23 research outputs found

    Kompresi Data Text Menggunakan Metode “Duplicate Word Indexingâ€

    Get PDF
    A data is often important so it should not be removed from data storage as it is used as an archive. The large number of new data archive data can slowly reduce free space and slow down the data transfer process. In this research, an approach is done to manage archive data by doing compression to minimize size. The results of this study were tested on some randomly books shows the number of data text size decrease of 19.46%. Keywords: data, archive, compression, tex

    Dynamically Reconfigurable Systolic Array Accelerators: A Case Study with Extended Kalman Filter and Discrete Wavelet Transform Algorithms

    Get PDF
    Field programmable grid arrays (FPGA) are increasingly being adopted as the primary on-board computing system for autonomous deep space vehicles. There is a need to support several complex applications for navigation and image processing in a rapidly responsive on-board FPGA-based computer. This requires exploring and combining several design concepts such as systolic arrays, hardware-software partitioning, and partial dynamic reconfiguration. A microprocessor/co-processor design that can accelerate two single precision oating-point algorithms, extended Kalman lter and a discrete wavelet transform, is presented. This research makes three key contributions. (i) A polymorphic systolic array framework comprising of recofigurable partial region-based sockets to accelerate algorithms amenable to being mapped onto linear systolic arrays. When implemented on a low end Xilinx Virtex4 SX35 FPGA the design provides a speedup of at least 4.18x and 6.61x over a state of the art microprocessor used in spacecraft systems for the extended Kalman lter and discrete wavelet transform algorithms, respectively. (ii) Switchboxes to enable communication between static and partial reconfigurable regions and a simple protocol to enable schedule changes when a socket\u27s contents are dynamically reconfigured to alter the concurrency of the participating systolic arrays. (iii) A hybrid partial dynamic reconfiguration method that combines Xilinx early access partial reconfiguration, on-chip bitstream decompression, and bitstream relocation to enable fast scaling of systolic arrays on the PolySAF. This technique provided a 2.7x improvement in reconfiguration time compared to an o-chip partial reconfiguration technique that used a Flash card on the FPGA board, and a 44% improvement in BRAM usage compared to not using compression

    VR-ZYCAP: A versatile resourse-level ICAP controller for ZYNQ SOC

    Get PDF
    This article belongs to the Special Issue Architecture and CAD for Field-Programmable Gate Arrays (FPGAs)Hybrid architectures integrating a processor with an SRAM-based FPGA fabric—for example, Xilinx ZynQ SoC—are increasingly being used as a single-chip solution in several market segments to replace multi-chip designs. These devices not only provide advantages in terms of logic density, cost and integration, but also provide run-time in-field reconfiguration capabilities. However, the current reconfiguration capabilities provided by vendor tools are limited to the module level. Therefore, incremental run-time configuration memory changes require a lengthy compilation time for off-line bitstream generation along with storage and reconfiguration time overheads with traditional vendor methodologies. In this paper, an internal configuration access port (ICAP) controller that provides a versatile fine-grain resource-level incremental reconfiguration of the programmable logic (PL) resources in ZynQ SoC is presented. The proposed controller implemented in PL, called VR-ZyCAP, can reconfigure look-up tables (LUTs) and Flip-Flops (FF). The run-time reconfiguration of FF is achieved through a reset after reconfiguration (RAR)-featured partial bitstream to avoid the unintended state corruption of other memory elements. Along with versatility, our proposed controller improves the reconfiguration time by 30 times for FFs compared to state-of-the-art works while achieving a nearly 400-fold increase in speed for LUTs when compared to vendor-supported software approaches. In addition, it achieves competitive resource utilization when compared to existing approaches.This research was funded by Spanish Ministry of Science and Innovation under the ACHILLES project, grant number PID2019-104207RB-I00 and by Taif University Researchers Supporting fund, grant number (TURSP-2020/144), Taif University, Taif, Saudi Arabia

    A Dynamically Reconfigurable Parallel Processing Framework with Application to High-Performance Video Processing

    Get PDF
    Digital video processing demands have and will continue to grow at unprecedented rates. Growth comes from ever increasing volume of data, demand for higher resolution, higher frame rates, and the need for high capacity communications. Moreover, economic realities force continued reductions in size, weight and power requirements. The ever-changing needs and complexities associated with effective video processing systems leads to the consideration of dynamically reconfigurable systems. The goal of this dissertation research was to develop and demonstrate the viability of integrated parallel processing system that effectively and efficiently apply pre-optimized hardware cores for processing video streamed data. Digital video is decomposed into packets which are then distributed over a group of parallel video processing cores. Real time processing requires an effective task scheduler that distributes video packets efficiently to any of the reconfigurable distributed processing nodes across the framework, with the nodes running on FPGA reconfigurable logic in an inherently Virtual\u27 mode. The developed framework, coupled with the use of hardware techniques for dynamic processing optimization achieves an optimal cost/power/performance realization for video processing applications. The system is evaluated by testing processor utilization relative to I/O bandwidth and algorithm latency using a separable 2-D FIR filtering system, and a dynamic pixel processor. For these applications, the system can achieve performance of hundreds of 640x480 video frames per second across an eight lane Gen I PCIe bus. Overall, optimal performance is achieved in the sense that video data is processed at the maximum possible rate that can be streamed through the processing cores. This performance, coupled with inherent ability to dynamically add new algorithms to the described dynamically reconfigurable distributed processing framework, creates new opportunities for realizable and economic hardware virtualization.\u2

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu

    Architecture and Advanced Electronics Pathways Toward Highly Adaptive Energy- Efficient Computing

    Get PDF
    With the explosion of the number of compute nodes, the bottleneck of future computing systems lies in the network architecture connecting the nodes. Addressing the bottleneck requires replacing current backplane-based network topologies. We propose to revolutionize computing electronics by realizing embedded optical waveguides for onboard networking and wireless chip-to-chip links at 200-GHz carrier frequency connecting neighboring boards in a rack. The control of novel rate-adaptive optical and mm-wave transceivers needs tight interlinking with the system software for runtime resource management

    JPEG decoder implementation on FPGA using dynamic partial reconfiguration

    Get PDF
    Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e telecomunicaçõesEsta tese descreve o estudo realizado sobre o tema de Sistemas Computacionais Reconfiguráveis utilizando Field-Programmable Gate Array (FPGA). Sistemas Computacionais Reconfiguráveis é um conceito tão antigo como a computação utilizando circuitos electrónicos. Para explorar os aspetos práticos do conceito, foi implementado um descodificador de imagens codificadas em sistema Baseline JPEGsobre uma FPGA da família Zynq™-7000. Realizado todo o trabalho de desenho, implementação e depuração do descodificador utilizando métodos tradicionais de implementação estática da lógica na FPGA, foi posteriormente realizado o trabalho de adaptação do descodificador desenvolvido para implementação na mesma FPGA utilizando métodos de implementação com reconfiguração parcialdinâmica. Este novo método tem como objetivo principal a realização de um descodificador funcional utilizando apenas uma parte dos recursos lógicos da FPGA quando comparado com a implementação estática do descodificador. A utilização de reconfiguração dinâmica tem como consequência um incremento da complexidade do sistema, originando, numa perspetiva macro, diferenças entre ambos os descodificadores, mas globalmente baseados nos mesmos critérios de desenho e partilhando grande parte dos módulos internos. São ainda descritos os passos para atingir o objetivo, de forma a clarificar o processo de reconfiguração parcial dinâmica para uma aplicação em eventuais novos critérios de projeto e diferentes cenários de aplicação. Esta tese explora ainda o desenvolvimento de sistemas auxiliares que permitem a descodificação direta de ficheiros .jpg e a sua apresentação num monitor VGA.Abstract: This thesis describes a study conducted in Reconfigurable Computing using a Field-Programmable Gate Array (FPGA). Reconfigurable Computing is a concept almost as old as high-speed electronic computing itself. To explore the practical aspects of the concept, a Baseline JPEG image decoder was implemented over a Zynq™-7000 family FPGA. After using traditional methods for the design, implementation and debugging of static decoder logic, the work path was set to adapt the decoder to be implemented on the same FPGA using methods based on Dynamic Partial Reconfiguration. Using this approach the main objective was to develop a working decoder with only a subset of the used resources ofthe FPGA when compared to static implementation of the similar decoder. The dynamic partial reconfiguration brings some additional complexity to the system resulting on two different decoders from a macro perspective view but globally relying on the same design considerations and that share the majority of the internal modules. The steps to achieve the objective are described in order to clarify the dynamic partial reconfiguration process and to eventually open new design possibilities that can be exploited in different application scenarios. The thesis also explores the development of auxiliary systems to enable the ability to decode direct .jpg files and present them on a VGA monitor

    Reconfigurable microarchitectures at the programmable logic interface

    Get PDF
    corecore