus evaluate the estimated cost
Ẽi,x in time 2O(k)n. Optimizing over all x ∈ {0, 1}k costs another factor 2k, and iterating over all rows i
adds a factor m. Thus, Step 1 runs in time 2O(k)mn. Further, Step 2 finds a best response matrix, which
can be computed in the same running time.

We proceed by analyzing the time complexity of Algorithm 22.

Lemma 2.16. For any t = poly(2k/ε), Algorithm SampleA,k,ε,t runs in time (2/ε)2O(k) · mn1+o(1),

where o(1) hides a factor (log log n)
1.1
/ log n.

Proof. Consider any recursive call SampleA,k,ε,t(M, N , R̃, C̃, α). We express its running time as T (a, b)

where a
def
= |N | and b

def
= log(nM ). For notational convenience, we let log(0) =: −1 and assume that nM

is a power of 2.
If we make a call to algorithm EstimateBestResponse then this takes time 2O(k) · mn by the

preceding lemma. Note that here we indeed have the size n of the original matrix and not the size nM of
the current submatrix, since we need to determine the cost with respect to the original matrix.

In the sampling phase, in Step 2 we guess y, with |N | 6 2k possibilities. Moreover, in Steps 3-5 we
guess either αy ∈ {0, 1, . . . , t − 1} or ν|N | · nM 6 αy 6 nM such that |CWy | 6 αy 6 (1 + ε

6 )|CWy |. Note

that there are O(log(1/ν|N |)/ log(1 + ε/6)) = poly(2k/ε) possibilities for the latter, and thus poly(2k/ε)
possibilities in total. For each such guess we make one recursive call with a decremented a and we evaluate
the cost of the returned solution in time 2O(k) ·mn.

In the pruning phase, we delete the nM/2 columns that are closest to R̃, which can be performed
in time 2O(k) · m · nM (using median-finding in linear time). We then make one recursive call with a
decremented b.

Together, we obtain the recursion

T (a, b) 6 poly(2k/ε)mn+ poly(2k/ε) · T (a− 1, b) + T (a, b− 1),

with base cases T (0, b) = T (a,−1) = 2O(k)mn. The goal is to upper bound T (2k, log n).
Let Y = poly(2k/ε) and X = Y ·mn such that

T (a, b) 6 X + Y · T (a− 1, b) + T (a, b− 1),

and T (0, b), T (a,−1) 6 X. We prove by induction that T (a, b) 6 X · (2Y (b+ 2))a. This works in the base
cases where a = 0 or b = −1. Inductively, for a > 0 and b > 0 we bound 55

T (a, b) 6 X + Y ·X · (2Y (b+ 2))a−1 +X · (2Y (b+ 1))a

= X · (2Y (b+ 2))a ·
(

1

(2Y (b+ 2))a
+

1

2(b+ 2)
+

(
b+ 1

b+ 2

)a)
6 X · (2Y (b+ 2))a ·

(
1

2(b+ 2)
+

1

2(b+ 2)
+
b+ 1

b+ 2

)
= X · (2Y (b+ 2))a. (2.15)

Let C be a constant to be determined soon. Using (2.152.15), the total running time is bounded by

T (2k, log n) 6 X · (2Y (log(n) + 2))2k 6 (2/ε)2(C+1)·k
·mn · log2k n 6 (2/ε)2(C+1)·k

·mn1+o(1),

where the last inequality follows by noting that log2k n > (2/ε)2(C+1)·k
iff k < log

(
log logn
log(2/ε)

)1/C

and in

this case

(log n)
2k 6 (log n)(

log logn
log(2/ε) )

1/C

6 no(1),

where o(1) hides a factor (log log n)
1+1/C

/ log n. The statement follows for any C > 10.

5 Using similar arguments, for any α ∈ [0, 1] the recurrence T (a, b) 6 (1 + α)b ·X + Y · T (a− 1, b) + T (a, b− 1) is upper

bounded by X · (2Y )a ·
(
b1−α + 2

)a · (1 + α)b. In particular, this implies that T (a, b) 6 X · (2Y )a ·min
{

(b+ 2)a , 2a+b
}

and thus T (2k, logn) 6 (2/ε)2
O(k) ·mn ·min

{
(logn)2

k
, n
}

.
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2.3.5 The Complete PTAS: Correctness and Efficiency

Finally, we use Algorithm Sample to obtain an efficient PTAS for the Generalized Binary `0-Rank-k
problem. Given A, k and ε, we call SampleA,k,ε/4,t with

t = t(k, ε/4)
def
= 24k+16/ε2.

(This means that we replace all occurrences of ε by ε/4, in particular we also assume that W is (U, V, ε4 )-
clusterable.) By Theorem 2.112.11, with probability at least

( ε
2t

)2O(k)·t
=
(ε

2

)2O(k)/ε2

at least one leaf of the recursion tree calls EstimateBestResponseA,k(C̃, α) with proper C̃ and α such
that the Sampling Theorem 2.32.3 is applicable. By choice of t = t(k, ε4 ), this yields

E
[
‖A− Ũ(C̃, α) ·W‖0

]
6
(

1 +
ε

4

)
OPTWk 6

(
1 +

ε

4

)2

OPTk,

where we used that W is (U, V, ε4 )-clusterable in the second step (see Lemma 2.102.10). The Algorithm

EstimateBestResponse computes a matrix Ũ = Ũ(C̃, α) and its best response matrix Ṽ . This yields

E
[
‖A− Ũ · Ṽ ‖0

]
6 E

[
‖A− Ũ ·W‖0

]
6
(

1 +
ε

4

)2

OPTk.

By Markov’s inequality, with probability at least 1− 1/(1 + ε/4) > ε
5 we have

‖A− Ũ · Ṽ ‖0 6
(

1 +
ε

4

)
· E
[
‖A− Ũ · Ṽ ‖0

]
6
(

1 +
ε

4

)3

OPTk 6 (1 + ε)OPTk.

Hence, with probability at least p = (ε/2)2O(k)/ε2 at least one solution Ũ , Ṽ generated by our algorithm
is a (1 + ε)-approximation. Since we return the best of the generated solutions, we obtain a PTAS, but
its success probability p is very low.

The success probability can be boosted to a constant by running O(1/p) = (2/ε)2O(k)/ε2 independent

trials of Algorithm Sample. By Lemma 2.162.16, each call runs in time (2/ε)2O(k) · mn1+o(1), where o(1)

hides a factor (log log n)
1.1
/ log n, yielding a total running time of (2/ε)2O(k)/ε2 ·mn1+o(1). This finishes

the proof of Theorem 1.11.1. The success probability can be further amplified to 1 − δ for any δ > 0, by
running O(log(1/δ)) independent trials of the preceding algorithm.

2.4 Faster Binary `0-Rank-1

In this section, we consider the Binary `0-Rank-1 problem with standard inner product. Given a binary
matrix A ∈ {0, 1}m×n and an error ε ∈ (0, 1/2), our goal is to find binary vectors ũ ∈ {0, 1}m, ṽ ∈ {0, 1}n
such that ‖A− ũ · ṽT ‖0 6 (1 + ε)OPT, where the optimal value is defined by

OPT = min
u∈{0,1}m, v∈{0,1}n

‖A− u · vT ‖0.

We now give a faster PTAS for the Binary `0-Rank-1 problem, which improves upon Theorem 1.11.1.

Theorem 1.31.3 (from page 55). (PTAS for the Binary `0-Rank-1 problem with standard inner product) For

any ε ∈ (0, 1/2) there is an algorithm that runs in time (1/ε)O(1/ε2) ·(‖A‖0+m+n)·log3(mn), and outputs
vectors ũ ∈ {0, 1}m, ṽ ∈ {0, 1}n such that w.h.p. 66 ‖A−ũ · ṽT ‖0 6 (1+ε) minu∈{0,1}m,v∈{0,1}n‖A−u ·vT ‖0.

The remainder of this section is devoted to proving Theorem 1.31.3.

6 An event happens with high probability (w.h.p.) if it has probability at least 1− 1/nc for some c > 0.

27



Chapter 2. A PTAS For Generalized Binary `0-Rank-k

Structural Properties Let R1 = {i ∈ [m] : ui = 1} and C1 = {j ∈ [n] : vj = 1}. Then, estimated
cost simplifies as follows: for any row i and binary scalar x ∈ {0, 1}, we set

E′i,x
def
= |{j ∈ C̃1 : Ai,j 6= x}|.

Lemma 2.17. For any row i and x, x′ ∈ {0, 1} we have Ẽi,x < Ẽi,x′ if and only if E′i,x < E′i,x′ .

Proof. By definition of Ẽi,x and by k = 1, we have Ẽi,x < Ẽi,x′ if and only if

∑
y∈{0,1}

|Cy|
|C̃y|

· |{j ∈ C̃y : Ai,j 6= 〈x, y〉}| <
∑

y∈{0,1}

|Cy|
|C̃y|

· |{j ∈ C̃y : Ai,j 6= 〈x′, y〉}|.

For y = 0 we have 〈x, y〉 = 0 = 〈x′, y〉, and thus the contribution of the corresponding summand to both
sides is equal. Hence, we have, equivalently,

|C1|
|C̃1|

· |{j ∈ C̃1 : Ai,j 6= x}| < |C1|
|C̃1|

· |{j ∈ C̃1 : Ai,j 6= x′}|.

Removing the common factor |C1|/|C̃1|, we equivalently arrive at E′i,x < E′i,x′ . This also holds in the

special case |C̃1| = 0, since then Ẽi,x = Ẽi,x′ and E′i,x = E′i,x′ = 0.

Sampling Theorem Recall that we choose the matrix Ũ by picking for each row i a vector Ũi,: = x

minimizing Ẽi,x. The above lemma shows that we can equivalently minimize E′i,x. Let us formulate the
resulting sampling theorem.

Corollary 2.18. For any ε ∈ (0, 1/2) set t
def
= t(1, ε/2) = 216/ε2. If |C1| < t then set C̃1

def
= C1, otherwise

sample t elements from C1 with replacement and let the resulting multiset be C̃1. Construct ũ ∈ {0, 1}m
by picking ũi = x ∈ {0, 1} minimizing E′i,x = |{j ∈ C̃1 : Ai,j 6= x}|. Then we have

EC̃1

[
‖A− ũ · vT ‖0

]
6
(

1 +
ε

2

)
OPT.

Proof. We obtain this construction of ũ as follows: Specialize the construction in Section 2.2.22.2.2 to k = 1,
replace Ẽi,x by E′i,x, which does not change the result by Lemma 2.172.17, and finally remove redundant

steps like the sampling of C̃0, since it is no longer used in the construction. The conclusion thus follows
from Theorem 2.32.3. For the purpose of this section, we reduced the approximation ratio from 1 + ε to
1 + ε/2, thereby increasing t by a factor 4, see (2.132.13).

2.4.1 The Algorithm

We present now our efficient randomized PTAS for the Binary `0-Rank-1 problem. The algorithm succeeds

with probability at least
(
ε
5t

)t+1
.
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Algorithm 4 Faster randomized PTAS for the Binary `0-Rank-1 problem

Input: A matrix A ∈ {0, 1}m×n and error ε ∈ (0, 1).
Output: Vectors ũ ∈ {0, 1}m and ṽ ∈ {0, 1}n satisfying ‖A− ũ · ṽT ‖0 6 (1 + ε)OPT.

1. (Basic solution) Initialize S = {(0m, 0n)}, where 0d = (0, . . . , 0) ∈ {0, 1}d.

2. (Guess approximate column set size) Exhaustively guess d|C1|e2, where dre2 denotes the smallest power
of 2 that is at least r. There are O(log n) possibilities. If we guessed d|C1|e2 6 dte2, then exhaustively
guess |C1| exactly. There are O(t) possibilities. In particular, if we guessed correctly then we know the
number min{t, |C1|}.

3. (Guess approximate row set size) Exhaustively guess d|R1|e2 where R1
def
= {i : ui = 1}. There are

O(logm) possibilities.

4. (Ignore sparse columns) Let W
def
= {j : ‖A:,j‖0 > d|R1|e2/4} be the set of columns of A containing at

least d|R1|e2/4 ones. Computing W takes time O(‖A‖0).

5. (Sample columns) Sample a multiset C ′1 consisting of min{t, |C1|} columns chosen independently and
uniformly at random from W . This takes time O(t).

6. (Compute ũ) We plug C ′1 as C̃1 into the estimated cost E′i,x = |{j ∈ C̃1 : Ai,j 6= x}|. Compute a vector
ũ by picking ũi = x ∈ {0, 1} minimizing the cost E′i,x, for all i. This takes time O(mt) since |C ′1| 6 t.

7. (Compute ṽ) Compute ṽ as a best response to ũ. Add (ũ, ṽ) to S.

8. Return the pair (ũ, ṽ) ∈ S minimizing ‖A− ũ · ṽT ‖0 over all exhaustive guesses and the basic solution.

Note that the claimed success probability of Algorithm 44 is quite low. In order to prove Theorem 1.31.3
we will boost this probability by repeating the algorithm sufficiently often. In the remainder of this section
we analyze the running time and the success probability of Algorithm 44.

2.4.2 Running Time

The only steps without immediate time bounds are Step 7 and Step 8.
For Step 7, we now argue that a best response ṽ to ũ can be computed in time O(‖A‖0 + m + n).

Observe that the cost corresponding to column A:,j has a fixed cost term |{i : Ai,j = 1 and ũi = 0}|
which is independent of the choice of ṽj ∈ {0, 1}. Further, by enumerating all non-zero entries of A, we

can determine for each j the number rj = |{i : Ai,j = 1 and ũi = 1}|. If rj > ‖ũ‖0/2 we set ṽj
def
= 1, and

ṽj
def
= 0 otherwise. Straightforward checking shows that this yields a best response.
In Step 8 we need to calculate ‖A− ũ · ṽT ‖0 for each (ũ, ṽ) ∈ S, in order to pick the best pair. For each

(ũ, ṽ), this value can be computed in time O(‖A‖0+m+n) as follows. Enumerate all non-zero entries ofA to

determine the numbers p
def
= |{(i, j) : Ai,j = 1 and ũi·ṽj = 1}| and q

def
= |{(i, j) : Ai,j = 1 and ũi·ṽj = 0}|.

Then, we can infer ‖A− ũ · ṽT ‖0 = q + ‖ũ‖0 · ‖ṽ‖0 − p.

Note that there are O(t log(m) log(n)) possibilities for all guesses (see Steps 2-3). Considering Steps
4-6 as well as the running times for Steps 7-8 shown above, we spend time O(‖A‖0 + m + nt) =
O((‖A‖0 +m+ n)t) for each guess. Hence, we obtain the following.

Lemma 2.19. The running time of Algorithm 44 is O(t2(‖A‖0 +m+ n) log(n) log(m)).

2.4.3 Correctness and Success Probability

We establish now the correctness of Algorithm 44. More precisely, we will prove a lower bound of
(
ε
5t

)t+1

on its success probability.

Claim 2.20 (Step 4). We have C1 ⊆W .

Proof. Let Rx
def
= {i : ui = x} for x ∈ {0, 1}. We split

OPT = ‖A− u · vT ‖0 =

n∑
j=1

‖A:,j − u · vj‖0,
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where ‖A:,j − u · vj‖0 is the cost of column j. If vj = 0 then this cost is ‖A:,j‖0, i.e. the number of 1’s of
A:,j in R1 plus the number of 1’s of A:,j in R0. If vj = 1 then the cost is ‖A:,j − u‖0, i.e., the number of
0’s of A:,j in R1 plus the number of 1’s of A:,j in R0.

Suppose ‖A:,j‖0 < |R1|/2. Then, the number of 1’s of A:,j in R1 is less than |R1|/2, and the number
of 0’s of A:,j in R1 is larger than |R1|/2. Thus, vj = 0 has less cost, and j ∈ C0. Hence,

C1 ⊆
{
j : ‖A:,j‖0 > |R1|/2

}
⊆
{
j : ‖A:,j‖0 > d|R1|e2/4

}
= W.

Assume that all guesses in Steps 2-3 are correct, so that the multiset C ′1 constructed in Step 5 consists
of min{t, |C1|} columns chosen independently and uniformly at random from W .

We define an event E as follows. If |C1| > t, then event E asserts that C ′1 ⊆ C1, i.e., all t sampled
columns forming C ′1 hit C1. If |C1| < t, then event E asserts that C ′1 = C1, i.e., all |C1| sampled columns
forming C ′1 hit C1 and are distinct.

Claim 2.21 (Step 5). Let C̃1 be distributed as in Corollary 2.182.18. Conditioned on event E, C ′1 and C̃1

follow the same distribution.

Proof. If |C1| < t then we set C̃1 = C1, and conditioned on E we also have C ′1 = C1. If |C1| > t, then

C̃1 is formed by sampling t elements from C1 with replacement. On the other hand, C ′1 is formed by
sampling t elements from W with replacement, which conditioned on E implies that all t elements hit
C1. Since C1 ⊆ W by Claim 2.202.20, the sampled elements are uniformly random in C1. These processes
describe the same distribution.

It follows that, conditioned on event E , Corollary 2.182.18 is applicable. We use it to show:

Claim 2.22. Assuming correct guesses in Steps 2-3, the vectors ũ, ṽ computed in Steps 6-7 satisfy

Pr
[
‖A− ũ · ṽT ‖0 6 (1 + ε)OPT

]
>
ε

4
· Pr[E ].

Proof. Since Step 6 follows the construction in Corollary 2.182.18, except that we replaced C̃1 by C ′1, and
using Claim 2.212.21, Corollary 2.182.18 yields

EC′1
[
‖A− ũ · vT ‖0

∣∣∣ E] 6 (1 +
ε

2

)
OPT.

Using Markov’s inequality with λ
def
= (1 + ε)/(1 + ε/2) yields

Pr
[
‖A− ũ · vT ‖0 > λ ·

(
1 +

ε

2

)
OPT

∣∣∣ E] 6 1

λ
= 1− ε/2

1 + ε
6 1− ε

4
,

or equivalently,

Pr
[
‖A− ũ · vT ‖0 6 (1 + ε)OPT

∣∣∣ E] > ε

4
.

Hence, we have

Pr
[
‖A− ũ · vT ‖0 6 (1 + ε)OPT

]
> Pr

[
‖A− ũ · vT ‖0 6 (1 + ε)OPT

∣∣∣ E] · Pr[E ] >
ε

4
· Pr[E ].

Since in Step 7 ṽ is computed as a best response to ũ, we have ‖A− ũ · ṽT ‖0 6 ‖A− ũ · vT ‖0, and thus

Pr
[
‖A− ũ · ṽT ‖0 6 (1 + ε)OPT

]
>
ε

4
· Pr[E ].

In order to give a lower bound on the success probability, it thus suffices to bound Pr[E ]. To this end,
we first bound |W | in terms of |C1|.

Claim 2.23. If OPT < ‖A‖0/(1 + ε), then we have |W | < 5|C1|/ε.

Proof. As in the proof of Claim 2.202.20, the cost of any column j ∈ C0 is ‖A:,j‖0. Since any column j ∈W
contains at least d|R1|e2/4 > |R1|/4 1’s, the cost of any column j ∈ C0 ∩W is at least |R1|/4. It follows
that

|C0 ∩W | 6 5 ·OPT/|R1|. (2.16)
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Since u · vT contains |R1| · |C1| 1’s, we can lower bound OPT = ‖A− u · vT ‖0 by ‖A‖0 − |R1| · |C1|.
Together with the assumption, we obtain that

OPT > ‖A‖0 − |R1| · |C1| > (1 + ε)OPT− |R1| · |C1|,

or equivalently, εOPT < |R1| · |C1|. This implies OPT/|R1| < |C1|/ε and thus by inequality (2.162.16) we
have |C0 ∩W | 6 4|C1|/ε. Further, since |C1 ∩W | 6 |C1| 6 |C1|/ε and (C0 ∩W ) ∪ (C1 ∩W ) = W , we
obtain the claimed upper bound of |W | 6 5|C1|/ε.

Claim 2.24. If OPT < ‖A‖0/(1 + ε), then we have Pr[E ] >
(
ε
5t

)t
.

Proof. If |C1| > t then event E asserts that C ′1 ⊆ C1. Since C1 ⊆ W (Claim 2.202.20) and |W | 6 5|C1|/ε
(Claim 2.232.23), a random element from W hits C1 with probability at least ε/5. It follows that all t samples
forming C ′1 hit C1 with probability at least (ε/5)t.

If |C1| < t then event E asserts that C ′1 = C1. Note that the i-th sample from W is equal to the i-th
element of C1 with probability 1/|W | > ε/(5|C1|) > ε/(5t). It follows that C ′1 = C1 with probability at
least (ε/(5t))|C1| > (ε/(5t))t.

Lemma 2.25. Algorithm 44 computes vectors ũ ∈ {0, 1}m and ṽ ∈ {0, 1}n such that with probability at

least
(
ε
5t

)t+1
it holds that ‖A− ũ · ṽT ‖0 6 (1 + ε)OPT.

Proof. When OPT > ‖A‖0/(1 + ε), for the basic solution (0m, 0n) from Step 1 we have ‖A− 0m · 0Tn‖0 =
‖A‖0 6 (1 + ε)OPT. Otherwise, if OPT < ‖A‖0/(1 + ε), the statement follows by combining Claim 2.222.22
and Claim 2.242.24.

2.4.4 Proof of Theorem 1.31.3

By Lemma 2.252.25, Algorithm 44 computes vectors ũ, ṽ satisfying ‖A− ũ · ṽT ‖0 6 (1+ε)OPT with probability

at least
(
ε
5t

)t+1
. By Lemma 2.192.19, the algorithm runs in time

O(t2(‖A‖0 +m+ n) log(m) log(n)).

Repeating the algorithm O
((

5t/ε
)t+1

log n
)

times and returning the best solution found, yields a success

probability of 1− n−Ω(1). Since we set t = 216/ε2, the total running time is

O
(

(5t/ε)
t+3

(‖A‖0 +m+ n) log3(mn)
)

= (1/ε)O(1/ε2)(‖A‖0 +m+ n) log3(mn).
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Chapter 3

Algorithmic Results For Binary `0-Rank-1
With Small Optimal Value

Given a binary matrix A ∈ {0, 1}m×n with m > n, our goal is to compute an approximate solution of
the Binary `0-Rank-1 problem, and let us denote the optimal value by

OPT
def
= min

u∈{0,1}m, v∈{0,1}n
‖A− u · vT ‖0. (3.1)

In practice, approximating a matrix A by a rank-1 matrix uvT makes most sense if A is close to being
rank-1. Hence, the above optimization problem is most relevant in the case when OPT� ‖A‖0. For this
reason, we focus our studies on the setting when the ratio OPT/‖A‖0 6 φ for sufficiently small φ > 0.

Organization In Section 3.13.1, we give a simple (1 + O(φ))-approximation algorithm running in time
O(min{‖A‖0 + m + n, φ−1(m + n) log(mn)}). Then, in Section 3.23.2, we establish a sample complexity
lower bound of Ω((m+ n)/φ) for any (1 +O(φ))-approximation algorithm, showing that our algorithm
has an optimal runtime up to a poly log(mn) factor. In Section 3.33.3, we give an algorithm that runs in

time 2O(OPT/
√
‖A‖0) · poly(mn) and solves exactly the Binary `0-Rank-1 problem.

3.1 A Simple Approximation Algorithm

We start by stating our core algorithmic result, which requires as an input a parameter φ > OPT/‖A‖0.

Theorem 1.41.4 (from page 77). Given A ∈ {0, 1}m×n with row and column sums, and given φ ∈ (0, 1
80 ] with

OPT/‖A‖0 6 φ, we can compute in time O(min{‖A‖0 +m+n, φ−1(m+n) log(mn)}) vectors ũ ∈ {0, 1}m
and ṽ ∈ {0, 1}n such that w.h.p. ‖A− ũ · ṽT ‖0 6 (1 + 5φ)OPT + 37φ2‖A‖0.

In Chapter 44, see Section 4.24.2, we give a (2 + ε)-approximation algorithm for the Reals `0-Rank-1
problem, which captures as a special case the Binary `0-Rank-1 problem. In particular, we obtain a
(2 + ε)-approximation of OPT, and thus a (2 + ε)-approximation of the ratio OPT/‖A‖0.

Theorem 1.51.5 (from page 77). Given A ∈ {0, 1}m×n with column adjacency arrays and OPT > 1, and
given ε ∈ (0, 0.1], we can compute w.h.p. in time

O

((n logm

ε2
+ min

{
‖A‖0, n+ ψ−1 log n

ε2

}) log2 n

ε2

)
a column A:,j and a vector z ∈ {0, 1}n such that w.h.p. ‖A−A:,j · zT ‖0 6 (2 + ε)OPT. Further, we can
compute an estimate Y such that w.h.p. (1− ε)OPT 6 Y 6 (2 + 2ε)OPT.

Combining Theorem 1.41.4 and Theorem 1.51.5, yields an algorithm that does not need φ as an input and
computes a (1 + 500ψ)-approximate solution of the Binary `0-Rank-1 problem.

Theorem 1.61.6 (from page 77). Given A ∈ {0, 1}m×n with column adjacency arrays and with row and column
sums, for ψ = OPT/‖A‖0 we can compute w.h.p. in time O(min{‖A‖0 +m+ n, ψ−1(m+ n)} · log3(mn))
vectors ũ ∈ {0, 1}m and ṽ ∈ {0, 1}n such that w.h.p. ‖A− ũ · ṽT ‖0 6 (1 + 500ψ)OPT.

Proof of Theorem 1.61.6. We compute a 3-approximation of OPT by applying Theorem 1.51.5 with ε = 0.1.
This yields a value φ satisfying ψ 6 φ 6 3ψ. If φ > 1/80, then the 3-approximation is already good
enough, since ψ > 1/240 and 1 + 500ψ > 3. Otherwise, we run Theorem 1.41.4 with φ. Further, using
φ2‖A‖0 6 9ψ2‖A‖0 = 9ψOPT, the total error is at most

(1 + 5φ)OPT + 37φ2‖A‖0 6 (1 + 15ψ)OPT + 37 · 9ψOPT 6 (1 + 500ψ)OPT.

A rough upper bound on the running time is O(min{‖A‖0 +m+ n, ψ−1(m+ n)} · log3(mn)).
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The remainder of this section is devoted to proving Theorem 1.41.4.

3.1.1 Preparations

Given a matrix A ∈ {0, 1}m×n, let u ∈ {0, 1}m and v ∈ {0, 1}n be an optimal solution to the Binary

`0-Rank-1 problem, realizing OPT = ‖A − u · vT ‖0. Moreover, set α
def
= ‖u‖0 and β

def
= ‖v‖0. We start

with the following technical preparations.

Lemma 3.1. For any row i ∈ {1, . . . ,m} let xi be the number of 0’s in columns selected by v, i.e.,

xi
def
= {j ∈ [n] : Ai,j = 0, vj = 1}, and let yi be the number of 1’s in columns not selected by v, i.e.,

yi
def
= {j ∈ [n] : Ai,j = 1, vj = 0}. Let R = {i ∈ [m] : ui = 1} be the rows selected by u, and let

R̄
def
= [m] \R. Symmetrically, let C be the columns selected by v. Then we have

1. ‖Ai,:‖0 = β − xi + yi, for any i ∈ [m];

2. OPT =
∑
i∈R(xi + yi) +

∑
i∈R̄(β − xi + yi);

3. OPT >
∑
i∈R |xi − yi|;

4. xi 6 β/2 for any i ∈ R, and xi > β/2, for any i ∈ R̄;

5. OPT >
∑m
i=1 min{‖Ai,:‖0, |‖Ai,:‖0 − β|};

6. |‖A‖0 − αβ| 6 OPT;

7. If OPT 6 φ‖A‖0, then (1− φ)‖A‖0 6 αβ 6 (1 + φ)‖A‖0.

Proof. For (11), note that in the β columns C selected by v, row i has β − xi 1’s, and in the remaining
n− |C| columns row i has yi 1’s. Hence, the total number of 1’s in row i is ‖Ai,:‖0 = β − xi + yi.

(22) We split OPT = ‖A − uvT ‖0 into a sum over all rows, so that OPT =
∑m
i=1 ‖Ai,: − uiv

T ‖0.
For i ∈ R̄, the i-th term of this sum is simply ‖Ai,:‖0 = β − xi + yi. For i ∈ R, the i-th term is
‖Ai,: − vT ‖0 = xi + yi.

(33) follows immediately from (22).
(44) follows from (22), since for xi > β/2 and i ∈ R we can change ui from 1 to 0, reducing the

contribution of row i from xi + yi to β − xi + yi, which contradicts optimality of OPT.
For (55), we use that xi + yi > |xi − yi| = |‖Ai,:‖0 − β| by (11), and

OPT =
∑
i∈R

(xi + yi) +
∑
i∈R̄

(β − xi + yi) =
∑
i∈R

(xi + yi) +
∑
i∈R̄

‖Ai,:‖0.

(66) is shown similarly to (55) by noting that

OPT =
∑
i∈R

(xi + yi) +
∑
i∈R̄

(β − xi + yi) >
∑
i∈R
|‖Ai,:‖0 − β|+

∑
i∈R̄

‖Ai,:‖0

>
∑
i∈R

(‖Ai,:‖0 − β) +
∑
i∈R̄

‖Ai,:‖0 = ‖A‖0 − αβ,

and similarly

OPT >
∑
i∈R
|‖Ai,:‖0 − β|+

∑
i∈R̄

‖Ai,:‖0 >
∑
i∈R

(β − ‖Ai,:‖0)−
∑
i∈R̄

‖Ai,:‖0 = αβ − ‖A‖0.

Finally, (77) follows immediately from (66) by plugging in the upper bound OPT 6 φ‖A‖0.

3.1.2 Approximating α and β

We now show how to approximate α = ‖u‖0 and β = ‖v‖0, where (u, v) is an optimal solution.

Lemma 3.2. Given A ∈ {0, 1}m×n and φ ∈ (0, 1/30] with OPT/‖A‖0 6 φ, we can compute in time

O(‖A‖0 +m+ n) an integer β̃ ∈ [m] with

1− 3φ

1− φ
β 6 β̃ 6

1 + φ

1− φ
β.

Symmetrically, we can approximate α by α̃. If we are additionally given the number of 1’s in each row
and column, then the running time becomes O(m+ n).
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Proof. Let

Λ
def
= min

β′∈[n]

m∑
i=1

min
{
‖Ai,:‖0,

∣∣‖Ai,:‖0 − β′∣∣},
and let β̃ be the value of β′ realizing Λ.

We first verify the approximation guarantee. Consider the set of rows R selected by u. Let xi, yi for
i ∈ R be as in Lemma 3.13.1. Then we have

Λ >
∑
i∈R

min
{
‖Ai,:‖0,

∣∣‖Ai,:‖0 − β̃∣∣} =
∑
i∈R

min
{
β + yi − xi, |β − β̃ + yi − xi|

}
,

where we used Lemma 3.13.1.11. Assume for the sake of contradiction that |β − β̃| > 2φ
1−φβ. Since |x− y| >

|x| − |y| for any numbers x, y, we obtain

|β − β̃ + yi − xi| > |β − β̃| − |xi − yi| >
2φ

1− φ
β − |xi − yi|.

Similarly, we have β + yi − xi > 2φ
1−φβ − |xi − yi|. Hence,

Λ >
∑
i∈R

(
2φβ

1− φ
− |xi − yi|

)
>

2φβ

1− φ
|R| −OPT,

where we used Lemma 3.13.1.33. Since R is the set of rows selected by u, we have |R| = α. By Lemma 3.13.1.77,
we have OPT 6 φ‖A‖0 6 φ

1−φαβ. Together, this yields Λ > OPT, contradicting

Λ 6
m∑
i=1

min{‖Ai,:‖0, |‖Ai,:‖0 − β|} 6 OPT

by Lemma 3.13.1.55. Hence, |β − β̃| 6 2φ
1−φβ.

It remains to design a fast algorithm. We first compute all numbers ‖Ai,:‖0 in time O(‖A‖0) (this
step can be skipped if we are given these numbers as input). We sort these numbers, obtaining a sorted
order ‖Aπ(1),:‖0 6 . . . 6 ‖Aπ(m),:‖0. Using counting sort, this takes time O(m+n). We precompute prefix

sums P (k)
def
=
∑k
`=1 ‖Aπ(`),:‖0, which allows us to evaluate in constant time any sum

y∑
`=x

‖Aπ(`),:‖0 = P (y)− P (x− 1).

Finally, we precompute the inverse

`(β′)
def
= max{` : ‖Aπ(`),:‖0 6 β′},

or `(β′) = 0 if there is no ` with ‖Aπ(`),:‖0 6 β′. By a simple sweep, all values `(β′) can be computed in
total time O(m+ n).

Note that for any fixed β′ and row i, the term realizing min{‖Ai,:‖0, |‖Ai,:‖0 − β′|} is equal to:
(a) ‖Ai,:‖0 if ‖Ai,:‖0 6 β′/2; (b) β′ − ‖Ai,:‖0, if β′/2 < ‖Ai,:‖0 6 β′; and (c) ‖Ai,:‖0 − β′, if
‖Ai,:‖0 > β′. Hence, we obtain

n∑
i=1

min
{
‖Ai,:‖0,

∣∣‖Ai,:‖0 − β′∣∣}

=

`(β′/2)∑
i=1

‖Aπ(i),:‖0

+

 `(β′)∑
i=`(β′/2)+1

β′ − ‖Aπ(i),:‖0

+

 n∑
i=`(β′)+1

‖Aπ(i),:‖0 − β′


= P (n)− 2 [P (`(β′))− P (`(β′/2))]− [n+ `(β′/2)− 2 · `(β′)]β′.

This shows that after the above precomputation the sum
∑n
j=1 min{‖Ai,:‖0, |‖A:j‖0−β′|} can be evaluated

in time O(1) for any β′. Minimizing over all β′ ∈ [m] yields β̃. This finishes our algorithm, which runs in
total time O(‖A‖0 +m+ n), or O(m+ n) if we are given the number of 1’s in each row and column.
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3.1.3 The Algorithm

We now design an approximation algorithm for the Binary `0-Rank-1 problem that will yield Theorem 1.41.4.
We present the pseudocode of this Algorithm 55 below.

Algorithm 5 Binary `0-Rank-1 With Small Optimal Value

Input: A ∈ {0, 1}m×n and φ ∈ (0, 1/80] such that OPT/‖A‖0 6 φ.
Output: Vectors ũ ∈ {0, 1}m, ṽ ∈ {0, 1}n such that ‖A− ũ · ṽT ‖0 6 (1 + ε)OPT.

1. Compute approximations 1−3φ
1−φ α 6 α̃ 6 1+φ

1−φα and 1−3φ
1−φ β 6 β̃ 6 1+φ

1−φβ using Lemma 3.23.2.

Initialize RR
def
= [m], CR

def
= [n], RS

def
= ∅, CS def

= ∅.

2. For any row i, if ‖Ai,:‖0 < 1−φ
1+φ ·

β̃
2 then set ũi = 0 and remove i from RR.

5. For any column j, if ‖A:,j‖0 < 1−φ
1+φ ·

α̃
2 then set ṽj = 0 and remove j from CR.

3. For any i ∈ RR compute an estimate Xi with
∣∣Xi − ‖Ai,CR‖0

∣∣ 6 1
9 |C

R|.
5. For any j ∈ CR compute an estimate Yj with

∣∣Yj − ‖ARR,j‖0∣∣ 6 1
9 |R

R|.

4. For any i ∈ RR, if Xi >
2
3 β̃ then set ũi = 1 and add i to RS .

5. For any j ∈ CR, if Yj >
2
3 α̃ then set ṽj = 1 and add j to CS .

5. For any i ∈ RR \RS , compute an estimate X ′i with |X ′i − ‖Ai,CS‖0| 6 φ|CS |,
5. For any j ∈ CR \ CS , compute an estimate Y ′j with |Y ′j − ‖ARS ,j‖0| 6 φ|RS |.

6. For any i ∈ RR \RS , set ũi = 1 if X ′i > |CS |/2 and 0 otherwise,
5. For any j ∈ CR \ CS , set ṽj = 1 if Y ′j > |RS |/2 and 0 otherwise.

7. Return (ũ, ṽ).

Running Time By Lemma 3.23.2, Step 1 runs in time O(‖A‖0 +m+ n), or in time O(m+ n) if we are
given the number of 1’s in each row and column. Steps 2, 4, and 6 clearly run in time O(m + n). For
steps 3 and 5, there are two ways to implement them.

Variant (1) is an exact algorithm. We enumerate all nonzero entries of A and count how many
contribute to the required numbers ‖Ai,CR‖0, ‖ARR,j‖0 etc. This takes total time O(‖A‖0), and hence
the total running time of the algorithm is O(‖A‖0 +m+ n).

Variant (2) uses random sampling. In order to estimate ‖Ai,CR‖0, consider a random variable Z
that draws a uniformly random column j ∈ CR and returns 1 if Ai,j 6= 0 and 0 otherwise. Then
E[Z] = ‖Ai,CR‖0/|CR|. Taking independent copies Z1, . . . , Z` of Z, where ` = Θ(log(mn)/δ2) with
sufficiently large hidden constant, a standard Chernoff bound argument shows that w.h.p.∣∣∣∣(Z1 + . . .+ Z`) ·

|CR|
`
− ‖Ai,CR‖0

∣∣∣∣ 6 δ · |CR|,

which yields the required approximation. For Step 3 we use this procedure with δ = 1
9 and obtain

running time O(log(mn)) per row and column, or O((m+ n) log(mn)) in total. For Step 5 we use δ = φ,
resulting in time O(φ−2 log(mn)) for computing one estimate X ′i or Y ′j . By Claim 3.63.6 below there are

only O(φ(m+ n)) rows and columns in RR \RS and CR \CS , and hence the total running time for Step
5 is O(φ−1(m+ n) log(mn)). This dominates the total running time.

Combining both variants, we obtain the claimed running time of

O(min{‖A‖0 +m+ n, φ−1(m+ n) log(mn)}).

Correctness In the following we analyze the correctness of the above algorithm.

Claim 3.3. For any row i deleted in Step 2 we have ũi = ui. Symmetrically, for any column j deleted
in Step 2 we have ṽj = vj.

Proof. If row i is deleted, then by the approximation guarantee of β̃ we have

‖Ai,:‖0 <
1− φ
1 + φ

· β̃
2
6
β

2
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Note that for xi (the number of 0’s in row i in columns selected by v) we have xi > β−‖Ai,:‖0. Together,
we obtain xi > β/2, and thus row i cannot be selected by u, by Lemma 3.13.1.44. Hence, we have ui = 0 = ũi.
The statement for the columns is symmetric.

Claim 3.4. After Step 2, it holds for the remaining rows RR and columns CR that

|RR| 6
(

1 +
1 + φ

1− 3φ
· 2φ

1− φ

)
α and |CR| 6

(
1 +

1 + φ

1− 3φ
· 2φ

1− φ

)
β.

Proof. By Claim 3.33.3 the α rows R selected by u remain. We split the rows RR remaining after Step 2
into R ∪R′, and bound |R′| from above. Since any i ∈ R′ is not selected by u, it contributes ‖Ai,:‖0 to
OPT. Note that

‖Ai,:‖0 >
1− φ
1 + φ

· β̃
2
>

1− φ
1 + φ

· 1− 3φ

1− φ
· β

2
=

1− 3φ

1 + φ
· β

2
,

and thus |R′| 6 OPT · 1+φ
1−3φ ·

2
β . Since

OPT 6 φ‖A‖0 6
φ

1− φ
· αβ

by Lemma 3.13.1.77, we obtain |R′| 6 1+φ
1−3φ ·

2φ
1−φ · α. Thus, we have in total

|RR| = |R|+ |R′| 6
(

1 +
1 + φ

1− 3φ
· 2φ

1− φ

)
α.

The statement for the columns is symmetric.

Claim 3.5. The rows and columns selected in Step 4 are also selected by the optimal solution u, v, i.e.,
for any i ∈ RS we have ui = 1 and for any j ∈ CS we have vj = 1.

Proof. If row i is selected in Step 4, then we have by the approximation guarantee of Xi, definition of
Step 4, Claim 3.43.4, and Lemma 3.23.2

‖Ai,CR‖0 > Xi −
1

9
|CR| > 2

3
β̃ − 1

9

(
1 +

1 + φ

1− 3φ
· 2φ

1− φ

)
β

>
2

3
· 1− 3φ

1− φ
β − 1

9

(
1 +

1 + φ

1− 3φ
· 2φ

1− φ

)
β.

It is easy to see that for sufficiently small φ > 0 this yields

‖Ai,CR‖0 >
β

2
+

1 + φ

1− 3φ
· 2φ

1− φ
β.

One can check that 0 6 φ 6 1/80 is sufficient. Since there are |CR| 6
(
1+ 1+φ

1−3φ ·
2φ

1−φ
)
β columns remaining,

in particular the β columns C ⊆ CR which are selected by v, we obtain

‖Ai,C‖0 > ‖Ai,CR‖0 − (|CR| − β) > β/2.

By Lemma 3.13.1.44, we thus obtain that row i is selected by the optimal u. The statement for the columns
is symmetric.

Claim 3.6. After Step 4 there are |RR \ RS | 6 6φα remaining rows and |CR \ CS | 6 6φβ remaining
columns.

Proof. After Step 4, every remaining row i, for any 0 6 φ 6 1/80, satisfies

‖Ai,:‖0 >
1− φ
1 + φ

· β̃
2
>

1− φ
1 + φ

· 1− 3φ

1− φ
· β

2
>

2

5
β,

Moreover, each such row satisfies

‖Ai,CR‖0 6 Xi +
1

9
|CR| 6 2

3
β̃ +

1

9
|CR|,
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which together with β̃ 6 1+φ
1−φβ (Lemma 3.23.2) and |CR| 6

(
1 + 1+φ

1−3φ ·
2φ

1−φ
)
β (Claim 3.43.4) yields

‖Ai,CR‖0 6

(
2

3
· 1 + φ

1− φ
+

1

9
+

1

9
· 1 + φ

1− 3φ
· 2φ

1− φ

)
β.

It is easy to see that for sufficiently small φ > 0 we have ‖Ai,CR‖0 6 4
5β, and it can be checked that

0 6 φ 6 1/80 is sufficient.
If i is not selected by u, then its contribution to OPT is ‖Ai,:‖0 > 2

5β. If i is selected by u, then since
C ⊆ CR its contribution to OPT is at least

β − ‖Ai,C‖0 > β − ‖Ai,CR‖0 > β − 4

5
β =

1

5
β.

Thus, the number of remaining rows is at most

OPT

β/5
6

5φαβ

(1− φ)β
6 6φα,

where we used Lemma 3.13.1.77. The statement for the columns is symmetric.

We are now ready to prove correctness of Algorithm 55.

Proof of Theorem 1.41.4. The rows and columns removed in Step 2 are also not picked by the optimal
solution, by Claim 3.33.3. Hence, in the region ([m] \RR)× [n] and [m]× ([n] \CR) we incur the same error
as the optimal solution. The rows and columns chosen in Step 4 are also picked by the optimal solution,
by Claim 3.53.5. Hence, in the region RS × CS we incur the same error as the optimal solution. We split
the remaining matrix into three regions: (RR \RS)× CS , RS × (CR \ CS), and (RR \RS)× (CR \ CS).

In the region (RR \RS)× CS we compute for any row i ∈ RR \RS an additive φ|C|-approximation
X ′i of ‖Ai,C‖0, and we pick row i iff X ′i > |C|/2. In case

∣∣‖Ai,C‖0− |C|/2∣∣ > φ|C|, we have X ′i > |C|/2 if
and only if ‖Ai,C‖0 > |C|/2, and thus our choice for row i is optimal, restricted to region (RR \RS)×CS .
Otherwise, if

∣∣‖Ai,C‖0 − |C|/2∣∣ 6 φ|C|, then no matter whether we choose row i or not, we obtain
approximation ratio

|C|/2 + φ|C|
|C|/2− φ|C|

=
1 + 2φ

1− 2φ
6 1 + 5φ,

restricted to region (RR \RS)× CS . The region RS × (CR \ CS) is symmetric.
Finally, in region (RR \RS)× (CR \ CS) we pessimistically assume that every entry is an error. By

Claim 3.63.6 and Lemma 3.13.1.77, this submatrix has size at most

6φα · 6φβ 6 36φ2(1 + φ)‖A‖0 6 37φ2‖A‖0.

In total, over all regions, we computed vectors ũ, ṽ such that

‖A− ũṽT ‖0 6 (1 + 5φ)OPT + 37φ2‖A‖0.

This completes the correctness prove of Algorithm 55.

3.2 Sample Complexity Lower Bound

We give now a lower bound of Ω(n/φ) on the number of samples of any 1+O(φ)-approximation algorithm
for the Binary `0-Rank-1 problem, where φ > OPT/‖A‖0 as before.

Theorem 1.71.7 (from page 77). Let C > 1. Given an n × n binary matrix A with column adjacency
arrays and with row and column sums, and given

√
log(n)/n� φ 6 1/100C such that OPT/‖A‖0 6 φ,

computing a (1 +Cφ)-approximation of OPT requires to read Ω(n/φ) entries of A (in the worst case over
A).

The technical core of our argument is the following lemma.

Lemma 3.7. Let φ ∈ (0, 1/2). Let X1, . . . , Xk be binary random variables with expectations p1, . . . , pk,
where pi ∈ {1/2− φ, 1/2 + φ} for each i. Let A be an algorithm which can adaptively obtain any number
of samples of each random variable, and which outputs bits bi for every i ∈ [1 : k]. Suppose that with
probability at least 0.95 over the joint probability space of A and the random samples, A outputs for at
least a 0.95 fraction of all i that bi = 1 if pi = 1/2 + φ and bi = 0 otherwise. Then, with probability at
least 0.05, A makes Ω(k/φ2) samples in total, asymptotically in k.
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Proof. Consider the following problem P : let X be a binary random variable with expectation p drawn
uniformly in {1/2− φ, 1/2 + φ}. It is well-known that any algorithm which, with probability at least 0.6,
obtains samples from X and outputs 0 if p = 1/2 − φ and outputs 1 if p = 1/2 + φ, requires Ω(1/φ2)
samples; see, e.g., Theorem 4.32 of [BY02BY02]. Let c > 0 be such that c/φ2 is a lower bound on the number
of samples for this problem P .

Let A be an algorithm solving the problem in the lemma statement. Since A succeeds with probability
at least 0.95 in obtaining the guarantees of the lemma for given sequence p1, . . . , pk, it also succeeds with
this probability when (p1, . . . , pk) is drawn from the uniform distribution on {1/2− φ, 1/2 + φ}k.

Suppose, towards a contradiction, that A takes less than 0.05 · ck/φ2 samples with probability at least
0.95. By stopping A before taking 0.05 · ck/φ2 samples, we obtain an algorithm A′ that always takes less
than 0.05 · ck/φ2 samples. By the union bound, A′ obtains the guarantees of the lemma for the output
bits bi with probability at least 0.9, over the joint probability space of A′ and the random samples.

Note that the expected number of samples A′ takes from a given Xi is less than 0.05 · c/φ2. By
Markov’s inequality, for a 0.95 fraction of indices i, A′ takes less than c/φ2 samples from Xi. We say that
i is good if A′ takes less than c/φ2 samples from Xi and the output bit bi is correct. By union bound, at
least a 1− (1− 0.9)− (1− 0.95) = 0.85 fraction of indices i is good.

Since (p1, . . . , pk) is drawn from the uniform distribution on {1/2− φ, 1/2 + φ}k, with probability at
least 0.95 the number k+ = |{i : pi = 1/2 + φ}| satisfies 0.45k 6 k+ 6 0.55k (for sufficiently large k).
This implies that a 0.65 fraction of indices {i : pi = 1/2 + φ} is good, as otherwise the number of bad i’s
is at least (1− 0.65) · 0.45k > 0.15k. Similarly, a 0.65 fraction of indices {i : pi = 1/2− φ} is good.

Given an instance of problem P with random variable X and expectation p, we choose a uniformly
random i ∈ [k], and set Xi = X. For j 6= i, we independently and uniformly at random choose pj ∈
{1/2−φ, 1/2+φ}. We then run algorithm A′. Whenever A′ samples from Xi, we sample a new value of X
as in problem P . Whenever A′ samples from Xj for j 6= i, we flip a coin with probability pj and report the
output to A′. If A′ takes c/φ2 samples from Xi, then we abort, thus ensuring that A′ always takes less than
c/φ2 samples from Xi = X. Observe that the input to A′ is a sequence of random variables X1, . . . , Xk

with expectations p1, . . . , pk which are independent and uniformly distributed in {1/2− φ, 1/2 + φ}. In
particular, except for their expectation these random variables are indistinguishable.

We now condition on 0.45k 6 k+ 6 0.55k, which has success probability at least 0.95 for sufficiently
large k. Then no matter whether pi = 1/2 + φ or pi = 1/2− φ, at least a 0.65 fraction of indices j with
pj = pi is good. Since i was chosen to be a uniformly random position independently of the randomness
of the sampling and the algorithm A′, and the Xj with pj = pi are indistinguishable, with probability
at least 0.65 index i is good. In this case, A′ takes less than c/φ2 samples from Xi = X and correctly
determines the output bit bi, i.e., whether pi = 1/2 + φ. As by union bound the total success probability
is 1 − (1 − 0.65) − (1 − 0.95) = 0.6, this contradicts the requirement of c/φ2 samples mentioned above
for solving P . Hence, the assumption was wrong, and A takes Ω(k/φ2) samples with probability at least
0.05.

We start with a simplified version of our result, where we only have random access to the matrix
entries. Below we extend this lower bound to the situation where we even have random access to the
adjacency lists of all rows and columns.

Theorem 3.8. Let C > 1. Given an n× n binary matrix A by random access to its entries, and given√
log(n)/n � φ 6 1/100C such that OPT/‖A‖0 6 φ, computing a (1 + Cφ)-approximation of OPT

requires to read Ω(n/φ) entries of A (in the worst case over A).

Proof. Set φ′
def
= 25Cφ and k

def
= φn/2. As in Lemma 3.73.7, consider binary random variables X1, . . . , Xk

with expectations p1, . . . , pk, where pi ∈ {1/2 − φ′, 1/2 + φ′} for each i. We (implicitly) construct an

n× n matrix A as follows. For ever k < i 6 n, 1 6 j 6 n we set Ai,j
def
= 1. For any 1 6 i 6 k, 1 6 j 6 n

we sample a bit bi,j from Xi and set Ai,j
def
= bi,j . Note that we can run any Binary `0-Rank-1 algorithm

implicitly on A: whenever the algorithm reads an entry Ai,j we sample a bit from Xi to determine the
entry (and we remember the entry for possible further accesses).

Let us determine the optimal solution for A. Note that for each i > k, since the row Ai,: is all-ones, it
is always better to pick this row than not to pick it, and thus without loss of generality any solution u, v
has ui = 1. Similarly, for any j, since the column A:,j has n−k > n/2 1’s in rows picked by u, it is always
better to pick the column than not to pick it, and thus vj = 1, i.e., v is the all-ones vector. Hence, the
only choice is for any 1 6 i 6 k to pick or not to pick row i. Note that no matter whether we pick these
rows or not, the total error is at most φn2/2, since these rows in total have kn = φn2/2 entries, and all
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remaining entries of A are correctly recovered by the product uvT by the already chosen entries of u and
v. Hence, OPT 6 φn2/2, and since ‖A‖0 > (n− k)n > n2/2, we obtain, as required, OPT/‖A‖0 6 φ.

Now consider the rows 1 6 i 6 k more closely. Since v is the all-ones vector, not picking row i incurs
cost for each 1 in the row, which is cost ‖Ai,:‖0, while picking row i incurs cost for each 0 in the row,
which is cost n − ‖Ai,:‖0. Note that the expected number of 1’s in row 1 6 i 6 k is pin. The Chernoff

bound yields concentration: We have w.h.p. |‖Ai,:‖0 − pin| 6 0.01 · φ′n, where we used φ′ �
√

log(n)/n.
In the following we condition on this event and thus drop “w.h.p.” from our statements. In particular,
for any i with pi = 1/2 + φ′ we have ‖Ai,:‖0 > (1/2 + 0.99φ′)n, and for any i with pi = 1/2− φ′ we have
‖Ai,:‖0 6 (1/2− 0.99φ′)n.

By picking all rows i 6 k with pi = 1/2 + φ′ and not pick the rows with pi = 1/2− φ′, we see that
OPT 6 (1/2− 0.99φ′)kn. Now consider a solution u that among the rows 1 6 i 6 k with pi = 1/2 + φ′

picks g+ many and does not pick b+ many. Similarly, among the rows with pi = 1/2− φ′ it picks g− and
does not pick b−. Note that each of the g+ “good” rows incurs cost

n− ‖Ai:‖0 > n− (1/2 + 1.01φ′)n = (1/2− 1.01φ′)n.

Each of the b+ “bad” rows incurs a cost of ‖Ai:‖0 > (1/2 + 0.99φ′)n. Similar statements hold for g− and

b−, and thus for g
def
= g+ + g− and b

def
= b+ + b−, with g + b = k, we obtain a total cost of

‖A− uvT ‖0 > g · (1/2− 1.01φ′)n+ b · (1/2 + 0.99φ′)n

= k(1/2− 0.99φ′)n+ 2bφ′n− 0.02kφ′n

> OPT + 2bφ′n− 0.02φ′kn.

If b > 0.02k, then
‖A− uvT ‖0 > OPT + 0.02φ′kn > (1 + 0.04φ′)OPT.

By contraposition, if we compute a (1 + 0.04φ′ = 1 + Cφ)-approximation on A, then b 6 0.02k, and
thus the vector u correctly identifies for at least a 0.98 fraction of the random variables Xi whether
pi = 1/2 + φ′ or pi = 1/2− φ′. Since this holds w.h.p., by Lemma 3.73.7 we need Ω(k/φ′2) = Ω(n/(φC2))
samples from the variables Xi, and thus Ω(n/(φC2)) reads in A. Since C > 1 is constant, we obtain
a lower bound of Ω(n/φ). This lower bound holds in expectation over the constructed distribution of
A-matrices, and thus also in the worst case over A.

The construction of the above theorem does not work in case when we have random access to the
adjacency lists of the rows, since this allows us to quickly determine the numbers of 1’s per row, which is
all we need to determine whether we want to pick a particular row in the matrix constructed above. To
treat this issue, we adapt the construction as follows.

Proof of Theorem 1.71.7. We assume that n is even. Let φ′, k,X1, . . . , Xk, p1, . . . , pk be as in the proof of
Theorem 3.83.8. We adapt the construction of the matrix A as follows. For any 2k < i 6 n, 1 6 j 6 n/2 we

set Ai,2j
def
= 1 and Ai,2j−1

def
= 0. For any 1 6 i 6 k, 1 6 j 6 n/2 we sample a bit bi,j from Xi and set

A2i,2j
def
= A2i−1,2j−1

def
= bi,j and A2i−1,2j

def
= A2i,2j−1

def
= 1− bi,j .

As before, when running any Binary `0-Rank-1 algorithm on A we can easily support random accesses
to entries Ai,j , by sampling from Xdi/2e to determine the entry (and remembering the sampled bit for
possible further accesses). Furthermore, we can now allow random accesses to the adjacency arrays of
rows and columns. Specifically, if we want to determine the `-th 1 in row i 6 2k, we know that among
the entries Ai,1, . . . , Ai,2` there are exactly ` 1’s, since by construction Ai,2j−1 + Ai,2j = 1. Hence, the
`-th 1 in row i is at position Ai,2`−1 or Ai,2`, depending only on the sample bdi/2e,` from Xdi/2e. For rows
i > 2k, the `-th 1 is simply at position Ai,2`. Thus, accessing the `-th 1 in any row takes at most one
sample, so we can simulate any algorithm on A with random access to the adjacency lists of rows. The
situation for columns is essentially symmetric. Similarly, we can allow constant time access to the row
and column sums.

In the remainder we show that the constructed matrix A has essentially the same properties as the
construction in Theorem 3.83.8. We first argue that any 2-approximation u, v for the Binary `0-Rank-1
problem on A picks all rows i > 2k and picks all even columns and does not pick any odd column. Thus,
the only remaining choice is which rows i 6 2k to pick. To prove this claim, first note that any solution
following this pattern has error at most 2kn = φn2, since the 2k undecided rows have 2kn entries, and
all other entries are correctly recovered by the already chosen parts of uvT . Hence, we have OPT 6 φn2.
Now consider any 2-approximation u, v, which must have cost at most 2φn2. Note that u picks at least
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(1− 5φ)n of the rows {2k + 1, . . . , n}, since each such row contains n/2 1’s that can only be recovered if
we pick the row, so we can afford to ignore at most 8k = 4φn of these n− 2k = (1− φ)n rows. Now, each
even column contains at least (1− 5φ)n > n/2 1’s in picked rows, and thus it is always better to pick the
even columns. Similarly, each odd column contains at least n/2 0’s in picked rows, and thus it is always
better not to pick the odd columns. Hence, we obtain without loss of generality v2j = 1 and v2j−1 = 0.
Finally, each row i > 2k contains n/2 1’s in columns picked by v and n/2 0’s in columns not picked by v,
and thus it is always better to pick row i. Hence, we obtain without loss of generality ui = 1 for i > 2k.

Our goal now is to lower bound ‖A−uvT ‖0 in terms of OPT and the error term bφ′n, similarly to the
proof in Theorem 3.83.8. Notice that we may ignore the odd columns, as they are not picked by v. Restricted
to the even columns, row 2i is exactly as row i in the construction in Theorem 3.83.8, while row 2i−1 is row
2i negated. Thus, analogously as in the proof of Theorem 3.83.8, we obtain w.h.p. OPT 6 (1/2− 0.99φ′)2kn
and

‖A− uvT ‖0 > OPT + 2bφ′n− 0.04kφ′n > (1 + 0.04φ′)OPT,

where b > 0.04k is the number of “bad” rows i 6 2k. Again analogously, if we compute a (1 + 0.04φ′) =
1 + Cφ)-approximation on A, then b 6 0.04k, and thus w.h.p. we correctly identify for at least a 0.96
fraction of the random variables Xi whether pi = 1/2 + φ′ or pi = 1/2− φ′. As before, this yields a lower
bound of Ω(n/φ) samples.

3.3 Exact Algorithm

A variant of the algorithm from Theorem 1.41.4 can also be used to solve the Binary `0-Rank-1 problem
exactly. This yields the following theorem, which in particular shows that the problem is in polynomial
time when OPT 6 O

(√
‖A‖0 log(mn)

)
.

Theorem 1.81.8 (from page 77). Given a matrix A ∈ {0, 1}m×n, if OPT/‖A‖0 6 1/240 then we can solve

exactly the Binary `0-Rank-1 problem in time 2O(OPT/
√
‖A‖0) · poly(mn).

Proof. This algorithm builds upon the algorithmic results established in Theorem 1.61.6 and Theorem 1.121.12,
and it consists of the following three phases:

1. Run the algorithm in Theorem 1.121.12 to compute a 3-approximation of ψ = OPT/‖A‖0, i.e. a number
φ ∈ [ψ, 3ψ].

2. Run Steps 1-4 of Algorithm 55, resulting in selected rows RS and columns CS , and undecided rows
R′ = RR \RS and columns C ′ = CR \CS . As shown above, the choices made by these steps are optimal.

3. For the remaining rows R′ and columns C ′ we use brute force to find the optimum solution.
Specifically, assume without loss of generality that |R′| 6 |C ′|. Enumerate all binary vectors u′ ∈ {0, 1}R′ .
For each u′, set ũi = u′i for all i ∈ R′ to complete the specification of a vector ũ ∈ {0, 1}m. We can now
find the optimal choice of vector ṽ in polynomial time, since the optimal choice is to set ṽj = 1 iff column
A:,j has more 1’s than 0’s in the support of ũ. Since some u′ gives rise to the optimal vector ũ = u, we
solve the Binary `0-Rank-1 problem exactly.

To analyze the running time, note that by Claim 3.63.6 we have

min{|R′|, |C ′|} 6 6φmin{α, β} 6 6φ
√
αβ.

By Lemma 3.13.1.77 and φ 6 3ψ, we obtain min{|R′|, |C ′|} = O(ψ
√
‖A‖0). Hence, we enumerate 2O(ψ

√
‖A‖0) =

2O(OPT/
√
‖A‖0) vectors u′, and the total running time is 2O(OPT/

√
‖A‖0) · poly(mn). This completes the

proof of Theorem 1.81.8.
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Chapter 4

Algorithms For Reals `0-Rank-k

Given a matrix A ∈ Rm×n with m > n, an integer k and an error ε ∈ (0, 1/2), our goal is to find
an approximate solution ũ ∈ Rm, ṽ ∈ Rn of the Reals `0-Rank-k problem such that ‖A − ũ · ṽT ‖0 6
(1 + ε)OPTk, where the optimal value is defined by

OPTk
def
= min

U∈Rm×k, V ∈Rk×n
‖A− U · V ‖0. (4.1)

Organization In Section 4.14.1, we design a poly(k, log n) bicriteria algorithm for the Reals `0-Rank-
k problem, which runs in polynomial time. In Section 4.24.2, we give an efficient (2 + ε)-approximation
algorithm for the Reals `0-Rank-1 problem.

4.1 Polytime Bicriteria Algorithm For Reals `0-Rank-k

This section is organized as follows. In Subsection 4.1.14.1.1, we prove a structural lemma that guarantees the
existence of k columns that yield a (k+1)-approximation of OPTk, and we also give an Ω(k)-approximation
lower bound for any algorithm that selects k columns from the input matrix A. In Subsection 4.1.24.1.2, we
give an approximation algorithm that runs in time poly(nk,m) and achieves O(k2)-approximation. To
the best of our knowledge, this is the first algorithm with provable non-trivial approximation guarantees.
In Subsection 4.1.34.1.3, we design a practical algorithm that runs in time poly(m,n) with an exponent
independent of k, if we allow for a bicriteria solution.

4.1.1 Structural Results

We give a novel structural result showing that any matrix A contains k columns which provide a (k + 1)-
approximation for the Reals `0-Rank-k problem (4.14.1).

Lemma 4.1. Let A ∈ Rm×n be a matrix and k be an integer. There is a subset J (k) ⊂ [n] of size k and
a matrix Z ∈ Rk×n such that ‖A−A:,J(k) · Z‖0 6 (k + 1)OPTk.

Proof. Let Q(0) be the set of columns j with UV:,j = 0, and let R(0) def
= [n]\Q(0). Let S(0) def

= [n], T (0) def
= ∅.

We split the value OPTk into OPT(S(0), R(0))
def
= ‖AS(0),R(0) − UVS(0),R(0)‖0 and

OPT(S(0), Q(0))
def
= ‖AS(0),Q(0) − UVS(0),Q(0)‖0 = ‖AS(0),Q(0)‖0.

Suppose OPT(S(0), R(0)) > |S(0)||R(0)|/(k + 1). Then, for any subset J (k) it follows that

min
Z
‖A−AS(0),J(k)Z‖0 6 |S(0)||R(0)|+ ‖AS(0),Q(0)‖0 6 (k + 1)OPTk.

Otherwise, there is a column i(1) such that∥∥AS(0),i(1) − (UV )S(0),i(1)

∥∥
0
6 OPT(S(0), R(0))/|R(0)| 6 OPTk/|R(0)|.

Let T (1) be the set of indices on which (UV )S(0),i(1) and AS(0),i(1) disagree, and similarly S(1) def
=

S(0)\T (1) on which they agree. Then we have |T (1)| 6 OPTk/|R(0)|. Hence, in the submatrix T (1) ×R(0)

the total error is at most |T (1)| · |R(0)| 6 OPTk. Let R(1), D(1) be a partitioning of R(0) such that AS(1),j

is linearly dependent on AS(1),i(1) iff j ∈ D(1). Then by selecting column A:,i(1) the incurred cost on

matrix S(1) ×D(1) is zero. For the remaining submatrix S(`) × R(`), we perform a recursive call of the
algorithm.
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We make at most k recursive calls, on instances S(`) ×R(`) for ` ∈ {0, . . . , k− 1}. In the `th iteration,
either OPT(S(`), R(`)) > |S(`)||R(`)|/(k + 1 − `) and we are done, or there is a column i(`+1) which
partitions S(`) into S(`+1), T (`+1) and R(`) into R(`+1), D(`+1) such that

|S(`+1)| > m ·
∏̀
i=0

(
1− 1

k + 1− i

)
=
k − `
k + 1

·m

and for every j ∈ D(`) the column AS(`+1),j belongs to the span of {AS(`+1),i(t)}`+1
t=1.

Suppose we performed k recursive calls. We show now that the incurred cost in submatrix S(k)×R(k) is
at most OPT(S(k), R(k)) 6 OPTk. By construction, |S(k)| > m/(k+1) and the sub-columns {AS(k),i}i∈I(k)
are linearly independent, where I(k) = {i(1), . . . , i(k)} is the set of the selected columns, and AS(k),I(k) =
(UV )S(k),I(k) . Since rank(AS(k),I(k)) = k, it follows that rank(US(k),:) = k, rank(V:,I(k)) = k and the matrix

V:,I(k) ∈ Rk×k is invertible. Hence, for matrix Z = (V:,I(k))
−1V:,Rk we have

OPT(S(k), R(k)) = ‖ASk,Rk −ASk,IkZ‖0.

The statement follows by noting that the recursive calls accumulate a total cost of at most k ·OPTk
in the submatrices T (`+1) × R(`) for ` ∈ {0, 1, . . . , k − 1}, as well as cost at most OPTk in submatrix
S(k) ×R(k).

We now show that any algorithm that selects k columns of a matrix A incurs at least an Ω(k)-
approximation for the Reals `0-Rank-k problem.

Lemma 4.2. Let k 6 n/2. Suppose A = (Gk×n; In×n) ∈ R(n+k)×n is a matrix composed of a Gaussian
random matrix G ∈ Rk×n with Gi,j ∼ N(0, 1) and identity matrix In×n. Then for any subset J (k) ⊂ [n]
of size k, we have minZ∈Rk×n‖A−A:,J(k) · Z‖0 = Ω(k) ·OPTk.

Proof. Notice that the optimum cost is at most n, achieved by selecting U = (Ik×k; 0n×k) and V = Gk×n.
It is well known that Gaussian matrices are invertible with probability 1, see e.g. [SST06SST06, Thm 3.3].
Hence, G:,J(k) is a nonsingular matrix for every subset J (k) ⊂ [n] of size k.

We will show next that for any subset J (k) of k columns the incurred cost is at least (n− k)k > nk/2.
Without loss of generality, the chosen columns J (k) = [k] are the first k columns of A. Let R = [2k] be
the first 2k rows and C = [n] \ J be the last n− k columns. We bound

min
Z
‖A−A:,[k]Z‖0 > min

Z
‖AR,C −AR,[k]Z‖0

=
∑
j∈C

min
z(j)
‖AR,j −AR,[k]z

(j)‖0,

i.e. we ignore all rows and columns except R and C. Consider any column j ∈ C. Since AR,j = (G:,j , 0k)
and AR,[k] = (G:,[k], Ik×k), for any vector z ∈ Rk we have

‖AR,j −AR,J(k)z‖0 = ‖G:,j −G:,[k]z‖0 + ‖Ik×kz‖0
= ‖G:,j −G:,[k]z‖0 + ‖z‖0.

Let `
def
= ‖z‖0. By symmetry, without loss of generality we can assume that the first ` entries of z are

non-zero and the remaining entries are 0. Let x ∈ R` be the vector containing the first ` entries of z.
Then we have

‖AR,j −AR,J(k)z‖0 = ‖G:,j −G:,[`]x‖0 + `.

We consider w.l.o.g. the first k columns of A, and we construct the optimum matrix Z that minimizes
‖A:,1:kZ−A‖0. Observe that it is optimal to set the first k columns of Z to Ik×k, and since A2k+1:n,1:k = 0
we can focus only on the submatrix A1:2k,k+1:n = (G1:k,k+1:n; 0k×n−k).

Consider a column A1:2k,j for j ∈ [k + 1, n]. Our goal is to find a vector v ∈ Rk minimizing the

objective function Ψ = minv{‖v‖0 + ‖G(k)v − g‖0}, where G(k) def
= {G1:k,1:k} and g

def
= G1:k,j . It holds

with probability 1 that G(k) and g do not have an entry equal to zero. Moreover, since G(k) is invertible
every row in [G(k)]−1 is non-zero, and thus with probability 1 a vector v = [G(k)]−1g has entry equal to
zero.

Let v = (x; 0) be an arbitrary vector with ‖x‖1 = `. Let G(`) be a submatrix of G(k) induced by the

first ` columns. For every subset S ⊂ [m] of ` rows the corresponding submatrix G
(`)
S,: has a full rank.
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Suppose there is a subset S such that for G
(`)
S,: and gS there is a vector x ∈ Rk satisfying G

(`)
S,:x = gS . Since

G
(`)
S,: is invertible, the existence of x implies its uniqueness. On the other hand, for any row i ∈ [m]\S

the probability of the event G
(`)
i,: x = gi is equals to 0. Since G(k)v = G(`)x and there are finitely many

possible subsets S as above, i.e.
(
m
`

)
6 m`, by union bound it follows that ‖G(k)v−g‖0 > k−`. Therefore,

it holds that φ > k.
The statement follows by noting that the total cost incurred by A:,1:k and any Z is lower bounded by

(n− k)k + (n− k) = (1− k/n) (k + 1)n.

4.1.2 Basic Algorithm

We give an impractical algorithm that runs in time poly(nk, sm) and achieves O(k2)-approximation.
To the best of our knowledge this is the first approximation algorithm for the `0-Rank-k problem with
non-trivial approximation guarantees.

Theorem 1.101.10 (from page 88). Given A ∈ Rm×n and k ∈ [n] we can compute in O(nk+1m2kω+1) time a
set of k indices J (k) ⊂ [n] and a matrix Z ∈ Rk×n such that ‖A−A:,J(k) · Z‖0 6 O(k2) ·OPTk.

We use as a subroutine the algorithm of Berman and Karpinski [BK02BK02] (attributed also to Kannan
in that paper) which given a matrix U and a vector b approximates minx ‖Ux− b‖0 in polynomial time.
Specifically, we invoke in our algorithm the following variant of this result established by Alon, Panigrahy,
and Yekhanin [APY09APY09].

Theorem 4.3. [APY09APY09] There is an algorithm that given a matrix A ∈ Rm×k and a vector b ∈ Rm,
outputs in time O(m2kω+1) a vector z ∈ Rk such that w.h.p. ‖Az − b‖0 6 k ·minx ‖Ax− b‖0.

Proof of Theorem 1.101.10. The existence of a subset J∗ of k columns of A and matrix Z∗ ∈ Rk×n with
‖A−A:,J∗Z

∗‖0 6 (k + 1)OPTk follows by Lemma 4.14.1. We enumerate all
(
n
k

)
subsets J (k) of k columns.

For each J (k), we split minZ‖A:,J(k)Z−A‖0 =
∑n
i=1 minz(i)‖A:,J(k)z(i)−A:,i‖0, and we run the algorithm

from Theorem 4.34.3 for each column A:,i, obtaining approximate solutions z̃(1), . . . , z̃(n) that form a matrix

Z̃. Then, we return the best solution (A:,J(k) , Z̃). To verify that this yields a k(k + 1)-approximation,

note that for J (k) = J∗ we have

‖A:,J∗Z̃ −A‖0 =

n∑
i=1

‖A:,J∗ z̃
(i) −A:,i‖0 6 k

n∑
i=1

min
z(i)
‖A:,J∗z

(i) −A:,i‖0

= k ·min
Z
‖A:,J∗Z −A‖0 6 k(k + 1) ·OPTk.

The time bound O(nk+1m2kω+1) is immediate from Theorem 4.34.3. This proves the statement.

4.1.3 Polynomial Time Bicriteria Algorithm

Our main contribution in this section is to design a practical algorithm that runs in time poly(n,m) with
an exponent independent of k, if we allow for a bicriteria solution.

Theorem 1.111.11 (from page 88). Given a matrix A ∈ Rm×n and an integer k, there is an algorithm that
in expected time poly(m,n) outputs a subset of indices J ⊂ [n] with |J | = O(k log(n/k)) and a matrix
Z ∈ R|J|×n such that ‖A−A:,J · Z‖0 6 O(k2 log(n/k)) ·OPTk.

The structure of the proof follows a recent approximation algorithm [CGK+17CGK+17, Algorithm 3] for the
`p-low rank approximation problem, for any p > 1. We note that the analysis of [CGK+17CGK+17, Theorem

7] is missing an O(log1/p n) approximation factor, and näıvely provides an O(k log1/p n)-approximation
rather than the stated O(k)-approximation. Further, it might be possible to obtain an efficient algorithm
yielding an O(k2 log k)-approximation for Theorem 1.111.11 using unpublished techniques in [SWZ18SWZ18]; we
leave the study of obtaining the optimal approximation factor to future work.

There are two critical differences with the proof of [CGK+17CGK+17, Theorem 7]. We cannot use the earlier
[CGK+17CGK+17, Theorem 3] which shows that any matrix A contains k columns which provide an O(k)-
approximation for the `p-low rank approximation problem, since that proof requires p > 1 and critically
uses scale-invariance, which does not hold for p = 0. Our combinatorial argument in Lemma 4.14.1 seems
fundamentally different than the maximum volume submatrix argument in [CGK+17CGK+17] for p > 1.

Second, unlike for `p-regression for p > 1, the `0-regression problem minx ‖Ux− b‖0 given a matrix
U and vector b is not efficiently solvable, since it corresponds to a nearest codeword problem which is
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Algorithm 6 Bicriteria Algorithm: Selecting O(k log(n/k)) Columns

ApproximatelySelectColumns(A, k)
ensure A has at least k log(n/k)) columns

1. If the number of columns of matrix A is less than or equal to 2k
2. Return all the columns of A
3. Else
4. Repeat
5. Let R be a set of 2k uniformly random columns of A
6. Until at least 1/10 fraction of columns of A are nearly approximately covered

7. Let AR be the columns of A not nearly approximately covered by R
8. Return R ∪ApproximatelySelectColumns(AR, k)

NP-hard [Ale11Ale11]. Thus, we resort to an approximation algorithm for `0-regression, based on ideas for
solving the nearest codeword problem in [APY09APY09, BK02BK02].

Note that OPTk 6 ‖A‖0. Since there are only mn+ 1 possibilities of OPTk, we can assume we know
OPTk and we can run the Algorithm 66 for each such possibility, obtaining a rank-O(k log n) solution,
and then outputting the solution found with the smallest cost.

This can be further optimized by forming instead O(log(mn)) guesses of OPTk. One of these guesses
is within a factor of 2 from the true value of OPTk, and we note that the following argument only needs
to know OPTk up to a factor of 2.

We start by defining the notion of approximate coverage, which is different than the corresponding
notion in [CGK+17CGK+17] for p > 1, due to the fact that `0-regression cannot be efficiently solved. Consequently,
approximate coverage for p = 0 cannot be efficiently tested. Let Q ⊆ [n] and M = A:,Q be an m × |Q|
submatrix of A. We say that a column M:,i is (S,Q)-approximately covered by a submatrix M:,S of M ,
if |S| = 2k and

min
x
‖M:,S · x−M:,i‖0 6

100(k + 1)OPTk
|Q|

. (4.2)

Lemma 4.4. (Similar to [CGK+17CGK+17, Lemma 6], but using Lemma 4.14.1) Let Q ⊆ [n] and M = A:,Q be a
submatrix of A. Suppose we select a subset R of 2k uniformly random columns of M . Then with probability
at least 1/3, at least a 1/10 fraction of the columns of M are (R,Q)-approximately covered.

Proof. To show this, as in [CGK+17CGK+17], consider a uniformly random column index i not in the set R.

Let T
def
= R ∪ {i}, η def

= minrank(B)=k‖M:,T − B‖0, and B?
def
= arg minrank(B)=k‖M − B‖0. Since T is a

uniformly random subset of 2k + 1 columns of M , we have

ET η 6 ET ‖M:,T −B?:,T ‖0 =
∑

T∈( |Q|2k+1)

∑
i∈T
‖M:,i −B?:,i‖0Pr [T ]

=
∑
i∈Q

(|Q|−1
|T−1|

)(|Q|
|T |
) ‖M:,i −B?:,i‖0 =

(2k + 1)OPTMk
|Q|

6
(2k + 1)OPTk

|Q|
.

Then, by a Markov bound, we have Pr[η 6 10(2k+1)OPTk
|Q| ] > 9/10. Let E1 denotes this event.

Fix a configuration T = R ∪ {i} and let L(T ) ⊂ T be the subset guaranteed by Lemma 4.14.1 such that
|L(T )| = k and

min
X
‖M:,L(T )X −M:,T ‖0 6 (k + 1) min

rank(B)=k
‖M:,T −B‖0.

Notice that

Ei
[
min
x
‖M:,L(T )x−M:,i‖0 | T

]
=

1

2k + 1
min
X
‖M:,L(T )X −M:,T ‖0,

and thus by the law of total probability we have

ET
[
min
x
‖M:,L(T )x−M:,i‖0

]
6

(k + 1)η

2k + 1
.

Let E2 denote the event that minx ‖M:,Lx−M:,i‖0 6 10(k+1)η
2k+1 . By a Markov bound, Pr[E2] > 9/10.
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Further, as in [CGK+17CGK+17], let E3 be the event that i /∈ L. Observe that there are
(
k+1
k

)
ways to choose

a subset R′ ⊂ T such that |R′| = 2k and L ⊂ R′. Since there are
(

2k+1
2k

)
ways to choose R′, it follows

that Pr[L ⊂ R | T ] = k+1
2k+1 > 1/2. Hence, by the law of total probability, we have Pr[E3] > 1/2.

As in [CGK+17CGK+17], Pr[E1 ∧ E2 ∧ E3] > 2/5, and conditioned on E1 ∧ E2 ∧ E3,

min
x
‖M:,Rx−M:,i‖0 6 min

x
‖M:,Lx−M:,i‖0 6

10(k + 1)η

2k + 1
6

100(k + 1)OPTk
|Q|

, (4.3)

where the first inequality uses that L is a subset of R given E3, and so the regression cost cannot decrease,
while the second inequality uses the occurrence of E2 and the final inequality uses the occurrence of E1.

As in [CGK+17CGK+17], if Zi is an indicator random variable indicating whether i is approximately covered

by R, and Z =
∑
i∈Q Zi, then ER[Z] > 2|Q|

5 and ER[|Q| −Z] 6 3|Q|
5 . By a Markov bound, it follows that

Pr[|Q| − Z > 9|Q|
10 ] 6 2

3 . Thus, probability at least 1/3, at least a 1/10 fraction of the columns of M are
(R,Q)-approximately covered.

Given Lemma 4.44.4, we are ready to prove Theorem 1.111.11. As noted above, a key difference with the
corresponding [CGK+17CGK+17, Algorithm 3] for `p and p > 1, is that we cannot efficiently test if the i-th
column is approximately covered by the set R. We will instead again make use of Theorem 4.34.3.

Proof of Theorem 1.111.11. The computation of matrix Z force us to relax the notion of (R,Q)-approximately
covered to the notion of (R,Q)-nearly-approximately covered as follows: we say that a column M:,i is
(R,Q)-nearly-approximately covered if, the algorithm in Theorem 4.34.3 returns a vector z such that

‖M:,Rz −M:,i‖0 6
100(k + 1)2OPTk

|Q|
. (4.4)

By the guarantee of Theorem 4.34.3, if M:,i is (R,Q)-approximately covered then it is also with probability
at least 1− 1/ poly(mn) (R,Q)-nearly-approximately covered.

Suppose Algorithm 66 makes t iterations and let A:,∪ti=1Ri
and Z be the resulting solution. We bound

now its cost. Let B0 = [n], and consider the i-th iteration of Algorithm 66. We denote by Ri a set of
2k uniformly random columns of Bi−1, by Gi a set of columns that is (Ri, Bi−1)-nearly-approximately
covered, and by Bi = Bi−1\{Gi ∪Ri} a set of the remaining columns. By construction, |Gi| > |Bi−1|/10
and

|Bi| 6
9

10
|Bi−1| − 2k <

9

10
|Bi−1|.

Since Algorithm 66 terminates when Bt+1 6 2k, we have

2k < |Bt| <
(

1− 1

10

)t
|B0| =

(
1− 1

10

)t
n,

and thus the number of iterations t 6 10 log(n/2k). By construction, |Gi| = (1 − αi)|Bi−1| for some
αi 6 9/10, and hence

t∑
i=1

|Gi|
|Bi−1|

6 t 6 10 log
n

2k
. (4.5)

Therefore, the solution cost is bounded by

‖A:,∪ti=1Ri
Z −A‖0 =

t∑
i=1

∑
j∈Gi

‖A:,Riz
(j) −A:,j‖0

Lem.4.44.4
6

t∑
i=1

∑
j∈Gi

k ·min
x(j)
‖A:,Rix

(j) −A:,j‖0
(4.44.4)

6
t∑
i=1

∑
j∈Gi

100 (k + 1)
2

OPTk
|Bi−1|

= 100 (k + 1)
2

OPTk ·
t∑
i=1

|Gi|
|Bi−1|

(4.54.5)

6 O
(
k2 · log

n

2k

)
·OPTk.

By Lemma 4.44.4, the expected number of iterations of selecting a set Ri such that |Gi| > 1/10|Bi−1| is
O(1). Since the number of recursive calls t is bounded by O(log(n/k)), it follows by a Markov bound that
Algorithm 66 chooses O(k log(n/k)) columns in total. Since the approximation algorithm of Theorem 4.34.3
runs in polynomial time, our entire algorithm has expected polynomial time.
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4.2 Approximation Algorithm for Reals `0-Rank-1

Given a matrix A ∈ Rm×n with m > n, and an error ε ∈ (0, 1/2), our goal is to find an approximate
solution ũ ∈ Rm, ṽ ∈ Rn of the Reals `0-Rank-1 problem such that ‖A− ũ · ṽT ‖0 6 (2 + ε)OPT1, where
the optimal value is defined by

OPT1
def
= min

u∈Rm, v∈Rn
‖A− u · vT ‖0. (4.6)

In the trivial case when OPT1 = 0, there is an optimal algorithm that runs in time O(‖A‖0) and
finds the exact rank-1 decomposition uvT of a matrix A. Here, we focus on the case when OPT1 > 1.
We will show that Algorithm 77 yields a (2 + ε)-approximation and runs in nearly linear time in ‖A‖0, for
any constant ε > 0. Further, a variant of our algorithm even runs in sublinear time, if ‖A‖0 is large and

ψ
def
= OPT1/‖A‖0 (4.7)

is not too small. In particular, we obtain sublinear time o(‖A‖0) when OPT1 > (ε−1 log(mn))4 and
‖A‖0 > n(ε−1 log(mn))4.

Theorem 1.121.12 (from page 99). There is an algorithm that, given A ∈ Rm×n with column adjacency arrays
and OPT1 > 1, and given ε ∈ (0, 0.1], runs w.h.p. in time

O

((n logm

ε2
+ min

{
‖A‖0, n+ ψ−1 log n

ε2

}) log2 n

ε2

)
and outputs a column A:,j and a vector z ∈ Rn such that w.h.p. ‖A − A:,j · zT ‖0 6 (2 + ε)OPT1. The
algorithm also computes an estimate Y satisfying w.h.p. (1− ε)OPT1 6 Y 6 (2 + 2ε)OPT1.

In fact, our analysis of Theorem 1.121.12 directly applies to the Binary `0-Rank-1 problem, and yields as
a special case the following result (which is used to prove Theorem 1.61.6 in Section 1.21.2).

Theorem 1.51.5 (from page 77). Let OPT = minu∈{0,1}m, v∈{0,1}n‖A − u · vT ‖0. Given a binary matrix
A ∈ {0, 1}m×n with column adjacency arrays and OPT > 1, and given ε ∈ (0, 0.1], we can compute w.h.p.
in time

O

((n logm

ε2
+ min

{
‖A‖0, n+ ψ−1 log n

ε2

}) log2 n

ε2

)
a column A:,j and a binary vector z ∈ {0, 1}n such that w.h.p. ‖A− A:,j · zT ‖0 6 (2 + ε)OPT. Further,
we can compute an estimate Y such that w.h.p. (1− ε)OPT 6 Y 6 (2 + 2ε)OPT.

The rest of this section is devoted to proving Theorem 1.121.12. We start by presenting the pseudocode
of Algorithm 77.

Algorithm 7 Reals `0-Rank-1: Approximation Scheme

Input: A ∈ Rm×n and ε ∈ (0, 0.1).

1. Partition the columns of A into weight-classes S = {S(0), . . . , S(1+logn)} such that
i) S(0) contains all columns j with ‖A:,j‖0 = 0, and
ii) S(i) contains all columns j with 2i−1 6 ‖A:,j‖0 < 2i.

2. For each weight-class S(i) do:
2.1 Sample a set C(i) of Θ(ε−2 log n) elements uniformly at random from S(i).
2.2 Find a (1 + ε

15 )-approximate solution z(j) ∈ Rn for each column A:,j ∈ C(i), i.e.∥∥A−A:,j · [z(j)]T
∥∥

0
6
(

1 +
ε

15

)
min
v

∥∥A−A:,j · vT
∥∥

0
. (4.8)

3. Compute a (1 + ε
15 )-approximation Yj of ‖A−A:,j · [z(j)]T ‖0 for every j ∈

⋃
i∈[|S|] C

(i).

4. Return the pair (A:,j , z
(j)) corresponding to the minimal value Yj .

The only steps for which the implementation details are not immediate are Steps 2.2 and 3. We will
discuss them in Sections 4.2.24.2.2 and 4.2.34.2.3, respectively.

Note that the algorithm from Theorem 1.121.12 selects a column A:,j and then finds a good vector z
such that the product A:,j · zT approximates A. We show that the (2 + ε)-approximation guarantee is
essentially tight for algorithms following this pattern.
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Lemma 4.5. There exist a matrix A ∈ Rn×n such that minz‖A − A:,j · zT ‖0 > 2(1 − 1/n)OPT1, for
every column A:,j.

Proof of Lemma 4.54.5. Let A = I + J ∈ Rn×n, where I is an identity matrix and J = 11T is an all-
ones matrix. Note that OPT1 6 n is achieved by approximating A with the rank-1 matrix J . On the
other hand, when we choose u = A:,i for any i ∈ [n], the incurred cost on any column A:,j , j 6= i, is
minx‖A:,j − xA:,i‖0 = 2, since there are two entries where A:,i and A:,j disagree. Hence, the total cost is
at least 2n− 2 > (2− 2/n)OPT1.

4.2.1 Correctness

We first prove the following structural result, capturing Steps 1-2.2 of Algorithm 77.

Lemma 4.6. Let C(0), . . . , C(logn+1) be the sets constructed in Step 2.1 of Algorithm 77, and let C =
C(0) ∪ . . . ∪ C(logn+1). Then w.h.p. C contains an index j such that

min
z
‖A−A:,j · zT ‖0 6 (2 + ε/2)OPT1.

Proof. Let u, v be an optimum solution of (4.64.6). For the weight class S(0) containing all columns without
nonzero entries, setting zc = 0 for any c ∈ S(0) gives zero cost on these columns, no matter what column
A:,j we picked. Hence, without loss of generality in the following we assume that S(0) = ∅.

For any i > 1, we partition the weight class S(i) into N (i), Z(i) such that vi = 0 for every i ∈ Z(i)

and vi 6= 0 for i ∈ N (i). We denote by S+ the set of weight-classes S(i) with |N (i)| > 1
3 |S

(i)|. Let

R =
⋃
i∈S+ S(i) and W = [n]\R. We partition R = N ∪ Z such that vi = 0 for every i ∈ Z and vi 6= 0

for i ∈ N . Further, using the three sets N ,Z and W we decompose OPT1 into

OPT1 = OPTN + OPTZ + OPTW

= ‖A:,N − u · vTN ‖0 + ‖A:,Z‖0 + ‖A:,W − u · vTW‖0.

The proof proceeds by case distinction:

The set Z: For any column A:,j of A, we have

min
zZ
‖A:,Z −A:,j · zTZ‖0 6 ‖A:,Z −A:,j · 0‖0 = ‖A:,Z‖0 = OPTZ . (4.9)

The set W: Note that W consists of all weight classes S(i) with |Z(i)| > 2
3 |S

(i)|. For any such weight

class S(i), the optimum cost satisfies

‖A:,S(i) − uvTS(i)‖0 > ‖A:,Z(i)‖0 >
2

3
|S(i)|2i−1 =

1

3
|S(i)|2i.

Further, for any column A:,j of A, we have

min
z
‖A:,S(i) −A:,jz

T ‖0 6 ‖A:,S(i)‖0 6 ‖A:,Z(i)‖0 +
1

3
|S(i)|2i

6 2‖A:,Z(i)‖0 6 2‖A:,S(i) − uvTS(i)‖0,

and thus the total cost in W is bounded by

min
zW
‖A:,W −A:,j · zTW‖0 =

∑
i∈W

min
z
S(i)

‖A:,S(i) −A:,j · zTS(i)‖0 6 2‖A:,W − uvTW‖0 = 2 OPTW . (4.10)

The set N : By an averaging argument there is a subset G ⊆ N of size |G| > ε
3 |N | such that for every

j ∈ G we have

‖A:,j − vj · u‖0 6
1

1− ε/3
· OPTN
|N |

6
(

1 +
ε

2

)
· OPTN
|N |

.

Let j ∈ G be arbitrary. Furthermore, let P (j) be the set of all rows i with Ai,j = vj · ui, and let
Q(j) = [m] \ P (j). By construction, we have |Q(j)| 6 (1 + ε

2 )OPTN /|N |. Moreover, since j ∈ N we have
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vj 6= 0, and thus we may choose zN = 1
vj
vN . This yields

min
zN
‖A:,N −A:,j · zTN ‖0 6 ‖A:,N −A:,j ·

1

vj
vTN ‖0

= ‖AP (j),N − uP (j) · vTN ‖0 + ‖AQ(j),N −A:,j ·
1

vj
vTN ‖0

6 OPTN +
(

1 +
ε

3

)
OPTN =

(
2 +

ε

3

)
OPTN . (4.11)

Hence, by combining (4.94.9), (4.104.10) and (4.114.11), it follows for any index j ∈ G that

min
z
‖A−A:,j · zT ‖0

= min
zW
‖A:,W −A:,j · zTW‖0 + min

zZ
‖A:,Z −A:,j · zTZ‖0 + min

zN
‖A:,N −A:,j · zTN ‖0

6 2 OPTW + OPTZ +
(

2 +
ε

2

)
OPTN 6

(
2 +

ε

2

)
OPT1.

This yields the desired approximation guarantee, provided that we sampled a column A:,j from G. We
show next that whenever N 6= ∅, our algorithm samples with high probability at least one column from
G.

Before that let us consider the case when N = ∅. Then, since the bounds (4.94.9) and (4.104.10) hold for
any column A:,j of A, the set C contains only good columns. Thus, we may assume that N 6= ∅.

We now analyze the probability of sampling a column A:,j from G. By construction, the set N is the
union of all N (i) such that |N (i)| > 1

3 |S
(i)|. As shown above, we have |G| > ε

3 |N |, and thus there is an

index i satisfying |G∩S(i)| > ε
3 |N

(i)| > ε
9 |S

(i)|. Hence, when sampling a uniformly random element from

S(i) we hit G with probability at least ε
9 . Since we sample Θ(ε−2 log n) elements from S(i), we hit G with

high probability. This finishes the proof.

Correctness Proof of Algorithm 77: It remains to show that the pair (A:,j , z
j) with minimum

estimate Yj yields a (2 + ε)-approximation to OPT1. By Step 3, for every column j we have(
1 +

ε

15

)−1

· ‖A−A:,j [z
(j)]T ‖0 6 Yj 6

(
1 +

ε

15

)
· ‖A−A:,j [z

(j)]T ‖0. (4.12)

Since Yj 6 Yj′ for any other column j′, (4.124.12) and the approximation guarantee of Steps 2.2 yield(
1 +

ε

15

)−1

‖A−A:,j [z
(j)]T ‖0 6

(
1 +

ε

15

)
‖A−A:,j′ [z

(j′)]T ‖0 6
(

1 +
ε

15

)2

min
z

∥∥A−A:,j′z
T
∥∥

0
.

By Lemma 4.64.6, w.h.p. there exists a column j′ ∈ C with minz ‖A − A:,j′z
T ‖0 6 (2 + ε

2 )OPT1. We
obtain a total approximation ratio of (1 + ε

15 )3(2 + ε
2 ) 6 2 + ε for any error 0 < ε 6 0.1, i.e. we have

‖A−A:,j [z
(j)]T ‖0 6 (2 + ε)OPT1. Therefore, it holds that

(1− ε)OPT1 6
(

1 +
ε

15

)−1

OPT1 6 Yj 6
(

1 +
ε

15

)
(2 + ε)OPT1 6 (2 + 2ε)OPT1.

This finishes the correctness proof.

4.2.2 Implementing Step 2.2

Step 2.2 of Algorithm 77 uses the following sublinear procedure.

Algorithm 8 Reals `0-Rank-1: Objective Value Estimation

Input: A ∈ Rm×n, u ∈ Rm and ε ∈ (0, 1).

let t
def
= Θ(ε−2 logm), N

def
= supp(u), and p

def
= t/|N |.

1. Select each index i ∈ N with probability p and let S be the resulting set.
2. Compute a vector z ∈ Rn such that zj = arg minr∈R ‖AS,j − r · uS‖0 for all j ∈ [n].
3. Return the vector z.

We prove now the correctness of Algorithm 88 and we analyze its runtime.
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Lemma 4.7. Given A ∈ Rm×n, u ∈ Rm and ε ∈ (0, 1) we can compute in time O
(
ε−2n logm

)
a vector

z ∈ Rn such that w.h.p. for every i ∈ [n] it holds that

‖A:,i − ziu‖0 6 (1 + ε) min
vi∈R
‖A:,i − viu‖0.

Proof. Let N,Z be a partitioning of [m] such that ui = 0 for i ∈ Z and ui 6= 0 for i ∈ N . Since
‖A− u · zT ‖0 = ‖AN,: − uN · zT ‖0 + ‖AZ,:‖0, it suffices to find a vector z such that for every j ∈ [n] we
have

‖AN,j − zj · uN‖0 6 (1 + ε) ·min
vj
‖AN,j − vj · uN‖0 . (4.13)

Let j ∈ [n] be arbitrary. For r ∈ R let G(r)
def
= {i ∈ N : Ai,j/ui = r} be the set of entries of AN,j that

we correctly recover by setting zj = r. Note that ‖AN,j − zj · uN‖0 = |N | − |G(zj)| holds for any zj ∈ R.

Hence, the optimal solution sets zj = r?
def
= arg maxr∈R |G(r)|.

Let XG(r) be a random variable indicating the number of elements selected from group G(r) in Step
1 of Algorithm 88. Notice that E[XG(r)] = t · |G(r)|/|N |, and by Chernoff bound w.h.p. we have

|XG(r) − E[XG(r)]| 6 (ε/8) · t. (4.14)

Let S ⊆ N be the set of selected indices. Further, since |S| =
∑
`XG(r) and E[|S|] = t, by Chernoff

bound we have w.h.p. |S| 6 (1 + ε)|t|. Observe that Step 2 of Algorithm 88 selects zj = arg maxr∈RXG(r),
since ‖AS,j − r · uS‖0 = |S| −XG(r). We now relate zj to r?. The proof proceeds by case distinction on

δ?
def
= |G(r?)|/|N |.

Case 1: Suppose δ? 6 ε/4. Then ‖AN,j − r ·uN‖0 > (1− ε/4)|N | for every r ∈ R, and thus no matter
which zj is selected we obtain a (1 + ε)-approximation, since

‖AN,j − zj · uN‖0 6 |N | 6 (1 + ε) min
r
‖AN,j − r · uN‖0.

Case 2: Suppose δ? > 1/2 + ε. Then, by (4.144.14) w.h.p. we have

XG(r?) > E[XG(r?)]− (ε/8)t = (δ? − ε/8)t > (1 + ε)t/2 > |S|/2,

and thus Xr? is maximal among all Xr. Hence, we select the optimal zj = r?.

Case 3: Suppose ε/4 < δ? < 1/2 + ε. Let zj = r be the value chosen by Algorithm 88. By (4.144.14), the
event of making a mistake, given by XG(r) > XG(r?), happens when

E[XG(r)] + (ε/8)t > E[XG(r?)]− (ε/8)t. (4.15)

Let δ
def
= |G(r)|/|N | and note that (4.154.15) implies δ > δ? − ε/4. Hence, for the selected r 6= r? we have

‖AN,j − r · uN‖0 = (1− δ)|N | 6 (1− δ? + ε/4)|N |
6 (1 + ε)(1− δ?)|N | = (1 + ε)‖AN,j − r? · uN‖0.

Therefore, in each of the preceding three cases, we obtain w.h.p. a (1 + ε)-approximate solution. The
statement follows by the union bound.

4.2.3 Implementing Step 3

In Step 3 of Algorithm 77 we want to compute a (1 + ε
15 )-approximation Yj of ‖A − A:,j · [z(j)]T ‖0 for

every j ∈
⋃
i∈[|S|] C

(i). We present two solutions, an exact algorithm (see Lemma 4.84.8) and a sublinear

time sampling-based algorithm (see Lemma 4.104.10).

Lemma 4.8. Suppose A,B ∈ Rm×n are represented by column adjacency arrays. Then, we can compute
in time O(‖A‖0 + n) the measure ‖A−B‖0.

Proof. We partition the entries of A into five sets:

T1 = {(i, j) : Aij = 0 and Bij 6= 0} , T4 = {(i, j) : 0 6= Aij = Bij 6= 0} ,
T2 = {(i, j) : Aij 6= 0 and Bij = 0} , T5 = {(i, j) : Aij = Bij = 0} ,
T3 = {(i, j) : 0 6= Aij 6= Bij 6= 0} .
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Observe that ‖A − B‖0 = |T1| + |T2| + |T3| and ‖B‖0 = |T1| + |T3| + |T4|. Since ‖A − B‖0 =
‖B‖0 + |T2| − |T4|, it suffices to compute the numbers ‖B‖0, |T2| and |T4|. We compute |T2| and |T4| in
O(‖A‖0) time, by enumerating all non-zero entries of A and performing O(1) checks for each. For ‖B‖0,
we sum the column lengths of B in time O(n).

For our second, sampling-based implementation of Step 3, we make use of an algorithm by Dagum et
al. [DKLR00DKLR00] for estimating the expected value of a random variable. We note that the runtime of their
algorithm is a random variable, the magnitude of which is bounded w.h.p. within a certain range.

Theorem 4.9. [DKLR00DKLR00] Let X be a random variable taking values in [0, 1] with µ
def
= E[X] > 0. Let

0 < ε, δ < 1 and ρX = max{Var[X], εµ}. There is an algorithm with sample access to X that computes
an estimator µ̃ in time t such that for a universal constant c we have

i) Pr[(1− ε)µ 6 µ̃ 6 (1 + ε)µ] > 1− δ and ii) Pr[t > c · ε−2µ−2ρX log(1/δ)] 6 δ.

We state now our key technical insight, on which we build upon our sublinear algorithm.

Lemma 4.10. There is an algorithm that, given A,B ∈ Rm×n with column adjacency arrays and
‖A−B‖0 > 1, and given ε > 0, computes an estimator Z that satisfies w.h.p.

(1− ε)‖A−B‖0 6 Z 6 (1 + ε)‖A−B‖0.

The algorithm runs w.h.p. in time O(n+ ε−2 ‖A‖0+‖B‖0
‖A−B‖0 log n}).

Proof. By Lemma 1.91.9, after O(n) preprocessing time we can sample a uniformly random non-zero entry
from A or B in time O(1).

We consider the following random process:

1. Sample C ∈ {A,B} such that Pr[C = A] = ‖A‖0
‖A‖0+‖B‖0 and Pr[C = B] = ‖B‖0

‖A‖0+‖B‖0 .

2. Sample (i, j) uniformly at random from the non-zero entries of C
3. Return:

X =


0, if Aij = Bij ;

1/2, if 0 6= Aij 6= Bij 6= 0;

1, if Aij 6= Bij and either Aij or Bij equals 0.

Observe that

E[X] =
∑

(i,j) : Aij 6=Bij=0

‖A‖0
‖A‖0 + ‖B‖0

· 1

‖A‖0
+

∑
(i,j) : 0=Aij 6=Bij

‖B‖0
‖A‖0 + ‖B‖0

· 1

‖B‖0

+
∑

(i,j) : 0 6=Aij 6=Bij 6=0

(
1

2
· ‖A‖0
‖A‖0 + ‖B‖0

· 1

‖A‖0
+

1

2
· ‖B‖0
‖A‖0 + ‖B‖0

· 1

‖B‖0

)

=
‖A−B‖0
‖A‖0 + ‖B‖0

.

Straightforward checking shows that X ∈ [0, 1] implies Var[X] 6 E[X], and thus

ρX = max{Var[X], ε · E[X]} 6 E[X].

Theorem 4.94.9 applied with δ = 1/poly(n), yields w.h.p. in O(ε−2E[X]−1 log n) = O(ε−2 ‖A‖0+‖B‖0
‖A−B‖0 log n)

time an estimator (1 − ε)E[X] 6 µ̃ 6 (1 + ε)E[X]. Then, w.h.p. the estimator Z
def
= (‖A‖0 + ‖B‖0)µ̃

satisfies the statement.

We present now our main result in this section.

Theorem 4.11. There is an algorithm that, given A ∈ Rm×n with column adjacency arrays and OPT1 >
1, and given j ∈ [n], v ∈ Rm and ε ∈ (0, 1), outputs an estimator Y that satisfies w.h.p.

(1− ε)‖A−A:,j · vT ‖0 6 Y 6 (1 + ε)‖A−A:,j · vT ‖0.

The algorithm runs w.h.p. in time O(min{‖A‖0, n+ ε−2ψ−1 log n}), where ψ = OPT1/‖A‖0.
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Proof. Let B
def
= A:,jv

T and observe that ‖A− B‖0 > OPT1 > 1. Note that we implicitly have column
adjacency arrays for B, since for any column c with vc = 0 there are no non-zero entries in B:,c, and for
any column c with vc = 1 the non-zero entries of B:,c are the same as for A:,j . Hence, Lemma 4.84.8 and
Lemma 4.104.10 are applicable.

We analyze the running time of Lemma 4.104.10. Note that if ‖B‖0 6 (1 + ψ)‖A‖0 then ‖A‖0+‖B‖0
‖A−B‖0 6

(2 + ψ)/ψ, and otherwise, i.e. (1 + ψ)‖A‖0 6 ‖B‖0, we have

‖A−B‖0 > ‖B‖0 − ‖A‖0 > ψ
1+ψ‖B‖0

and thus ‖A‖0+‖B‖0
‖A−B‖0 6 2(1+ψ)/ψ. Hence, ‖A‖0+‖B‖0

‖A−B‖0 < 4/ψ, which yields w.h.p. time O(n+ε−2ψ−1 log n).

We execute in parallel the algorithms from Lemma 4.84.8 and Lemma 4.104.10. Once the faster algorithm
outputs a solution, we terminate the execution of the slower one. Note that this procedure runs w.h.p in
time O(min{‖A‖0, n+ ε−2ψ−1 log n}), and returns w.h.p. the desired estimator Y .

To implement Step 3 of Algorithm 77, we simply apply Theorem 4.114.11 with A, ε and v = z(j) to each
sampled column j ∈

⋃
06i6logn+1 C

(i).

4.2.4 Analyzing the Runtime of Algorithm 77

Consider Algorithm 77. In Steps 1, 2 and 2.1, from each of the O(log n) weight classes we sample O(ε−2 log n)
columns. In Step 2.2, for each sampled column we use Lemma 4.74.7, which takes time O(ε−2n logm) per
column, or O(ε−4n logm log2 n) in total. Further, in Step 3, we use Theorem 4.114.11 for each sampled column,
which w.h.p. takes time O(min{‖A‖0, n+ ε−2ψ−1 log n}) per column, or in total

O(min{‖A‖0, n+ ε−2ψ−1 log n} · ε−2 log2 n).

Then, the total runtime is bounded by

O(ε−4n logm log2 n+ min{‖A‖0ε−2 log2 n, ε−4ψ−1 log3 n}).

4.2.5 Proof of Lemma 1.91.9

Note that we are given the number of nonzero entries `j = ‖A:,j‖0 for each column. We want to first
sample a column X ∈ [n] such that Pr[X = j] = `j/

∑
k∈[n] `k, then sample Y ∈ [`j ] uniformly, read

BX [Y ] = (i, Ai,X), and return Ai,X . Observe that this process indeed samples each nonzero entry
of A with the same probability, since the probability of sampling a particular nonzero entry (i, j) is
(`j/

∑
k∈[n] `k) · (1/`j) = 1/

∑
k∈[n] `k. Sampling Y ∈ [`j ] uniformly can be done in constant time by

assumption. For sampling X, we use the classic Alias Method by Walker [Wal74Wal74], which is given the
probabilities Pr[X = 1], . . . ,Pr[X = n] as an input and computes, in time O(n), a data structure that
allows to sample from X in time O(1). This finishes the construction.
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Part II

Approximate Spectral Clustering

Proceedings

This part is based on an article [KM16KM16] that was presented at ESA’16 and on its
journal version which is under submission as of July 2018. The full ArXiv version is available
online [KM18KM18].
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Chapter 5

Introduction

A cluster in an undirected graph G = (V,E) is a subset S of nodes whose volume is large compared to
the number of outside connections. Formally, the conductance of S is defined as

φ(S)
def
=

|E(S, S)|
min{µ(S), µ(S)}

, (5.1)

where the volume of S is given by µ(S)
def
=
∑
v∈S deg(v). We are interested in the problem of partitioning

the nodes into a given number k of clusters in a way that (approximately) minimizes the k-way conductance

ρ̂(k)
def
= min

partition (P1, . . . , Pk) of V
max

i∈{1,...,k}
φ(Pi). (5.2)

The 2-way partitioning constant is also known as the conductance of the graph and is denoted as

φG
def
= min

S⊆V
φ(S). (5.3)

The k-way partitioning problem arises in many applications, e.g., image segmentation and exploratory
data analysis. We refer to the survey [vL07vL07] for additional information. Further, the surveys [SM00SM00,
KVV04KVV04, vL07vL07] discuss properties of graphs with small or large conductance.

Hardness and Approximation

The k-way partitioning problem is known to be NP-hard, even for k = 2 [MS90MS90]. In the case when
k = 2, the k-way partitioning problem reduces to the graph conductance problem (5.35.3), for which there
is an approximation algorithm [Chu97Chu97] that computes a bipartition (S, S) such that φ(S) 6

√
2φG. The

algorithm computes an eigenvector corresponding to the second smallest eigenvalue of a normalized
Laplacian matrix, sorts the eigenvector’s entries, and performs a sweep over the sorted vector. It is
guaranteed that one of the resulting sweep sets satisfies the approximation bound.

The fact that the second eigenvector encodes sufficient information for computing an approximate
bipartition with small conductance, motivate researchers to consider the bottom k eigenvectors in order to
approximately solve the k-way partitioning problem. The resulting approach is called Spectral Clustering.

Spectral Clustering

Given an undirected graph G = (V,E) and a number of clusters k, the Spectral Clustering algorithm
consists of the following two steps:

(i) Compute the bottom k eigenvectors of the normalized Laplacian matrix of G, and store them
as the columns of a matrix Y ∈ Rn×k. The i-th node of G is associated with the i-th row of Y ,
i.e. a vector in Rk. This step is known as Spectral Embedding (SE).

(ii) Partition the resulting vector set into k clusters using a k-means clustering algorithm.

This meta algorithm has been successfully applied in practice for solving challenging clustering
problems, in the fields of: image segmentation, pattern recognition, data mining, community detection and
VLSI design [AY95AY95, SM00SM00, NJW01NJW01, MBLS01MBLS01, BN01BN01, LZ04LZ04, ZP04ZP04, WS05WS05, vL07vL07, WD12WD12, Tas12Tas12, CKC+16CKC+16].

Approximate Spectral Clustering

Exact computation of Spectral Clustering is expensive due to the following two bottlenecks:
(i) the best algorithm for computing a SE exactly requires time Ω(nω), cf. [Woo14Woo14];
(ii) the k-means clustering problem is NP-hard [MNV12MNV12].
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It is therefore necessary to relax the preceding two problems and to focus on designing approximation
schemes for them. Several approximation techniques were developed for Spectral Clustering [Pre81Pre81, ST14ST14,
YHJ09YHJ09, CCDL14CCDL14, FBCM04FBCM04, PP04PP04, BHH+06BHH+06, WLRB09WLRB09, Nys30Nys30, WD12WD12, Tas12Tas12, LC10LC10, Woo14Woo14].

The Power method [LC10LC10, Woo14Woo14] is perhaps the most popular technique for computing an approxi-
mate SE, due to its simplicity and ease of implementation. Furthermore, this technique was successfully
applied for low-rank matrix approximation [Woo14Woo14], and it has a worst case convergence guarantee in terms
of a principal angle between the space spanned by the approximate and the true eigenvectors [GVL96GVL96,
Theorem 8.2.4].

Although, the k-means clustering problem is NP-hard [MNV12MNV12], it admits a polynomial time approx-
imation scheme (PTAS) [KSS04KSS04, HK05HK05, FMS07FMS07, ORSS13ORSS13]. However, the best PTAS for computing a
(1 + ε) approximation incurs a factor 2poly(k/ε) in the runtime.

On the other hand, it is folklore that the approximate variant of Spectral Clustering which computes
an approximate SE via the Power method, and applies to it an approximate k-means clustering algorithm,
recovers a good approximation of an optimal k-way node partition of G and at the same time runs
efficiently (in nearly-linear time).

It is an important task for theory to explain the practical success of Approximate Spectral Clustering,
and in particular to resolve the following three questions. In order to state them, we need some notation.
Let Y be a SE computed exactly, and Ỹ be an approximate SE computed via the Power method. Further,
let X (X̃) be an optimal k-means clustering partition of the rows of Y (Ỹ ). Let X̃α be a k-way row

partition of Ỹ , computed by an α-approximate k-means clustering algorithm. The following questions
arise:

Q1. Show that X̃α is a good approximation of X.

Q2. Show that the k-way node partition of G induced by X̃α, yields a good approximation of an
optimal k-way node partition of G.

Q3. Show that Approximate Spectral Clustering runs efficiently (in nearly-linear time).

Eigenvalue Gaps and k-Way Partitions

Let 0 = λ1 6 . . . 6 λn 6 2 be the eigenvalues of a normalized Laplacian matrix of G. It was observed
experimentally [vL07vL07, For10For10] that a large gap between λk+1 and λk guarantees a good k-way node
partition of G and this was formally proven in [LGT12LGT12, GT14GT14]. Lee, Gharan and Trevisan [LGT12LGT12]
studied the k-way expansion constant defined as

ρ(k)
def
= min

disjoint S1,...,Sk
max

i∈{1,...,k}
φ(Si), (5.4)

and related it to λk via higher-order Cheeger inequalities

λk/2 6 ρ(k) 6 O(k2)
√
λk. (5.5)

For related works on higher-order Cheeger inequalities, we refer the reader to [LRTV12LRTV12, KLL17KLL17]. Gharan
and Trevisan [GT14GT14] showed that the k-way conductance is at most a factor k away from the k-way
expansion constant, i.e.,

ρ(k) 6 ρ̂(k) 6 k · ρ(k). (5.6)

In particular, (5.55.5) and (5.65.6) together yield that λk+1 � O(k3)
√
λk implies ρ̂(k + 1) � ρ̂(k). Thus,

there is a k-way node partition (P1, . . . , Pk) of G such that φ(Pi) 6 O(k3)
√
λk for all i, and simultaneously

the best (k + 1)-way partition is significantly worse.

Prior Work

Ng et al. [NJW01NJW01] reported that ASC performs very well on challenging clustering instances, and initiated
the study for finding a formal explanation for the practical success of ASC. Using tools from matrix
perturbation theory, they derived sufficient conditions under which the vectors of a SE form tight clusters.
However, their analysis does not apply to approximate SEs, and does not give guarantees for the induced
k-way node partition of G.

Peng et al. [PSZ17PSZ17] showed that for all instances satisfying the eigenvalue gap assumption λk+1/ρ̂(k) >
Ω(k3), any O(1)-approximate k-means partition of a normalized SE Y ′ induces a good approximation of
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an optimal k-way node partition of G. Notably, their analysis yields the first approximation guarantees
in terms of the k-way conductance . However, their analysis does not apply to approximate SE, and also
computing an O(1)-approximation k-means partition using any known PTAS [HK05HK05, FMS07FMS07, ORSS13ORSS13]
incurs an exponential factor of 2Ω(k) in the running time.

Boutsidis et al. [BKG15BKG15] showed that an approximate k-means partition of an approximate SE Ỹ
computed via the Power method, yields a k-means partition P of the exact SE Y such that the k-means
cost of P yields an additive approximation to the optimum k-means cost of Y . This gives an affirmative
answer to question Q1. Further, the authors stated as main open problems to resolve questions Q2 and
Q3.

Besides designing a PTAS for the k-means clustering problems, Ostrovsky et al. [ORSS13ORSS13] analyzed
a variant of Lloyd k-means clustering algorithm. They showed that on input a set of n vectors in Rk
satisfying a natural well-clusterable assumption, the algorithm efficiently computes a good approximation
of an optimal k-means partition. In particular, the algorithm runs in time O(k2(n+ k2)).

A natural question to ask is whether the analysis of Peng et al. [PSZ17PSZ17], Boutsidis et al. [BKG15BKG15] and
Ostrovsky et al. [ORSS13ORSS13] can be integrated and extended to answer the questions Q2 and Q3?

Our Contribution: An Overview

We give a comprehensive analysis of ASC building on the work of Peng et al. [PSZ17PSZ17], Boutsidis et
al. [BKG15BKG15] and Ostrovsky et al. [ORSS13ORSS13]. We show that the Approximate Spectral Clustering i) runs
efficiently, and ii) yields a good approximation of an optimal k-way node partition of G. Moreover, we
strengthen the quality guarantees of a structural result of Peng et al. [PSZ17PSZ17] by a factor of k, and
simultaneously weaken the eigenvalue gap assumption. Further, our analysis shows that the Approximate
Spectral Clustering finds a k-way node partition of G with the strengthened quality guarantees. This
gives an affirmative answer to questions Q2 and Q3.

5.1 Notation

k-means Clustering Problem

Let X be a set of vectors of the same dimension. The k-means cost of a partition (X1, . . . , Xk) of X is
given by

Cost({Xi}ki=1)
def
=

k∑
i=1

∑
x∈Xi

‖x− ci‖22 , where ci
def
=

1

|Xi|
∑
x∈Xi

x

is the gravity center of Xi, for all i ∈ {1, . . . , k}. Then, the optimum k-means cost (of clustering X into
k sets) is defined as

4k(X )
def
= min

partition (X1,...,Xk) of X
Cost({Xi}ki=1).

A k-means partition (X1, . . . , Xk) of X , with corresponding gravity centers c1, . . . , ck as above, is α-
approximate if Cost({Xi}ki=1) 6 α · 4k(X ). Given a matrix Y , we abuse notation and write 4k(Y ) to
denote the optimum k-means cost of partitioning the rows of matrix Y .

Spectral Embeddings

Given an undirected graph G = (V,E) with m = |E| edges and n = |V | nodes, let D be the diagonal
degree matrix and A be the adjacency matrix. Then, the graph Laplacian matrix is defined as L = D−A,
and the normalized Laplacian matrix is given by LG = I − A, where A = D−1/2AD−1/2. Further, let
fi ∈ RV be the eigenvector corresponding to the i-th smallest eigenvalue λi of LG.

The canonical Spectral Embedding, for short canonical SE, is defined as a matrix Y ∈ Rn×k composed
of the bottom k eigenvectors 11 of LG corresponding to the k smallest eigenvalues. The approximate SE is
computed via the Power method 22. Namely, let S ∈ Rn×k be a matrix whose entries are i.i.d. samples from

1 The Eigendecomposition theorem guarantees that all eigenvectors are orthonormal.
2 Given a symmetric matrixM and a number k, the Power method approximates the top k eigenvectors ofM corresponding

to the largest k eigenvalues. Since we seek a good approximation of the bottom k eigenvectors of LG = I −A, associated
with the smallest k eigenvalues, we initialize the Power method with M = I +A.
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the standard Gaussian distribution N(0, 1) and p be the number of iterations. Then, the approximate SE

Ỹ is given by:

1) M
def
= I +A; 2) Let Ũ Σ̃Ṽ T be the SVD 33 of MpS; and 3) Ỹ

def
= Ũ ∈ Rn×k. (5.7)

Peng et al. [PSZ17PSZ17] do not apply k-means directly to the canonical SE, but first normalize it by
dividing the row corresponding to u by

√
d(u) and then put d(u) copies of the resulting vector into the

k-means clustering instance. This repetition of vectors is crucial for their analysis, in order to achieve
approximation guarantees in terms of volume overlap and conductance. We follow their approach.

We construct a matrix Y ′ ∈ R2m×k such that for every node u ∈ V , we insert d(u) many copies of the
normalized row Y (u, :)/

√
d(u) to Y ′. Formally, the normalized SE Y ′ and the approximate normalized

SE Ỹ ′ are defined by

Y ′
def
=


1d(1)

Y (1,:)√
d(1)

· · ·
1d(n)

Y (n,:)√
d(n)


2m×k

and Ỹ ′
def
=


1d(1)

Ỹ (1,:)√
d(1)

· · ·
1d(n)

Ỹ (n,:)√
d(n)


2m×k

, (5.8)

where 1d(i) is the all-one column vector with dimension d(i).

We can assume w.l.o.g. that a k-means clustering algorithm applied on Y ′ (Ỹ ′), outputs a k-means

partition such that all copies of row Y (v, :)/
√
d(v) (Ỹ (v, :)/

√
d(v)) belong to the same cluster, for all

nodes v. Thus, the algorithm induces a k-way node partition of G.

5.1.1 Prior Structural Result

A key prior structural result, established by Peng et al. [PSZ17PSZ17], connects the normalized SE Y ′, α-
approximate k-means clustering, the k-way conductance ρ̂(k), as given in Equation (5.25.2), and the
(k+1)-st eigenvalue λk+1 of the normalized Laplacian matrix LG. In particular, they proved the following
statement under a gap assumption defined in terms of

Υ
def
=

λk+1

ρ̂(k)
.

Theorem 5.1. [PSZ17PSZ17, Theorem 1.2] Let k > 3 and G be a graph satisfying the gap assumption 44

δ
def
= 2 · 105 · k3/Υ 6 1/2. (5.9)

Let (P1, . . . , Pk) be a k-way node partition of G achieving ρ̂(k), and let (A1, . . . , Ak) be the k-way node
partition of G induced by an α-approximate k-means partition of the normalized SE Y ′. Then, for every
i ∈ {1, . . . , k} it hold (after suitable renumbering of one of the partitions) that

1) µ(Ai4Pi) 6 αδ · µ(Pi) and 2) φ(Ai) 6 (1 + 2αδ) · φ(Pi) + 2αδ.

Under a stronger eigenvalue gap assumption 2 ·105 ·k5/Υ 6 1/2, Peng et al. [PSZ17PSZ17] gave an algorithm
that finds in time O (m · poly log(n)) a k-way node partition of G with essentially the guarantees stated in
Theorem 5.15.1. However, their algorithmic result substitutes normalized SE with Heat Kernel Embedding
and k-means clustering with locality sensitive hashing. Thus, the algorithmic part of their paper does
not explain the success of Approximate Spectral Clustering.

5.1.2 Our Contribution

We give affirmative answer to the questions Q2 and Q3. On the way, we also strengthen the approximation
guarantees in Theorem 5.15.1 by a factor of k and simultaneously weaken the eigenvalue gap assumption.

Let P be the set of all k-way partitions (P1, . . . , Pk) achieving the k-way conductance ρ̂(k). Let

ρ̂avr(k)
def
= min

(P1,...,Pk)∈P

1

k

k∑
i=1

φ(Pi)

3 SVD abbreviates Singular Value Decomposition, see [Woo14Woo14].
4 Note that λk/2 6 ρ̂(k), see (5.85.8). Thus, the assumption implies λk/2 6 ρ̂(k) 6 δλk+1/(2 · 105 · k3), i.e., there is a

substantial gap between the (k + 1)-th and the k-th eigenvalue.
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be the minimum average conductance over all k-way partitions in P. Note that ρ̂avr(k) 6 ρ̂(k). Our gap
assumption is defined in terms of

Ψ
def
=

λk+1

ρ̂avr(k)
.

In the remainder, we denote by (P1, . . . , Pk) a k-way node partition of G achieving ρ̂avr(k).

We now present our main result, consisting of a structural and an algorithmic statement.

Theorem 5.2. a) (Existence of a Good Clustering) Let k > 3 and G be a graph satisfying

δ
def
= 204 · k3/Ψ 6 1/2. (5.10)

Let (P1, . . . , Pk) be a k-way node partition of G achieving ρ̂avr(k), and let (A1, . . . , Ak) be the k-way node
partition of G induced by an α-approximate k-means partition of the normalized SE Y ′. Then, for every
i ∈ {1, . . . , k} it hold (after suitable renumbering of one of the partitions) that

1) µ(Ai4Pi) 6
αδ

103k
· µ(Pi) and 2) φ(Ai) 6

(
1 +

2αδ

103k

)
· φ(Pi) +

2αδ

103k
.

b) (An Efficient Algorithm) If in addition k/δ > 109, then the variant of Lloyd algorithm analyzed by

Ostrovsky et al. [ORSS13ORSS13] when applied to the approximate normalized SE Ỹ ′, induces in time O(m(k2 +
lnn
λk+1

)) with constant probability a k-way node partition (A1, . . . , Ak) of G such that for every i ∈ {1, . . . , k}
it hold (after suitable renumbering of one of the partitions) that

3) µ(Ai4Pi) 6
2δ

103k
· µ(Pi) and 4) φ(Ai) 6

(
1 +

4δ

103k

)
· φ(Pi) +

4δ

103k
.

Part (a) of Theorem 5.25.2 strengthens the quality guarantees in Theorem 5.15.1 by a factor of k, and
simultaneously weaken the eigenvalue gap assumption. Part (b) of Theorem 5.25.2 gives a comprehensive
analysis of Approximate Spectral Clustering, and demonstrates that the algorithm i) runs efficiently, and
ii) yields a good approximation of an optimal k-way node partition of G.
Further, it shows that the Approximate Spectral Clustering finds a k-way node partition of G with the
strengthened quality guarantees, and whenever k 6 (log n)O(1) and λk+1 > 1/(log n)O(1), the algorithm
runs in nearly linear time. This answers affirmatively questions Q2 and Q3.

Remarks

The variant of Lloyd k-means clustering algorithm, analyzed by Ostrovsky et al. [ORSS13ORSS13], is efficient
only for inputs X satisfying 4k(X ) 6 ε24k−1(X ) for some ε ∈ (0, ε0], where ε0 = 6/107. The authors
stated that their result should also hold for a larger ε0, and mentioned that they did not attempt to
maximize ε0.

An anonymous reviewer of the conference version of this paper, suggested to include a numerical
example. Consider a graph which consists of k cliques each of size n/k 55, plus k additional edges that
connect the cliques in the form of a ring such that no two edges of the ring share a vertex. This graph
is a trivial clustering instance, and for any constant k it holds that λk+1 > 1− k/n, see Theorem 7.177.17.
Observe that ρ̂avr(k) = ρ̂(k) ≈ (k/n)2. For the gap assumption to hold we need λk+1 > 2 ·204 ·k3 · ρ̂avr(k).
This implies n >

√
2 · 204 · k5/λk+1. For small k, this is a modest requirement on the size of the graph.

For the algorithmic result, we need in addition δ 6 k · ε0/600. For the gap condition to hold, we
need λk+1 > (600/ε0k) · 204 · k3 · (k2/n2) or n >

√
206 · k4/(ε0λk+1). For ε0 = 6/107, this amounts to

n >
√

24 · 1013 · k4/λk+1, a quite large lower bound on n.

The statement that Part (b) of Theorem 5.25.2 gives a theoretical support for the practical success of
Approximate Spectral Clustering, therefore has to be taken with a grain of salt. It is only an asymptotic
statement and does not explain the good behavior on small graphs.

5 A graph G has k connected components iff λk = 0. For any clique Kn, we have λ1 = 0 and λ2 = · · · = λn = 1. Further,
when G consists of k cliques Kn/k disconnected from each other, then λ1 = · · · = λk = 0 and λk+1 = · · · = λn = 1.
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5.2 Our Techniques

In Chapter 66, we give a refined spectral analysis of [PSZ17PSZ17] which yields the improved structural result in
Part (a) of Theorem 5.25.2. In Chapter 77, we connect Part (a) of Theorem 5.25.2 with the work of Ostrovsky
et al. [ORSS13ORSS13] and Boutsidis et al. [BKG15BKG15], yielding the algorithmic result in Part (b) of Theorem 5.25.2.

Ostrovsky et al. [ORSS13ORSS13] analyzed a variant of Lloyd k-means clustering algorithm. We refer to this
algorithm as the ORSS clustering algorithm. The ORSS-algorithm is efficient only for inputs X satisfying:
some partition into k clusters is much better than any partition into k − 1 clusters. Formally, it states

Theorem 5.3. [ORSS13ORSS13, Theorem 4.15] Assuming that 4k(X ) 6 ε2 · 4k−1(X ) for ε ∈ (0, 6 · 10−7],
the ORSS-algorithm runs in time O(nkd+ k3d) and returns with probability at least 1−O(

√
ε) a k-way

partition of X with cost at most [(1− ε2)/(1− 37ε2)]4k(X ).

Let Z ∈ Rn×k be a matrix and (R1, . . . , Rk) be a row partition of Z. Let cj = 1
|Rj |

∑
u∈Rj Zu,: be the

gravity center of cluster Rj , for all j ∈ {1, . . . , k}. We next express in matrix notation the k-means cost of

partition (R1, . . . , Rk). To this end, we introduce an indicator matrix X ∈ Rn×k such that Xij = 1/
√
|Rj |

if row Zi,: belongs to cluster Rj , and Xij = 0 otherwise. Then, (XXTZ)i,: = cj , where row Zi,: belongs
to cluster Rj . Hence, the k-means cost of (R1, . . . , Rk) becomes

Cost({Ri}ki=1) =

k∑
j=1

∑
u∈Rj

‖Zu,:cj‖22 = ‖Z −XXTZ‖2F . (5.11)

Our Analytical Approach

Our main technical contribution is to prove that the approximate normalized SE Ỹ ′ computed via the
Power method is ε-separated, i.e. the assumption 4k(Ỹ ′) < ε2 ·4k−1(Ỹ ′) of Ostrovsky et al. [ORSS13ORSS13] is

satisfied. This implies, by Theorem 5.35.3, that the ORSS-algorithm runs efficiently on Ỹ ′. Let the resulting
k-way row partition of Ỹ ′ be encoded by the indicator matrix X̃ ′.

Then, building on the work of [BM14BM14, BKG15BKG15], we show that X̃ ′ is a good approximation of an optimal
k-means partition of the corresponding normalized SE Y ′. Further, using our strengthened structural
result in Part (a) of Theorem 5.25.2, we show that X̃ ′ induces a good approximation of an optimal k-way
node partition of graph G, in terms of volume overlap and conductance.

First, we establish in Section 7.17.1 the assumption of Ostrovsky et al. [ORSS13ORSS13] for the normalized SE
Y ′.

Theorem 5.4. (normalized SE is ε-separated) Let G be a graph that satisfies Ψ = 204 · k3/δ, δ ∈ (0, 1/2]
and k/δ > 109. Then for ε = 6 · 10−7 it holds 4k(Y ′) 6 ε2 · 4k−1(Y ′).

Theorem 5.45.4 does not suffice for proving Part (b) of Theorem 5.25.2, since it requires the analogous

statement for the approximate normalized SE Ỹ ′.
In Subsection 7.2.27.2.2, we show that an α-approximate k-means clustering algorithm applied to the

approximate normalized SE Ỹ ′, yields an approximate k-way row partition of the corresponding normalized
SE Y ′.

Theorem 5.5. (Similar to [BKG15BKG15, Theorem 6], but analyzes the approximate normalized SE) Let

ε, δp ∈ (0, 1) be arbitrary. Compute the approximate normalized SE Ỹ ′ via the Power method with

p > ln(8nk/εδp)
/

ln(1/γk) iterations and γk = (2 − λk+1)/(2 − λk) < 1. Run on the rows of Ỹ ′ an
α-approximate k-means clustering algorithm with failure probability δα. Let the outcome be a clustering
indicator matrix X̃ ′α ∈ Rn×k. Then, with probability at least 1− 2e−2n − 3δp − δα, it holds that

‖Y ′ − X̃ ′α(X̃ ′α)TY ′‖2F 6 (1 + 4ε) · α · 4k(Y ′) + 4ε2.

In Subsection 7.2.37.2.3, using Theorem 5.45.4 and Theorem 5.55.5, we show that the approximate normalized
SE Ỹ ′ satisfies the assumption of Ostrovsky et al. [ORSS13ORSS13].

Theorem 5.6. (approximate normalized SE is ε-separated) Assume Ψ = 204 · k3/δ and k/δ > 109 for

some δ ∈ (0, 1/2]. Compute the approximate normalized SE Ỹ ′ via the Power method with p > Ω( lnn
λk+1

)

iterations. Then, for ε = 6 · 10−7 it holds with high probability that 4k(Ỹ ′) < 5ε2 · 4k−1(Ỹ ′).

Finally, in Subsection 7.37.3, we prove Part (b) of Theorem 5.25.2 by combining Part (a) of Theorem 5.25.2,
Theorem 5.35.3, Theorem 5.55.5 and Theorem 5.65.6.
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Chapter 6

Improved Structural Result

6.1 Notation

We use the notation adopted in [PSZ17PSZ17]. Let λj be the j-th eigenvalue of the normalized Laplacian matrix
LG, and let fj ∈ RV be the associated eigenvector (LGfj = λjfj).

Let gi =
D1/2χPi
‖D1/2χPi‖2

, where χPi is the characteristic vector of the subset Pi ⊆ V . Note that gi is the

normalized characteristic vector of Pi and
∥∥D1/2χPi

∥∥2

2
=
∑
v∈Pi d(v) = µ(Pi). The Rayleigh quotient is

defined by and satisfies

R (gi)
def
=

gi
TLGgi
gi

Tgi
=

1

µ(Pi)
χT
PiLχPi =

|E(S, S)|
µ(Pi)

= φ(Pi),

where the Laplacian matrix L = D −A and the normalized Laplacian matrix LG = D−1/2LD−1/2.
The eigenvectors {fi}ni=1 form an orthonormal basis of Rn. Thus each characteristic vector gi can be

expressed as gi =
∑n
j=1 α

(i)
j fj for all i ∈ {1, . . . , k}. We define its projection onto the first k eigenvectors

by f̂i =
∑k
j=1 α

(i)
j fj .

Peng et al. [PSZ17PSZ17] proved that if the gap parameter Υ is large enough then span({f̂i}ki=1) =

span({fi}ki=1) and the first k eigenvectors can be expressed by fi =
∑k
j=1 β

(i)
j f̂j , for all i ∈ {1, . . . , k}.

Moreover, they demonstrated that each vector ĝi =
∑k
j=1 β

(i)
j gj approximates the eigenvector fi, for all

i ∈ {1, . . . , k}. We will show that similar statements hold with weakened gap parameter Ψ.
The estimation centers induced by the canonical SE are given by

p(i) =
1√
µ(Pi)

(
β

(1)
i , . . . , β

(k)
i

)T

. (6.1)

Our analysis crucially relies on spectral properties of the following two matrices. Let F,B ∈ Rk×k be
square matrices defined by

Fj,i = α
(i)
j and Bj,i = β

(i)
j . (6.2)

In Figure 6.16.1, we show the relation among the vectors fi, f̂i, ĝi and gi.

fi =
∑k
j=1 β

(i)
j f̂j

f̂i =
∑k
j=1 α

(i)
j fj

ĝi =
∑k
j=1 β

(i)
j gj

gi =
D1/2χPi√
µ(Pi)

=
∑n
j=1 α

(i)
j fj

‖f̂i − gi‖22 6 φ(Pi)/λk+1

‖fi − ĝi‖22 6 (1 + 3k/Ψ) · k/Ψ

Figure 6.1: The vectors {fi}ni=1 are eigenvectors of the normalized Laplacian matrix LG. The vectors
{gi}ki=1 are the normalized characteristic vectors of an optimal partition (P1, . . . , Pk). For each i ∈
{1, . . . , k} the vector f̂i is the projection of vector gi onto span(f1, . . . , fk). The vectors f̂i and gi are

close for i ∈ {1, . . . , k}. If Ψ > 4 · k3/2, then span(f1, . . . , fk) = span(f̂1, . . . , f̂k) and thus we can write

fi =
∑k
j=1 β

(i)
j f̂j . Further, the vectors fi and ĝi =

∑k
j=1 β

(i)
j gj are close for i ∈ {1, . . . , k}.



Chapter 6. Improved Structural Result

6.2 Technical Insights

The analysis of Part (a) of Theorem 5.25.2 follows the proof approach in [PSZ17PSZ17, Theorem 1.2], but improves
upon it in essential ways.

Our first technical insight is that the matrices BTB and BBT are close to the identity matrix. We
prove this in two steps. In Section 6.46.4, we show that the vectors ĝi and fi are close, and then in Section 6.56.5
we analyze the column space and row space of matrix B.

Theorem 6.1 (Matrix BBT is Close to Identity Matrix). If Ψ > 104 · k3/ε2 and ε ∈ (0, 1) then for all
distinct i, j ∈ {1, . . . , k} it holds

1− ε 6 〈Bi,:, Bi,:〉 6 1 + ε and |〈Bi,:, Bj,:〉| 6
√
ε.

Using Theorem 6.16.1, we give a strengthened version of [PSZ17PSZ17, Lemma 4.2] that depends on the weaken
gap parameter Ψ.

Lemma 6.2. If Ψ = 204 · k3/δ for some δ ∈ (0, 1] then for every i ∈ {1, . . . , k} it holds that(
1−
√
δ/4
) 1

µ(Pi)
6
∥∥∥p(i)

∥∥∥2

2
6
(

1 +
√
δ/4
) 1

µ(Pi)
.

Proof. By definition p(i) = 1√
µ(Pi)

·Bi,: and Theorem 6.16.1 yields ‖Bi,:‖22 ∈ [1±
√
δ/4].

Using Theorem 6.16.1 and Lemma 6.26.2, we establish a strengthened version of [PSZ17PSZ17, Lemma 4.3]
that depends on the weaken gap parameter Ψ, and simultaneously shows that the `2 distance between
estimation centers is larger by a factor of k.

Lemma 6.3 (Larger Distance Between Estimation Centers). If Ψ = 204 · k3/δ for some δ ∈ (0, 1
2 ] then

for any distinct i, j ∈ {1, . . . , k} it holds that∥∥∥p(i) − p(j)
∥∥∥2

2
> [2 ·min {µ(Pi), µ(Pj)}]−1

.

Proof. Since p(i) is a row of matrix B, Theorem 6.16.1 with ε =
√
δ/4 yields〈

p(i)∥∥p(i)
∥∥

2

,
p(j)∥∥p(j)
∥∥

2

〉
=

〈Bi,:, Bj,:〉
‖Bi,:‖2 ‖Bj,:‖2

6

√
ε

1− ε
=

2δ1/4

3
.

W.l.o.g. assume that
∥∥p(i)

∥∥2

2
>
∥∥p(j)

∥∥2

2
, say

∥∥p(j)
∥∥

2
= α ·

∥∥p(i)
∥∥

2
for some α ∈ (0, 1]. Then by Lemma 6.26.2

we have
∥∥p(i)

∥∥2

2
> (1−

√
δ/4) · [min {µ(Pi), µ(Pj)}]−1

, and hence

∥∥∥p(i) − p(j)
∥∥∥2

2
=

∥∥∥p(i)
∥∥∥2

2
+
∥∥∥p(j)

∥∥∥2

2
− 2

〈
p(i)∥∥p(i)
∥∥

2

,
p(j)∥∥p(j)
∥∥

2

〉∥∥∥p(i)
∥∥∥

2

∥∥∥p(j)
∥∥∥

2

>

(
α2 − 4δ1/4

3
· α+ 1

)∥∥∥p(i)
∥∥∥2

2
> [2 ·min {µ(Pi), µ(Pj)}]−1

.

Using Lemma 6.26.2 and Lemma 6.36.3, the observation that Υ can be replaced by Ψ in all statements
in [PSZ17PSZ17] is technically easy.

Our second technical contribution is to show that the larger `2 distance between estimation centers,
in Lemma 6.36.3, strengthens [PSZ17PSZ17, Lemma 4.5] by a factor of k. Before we state our result, we need some
notation.

The normalized Spectral Embedding map F : V → Rk is defined by

F(v)
def
=

1√
d(v)

(f1(v), . . . , fk(v))
T

=
1√
d(v)

· [Y (v, :)]T,

for every node v ∈ V . Recall that the normalized SE Y ′ contains duplicate rows, namely, d(u) many
copies of F(u) for each node u ∈ V .
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6.3. Proof of Improved Structural Result

Suppose an α-approximate k-means clustering algorithm outputs a k-way row partition (R1, . . . , Rk) of
Y ′. We can assume w.l.o.g. that all identical rows of Y ′ are assigned to same cluster, and thus (R1, . . . , Rk)
induces a k-way node partition (A1, . . . , Ak) of G. For an arbitrary point set c1, . . . , ck in Rk, we abuse
the notation and denote the k-means cost of a tuple {Ai, ci}ki=1 by

Cost({Ai, ci}ki=1) =

k∑
i=1

∑
u∈Ai

d(u) ‖F(u)− ci‖22 . (6.3)

When each point cj = 1
µ(Aj)

∑
u∈Aj d(u)F(u) is the gravity center of cluster Rj , for brevity we write

Cost({Ai}ki=1) to denote the k-means cost of tuple {Ai, ci}ki=1.

Lemma 6.4 (Volume Overlap). Let (P1, . . . , Pk) and (A1, . . . , Ak) be k-way node partitions of G. Suppose
for every permutation π : {1, . . . , k} → {1, . . . , k} there is an index i ∈ {1, . . . , k} such that

µ(Ai4Pπ(i)) >
2ε

k
· µ(Pπ(i)), (6.4)

where ε ∈ (0, 1) is a parameter. If Ψ = 204 · k3/δ for some δ ∈ (0, 1
2 ], and ε > 64α · k3/Ψ then

Cost({Ai}ki=1) >
2αk2

Ψ
.

With the above lemmas in place, the proof of Part (a) of Theorem 5.25.2 is then completed as in [PSZ17PSZ17].
For completeness, we present the proof.

6.3 Proof of Improved Structural Result

In this Section, we prove Part (a.1) of Theorem 5.25.2. Crucial to our analysis is the following result, which
we prove in the next Section 6.46.4, showing that vectors ĝi and fi are close, c.f. Figure 6.16.1.

Theorem 6.5. If Ψ > 4 · k3/2, then for every i ∈ {1, . . . , k} the vectors fi and ĝi =
∑k
j=1 β

(i)
j gj satisfy

||fi − ĝi||2 6

(
1 +

3k

Ψ

)
· k

Ψ
.

Lemma 6.6 ((P1, . . . , Pk) is a good k-means partition). If Ψ > 4 · k3/2, then there are vectors {p(i)}ki=1

such that

Cost({Pi, p(i)}ki=1) 6

(
1 +

3k

Ψ

)
· k

2

Ψ
.

Proof. Let (P1, . . . , Pk) be a k-way node partition of G achieving ρ̂avr(k). Peng et al. [PSZ17PSZ17, Lemma

4.1] showed that Cost({Pi, p(i)}ki=1) =
∑k
j=1 ‖fj − ĝj‖

2
2, and thus the statement follows by Theorem 6.56.5.

For completeness, we now prove the preceding equation. By definition, p
(i)
j = β

(j)
i /

√
µ(Pi) and

ĝj =
∑k
i=1 β

(j)
i ·

D1/2χPi√
µ(Pi)

, where χPi is characteristic vector of the node subset Pi. Then,

Cost({Pi, p(i)}ki=1) =

k∑
i=1

∑
u∈Pi

d(u)‖F(u)− p(i)‖22

=

k∑
j=1

k∑
i=1

∑
u∈Pi

(
fj(u)−

√
d(u)√
µ(Pi)

β
(j)
i

)2

=

k∑
j=1

‖fj − ĝj‖22 .

Lemma 6.7 (Only partitions close to (P1, . . . , Pk) are good). Under the hypothesis of Theorem 5.25.2, the
following holds. If for every permutation σ : {1, . . . , k} → {1, . . . , k} there exists an index i ∈ {1, . . . , k}
such that

µ(Ai4Pσ(i)) >
8αδ

104k
· µ(Pσ(i)). (6.5)

Then it holds that

Cost({Ai}ki=1) >
2αk2

Ψ
. (6.6)
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We note that Lemma 6.76.7 follows directly by applying Lemma 6.46.4 with ε = 64 · α · k3/Ψ. Since
(A1, . . . , Ak) is an α approximate solution to 4k(Y ′), we obtain a contradiction

2αk2

Ψ
< Cost({Ai}ki=1) 6 α · 4k(Y ′) 6 α · Cost({Pi, p(i)}ki=1) 6

(
1 +

3k

Ψ

)
· αk

2

Ψ
.

Therefore, there exists a permutation π (the identity after suitable renumbering of one of the partitions)
such that µ(Ai4Pi) < 8αδ

104k · µ(Pi) for all i ∈ {1, . . . , k}.
Part (a.2) of Theorem 5.25.2 follows from Part (a.1). Indeed, for δ′ = 8δ/104 we have

µ(Ai) > µ(Pi ∩Ai) = µ(Pi)− µ(Pi \Ai) > µ(Pi)− µ(Ai4Pi) >
(

1− αδ′

k

)
· µ(Pi)

and |E(Ai, Ai)| 6 |E(Pi, Pi)| + µ(Ai∆Pi), since every edge that is counted in |E(Ai, Ai)| but not in
|E(Pi, Pi)| must have an endpoint in Ai∆Pi. Thus

Φ(Ai) =
|E(Ai, Ai)|
µ(Ai)

6
|E(Pi, Pi)|+ αδ′

k · µ(Pi)

(1− α·δ′
k ) · µ(Pi)

6

(
1 +

2αδ′

k

)
· φ(Pi) +

2αδ′

k
.

This completes the proof of Part (a) of Theorem 5.25.2.

6.4 Vectors ĝi and fi are Close

In this section, we prove Theorem 6.56.5. We argue in a similar manner as in [PSZ17PSZ17], but in contrast our
results depend on the weaken gap parameter Ψ. For completeness, we show in Subsection 6.4.16.4.1 that the
span of the first k eigenvectors of LG equals the span of the projections of Pi’s characteristic vectors onto
the first k eigenvectors. Then, in Subsection 6.4.26.4.2, we conclude the proof of Theorem 6.56.5 by analyzing
the eigenvectors {fi}ki=1 in terms of projection vectors {f̂i}ki=1.

6.4.1 Analyzing the Columns of Matrix F

We show now that the span of the first k eigenvectors {fi}ki=1 equals the span of the projection vectors

{f̂i}ki=1.

Lemma 6.8. If Ψ > k3/2 then the span({f̂i}ki=1) = span({fi}ki=1) and thus each eigenvector can be

expressed as fi =
∑k
j=1 β

(i)
j · f̂j for every i ∈ {1, . . . , k}.

To prove Lemma 6.86.8, we build upon the following result established by Peng et al. [PSZ17PSZ17].

Lemma 6.9. [PSZ17PSZ17, Theorem 1.1 Part 1] For Pi ⊂ V let gi =
D1/2χPi
‖D1/2χPi‖2

. Then any i ∈ {1, . . . , k} it

holds that ∥∥∥gi − f̂i∥∥∥2

2
=

n∑
j=k+1

(
α

(i)
j

)2

6
R (gi)

λk+1
=
φ(Pi)

λk+1
.

Our analysis crucially relies on the following two technical lemmas.

Lemma 6.10. For every i ∈ {1, . . . , k} and p 6= q ∈ {1, . . . , k} it holds that

1− φ(Pi)/λk+1 6
∥∥∥f̂i∥∥∥2

2
=
∥∥∥α(i)

∥∥∥2

2
6 1 and

∣∣∣〈f̂p, f̂q〉∣∣∣ = |〈αp, αq〉| 6
√
φ(Pp) · φ(Pq)

λk+1
.

Proof. The first part follows by Lemma 6.96.9 and the following chain of inequalities

1− φ(Pi)

λk+1
6 1−

n∑
j=k+1

(
α

(i)
j

)2

=
∥∥∥f̂i∥∥∥2

2
=

k∑
j=1

(
α

(i)
j

)2

6
n∑
j=1

(
α

(i)
j

)2

= 1.

We show now the second part. Since {fi}ni=1 are orthonormal eigenvectors we have for all p 6= q that

〈fp, fq〉 =

n∑
l=1

α
(p)
` · α

(q)
` = 0. (6.7)
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We combine (6.76.7) and Cauchy-Schwarz to obtain∣∣∣〈f̂p, f̂q〉∣∣∣ =

∣∣∣∣∣
k∑
l=1

α
(p)
` · α

(q)
`

∣∣∣∣∣ =

∣∣∣∣∣
n∑

l=k+1

α
(p)
` · α

(q)
`

∣∣∣∣∣
6

√√√√ n∑
l=k+1

(
α

(p)
`

)2

·

√√√√ n∑
l=k+1

(
α

(q)
`

)2

6

√
φ(Pp) · φ(Pq)

λk+1
.

Lemma 6.11. If Ψ > k3/2 then the columns {F:,i}ki=1 are linearly independent.

Proof. We show that the columns of matrix F are almost orthonormal. Consider the symmetric matrix
FTF . It is known that ker

(
FTF

)
= ker(F ) and that all eigenvalues of matrix FTF are real numbers.

We proceeds by showing that the smallest eigenvalue λmin(FTF ) > 0. This would imply that ker(F ) = ∅
and hence yields the statement.

By combining Gersgorin Circle Theorem, Lemma 6.106.10 and Cauchy-Schwarz it holds that

λmin(FTF ) > min
i∈{1,...,k}

(FTF
)
ii
−

k∑
j 6=i

∣∣∣(FTF
)
ij

∣∣∣
 = min

i∈{1,...,k}

∥∥∥α(i)
∥∥∥2

2
−

k∑
j 6=i

∣∣∣〈α(j), α(i)
〉∣∣∣


> 1−
k∑
j=1

√
φ(Pj)

λk+1

√
φ(Pi?)

λk+1
> 1−

√
k

√√√√ k∑
j=1

φ(Pj)

λk+1

√
φ(Pi?)

λk+1
> 1− k3/2

Ψ
> 0,

where i? ∈ {1, . . . , k} is the index that minimizes the expression above.

We present now the proof of Lemma 6.86.8.

Proof of Lemma 6.86.8. Let ν ∈ Rk be an arbitrary non-zero vector. Notice that

k∑
i=1

νi · f̂i =

k∑
i=1

νi

k∑
j=1

α
(i)
j fj =

k∑
j=1

(
k∑
i=1

νiα
(i)
j

)
fj =

k∑
j=1

γjfj , where γj = 〈Fj,:, ν〉 . (6.8)

By Lemma 6.116.11, the columns {F:,i}ki=1 are linearly independent and since γ = Fν, it follows that at least

one component γj 6= 0. Hence, the vectors {f̂i}ki=1 are linearly independent, and since each vector f̂i is a

projection onto the span of the first k eigenvectors {fi}ki=1, it follows that span({f̂i}ki=1) = span({fi}ki=1).

Thus, each eigenvector fi can be expressed as a linear combination of the projection vectors {f̂i}ki=1.

6.4.2 Analyzing Eigenvectors f in terms of f̂j

In this section, we prove Theorem 6.56.5. Using Lemma 6.86.8, we first express each eigenvector fi =
∑k
j=1 β

(i)
j ·

f̂j as a linear combination of the projection vectors {f̂j}kj=1, and we bound the squared `2 norm of

the corresponding coefficient vector β(i) = B:,i for all i ∈ {1, . . . , k}. Then, we conclude the proof of
Theorem 6.56.5.

Lemma 6.12. If Ψ > k3/2 then for i ∈ [k] it holds(
1 +

2k

Ψ

)−1

6
k∑
j=1

(
β

(i)
j

)2

6

(
1− 2k

Ψ

)−1

.

Proof. We show now the upper bound. By Lemma 6.86.8 fi =
∑k
j=1 β

(i)
j f̂j for all i ∈ {1, . . . , k} and thus

1 = ‖fi‖22 =

〈
k∑
a=1

β(i)
a f̂a,

k∑
b=1

β
(i)
b f̂b

〉

=

k∑
j=1

(
β

(i)
j

)2 ∥∥∥f̂j∥∥∥2

2
+

k∑
a=1

k∑
b6=a

β(i)
a β

(i)
b

〈
f̂a, f̂b

〉
(?)

>

(
1− 2k

Ψ

)
·
k∑
j=1

(
β

(i)
j

)2

.
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To prove the inequality (?) we consider the two terms separately.

By Lemma 6.106.10,
∥∥∥f̂j∥∥∥2

2
> 1−φ(Pj)/λk+1. We then apply

∑
i aibi 6 (

∑
i ai)(

∑
i bi) for all non-negative

vectors a, b and obtain

k∑
j=1

(
β

(i)
j

)2
(

1− φ(Pj)

λk+1

)
=

k∑
j=1

(
β

(i)
j

)2

−
k∑
j=1

(
β

(i)
j

)2 φ(Pj)

λk+1
>

(
1− k

Ψ

) k∑
j=1

(
β

(i)
j

)2

.

Again by Lemma 6.106.10, we have
∣∣∣〈f̂a, f̂b〉∣∣∣ 6√φ(Pa)φ(Pb)/λk+1, and by Cauchy-Schwarz it holds

k∑
a=1

k∑
b 6=a

β(i)
a β

(i)
b

〈
f̂a, f̂b

〉
> −

k∑
a=1

k∑
b 6=a

∣∣∣β(i)
a

∣∣∣ · ∣∣∣β(i)
b

∣∣∣ · ∣∣∣〈f̂a, f̂b〉∣∣∣
> − 1

λk+1

k∑
a=1

k∑
b6=a

∣∣∣β(i)
a

∣∣∣√φ(Pa) ·
∣∣∣β(i)
b

∣∣∣√φ(Pb)

> − 1

λk+1

 k∑
j=1

∣∣∣β(i)
j

∣∣∣√φ(Pj)

2

> − k
Ψ
·
k∑
j=1

(
β

(i)
j

)2

.

The lower bound follows by analogous arguments.

We are now ready to prove Theorem 6.56.5.

Proof of Theorem 6.56.5. By Lemma 6.86.8, we have fi =
∑k
j=1 β

(i)
j f̂j and recall that ĝi =

∑k
j=1 β

(i)
j gj for all

i ∈ {1, . . . , k}. Further, by combining triangle inequality, Cauchy-Schwarz, Lemma 6.96.9 and Lemma 6.126.12,
we obtain that

‖fi − ĝi‖22 =

∥∥∥∥∥∥
k∑
j=1

β
(i)
j

(
f̂j − gj

)∥∥∥∥∥∥
2

2

6

 k∑
j=1

∣∣βij∣∣ · ∥∥∥f̂j − gj∥∥∥
2

2

6

 k∑
j=1

(
β

(i)
j

)2

 ·
 k∑
j=1

∥∥∥f̂j − gj∥∥∥2

2

 6

(
1− 2k

Ψ

)−1
 1

λk+1

k∑
j=1

φ(Pj)


=

(
1− 2k

Ψ

)−1

· k
Ψ

6

(
1 +

3k

Ψ

)
· k

Ψ
,

where the last inequality uses Ψ > 4k.

6.5 Spectral Properties of Matrix B

In this Section, we prove Theorem 6.16.1 in two steps. In Subsection 6.5.16.5.1, we analyzes the column space of
matrix B and we show that matrix BTB is close to the identity matrix. Then, in Subsection 6.5.26.5.2, we
analyze the row space of matrix B and we prove that matrix BBT is close to the identity matrix.

6.5.1 Analyzing the Column Space of Matrix B

We show below that the matrix BTB is close to the identity matrix.

Lemma 6.13. (Columns) If Ψ > 4 · k3/2 then for all distinct i, j ∈ {1, . . . , k} it holds

1− 3k

Ψ
6 〈B:,i, B:,i〉 6 1 +

3k

Ψ
and |〈B:,i, B:,j〉| 6 4

√
k

Ψ
.

Proof. By Lemma 6.126.12 it holds that

1− 3k

Ψ
6 〈B:,i, B:,i〉 =

k∑
j=1

(
β

(i)
j

)2

6 1 +
3k

Ψ
.

68



6.5. Spectral Properties of Matrix B

Recall that ĝi =
∑k
j=1 β

(i)
j · gj . Moreover, since the eigenvectors {fi}ki=1 and the characteristic vectors

{gi}ki=1 are orthonormal by combing Cauchy-Schwarz and by Theorem 6.56.5 it holds

|〈B:,i, B:,j〉| =

k∑
l=1

β
(i)
` β

(j)
` =

〈
k∑
a=1

β(i)
a · ga,

k∑
b=1

β
(j)
b · gb

〉
= 〈ĝi, ĝj〉

= 〈(ĝi − fi) + fi, (ĝj − fj) + fj〉
= 〈ĝi − fi, ĝj − fj〉+ 〈ĝi − fi, fj〉+ 〈fi, ĝj − fj〉
6 ‖ĝi − fi‖2 · ‖ĝj − fj‖2 + ‖ĝi − fi‖2 + ‖ĝj − fj‖2

6

(
1 +

3k

Ψ

)
· k

Ψ
+ 2

√(
1 +

3k

Ψ

)
· k

Ψ
6 4

√
k

Ψ
.

We demonstrate now that the columns of matrix B are linearly independent.

Lemma 6.14. If Ψ > 25 · k3 then the columns {B:,i}ki=1 are linearly independent.

Proof. Since ker (B) = ker
(
BTB

)
and BTB is SPSD11 matrix, it suffices to show that the smallest

eigenvalue

λ(BTB) = min
x 6=0

xTBTBx

xTx
> 0.

By Lemma 6.136.13,

k∑
i=1

k∑
j 6=i

|xi| |xj |
∣∣∣〈β(i), β(j)

〉∣∣∣ 6 4

√
k

Ψ

(
k∑
i=1

|xi|

)2

6 ‖x‖22 · 4k
√
k

Ψ
,

and

xTBTBx =

〈
k∑
i=1

xiβ
(i),

k∑
j=1

xjβ
(j)

〉
=

k∑
i=1

x2
i

∥∥∥β(i)
∥∥∥2

2
+

k∑
i=1

k∑
j 6=i

xixj

〈
β(i), β(j)

〉

>

(
1− 3k

Ψ

)
‖x‖22 −

k∑
i=1

k∑
j 6=i

|xi| |xj |
∣∣∣〈β(i), β(j)

〉∣∣∣ > (1− 5k

√
k

Ψ

)
· ‖x‖22 .

Hence, λ(BTB) > 0 and the statement follows.

6.5.2 Analyzing the Row Space of Matrix B

In this section, we show that matrix BBT is close to the identity matrix. We bound now the squared `2
norm of the rows in matrix B, i.e. the diagonal entries in matrix BBT.

Lemma 6.15. (Rows) If Ψ > 400 · k3/ε2 and ε ∈ (0, 1) then for all distinct i, j ∈ {1, . . . , k} it holds

1− ε 6 〈Bi,:, Bi,:〉 6 1 + ε.

Proof. We show that the eigenvalues of matrix BBT are concentrated around 1. This would imply that
χT
i BB

Tχi = 〈Bi,:, Bi,:〉 ≈ 1, where χi is a characteristic vector. By Lemma 6.136.13 we have(
1− 3k

Ψ

)2

6
(
β(i)
)T

·BBT · β(i) =
∥∥∥β(i)

∥∥∥4

2
+

k∑
j 6=i

〈
β(j), β(i)

〉2

6

(
1 +

3k

Ψ

)2

+
16k2

Ψ
6 1 +

23k2

Ψ

and ∣∣∣∣(β(i)
)T

·BBT · β(j)

∣∣∣∣ 6 k∑
l=1

∣∣∣〈β(i), β(l)
〉∣∣∣ ∣∣∣〈β(l), β(j)

〉∣∣∣ 6 8

(
1 +

3k

Ψ

)√
k

Ψ
+ 16

k2

Ψ
6 11

√
k

Ψ
.

1We denote by SPSD the class of symmetric positive semi-definite matrices.
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By Lemma 6.146.14 every vector x ∈ Rk can be expressed as x =
∑k
i=1 γiβ

(i).

xTBBTx =

k∑
i=1

γi

(
β(i)
)T

·BBT ·
k∑
j=1

γjβ
(j)

=

k∑
i=1

γ2
i

(
β(i)
)T

·BBT · β(i) +

k∑
i=1

k∑
j 6=i

γiγj

(
β(i)
)T

·BBT · β(j)

>

(
1− 23k2

Ψ
− 11 · k

√
k

Ψ

)
‖γ‖22 >

(
1− 14 · k

√
k

Ψ

)
‖γ‖22 .

and

xTx =

k∑
i=1

k∑
j=1

γiγj

〈
β(i), β(j)

〉
=

k∑
i=1

γ2
i

∥∥∥β(i)
∥∥∥2

2
+

k∑
i=1

k∑
j 6=i

γiγj

〈
β(i), β(j)

〉
By Lemma 6.136.13 we have

∣∣∣∑k
i=1

∑k
j 6=i γiγj

〈
β(i), β(j)

〉∣∣∣ 6 ‖γ‖22 · 4k√ k
Ψ and

∥∥β(i)
∥∥2

2
6 1 + 3k

Ψ . Thus, it

holds (
1− 5k

√
k

Ψ

)
‖γ‖22 6 xTx 6

(
1 + 5k

√
k

Ψ

)
‖γ‖22 .

Hence, we have

1− 20k

√
k

Ψ
6 λ(BBT) 6 1 + 20k

√
k

Ψ
.

This proves the first part of Theorem 6.16.1. We turn now to the second part and restate it in the
following Lemma.

Lemma 6.16. (Rows) If Ψ > 104 · k3/ε2 and ε ∈ (0, 1) then for all distinct i, j ∈ {1, . . . , k} it holds

|〈Bi,:, Bj,:〉| 6
√
ε.

Let E ∈ Rk×k be a symmetric matrix such that BTB = I + E and |Eij | 6 4
√
k/Ψ. Then,(

BBT
)2

= B (I + E)BT = BBT +BEBT. (6.9)

We show next that the absolute value of every eigenvalue of matrix BEBT is small, and further
demonstrate that this implies that all entries of matrix BEBT are small. Then, we conclude the proof of
Lemma 6.166.16.

Lemma 6.17. If Ψ > 402 · k3/ε2 and ε ∈ (0, 1), then every eigenvalue λ of matrix BEBT satisfies∣∣λ(BEBT)
∣∣ 6 ε/5.

Proof. Let z = BTx. We upper bound the quadratic form

∣∣xTBEBTx
∣∣ =

∣∣zTEz
∣∣ 6∑

ij

|Eij | |zi| |zj | 6 4

√
k

Ψ
·

(
k∑
i=1

|zi|

)2

6 ‖z‖22 · 4k
√
k

Ψ
.

By Lemma 6.156.15, we have 1− ε 6 λ(BBT) 6 1 + ε and since ‖z‖22 = xBBTx
xTx · ‖x‖22, it follows that

‖z‖22
1 + ε

6 ‖x‖22 6
‖z‖22
1− ε

,

and hence ∣∣λ(BEBT)
∣∣ 6 max

x

∣∣xTBEBTx
∣∣

xTx
6 4 (1 + ε) · k

√
k

Ψ
6 ε/5.
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Lemma 6.18. If Ψ > 402 · k3/ε2 and ε ∈ (0, 1), then it holds that |(BEBT)ij | 6 ε/5 for every i, j ∈
{1, . . . , k}.

Proof. Since matrix E ∈ Rk×k is a symmetric, by construction matrix, BEBT ∈ Rk×k is also symmetric.
Using the SVD Theorem, there is an orthonormal basis {ui}ki=1 such thatBEBT =

∑k
i=1 λi(BEB

T)·uiuT
i .

Thus, it suffices to bound the expression

|(BEBT)ij | 6
k∑
l=1

|λ`(BEBT)| · |(u`uT
` )ij |.

Let U ∈ Rk×k be a square matrix whose i-th column is vector ui. By construction, matrix U is orthogonal
and satisfies UTU = I = UUT. In particular, it holds that ‖Ui,:‖22 = 1, for all i. Therefore, we have

k∑
l=1

|(u`)i| · |(u`)j | 6
√
‖Ui,:‖22

√
‖Uj,:‖22 = 1.

We apply now Lemma 6.176.17 to obtain

k∑
l=1

|λ`(BEBT)| · |(u`uT
` )ij | 6

ε

5
·
k∑
l=1

|(u`)i| · |(u`)j | 6
ε

5
.

We are now ready to prove Lemma 6.166.16.

Proof of Lemma 6.166.16. By (6.96.9) we have
(
BBT

)2
= BBT + BEBT. Observe that the (i, j)-th entry of

matrix BBT is equal to the inner product between the i-th and j-th row of matrix B, i.e.
(
BBT

)
ij

=

〈Bi,:, Bj,:〉. Moreover, we have

[(
BBT

)2]
ij

=

k∑
l=1

(
BBT

)
i,l

(
BBT

)
l,j

=

k∑
l=1

〈Bi,:, Bl,:〉 〈Bl,:, Bj,:〉 .

For the entries on the main diagonal, it holds

〈Bi,:, Bi,:〉2 +

k∑
l 6=i

〈Bi,:, Bl,:〉2 = [(BBT)2]ii = [BBT +BEBT]ii = 〈Bi,:, Bi,:〉+
(
BEBT

)
ii
,

and hence by applying Lemma 6.156.15 with ε′ = ε/5 and Lemma 6.186.18 with ε′ = ε we obtain

〈Bi,:, Bj,:〉2 6
∑
l 6=i

〈Bi,:, Bl,:〉2 6
(

1 +
ε

5

)
+
ε

5
−
(

1− ε

5

)2

6 ε.

6.6 Volume Overlap Lemma

In this section, we prove Lemma 6.46.4. Our main technical contribution is to strengthen the lower bound
of k-means cost in [PSZ17PSZ17, Lemma 4.5] by a factor of k, under the weaken gap assumption.

We begin by stating a useful Corollary of Lemma 6.36.3.

Corollary 6.19. Let Ψ = 204 · k3/δ for some δ ∈ (0, 1/2]. Suppose ci is the center of a cluster Ai. If∥∥ci − p(i1)
∥∥

2
>
∥∥ci − p(i2)

∥∥
2
, then it holds that∥∥∥ci − p(i1)
∥∥∥2

2
>

1

4

∥∥∥p(i1) − p(i2)
∥∥∥2

2
> [8 ·min {µ(Pi1), µ(Pi2)}]−1

.

We restate now [PSZ17PSZ17, Lemma 4.6] whose analysis crucially relies on the following function

σ(`) = arg max
j∈{1,...,k}

µ(A` ∩ Pj)
µ(Pj)

, for all ` ∈ {1, . . . , k}. (6.10)
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Lemma 6.20. [PSZ17PSZ17, Lemma 4.6] Let (P1, . . . , Pk) and (A1, . . . , Ak) be k-way node partitions of G.
Suppose for every permutation π : {1, . . . , k} → {1, . . . , k} there is an index i ∈ {1, . . . , k} such that

µ(Ai4Pπ(i)) > 2ε · µ(Pπ(i)), (6.11)

where ε ∈ (0, 1/2) is a parameter. Then one of the following three statements holds:
1. If σ is a permutation and µ(Pσ(i)\Ai) > ε · µ(Pσ(i)), then for every index j 6= i there is a real εj > 0
such that

µ(Aj ∩ Pσ(j)) > µ(Aj ∩ Pσ(i)) > εj ·min{µ(Pσ(j)), µ(Pσ(i))},
and

∑
j 6=i εj > ε.

2. If σ is a permutation and µ(Ai\Pσ(i)) > ε · µ(Pσ(i)), then for every j 6= i there is a real εj > 0 such
that

µ(Ai ∩ Pσ(i)) > εj · µ(Pσ(i)), µ(Ai ∩ Pσ(j)) > εj · µ(Pσ(i)),

and
∑
j 6=i εj > ε.

3. If σ is not a permutation, then there is an index ` 6∈ {σ(1), . . . , σ(k)} and for every index j there is a
real εj > 0 such that

µ(Aj ∩ Pσ(j)) > µ(Aj ∩ P`) > εj ·min{µ(Pσ(j)), µ(P`)},

and
∑k
j=1 εj = 1.

We strengthen now the lower bound of k-means cost in [PSZ17PSZ17, Lemma 4.5] by a factor of k.

Lemma 6.21. Suppose the hypothesis of Lemma 6.206.20 is satisfied and Ψ = 204 ·k3/δ for some δ ∈ (0, 1/2].
Then it holds

Cost({Ai, ci}ki=1) >
ε

16
− 2k2

Ψ
.

Proof. By definition

Cost({Ai, ci}ki=1) =

k∑
i=1

k∑
j=1

∑
u∈Ai∩Pj

d(u) ‖F(u)− ci‖22
def
= Λ. (6.12)

Since for every vectors x, y, z ∈ Rk it holds

2
(
‖x− y‖22 + ‖z − y‖22

)
> (‖x− y‖2 + ‖z − y‖2)

2 > ‖x− z‖22 ,

we have for all indices i, j ∈ {1, . . . , k} that

‖F(u)− ci‖22 >

∥∥p(j) − ci
∥∥2

2

2
−
∥∥∥F(u)− p(j)

∥∥∥2

2
. (6.13)

Our proof proceeds by considering three cases. Let i ∈ {1, . . . , k} be the index from the hypothesis in
Lemma 6.206.20.

Case 1. Suppose the first conclusion of Lemma 6.206.20 holds. For every index j 6= i let

pγ(j) =

{
pσ(j) , if

∥∥pσ(j) − cj
∥∥

2
>
∥∥pσ(i) − cj

∥∥
2

;

pσ(i) , otherwise.

Then by combining (6.136.13), Corollary 6.196.19 and Lemma 6.66.6, we have

Λ >
1

2

∑
j 6=i

∑
u∈Aj∩Pγ(j)

d(u)
∥∥∥pγ(j) − cj

∥∥∥2

2
−
∑
j 6=i

∑
u∈Aj∩Pγ(j)

∥∥∥F(u)− pγ(j)
∥∥∥2

2

>
1

16

∑
j 6=i

µ(Aj ∩ Pγ(j))

min{µ(Pσ(i)), µ(Pσ(j))}
−
(

1 +
3k

Ψ

)
· k

2

Ψ
>

ε

16
− 2k2

Ψ
.

Case 2. Suppose the second conclusion of Lemma 6.206.20 holds. Notice that if µ(Ai ∩ Pσ(i)) 6 (1− ε) ·
µ(Pσ(i)) then µ(Pσ(i)\Ai) > ε · µ(Pσ(i)) and thus we can argue as in Case 1. Hence, we can assume that
it holds

µ(Ai ∩ Pσ(i)) > (1− ε) · µ(Pσ(i)). (6.14)

72



6.6. Volume Overlap Lemma

We proceed by analyzing two subcases.
a) If

∥∥pσ(j) − ci
∥∥

2
>
∥∥pσ(i) − ci

∥∥ holds for all j 6= i then by combining (6.136.13), Corollary 6.196.19 and
Lemma 6.66.6 it follows

Λ >
1

2

∑
j 6=i

∑
u∈Ai∩Pσ(j)

d(u)
∥∥∥pσ(j) − ci

∥∥∥2

2
−
∑
j 6=i

∑
u∈Ai∩Pσ(j)

∥∥∥F(u)− pσ(j)
∥∥∥2

2

>
1

2

∑
j 6=i

µ(Ai ∩ Pσ(j))

min{µ(Pσ(i)), µ(Pσ(j))}
−
(

1 +
3k

Ψ

)
· k

2

Ψ
>

ε

16
− 2k2

Ψ
.

b) Suppose there is an index j 6= i such that
∥∥pσ(j) − ci

∥∥
2
<
∥∥pσ(i) − ci

∥∥. Then by triangle inequality
combined with Corollary 6.196.19 we have∥∥∥pσ(i) − ci

∥∥∥2

2
>

1

4

∥∥∥pσ(i) − pσ(j)
∥∥∥

2
>
[
8 ·min{µ(Pσ(i)), µ(Pσ(j))}

]−1
.

Thus, by combining (6.136.13), (6.146.14) and Lemma 6.66.6 we obtain

Λ >
1

2

∑
u∈Ai∩Pσ(i)

d(u)
∥∥∥pσ(i) − ci

∥∥∥2

2
−

∑
u∈Ai∩Pσ(i)

d(u)
∥∥∥F(u)− pσ(i)

∥∥∥2

2

>
1

16
·

µ(Ai ∩ Pσ(i))

min{µ(Pσ(i)), µ(Pσ(j))}
−
(

1 +
3k

Ψ

)
· k

2

Ψ
>

1− ε
16
− 2k2

Ψ
.

Case 3. Suppose the third conclusion of Lemma 6.206.20 holds, i.e., σ is not a permutation. Then there
is an index ` ∈ {1, . . . , k} \ {σ(1), . . . , σ(k)} and for every index j ∈ {1, . . . , k} let

pγ(j) =

{
p` , if

∥∥p` − cj∥∥2
>
∥∥pσ(j) − cj

∥∥
2

;

pσ(j) , otherwise.

By combining (6.136.13), Corollary 6.196.19 and Lemma 6.66.6 it follows that

Λ >
1

2

k∑
j=1

∑
u∈Aj∩Pγ(j)

d(u)
∥∥∥pγ(j) − cj

∥∥∥2

2
−

k∑
j=1

∑
u∈Aj∩Pγ(j)

d(u)
∥∥∥F(u)− pγ(j)

∥∥∥2

2

>
1

16

k∑
j=1

µ(Aj ∩ Pγ(j))

min{µ(Pσ(j)), µ(P`)}
−
(

1 +
3k

Ψ

)
· k

2

Ψ
>

1

16
− 2k2

Ψ
.

We are now ready to prove Lemma 6.46.4.

Proof of Lemma 6.46.4. We apply Lemma 6.206.20 with ε′ = ε/k. Then, by Lemma 6.216.21 we have

Cost({Ai, ci}ki=1) >
ε

16k
− 2k2

Ψ
,

and the desired result follows by setting ε > 64α · k3/Ψ.
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Chapter 7

Analysis of Approximate Spectral
Clustering

7.1 Normalized Spectral Embedding

In this section, we prove Theorem 5.45.4, showing that the normalized SE Y ′ is ε-separated. For convenience
of the reader, we restate the result.

Theorem 5.45.4 (from page 6262). Let G be a graph that satisfies Ψ = 204 · k3/δ, δ ∈ (0, 1/2] and k/δ > 109.
Then for ε = 6 · 10−7 it holds

4k(Y ′) 6 ε2 · 4k−1(Y ′). (7.1)

We establish first a lower bound on 4k−1(Y ′).

Lemma 7.1. Let G be a graph that satisfies Ψ = 204 · k3/δ for some δ ∈ (0, 1/2]. Then for δ′ = 2δ/204

it holds

4k−1(Y ′) >
1

12
− δ′

k
. (7.2)

Before we present the proof of Lemma 7.17.1, we show that it implies (7.17.1). By Lemma 6.66.6, we have

4k(Y ′) 6
2k2

Ψ
=
δ′

k
,

and thus, by applying Lemma 7.17.1 with k/δ > 109 and ε = 6 · 10−7, we obtain

4k−1(Y ′) >
1

12
− δ′

k
=

1

12
− 2

204
· δ
k
>

1010

9 · 25
· δ
k

=
1

ε2
· δ
′

k
>

1

ε2
· 4k(Y ′).

7.1.1 Proof of Lemma 7.17.1

We argue in a similar manner as in Lemma 6.216.21 (c.f. Case 3). We start by giving some notation, then we
establish Lemma 7.27.2 and apply it in the proof of Lemma 7.17.1.

We redefine the function σ, see (6.106.10), such that for any two partitions (P1, . . . , Pk) and (Z1, . . . , Zk−1)
of V , we define a mapping σ : {1, . . . , k − 1} 7→ {1, . . . , k} by

σ(i) = arg max
j∈{1,...,k}

µ(Zi ∩ Pj)
µ(Pj)

, for every i ∈ {1, . . . , k − 1}.

We lower bound now the overlapping of clusters between any k-way and (k − 1)-way partitions of V
in terms of volume.

Lemma 7.2. Suppose (P1, . . . , Pk) and (Z1, . . . , Zk−1) are partitions of V . Then for any index ` ∈
{1, . . . , k} \ {σ(1), . . . , σ(k − 1)} (there is at least one such `) and for every i ∈ {1, . . . , k − 1} it holds{

µ(Zi ∩ Pσ(i)), µ(Zi ∩ P`)
}
> τi ·min

{
µ(P`), µ(Pσ(i))

}
,

where
∑k−1
i=1 τi = 1 and τi > 0.

Proof. By pigeonhole principle there is an index ` ∈ {1, . . . , k} such that ` /∈ {σ(1), . . . , σ(k − 1)}. Thus,
for every i ∈ {1, . . . , k − 1} we have σ(i) 6= ` and

µ(Zi ∩ Pσ(i))

µ(Pσ(i))
>
µ(Zi ∩ P`)
µ(P`)

def
= τi,

where
∑k−1
i=1 τi = 1 and τi > 0 for all i. Hence, the statement follows.
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We present now the proof of Lemma 7.17.1.

Proof of Lemma 7.17.1. Let (Z1, . . . , Zk−1) be a (k − 1)-way partition of V with centers c′1, . . . , c
′
k−1 that

achieves 4k−1(Y ′), and (P1, . . . , Pk) be a k-way partition of V achieving ρ̂avr(k). Our goal now is to
lower bound the optimum (k − 1)-means cost

4k−1(Y ′) =

k−1∑
i=1

k∑
j=1

∑
u∈Zi∩Pj

du ‖F(u)− c′i‖
2
2 . (7.3)

By Lemma 7.27.2 there is an index ` ∈ {1, . . . , k} \ {σ(1), . . . , σ(k − 1)}. For i ∈ {1, . . . , k − 1} let

pγ(i) =

{
p` , if

∥∥p` − c′i∥∥2
>
∥∥pσ(i) − c′i

∥∥
2

;

pσ(i) , otherwise.

Then by combining Corollary 6.196.19 and Lemma 7.27.2, we have∥∥∥pγ(i) − c′i
∥∥∥2

2
>
[
8 ·min

{
µ(P`), µ(Pσ(i))

}]−1
and µ(Zi ∩ Pγ(i)) > τi ·min

{
µ(P`), µ(Pσ(i))

}
, (7.4)

where
∑k−1
i=1 τi = 1. We now lower bound the expression in (7.37.3). Since

‖F(u)− c′i‖
2
2 >

1

2

∥∥∥pγ(i) − c′i
∥∥∥2

2
−
∥∥∥F(u)− pγ(i)

∥∥∥2

2
,

it follows for δ′ = 2δ/204 that

4k−1(XV ) =

k−1∑
i=1

k∑
j=1

∑
u∈Zi∩Pj

du ‖F(u)− c′i‖
2
2 >

k−1∑
i=1

∑
u∈Zi∩Pγ(i)

du ‖F(u)− c′i‖
2
2

>
1

2

k−1∑
i=1

∑
u∈Zi∩Pγ(i)

du

∥∥∥pγ(i) − c′i
∥∥∥2

2
−
k−1∑
i=1

∑
u∈Zi∩Pγ(i)

du

∥∥∥F(u)− pγ(i)
∥∥∥2

2

>
1

2

k−1∑
i=1

µ(Zi ∩ Pγ(i))

8 ·min
{
µ(Pγ(i)), µ(Pσ(i))

} − k∑
i=1

∑
u∈Pi

du
∥∥F(u)− pi

∥∥2

2

>
1

16
− δ′

k
,

where the last inequality holds due to (7.47.4) and Lemma 6.66.6.

7.2 Approximate Normalized Spectral Embedding

In this section, we prove Theorem 5.65.6, which shows that the approximate normalized SE Ỹ ′, computed
via the Power method, is ε-separated.

Before we state our results, we need some notation. Let X ′opt be an indicator matrix, see (5.115.11),
corresponding to an optimal k-way row partition of the normalized SE Y ′. Then, the optimum k-means
cost of Y ′ in matrix notation reads

4k(Y ′) = ‖Y ′ −X ′opt(X
′
opt)

TY ′‖2F .

Similarly, for the approximate normalized SE Ỹ ′, let X̃ ′opt be an indicator matrix such that

4k(Ỹ ′) = ‖Ỹ ′ − X̃ ′opt(X̃
′
opt)

TỸ ′‖2F .

In Subsection 7.2.17.2.1, using techniques from [BKG15BKG15, Lemma 5] and [BM14BM14, Lemma 7], we prove the
following statement.
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Lemma 7.3. Let λk and λk+1 be the k-th and (k + 1)-st smallest eigenvalue of LG, Y be the canonical
SE, and S ∈ Rn×k be a matrix whose entries are i.i.d. samples from the standard Gaussian distribution.
For any β, ε ∈ (0, 1) and p > ln(8nk/εβ)

/
ln(1/γk), where γk = 2−λk+1

2−λk < 1, compute the approximate

SE Ỹ via the Power method:

1) M
def
= I +D−1/2AD−1/2; 2) Let Ũ Σ̃Ṽ T be the SVD of MpS; and 3) Ỹ

def
= Ũ ∈ Rn×k.

Then, with probability at least 1− 2e−2n − 3β, it holds that

‖Y Y T − Ỹ Ỹ T‖F 6 ε.

In Subsection 7.2.27.2.2, we establish technical lemmas that allows us to apply the proof technique developed
in [BKG15BKG15, Theorem 6] for approximate SE Ỹ , and to prove a similar statement for the approximate

normalized SE Ỹ ′.

Theorem 5.55.5 (from page 6262). Let ε, δp ∈ (0, 1) be arbitrary. Compute the approximate normalized SE

Ỹ ′ via the Power method with p > ln(8nk/εδp)
/

ln(1/γk) iterations and γk = (2 − λk+1)/(2 − λk) < 1.

Run on the rows of Ỹ ′ an α-approximate k-means clustering algorithm with failure probability δα. Let the
outcome be a clustering indicator matrix X̃ ′α ∈ Rn×k. Then, with probability at least 1− 2e−2n− 3δp− δα,
it holds that ∥∥∥∥Y ′ − X̃ ′α (X̃ ′α)T

Y ′
∥∥∥∥2

F

6 (1 + 4ε) · α ·
∥∥∥Y ′ −X ′opt

(
X ′opt

)T
Y ′
∥∥∥2

F
+ 4ε2.

In Subsection 7.2.37.2.3, we prove Theorem 5.65.6 using Lemma 7.37.3 and Theorem 5.55.5, showing that the
approximate normalized SE Ỹ ′, computed via the Power method, is ε-separated.

Theorem 5.65.6 (from page 6262). Assume Ψ = 204 · k3/δ, k/δ > 109 for some δ ∈ (0, 1/2]. Compute the

approximate normalized SE Ỹ ′ via the Power method with p > Ω( lnn
λk+1

). Then, for ε = 6 · 10−7 it holds

with high probability that

4k(Ỹ ′) < 5ε2 · 4k−1(Ỹ ′).

In Subsection 7.37.3, we show that Part (b) of Theorem 5.25.2 follows by combining Part (a) of Theorem 5.25.2,
Theorem 5.35.3, Theorem 5.55.5 and Theorem 5.65.6.

7.2.1 Proof of Lemma 7.37.3

We argue in a similar manner as in [BM14BM14, Lemma 7]. Our analysis uses the following two probabilistic
results on Gaussian matrices.

Lemma 7.4 (Norm of a Gaussian Matrix [DS01DS01]). Let M ∈ Rn×k be a matrix of i.i.d. standard Gaussian
random variables, where n > k. Then, for t > 4, Pr{σ1(M) > t

√
n} > exp{−nt2/8}.

Lemma 7.5 (Invertibility of a Gaussian Matrix [SST06SST06]). Let M ∈ Rn×n be a matrix of i.i.d. standard
Gaussian random variables. Then, for any β ∈ (0, 1), Pr{σn(M) 6 β/(2.35

√
n)} 6 β.

Using the preceding two lemmas, we obtain the following probabilistic statement.

Lemma 7.6 (Rectangular Gaussian Matrix). Let S ∈ Rn×k be a matrix of i.i.d. standard Gaussian
random variables, V ∈ Rn×ρ be a matrix with orthonormal columns and n > ρ > k. Then, with probability
at least 1− e−2n it holds rank(V TS) = k.

Proof. Let S′ ∈ Rn×ρ be an extension of S such that S′ = [S S′′], where S′′ ∈ Rn×ρ−k is a matrix of i.i.d.
standard Gaussian random variables. Notice that V TS′ ∈ Rρ×ρ is a matrix of i.i.d. standard Gaussian
random variables. We apply now Lemma 7.57.5 with β = e−2n which yields with probability at least 1−e−2n

that σρ(V
TS′) > 1/(2.35 · e2n√ρ) > 0 and thus rank(V TS′) = ρ. In particular, rank(V TS) = k with

probability at least 1− e−2n.
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Proof of Lemma 7.37.3. By the Eigendecomposition theorem, LG = UΣ′U−1 where U ∈ Rn×n is an or-
thonormal matrix whose i-th column equals the eigenvector of LG corresponding to the i-th smallest
eigenvalue λi, and Σ′ is a non-negative diagonal matrix such that Σ′ii = λi, for all i. Since the canonical
SE Y ∈ Rn×k consists of the bottom k eigenvectors of LG, we have U = [Y Un−k] where Un−k ∈ Rn×n−k,
and similarly Σ = [Σk 0k,n−k; 0n−k,k Σn−k].

Further, by the Eigendecomposition theorem M = UΣUT, where Σ = 2I − Σ′ and in particular
Σii = 2 − λi > 0 for all i. Since Mp = UΣpUT, it follows that ker(MpS) = ker(UTS). By Lemma 7.67.6
with probability at least 1− e−2n we have rank(UTS) = k and thus matrix MpS has k singular values.

Further, the SVD decomposition Ũ Σ̃Ṽ T of MpS satisfies: Ũ ∈ Rn×k is a matrix with orthonormal
columns, Σ̃ ∈ Rk×k is a positive diagonal matrix and Ṽ T ∈ Rk×k is an orthonormal matrix. Recall that
approximate SE is defined by Ỹ = Ũ .

Let R
def
= Σ̃Ṽ T ∈ Rk×k and observe that Ỹ R = MpS = [Y Un−k]Σp[Y T; UT

n−k]S. We use the facts:

Ỹ R = Y ΣpkY
TS + Un−kΣpn−kU

T
n−kS; (7.5)

σi(Ỹ R) > σk
(
Y ΣpkY

TS
)
> (2− λk)

p · σk
(
Y TS

)
; (7.6)

σi(Ỹ R) = σi (R) ; (7.7)

‖XỸ ‖2 > ‖XỸ ‖2 · σk(Ỹ ), for any X ∈ R`×k. (7.8)

(7.57.5) follows from the eigenvalue decomposition of M and the fact that Mp = UΣpUT; (7.67.6) follows by
(7.57.5) due to Y and Un−k span orthogonal spaces, and since the minimum singular value of a product

is at least the product of the minimum singular values; (7.77.7) holds due to Ỹ TỸ = Ik; Recall that with
probability at least 1− e−2n we have σk(R) > 0 and hence (7.87.8) follows by

‖X‖2 = max
x 6=0

‖XRx‖2
‖Rx‖2

6 max
x 6=0

‖XRx‖2
σk(R) ‖x‖2

=
‖XR‖2
σk(R)

.

[GVL12GVL12, Theorem 2.6.1] shows that for every two m× k orthonormal matrices W,Z with m > k it holds∥∥WWT − ZZT
∥∥

2
=
∥∥ZTW⊥

∥∥
2

=
∥∥WTZ⊥

∥∥
2
,

where [Z,Z⊥] ∈ Rm×m is full orthonormal basis. Therefore, we have∥∥∥Y Y T − Ỹ Ỹ T
∥∥∥

2
=
∥∥∥Ỹ TY ⊥

∥∥∥
2

=
∥∥∥(Y ⊥)TỸ

∥∥∥
2

=
∥∥∥UT

n−kỸ
∥∥∥

2
, (7.9)

where the last equality is due to Y ⊥ = Un−k.

To upper bound
∥∥∥UT

n−kỸ
∥∥∥

2
we establish the following inequalities:∥∥∥UT

n−kỸ R
∥∥∥

2
>

∥∥∥UT
n−kỸ

∥∥∥
2
· σ(R) >

∥∥∥UT
n−kỸ

∥∥∥
2
· (2− λk)

p · σk
(
Y TS

)
, (7.10)∥∥∥UT

n−kỸ R
∥∥∥

2
=

∥∥Σpn−kU
T
n−kS

∥∥
2
6 (2− λk+1)

p · σ1

(
UT
n−kS

)
, (7.11)

where (7.107.10) follows by (7.87.8), (7.77.7) and (7.67.6); and (7.117.11) is due to (7.57.5) and 2 = Σ11 > · · · > Σnn > 0.
By Lemma 7.47.4 and Lemma 7.57.5, it follows by the Union bound that with probability at least 1−e−2n−3β,

we have
β√
k
6 σk

(
Y TS

)
and σ1

(
UT
n−kS

)
6 4
√
n. (7.12)

Using (7.97.9), (7.107.10), (7.117.11) and (7.127.12) we obtain∥∥∥Y Y T − Ỹ Ỹ T
∥∥∥

2
=
∥∥∥UT

n−kỸ
∥∥∥

2
6 (4/β) ·

√
nk · γpk . (7.13)

Since ‖M‖F 6
√

rank(M) · ‖M‖2 for every matrix M and rank(Y Y T − Ỹ Ỹ T) 6 2k, it follows∥∥∥Y Y T − Ỹ Ỹ T
∥∥∥
F
6 2k ·

∥∥∥Y Y T − Ỹ Ỹ T
∥∥∥

2
6 (8/β) · n1/2k3/2 · γpk 6 ε,

where the last two inequalities are due to (7.137.13) and the choice of γk.
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7.2.2 Proof of Theorem 5.55.5

[BKG15BKG15, Theorem 6] relates canonical SE and approximate SE, whereas our goal is to establish similar
result for the normalized SE and approximate normalized SE. We present next four technical lemmas
that combined with Lemma 7.37.3, allow us to apply the proof technique developed in [BKG15BKG15, Theorem 6].

Lemma 7.7. Let X ′, X̃ ′ ∈ Rm×k be indicator matrices returned by an α-approximate k-means clustering
algorithm applied on inputs Y ′ and Ỹ ′, respectively, for any α > 1. Then, it holds that X ′(X ′)T and

X̃ ′(X̃ ′)T are projection matrices.

Proof. We prove now the first conclusion. By construction, there are d(v) many copies of row Y (v, :)/
√
d(v)

in Y ′, for all v ∈ V . W.l.o.g. the indicator matrix X ′ has all copies of row Y (v, :)/
√
d(v) assigned to the

same cluster, for all v ∈ V . By definition, X ′ij = 1/
√
µ(Cj) if row Y ′i,: belongs to the j-th cluster Cj and

X ′ij = 0 otherwise. Hence, (X ′)TX ′ = Ik×k and thus [X ′(X ′)T]2 = X ′(X ′)T. The second part follows

similarly, since matrix Ũ is orthonormal.

Lemma 7.8. The normalized SE Y ′ and the approximate normalized SE Ỹ ′ are orthonormal matrices.

Proof. We prove now (Y ′)TY ′ = Ik×k. The equality Ỹ ′
T
Ỹ ′ = Ik×k follows similarly. Note that

[
(Y ′)TY ′

]
ij

=
(

Y (1,i)√
d(1)

1T
d(1) · · · Y (n,i)√

d(n)
1T
d(n)

)
Y (1,j)√
d(1)

1d(1)

· · ·
Y (n,j)√
d(n)

1d(n)


=

n∑
`=1

d(`)
Y (`, i)√
d(`)

Y (`, j)√
d(`)

= 〈Y (:, i), Y (:, j)〉 = δ(i, j),

where δ(i, j) is the Kronecker delta function. Hence, the statement follows.

Lemma 7.9. It holds that ‖Y ′(Y ′)T − Ỹ ′(Ỹ ′)T‖F = ‖Y Y T − Ỹ Ỹ T‖F .

Proof. Let 1d(i) ∈ {0, 1}m be an indicator vector of the d(i) copies of row Y (i, :)/
√
d(i) in matrix Y ′. By

definition

Y ′(Y ′)T =

k∑
`=1

Y ′:,`Y
′T
:,` where Y ′:,` =


Y (1,`)√
d(1)

1d(1)

· · ·
Y (n,`)√
d(n)

1d(n)


m×1

and (
Y ′:,`Y

′T
:,`

)
d(i)d(j)

=
Y (i, `)Y (j, `)√

d(i)d(j)
· 1d(i)1

T
d(j).

Hence, we have

∥∥∥Y ′(Y ′)T − Ỹ ′(Ỹ ′)T
∥∥∥2

F
=

n∑
i=1

n∑
j=1

∥∥∥∥(Y ′(Y ′)T − Ỹ ′(Ỹ ′)T
)
d(i)d(j)

∥∥∥∥2

F

=

n∑
i=1

n∑
j=1

∥∥∥∥∥
k∑
`=1

(
Y ′:,`(Y

′
:,`)

T − Ỹ ′:,`(Ỹ ′:,`)T
)
d(i)d(j)

∥∥∥∥∥
2

F

=

n∑
i=1

n∑
j=1

∥∥∥∥∥
{

k∑
`=1

(
Y (i, `)Y (j, `)√

d(i)d(j)
− Ỹ (i, `)Ỹ (j, `)√

d(i)d(j)

)}
· 1d(i)1

T
d(j)

∥∥∥∥∥
2

F

.
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By definition of Frobenius norm, it holds that∥∥∥Y ′(Y ′)T − Ỹ ′(Ỹ ′)T
∥∥∥2

F
=

n∑
i=1

n∑
j=1

d(i)d(j)

[
k∑
`=1

(
Y (i, `)Y (j, `)√

d(i)d(j)
− Ỹ (i, `)Ỹ (j, `)√

d(i)d(j)

)]2

=

n∑
i=1

n∑
j=1

[
k∑
`=1

(
Y (i, `)Y (j, `)− Ỹ (i, `)Ỹ (j, `)

)]2

=

n∑
i=1

n∑
j=1

(
Y Y T − Ỹ Ỹ T

)2

ij

=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥2

F
.

Lemma 7.10. For any matrix U with orthonormal columns and every matrix A it holds∥∥UUT −AATUUT
∥∥
F

=
∥∥U −AATU

∥∥
F
. (7.14)

Proof. The statement follows by the Frobenius norm property ‖M‖2F = Tr[MTM ], the cyclic property
of trace Tr[UMTMUT] = Tr[MTM · UTU ] and the orthogonality of matrix U .

Using the preceding lemmas, we are ready to prove Theorem 5.55.5.

Proof of Theorem 5.55.5. Using Lemma 7.37.3 and Lemma 7.97.9 with probability at least 1 − 2e−2n − 3δp we
have ∥∥∥Y ′(Y ′)T − Ỹ ′(Ỹ ′)T

∥∥∥
F

=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
F
6 ε.

Let Y ′(Y ′)T = Ỹ ′(Ỹ ′)T + E such that ‖E‖F 6 ε. By combining Lemma 7.87.8 and Lemma 7.107.10, (7.147.14)

holds for the matrices Y ′ and Ỹ ′. Thus, by Lemma 7.77.7 and the proof techniques in [BKG15BKG15, Theorem 6],
it follows that ∥∥∥Y ′ − X̃ ′α(X̃ ′α)TY ′

∥∥∥
F
6
√
α ·
(∥∥Y ′ −X ′opt(X

′
opt)

TY ′
∥∥
F

+ 2ε
)
. (7.15)

The desired statement follows by simple algebraic manipulations of (7.157.15).

7.2.3 Proof of Theorem 5.65.6

In this section, we demonstrate that the approximate normalized SE Ỹ ′ is ε-separated, i.e. 4k(Ỹ ′) <

5ε2 ·4k−1(Ỹ ′). Our analysis builds upon Theorem 5.45.4, Theorem 5.55.5 and the proof techniques in [BKG15BKG15,
Theorem 6].

Before we present the proof of Theorem 5.65.6, we establish two technical Lemmas.

Lemma 7.11. Suppose Ψ > 204 · k3/δ for some δ ∈ (0, 1/2]. Then, it holds that

ln

(
2− λk

2− λk+1

)
>

1

2

(
1− 4δ

204k2

)
λk+1.

Proof. By (5.55.5), the following higher-order Cheeger inequalities hold

λk/2 6 ρ(k) 6 O(k2) ·
√
λk. (7.16)

Using the LHS of (7.167.16), we have

k3ρ̂avr(k) = k2
k∑
i=1

φ(Pi) > k2 max
i∈{1,...,k}

φ(Pi) > k2 · ρ(k) >
k2λk

2
,

and thus the k-th smallest eigenvalue of LG satisfies λk 6 2k · ρ̂avr(k). Then, the gap assumption yields

λk+1 >
204k2

2δ
· 2k · ρ̂avr(k) >

204k2

2δ
· λk.

The statement follows by

2− λk
2− λk+1

>
1− δ

204k2 · λk+1

1− 1
2λk+1

> exp

{
1

2

(
1− 4δ

204k2

)
λk+1

}
.
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Lemma 7.12. For any matrices A ∈ Rm×n and B ∈ Rn×k, it holds that ‖AB‖F 6 ‖A‖2 · ‖B‖F .

Proof. By definition, ‖B‖2F =
∑k
i=1 ‖B:,i‖22 and ‖Ax‖2 6 ‖A‖2‖x‖2, and thus we have

‖AB‖2F =

k∑
i=1

‖AB:,i‖22 6 ‖A‖22
k∑
i=1

‖B:,i‖22 = ‖A‖22 · ‖B‖22.

In the following, we use interchangeably X ′opt and X
′(k)
opt to denote an optimal indicator matrix for

the k-means clustering problem on Y ′. Similarly, we denote by X
′(k−1)
opt an optimal indicator matrix for

the (k − 1)-means clustering problem on Y ′.

We are now ready to prove Theorem 5.65.6.

Proof of Theorem 5.65.6. We set the approximation parameter in Theorem 5.55.5 to ε′ = ε/30. By Theorem 5.45.4,
we have ∥∥∥∥Y ′ −X ′(k)

opt

(
X
′(k)
opt

)T

Y ′
∥∥∥∥
F

=
√
4k(Y ′)

6 ε
√
4k−1(Y ′) = ε

∥∥∥∥Y ′ −X ′(k−1)
opt

(
X
′(k−1)
opt

)T

Y ′
∥∥∥∥
F

. (7.17)

We compute an approximate SE Ỹ ∈ Rn×k, defined in (5.75.7), via the Power method which runs p = O( lnn
λk+1

)

iterations.

By combining Lemma 7.37.3 and Lemma 7.97.9, for the normalized and approximate normalized SE, Y ′

and Ỹ ′ respectively, we obtain w.h.p. that∥∥∥Y ′Y ′T − Ỹ ′(Ỹ ′)T
∥∥∥
F

=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
F
6 ε′.

Let Y ′Y ′T = Ỹ ′Ỹ ′
T

+ E such that ‖E‖F 6 ε′. By Lemma 7.87.8, Y ′ and Ỹ ′ are orthonormal matrices.

Hence, by Lemma 7.107.10 applied on Ỹ ′, we obtain√
4k(Ỹ ′) =

∥∥∥∥Ỹ ′ − X̃ ′(k)
opt

(
X̃
′(k)
opt

)T

Ỹ ′
∥∥∥∥
F

=

∥∥∥∥Ỹ ′Ỹ ′T − X̃ ′(k)
opt

(
X̃
′(k)
opt

)T

Ỹ ′Ỹ ′
T
∥∥∥∥
F

=

∥∥∥∥Y ′(Y ′)T − X̃ ′(k)
opt

(
X̃
′(k)
opt

)T

Y ′(Y ′)T −
[
Im×m − X̃ ′(k)

opt

(
X̃
′(k)
opt

)T]
E

∥∥∥∥
F

6

∥∥∥∥Y ′ − X̃ ′(k)
opt

(
X̃
′(k)
opt

)T

Y ′
∥∥∥∥
F

+ ‖E‖F , (7.18)

where the last step uses triangle inequality, Lemma 7.107.10 applied on Y ′, Lemma 7.127.12, Lemma 7.77.7 and
‖I − PPT‖2 6 1 for any projection matrix P . Then, we apply Theorem 5.55.5 with an exact k-means
clustering algorithm, i.e. α = 1, and parameters δp = n−O(1) and ε′ (as above). By Lemma 7.117.11, for any
p > Ω( lnn

λk+1
) it holds w.h.p.

∥∥∥∥Y ′ − X̃ ′(k)
opt

(
X̃
′(k)
opt

)T

Y ′
∥∥∥∥2

F

6 (1 + 4ε′) ·
∥∥∥∥Y ′ −X ′(k)

opt

(
X
′(k)
opt

)T

Y ′
∥∥∥∥2

F

+ 4(ε′)2. (7.19)

The proof proceeds by case distinction.

Case 1: Suppose ε′ 6 1
4

√
4k(Y ′). Combining (7.187.18), (7.197.19) and ‖E‖F 6 ε′, yields√
4k(Ỹ ′) 6 ε′ +

√
(1 + 4ε′) · 4k(Y ′) + 4(ε′)2

6 2 ·
√
4k(Y ′) 6 2ε ·

√
4k−1(Y ′), (7.20)
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where the last inequality follows by (7.177.17). Moreover, it holds that

√
4k−1(Y ′) =

∥∥∥∥Y ′ −X ′(k−1)
opt

(
X
′(k−1)
opt

)T

Y ′
∥∥∥∥
F

6

∥∥∥∥Y ′ − X̃ ′(k−1)
opt

(
X̃
′(k−1)
opt

)T

Y ′
∥∥∥∥
F

=

∥∥∥∥Y ′(Y ′)T − X̃ ′(k−1)
opt

(
X̃
′(k−1)
opt

)T

Y ′(Y ′)T

∥∥∥∥
F

=

∥∥∥∥Ỹ ′Ỹ ′T − X̃ ′(k−1)
opt

(
X̃
′(k−1)
opt

)T

Ỹ ′Ỹ ′
T

+
[
Im×m − X̃ ′(k−1)

opt

(
X̃
′(k−1)
opt

)T]
E

∥∥∥∥
F

6

∥∥∥∥Ỹ ′ − X̃ ′(k−1)
opt

(
X̃
′(k−1)
opt

)T

Ỹ ′
∥∥∥∥
F

+ ‖E‖F (7.21)

6
√
4k−1(Ỹ ′) +

ε

4

√
4k−1(Y ′),

where the last inequality uses the definition of 4k−1(Ỹ ′) and

‖E‖F 6 ε′ 6
1

4

√
4k(Y ′) 6

ε

4

√
4k−1(Y ′).

Hence, √
4k−1(Y ′) 6

(
1 +

ε

2

)√
4k−1(Ỹ ′). (7.22)

Therefore, by combining (7.207.20) and (7.227.22), we obtain√
4k(Ỹ ′) 6 2ε ·

√
4k−1(Y ′) 6 (2 + ε) · ε ·

√
4k−1(Ỹ ′).

Case 2: Suppose 0 6 1
4

√
4k(Y ′) < ε′. Combining (7.187.18), (7.197.19) and ‖E‖F 6 ε′, yields√
4k(Ỹ ′) 6 ε′ +

√
(1 + 4ε′) · 4k(Y ′) + 4(ε′)2 6 6ε′. (7.23)

Further, by Lemma 7.17.1 and k/δ > 109 we have 4k−1(Y ′) > 1/13, and thus using (7.217.21) we obtain√
4k−1(Ỹ ′) >

√
4k−1(Y ′)− ‖E‖F > 1/4− ε′ > 1/5. (7.24)

By combining Equations (7.237.23) and (7.247.24), it follows that√
4k(Ỹ ′) 6 6ε′ 6 30ε′ ·

√
4k−1(Ỹ ′) = ε ·

√
4k−1(Ỹ ′).

7.3 Proof of Approximate Spectral Clustering

We prove now Part (b) of Theorem 5.25.2. Let p = Θ( lnn
λk+1

). We compute the matrix MpS in time O(mkp)

and its singular value decomposition Ũ Σ̃Ṽ T in time O(nk2). Based on it, we construct in time O(mk)

the approximate normalized SE Ỹ ′, see (5.85.8).

By Theorem 5.65.6, Ỹ ′ is ε-separated for ε = 6 · 10−7, i.e. 4k(Ỹ ′) < 5ε2 · 4k−1(Ỹ ′). Let α = 1 + 10−10.
Then, by Theorem 5.35.3, there is an algorithm that outputs in time O(mk2 + k4) a k-way vector partition

with indicator matrix X̃ ′α such that with probability at least 1−O(
√
ε), we have∥∥∥∥Ỹ ′ − X̃ ′α(X̃ ′α)T

Ỹ ′
∥∥∥∥2

F

6

(
1 +

1

1010

)
·
∥∥∥∥Ỹ ′ − X̃ ′opt

(
X̃ ′opt

)T

Ỹ ′
∥∥∥∥2

F

.

Let η ∈ (n−O(1), 1) be a parameter to be determined soon. Observe that for Ψ = 204 ·k3/δ, δ ∈ (0, 1/2]
and k/δ > 109, by Equations (5.115.11), (6.36.3) and Lemma 6.66.6, it holds∥∥∥∥Y ′ −X ′(k)

opt

(
X
′(k)
opt

)T

Y ′
∥∥∥∥2

F

6 Cost({Pi, p(i)}ki=1) 6
2k2

Ψ
6

1

8 · 1013
. (7.25)
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Combining Theorem 5.65.6 and Equation (7.257.25), yields

1

nO(1)
6

∥∥∥∥Y ′ −X ′opt

(
X ′opt

)T

Y ′
∥∥∥∥
F

6
1

106
.

Using Lemma 7.117.11, we apply Theorem 5.55.5 with δp = n−O(1), α = 1 + 10−10, δα = O(
√
ε) and

ε′ =

√
η

4
· 1

nO(1)
6
√
η

4
·
∥∥∥∥Y ′ −X ′opt

(
X ′opt

)T

Y ′
∥∥∥∥
F

,

and obtain with constant probability (close to 1) that∥∥∥∥Ỹ ′ − X̃ ′α(X̃ ′α)T

Ỹ ′
∥∥∥∥2

F

6 (1 + 4ε′) · α ·
∥∥∥∥Y ′ −X ′opt

(
X ′opt

)T

Y ′
∥∥∥∥2

F

+ 4ε′2

=

[(
1 +
√
η

∥∥∥∥Y ′ −X ′opt

(
X ′opt

)T

Y ′
∥∥∥∥
F

)
α+

η

4

]
·
∥∥∥∥Y ′ −X ′opt

(
X ′opt

)T

Y ′
∥∥∥∥2

F

6

[(
1 +

√
η

106

)
·
(

1 +
1

1010

)
+
η

4

]
·
∥∥∥∥Y ′ −X ′opt

(
X ′opt

)T

Y ′
∥∥∥∥2

F

,

Then, for η = 1/106 the approximate solution X̃ ′α yields a multiplicative approximation, satisfying∥∥∥∥Y ′ − X̃ ′α(X̃ ′α)T

Y ′
∥∥∥∥2

F

6

(
1 +

1

106

)∥∥∥∥Y ′ −X ′opt

(
X ′opt

)T

Y ′
∥∥∥∥2

F

.

The statement follows by Part (a) of Theorem 5.25.2 applied to the k-way partition (A1, . . . , Ak) of V that

is induced by the indicator matrix X̃ ′α.

Appendix

Let G be an undirected and unweighted graph consisting of k cliques each of size n/k, and let A be its
adjacency matrix. Let GR be the graph G, plus a set ER of k additional edges connecting the k cliques
in the form of a ring such that no two edges in ER (of the ring) share a vertex. In other words, let AR be
the adjacency matrix of ER, then ARAR = S where S is a diagonal matrix defined as Sii = 1 if vertex i
is connected to a vertex in a neighboring clique, and Sii = 0 otherwise.

Recall that the normalized Laplacian matrix of G is given by LG = I −A, where A = D−1/2AD−1/2

and D is a positive diagonal matrix with Dii = deg(i), for all i. Then, the normalized Laplacian matrix
of GR is defined as

LGR = I − (D + S)
−1/2

(A+AR) (D + S)
−1/2

.

Our analysis relies on the following four lemmas. We note that the first lemma is folklore.

Lemma 7.13. It holds that λ1(LG) = · · · = λk(LG) = 0 and λk+1(LG) = · · · = λn(LG) = 1. Moreover,
λ1(A) = · · · = λk(A) = 1 and λk+1(A) = · · · = λk+1(A) = 0. In particular, A is a symmetric positive
semi-definite matrix.

Lemma 7.14. For any symmetric matrix M ∈ Rn×n and any positive diagonal matrix S ∈ Rn×n, it
holds that λi

(
MS−1

)
= λi(S

−1/2MS−1/2) for every i ∈ {1, . . . , n}.

Proof. Let vi ∈ Rn and λi ∈ R be such that MS−1vi = λivi. Let vi = S1/2yi for some vector yi ∈ Rn (it
exists as S is a positive diagonal matrix), then we have MS−1 · S1/2yi = λi · S1/2yi and by multiplying
from the left with S−1/2, we obtain S−1/2MS−1/2 · yi = λi · yi.

Lemma 7.15. [Kly00Kly00, Eig15Eig15] Let Q ∈ Rn×n be a symmetric positive semi-definite matrix and S ∈ Rn×n
be a positive diagonal matrix. Let λ1 > . . . > λn and µ1 > . . . > µn be the eigenvalues of Q and QS−1,
respectively. Then, it holds that λi ·minj{S−1

jj } 6 µi 6 λi ·maxj{S−1
jj }.

Lemma 7.16. [Ste90Ste90, Corollary 4.10] Let A,E ∈ Rn×n be arbitrary symmetric matrices. Then, their
eigenvalues satisfy |λi(A+ E)− λi(A)| 6 ‖E‖2 for every i ∈ {1, . . . , n}.

Using the preceding four lemmas, we establish a lower bound on the eigenvalue λk+1(LGR).
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Chapter 7. Analysis of Approximate Spectral Clustering

Theorem 7.17. (Ring of k Cliques) The (k + 1)-st smallest eigenvalue of the normalized Laplacian
matrix of graph GR satisfies λk+1(LGR) > 1− k/n.

Proof. Let Z
def
= D−1 · (D + S). Note that Z is a positive diagonal matrix. By definition, we have

LGR = I − (D + S)
−1/2

(A+AR) (D + S)
−1/2

= I − Z−1/2 ·D−1/2 (A+AR)D−1/2 · Z−1/2.

It suffices to upper bound the (k+ 1)-st largest eigenvalue of matrix Z−1/2 ·D−1/2(A+AR)D−1/2 ·Z−1/2.
Recall that A = D−1/2AD−1/2 and thus

Z−1/2 ·D−1/2 (A+AR)D−1/2 · Z−1/2 = Z−1/2AZ−1/2 + Z−1/2 ·D−1/2ARD
−1/2 · Z−1/2.

By definition, ‖M‖22 = max‖x‖2=1 x
TMTMx and since ARAR = S, we have

‖AR‖22 = max
‖x‖2=1

xTSx = max
‖x‖2=1

2k∑
j=1

x2
ij 6 1 (7.26)

and ∥∥∥(D + S)
−1
∥∥∥2

2
= max
‖x‖2=1

xT (D + S)
−2
x 6 max

i

{
1

(Dii + Sii)2

}
· max
‖x‖2=1

xTx 6

(
k

n

)2

. (7.27)

In order to apply Lemma 7.167.16, we upper bound first the expression∥∥∥Z−1/2 ·D−1/2ARD
−1/2 · Z−1/2

∥∥∥
2

Lem. 7.147.14
=

∥∥AR ·D−1Z−1
∥∥

2

=
∥∥∥AR · (D + S)

−1
∥∥∥

2
6 ‖AR‖2 ·

∥∥∥(D + S)
−1
∥∥∥

2

(7.267.26) and (7.277.27)

6
k

n
. (7.28)

Since A is a symmetric positive semi-definite matrix and Z is a positive diagonal matrix, we have

λk+1

(
Z−1/2AZ−1/2

)
Lem. 7.147.14

= λk+1

(
AZ−1

)
Lem. 7.157.15

6 λk+1 (A) ·max
i

{
Z−1
ii

}
= λk+1 (A)

Lem. 7.137.13
= 0. (7.29)

Therefore, the largest (k + 1)-st eigenvalue

λk+1

(
Z−1/2 ·D−1/2 (A+AR)D−1/2 · Z−1/2

)
Lem. 7.167.16

6 λk+1

(
Z−1/2AZ−1/2

)
+
∥∥∥Z−1/2 ·D−1/2ARD

−1/2 · Z−1/2
∥∥∥

2

(7.287.28) and (7.297.29)

6
k

n
,

and thus the smallest (k + 1)-st eigenvalue of LGR satisfies λk+1(LGR) > 1− k/n.
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Chapter 8

Introduction

We present two results on slime mold computations, one on the biologically-grounded model and one on
the biologically-inspired model. The former model was introduced by biologists to capture the slime’s
apparent ability to compute shortest paths. We show in Section 8.18.1 that the dynamics can actually
do more. It can solve a wide class of linear programs with nonnegative cost vectors. The latter model
was designed as an optimization technique inspired by the former model. We present in Section 8.28.2 an
improved convergence result for its discretization.

8.1 The Biologically-Grounded Model

Physarum polycephalum is a slime mold that apparently is able to solve shortest path problems. Nakagaki,
Yamada, and Tóth [NYT00NYT00] report about the following experiment; see Figure 8.18.1. They built a maze,
covered it by pieces of Physarum (the slime can be cut into pieces which will reunite if brought into
vicinity), and then fed the slime with oatmeal at two locations. After a few hours the slime retracted
to a path that follows the shortest path in the maze connecting the food sources. The authors report
that they repeated the experiment with different mazes; in all experiments, Physarum retracted to the
shortest path.

The paper [TKN07TKN07] proposes a mathematical model for the behavior of the slime and argues extensively
that the model is adequate. Physarum is modeled as an electrical network with time varying resistors.
We have a simple undirected graph G = (N,E) with distinguished nodes s0 and s1 modeling the food
sources. Each edge e ∈ E has a positive length ce and a positive capacity xe(t); ce is fixed, but xe(t) is a
function of time. The resistance re(t) of e is re(t) = ce/xe(t). In the electrical network defined by these
resistances, a current of value 1 is forced from s0 to s1. For an (arbitrarily oriented) edge e = (u, v), let
qe(t) be the resulting current over e. Then, the capacity of e evolves according to the differential equation

ẋe(t) = |qe(t)| − xe(t), (8.1)

where ẋe is the derivative of xe with respect to time. In equilibrium (ẋe = 0 for all e), the flow through
any edge is equal to its capacity. In non-equilibrium, the capacity grows (shrinks) if the absolute value
of the flow is larger (smaller) than the capacity. In the sequel, we will mostly drop the argument t as is
customary in the treatment of dynamical systems. We will also write q for the vector with components
qe. It is well-known that the electrical flow q is the feasible flow minimizing energy dissipation

∑
e req

2
e

(Thomson’s principle).

We refer to the dynamics above as biologically-grounded, as it was introduced by biologists to model
the behavior of a biological system. Miyaji and Ohnishi were the first to analyze convergence for special
graphs (parallel links and planar graphs with source and sink on the same face) in [MO08MO08]. In [BMV12BMV12]
convergence was proven for all graphs. We state the result from [BMV12BMV12] for the special case that the
shortest path is unique.

Theorem 8.1 ([BMV12BMV12]). Assume xe(0) > 0 and ce > 0 for all e, and that the undirected shortest path
P ∗ from s0 to s1 w.r.t. the cost vector c is unique. Then x(t) in (8.18.1) converges to P ∗. Namely, xe(t)→ 1
for e ∈ P ∗ and xe → 0 for e 6∈ P ∗ as t→∞.

[BMV12BMV12] also proves an analogous result for the undirected transportation problem; [Bon13Bon13] simplified
the argument under additional assumptions. The paper [Bon15Bon15] studies a more general dynamics and
proves convergence for parallel links.

In this paper, we extend this result to non-negative undirected linear programs

min{cTx : Af = b, |f | 6 x}, (8.2)



Chapter 8. Introduction

Figure 8.1: The experiment in [NYT00NYT00] (reprinted from there): (a) shows the maze uniformly covered
by Physarum; yellow color indicates presence of Physarum. Food (oatmeal) is provided at the locations
labeled AG. After a while the mold retracts to the shortest path connecting the food sources as shown
in (b) and (c). (d) shows the underlying abstract graph. The video [Phy10Phy10] shows the experiment.

where A ∈ Rn×m, b ∈ Rn, x ∈ Rm, c ∈ Rm>0, and the absolute values are taken componentwise. Undirected
LPs can model a wide range of problems, e.g., optimization problems such as shortest path and min-cost
flow in undirected graphs, and the Basis Pursuit problem in signal processing [CDS98CDS98].

We use n for the number of rows of A and m for the number of columns, since this notation is
appropriate when A is the node-edge-incidence matrix of a graph. A vector f ∈ Rm is feasible if Af = b.
We assume that the system Af = b has a feasible solution and every nonzero vector f in the kernel 11 of A
has positive cost

∑
e ce|fe| > 0. The vector q ∈ Rm in (8.18.1) is now the minimum energy feasible solution

q(t) = argmin
f∈Rm

 ∑
e:xe 6=0

ce
xe(t)

f2
e : Af = b ∧ fe = 0 whenever xe = 0

 . (8.3)

We remark that q is unique; see Section 9.2.19.2.1. If A is the incidence matrix of a graph (the column
corresponding to an edge e has one entry +1, one entry −1 and all other entries are equal to zero), (8.28.2)
is a transshipment problem with flow sources and sinks encoded by a demand vector b. The condition
that there is no solution in the kernel of A with cefe = 0 for all e states that every cycle contains at
least one edge of positive cost. In that setting, q(t) as defined by (8.38.3) coincides with the electrical flow
induced by resistors of value ce/xe(t). We now state our first main result, which is proved in Chapter 99.

Theorem 8.2. Let c > 0 satisfy cT|f | > 0 for every non-zero f in the kernel of A. Let x∗ be an optimum
solution of (8.28.2) and let X? be the set of optimum solutions. Assume x(0) > 0. The following holds for
the dynamics (8.18.1) with q as in (8.38.3):

(i) The solution x(t) exists for all t > 0.
(ii) The cost cTx(t) converges to cTx∗ as t goes to infinity.

(iii) The vector x(t) converges to X?, i.e., limt→∞ inf { ||x(t)− x′|| : x′ ∈ X? } → 0.
(iv) For all e with ce > 0, xe(t) − |qe(t)| converges to zero as t goes to infinity. 22 If x∗ is unique, x(t)

and q(t) converge to x∗ as t goes to infinity.

Item (i) was previously shown in [SV16aSV16a] for the case of a strictly positive cost vector. The result
in [SV16aSV16a] is actually stated only for the all-ones cost vector c = 1. The case of a general positive cost
vector reduces to this special case by rescaling the solution vector x. Item (i) for the more general cost
vector and items (ii) to (iv) are new. We stress that the dynamics (8.18.1) is biologically-grounded. It was
proposed to model a biological system and not as an optimization method. Nevertheless, it can solve a
large class of non-negative LPs. Table 8.18.1 summarizes our first main result and puts it into context.

Sections 9.19.1 and 9.29.2 are devoted to the proof of our first main theorem. For ease of exposition, we
present the proof in two steps. In Section 9.19.1, we give a proof under the following simplifying assumptions:

(A) c > 0,
(B) The basic feasible solutions of (8.28.2) have distinct cost,
(C) We start with a positive vector x(0) ∈ Xdom := {x ∈ Rn : there is a feasible f with |f | 6 x }.

Section 9.19.1 generalizes [Bon13Bon13]. For the undirected shortest path problem, condition (BB) states that all
simple undirected source-sink paths have distinct cost and condition (CC) states that all source-sink cuts
have a capacity of at least one at time zero (and hence at all times). The existence of a solution with
domain [0,∞) was already shown in [SV16aSV16a]. We will show that Xdom is an invariant set, i.e., the solution

1 The kernel of a matrix A consists of all solutions to the system Ax = 0.
2 We conjecture that this also holds for the indices e with ce = 0.
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8.2. The Biologically-Inspired Model

Reference
Problem

(Undirected Case)
Existence
of Solution

Convergence
to OPT

Comments

[MO08MO08] Shortest Path Yes Yes parallel edges, planar graphs
[BMV12BMV12] Shortest Path Yes Yes all graphs
[SV16aSV16a] Positive LP Yes No c > 0
Our

Result
Nonnegative LP Yes Yes

1) c > 0
2) ∀v ∈ ker(A) : cT|v| > 0

Table 8.1: Convergence results for the continuous undirected Physarum dynamics (8.18.1).

stays in Xdom for all times, and that E(x) =
∑
e rex

2
e =

∑
e cexe is a Lyapunov function 33 [LaS76LaS76, Tes12Tes12]

for the dynamics (8.18.1), i.e., Ė 6 0 and Ė = 0 if and only if ẋ = 0. It follows from general theorems about
dynamical systems that the dynamics converges to a fixed point of (8.18.1). The fixed points are precisely
the vectors |f | where f is a feasible solution of (8.28.2). A final argument establishes that the dynamics
converges to a fixed point of minimum cost.

In Section 9.29.2, we prove the general case of the first main theorem. We assume
(D) c > 0,
(E) cost(z) = cT|z| > 0 for every non-zero vector z in the kernel of A,
(F) We start with a positive vector x(0) > 0.

Section 9.29.2 generalizes [BMV12BMV12] in two directions. First, we treat general undirected LPs and not just
the undirected shortest path problem, respectively, the transshipment problem. Second, we replace the
condition c > 0 by the requirement c > 0 and every non-zero vector in the kernel of A has positive cost.
For the undirected shortest path problem, the latter condition states that the underlying undirected
graph has no zero-cost cycle. Section 9.29.2 is technically considerably more difficult than Section 9.19.1. We
first establish the existence of a solution with domain [0,∞). To this end, we derive a closed formula for
the minimum energy feasible solution and prove that the mapping x 7→ q is locally Lipschitz. Existence
of a solution with domain [0,∞) follows by standard arguments. We then show that Xdom is an attractor,
i.e., the solution x(t) converges to Xdom. We next characterize equilibrium points and exhibit a Lyapunov
function. The Lyapunov function is a normalized version of E(x). The normalization factor is equal to the
optimal value of the linear program max {α : Af = αb, |f | 6 x } in the variables f and α. Convergence
to an equilibrium point follows from the existence of a Lyapunov function. A final argument establishes
that the dynamics converges to a fixed point of minimum cost.

8.2 The Biologically-Inspired Model

Ito et al. [IJNT11IJNT11] initiated the study of the dynamics

ẋ(t) = q(t)− x(t). (8.4)

We refer to this dynamics as the directed dynamics in contrast to the undirected dynamics (8.18.1). The
directed dynamics is biologically-inspired – the similarity to (8.18.1) is the inspiration. It was never claimed to
model the behavior of a biological system. Rather, it was introduced as a biologically-inspired optimization
method. The work in [IJNT11IJNT11] shows convergence of this directed dynamics (8.48.4) for the directed shortest
path problem and [JZ12JZ12, SV16cSV16c, Bon16Bon16] show convergence for general positive linear programs, i.e., linear
programs with positive cost vector c > 0 of the form

min{cTx : Ax = b, x > 0}. (8.5)

The discrete versions of both dynamics define sequences x(t), t = 0, 1, 2, . . . through

x(t+1) = (1− h(t))x(t) + h(t)q(t) discrete directed dynamics; (8.6)

x(t+1) = (1− h(t))x(t) + h(t)|q(t)| discrete undirected dynamics, (8.7)

where h(t) is the step size and q(t) is the minimum energy feasible solution as in (8.38.3). For the discrete
dynamics, we can ask complexity questions. This is particularly relevant for the discrete directed dynamics
as it was designed as an biologically-inspired optimization method.

3 Lyapunov functions are a main tool for proving convergence of dynamical systems. It is a function L(t) mapping the
state x(t) of the system to a non-negative real such that L̇ 6 0 and L̇ = 0 iff ẋ = 0. It is an “art” to find a Lyapunov
function for a concrete dynamical system.
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For completeness, we review the state-of-the-art results for the discrete undirected dynamics. For
the undirected shortest path problem, the convergence of the discrete undirected dynamics (8.78.7) was
shown in [BBD+13BBD+13]. The convergence proof gives an upper bound on the step size and on the number
of steps required until an ε-approximation of the optimum is obtained. [SV16bSV16b] extends the result
to the transshipment problem and [SV16aSV16a] further generalizes the result to the case of positive LPs.
The paper [SV16bSV16b] is related to our first result. It shows convergence of the discretized undirected
dynamics (8.78.7), we show convergence of the continuous undirected dynamics (8.18.1) for a more general cost
vector.

We come to the discrete directed Physarum-inspired dynamics (8.68.6). Similarly to the undirected setting,
Becchetti et al. [BBD+13BBD+13] showed the convergence of (8.68.6) for the shortest path problem. Straszak and
Vishnoi extended the analysis to the transshipment problem [SV16bSV16b] and positive LPs [SV16cSV16c].

Theorem 8.3. [SV16cSV16c, Theorem 1.3] Let A ∈ Zn×m have full row rank (n 6 m), b ∈ Zn, c ∈ Zm>0, and

let DS
def
= max{|det(M)| : M is a square sub-matrix of A}.44 Suppose the Physarum-inspired dynamics

(8.68.6) is initialized with a feasible point x(0) of (8.58.5) such that M−1 6 x(0) 6 M and cTx(0) 6 M · opt
for some M > 1, where opt denotes the optimum cost of (8.58.5). Then, for any ε > 0 and step size
h 6 ε/(

√
6||c||1DS)2, after k = O((εh)−2 lnM) steps, x(k) is a feasible solution with cTx(k) 6 (1 + ε)opt.

Theorem 8.38.3 gives an algorithm that computes a (1 + ε)-approximation to the optimal cost of (8.58.5).
In comparison to [BBD+13BBD+13, SV16bSV16b], it has several shortcomings. First, it requires a feasible starting
point. Second, the step size depends linearly on ε. Third, the number of steps required to reach an
ε-approximation has a quartic dependence on opt/(εΦ). In contrast, the analysis in [BBD+13BBD+13, SV16bSV16b]
yields a step size independent of ε and a number of steps that depends only logarithmically on 1/ε, see
Table 8.28.2.

We overcome these shortcomings in Chapter 1010. Before we can state our result, we need some notation.
Let X? be the set of optimal solutions to (8.58.5). The distance of a capacity vector x to X? is defined as

dist(x,X?)
def
= inf{||x− x′||∞ : x′ ∈ X?}.

Let γA
def
= gcd({Aij : Aij 6= 0}) ∈ Z>0 and

D
def
= max {|det (M)| : M is a square submatrix of A/γA with dimension n− 1 or n} . (8.8)

Let N be the set of non-optimal basic feasible solutions of (8.58.5) and

Φ
def
= min

g∈N
cTg − opt > 1/(DγA)2, (8.9)

where the inequality is a well result in combinatorial optimization [PS82PS82, Lemma 8.6]. For completeness,
we present a proof in Section 10.510.5. Informally, our second main result proves the following properties of
the Physarum-inspired dynamics (8.68.6):

(i) For any ε > 0 and any strongly dominating starting point 55 x(0), there is a fixed step size h(x(0))
such that the Physarum-inspired dynamics (8.68.6) initialized with x(0) and h(x(0)) converges to X?,
i.e., dist(x(k), X?) < ε/(DγA) for large enough k.

(ii) The step size can be chosen independently of ε.
(iii) The number of steps k depends logarithmically on 1/ε and quadratically on opt/Φ.
(iv) The efficiency bounds depend on the scale-invariant determinant 66 D.

In Section 10.810.8, we establish a corresponding lower bound. We show that for the Physarum-inspired
dynamics (8.68.6) to compute a point x(k) such that dist(x(k), X?) < ε, the number of steps required for
computing an ε-approximation has to grow linearly in opt/(hΦ) and ln(1/ε), i.e. k > Ω(opt · (hΦ)−1 ·
ln(1/ε)). Table 8.28.2 puts our results into context.

4 Using Lemma 9.109.10, the dependence on DS can be improved to a scale-independent determinant D, defined in (8.88.8).
For further details, we refer the reader to Section 10.210.2.

5 We postpone the definition of strongly dominating capacity vector to Section 10.310.3. Every scaled feasible solution is
strongly dominating. In the shortest path problem, a capacity vector x is strongly dominating if every source-sink cut (S, S)
has positive directed capacity, i.e.,

∑
a∈E(S,S) xa −

∑
a∈E(S,S) xa > 0.

6 Note that (γA)n−1D 6 DS 6 (γA)nD, and thus D yields an exponential improvement over DS , whenever γA > 2.
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Reference
Problem

(Directed Case)
step size h number of steps k Guarantee

[BBD+13BBD+13] Shortest Path indep. of ε
poly(m,n, ||c||1, ||x(0)||1)

· ln(1/ε)
dist(x(k), X?) < ε

[SV16bSV16b] Transshipment indep. of ε
poly(m,n, ||c||1, ||b||1, ||x(0)||1)

· ln(1/ε)
dist(x(k), X?) < ε

[SV16cSV16c] Positive LP depends on ε
poly(||c||1, DS , ln ||x(0)||1)

· 1/(Φε)4
cTx(k) 6 (1 + ε)opt
cTx(k) < ming∈N c

Tg

Our
Result

Positive LP indep. of ε
poly(||c||1, ||b||1, D, γA, ln ||x(0)||1)

·Φ−2 ln(1/ε)
dist(x(k), X?) <

ε
DγA

Lower
Bound

Positive LP indep. of ε Ω(opt · (hΦ)−1 ln(1/ε)) dist(x(k), X?) < ε

Table 8.2: Convergence results for the discrete directed Physarum-inspired dynamics (8.68.6).

We state now our second main result for the special case of a feasible starting point, and we provide
the full version in Theorem 10.210.2 which applies for arbitrary strongly dominating starting point, see
Section 10.110.1. We use the following constants in the statement of the bounds.

(i) h0
def
= cmin/(4D||c||1), where cmin

def
= mini{ci};

(ii) Ψ(0) def
= max{mD2‖b/γA‖1, ‖x(0)‖∞};

(iii) C1
def
= D‖b/γA‖1||c||1, C2

def
= 82m2nD5γ2

A||A||∞‖b‖1 and C3
def
= D3γA||b||1||c||1.

Theorem 8.4. Suppose A ∈ Zn×m has full row rank (n 6 m), b ∈ Zn, c ∈ Zm>0 and ε ∈ (0, 1). Given a
feasible starting point x(0) > 0 the Physarum-inspired dynamics (8.68.6) with step size h 6 (Φ/opt) · h2

0/2

outputs for any k > 4C1/(hΦ) · ln(C2Ψ(0)/(ε ·min{1, x(0)
min})) a feasible x(k) > 0 such that dist(x(k), X?) <

ε/(DγA).

We stated the bounds on h in terms of the unknown quantities Φ and opt. However, Φ/opt > 1/C3 by
Lemma 9.109.10 and hence replacing Φ/opt by 1/C3 yields constructive bounds for h. Note that the upper
bound on the step size does not depend on ε and that the bound on the number of iterations depends
logarithmically on 1/ε and quadratically on opt/Φ.

What can be done if the initial point is not strongly dominating? For the transshipment problem it
suffices to add an edge of high capacity and high cost from every source node to every sink node [BBD+13BBD+13,
SV16bSV16b]. This will make the instance strongly dominating and will not affect the optimal solution. We
generalize this observation to positive linear programs. We add an additional column equal to b and give it
sufficiently high capacity and cost. This guarantees that the resulting instance is strongly dominating and
the optimal solution remains unaffected. Moreover, our approach generalizes and improves upon [SV16bSV16b,
Theorem 1.2], see Section 10.710.7.

Proof Techniques: The crux of the analysis in [IJNT11IJNT11, BBD+13BBD+13, SV16bSV16b] is to show that for large
enough k, x(k) is close to a non-negative flow f (k) and then to argue that f (k) is close to an optimal flow
f?. This line of arguments yields a convergence of x(k) to X? with a step size h chosen independently of
ε.

In Chapter 1010, we extend the preceding approach to positive linear programs, by generalizing the con-
cept of non-negative cycle-free flows to non-negative feasible kernel-free vectors (Section 10.410.4). Although,
we use the same high level ideas as in [BBD+13BBD+13, SV16bSV16b], we stress that our analysis generalizes all relevant
lemmas in [BBD+13BBD+13, SV16bSV16b] and it uses arguments from linear algebra and linear programming duality,
instead of combinatorial arguments. Further, our core efficiency bounds (Section 10.210.2) extend [SV16cSV16c]
and yield a scale-invariant determinant dependence of the step size and are applicable for any strongly
dominating starting point (Section 10.310.3).
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Chapter 9

Biologically-Grounded Physarum Dynamics

9.1 Convergence: Simple Instances

In this section, we prove Theorem 8.28.2 under the simplifying assumptions (AA) to (CC), defined in page 8888.

9.1.1 Preliminaries

Note that we may assume that A has full row-rank since any equation that is linearly dependent on
other equations can be deleted without changing the feasible set. We continue to use n and m for the
dimension of A. Thus, A has rank n. We continue by fixing some terms and notation. A basic feasible
solution of (8.28.2) is a pair of vectors x and f = (fB , fN ), where fB = A−1

B b and AB is a square n × n
non-singular sub-matrix of A and fN = 0 is the vector indexed by the coordinates not in B, and x = |f |.
Since f uniquely determines x, we may drop the latter for the sake of brevity and call f a basic feasible
solution of (8.28.2). A feasible solution f is kernel-free or non-circulatory if it is contained in the convex hull
of the basic feasible solutions.11 We say that a vector f ′ is sign-compatible with a vector f (of the same
dimension) or f -sign-compatible if f ′e 6= 0 implies f ′efe > 0. In particular, supp(f ′) ⊆ supp(f). For a given
capacity vector x and a vector f ∈ Rm with supp(f) ⊆ supp(x), we use E(f) =

∑
e(ce/xe)f

2
e to denote

the energy of f . The energy of f is infinite, if supp(f) 6⊆ supp(x). We use cost(f) =
∑
e ce|fe| = cT|f |

to denote the cost of f . Note that E(x) =
∑
e(ce/xe)x

2
e =

∑
e cexe = cost(x). We define the constants

cmax = ‖c‖∞ and cmin = mine:ce>0 ce.
We use the following corollary of the finite basis theorem for polyhedra.

Lemma 9.1. Let f be a feasible solution of (8.28.2). Then f is the sum of a convex combination of at most
m basic feasible solutions plus a vector in the kernel of A. Moreover, all elements in this representation
are sign-compatible with f .

Proof. We may assume f > 0. Otherwise, we flip the sign of the appropriate columns of A. Thus, the
system Af = b, f > 0 is feasible and f is the sum of a convex combination of at most m basic feasible
solutions plus a vector in the kernel of A by the finite basis theorem [Sch99Sch99, Corollary 7.1b]. By definition,
the elements in this representation are non-negative vectors and hence sign-compatible with f .

Lemma 9.2 (Grönwall’s Lemma). Let A,B, α, β ∈ R, α 6= 0, β 6= 0, and let g be a continuous differen-
tiable function on [0,∞). If A+ αg(t) 6 ġ(t) 6 B + βg(t) for all t > 0, then −A/α+ (g(0) +A/α)eαt 6
g(t) 6 −B/β + (g(0) +B/β)eβt for all t > 0.

Proof. We show the upper bound. Assume first that B = 0. Then

d

dt

g

eβt
=
ġeβt − βgeβt

e2βt
6 0 implies

g(t)

eβt
6
g(0)

eβ0
= g(0).

If B 6= 0, define h(t) = g(t) +B/β. Then

ḣ = ġ 6 B + βg = B + β(h−B/β) = βh

and hence h(t) 6 h(0)eβt. Therefore g(t) 6 −B/β + (g(0) +B/β)eβt.

An immediate consequence of Grönwall’s Lemma is that the undirected Physarum dynamics (8.18.1)
initialized with any positive starting vector x(0), generates a trajectory {x(t)}t>0 such that each time
state x(t) is a positive vector. Indeed, since ẋe = |qe| − xe > −xe, we have xe(t) > xe(0) · exp{−t} for
every index e with xe(0) > 0 and every time t. Further, by (8.18.1) and (8.38.3), it holds for indices e with
xe(0) = 0 that xe(t) = 0 for every time t. Hence, the trajectory {x(t)}t>0 has a time-invariant support.

1 For the undirected shortest path problem, we drop the equation corresponding to the sink. Then b becomes the negative
indicator vector corresponding to the source node. Note that n is one less than the number of nodes of the graph. The basic
feasible solutions are the simple undirected source-sink paths. A circulatory solution contains a cycle on which there is flow.
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Lemma 9.3 ([JZ12JZ12]). Let R = diag(ce/xe). Then q = R−1ATp, where p = (AR−1AT)−1b.

Proof. q minimizes
∑
e req

2
e subject to Aq = b. The Karush-Kuhn-Tucker (KKT) optimality conditions

for constrained optimization [Boy04Boy04] imply the existence of a vector p such that Rq = ATp. Substituting
into Aq = b yields p = (AR−1AT)−1b.

Lemma 9.4. Xdom is an invariant set, i.e., if x(0) ∈ Xdom then x(t) ∈ Xdom for all t.

Proof. Let q(t) be the minimum energy feasible solution with respect to R(t) = diag(ce/xe(t)), and let f(t)
be such that f(0) is feasible, |f(0)| 6 x(0), and ḟ(t) = q(t)− f(t). Then d

dt (Af − b) = A(q− f) = b−Af
and hence Af(t)− b = (Af(0)− b)e−t = 0. Thus f(t) is feasible for all t. Moreover,

d

dt
(f − x) = ḟ − ẋ = q − f − (|q| − x) = q − |q| − (f − x) 6 −(f − x).

Thus f(t)−x(t) 6 (f(0)−x(0))e−t 6 0 by Grönwall’s Lemma applied with g(t) = f(t)−x(t) and β = −1,
and hence f(t) 6 x(t) for all t. Similarly,

d

dt
(f + x) = ḟ + ẋ = q − f + (|q| − x) = q + |q| − (f + x) > −(f + x).

Thus f(t)+x(t) > (f(0)+x(0))e−t > 0 by Grönwall’s Lemma applied with g(t) = f(t)+x(t) and α = −1
and A = 0, and hence f(t) > −x(t) for all t.

We conclude that |f(t)| 6 x(t) for all t. Thus, x(t) ∈ Xdom for all t.

9.1.2 The Convergence Proof

We will first characterize the equilibrium points. They are precisely the points |f |, where f is a basic
feasible solution; the proof uses assumption (BB) in page 8888. We then show that E(x) is a Lyapunov
function for (8.18.1), in particular, Ė 6 0 and Ė = 0 if and only if x is an equilibrium point. For this
argument, we need that the energy of q is at most the energy of x with equality if and only if x is an
equilibrium point. This proof uses assumptions (AA) and (CC) in page 8888. It follows from the general theory
of dynamical systems that x(t) approaches an equilibrium point. Finally, we show that convergence to a
non-optimal equilibrium is impossible.

Lemma 9.5 (Generalization of Lemma 2.3 in [Bon13Bon13]). Assume (AA) to (CC). If f is a basic feasible
solution of (8.28.2), then x = |f | is an equilibrium point. Conversely, if x is an equilibrium point, then
x = |f | for some basic feasible solution f .

Proof. Let f be a basic feasible solution, let x = |f |, and let q be the minimum energy feasible solution
with respect to the resistances ce/xe. We have Aq = b and supp(q) ⊆ supp(x) by definition of q. Since
f is a basic feasible solution there is a subset B of size n of the columns of A such that AB is non-
singular and f = (A−1

B b, 0). Since supp(q) ⊆ supp(x) ⊆ B, we have q = (qB , 0) for some vector qB . Thus,
b = Aq = ABqB and hence qB = fB . Therefore ẋ = |q| − x = 0 and x is an equilibrium point.

Conversely, if x is an equilibrium point, |qe| = xe for every e. By changing the signs of some columns
of A, we may assume q > 0. Then q = x. Since qe = xe/ceA

T
e p where Ae is the e-th column of A by

Lemma 9.39.3, we have ce = AT
e p, whenever xe > 0. By Lemma 9.19.1, q is a convex combination of basic

feasible solutions and a vector in the kernel of A that are sign-compatible with q. The vector in the kernel
must be zero as q is a minimum energy feasible solution. For any basic feasible solution z contributing
to q, we have supp(z) ⊆ supp(x). Summing over the e ∈ supp(z), we obtain cost(z) =

∑
e∈supp(z) ceze =∑

e∈supp(z) zeA
T
e p = bTp. Thus, the convex combination involves only a single basic feasible solution by

assumption (BB) and hence x is a basic feasible solution.

The vector x(t) dominates a feasible solution at all times. Since q(t) is the minimum energy feasible
solution at time t, this implies E(q(t)) 6 E(x(t)) at all times. A further argument shows that we have
equality if and only if x = |q|.

Lemma 9.6 (Generalization of Lemma 3.1 in [Bon13Bon13]). Assume (AA) to (CC). At all times, E(q) 6 E(x).
If E(q) = E(x), then x = |q|.
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Proof. Recall that x(t) ∈ Xdom for all t. Thus, at all times, there is a feasible f such that |f | 6 x. Since
q is a minimum energy feasible solution, we have

E(q) 6 E(f) 6 E(x).

If E(q) = E(x) then E(q) = E(f) and hence q = f since the minimum energy feasible solution is unique.
Also, |f | = x since |f | 6 x and |fe| < xe for some e implies E(f) < E(x). The last conclusion uses
c > 0.

Lyapunov functions are the main tool for proving convergence of dynamical systems. We show that
E(x) is a Lyapunov function for (8.18.1).

Lemma 9.7 (Generalization of Lemma 3.2 in [Bon13Bon13]). Assume (AA) to (CC). E(x) is a Lyapunov function
for (8.18.1), i.e., it is continuous as a function of x, E(x) > 0, Ė(x) 6 0 and Ė(x) = 0 if and only if ẋ = 0.

Proof. E is clearly continuous and non-negative. Recall that E(x) = cost(x). Let R be the diagonal
matrix with entries ce/xe. Then

d

dt
cost(x) = cT(|q| − x) by (8.18.1)

= xTR|q| − xTRx since c = Rx

= xTR1/2R1/2|q| − xTRx

6 (qTRq)1/2(xTRx)1/2 − xTRx by Cauchy-Schwarz

6 (xTRx)1/2(xTRx)1/2 − xTRx by Lemma 9.69.6

= 0.

Observe that d
dtcost(x) = 0 implies that both inequalities above are equalities. This is only possible if

the vectors |q| and x are parallel and E(q) = E(x). Thus, x = |q| by Lemma 9.69.6.

It follows now from the general theory of dynamical systems that x(t) converges to an equilibrium
point.

Corollary 9.8 (Generalization of Corollary 3.3. in [Bon13Bon13].). Assume (AA) to (CC). As t → ∞, x(t)
approaches an equilibrium point and cTx(t) approaches the cost of the corresponding basic feasible solution.

Proof. The proof in [Bon13Bon13] carries over. We include it for completeness. The existence of a Lyapunov

function E implies by [LaS76LaS76, Corollary 2.6.5] that x(t) approaches the set
{
x ∈ Rm>0 : Ė = 0

}
, which

by Lemma 9.79.7 is the same as the set
{
x ∈ Rm>0 : ẋ = 0

}
. Since this set consists of isolated points

(Lemma 9.59.5), x(t) must approach one of those points, say the point x0. When x = x0 , one has E(q) =
E(x) = cost(x) = cTx.

It remains to exclude that x(t) converges to a non-optimal equilibrium point.

Theorem 9.9 (Generalization of Theorem 3.4 in [Bon13Bon13]). Assume (AA) to (CC). As t → ∞, cTx(t)
converges to the cost of the optimal solution and x(t) converges to the optimal solution.

Proof. By the corollary, it suffices to prove the second part of the claim. For the second part, assume that
x(t) converges to a non-optimal solution z. Let x∗ be the optimal solution and let W =

∑
e x
∗
ece lnxe. Let

δ = (cost(z)−cost(x∗))/2. Note that for all sufficiently large t, we have E(q(t)) > cost(z)−δ > cost(x∗)+δ.
Further, by definition qe = (xe/ce)A

T
e p and thus

Ẇ =
∑
e

x∗ece
|qe| − xe

xe
=
∑
e

x∗e|AT
e p| − cost(x∗) >

∑
e

x∗eA
T
e p− cost(x∗) > δ,

where the last inequality follows by
∑
e x
∗
eA

T
e p = bTp = E(q) > cost(x∗) + δ. Hence W → ∞, a

contradiction to the fact that x is bounded.
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9.2 Convergence: General Instances

In this section, we prove Theorem 8.28.2 under the more general assumptions (DD) to (FF), defined in page 8989.

9.2.1 Existence of a Solution with Domain [0,∞)

In this subsection we show that a solution x(t) to (8.18.1) has domain [0,∞). We first derive an explicit
formula for the minimum energy feasible solution q and then show that the mapping x 7→ q is Lipschitz
continuous; this implies existence of a solution with domain [0,∞) by standard arguments.

The Minimum Energy Solution

Recall that for γA = gcd({Aij : Aij 6= 0}) ∈ Z>0, we defined by

D = max {|det (M)| : M is a square submatrix of A/γA with dimension n− 1 or n} .

We derive now properties of the minimum energy solution. In particular, if every non-zero vector in
the kernel of A has positive cost,

(i) the minimum energy feasible solution is kernel-free and unique (Lemma 9.119.11),
(ii) |qe| 6 D||b/γA||1 for every e ∈ [m] (Lemma 9.129.12),
(iii) q is defined by (9.39.3) (Lemma 9.139.13), and
(iv) E(q) = bTp, where p is defined by (9.39.3) (Lemma 9.149.14).

We note that for positive cost vector c > 0, these results are known.
We proceed by establishing some useful properties on basic feasible solutions.

Lemma 9.10. Suppose A ∈ Zn×m is an integral matrix, and b ∈ Zn is an integral vector. Then, for
any basic feasible solutions f with Af = b and f > 0, it holds that ||f ||∞ 6 D||b/γA||1 and fj 6= 0 implies
|fj | > 1/(DγA).

Proof. Since f is a basic feasible solution, it has the form f = (fB , 0) such that AB · fB = b where
AB ∈ Zn×n is an invertible submatrix of A. We write M−i,−j to denote the matrix M with deleted i-th
row and j-th column. Let Qj be the matrix formed by replacing the j-th column of AB by the column
vector b. Then, using the fact that det(tA) = tn det(A) for every A ∈ Rn×n and t ∈ Z, Cramer’s rule
yields

|fB(j)| =
∣∣∣∣ det (Qj)

det (AB)

∣∣∣∣ =
1

γA

∣∣∣∣∣
n∑
k=1

(−1)
j+k · bk · det

(
γ−1
A [AB ]−k,−j

)
det
(
γ−1
A AB

) ∣∣∣∣∣
By the choice of γA, the values det(γ−1

A AB) and det(γ−1
A [AB ]−k,−j) are integral for all k, it follows that

|fB(j)| 6 D||b/γA||1 and fB(j) 6= 0 =⇒ 1

DγA
6 |fB(j)| .

Lemma 9.11. If every non-zero vector in the kernel of A has positive cost, the minimum energy feasible
solution is kernel-free and unique.

Proof. Let q be a minimum energy feasible solution. Since q is feasible, it can be written as qn + qr,
where qn is a convex combination of basic feasible solutions and qr lies in the kernel of A. Moreover, all
elements in this representation are sign-compatible with q by Lemma 9.19.1. If qr 6= 0, the vector q − qr is
feasible and has smaller energy, a contradiction. Thus qr = 0.

We next prove uniqueness. Assume for the sake of a contradiction that there are two distinct minimum
energy feasible solutions q(1) and q(2). We show that the solution (q(1) + q(2))/2 uses less energy than q(1)

and q(2). Since h 7→ h2 is a strictly convex function from R to R, the average of the two solutions will be

better than either solution if there is an index e with re > 0 and q
(1)
e 6= q

(2)
e . The difference z = q(1)− q(2)

lies in the kernel of A and hence cost(z) =
∑
e ce|ze| > 0. Thus there is an e with ce > 0 and ze 6= 0. We

have now shown uniqueness.

Lemma 9.12. Assume that every non-zero vector in the kernel of A has positive cost. Let q be the
minimum energy feasible solution. Then |qe| 6 D||b/γA||1 for every e.

Proof. Since q is a convex combination of basic feasible solutions, |qe| 6 maxz |ze| where z ranges over
basic feasible solutions of the form (zB , 0), where zB = A−1

B b and AB ∈ Rn×n is a non-singular submatrix
of A. Thus, by Lemma 9.109.10 every component of z is bounded by D||b/γA||1.
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In [SV16cSV16c], the bound |qe| 6 D2m||b||1 was shown. We will now derive explicit formulae for the
minimum energy solution q. We will express q in terms of a vector p ∈ Rn, which we refer to as the
potential, by analogy with the network setting, in which p can be interpreted as the electric potential of
the nodes. The energy of the minimum energy solution is equal to bTp. We show that the mapping x 7→ q
is locally Lipschitz. Note that for c > 0 these facts are well-known. Let us split the column indices [m] of
A into

P
def
= { e ∈ [m] : ce > 0 } and Z

def
= { e ∈ [m] : ce = 0 } . (9.1)

Lemma 9.13. Assume that every non-zero vector in the kernel of A has positive cost. Let re = ce/xe
and let R denote the corresponding diagonal matrix. Let us split A into AP and AZ , and q into qP and
qZ . Since AZ has linearly independent columns, we may assume that the first |Z| rows of AZ form a

square non-singular matrix. We can thus write A =
[A′P A′Z
A′′P A′′Z

]
with invertible A′Z . Then the minimum

energy solution satisfies[
A′P A′Z
A′′P A′′Z

] [
qP
qZ

]
=

[
b′

b′′

]
and

[
RP 0
0 0

] [
qP
qZ

]
=

[
A′P

T
A′′P

T

A′Z
T

A′′Z
T

] [
p′

p′′

]
(9.2)

for some vector p =
[ p′
p′′

]
; here p′ has dimension |Z|. The equation system (9.29.2) has a unique solution

given by [
qZ
qP

]
=

[
[A′Z ]−1(b′ −A′P qP )

R−1
P AT

P p

]
and

[
p′

p′′

]
=

[
−[[A′Z ]T]−1[A′′Z ]Tp′′

MR−1MT(b′′ −A′′Z [A′Z ]−1b′)

]
, (9.3)

where M = A′′P −A′′Z [A′Z ]−1A′P is the Schur complement of the block A′Z of the matrix A.

Proof. q minimizes E(f) = fTRf among all solutions of Af = b. The KKT conditions state that q must
satisfy Rq = ATp for some p. Note that 2Rf is the gradient of the energy E(f) with respect to f and
that the −ATp is the gradient of pT(b−Af) with respect to f . We may absorb the factor −2 in p. Thus
q satisfies (9.29.2).

We show next that the linear system (9.29.2) has a unique solution. The top |Z| rows of the left system
in (9.29.2) give

qZ = [A′Z ]−1(b′ −A′P qP ). (9.4)

Substituting this expression for qZ into the bottom n− |Z| rows of the left system in (9.29.2) yields

MqP = b′′ −A′′Z [A′Z ]−1b′.

From the top |P | rows of the right system in (9.29.2) we infer qP = R−1
P AT

P · p. Thus

MR−1
P AT

P · p = b′′ −A′′Z [A′Z ]−1 · b′. (9.5)

The bottom n− |Z| rows of the right system in (9.29.2) yield 0 = AT
Zp = [A′Z ]Tp′ + [A′′Z ]Tp′′ and hence

p′ = −[[A′Z ]T]−1[A′′Z ]Tp′′. (9.6)

Substituting (9.69.6) into (9.59.5) yields

b′′ −A′′Z [A′Z ]−1b′ = MR−1
P

(
[A′P ]Tp′ + [A′′P ]Tp′′

)
= MR−1

P

(
[A′′P ]T − [A′P ]T[[A′Z ]T]−1[A′′Z ]T

)
p′′

= MR−1
P MTp′′. (9.7)

It remains to show that the matrix MR−1
P MT is non-singular. We first observe that the rows of M

are linearly independent. Consider the left system in (9.29.2). Multiplying the first |Z| rows by [A′Z ]−1

and then subtracting A′′Z times the resulting rows from the last n − |Z| rows turns A into the matrix

Q =
[

[A′Z ]−1A′P I
M 0

]
. By assumption,A has independent rows. Moreover, the preceding operations guarantee

that rank(A) = rank(Q). Therefore, M has independent rows. Since R−1
P is a positive diagonal matrix,

R
−1/2
P exists and is a positive diagonal matrix. Let z be an arbitrary non-zero vector of dimension |P |.

Then zTMR−1
P MTz = (R

−1/2
P MTz)T(R

−1/2
P MTz) > 0 and hence MR−1

P MT is non-singular. It is even
positive semi-definite.

There is a shorter proof that the system (9.29.2) has a unique solution. However, the argument does
not give an explicit expression for the solution. In the case of a convex objective function and affine
constraints, the KKT conditions are sufficient for being a global minimum. Thus any solution to (9.29.2) is
a global optimum. We have already shown in Lemma 9.119.11 that the global minimum is unique.
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We next observe that the energy of q can be expressed in terms of the potential.

Lemma 9.14. Let q be the minimum energy feasible solution and let f be any feasible solution. Then
E(q) = bTp = fTATp.

Proof. As in the proof of Lemma 9.139.13, we split q into qP and qZ , R into RP and RZ , and A into AP and
AZ . Then

E(q) = qT
PRP qP by the definition of E(q) and since RZ = 0

= pTAP qp by the right system in (9.29.2)

= pT(b−AZqZ) by the left system in (9.29.2)

= bTp by the right system in (9.29.2).

For any feasible solution f , we have fTATp = bTp.

The Mapping x 7→ q is Locally Lipschitz

We show that the mapping x 7→ q is locally Lipschitz continuous; this implies existence of a solution x(t)
with domain [0,∞) by standard arguments. Our analysis builds upon Cramer’s rule and the Cauchy-
Binet formula. The Cauchy-Binet formula extends Kirchhoff’s spanning tree theorem which was used in
[BMV12BMV12] for the analysis of the undirected shortest path problem.

Lemma 9.15 (Local Lipschitz Condition). Assume c > 0, no non-zero vector in the kernel of A has
cost zero, and that A, b, and c are integral. Let α, β > 0. For any two vectors x and x̃ in Rm with

α 6 xe, x̃e 6 β for all e, define γ
def
= 2mn(β/α)ncnmaxD

2||b/γA||1. Then
∣∣|qe(x)| − |qe(x̃)|

∣∣ 6 γ||x− x̃||∞ for
every e ∈ [m].

Proof. First assume that c > 0. By Cramer’s rule

(AR−1AT)−1 =
1

det(AR−1AT)
((−1)i+j det(M−j,−i))ij ,

where M−i,−j is obtained from AR−1AT by deleting the i-th row and the j-th column. For a subset S
of [m] and an index i ∈ [n], let AS be the n × |S| matrix consisting of the columns selected by S and
let A−i,S be the matrix obtained from AS by deleting row i. If D is a diagonal matrix of size m, then
(AD)S = ASDS . The Cauchy-Binet theorem expresses the determinant of a product of two matrices (not
necessarily square) as a sum of determinants of square matrices. It yields

det(AR−1AT) =
∑

S⊆[m]; |S|=n

(det((AR−1/2)S))2

=
∑

S⊆[m]; |S|=n

(
∏
e∈S

xe/ce) · (detAS)2.

Similarly,

det(AR−1AT)−i,−j =
∑

S⊆[m]; |S|=n−1

(
∏
e∈S

xe/ce) · (detA−i,S · detA−j,S).

Using p = (AR−1AT)−1b, we obtain

pi =

∑
j∈[n](−1)i+j

∑
S⊆[m]; |S|=n−1(

∏
e∈S xe/ce) · (detA−i,S · detA−j,S)bj∑

S⊆[m]; |S|=n(
∏
e∈S xe/ce) · (detAS)2

. (9.8)

Substituting into q = R−1ATp yields

qe =
xe
ce
AT
e p

=
xe
ce

∑
i

Ai,e ·
∑
j∈[n](−1)i+j+2n

∑
S⊆[m]; |S|=n−1(

∏
e′∈S xe′/ce′) · (detA−i,S · detA−j,S)bj∑

S⊆[m]; |S|=n(
∏
e′∈S xe′/ce′) · (detAS)2

=

∑
S⊆[m]; |S|=n−1(

∏
e′∈S∪e xe′/ce′) ·

∑
i∈[n](−1)i+nAi,e detA−i,S ·

∑
j∈[n](−1)j+nbj detA−j,S∑

S⊆[m]; |S|=n(
∏
e′∈S xe′/ce′) · (detAS)2

=

∑
S⊆[m]; |S|=n−1(

∏
e′∈S∪e xe′/ce′) · det(AS |Ae) · det(AS |b)∑

S⊆[m]; |S|=n(
∏
e′∈S xe′/ce′) · (detAS)2

, (9.9)
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where (AS |Ae), respectively (AS |b), denotes the n× n matrix whose columns are selected from A by S
and whose last column is equal to Ae, respectively b.

We are now ready to estimate the derivative ∂qe/∂xi. Assume first that e 6= i. By the above, qe =
xe
ce

F+Gxi/ci
H+Ixi/ci

, where F , G, H and I are given implicitly by (9.99.9). Then∣∣∣∣∂qe∂xi

∣∣∣∣ =

∣∣∣∣xece · FI/ci −GH/ci(H + Ixi/ci)2

∣∣∣∣ 6 2 ·
(
m
n−1

)
βnD2||b/γA||1

(α/cmax)n
6 γ.

For e = i, we have qe = Gxe/ce
H+Ixe/ce

, where G, H, and I are given implicitly by (9.99.9). Then∣∣∣∣ ∂qe∂xe

∣∣∣∣ =

∣∣∣∣ GH/ce
(H + Ixe/ce)2

∣∣∣∣ 6
(
m
n−1

)
βnD2||b/γA||1

(α/cmax)n
6 γ.

Finally, consider x and x̃ with α 6 xe, x̃e 6 β for all e. Let x̄` = (x̃1, . . . , x̃`, x`+1, . . . , xm). Then

||qe(x)| − |qe(x̃)|| 6 |qe(x)− qe(x̃)| 6
∑

06`<m

|qe(x̄`)− qe(x̄`+1)| 6 γ||x− x̃||1.

In the general case where c > 0, we first derive an expression for p′′ similar to (9.89.8). Then the equations
for p′ in (9.39.3) yield p′, the equations for qP in (9.39.3) yield qP , and finally the equations for qZ in (9.39.3)
yield qZ .

We are now ready to establish the existence of a solution with domain [0,∞).

Lemma 9.16. The solution to the undirected dynamics in (8.18.1) has domain [0,∞). Moreover, for every
t > 0 and e ∈ [m], we have

xe(0) · exp{−t} 6 xe(t) 6 D||b/γA||1 + max(0, xe(0)−D||b/γA||1) · exp{−t}.

Proof. Consider any x0 > 0 and any t0 > 0. We first show that there is a positive δ′ (depending on x0)
such that a unique solution x(t) with x(t0) = x0 exists for t ∈ (t0 − δ′, t0 + δ′). By the Picard-Lindelöf
Theorem [Tes12Tes12, Theorem 2.2], this holds true if the mapping x 7→ |q| − x is continuous and satisfies
a Lipschitz condition in a neighborhood of x0. Continuity clearly holds. Let ε = mini(x0)i/2 and let
U = {x : ||x− x0||∞ < ε }. Then for every x, x̃ ∈ U and every e∣∣|qe(x)| − |qe(x̃)|

∣∣ 6 γ||x− x̃||1,

where γ is as in Lemma 9.159.15. Local existence implies the existence of a solution which cannot be extended.
Since q is bounded (Lemma 9.129.12), x is bounded at all finite times, and hence the solution exists for all t. The
lower bound xe(t) > xe(0)·exp{−t} > 0 for all e, holds by Lemma 9.29.2 with A = 0 and α = −1. Since |qe| 6
D||b/γA||1, ẋe = |qe|−xe 6 D||b/γA||1−xe, we have xe(t) 6 D||b/γA||1+max(0, xe(0)−D||b/γA||1)·exp{−t}
by Lemma 9.29.2 with B = D||b/γA||1 and β = −1.

9.2.2 LP Duality

The energy E(x) is no longer a Lyapunov function, e.g., if x(0) ≈ 0, x(t) and hence E(x(t)) will grow
initially. We will show that energy suitably scaled is a Lyapunov function. What is the appropriate scaling
factor? In the case of the undirected shortest path problem, [BMV12BMV12] used the minimum capacity of any
source-sink cut as a scaling factor. The proper generalization to our situation is to consider the linear
program max{α : Af = αb, |f | 6 x}, where x is a fixed positive vector. Linear programming duality yields
the corresponding minimization problem which generalizes the minimum cut problem to our situation.

Lemma 9.17. Let x ∈ Rm>0 and b 6= 0. The linear programs

max{α : Af = αb, |f | 6 x} and min{|yTA|x : bTy = −1} (9.10)

are feasible and have the same objective value. Moreover, there is a finite set YA = { d1, . . . , dK } of
vectors di ∈ Rm>0 that are independent of x such that the minimum above is equal to C? = mind∈YA d

Tx.

There is a feasible f with |f | 6 x/C?. 22

2 In the undirected shortest path problem, the d’s are the incidence vectors of the undirected source-sink cuts. Let S
be any set of vertices containing s0 but not s1, and let 1S be its associated indicator vector. The cut corresponding to S
contains the edges having exactly one endpoint in S. Its indicator vector is dS = |AT1S |. Then dSe = 1 iff |S ∩ {u, v }| = 1,
where e = (u, v) or e = (v, u), and dSe = 0 otherwise. For a vector x > 0, (dS)Tx is the capacity of the source-sink cut
(S, V \S). In this setting, C? is the value of a minimum cut.
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Proof. The pair (α, f) = (0, 0) is a feasible solution for the maximization problem. Since b 6= 0, there exists
y with bTy = −1 and thus both problems are feasible. The dual of max{α : Af −αb = 0, f 6 x,−f 6 x}
has unconstrained variables y ∈ Rn and non-negative variables z+, z− ∈ Rm and reads

min{xT(z+ + z−) : −bTy = 1, ATy + z+ − z− = 0, z+, z− > 0}. (9.11)

From z− = ATy + z+, z+ > 0, z− > 0 and x > 0, we conclude min(z+, z−) = 0 in an optimal solution.
Thus z− = max(0, ATy) and z+ = max(0,−ATy) and hence z+ +z− = |ATy| in an optimal dual solution.
Therefore, (9.119.11) and the right LP in (9.109.10) have the same objective value.

We next show that the dual attains its minimum at a vertex of the feasible set. For this it suffices
to show that its feasible set contains no line. Assume it does. Then there are vectors d = (y1, z

+
1 , z

−
1 ), d

non-zero, and p = (y0, z
+
0 , z

−
0 ) such that (y, z+, z−) = p+λd = (y0 +λy1, z

+
0 +λz+

1 , z
−
0 +λz−1 ) is feasible

for all λ ∈ R. Thus z+
1 = z−1 = 0. Note that if either z+

1 or z−1 were non-zero then either z+
0 + λz+

1 or
z−0 +λz−1 would have a negative component for some λ. Then ATy+z+ +z− = 0 implies ATy1 = 0. Since
A has full row rank, y1 = 0. Thus the dual contains no line and the minimum is attained at a vertex of
its feasible region. The feasible region of the dual does not depend on x.

Let (y1, z+
1 , z

−
1 ) to (yK , z+

K , z
−
K) be the vertices of (9.119.11), and let YA = { |ATy1|, . . . , |ATyK | }. Then

min
d∈YA

dTx = min{xT(z+ + z−) : −bTy = 1, ATy + z+ − z− = 0, z+, z− > 0}

= min{|yTA|x : bTy = −1}.

We finally show that there is a feasible f with |f | 6 x/C?. Let x′
def
= x/C?. Then x′ > 0 and

mind∈YA d
Tx′ = mind∈YA d

Tx/C? = C?/C? = 1 and thus the right LP with x = x′ (9.109.10) has objective
value 1. Hence, the left LP has objective value 1 and there is a feasible f with |f | 6 x′.

9.2.3 Convergence to Dominance

In the network setting, an important role is played by the set of edge capacity vectors that support a
feasible flow. In the LP setting, we generalize this notion to the set of dominating states, which is defined
as

Xdom
def
= {x ∈ Rm : ∃ feasible f : |f | 6 x}.

An alternative characterization, using the set YA from Lemma 9.179.17, is

X1
def
= {x ∈ Rm>0 : dTx > 1 for all d ∈ YA}.

We now prove that Xdom = X1 and that the set X1 is an attractor in the following sense.

Lemma 9.18. The following statements hold:
(i) Xdom = X1. Moreover, limt→∞ dist(x(t),X1) = 0, where dist(x,X1) is the Euclidean distance

between x and X1.

(ii) If x(t0) ∈ X1, then x(t) ∈ X1 for all t > t0. For all sufficiently large t, x(t) ∈ X1/2
def
= {x ∈ Rn>0 :

dTx > 1/2 for all d ∈ YA}, and if x ∈ X1/2 then there is a feasible f with |f | 6 2x.

Proof. (i) If x ∈ X1, then dTx > 1 for all d ∈ YA and hence Lemma 9.179.17 implies the existence of a
feasible solution f with |f | 6 x. Conversely, if x ∈ Xdom, then there is a feasible f with |f | 6 x.
Thus dTx > 1 for all d ∈ YA and hence x ∈ X1. By the proof of Lemma 9.179.17, for any d ∈ YA, there
is a y such that d = |ATy| and bTy = −1. Let Y (t) = dTx. Then

Ẏ = |yTA|ẋ = |yTA|(|q| − x) > |yTAq| − Y = |yTb| − Y = 1− Y.

Thus for any t0 and t > t0, Y (t) > 1 + (Y (t0) − 1)e−(t−t0) by Lemma 9.29.2 applied with A = 1
and α = −1. In particular, lim inft→∞ Y (t) > 1. Thus lim inft→∞mind∈YA d

Tx > 1 and hence
limt→∞ dist(x(t),X1) = 0.

(ii) Moreover, if Y (t0) > 1, then Y (t) > 1 for all t > t0. Hence x(t0) ∈ X1 implies x(t) ∈ X1 for all
t > t0. Since x(t) converges to X1, x(t) ∈ X1/2 for all sufficiently large t. If x ∈ X1/2 there is f such

that Af = 1
2b and |f | 6 x. Thus 2f is feasible and |2f | 6 2x.

The next lemma summarizes simple bounds on the values of resistors r, potentials p and states x that
hold for sufficiently large t. Recall that P = { e ∈ [m] : ce > 0 } and Z = { e ∈ [m] : ce = 0 }, see (9.19.1).
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Lemma 9.19. The following statements hold:
(i) For sufficiently large t, it holds that re > ce/(2D||b/γA||1), bTp 6 8D||b/γA||1||c||1 and |AT

e p| 6
8D2||b||1||c||1 for all e.

(ii) For all e, it holds that ẋe/xe > −1 and for all e ∈ P , it holds that ẋe/xe 6 8D2||b||1||c||1/cmin.
(iii) There is a positive constant C such that for all t > t0, there is a feasible f (depending on t) such

that xe(t) > C for all indices e in the support of f .

Proof. (i) By Lemma 9.169.16, xe(t) 6 2D||b/γA||1 for all sufficiently large t. It follows that re = ce/xe >
ce/(2D||b/γA||1). Due to Lemma 9.189.18, for large enough t, there is a feasible flow with |f | 6 2x.
Together with xe(t) 6 2D||b/γA||1, it follows that

bTp = E(q) 6 E(2x) = 4cTx 6 8D||b/γA||1||c||1.

Now, orient A according to q and consider any index e′. Recall that for all indices e, we have AT
e p = 0

if e ∈ Z, and qe = (xe/ce) ·AT
e p if e ∈ P . Thus AT

e p > 0 for all e. If e′ ∈ Z or e′ ∈ P and qe′ = 0, the
claim is obvious. So assume e′ ∈ P and qe′ > 0. Since q is a convex combination of q-sign-compatible
basic feasible solutions, there is a basic feasible solution f with f > 0 and fe′ > 0. By Lemma 9.109.10,
fe′ > 1/(DγA). Therefore

fe′A
T
e′p 6

∑
e

feA
T
e p = bTp 6 8D||b/γA||1||c||1

for all sufficiently large t. The inequality follows from fe > 0 and AT
e p > 0 for all e. Thus AT

e′p 6
8D2||b||1||c||1 for all sufficiently large t.

(ii) We have ẋe/xe = (|qe| − xe)/xe > −1 for all e. For e with ce > 0

ẋe
xe

=
|qe| − xe

xe
6
|AT
e p|
ce

6 8D2||b||1||c||1/cmin.

(iii) Let t0 be such that dTx(t) > 1/2 for all d ∈ YA and t > t0. Then for all t > t0, there is f such that
Af = 1

2b and |f | 6 x(t); f may depend on t. By Lemma 9.19.1, we can write 2f as convex combination
of f -sign-compatible basic feasible solutions (at most m of them) and a f -sign-compatible solution
in the kernel of A. Dropping the solution in the kernel of A leaves us with a solution which is still
dominated by x.
It holds that for every e ∈ E with fe 6= 0, there is a basic feasible solution g used in the convex
decomposition such that 2|fe| > |ge| > 0. By Lemma 9.109.10, every non-zero component of g is at least
1/(DγA). We conclude that xe > 1/(2DγA), for every e in the support of g.

9.2.4 The Equilibrium Points

We next characterize the equilibrium points

F = {x ∈ R>0 : |q| = x } . (9.12)

Let us first elaborate on the special case of the undirected shortest path problem. Here the equilibria
are the flows of value one from source to sink in a network formed by undirected source-sink paths of
the same length. This can be seen as follows. Consider any x > 0 and assume supp(x) is a network of
undirected source-sink paths of the same length. Call this network N . Assign to each node u, a potential
pu equal to the length of the shortest undirected path from the sink s1 to u. These potentials are well-
defined as all paths from s1 to u in N must have the same length. For an edge e = (u, v) in N , we have
qe = xe/ce(pu − pv) = xe/ce · ce = xe, i.e., q = x is the electrical flow with respect to the resistances
ce/xe. Conversely, if x is an equilibrium point and the network is oriented such that q > 0, we have
xe = qe = xe/ce(pu − pv) for all edges e = (u, v) ∈ supp(x). Thus ce = pu − pv and this is only possible
if for every node u, all paths from u to the sink have the same length. Thus supp(x) must be a network
of undirected source-sink paths of the same length. We next generalize this reasoning.

Theorem 9.20. If x = |q| is an equilibrium point and the columns of A are oriented such that q > 0, then
all feasible solutions f with supp(f) ⊆ supp(x) satisfy cTf = cTx. Conversely, if x = |q| for a feasible
q, A is oriented such that q > 0, and all feasible solutions f with supp(f) ⊆ supp(x) satisfy cTf = cTx,
then x is an equilibrium point.
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Proof. If x is an equilibrium point, |qe| = xe for every e. By changing the signs of some columns of A,
we may assume q > 0, i.e., q = x. Let p be the potential with respect to x. For every index e ∈ P in the
support of x, since ce > 0 we have qe = xe

ce
AT
e p and hence ce = AT

e p. Further, for the indices e ∈ Z in the

support of x, we have ce = 0 = AT
e p due to the second block of equations on the right hand side in (9.29.2).

Let f be any feasible solution whose support is contained in the support of x. Then the first part follows
by ∑

e∈supp(f)

cefe =
∑

e∈supp(f)

feA
T
e p = bTp = E(q) = E(x) = cost(x).

For the second part, we misuse notation and use A to also denote the submatrix of the constraint
matrix indexed by the columns in the support of x. We may assume that the rows of A are independent.
Otherwise, we simply drop redundant constraints. We may assume q > 0; otherwise we simply change
the sign of some columns of A. Then x is feasible. Let AB be a square non-singular submatrix of A and
let AN consist of the remaining columns of A. The feasible solutions f with supp(f) ⊆ supp(x) satisfy
ABfB +ANfN = b and hence fB = A−1

B (b−ANfN ). Then

cTf = cTBfB + cTNfN = cBA
−1
B b+ (cTN − cTBA−1

B AN )fN .

Since, by assumption, cTf is constant for all feasible solutions whose support is contained in the support

of x, we must have cN = AT
N [A−1

B ]TcB . Let p = [A−1
B ]TcB . Then it follows that ATp =

[ AT
B

AT
N

]
[A−1
B ]TcB =[

cB
cN

]
and hence Rx = ATp. Thus the pair (x, p) satisfies the right hand side of (9.29.2). Since x is feasible,

it also satisfies the left hand side of (9.29.2). Therefore, x is the minimum energy solution with respect to
x.

Corollary 9.21. Let g be a basic feasible solution. Then |g| is an equilibrium point.

Proof. Let g be a basic feasible solution. Orient A such that g > 0. Since g is basic, there is a B ⊆ [m]
such that g = (gB , gN ) = (A−1

B b, 0). Consider any feasible solution f with supp(f) ⊆ supp(g). Then
f = (fB , 0) and hence b = Af = ABfB. Therefore, fB = gB and hence cTf = cTg. Thus x = |g| is an
equilibrium point.

This characterization of equilibria has an interesting consequence.

Lemma 9.22. The set L
def
= {cTx : x ∈ F} of costs of equilibria is finite.

Proof. If x is an equilibrium, x = |q|, where q is the minimum energy solution with respect to x. Orient
A such that q > 0. Then by Theorem 9.209.20, cTf = cTx for all feasible solutions f with supp(f) ⊆ supp(x).
In particular, this holds true for all such basic feasible solutions f . Thus L is a subset of the set of costs
of all basic feasible solutions, which is a finite set.

We conclude this part by showing that the optimal solutions of the undirected linear program (8.28.2)
are equilibria.

Theorem 9.23. Let x be an optimal solution to (8.28.2). Then x is an equilibrium.

Proof. By definition, there is a feasible f with |f | = x. Let us reorient the columns of A such that f > 0
and let us delete all columns e of A with fe = 0. Consider any feasible g with supp(g) ⊆ supp(x). We
claim that cTx = cTg. Assume otherwise and consider the point y = x + λ(g − x). If |λ| is sufficiently
small, y > 0. Furthermore, y is feasible and cTy = cTx+ λ(cTg− cTx). If cTg 6= cTx, x is not an optimal
solution to (8.28.2). The claim now follows from Theorem 9.209.20.

9.2.5 Convergence

In order to show convergence, we construct a Lyapunov function. The following functions play a crucial
role in our analysis. Let Cd = dTx for d ∈ YA, and recall that C? = mind∈YA d

Tx denotes the optimum.
Moreover, we define

h(t)
def
=
∑
e

re|qe|
xe
C?
− E

(
x

C?

)
and Vd

def
=

cTx

Cd
for every d ∈ YA.

Theorem 9.24. (1) For every d ∈ YA, Ċd > 1− Cd. Thus, if Cd < 1 then Ċd > 0.
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(2) If x(t) ∈ X1, then d
dtcost(x(t)) 6 0 with equality if and only if x = |q|.

(3) Let d ∈ YA be such that C? = dTx at time t. Then it holds that V̇d 6 h(t).
(4) It holds that h(t) 6 0 with equality if and only if |q| = x

C?
.

Proof. (i) Recall that for d ∈ YA, there is a y such that bTy = −1 and d = |ATy|. Thus Ċd =
dT(|q| − x) > |yTAq| − Cd = 1− Cd and hence Ċd > 0, whenever Cd < 1.

(ii) Remember that E(x) = cost(x) and that x(t) ∈ X1 implies that there is a feasible f with |f | = x.
Thus E(q) 6 E(f) 6 E(x). Let R be the diagonal matrix of entries ce/xe. Then

d

dt
cost(x) = cT(|q| − x) by (8.18.1)

= xTR1/2R1/2|q| − xTRx since c = Rx

6 (qTRq)1/2(xTRx)1/2 − xTRx by Cauchy-Schwarz

6 0 since E(q) 6 E(x).

If the derivative is zero, both inequalities above have to be equalities. This is only possible if the
vectors |q| and x are parallel and E(q) = E(x). Let λ be such that |q| = λx. Then E(q) =

∑
e
ce
xe
q2
e =

λ2
∑
e cexe = λ2E(x). Since E(x) > 0, this implies λ = 1.

(iii) By definition of d, C? = Cd. By the first two items, we have Ċ? = dT|q| − C? and d
dtcost(x) =

cT|q| − cost(x). Thus

d

dt

cost(x)

C?
=
C?

d
dtcost(x)− Ċ?cost(x)

C2
?

=
C?(c

T|q| − cost(x))− (dT|q| − C?)cost(x)

C2
?

=
C? · cT|q| − dT|q| · cTx

C2
?

6
∑
e

re|qe|
xe
C?
−
∑
e

re

( xe
C?

)2

= h(t),

where we used re = ce/xe and hence cT|q| =
∑
e rexe|qe|, cTx = E(x), and dT|q| > |yTAq| = 1 since

d = |yTA| for some y with bTy = −1.
(iv) We have∑

e

re
xe
C?
|qe| =

∑
e

r1/2
e

xe
C?
r1/2
e |qe| 6

(∑
e

re(
xe
C?

)2
)1/2(∑

e

req
2
e

)1/2

= E
(
x
C?

)1/2E(q)1/2

by Cauchy-Schwarz. Since h(t) =
∑
e re|qe|

xe
C?
− E( x

C?
) by definition, it follows that

h(t) 6 E
(
x
C?

)1/2 · E(q)1/2 − E
(
x
C?

)
= E

(
x
C?

)1/2 · (E(q)1/2 − E
(
x
C?

)1/2)
6 0

since x/C? dominates a feasible solution and hence E(q) 6 E(x/C?). If h(t) = 0, we must have
equality in the application of Cauchy-Schwarz, i.e., the vectors x/C? and |q| must be parallel, and
we must have E(q) = E(x/C?) as in the proof of part iiii.

We show now convergence against the set of equilibrium points. We need the following technical
Lemma from [BMV12BMV12].

Lemma 9.25 (Lemma 9 in [BMV12BMV12]). Let f(t) = maxd∈YA fd(t), where each fd is continuous and
differentiable. If ḟ(t) exists, then there is a d ∈ YA such that f(t) = fd(t) and ḟ(t) = ḟd(t).

Theorem 9.26. All trajectories converge to the set F of equilibrium points.

Proof. We distinguish cases according to whether the trajectory ever enters X1 or not. If the trajectory
enters X1, say x(t0) ∈ X1, then d

dtcost(x) 6 0 for all t > t0 with equality only if x = |q|. Thus the trajectory
converges to the set of fix points. If the trajectory never enters X1, consider V = maxd∈YA(Vd + 1− Cd).
We show that V̇ exists for almost all t. Moreover, if V̇ (t) exists, then V̇ (t) 6 0 with equality if and only if
|qe| = xe for all e. It holds that V is Lipschitz continuous as the maximum of a finite number of continuously
differentiable functions. Since V is Lipschitz continuous, the set of t’s where V̇ (t) does not exist has
zero Lebesgue measure (see for example [CLSW98CLSW98, Ch. 3]). If V̇ (t) exists, we have V̇ (t) = V̇d(t)− Ċd(t)
for some d ∈ YA according to Lemma 9.259.25. Then, it holds that V̇ (t) 6 h(t) − (1 − Cd) 6 0. Thus x(t)
converges to the set{

x ∈ R>0 : V̇ = 0
}

= {x ∈ R>0 : |q| = x/C and C = 1 } = {x ∈ R>0 : |q| = x } .
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At this point, we know that all trajectories x(t) converge to F . Our next goal is to show that cTx(t)
converges to the cost of an optimum solution of (8.28.2) and that |q| − x converges to zero. We are only
able to show the latter for all indices e ∈ P , i.e. with ce > 0.

9.2.6 Details of the Convergence Process

In the argument to follow, we will encounter the following situation several times. We have a non-negative
function f(t) > 0 and we know that

∫∞
0
f(t)dt is finite. We want to conclude that f(t) converges to zero

for t→∞. This holds true if f is Lipschitz continuous. Note that the proof of the following lemma is very
similar to the proof in [BMV12BMV12, Lemma 11]. However, in our case we apply the local Lipschitz condition
that we showed in Lemma 9.159.15.

Lemma 9.27. Let f(t) > 0 for all t. If
∫∞

0
f(t)d(t) is finite and f(t) is locally Lipschitz continuous, i.e.,

for every ε > 0, there is a δ > 0 such that |f(t′)− f(t)| 6 ε for all t′ ∈ [t, t+ δ], then f(t) converges to
zero as t goes to infinity. The functions t 7→ xTR|q| − xTRx = cT|q| − cTx and t 7→ h(t) are Lipschitz
continuous.

Proof. If f(t) does not converge to zero, there is ε > 0 and an infinite unbounded sequence t1, t2, . . . such
that f(ti) > ε for all i. Since f is Lipschitz continuous there is δ > 0 such that f(t′i) > ε/2 for t′i ∈ [ti, ti+δ]
and all i. Hence, the integral

∫∞
0
f(t)dt is unbounded.

Since ẋe is continuous and bounded (by Lemma 9.169.16), xe is Lipschitz continuous. Thus, it is enough
to show that qe is Lipschitz continuous for all e. Since qZ (recall that Z = { e : ce = 0 } and P = [m] \Z)
is an affine function of qP , it suffices to establish the claim for e ∈ P . So let e ∈ P be such that ce > 0.
First, we claim that xe(t+ ε) 6 (1 + 2Kε)xe for all ε 6 K/4, where K = 8D2||b||1||c||1/cmin. Assume that
this is not the case. Let

ε = inf{δ 6 1/4K : xe(t+ δ) > (1 + 2Kδ)xe(t)},

then ε > 0 (since ẋe(t) 6 Kxe(t) by Lemma 9.199.19) and, by continuity, xe(t+ ε) > (1 + 2Kε)xe(t). There
must be t′ ∈ [t, t+ ε] such that ẋe(t

′) = 2Kxe(t). On the other hand,

ẋe(t
′) 6 Kxe(t

′) 6 K(1 + 2Kε)xe(t) 6 K(1 + 2K/4K)xe(t) < 2Kxe(t),

which is a contradiction. Thus, xe(t+ε) 6 (1+2Kε)xe for all ε 6 1/4K. Similarly, xe(t+ε) > (1−2Kε)xe.
Now, let α = (1− 2Kε)xe and β = (1 + 2Kε)xe. Then

||qe(t+ δ)| − |qe(t)|| 6M ||x(t+ δ)− x(t)||1 6Mm(4Kε)xe 6 8εMmKD||b/γA||1,

since xe 6 2D||b/γA||1 for sufficiently large t and where M is as in Lemma 9.159.15. Since C? is at least 1/2
for all sufficiently large t, the division by C? and C2

? in the definition of h(t) does not affect the claim.

Lemma 9.28. For all e ∈ [m] of positive cost, it holds that |xe − |qe|| → 0 as t goes to infinity.

Proof. For a trajectory ultimately running in X1, we showed d
dtcost(x) 6 xTR|q| − xTRx 6 0 with

equality if and only if x = |q|. Also, E(q) 6 E(x), since x dominates a feasible solution. Furthermore,
xTR|q| − xTRx goes to zero using Lemma 9.279.27. Thus∑

e

re(xe − |qe|)2 =
∑
e

rex
2
e +

∑
e

req
2
e − 2

∑
e

rexe|qe| 6 2
(∑

e

rex
2
e −

∑
e

rexe|qe|
)

goes to zero. Next observe that there is a constant C such that xe(t) 6 C for all e and t as a result of
Lemma 9.169.16. Also cmin > 0 and hence re > cmin/C. Thus

∑
e re(xe − |qe|)2 6 C

cmin
·
∑
e(xe − |qe|)2 and

hence |xe−|qe|| → 0 for every e with positive cost. For trajectories outside X1, we argue about ||qe|− x
C?
|

and use C? → 1, namely∑
e

re(
xe
C?
− |qe|)2 6 2

(∑
e

re(
xe
C?

)2 −
∑
e

re
xe
C?
|qe|
)
→ 0.

Note that the above does not say anything about the indices e ∈ Z (with ce = 0). Recall that
AP qP + AZqZ = b and that the columns of AZ are independent. Thus, qZ is uniquely determined by
qP . For the undirected shortest path problem, the potential difference pTb between source and sink
converges to the length of a shortest source-sink path. If an edge with positive cost is used by some
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shortest undirected path, then no shortest undirected path uses it with the opposite direction. We prove
the natural generalizations.

Let SOPT be the set of optimal solutions to (8.28.2) and letEOPT = ∪x∈SOPT
supp(x) be the set of columns

used in some optimal solution. The columns of positive cost in EOPT can be consistently oriented as the
following Lemma shows.

Lemma 9.29. Let x∗1 and x∗2 be optimal solutions to (8.28.2) and let f and g be feasible solutions with
|f | = x∗1 and |g| = x∗2. Then there is no e such that fege < 0 and ce > 0.

Proof. Assume otherwise. Then |ge − fe| = |ge| + |fe| > 0. Consider h = (gef − feg)/(ge − fe). Then
Ah = (geAf − feAg)/(ge − fe) = b and h is feasible. Also, he = gefe−fege

ge−fe = 0 and for every index e′, it

holds that |he′ | = |gefe′−fege′ |
|ge−fe)| 6 |ge||fe′ |+|fe||ge′ |

|ge|+|fe| and hence

cost(h) < cost(f) + cost(g) =
|ge|

|ge|+ |fe|
cost(x∗1) +

|fe|
|ge|+ |fe|

cost(x∗2) = cost(x∗1),

a contradiction to the optimality of x∗1 and x∗2.

By the preceding lemma, we can orient A such that fe > 0 whenever |f | is an optimal solution to (8.28.2)
and ce > 0. We then call A positively oriented.

Lemma 9.30. It holds that pTb converges to the cost of an optimum solution of (8.28.2). If A is positively
oriented, then lim inft→∞AT

e p > 0 for all e.

Proof. Let x∗ be an optimal solution of (8.28.2). We first show convergence to a point in L and then
convergence to cTx∗. Let ε > 0 be arbitrary. Consider any time t > t0, where t0 and C as in Lemma 9.199.19
and moreover ||qe|−xe| 6 Cε

cmax
for every e ∈ P . Then xe > C for all indices e in the support of some basic

feasible solution f . For every e ∈ P , we have qe = xe
ce
AT
e p. We also assume q > 0 by possibly reorienting

columns of A. Hence∣∣ce −AT
e p
∣∣ =

∣∣∣∣1− qe
xe

∣∣∣∣ · ∣∣ce =

∣∣∣∣xe − qexe

∣∣∣∣ · ce 6 cmax

C
|qe − xe| 6 ε.

For indices e ∈ Z, we have AT
e p = 0 = ce. Since ||f ||∞ 6 D||b/γA||1 (Lemma 9.109.10), we conclude

cTf − pTb =
∑

e∈supp(f)

(ce − pTAe)fe 6 ε
∑
e

|fe| 6 ε ·mD||b/γA||1.

Since the set L is finite, we can let ε > 0 be smaller than half the minimal distance between elements in
L. By the preceding paragraph, there is for all sufficiently large t, a basic feasible solution f such that
|cTf − bTp| 6 ε. Since bTp is a continuous function of time, cTf must become constant. We have now
shown that bTp converges to an element in L. We will next show that bTp converges to the optimum cost.
Let x∗ be an optimum solution to (8.28.2) and let W =

∑
e x
∗
ece lnxe. Since x(t) is bounded, W is bounded.

We assume that A is positively oriented, thus there is a feasible f∗ with |f∗| = x∗ and f∗e > 0 whenever
ce > 0. By reorienting zero cost columns, we may assume f∗e > 0 for all e. Then Ax∗ = b. We have

Ẇ =
∑
e

x∗ece
|qe| − xe

xe

=
∑

e; ce>0

x∗e
∣∣AT

e p
∣∣− cost(x∗) since qe = xe

ce
AT
e p whenever ce > 0

=
∑
e

x∗e
∣∣AT

e p
∣∣− cost(x∗) since AT

e p = 0 whenever ce = 0

=
∑
e

x∗e

( ∣∣AT
e p
∣∣−AT

e p
)

+ bTp− cost(x∗)

and hence bTp− cost(x∗) must converge to zero; note that bTp is Lipschitz continuous in t.
Similarly, |AT

e p| −AT
e p must converge to zero whenever x∗e > 0. This implies lim inf AT

e p > 0. Assume
otherwise, i.e., for every ε > 0, we have AT

e p < −ε for arbitrarily large t. Since p is Lipschitz continuous
in t, there is a δ > 0 such that AT

e p < −ε/2 for infinitely many disjoint intervals of length δ. In these
intervals, |AT

e p| −AT
e p > ε and hence W must grow beyond any bound, a contradiction.
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Corollary 9.31. E(x) and cost(x) converge to cTx∗, whereas x and |q| converge to SOPT. If the optimum
solution is unique, x and |q| converge to it. Moreover, if e /∈ EOPT, xe and |qe| converge to zero.

Proof. The first part follows from E(x) = cost(x) = bTp and the preceding Lemma. Thus x and q
converge to the set F of equilibrium points, see (9.129.12), that are optimum solutions to (8.28.2). Since every
optimum solution is an equilibrium point by Theorem 9.239.23, x and q converge to SOPT. For e 6∈ EOPT,
fe = 0 for every f ∈ F ∩ SOPT. Since x and |q| converge to F ∩ SOPT, xe and |qe| converge to zero for
every e ∈ EOPT.

106



Chapter 10

Physarum-Inspired Dynamics

In this chapter, we present in its full generality our main technical result on the Physarum-inspired
dynamics (8.68.6).

10.1 Overview

Inspired by the max-flow min-cut theorem, we consider the following primal-dual pair of linear programs:
the primal LP is given by max { t : Af = t · b; 0 6 f 6 x } in variables f ∈ Rm and t ∈ R, and its dual
LP reads min

{
xTz : z > 0; z > ATy; bTy = 1

}
in variables z ∈ Rm and y ∈ Rn. Since the dual feasible

region does not contain a line and the minimum is bounded, the optimum is attained at a vertex, and in
an optimum solution we have z = max{0, ATy}. Let V be the set of vertices of the dual feasible region,

and let Y
def
= { y : (z, y) ∈ V } be the set of their projections on y-space. Then, the dual optimum is given

by min{max{0, yTA} · x : y ∈ Y }. The set of strongly dominating capacity vectors x is defined as

X
def
=
{
x ∈ Rm>0 : yTAx > 0 for all y ∈ Y

}
.11

Note that X contains the set of all scaled feasible solutions {x = tf : Af = b, f > 0, t > 0}.
We next discuss the choice of step size. For y ∈ Y and capacity vector x, let α(y, x)

def
= yTAx. Further,

let α(x)
def
= min {α(y, x) : y ∈ Y } and α`

def
= α(x(`)). Then, for any x ∈ X there is a feasible f such that

0 6 f 6 x/α(x), see Lemma 10.810.8. In particular, if x is feasible then α(x) = 1, since α(y, x) = 1 for all
y ∈ Y . We partition the Physarum-inspired dynamics (8.68.6) into the following five regimes and define for
each regime a fixed step size, see Section 10.310.3.

Corollary 10.1. The Physarum-inspired dynamics (8.68.6) initialized with x(0) ∈ X and a step size h
satisfies:

(i) If α(0) = 1, we work with h 6 h0 and have α` = 1 for all `.
(ii) If 1/2 6 α(0) < 1, we work with h 6 h0/2 and have 1− δ 6 α` < 1 for ` > h−1 log(1/2δ) and δ > 0.

(iii) If 1 < α(0) 6 1/h0, we work with h 6 h0 and have 1 < α` 6 1 + δ for ` > h−1 · log(1/δh0) and
δ > 0.

(iv) If 0 < α(0) < 1/2, we work with h 6 α(0)h0 and have 1/2 6 α` < 1 for ` > 1/h.
(v) If 1/h0 < α(0), we work with h 6 1/4 and have 1 < α` 6 1/h0 for ` = blog1/(1−h) h0(α(0) − 1)/(1−

h0)c.
In each regime, we have 1− α(`+1) = (1− h)(1− α`).

We give now the full version of Theorem 8.48.4 which applies for any strongly dominating starting point.

Theorem 10.2. Suppose A ∈ Zn×m has full row rank (n 6 m), b ∈ Zn, c ∈ Zm>0 and ε ∈ (0, 1). Given
x(0) ∈ X and its corresponding α0, the Physarum-inspired dynamics (8.68.6) initialized with x(0) runs in
two regimes:

(i) The first regime is executed when α(0) 6∈ [1/2, 1/h0] and it computes a point x(t) ∈ X such that
αt ∈ [1/2, 1/h0]. In particular, if α(0) < 1/2 then h 6 (Φ/opt) · (α0h0)2 and t = 1/h. Otherwise, if
α(0) > 1/h0 then h 6 Φ/opt and t = blog1/(1−h)[h0(α(0) − 1)/(1− h0)]c.

(ii) The second regime starts from a point x(t) ∈ X with αt ∈ [1/2, 1/h0], it has a step size h 6

(Φ/opt) ·h2
0/2 and outputs for any k > 4C1/(hΦ) · ln(C2Ψ(0)/(ε ·min{1, x(0)

min})) a vector x(t+k) ∈ X
such that dist(x(t+k), X?) < ε/(DγA).

We stated the bounds on h in terms of the unknown quantities Φ and opt. However, Φ/opt > 1/C3

by Lemma 9.109.10 and hence replacing Φ/opt by 1/C3 yields constructive bounds for h.

1 In the shortest path problem (recall that b = e1 − en) the set Y consists of all y ∈ {−1,+1 }n such that y1 =
1 = −yn, i.e., y encodes a cut with S = { i : yi = −1 } and S = { i : yi = +1 }. The condition yTAx > 0 translates into∑
a∈E(S,S) xa −

∑
a∈E(S,S) xa > 0, i.e., every source-sink cut must have positive directed capacity.



Chapter 10. Physarum-Inspired Dynamics

Organization: This chapter is devoted to proving Theorem 10.210.2. It is organized as follows: Section 10.210.2
establishes core efficiency bounds that extend [SV16cSV16c] and yield a scale-invariant determinant dependence
of the step size and are applicable to strongly dominating points. Section 10.310.3 gives the definition of
strongly dominating points and shows that the Physarum-inspired dynamics (8.68.6) initialized with such
a point is well defined. Section 10.410.4 extends the analysis in [BBD+13BBD+13, SV16bSV16b, SV16cSV16c] to positive linear
programs, by generalizing the concept of non-negative flows to non-negative feasible kernel-free vectors.
Section 10.510.5 shows that x(`) converges to X? for large enough `. Section 10.610.6 concludes the proof of
Theorem 10.210.2.

10.2 Useful Lemmas

Recall that R(`) = diag(c) · (X(`))−1 is a positive diagonal matrix and L(`) def
= A(R(`))−1AT is invertible.

Let p(`) be the unique solution of L(`)p(`) = b. We improve the dependence on DS in [SV16cSV16c, Lemma
5.2] to D.

Lemma 10.3. [SV16cSV16c, extension of Lemma 5.2] Suppose x(`) > 0, R(`) is a positive diagonal matrix

and L = A(R(`))−1AT. Then for every e ∈ [m], it holds that ‖AT(L(`))−1Ae‖∞ 6 D · ce/x(`)
e .

Proof. The statement follows by combining the proof in [SV16cSV16c, Lemma 5.2] with Lemma 9.109.10.

We show next that [SV16bSV16b, Corollary 5.3] holds for x-capacitated vectors, which extends the class of
feasible starting points, and further yields a bound in terms of D.

Lemma 10.4. [SV16bSV16b, extension of Corollary 5.3] Let p(`) be the unique solution of L(`)p(`) = b and
assume x(`) is a positive vector with corresponding positive scalar α` such that there is a vector f satisfying
Af = α` · b and 0 6 f 6 x(`). Then ‖ATp(`)‖∞ 6 D||c||1/α`.

Proof. By assumption, f satisfies α`b = Af =
∑
e feAe and 0 6 f 6 x(`). This yields

α`‖ATp(`)‖∞ = ‖AT(L(`))−1 · α`b‖∞ = ‖
∑
e

feA
T(L(`))−1Ae‖∞

6
∑
e

fe‖AT(L(`))−1Ae‖∞
(Lem. 10.310.3)

6 D
∑
e

fe
ce

x
(`)
e

6 D‖c‖1.

We note that applying Lemma 10.310.3 and Lemma 10.410.4 into the analysis of [SV16cSV16c, Theorem 1.3] yields
an improved result that depends on the scale-invariant determinant D. Moreover, we show in the next
Section 10.310.3 that the Physarum-inspired dynamics (8.68.6) can be initialized with any strongly dominating
point.

We establish now an upper bound on q that does not depend on x. We then use this upper bound on
q to establish a uniform upper bound on x.

Lemma 10.5. For any x(`) > 0, ‖q(`)‖∞ 6 mD2‖b/γA‖1.

Proof. Let f be a basic feasible solution of Af = b. By definition, q
(`)
e = (x

(`)
e /ce)A

T
e (L(`))−1b and thus

∣∣∣q(`)
e

∣∣∣ =

∣∣∣∣∣x(`)
e

ce

∑
u

AT
e (L(`))−1Aufu

∣∣∣∣∣ 6 x
(`)
e

ce

∑
u

|fu| ·
∣∣∣AT

e (L(`))−1Au

∣∣∣ 6 D‖f‖1,

where the last inequality follows by∣∣∣AT
e (L(`))−1Au

∣∣∣ =
∣∣∣AT

u (L(`))−1Ae

∣∣∣ 6 ‖AT(L(`))−1Ae‖∞
(Lem. 10.310.3)

6 D · ce/x(`)
e .

By Cramer’s rule and Lemma 9.109.10, we have |q(`)
e | 6 D‖f‖1 6 mD2‖b/γA‖1.

Let k, t ∈ N. We denote by

q(t,k) =

t+k−1∑
i=t

h (1− h)
t+k−1−i

1− (1− h)k
q(i) and p(t,k) =

t+k−1∑
i=t

p(i). (10.1)
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Straightforward checking shows that Aq(t,k) = b. Further, for C
def
= diag(c), t > 0 and k > 1, we have

x(t)
t+k−1∏
i=t

[1 + h(C−1ATp(i) − 1)] = x(t+k) = (1− h)kx(t) + [1− (1− h)k]q(t,k).

We give next an upper bound on x(k) that is independent of k.

Lemma 10.6. Let Ψ(0) = max{mD2‖b/γA‖1, ‖x(0)‖∞}. Then ‖x(k)‖∞ 6 Ψ(0), ∀k ∈ N.

Proof. We prove the statement by induction. The base case ‖x(0)‖∞ 6 Ψ(0) is clear. Suppose the statement
holds for some k > 0. Then, triangle inequality and Lemma 10.510.5 yield

‖x(k+1)‖∞ 6 (1− h)‖x(k)‖∞ + h‖q(k)‖∞ 6 (1− h)Ψ(0) + hΨ(0) 6 Ψ(0).

We show now convergence to feasibility.

Lemma 10.7. Let r(k) = b−Ax(k). Then r(k+1) = (1− h)r(k) and hence r(k) = (1− h)k(b−Ax(0)).

Proof. By definition x(k+1) = (1− h)x(k) + hq(k), and thus the statement follows by

r(k+1) = b−Ax(k+1) = b− (1− h)Ax(k) − hb = (1− h)r(k).

10.3 Strongly Dominating Capacity Vectors

For the shortest path problem, it is known that one can start from any capacity vector x for which the
directed capacity of every source-sink cut is positive, where the directed capacity of a cut is the total
capacity of the edges crossing the cut in source-sink direction minus the total capacity of the edges
crossing the cut in the sink-source direction. We generalize this result. We start with the max-flow like
LP

max { t : Af = t · b; 0 6 f 6 x } (10.2)

in variables f ∈ Rm and t ∈ R and its dual

min
{
xTz : z > 0; z > ATy; bTy = 1

}
(10.3)

in variables z ∈ Rm and y ∈ Rn. The feasible region of the dual contains no line. Assume otherwise;
say it contains (z, y) = (z(0), y(0)) + λ(z(1), y(1)) for all λ ∈ R. Then, z > 0 implies z(1) = 0 and further
z > ATy implies z(0) > ATy(0) + λATy(1) and hence ATy(1) = 0. Since A has full row rank, we have
y(1) = 0. The optimum of the dual is therefore attained at a vertex. In an optimum solution, we have
z = max{0, ATy}. Let V be the set of vertices of the feasible region of the dual (10.310.3), and let

Y
def
= { y : (z, y) ∈ V }

be the set of their projections on y-space. Then, the optimum of the dual (10.310.3) is given by

min
y∈Y

{
max{0, yTA} · x

}
. (10.4)

The set of strongly dominating capacity vectors x is defined by

X
def
=
{
x ∈ Rm>0 : yTAx > 0 for all y ∈ Y

}
. (10.5)

We next show that for all x(0) ∈ X and sufficiently small step size, the sequence {x(k)}k∈N stays in X.
Moreover, yTAx(k) converges to 1 for every y ∈ Y . We define by

α(y, x)
def
= yTAx and α(x)

def
= min {α(y, x) : y ∈ Y } .

Let α`
def
= α(x(`)). Then, x(`) ∈ X iff α` > 0. We summarize the discussion in the following Lemma.

Lemma 10.8. Suppose x(`) ∈ X. Then, there is a vector f such that Af = α` · b and 0 6 f 6 x(`).
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Proof. By the strong duality theorem applied on (10.210.2) and (10.310.3), it holds by (10.410.4) that

t = min
y∈Y

{
max{0, yTA} · x(`)

}
> min

y∈Y
yTAx(`) = α`.

The statement follows by the definition of (10.210.2).

We demonstrate now that α` converges to 1.

Lemma 10.9. Assume x(`) ∈ X. Then, for any h(`) 6 min{1/4, α`h0} we have x(`+1) ∈ X and

1− α`+1 = (1− h(`)) · (1− α`).

Proof. By applying Lemma 10.410.4 and Lemma 10.810.8 with x(`) ∈ X, we have ‖ATp(`)‖∞ 6 D||c||1/α` and

hence for every index e it holds −h(`) · c−1
e x

(`)
e AT

e p
(`) > −(h(`)x

(`)
e )/(2α`h0) > −x(`)

e /2. Thus,

x(`+1)
e = (1− h(`))x(`)

e + h(`) · [R(`)
e ]−1AT

e p
(`) >

3

4
x(`)
e −

1

2
x(`)
e =

1

4
x(`)
e > 0.

Let y ∈ Y be arbitrary. Then yTb = 1 and hence yTr(`) = yT(b−Ax(`)) = 1− yTAx(`) = 1− α(y, x(`)).
The second claim now follows from Lemma 10.710.7.

We note that the convergence speed crucially depends on the initial point x(0) ∈ X, and in particular to
its corresponding value α0. Further, this dependence naturally partitions the Physarum-inspired dynamics
(8.68.6) into the five regimes given in Corollary 10.110.1.

10.4 x(k) is Close to a Non-Negative Kernel-Free Vector

In this section, we generalize [SV16bSV16b, Lemma 5.4] to positive linear programs. We achieve this in two
steps. First, we generalize a result by Ito et al. [IJNT11IJNT11, Lemma 2] to positive linear programs and then
we substitute the notion of a non-negative cycle-free flow with a non-negative feasible kernel-free vector.

Throughout this and the consecutive section, we denote by ρA
def
= max

{
DγA, nD

2||A||∞
}

.

Lemma 10.10. Suppose a matrix A ∈ Zn×m has full row rank and vector b ∈ Zn. Let g be a feasible
solution to Ag = b and S ⊆ [n] be a subset of row indices of A such that

∑
i∈S |gi| < 1/ρA. Then, there

is a feasible solution f such that gi · fi > 0 for all i ∈ [n], fi = 0 for all i ∈ S and ‖f − g‖∞ < 1/(DγA).

Proof. W.l.o.g. we can assume that g > 0 as we could change the signs of the columns of A accordingly.
Let 1S be the indicator vector of S. We consider the linear program

min{1T
Sx : Ax = b, x > 0}

and let opt be its optimum value. Notice that 0 6 opt 6 1T
Sg < 1/ρA. Since the feasible region does not

contain a line and the minimum is bounded, the optimum is attained at a basic feasible solution, say
f . Suppose that there is an index i ∈ S with fi > 0. By Lemma 9.109.10, we have fi > 1/(DγA). This is a
contradiction to the optimality of f and hence fi = 0 for all i ∈ S.

Among the feasible solutions f such that figi > 0 for all i and fi = 0 for all i ∈ S, we choose the one
that minimizes ||f − g||∞. For simplicity, we also denote it by f . Note that f satisfies supp(f) ⊆ S, where
S = [m]\S. Further, since fS = 0 and

ASgS +ASgS = Ag = b = Af = ASfS +ASfS = ASfS

we have AS (fS − gS) = ASgS . Let AB be a linearly independent column subset of AS with maximal
cardinality, i.e. the column subset AN , where N = S \ B, is linearly dependent on AB. Hence, there is
an invertible square submatrix A′B ∈ Z|B|×|B| of AB and a vector v = (vB , 0N ) such that(

A′B
A′′B

)
vB = ABvB = ASgS .

Let r = (ASgS)B . Since A′B is invertible, there is a unique vector vB such that A′BvB = r. Observe that

|ri| =

∣∣∣∣∣∣
∑
j∈S

Ai,jgj

∣∣∣∣∣∣ 6 ||A||∞
∑
j∈S
|gj | <

||A||∞
nD2||A||∞

=
1

nD2
.
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10.4. x(k) is Close to a Non-Negative Kernel-Free Vector

By Cramer’s rule vB(e) is quotient of two determinants. The denominator is det(A′B) and hence at least
one in absolute value. For the numerator, the e-th column is replaced by r. Expansion according to this
column shows that the absolute value of the numerator is bounded by

D

γA

∑
i∈B
|ri| <

D

γA
· |B|
nD2

6
1

DγA
.

Therefore, ‖f − g‖∞ 6 1/(DγA) and the statement follows.

Lemma 10.11. Let q ∈ Rm, p ∈ Rn and N = {e ∈ [m] : qe 6 0 or pTAe 6 0}, where Aq = b and
p = L−1b. Suppose

∑
e∈N |qe| < 1/ρA. Then there is a non-negative feasible kernel-free vector f such

that supp(f) ⊆ E\N and ‖f − q‖∞ < 1/(DγA).

Proof. We apply Lemma 10.1010.10 to q with S = N . Then, there is a non-negative feasible vector f such
that supp(f) ⊆ E\N and ‖f − q‖∞ < 1/(DγA). By Lemma 9.19.1, f can be expressed as a sum of a convex
combination of basic feasible solutions plus a vector w in the kernel of A. Moreover, all vectors in this
representation are sign compatible with f , and in particular w is non-negative too.

Suppose for contradiction that w 6= 0. By definition, 0 = pTAw =
∑
e∈[m] p

TAewe and since w > 0

and w 6= 0, it follows that there is an index e ∈ [m] satisfying we > 0 and pTAe 6 0. Since f and w are
sign compatible, we > 0 implies fe > 0. On the other hand, as pTAe 6 0 we have e ∈ N and thus fe = 0.
This is a contradiction, hence w = 0.

Using Corollary 10.110.1, for any point x(0) ∈ X there is a point x(t) ∈ X such that αt ∈ [1/2, 1/h0]. Thus,
we can assume that α0 ∈ [1/2, 1/h0] and work with h 6 h0/2, where h0 = cmin/(2D||c||1). We generalize
next [SV16bSV16b, Lemma 5.4].

Lemma 10.12. Suppose x(t) ∈ X such that αt ∈ [1/2, 1/h0], h 6 h0/2 and ε ∈ (0, 1). Then, for any
k > h−1 ln(8mρAΨ(0)/ε) there is a non-negative feasible kernel-free vector f such that ‖x(t+k) − f‖∞ <
ε/(DγA).

Proof. Let β(k) def
= 1− (1− h)k. By (10.110.1), vector q(t,k) satisfies Aq(t,k) = b and thus Lemma 10.610.6 yields

‖x(t+k) − β(k)q(t,k)‖∞ = (1− h)k · ‖x(t)‖∞ 6 exp{−hk} ·Ψ(0) 6 ε/(8mρA). (10.6)

Using Corollary 10.110.1, we have x(t+k) ∈ X such that α(t+k) ∈ (1/2, 1/h0) for every k ∈ N+. Let Fk =

Qk ∪ Pk, where Qk = {e ∈ [m] : q
(t,k)
e 6 0} and Pk = {e ∈ [m] : AT

e p
(t,k) 6 0}. Then, for every e ∈ Qk it

holds

|q(t,k)
e | 6 [β(k)]−1 · |x(t+k)

e − β(k)q(t,k)
e | 6 ε/(7mρA). (10.7)

By Lemma 10.610.6, ‖x(·)‖ 6 Ψ(0). Moreover, by (10.110.1) for every e ∈ Pk we have

x(t+k)
e = x(t)

e

k+t−1∏
i=t

[
1 + h

(
c−1
e AT

e p
(i) − 1

)]
6 x(t)

e · exp
{
−hk + (h/ce) ·AT

e p
(t,k)

}
6 exp {−hk} ·Ψ(0)

6 ε/(8mρA),

and by combining the triangle inequality with (10.610.6), it follows for every e ∈ Pk that

|q(t,k)
e | 6 [β(k)]−1 ·

[
|x(t+k)
e − β(k)q(t,k)

e |+ |x(t+k)
e |

]
6 [β(k)]−1 · ε/(4mρA)

6 ε/(3mρA). (10.8)

Therefore, (10.710.7) and (10.810.8) yields that∑
e∈Fk

|q(t,k)
e | 6 m · ε/(3mρA) 6 ε/(3ρA). (10.9)
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By Lemma 10.1110.11 applied with q
(t,k)
e and N = Fk, it follows by (10.910.9) that there is a non-negative

feasible kernel-free vector f such that supp(f) ⊆ E\N and

‖f − q(t,k)‖∞ < ε/(3DγA).

By Lemma 10.510.5, we have ‖q(t,k)‖∞ 6 mD2‖b/γA‖1 and since Ψ(0) > mD2‖b/γA‖1, it follows that

‖x(t+k) − f‖∞ = ‖x(t+k) − β(k)q(t+k) + β(k)q(t+k) − f‖∞
6 ‖x(t+k) − β(k)q(t+k)‖∞ + ‖f − q(t+k)‖∞ + (1− h)

k ‖q(t+k)‖∞

6
ε

8mρA
+

ε

3DγA
+
ε ·mD2‖b/γA‖1

8mρA ·Ψ(0)
6

ε

DγA
.

10.5 x(k) is ε-Close to an Optimal Solution

Recall that N denotes the set of non-optimal basic feasible solutions of (8.58.5) and Φ = ming∈N c
Tg− opt.

For completeness, we prove next a well known inequality [PS82PS82, Lemma 8.6] that lower bounds the value
of Φ.

Lemma 10.13. Suppose A ∈ Rn×m has full row rank, b ∈ Rn and c ∈ Rm are integral. Then, Φ >
1/(DγA)2.

Proof. Let g = (gB , 0) be an arbitrary basic feasible solution with basis matrix AB , where gB(e) 6= 0 and
|supp(gB)| = n. We write M−i,−j to denote the matrix M with deleted i-th row and j-th column. Let
Qe be the matrix formed by replacing the e-th column of AB by the column vector b. Then, by Cramer’s
rule, we have

|gB(e)| =
∣∣∣∣ det(Qe)

det(AB)

∣∣∣∣ =
1

γA

∣∣∣∣∣
n∑
k=1

(−1)
j+k · bk · det

(
γ−1
A [AB ]−k,−j

)
det
(
γ−1
A AB

) ∣∣∣∣∣ > 1

DγA
.

Note that all components of vector gB have denominator with equal value, i.e. det(AB). Consider an
arbitrary non-optimal basic feasible solution g and an optimal basic feasible solution f?. Then, ge = Ge/G
and f?e = Fe/F are rationals such thatGe, G, Fe, F 6 DγA for every e. Further, let re = ce (GeF − FeF ) ∈
Z for every e ∈ [m], and observe that

cT (g − f?) =
∑
e

ce (ge − f?e ) =
1

GF

∑
e

re > 1/(DγA)2,

where the last inequality follows by cT(g − f?) > 0 implies
∑
e re > 1.

Lemma 10.14. Let f be a non-negative feasible kernel-free vector and ε ∈ (0, 1) a parameter. Suppose
for every non-optimal basic feasible solution g, there exists an index e ∈ [m] such that ge > 0 and
fe < ε/(2mD3γA||b||1). Then, ‖f − f?‖∞ < ε/(DγA) for some optimal f?.

Proof. Let C = 2D2||b||1. Since f is kernel-free, by Lemma 9.19.1 it can be expressed as a convex combination

of sign-compatible basic feasible solutions f =
∑`
i=1 αif

(i) +
∑m
i=`+1 αif

(i), where f (1), . . . , f (`) denote

the optimal solutions. By Lemma 9.109.10, f
(i)
e > 0 implies f

(i)
e > 1/(DγA). By the hypothesis, for every

non-optimal f (i), i.e. i > `+ 1, there exists an index e(i) ∈ [m] such that

1/(DγA) 6 f
(i)
e(i) and fe(i) < ε/(mDγA · C).

Therefore, we have

αi/(DγA) 6 αif
(i)
e(i) 6

m∑
j=1

αjf
(j)
e(i) = fe(i) < ε/(mDγA · C),

and hence
∑m
i=`+1 αi 6 ε/C. Further, by Lemma 9.109.10, for every j we have

‖f (j)‖∞ 6 D‖b/γA‖1 = C/(2DγA).
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10.5. x(k) is ε-Close to an Optimal Solution

Let β > 0 be an arbitrary vector satisfying
∑`
i=1 βi =

∑m
i=`+1 αi. Let νi = αi + βi for every i ∈ [`] and

let f? =
∑`
i=1 νif

(i). Then, f? is an optimal solution and we have

‖f? − f‖∞ =

∥∥∥∥∥∑̀
i=1

βif
(i) −

m∑
i=`+1

αi · f (i)

∥∥∥∥∥
∞

6 max
i∈[1:m]

∥∥∥f (i)
∥∥∥
∞
·

(∑̀
i=1

βi +

m∑
i=`+1

αi

)

6
2ε

C
· C

2DγA
=

ε

DγA
.

In the following lemma, we extend the analysis in [SV16bSV16b, Lemma 5.6] from the transshipment
problem to positive linear programs. Our result crucially relies on an argument that uses the parameter
Φ = ming∈N c

Tg − opt. It is here, where our analysis incurs the linear step size dependence on Φ/opt
and the quadratic dependence on opt/Φ for the number of steps.

An important technical detail is that the first regime incurs an extra (Φ/opt)-factor dependence. At
first glance, this might seem unnecessary due to Corollary 10.110.1, however it is crucial for an inductive
argument in our analysis to hold, see (10.1110.11) and (10.1210.12). Further, we note that the undirected Physarum

dynamics (8.78.7) satisfies x
(t)
min > (1 − h)t · x(0)

min, whereas the directed Physarum-inspired dynamics (8.68.6)

might yield a value x
(t)
min which decreases with faster than exponential rate. As our analysis incurs a

logarithmic dependence on 1/x
(0)
min, it is prohibitive to decouple the two regimes and give bounds in terms

of log(1/x
(t)
min), which would be necessary as x(t) is the initial point of the second regime.

Lemma 10.15. Let g be an arbitrary non-optimal basic feasible solution. Given x(0) ∈ X and its
corresponding α0, the Physarum-inspired dynamics (8.68.6) initialized with x(0) runs in two regimes:

1. The first regime is executed when α(0) 6∈ [1/2, 1/h0] and computes a point x(t) ∈ X such that
αt ∈ [1/2, 1/h0]. In particular, if α(0) < 1/2 then h 6 (Φ/opt) · (α0h0)2 and t = 1/h. Otherwise, if
α(0) > 1/h0 then h 6 Φ/opt and t = blog1/(1−h)[h0(α(0) − 1)/(1− h0)]c.

2. The second regime starts from a point x(t) ∈ X such that αt ∈ [1/2, 1/h0], it has step size h 6

(opt/Φ) · h2
0/2 and for any k > 4 · cTg/(hΦ) · ln(Ψ(0)/εx

(0)
min), guarantees the existence of an index

e ∈ [m] such that ge > 0 and x
(t+k)
e < ε.

Proof. Similar to the work of [BBD+13BBD+13, SV16bSV16b], we use a potential function that takes as input a basic
feasible solution g and a step number `, and is defined by

B(`)
g

def
=
∑
e∈[m]

gece lnx(`)
e .

Since x
(`+1)
e = x

(`)
e (1 + h(`)[c−1

e ·AT
e p

(`) − 1]), we have

B(`+1)
g − B(`)

g =
∑
e

gece ln
x

(`+1)
e

x
(`)
e

=
∑
e

gece ln

(
1 + h(`)

[
AT
e p

(`)

ce
− 1

])
6 h(`)

∑
e

gece

[
AT
e p

(`)

ce
− 1

]
= h(`)

[
−cTg + [p(`)]TAg

]
= h(`)

[
−cTg + bTp(`)

]
. (10.10)

Let f? be an optimal solution to (8.58.5). In order to lower bound B(`+1)
f? − B(`)

f? , we use the inequality

ln(1 + x) > x− x2, for all x ∈ [− 1
2 ,

1
2 ]. Then, we have

B(`+1)
f? − B(`)

f? =
∑
e

f?e ce ln
x

(`+1)
e

x
(`)
e

=
∑
e

f?e ce ln

(
1 + h(`)

[
AT
e p

(`)

ce
− 1

])

>
∑
e

f?e ce

(
h(`)

[
AT
e p

(`)

ce
− 1

]
− [h(`)]2

[
AT
e p

(`)

ce
− 1

]2
)

> h(`)
(
bTp(`) − opt− h(`) · (1/2α`h0)2 · opt

)
, (10.11)
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where the last inequality follows by combining∑
e

f?e ce[(c
−1
e AT

e p
(`))− 1] = [p(`)]TAf? − opt = bTp(`) − opt,

‖ATp(`)‖∞ 6 D||c||1/α` (by Lemma 10.410.4 and Lemma 10.810.8 applied with x(`) ∈ X), h0 = cmin/(4D||c||1)
and

h(`)
∑
e

f?e ce · (c−1
e AT

e p
(`) − 1)2 6 h(`)(2D||c||1/α`cmin)2opt = h(`)(1/2α`h0)2opt.

Further, by combining (10.1010.10), (10.1110.11), cTg− opt > Φ for every non-optimal basic feasible solution g and
provided that the inequality h(`)(1/2α`h0)2opt 6 Φ/2 holds, we obtain

B(`+1)
f? − B(`)

f? > h(`)
(
bTp(`) − cTg

)
+ h(`)

(
cTg − opt− Φ

2

)
> B(`+1)

g − B(`)
g +

h(`)Φ

2
. (10.12)

Using Corollary 10.110.1, we partition the Physarum-inspired dynamics (8.68.6) execution into three regimes,
based on α0. For every i ∈ {1, 2, 3}, we show next that the i-th regime has a fixed step size h(`) = hi such
that h(`)(1/2α`h0)2opt 6 Φ/2, for every step ` in this regime.

By Lemma 10.910.9, for every i ∈ {1, 2, 3} it holds for every step ` in the i-th regime that

α` = 1− (1− hi)` · (1− α0). (10.13)

Case 1: Suppose α0 > 1/h0. Notice that h(`) = Φ/opt suffices, since 1/(2α`h0) < 1/2 for every

α` > 1/h0. Further, by applying (10.1310.13) with αt
def
= 1/h0, we have t = blog1/(1−h(`))[h0(α(0) − 1)/(1 −

h0)]c 6 (opt/Φ)·log(α0h0). Note that by (10.1310.13) the sequence {α`}`6t is decreasing, and by Corollary 10.110.1
we have 1 < αt 6 1/h0.

Case 2: Suppose α0 ∈ (0, 1/2). By (10.1310.13) the sequence {α`}`∈N is increasing and by Corollary 10.110.1
the regime is terminated once α` ∈ [1/2, 1). Observe that h(`) = (Φ/opt) · (α0h0)2 suffices, since α0 6 α`.

Then, by (10.1310.13) applied with αt
def
= 1/2, this regime has at most t = (opt/Φ) · (1/α0h0)2 steps.

Case 3: Suppose α0 ∈ [1/2, 1/h0]. By (10.1310.13) the sequence {α`}`∈N converges to 1 (decreases if
α0 ∈ (1, 1/h0] and increases when α0 ∈ [1/2, 1). Notice that h(`) = (Φ/opt) · h2

0/2 suffices, since 1/2 6
α` 6 1/h0 for every ` ∈ N. We note that the number of steps in this regime is to be determined soon.

Hence, we conclude that inequality (10.1210.12) holds. Further, using Case 1 and Case 2 there is an integer

t ∈ N such that αt ∈ [1/2, 1/h0]. Let k ∈ N be the number of steps in Case 3, and let h
def
= (Φ/opt) · h2

0/2.
Then, for every ` ∈ {t, . . . , t+ k − 1} it holds that h(`) = h and thus

B(t+k)
f? − B(0)

f? > B(t+k)
g − B(0)

g +

t+k−1∑
`=0

h(`)Φ

2
> B(t+k)

g − B(0)
g + k · hΦ

2
. (10.14)

By Lemma 10.610.6, B(`)
g 6 cTg · ln Ψ(0) for every basic feasible solution g and every ` ∈ N, and thus

B(t+k)
g 6 −k · hΦ

2
+ B(0)

g + B(t+k)
f? − B(0)

f?

6 −k · hΦ

2
+ cTg · ln Ψ(0) + opt · ln Ψ(0) − opt · lnx(0)

min

6 −k · hΦ

2
+ 2cTg · ln Ψ(0)

x
(0)
min

.

Suppose for the sake of a contradiction that for every e ∈ [m] with ge > 0 it holds x
(t+k)
e > ε. Then,

B(t+k)
g > cTg · ln ε yields k < 4 · cTg/(hΦ) · ln(Ψ(0)/(εx

(0)
min)), a contradiction to the choice of k.

10.6 Proof of Theorem 10.210.2

By Corollary 10.110.1 and Lemma 10.1510.15, if x(0) ∈ X such that α(0) > 1/h0, we work with h 6 Φ/opt and
after t = blog1/(1−h)[h0(α(0) − 1)/(1 − h0)]c 6 (opt/Φ) · log(α0h0) steps, we obtain x(t) ∈ X such that

αt ∈ (1, 1/h0]. Otherwise, if α(0) ∈ (0, 1/2) we work with h 6 (Φ/opt) · (α0h0)2 and after t = 1/h
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steps, we obtain x(t) ∈ X such that αt ∈ [1/2, 1). Hence, we can assume that αt ∈ [1/2, 1/h0] and set
h 6 (Φ/opt) · h2

0. Then, the Lemmas in Section 10.410.4 and 10.510.5 are applicable.

Let E1
def
= D‖b/γA‖1||c||1, E2

def
= 8mρAΨ(0), E3

def
= 2mD3γA‖b‖1 and E4

def
= 8mD2‖b‖1. Consider an

arbitrary non-optimal basic feasible solution g.
By Lemma 9.109.10, we have cTg 6 E1 and thus both Lemma 10.1210.12 and Lemma 10.1510.15 are applicable

with h, ε?
def
= ε/E4 and any k > k0

def
= 4E1/(hΦ) · ln[(E2/min{1, x(0)

min}) · (DγA/ε?)]. Hence, by Lemma
10.1510.15, the Physarum-inspired dynamics (8.68.6) guarantees the existence of an index e ∈ [m] such that

ge > 0 and x
(t+k)
e < ε?/(DγA). Moreover, by Lemma 10.1210.12 there is a non-negative feasible kernel-

free vector f such that ‖x(t+k) − f‖∞ < ε?/(DγA). Thus, for the index e it follows that ge > 0 and
fe < 2ε?/DγA = (ε/2) · (4/E4DγA) = ε/(2E3). Then Lemma 10.1410.14, yields ‖f − f?‖∞ < ε/(2DγA) and
by triangle inequality we have ‖x(k) − f?‖∞ < ε/(DγA).

By construction, ρA = max{DγA, nD2||A||∞} 6 nD2γA||A||∞. Let E′2 = 8mnD2γA||A||∞Ψ(0) and
E5 = E′2E4 · DγA = 82m2nD5γ2

A||A||∞‖b‖1. Further, let C1 = E1 and C2 = E5. Then, the statement

follows for any k > k1
def
= 4C1/(hΦ) · ln(C2Ψ(0)/(ε ·min{1, x(0)

min})).

10.7 Preconditioning

In this section, we generalize the preconditioning technique developed in [BBD+13BBD+13, SV16bSV16b] for flow
problems, to the setting of positive linear programs.

Theorem 10.16. Given an integral LP (A, b, c > 0), a positive x(0) ∈ Rm and a parameter ε ∈ (0, 1).

Let ([A | b], b, (c, c′)) be an extended LP with c′ = 2C1 and z(0) def
= 1+DS ||x||∞||A||1||b||1.22 Then, (x(0); z(0))

is a strongly dominating starting point of the extended problem such that yT[A | b](x(0), z(0)) > 1, for all
y ∈ Y . In particular, the Physarum-inspired dynamics (8.68.6) initialized with (x(0), z(0)) and a step size

h 6 h2
0/C3, outputs for any k > 4C1 · (DγA)2/h · ln(C2Υ(0)/(ε ·min{1, x(0)

min})) a vector (x(k), z(k)) > 0

such that dist(x(k), X?) < ε/(DγA) and z(k) < ε/(DγA), where Υ(0) def
= max{Ψ(0), z(0)}.

Theorem 10.1610.16 subsumes [SV16bSV16b, Theorem 1.2] for flow problems by giving a tighter asymptotic
convergence rate, since for the transshipment problem A is a totally unimodular matrix and satisfies
D = DS = 1, γA = 1, ||A||∞ = 1 and Φ = 1. We note that the scalar z(0) depends on the scaled
determinant DS , see Theorem 8.38.3.

10.7.1 Proof of Theorem 10.1610.16

In the extended problem, we concatenate to matrix A a column equal to b such that the resulting
constraint matrix becomes [A | b]. Let c′ be the cost and let x′ be the initial capacity of the newly inserted
constraint column. We will determine c′ and x′ in the course of the discussion. Consider the dual of the
max-flow like LP for the extended problem. It has an additional variable z′ and reads

min
{
xTz + x′z′ : z > 0; z′ > 0; z > ATy; z′ > bTy; bTy = 1

}
.

In any optimal solution, z′ = bTy = 1 and hence the dual is equivalent to

min
{
xTz + x′ : z > 0; z > ATy; bTy = 1

}
. (10.15)

The strongly dominating set of the extended problem is therefore equal to

X =

{(
x
x′

)
∈ Rm+1

>0 : yT[A | b]
(

x
x′

)
> 0 for all y ∈ Y

}
. (10.16)

The defining condition translates into x′ > −yTAx for all y ∈ Y . We summarize the discussion in the
following Lemma.

Lemma 10.17. Given a positive x ∈ Rm, let ρ
def
= ||b||1DS and x′

def
= 1 + ρ||A||1||x||∞, where ||A||1

def
=∑

i,j |Ai,j | and DS
def
= max{|det(A′)| : A′ is a square sub-matrix of A}. Then, (x; x′) is a strongly

dominating starting point of the extended problem such that yT[A | b](x; x′) = yTAx + x′ > 1, for all
y ∈ Y .

2 We denote by ||A||1
def
=
∑
i,j |Ai,j |, i.e. we interpret matrix A as a vector and apply to it the standard `1 norm.
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Proof. We show first that maxy∈Y ||y||∞ 6 ρ implies the statement. Let y ∈ Y be arbitrary. Since
|yTAx| 6 ||A||1||x||∞||y||∞, we have maxy∈Y |yTAx| 6 ρ||A||1||x||∞ = x′ − 1 and hence yT[A | b](x; x′) > 1.

It remains to show that maxy∈Y ||y||∞ 6 ρ. The constraint polyhedron of the dual (10.1510.15) is given in
matrix notation as

P (ext) def
=


(
z
y

)
∈ Rm+n :

 Im×m −AT

0T
m bT

Im×m 0m×n

( z
y

) >
=
>

 0m
1

0m

 .

Let us denote the resulting constraint matrix and vector by M ∈ R2m+1×m+n and d ∈ R2m+1, respectively.
Note that if b = 0 then the primal LP (10.210.2) is either unbounded or infeasible. Hence, we consider

the non-trivial case when b 6= 0. Observe that the polyhedron P (ext) is not empty, since for any y such
that bTy = 1 there is z = max{0, ATy} satisfying (z; y) ∈ P (ext). Further, P (ext) does not contain a line
(see Section 10.310.3) and thus P (ext) has at least one extreme point p′ ∈ P (ext). As the dual LP (10.310.3) has
a bounded value (the target function is lower bounded by 0) and an extreme point exists (p′ ∈ P (ext)),
the optimum is attained at an extreme point p ∈ P (ext). Moreover, as every extreme point is a basic
feasible solution and matrix M has linearly independent columns (A has full row rank), it follows that p
has m+ n tight linearly independent constraints.

Let MB(p) ∈ Rm+n×m+n be the basis submatrix of M satisfying MB(p)p = dB(p). Since A, b are
integral and MB(p) is invertible, using Laplace expansion we have 1 6 |det(MB(p))| 6 ||b||1DS = ρ. Let
Qi denotes the matrix formed by replacing the i-th column of MB(p) by the column vector dB(p). Then,
by Cramer’s rule, it follows that |yi| = |det(Qi)/ det(MB(p))| 6 |det(MB(p))| 6 ρ, for all i ∈ [n].

It remains to fix the cost of the new column. Using Lemma 9.109.10, opt 6 cTx(k) 6 C1 for every k ∈ N,

and thus we set c′
def
= 2C1.

10.8 A Simple Lower Bound

Building on [SV16bSV16b, Lemma B.1], we give a lower bound on the number of steps required for computing
an ε-approximation to the optimum shortest path. In particular, we show that for the Physarum-inspired
dynamics (8.68.6) to compute a point x(k) such that dist(x(k), X?) < ε, the required number of steps k has
to grow linearly in opt/(hΦ) and ln(1/ε).

Theorem 10.18. Let (A, b, c) be a positive LP instance such that A = [1 1], b = 1 and c = (opt, opt+Φ)T,
where opt > 0 and Φ > 0. Then, for any ε ∈ (0, 1) the discrete directed Physarum-inspired dynamics (8.68.6)
initialized with x(0) = (1/2, 1/2) and any step size h ∈ (0, 1/2], requires at least k = (1/2h)·max{opt/Φ, 1}·
ln(2/ε) steps to guarantee x

(k)
1 > 1− ε, x(k)

2 6 ε. Moreover, if ε 6 Φ/(2opt) then cTx(k) > (1 + ε)opt as
long as k 6 (1/2h) ·max{opt/Φ, 1} · ln(2Φ/(ε · opt)).

Proof. Let c1 = opt and c2 = γopt, where γ = 1 + Φ/opt. We first derive closed-form expressions

for x
(k)
1 , x

(k)
2 , and x

(k)
1 + x

(k)
2 . Let s(k) = γx

(k)
1 + x

(k)
2 . For any k ∈ N, we have q

(k)
1 + q

(k)
2 = 1 and

q
(k)
1 /q

(k)
2 = (x

(k)
1 /c1)/(x

(k)
2 /c2) = γx

(k)
1 /x

(k)
2 . Therefore, q

(k)
1 = γx

(k)
1 /s(k) and q

(k)
2 = x

(k)
2 /s(k), and hence

x
(k)
1 = (1 + h(−1 + γ/s(k−1)))x

(k−1)
1 and x

(k)
2 = (1 + h(−1 + 1/s(k−1)))x

(k−1)
2 . (10.17)

Further, x
(k)
1 + x

(k)
2 = (1− h)(x

(k−1)
1 + x

(k−1)
2 ) + h, and thus by induction x

(k)
1 + x

(k)
2 = 1 for all k ∈ N.

Therefore, s(k) 6 γ for all k ∈ N and hence x
(k)
1 > x

(k−1)
1 , i.e. the sequence {x(k)

1 }k∈N is increasing and

the sequence {x(k)
2 }k∈N is decreasing. Moreover, since h(−1 + 1/s(k−1)) > h(1− γ)/γ = −hΦ/(opt + Φ)

and using the inequality 1− z > e−2z for every z ∈ [0, 1/2], it follows by (10.1710.17) and induction on k that

x
(k)
2 >

(
1− hΦ

opt + Φ

)k
x

(0)
2 >

1

2
exp

{
−k · 2hΦ

opt + Φ

}
.

Thus, x
(k)
2 > ε whenever k 6 (1/2h) · (opt/Φ + 1) · ln(2/ε). This proves the first claim.

For the second claim, observe that cTx(k) = opt · x(k)
1 + γopt · x(k)

2 = opt · (1 + (γ − 1)x
(k)
2 ). This is

greater than (1 + ε)opt iff x
(k)
2 > ε · opt/Φ. Thus, cTx(k) > (1 + ε)opt as long as k 6 (1/2h) · (opt/Φ +

1) · ln(2/(ε · opt/Φ)).
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