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Abstract 

Dynamic, runtime reconfiguration is one of the most compelling, yet elusive 

applications of programmable logic. The lack of an accepted design methodology 

and limitations of the programmable logic interface are identified as two significant 

factors constraining the mainstream acceptance of runtime reconfiguration and 

virtual circuitry(VC). This thesis presents a framework for investigating a new 

form of flexible programmable logic interface capable of adapting to the demands 

of different VC models. An abstract architecture for virtual circuitry is presented 

in the context of two fundamental models of VC: the sea of accelerators and the 

parallel harness. The abstract architecture's position within the class of Transport 

Triggered Architectures(TTAs) is considered and we discuss how attributes of the 

architecture are harnessed to facilitate a third, sequential algorithmic VC model. 

A novel implementation of the abstract architecture is described: the imple-

mentation of the Ultimate RISC(URISC), a minimal microarchitecture, is pre-

sented and is then evolved into the Flexible URISC(FURI), an instance of the 

abstract VC architecture. A design flow and associated toolset for the FURl core 

is presented. This includes a discussion of the merits and complications of dif-

ferent strategies for circuitry loading plus the features of a multitasking runtime 

environment for the FURl core, the FURl executive. Starting with the descrip-

tion of a simple base protocol, the design space for FURl protocols is qualified. 

The communication characteristics of the three VC models are described and 

their influence on the form of FURl protocols considered. Implementations of 

the Data Encryption Standard(DES) are proposed, demonstrating how the FURl 

system supports each of the three VC models. 



To my parents. 



Acknowledgements 

Over the years, I have had the tremendous privilege of working with and being 

inspired by many wonderful people. I am grateful to each and every one, but I 

feel it is appropriate to offer special thanks to three of them in particular: 

• First, I wish to thank Gordon Brebner for his support and supervision. His 

insightful guidance, patience, and overall dedication are what make him a 

truly great supervisor. 

• Second, I wish to thank John Gray for many stimulating discussions. His 

verve, encouragement, and insights have inspired me many times whilst 

working on this thesis. 

• Third, I wish to thank Ray Welland for his support and encouragement 

during the years I spent studying in Glasgow. 



Table of Contents 

List of Figures 	 7 

List of Tables 	 13 

Chapter 1 	Introduction 15 

1.1 	Runtime Reconfiguration 	....................... 15 

1.1.1 	Challenges 	........................... 16 

1.2 	Aim of the thesis 	........................... 17 

1.3 	Thesis Outline ............................. 17 

Chapter 2 Reconfigurable Architectures and Systems 19 

2.1 	History of the Programmable Machine 	............... 19 

2.1.1 Evolution of the Microprocessor 	............... 20 

2.1.2 Logic Circuitry 	........................ 21 

2.1.3 Programmable Logic 	..................... 23 

2.2 	Early Forms of Programmable Logic 	................ 24 

2.2.1 The Fixed-plus-Variable Structure (F+VS) Computer . 24 

2.2.2 Cutpoint Cellular Logic 	................... 25 

2.2.3 Wahistrom's Programmable Logic Array 	.......... 27 

2.2.4 Shoup and the Programmable Cellular Logic Array 	. . 28 

2.2.5 First Generation Programmable Logic 	........... 29 

2.3 	Field Programmable Gate Arrays (FPGAs) ............. 32 

2.3.1 ASIC Replacement 	...................... 32 

1 



2.3.2 	Rapid System Prototyping 33 

2.3.3 	Dynamic Reconfiguration 	.................. 34 

2.4 Basic FPGA Architecture 	...................... 35 

2.4.1 	FPGA Programming Technologies .............. 37 

2.4.2 	Classes of Reprogrammability 	................ 38 

2.5 Dynamically Reconfigurable FPGAs ................. 39 

2.5.1 	Xilinx LCAs 	.......................... 39 

2.5.2 	Altera Flex 	.......................... 42 

2.6 Partially Reconfigurable FPGAs ................... 43 

2.6.1 	The Xilinx XC6200 	...................... 43 

2.6.2 	The Atmel AT6000 	....................... 47 

2.7 New Generation FPGA architectures 	................ 50 

2.7.1 	Virtex 	............................. 51 

2.7.2 	Apex 	.............................. 54 

2.8 Device Architecture Research 	.................... 54 

2.8.1 	PipeRench 	........................... 56 

2.8.2 	Colt 	.............................. 56 

2.9 Reconfigurable Computing Systems 	................. 57 

2.10 Summary 	............................... 58 

Chapter 3 The Programmable Logic Interface 60 

3.1 	Defining the Programmable Logic Interface ............. 60 

3.1.1 The Programming Language Interface 	........... 61 

3.1.2 The Runtime System Interface ................ 62 

3.1.3 The Device Interface 	..................... 62 

3.2 	Programmable Logic Device Interfaces 	............... 62 

3.2.1 Bit-serial programming interfaces 	.............. 63 

3.2.2 Parallel, Random-access Interfaces 	............. 64 

3.2.3 Streaming, Packet-style Interfaces 	.............. 71 

2 



3.2.4 Adaptive Packet-style Device Interfaces ...........74 

3.3 	Summary 	...............................74 

Chapter 4 	An Abstract Architecture for Virtual Circuitry 75 

4.1 Virtual Circuitry 	........................... 75 

4.2 Models of Virtual Circuitry 	..................... 76 

4.2.1 	The requirements to support Virtual Circuits 	....... 76 

4.2.2 	Fundamentals: The Swappable Logic Unit 	......... 80 

4.2.3 	The Sea of Accelerators Model ................ 80 

4.2.4 	The Parallel Harness Model 	................. 81 

4.3 An Abstract VC Architecture 	.................... 82 

4.3.1 	Transport Triggered Architectures .............. 85 

4.3.2 	Alternative Architectures ................... 86 

4.3.3 	Self-modifying Circuitry 	................... 90 

4.4 Performance Enhancing Techniques for VC ............. 96 

4.4.1 	Partial Reconfiguration .................... 97 

4.4.2 	Partial Evaluation and Constant Propagation 	....... 99 

4.4.3 	Configuration Compression .................. 100 

4.4.4 	Configuration Prefetching 	.................. 101 

4.4.5 	Configuration Interleaving 	.................. 102 

4.4.6 	Analysis 	............................ 102 

4.5 Sequential Algorithmic VC 	...................... 104 

4.6 Summary 	............................... 107 

Chapter 5 The Flexible Ultimate RISC 	 108 

5.1 The Ultimate RISC(URISC) .....................108 

	

5.1.1 	The Instruction Execution Unit(IEU) ............109 

	

5.1.2 	URISC Programming .....................113 

5.1.3 Challenges of a XC6200 URISC Implementation ......115 

3 



5.2 	The Flexible URISC(FURI) 122 

5.2.1 	Differentiating FURl and the URISC 	............ 122 

5.2.2 	FURl Implementation Details and Challenges 	....... 123 

5.2.3 	FURl Control Logic 	..................... 130 

5.2.4 	Debugging the FURl Core Circuitry 	............ 138 

5.3 	Summary 	................................ 145 

Chapter 6 The FURl Programming and Runtime Environment 146 

6.1 Programming the FURl Core 	.................... 146 

6.1.1 	What is a FURl program? 	.................. 147 

6.1.2 	The FURl Design Flow .................... 147 

6.1.3 	The FURl Assembler 	..................... 150 

6.1.4 	Kernel Circuitry 	....................... 152 

6.1.5 	Assembly Libraries 	...................... 153 

6.1.6 	Challenges and approaches to Loading SLUs ........ 155 

6.1.7 	Circuit Debugging 	...................... 169 

6.2 The FURl Executive 	......................... 175 

6.2.1 	Tasks 	.............................. 176 

6.2.2 	Task Switching 	........................ 176 

6.3 Standard System Tasks 	........................ 177 

6.3.1 	The FURl base protocol and base protocol handler task 177 

6.3.2 	The Detacher 	......................... 180 

6.4 Analysis and Conclusions on the FURl Framework 	........ 185 

6.5 Summary 	............................... 187 

Chapter 7 Virtual Circuitry on the Flexible URISC 	 198 

7.1 	The FURl System Context ......................198 

	

7.1.1 	FURl Network Components .................200 

	

7.1.2 	FURl Network Topologies ..................204 



7.1.3 	Mapping Network Topologies to Existing Platforms . . . . 209 

7.2 FURl 	Protocols 	............................ 211 

7.2.1 	Communication Characteristics of Virtual Circuitry Models 212 

7.2.2 	The FURl Protocol Design Space 	.............. 224 

7.3 Implementing Virtual Circuitry Models ............... 236 

7.3.1 	The Data Encryption Standard(DES) ............ 237 

7.3.2 	The Application Context 	................... 239 

7.3.3 	Sea of Accelerators 	...................... 241 

7.3.4 	Parallel Harness 	........................ 246 

7.3.5 	Sequential Algorithmic 	.................... 251 

7.4 Performance Analysis and Projection 	................ 253 

7.4.1 	Performance of the FURl core 	................ 254 

7.4.2 	Analysis of the framework costs and overheads ....... 255 

7.4.3 	VC DES Implementations 	.................. 261 

7.4.4 	Performance Projections 	................... 271 

7.5 Summary 	............................... 279 

Chapter 8 Conclusions and Further Work 282 

8.1 Overview of Thesis 	.......................... 282 

8.2 Contribution 	.............................. 283 

8.2.1 	Technical Contribution 	.................... 283 

8.2.2 	Conceptual Contribution 	................... 284 

8.3 Conclusions and Future Directions 	................. 284 

8.3.1 	Conclusions 	.......................... 284 

8.3.2 	Future Directions 	....................... 292 

8.4 Conclusion 	............................... 293 

Appendix A FURl Core Implementation Details 	 295 

A.1 	Introduction ..............................295 

5 



A.2 The FURl Core 	 . 295 

A.3 The FURl Assembler .........................296 

A.3.1 Basic Assembly Constructs ..................296 

A.3.2 Outline of the Assembly Process ...............300 

A.3.3 Assembling FURl Protocol code ...............301 

Bibliography 	 303 



List of Figures 

2.1 Minnick's Cutpoint Array 26 

2.2 The Wahistrom Programmable array 	................ 27 

2.3 Sum-of-products PLD Architectures: (i) Basic PLD Organisation, 

(ii) Programmable Read-only Memory (PROM), (iii) Programmable 

Array Logic(PAL), and (iv) Programmable Logic Array (PLA) 30 

2.4 The basic architecture of an FPGA 	................. 36 

2.5 General Features of the XC4000 Cell Array 	............ 40 

2.6 XC4000 Configurable Logic Block 	.................. 41 

2.7 The XC6000 Function Unit 	..................... 44 

2.8 The XC6000 Routing Hierarchy 	................... 45 

2.9 The AT6000 Cell Structure ...................... 48 

2.10 General Organisation of the AT6000 Array ............. 49 

2.11 The AT40K Cell Structure 	...................... 50 

2.12 General organisation of AT40K Cell Array and Interconnect 	. 51 

2.13 A Virtex 2-Slice CLB 	......................... 52 

2.14 General Organisation of the Virtex Architecture 	.......... 52 

2.15 General Organisation of the Altera APEX 	............. 55 

2.16 General Structure of the PipeRench Fabric and Stripe Functionality 57 

2.17 The Colt Architecture 	........................ 58 

3.1 FastMap access to cell state using the XC6200 Map Register . . 	69 

3.2 Structure of the PCI-PipeRench ...................72 

7 



3.3 Typical Packet Format for the PipeRench Architecture ......73 

3.4 General Format of a Colt Stream ..................73 

4.1 The two primary models of virtual circuitry: (i) The Sea of Accel-

erators and (ii) The Parallel Harness ................81 

4.2 The Abstract Virtual Circuitry Architecture ............83 

4.3 	General Structure of a TTA .....................85 

4.4 Organisation of the self-configuring pattern matcher[76] 	.....94 

5.1 A minimal URISC Implementation .................109 

5.2 The Ultimate RISC Datapath ....................110 

5.3 Control Waveform for the basic URISC ...............113 

5.4 Basic architecture of the initial URISC implementation on the 

XC6200 	................................116 

5.5 The URISC XC62000 Datapath 	................... 118 

5.6 The URISC XC62000 Control Timing Diagram 	.......... 119 

5.7 Self- initialising and self-activating control logic shift register 	. 119 

5.8 The Control Shift-register in action: 	(i) Initialisation mode; and 

(ii) 	Shift 	Mode . 	. 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 121 

5.9 Datapath of the Flexible URISC . 	. 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 125 

5.10 Autonomous FURl system using XC6200 master serial configuration 130 

5.11 FastMap Interface Timing Diagrams: 	(i) Configuration SRAM 

Write; (ii) Configuration SRAM Read ................ 131 

5.12 FURl Control Timing with integrated FastMap Read and Write 

support 	................................ 132 

5.13 Floorplan of FURl core around the FastMap control Ports 	. . . . 137 

5.14 The VCC Hotworks Development Card ............... 139 

5.15 The VCC Hotworks Prototyping Daughtercard ........... 141 

5.16 FURl Core Hardware Debugging Cycle 	............... 143 



5.17 qlnspector Design Views 	 . 144 

6.1 The FURl Design Flow ........................ 148 

6.2 Graph of Block Based Cal Loader Performance with Various Block 

Sizes 	.................................. 159 

6.3 Graph of cal2furi Loader Subroutine Performance ........ 161 

6.4 qOverlay Design Views 	....................... 174 

6.5 The FURl Base Protocol 	....................... 179 

6.6 XC6216 Memory Map for Cells starting in row 0 .......... 188 

6.7 Address type distributions in a series of adder SLUs ........ 189 

6.8 Address type distributions in a series of adder SLUs using an 8-bit 

configuration interface 	........................ 189 

6.9 Address type distributions in a series of adder SLUs generated as 

circuit overlays 	............................ 190 

6.10 Address type distributions in DES SLUs 	.............. 190 

6.11 Address type distributions in DES SLUs generated as circuit overlays191 

6.12 Cell-data block size distributions in a series of adder SLUs 	. . . . 191 

6.13 Cell-data block size distributions in a series of adder SLUs using 

an 8-bit configuration interface 	................... 192 

6.14 Cell-data block size distributions in a series of adder SLUs gener- 

ated as circuit overlays 	........................ 192 

6.15 Cell-data block size distributions in DES SLUs ........... 193 

6.16 Cell-data block size distributions in DES SLUs generated as circuit 

overlays 	................................193 

6.17 Block Frequencies for Adder SLU bitstreams in Overlay mode 	194 

6.18 Block Frequencies for DES SLU bitstreams in Overlay mode . 	194 

6.19 Map-delimited Block Sizes for Adder SLU bitstreams .......195 

6.20 Map-delimited Block Sizes for Adder SLU bitstreams in Overlay 

mode..................................195 



6.21 Map-delimited Block Sizes for DES SLU bitstreams ........196 

6.22 Map-delimited Block Sizes for DES SLU bitstreams in Overlay mode196 

6.23 Frequency of Map-delimited Block Sizes for DES SLU bitstreams 197 

6.24 Frequency of Map-delimited Block Sizes for DES SLU bitstreams 

in Overlay mode 	...........................197 

7.1 Main FURl System Context for Virtual Circuitry Applications . . 199 

7.2 Symbolic Representations of the FURl Network Component Types 205 

7.3 FURl Networks containing a Star topology: (i) homogeneous, shared- 

memory; (ii) heterogeneous, shared-memory; (iii) shared-memory, 

bridged.................................207 

7.4 FURl Bus networks 	.......................... 207 

7.5 FURl Mesh Networks ......................... 208 

7.6 FURl Ring Networks 	......................... 208 

7.7 Toroidal interconnect of the SPACE2 Computing Surface ..... 210 

7.8 Mapping the basic homogeneous, shared-memory topology to the 

VCC Hotworks Platform 	....................... 211 

7.9 A hierarchical rationalisation of types in the FURl datastream . 213 

7.10 FURl Buffers with FIFO style operating conventions: (i) a minimal 

FIFO buffer containing one packet; (ii) a multiple packet FIFO 

filled with an access granularity matching the buffer size; and (iii) 

a multiple packet FIFO supporting single-packet access granularity. 232 

7.11 The Data Encryption Standard Algorithm 	............. 238 

7.12 Lower level view of the FURl system context ............ 240 

7.13 Interface Arrangements for FURl SLUs ............... 243 

7.14 Pipelined Parallel Harness DES Circuitry .............. 246 

7.15 Operand and Result sequences for the pipelined DES Parallel Har- 

ness 	Circuit 	.............................. 248 

7.16 Parallel Harness DES circuitry .................... 250 

10 



7.17 Basic Sea of Accelerators VC DES Implementation ........262 

7.18 Parallel Harness VC DES Implementation .............264 

7.19 Sequential Algorithmic VC DES ...................269 

7.20 Data transport sequence applied in a single round of the Sequential 

Algorithmic \'C DES Implementation ................270 

7.21 Sequential Algorithmic DES: This figure captures the processing 

stages applied in the FURl environment to support Sequential Al-

gorithmic DES. The FURl executive section holds the two software 

components of the model. The programmed flexible harness task 

consumes data packets at stage (b) and produces result packets at 

stage (c) (the overall packet flow is indicated via the solid black 

arrows). The DES harness protocol handler task decouples the 

processing of packet operands from their reception and transmis-

sion over external FURl network channels. In stage (a), the task 

is feeding packets arriving over the FURl network into the flexi-

ble harness's processing queue and at stage (d), the task consumes 

the result packets from the flexible harness task and deals with 

their transmission. The dashed red arrows are operand transports 

through each DES SLU, invoked by the flexible harness as it trans-

forms each operand into a result. The programmed execution the 

flexible harness task ensures each operand flows through the SLUs 

in the appropriate sequence to implement the DES. For clarity, 

the diagram does not show the total, connected flow sequence of 

the operands through every SLU. However, this sequence would be 

equivalent to a flowchart style abstraction of the Flexible Harness 

Task's programmed code .. . . . . . . . . . . . . . . . . . . . . . . 281 

8.1 FURl Virtex: remapping the configuration port ..........286 

11 



A.1 Placed and Routed Layout of the FURl core on a Xilinx XC6264 296 

A.2 The basic format of a macro definition ...............297 

A.3 A FURl Assembler Code Block ...................299 

12 



List of Tables 

3.1 FastMap Interface Signals and their Roles .............66 

5.1 Control Microprogram for basic URISC implementation ......111 

5.2 Control signals used in the control path of the original URISC 	112 

5.3 Control signals used in the XC6200 serial interface .........129 

7.1 FURl Core instruction processing rates at different clock speeds 

and with pipelining to reduce instruction cycle times . 	. 	 . 	 . 	 . 	 . 	 . . 255 

7.2 Breakdown of the instruction costs for the FURl Executive . . . . 258 

7.3 Breakdown of the instruction costs from the configuration protocol. 259 

7.4 Configuration costs for the DES examples . 	. 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . . . 261 

7.5 Breakdown of costs for the sea of accelerators VC DES protocol 

handler . 	
. 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 263 

7.6 Breakdown of costs for the Parallel Harness VC DES protocol han- 

dler . 	
. 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	 . 266 

7.7 Summary of the main instruction costs from the three VC DES 

implementations ............................ 272 

7.8 Processing Performance of Sea of Accelerators VC DES ...... 273 

7.9 Processing Performance of Parallel Harness VC DES 	....... 273 

7.10 Processing Performance of Sequential Algorithmic VC DES . . . . 274 

7.11 Performance Ratings of existing DES implementations (source: 

Patterson 	[85]) 	............................ 277 

13 



7.12 Projected performance of the VC DES models after device en-

hancements 	..............................279 

14 



Chapter 1 

Introduction 

1.1 Runtime Reconfiguration 

Dynamic, runtime reconfiguration is one of the most compelling and yet, at the 

same time, elusive applications of field programmable logic devices. Its main goal 

is to exact a higher degree of system performance by dynamically adapting the 

logic circuitry used within an application. This is done by realising at least part 

of a system as application-specific logic circuitry to be implemented on an FPGA. 

The re-programmability of FPGAs is then harnessed to dynamically instantiate, 

and then possibly specialise or alter, the logic circuitry as the computational 

demands of the application change. 

In essence, runtime reconfiguration makes the traditional tradeoff between 

system performance and system flexibility much more fluid: it gives the applica-

tion designer the opportunity to harness the low level parallelism of circuitry to 

gain performance while retaining flexibility through the dynamic instantiation of 

circuitry on the programmable logic array. Virtual circuitry is a technique that 

exploits dynamic reconfiguration to implement circuit swapping. Effectively, dy-

namic reconfiguration is used to facilitate the illusion of having a larger circuitry 

resource than is actually, physically available. 
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1.1.1 Challenges 

The density and degree of programmability of FPGAs has improved over succes-

sive generations and this has done much to improve the tractability of virtual cir-

cuitry by, in theory, enabling more complex computational elements to be mapped 

onto reconfigurable logic. Despite these advances, runtime reconfiguration is still 

a delicate technique, typically applied in an ad hoc manner. Furthermore, just 

as the programmable logic world has evolved to become more flexible, general-

purpose, so microprocessors have evolved to be increasingly parallel. Indeed, a 

case study [92] has shown that such advances in microprocessor architecture have 

been successful in recouping some of the readily available performance advan-

tages demonstrated in early virtual circuitry systems with a comparable degree 

of design effort. 

In 2000, there are two particularly notable challenges to the general deploy-

ment of runtime reconfiguration: 

• first, there is no widely accepted design methodology that facilitates the 

design of runtime reconfigurable systems and, as a consequence, only very 

limited CAD support; and 

• second, the interface to the programmable logic resource itself predomi-

nantly fails to adequately support runtime reconfiguration and virtual cir-

cuitry. 

Furthermore, it is often the case that the typical system environment in which 

runtime reconfiguration, and virtual circuitry in particular, is deployed places the 

reconfigurable logic on the host system's peripheral bus and starves it of band-

width. Whilst this is an effective means of introducing programmable logic into 

mainstream systems, the resulting architecture is not conducive to implementing 

rapid, tightly integrated runtime reconfiguration and virtual circuitry. 
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1.2 Aim of the thesis 

In general, this thesis focuses on the second of the two challenges discussed above, 

although we may allude to aspects of design methodologies for runtime reconfigu-

ration and tool support at various points. In a holistic sense, this thesis presents 

a framework for investigating a new form of flexible, adaptable programmable 

logic interface. In particular, we shall consider the nature of the programmable 

logic interface and discuss a challenging, novel implementation of an abstract, 

reconfigurable microarchitecture that has a unique relationship to its host FPGA 

and supports three major models of virtual circuitry. 

1.3 Thesis Outline 

Chapter 2 gives an overview of the history of programmable logic and pro-

grammable logic device architectures. In particular, the chapter describes 

those architectures that define the state of the art in mainstream, commer-

cial FPGA architecture when this thesis was written in 2000. Particular 

attention is also given to the partially reconfigurable mainstream architec-

tures that have shaped dynamic reconfiguration research. 

Chapter 3 explores the concept of the programmable logic interface at its dif-

ferent abstractions within a dynamically reconfigurable system. Focusing 

down at the level of the programmable logic device interface, the chapter 

discusses how the programmable logic device interface has evolved from its 

early, serialised forms to the more advanced streaming, packet oriented de-

vice interfaces that are tailored to support particular application classes. 

The notion of a flexible programmable logic interface that is capable of 

adapting to the demands of different applications is then introduced. 

Chapter 4 defines an abstract architecture supporting virtual circuitry. First, 

the two fundamental models of virtual circuitry are introduced, then the 
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form and semantics of the abstract architecture are presented. The discus-

sion is broadened, briefly, to consider the architecture within the class of 

Transport-Triggered Architectures(TTAs). The discussion continues on to 

consider how the attributes of the abstract architecture are harnessed in a 

way that facilitates a third model of virtual circuitry. 

Chapter 5 presents the implementation of the abstract microarchitecture intro-

duced in the previous chapter. The design and operation of the Ultimate 

RISC (URISC) is presented in detail and is then evolved into the Flexi-

ble URISC (FURl). The main component of this chapter, therefore, is a 

detailed technical discussion of the FURl core and the unique challenges 

to the implementation of a self-modifying microarchitecture on the Xilinx 

XC6200 FPGA. Key features of the target FPGA architecture, such as the 

FastMap interface and an open configuration bitstream, are highlighted. 

Chapter 6 presents the design flow, its associated toolset, and a runtime envi-

ronment for the FURl core. This chapter pays particular attention to the 

merits and complications associated with different approaches to loading 

SLU bitstreams. The FURl executive is introduced as a basic runtime op-

erating environment for the FURl core and the chapter concludes with a 

description of the base protocol used to communicate with the core. 

Chapter 7 expands the discussion of FURl protocols and explores how the form 

of a protocol can be influenced by the communication characteristics of the 

three VC models and the particular FURl network architecture. The chap-

ter concludes with a description of three proposed implementations of the 

Data Encryption Standard (DES) in each of the VC styles to demonstrate 

how the FURl system can support all three VC models. 

Chapter 8 ends the thesis with a presentation of conclusions and suggested areas 

for future work. 



Chapter 2 

Reconfigurable Architectures and 
Systems 

Programmable logic is a central enabling technology exploited by this thesis. This 

chapter has three aims related to programmable logic: 

. the first aim is to present a short history of field programmable logic, dis-

cussing the key points in the evolution of the programmable machine, and 

by highlighting significant architectural research contributions; 

. the second aim is to present the current state of the art in field pro-

grammable logic device architecture. This covers both contemporary com-

mercial and research architectures; 

. the third is to briefly introduce the two main classes of Reconfigurable 

Computing systems in which programmable logic devices and architectures 

are typically harnessed. 

Field Programmable Logic Arrays are a new class of computational device. A 

clearer definition of what is meant by a programmable logic device is appropriate 

at this point. 

2.1 History of the Programmable Machine 

The microprocessor has held position as the dominant form of programmable 

computing device for the last 20 years and has a rich history of predecessors. 
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The first widely acknowledged programmable device was conceived by Charles 

Babbage in the early 1800s [66] but his efforts to build the ambitious "Analytical 

Engine" were confounded by the engineering limitations of the time. Approxi-

mately one hundred years later, however, Alan Turing introduced his model of a 

universal computing machine called, simply, the "Turing Machine". The distin-

guishing feature of Turing's machine was that it had a mathematically complete, 

underlying model of computation allowing it to implement any of the "decid-

able problems" [103]. So profound was this contribution that Turing's model is 

recognised as sparking the development of the modern electronic computer. 

2.1.1 Evolution of the Microprocessor 

In the early 1940s, J.P. Eckert and J. Mauchly developed the first electronic pro-

grammable device, called ENIAC. Their ideas were crystalised further by John 

von Neumann who suggested the model of the "stored-program" computer. This 

architecture was first realised in the Manchester Mark I [62] which is acknowl-

edged as the first electronic computer to execute a stored program. In the fifty 

years that have followed, many different forms of electronic computer have been 

designed and built. The underlying electronic technologies have changed: vac-

uum tubes yielded to discrete transistors which, in turn, yielded to Integrated 

Circuits(ICs) which then yielded to Very Large Scale Integration (VLSI). With 

each change of technology, a new generation of computer has arisen but, despite 

these technological changes, the core of the majority of electronic computers devel-

oped has essentially remained the stored-program architecture of the 1940s. The 

microprocessor is a direct product of the VLSI generation of computer devices 

and is, essentially, a complete stored-program architecture in a single packaged 

IC. The millions of micro-scale transistors at the disposal of the VLSI designer 

enable the integration of such complex architectures. Indeed, Moore's law ob-

serves that, over the last 20 years, IC transistor feature size has, on average, 
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halved every eighteen months and provided designers with double the number of 

transistors to exploit. In 2000, the state of the art in integrated circuit technol-

ogy has a transistor feature size of 0.13i and is leading designers towards a new 

generation of computers implemented as deep-submicron ICs containing over a 

billion transistors. Exploiting such deep-submicron devices efficiently has become 

an important system architecture research challenge [18]. System-level integra-

tion is one approach to this problem, facilitating the integration of not just the 

microprocessor, but a complete system on a single chip [74]. 

2.1.2 Logic Circuitry 

The essential programmability of the microprocessor lies in its ability to execute 

different sequences of a set of "core" instructions. These core instructions do not 

change and are effectively cast in stone within the physical design of the device 

itself. At this low level, however, the microprocessor is implemented as a set of 

digital logic circuits. The vast majority of microprocessors and computing de-

vices designed in the last 50 years are digital devices. They harness a physical 

phenomenon, typically the flow of electrical current, and reduce the continuous 

nature of that phenomenon to a finite set of discrete states, typically two. Ab-

stract values represented in the digital domain are then encoded as a sequence 

of discrete digital values. The programmable logic devices discussed in the next 

section are digital devices, although there are notable examples of analog and 

mixed-signal architectures [39]. 

Logic circuits are implementations of boolean logic expressions, constructed 

according to the principles of digital design. Digital design can be broadly clas-

sified in two categories, differentiated by the timing discipline they employ: that 

is, synchronous and asynchronous digital design. Both categories have advan-

tages and disadvantages. Synchronous systems are widely regarded as simpler 

to design but the timing abstraction realised through the use of a global clock 
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creates inefficiencies in the system. Fast elements in the design are constrained 

to the timing flow of the slowest element in the design. On the other hand, asyn-

chronous systems exploit the "natural" timing of components, and are efficient at 

the implementation level: the system as a whole reacts on a continuous timescale 

as opposed to the discrete, stepped nature of a synchronous design. This tim-

ing efficiency has a proportional effect on the speed and power consumption of 

the asynchronous system. The continuous, analogue timing discipline, however, 

means designers of asynchronous systems face a more difficult design task. Tim-

ing hazards and glitches, for example, must be explicitly managed in the design 

process. This thesis will consider mainly synchronous digital systems. 

Synchronous digital design defines differing levels of abstractions to assist logic 

circuit design. At the lowest level, the switch level, the fundamental component 

in the implementation is a simple switch. The switch provides a physical basis for 

the two state digital system by either allowing or preventing the flow of current 

depending on the presence of an electrical charge at the switch's control line. An 

engineer may construct the physical analogue of boolean algebra expressions by 

constructing networks of interlinked switches. 

The switch level is inconvenient for all but the smallest designs. At the next 

level of digital design abstraction, the logic level, switches are grouped into struc-

tures which are equivalent to familiar boolean logic operations. These structures, 

called logic gates, are then used as the fundamental design component. The 

interconnected network of logic gates forms a "logic circuit" which may then be 

hierarchically composed with other circuits to form increasingly complex systems. 

Logic and switch level circuits are inherently parallel entities. Whilst the user per-

ceives the sequential execution of a sequence of instructions on a microprocessor, 

at the logic and switch levels, components are operating in parallel to implement 

a particular computation. This is the fundamental difference in the nature of logic 

devices and microprocessors. In general, the ability to exploit parallelism in an 
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implementation yields a faster computation. This is reflected in the advancement 

of microprocessor architectures in the last 20 years, where a gradual erosion of the 

purely sequential execution nature has occurred. Each new generation of micro-

processor presents more and more of the underlying parallelism of their physical 

implementation to the programmer in an attempt to gain higher performance at 

the software level. 

2.1.3 Programmable Logic 

A logic device is the physical implementation of a logic circuit in a particular 

electronic technology. Whilst valve and discrete transistor implementations of 

logic devices are possible, it is really the advent of IC technology that has had the 

most significant impact on logic device density. To that effect, the first generation 

of commodity logic devices did not appear until the advent of small scale ICs in 

the late 1960s. These devices underpinned a whole generation of computers but 

three of their characteristics are notable: firstly, the devices had a small density in 

the order of tens of transistors; secondly, like all new technologies, logic devices 

were expensive to manufacture; and, finally, a logic device is a fixed purpose 

component. Unlike the preceding generations of electronic computer, which were 

capable of executing different sequences of instructions, a traditional logic device 

only ever implements one particular logic circuit. In essence, traditional logic 

devices are not programmable. 

A programmable logic device is defined as a physical device which can be 

programmed to implement a variety of different logic circuits without the loss 

of inherent parallelism. This differs from a microprocessor emulation of a logic 

circuit which serialises the effect of each component in the circuit to fit the pro-

cessor's sequential execution model. 

Like the microprocessor, it is possible to identify different generations of pro-

grammable logic device, classifying them in relation to their architecture, degree of 
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re-programmability, and underlying semiconductor technology. Currently, three 

main generations of programmable logic can be discerned, each of which are dis-

cussed in the subsections below. Just as the visionary research contributions 

which influenced the development of the microprocessor and electronic computer 

are noted, the equivalent contributions which influenced the development of pro-

grammable logic before practical implementation was feasible can be discerned. 

These significant contributions are discussed below. 

2.2 Early Forms of Programmable Logic 

2.2.1 The Fixed-plus-Variable Structure (F+VS) Computer 

The earliest notion of a custom-computing machine which supported alterations 

to its logic hardware configuration was proposed in Estrin's F+VS Computer 

[35]. Estrin's architecture was a stored program machine comprising a fixed part, 

in the form of a general purpose computer, and a variable part, in the form 

of an inventory of special-purpose circuit substructures. Substructures would 

be added or removed from the machine as a means of temporarily transforming 

that machine from a general-purpose computer, into a high-speed special-purpose 

computer. He proposed that, as the application demands varied with time, the 

set of substructures present in the machine could be altered to maintain the high-

performance of a specialised architecture. Essentially, Estrin describes an early 

form of architecture supporting the philosophy of contemporary, programmable 

logic driven Custom Computing machines. Applications which could benefit from 

the flexible nature of the F+VS were even considered [36]. 

It is notable that, in the spirit of the F+VS machine, substructures are not 

simply peripheral devices: instead of being resident on an auxiliary bus or JO bus, 

substructures are have a close relationship to the fixed core of the machine. One 

question raised explicitly in the F+VS literature considers the extent to which 

substructures can interface to the fixed core - in particular, how much memory 
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should they directly share and to what degree can a substructure vary bit widths 

of its datapaths from the fixed core bitwidth? 

Estrin's machine predated even the beginnings of the IC era and the physi-

cal mechanisms available for supporting a flexible machine architecture were not 

particularly elaborate. Substructures were Printed Circuit Board(PCB) daugh-

tercards and altering the logical configuration of the machine would most likely 

require the physical installation (i.e. soldering) of the required substructures. 

These technological limitations of the time would prevent the rapid reconfigura-

tion seen in later programmable logic devices, constraining the machine to being 

configured strictly on a per-application basis. 

2.2.2 Cutpoint Cellular Logic 

A cellular array is a geometric arrangement of homogeneous cells that are in-

terconnected in some regular topology. The cells of the array perform some 

particular logical function and, in early arrays, that function was fixed by the 

physical design of the device. The interconnection of cells is dynamic and, using 

this property, a customised datafiow between cells can be constructed. Cascading 

data through cells allowed more complex logical functions to be computed. Later 

cellular arrays allowed both the interconnect and cell function to be customised 

so that, although the circuits fabricated were still homogeneous, each cell could 

implement a more flexible range of functions. The typical means of programming 

the arrays included physically blowing fuses to make 'cuts' at appropriate points 

in the cell circuitry, or implementing switches with photo-conductors. 

Cellular logic devices appeared in the early 1960s [82]. The cellular techniques 

they embodied became popular as a means of exploiting the increasingly reliable 

batch-fabrication processes emerging at the same time. Designers were motivated 

to take advantage of the new fabrication processes to produce devices which 

were cheaper, smaller, and potentially more reliable. Notably, the architecture of 
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Figure 2.1: Minnick's Cutpoint Array 

cellular arrays had a key role in increasing their reliability. Faults in the physical 

device could be tolerated by customising the flow of data around an affected cell 

or interconnect. 

The architecture of cellular arrays makes them close, early relatives to devices 

from the second generation of programmable logic. Cutpoint Cellular Logic [81], 

for example, is a class of cellular array devices whose architecture influenced an 

important series of FPGAs. The basic architecture of the cutpoint array is a two-

dimensional grid of cutpoint cells interconnected by directed, horizontal busses 

and directed, vertical cell-to-cell routes (this is shown in Figure 2.1). Each cell is 

specialised according to four bits and can implement one function from a set of 

64, plus a reset-set flip-flop. Cutpoint arrays are derived from a Maitra cascade 

[73] in such a way that they are capable of implementing arbitrary functions of n 

inputs in a cutpoint array of n - 1 cells high and no more than 2n - 2 cells wide. 
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Figure 2.2: The Wahistrom Programmable array 

(The reader is referred to [81] for details of the limitations of the basic Maitra 

cascade and a discussion of how the cutpoint array was then derived.) 

2.2.3 Wahistrom's Programmable Logic Array 

The Wahistrom Array [108] also adopted the cellular logic array approach, but 

is notable for some of the architectural features it possessed. The cells of the 

Wahistrom array were arranged in a conventional rectangular grid but had a mix-

ture of interconnections allowing direct communication with the nearest neigh-

bours of a cell in any compass direction and, additionally, non-adjacent cells could 

exploit a set of 'flight-lines' spanning the array in both the X and Y directions. 

The Wahistrom architecture and cell structure is shown in Figure 2.2. The pro-

gramming of the Wahlstrom array was particularly advanced for its time: each 

cell in the array had 13 control flip-flops that governed key switching points in 

the cell circuitry. The entire array would be programmed by loading data values 

into the control flip flops of each cell. 

The Wahlstrom array is notable for the number of features it possessed that 
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are found in the FPGA devices developed some 25 years later. The use of re-

programmable state elements to hold the configuration of a cell underpins the 

most successful generation of FPGA devices that use SRAM memories to hold 

cell and interconnect configurations. Also, the availability of both bussed and 

neighbour interconnects is similar to the complex routing structures available in 

contemporary FPGAs. 

One particularly interesting feature of the Wahistrom array was that each 

cell had access to the programming controls of the neighbour cells above and 

uncommitted to the right. Essentially one cell could reprogram a neighbour 

cell by writing values on the programming lines of that neighbour cell. As will 

be discussed in more detail in Chapter 4, allowing access to the programming 

interface from inside a programmable logic device is one of the key requirements 

for implementing self-modifying circuitry. 

2.2.4 Shoup and the Programmable Cellular Logic Array 

By 1970, a decade of research on cellular logic arrays had passed, and designers 

were on the eve of the widespread introduction of LSI fabrication technologies. At 

this point, Shoup presented a thesis [95] that forecast in detail the FPGA devices 

that were to be introduced some 15 years later. The main contributions of Shoup's 

thesis come from, firstly, his attempts to systematically assess cellular architec-

tures along a variety of dimensions and, additionally, from the array architectures 

designed in relation to these assessments. He defines a number of different dimen-

sions for this purpose that include generality, logical size, the array geometry, the 

cell functionality, the array's interconnection structure, and the number of state 

elements available per cell. By constructing metrics that are based on these di-

mensions, the thesis then considers the design of three programmable cell arrays: 

two for low-generality applications and one for high-generality applications. 

The overall theme of the thesis is concerned with the details of array archi- 



tecture design. That given, however, the thesis remains notable for making such 

early reference to aspects of programmable logic that have remained active re-

search topics 15 years after the introduction of FPGAs. Topics equivalent to 

dynamic reconfiguration, and self-modifying circuitry, are given explicit mention 

and singled out as worthy areas of future research. 

2.2.5 First Generation Programmable Logic 

Hardware designs typically exploit a variety of commodity logic devices and re-

quire small amounts of "glue logic" circuitry to implement design dependent adap-

tations between the main system components. A combination of economic and 

design constraints motivated the development of a flexible device whose initial 

logic operation is "uncommitted". These devices would be later programmed by 

the system designer to implement a particular piece of glue logic circuitry. 

These first generation of programmable logic devices are historically referred to 

simply as Programmable Logic Devices(PLDs). Although the same term may be 

applied to all generations of programmable device, unless otherwise mentioned, 

the remainder of this thesis will use the historical interpretation of the term 

"PLD" and reserve the expression "programmable logic" to refer to the wider 

notion of programmable logic device. In the same way, further generations of 

programmable devices will be explicitly referred to using appropriate terms as 

adopted by the community. 

PLD architectures consist of two main components: a logic-AND array which 

feeds the inputs of a logic-OR array. Permuting which of the two components are 

programmable gives a series of PLD sub-classes. For example, a fixed AND-array 

and programmable OR-array is equivalent to a programmable read-only memory 

(PROM). When both arrays are programmable, the device is conventionally re-

ferred to as a programmable logic array (PLA) and with a fixed OR-array, the 

device is programmable array logic (PAL). PLDs use their AND-OR arrays to 
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Figure 2.3: Sum-of-products PLD Architectures: (i) Basic PLD Organisa-
tion, (ii) Programmable Read-only Memory (PROM), (iii) Programmable Array 
Logic(PAL), and (iv) Programmable Logic Array (PLA) 

implement simple boolean logic equations that can be expressed in a canonical, 

or "sum-of-products" form. 

Early PLDs were typically one-time programmable devices that used an anti-

fuse technology to implement their programmability: the device is programmed by 

effectively "blowing" fuses at strategic points in the architecture. Antifuse tech-

nologies are particularly appropriate for glue logic applications, which normally 

require very low pin-to-pin latencies. The act of blowing an antifuse creates an 

actual, physical conductive path in the underlying silicon substrate thereby elim-

inating the propagation delay incurred by the active circuitry used in other pro-

gramming technologies. Newer generations of PLD [109] use advances in IC fab-

rication techniques to facilitate electrically-erasable devices which offer a degree 

more flexibility but without imposing much higher pin-to-pin latencies through 

the architecture. 

The target applications of PLDs amount to small, well defined, simple combi- 
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natorial logic, e.g., address decoding or implementing small finite state machines 

(FSMs). This fits well with the low device density of PLDs. 

The reasons for this are threefold and involve both architecture and market 

influences: 

• The fundamental architecture of PLDs does not scale well: as the archi-

tectural parameters increase, so too does the size of the AND/OR array. 

Increasing the number of inputs, outputs or product terms, for example, 

has a non-linear effect on the silicon area and power consumption of the 

device. Some PLD architectures attempt to circumvent this by segmenting 

the AND-OR array into pages [51]. 

• In addition to not being scalable, implementing arbitrary logic in a sum-

of-products form is not generally appropriate. PLDs, unlike the FPGAs 

discussed in the following section, are not register-rich devices. Only a few 

registers will be provided within a PLD and these are mainly used to latch 

inputs and outputs at the device periphery. Even advanced PLD archi-

tectures in production in 2000 [109] have very limited numbers of register 

components, making the implementation of complex, stateful calculations 

difficult. 

• Finally, PLDs were efficient at implementing the simple glue-logic applica-

tions they were targeted at. Since the application domain itself was limited 

to such relatively small designs, the market demand for high density PLDs 

remained low. The most significant increase in the size of glue logic appli-

cations has come from implementing more complex FSMs such as DRAM 

controllers. 
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2.3 Field Programmable Gate Arrays (FPGAs) 

Whilst PLDs were the dominant form of programmable logic from the mid-1980s 

to the early 1990s, three new application domains for programmable logic ap-

peared: Application-specific IC(ASIC) replacement; Rapid system prototyping; 

and Dynamic Runtime Reconfiguration. Motivated by these new applications 

and fueled by the availablilty of VLSI fabrication techniques, a new generation of 

programmable logic device arose in the form of the FPGA. 

Each of the main FPGA application domains is characterised below. 

2.3.1 ASIC Replacement 

ASIC replacement has become the dominant driving application for FPGA de-

vices. ASICs present one primary advantage to the system designer: their applica-

tion specific nature means their implementation is tailored to exact the maximum 

performance for a defined application. To their detriment, however, ASICs re-

quire considerable expertise to develop, and, since they are fabricated directly 

into silicon, they also require a significant economic investment. Such high de-

velopment costs must be either amortised through large production runs to bring 

down the unit cost, or a high unit cost must be justified by becoming the dom-

inant solution in a defined niche-market. The architecture of FPGA devices is 

much more suited to implementing a wider range of logic circuitry than their 

PLD predecessors. FPGAs are register-rich architectures and, as will be noted in 

sections below, some architectures contain additional cell logic that makes them 

particularly efficient for certain application classes. The programmability of FP-

GAs also allows them to be tailored to implement a high performance solution to 

a particular application whilst, at the same time, avoiding the costly fabrication 

cycle required for ASICs. This, combined with the relatively inexpensive unit-

cost per FPGA device, forms a compelling economic reason for replacing ASICs 

with FPGA devices. 
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Although the FPGA implementation of a circuit will be physically less effi-

cient than a direct implementation in silicon, designers found that many of their 

application-specific solutions could achieve adequate performance when imple-

mented in FPGAs. Furthermore, FPGAs have shown strong growth in both speed 

and density, so that more and more ASIC applications have become tractable in 

an FPGA implementation. As fabrication technologies have advanced, the reg-

ularity of FPGA architectures has allowed FPGA manufacturers to make more 

aggressive use of increased silicon real-estate than the majority of other VLSI 

applications which generally do not possess such architectural regularity. This 

has, in turn, become the driving factor in FPGA growth. 

2.3.2 Rapid System Prototyping 

In the second FPGA application domain, Rapid System Prototyping, the re-

programmability of FPGAs is exploited to decrease the time between design 

iterations of a system being developed. In contrast to ASIC replacement, the 

aim of rapid system prototyping is not to replace a system with one or more 

FPGAs, but to use the reprogrammability of FPGAs to quickly obtain accurate 

quantification of design metrics of proposed system designs. A very high-level 

view of a traditional approach to complex logic system design typically requires 

repeated periods of design capture and design simulation that eventually lead to 

the development of intermediate system prototypes. The construction of physi-

cal prototypes, akin to the development of custom ASICs, is expensive and time 

consuming. At the same time, however, it is necessary to ensure that the final 

system design will meet design constraints that cannot be completely guaranteed 

through simulation. 

A rapid system prototyping approach using FPGAs, however, typically in-

volves a design capture phase followed directly by an implementation phase where 

the design is mapped to a particular FPGA prototyping environment. The design 
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is exercised within that environment by configuring one or more FPGAs with the 

mapped system design, then providing them with real-time stimuli, and recover-

ing actual results. The advantages of this approach are that, firstly, long periods 

of simulation can be reduced or avoided completely as the design can often run at 

up to system speeds on the FPGA prototyping environment. Secondly, the data 

obtained from an actual execution in the prototyping environment will he more 

realistic and reliable than those gained through simulation (which is typically 

conservative and pessimistic, essentially erring on the side of caution). Finally, 

the number of physical prototypes that must be constructed during the system 

design can be reduced, although probably not eliminated altogether as the final 

system will be a custom implementation of the rapidly developed prototype. 

2.3.3 Dynamic Reconfiguration 

Whilst ASIC replacement has become the dominant commercial application for 

FPGAs, the final application domain, Dynamic Reconfiguration, has become a 

focal point in the FPGA research community. The main goal of dynamic, run-

time reconfiguration is to exact some degree of higher performance by dynam-

ically adapting the logic circuitry used within an application. This is done by 

implementing at least part of the application's logic circuitry on an FPGA then 

harnessing the reprogrammability of FPGAs to specialise or alter the logic cir-

cuitry as the computational demands of the application change. An important 

requirement placed on FPGA architectures that support dynamic reconfigura-

tion is that they be 'in-system programmable'. By this we mean that altering 

the configuration of the FPGA does not require its removal from the application 

hardware environment and installation in special-purpose reprogramming devices 

(some forms of Electrically Erasable PROM technologies require this). Instead, 

the FPGA has embedded control circuitry and a defined programming interface 

available to other devices in the system through its device pins. Different styles 

34 



of dynamic reconfiguration can be related to the exact timescales on which the 

FPGA is reprogrammed and the particular performance gain being sought. The 

primary difference to be noted in this application domain, however, is that it at-

tempts to exploit all the features of FPGAs: their ability to implement complex 

arbitrary logic and their highly reprogrammable nature. In ASIC replacement, 

the reprogrammability of FPGAs is useful, but definitely not essential. Rapid 

system prototyping benefits from re-programmability, but can be served, if at 

greater expense, by high density FPGA architectures which are one-time pro-

grammable. Further, even when rapid prototyping demands reprogrammability, 

the timescales involved are quite different to those of dynamic reconfiguration: 

prototyping timescales are upwards of hours and days, whilst dynamic, runtime 

reconfiguration timescales, at their coarsest measure, are downwards of minutes 

and seconds. 

The topic of dynamic, runtime reconfiguration is central to this thesis and 

through the following sections and chapters will be explored in much more de-

tail. The remainder of this chapter, in particular, will present variety of FPGA 

architectures and systems which are relevant to the dynamic reconfiguration. For 

a wider review of ASIC replacement and rapid system prototyping, the reader is 

referred to the wider literature within the FPGA community [2, 3]. Rapid system 

prototyping is also well served by a series of dedicated international workshops 

[1]. 

2.4 Basic FPGA Architecture 

A basic FPGA architecture has three main components: a collection of pro-

grammable logic blocks; a programmable routing infrastructure; and a number 

programmable input-output blocks(IOBs). FPGA architectures commonly have 

a symmetric organization, with logic blocks laid out in a grid structure. The 

routing infrastructure is usually organised as channels that run horizontally and 
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Figure 2.4: The basic architecture of an FPGA 

vertically between the rows and columns of logic blocks; it is also common to aug-

ment these channels with direct nearest-neighbour routes between logic blocks. 

A series of JOBs are located around the periphery of the array with the primary 

purpose of allowing logic circuitry to interact with the FPGA's device pins. A 

generic FPGA architecture of this style is shown in Figure 2.4. 

At this stage, the resemblance between the basic architecture of an FPGA 

and the cellular arrays discussed earlier is much clearer. The programmable logic 

blocks of the FPGA are equivalent to the cells of a cellular array, and the pro-

grammable routing infrastructure is equivalent to the cellular array's interconnect 

network. Indeed, FPGAs can be considered as VLSI implementations of evolved, 

highly flexible versions of the relatively simple cellular arrays that were being 

designed in the 1960s. For the remainder of this thesis, the term "cell" is adopted 

as a short hand for "programmable logic block" and aspects of the routing infras-

tructure of the FPGA may be referred to simply as routing. 

Within this basic FPGA architecture, there is a large amount of scope for 

architectural diversity: the main computational elements of cells can be based on 

lookup tables(LUTs), multiplexors (MUXes), or combinations of basic logic gates; 
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the number of state elements in each logic block and the permutations it may form 

with the computational logic elements are variable; the layout of cells need not 

be a simple array, or even restricted to two dimensional geometries; the routing 

infrastructure may be segmented into channels of various lengths, form buses 

spanning the entire length of a device, or adopt a hierarchical structure; and, lOBs 

can be either simple interfaces to device pins, perform complex signal adaptations, 

or provide logic circuitry with access to the internal features of the array. Far 

from being a complete enumeration, this list is merely a characterisation of some 

of the potential design variations. 

In the following sections, the architectural details of some important commer-

cial and research FPGA architectures will be presented. As mentioned earlier, 

these are presented, primarily, to highlight the features of FPGA architectures 

that make them appropriate to dynamic, runtime reconfiguration. Additionally, 

however, the collected architectural details also testify to the diversity within the 

FPGA design space. 

2.4.1 FPGA Programming Technologies 

The particular programming technology underlying an FPGA architecture will 

govern, at the lowest levels, how effective the device is for implementing dynam-

ically reconfigurable circuitry. At higher levels, the details of the programming 

technology are somewhat abstracted behind the programming interface of the 

device. This forms a central theme to the discussion in Chapter 3. 

By and large, FPGAs use SRAM to retain their programming information: 

a physical layer of SRAM underlies the main architecture of the FPGA. The 

values that are loaded into that SRAM layer directly influence the operation of 

the logic blocks, routing lines, and lOBs in the conceptual layer above. Since 

the configuration store is basically a memory, it can be loaded and reloaded with 

different configurations when required. The term bitstream is used to refer to the 
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collection of data values that must be loaded into the configuration memory in 

order to realise a particular circuit on that FPGA. 'Configuration' is a slightly 

more nebulous term that is often used to mean bitstream, but can also refer to 

the current state of the entire device - an FPGA can be said to have a particular 

configuration after being loaded with at least one bitstream. 

SRAM is not the exclusive programming technology used in FPGA devices, 

but it supports more flexible degrees of reprogram inability. Some architectures 

are antifuse programmable [25] whilst others [26] use non-volatile 'Flash' mem-

ory. Flash re-programmable devices are slower to reprogram but retain their 

configuration state even after the FPGA is powered down. High-speed, dynamic 

reconfiguration demands a fast and flexible FPGA architecture and, for this rea-

son, the remainder of this thesis will focus on SRAM re-programmable FPGAs. 

Unless explicitly stated, the term FPGA will imply an SRAM based architecture. 

2.4.2 Classes of Reprogrammability 

The organisation of the three fundamental features of an FPGA architecture 

define how well that architecture will support static logic circuitry. It is also 

possible to classify instances of a particular architecture based on the exact degree 

of programmability they support. The presence or absence of two attributes of 

an FPGA's configuration memory form the basis of this classification: 

• Firstly, when one part of the configuration SRAM is to be altered, does 

the entire SRAM have to be reprogrammed or can selective regions of the 

memory be altered independently of others. 

• Secondly, must the entire device be taken offline when a new set of values 

are being loaded into the configuration SRAM, or can existing circuitry 

implemented on the device remain active whilst changes to the underlying 

configuration store are being made. 



The exact terminology used within the FPGA community for each of these 

classes remained the subject of some debate when this thesis was written in 2000. 

However, we will define three main classes of programmability as follows: 

• The programmability base class is characterised by devices that require 

their entire configuration memory to be reprogrammed and must be taken 

offline during the configuration process. In this thesis we shall refer to these 

devices as dynamically reconfigurable. This is the least flexible of the three 

programmability classes. 

• The first extension to the base class adds a degree of flexibility by allowing 

circuitry to remain active whilst a new configuration is loaded. It is still 

necessary to load configurations for every cell, routing switch, and JOB in 

the architecture in each configuration cycle. We shall refer to these devices 

as multiplanar. 

• The third programmability class is evident in devices where only the relevant 

parts of the configuration RAM need to be altered and this can be done 

whilst other circuitry in the array remains active. Device architectures of 

this type are referred to as partially reconfigurable. 

Of the three classes, dynamically reconfigurable and partially reconfigurable 

are the two most common forms of FPGA. A number of multiplanar style devices 

exist [39, 31, 101, 89] and are often referred to as 'multicontext' or time-shared'. 

2.5 Dynamically Reconfigurable FPGAs 

2.5.1 Minx LCAs 

The first commercially successful FPGA architecture was introduced by the semi- 

conductor company Xilinx in 1985. Their architecture, termed a Logic Cell Ar- 

ray(LCA) and shown in Figure 2.5, was dynamically reconfigurable and has been 
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Figure 2.5: General Features of the XC4000 Cell Array 

at the core of three generations of Xilinx LCAs. In this section, the XC4000 series 

is used to characterise the Xilinx LCA architecture. 

Cells in the Xilinx architecture are called configurable logic blocks(CLBs) and 

are arranged in a simple two-dimensional grid. Figure 2.6 shows the XC4000 

CLB structure. Xilinx CLBs are LUT based and, over the successive generations 

of LCA, the number of LUTs per CLB has increased. The CLB of the XC4000 

has two independent 4-input lookup tables (f and g) capable of synthesising any 

function of their four inputs. A third LUT combines the outputs of the other two 

LUTs and one additional cell input, synthesising any function of the three inputs. 

Each cell also has two flip-flop state elements and, within later versions of the 

XC4000 series, LUTs not being used to synthesise combinatorial logic may instead 

be used as small, embedded data memories. One particularly important feature of 

the Xilinx CLB is the inclusion of dedicated logic to support fast carry propaga-

tion. Arithmetic intensive applications, such as many found within digital-signal 

processing (DSP), can exploit both of these features to gain performance. 

The main programmable element in the routing infrastructure of the XC4000 is 

a programmable switch matrix situated between each CLB in the array. The exact 

configuration of each switch matrix defines how signals entering the matrix on one 
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side will be routed out on the other sides. For example, a signal entering from the 

top side of the matrix can be routed to one or more of the left, right, or bottom 

sides. Complex, irregular routes that exploit routing tracks of different lengths 

and orientations are constructed by configuring sequences of switch matrices. 

The XC4000 architecture has three main types of wired routing resource which 

are characterised by the relative length of their segments: 

• single-length lines span exactly one CLB horizontally or vertically and in-

tersect at the programmable switch matrices between each CLB; 

• double-length lines span two CLBs in either horizontal or vertical directions 

and intersect at alternate switch matrices; 

• finally, chip-length 'long-lines' span the entire length or width of the array 

and can be used by CLBs to connect with arbitrary CLBs in either the same 

column or row. 
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2.5.2 Altera Flex 

The Flex architecture [27], produced by the semiconductor company Altera, is 

another example of commercially successful, dynamically reconfigurable FPGA. 

Although Flex devices contain the same three fundamental FPGA components, 

some aspects of the organisation of these components is radically different from 

the Xilinx LCA. 

The first difference to note is that cells in the Flex architecture are grouped 

into clusters called Logic Array Blocks, or LABs. The exact number of cells con-

tained within a cluster varies from device model to device model but, internally, 

cells contain LUTs, state elements, and dedicated logic to accelerate arithmetic 

operations. The cells in a cluster are interconnected through a routing resource 

local to the cluster itself. This local routing also serves as an access point to the 

main device routing, described below. 

The second difference between the Flex architecture and the LCA architecture 

is that, in a Flex device, data memories are explicit components. Rather than 

converting unused LUTs into small data memories, as LCAs do, cell clusters 

are substituted for small blocks of embedded memory at various points in the 

array. These memories may be configured into various bitwidths by trading off 

the address space depth. 

Finally, whilst the routing of a Xilinx array is based mainly on multi-length 

segments intersecting at switch boxes, the primary routing resource in the Flex 

architecture takes the form of long, unsegmented routing channels. These multi-

bit wide channels run horizontally and vertically between the cell clusters and 

embedded memory blocks that connect to them. The unsegmented nature of this 

resource means that, at a physical level, signals are propagated faster as they do 

not incur delays as they pass through switch boxes. 

In a very general sense, the Flex architecture rewards logic designs that map 

well onto cell clusters. If a design subcomponent may be mapped, in its entirety, 



to a particular cell cluster, it can exploit the fast local routing within the cluster 

for its interconnect. Designs which do not partition well into clusters would 

ultimately consume more of the unsegmented tracks between clusters as signals 

internal to the subcomponent get mapped to 'global' wires. The knock-on effect 

from this is that placement and routing of the design becomes much less tenable 

as the routing infrastructure becomes congested. 

2.6 Partially Reconfigurable FPGAs 

The majority of commercial FPGA devices are dynamically reconfigurable de-

vices. Of particular relevance to this thesis, though, there are some notable 

partially reconfigurable devices which have been instrumental in dynamic recon-

figuration research. 

2.6.1 The Xilinx XC6200 

The Xilinx XC6200 [109] series has, arguably, had the most significant impact 

of any partially reconfigurable device on the field of runtime reconfiguration. 

The XC6200 series is an evolution of the Algotronix CAL [58, 5] architecture 

which, in turn, draws on the function synthesis approach used in the Cutpoint 

cellular arrays described earlier. Indeed, many of the architectural features of 

the XC6200 are quite different from the 'mainstream' dynamically reconfigurable 

architectures. 

The cells of the XC6200, shown in Figure 2.7, are 'fine grained'. The gran-

ularity of cells is often used as a broad means of classifying different FPGA 

architectures: depending on the style of cells it contains, an FPGA is said to 

be either fine-grained or coarse-grained. The exact definition of these terms is 

nebulous and there is no real quantification of when an architecture stops being 

fine-grained and starts being coarse grained. Rather, the distinction is based 

on the relative complexity of the logic function that a cell is capable of synthe- 
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Figure 2.7: The XC6000 Function Unit 

sising, with respect to other architectures of the same generation. In this way, 

the LCA and Flex architectures described above are examples of coarse grained 

architectures whilst the relatively simple XC6200 cells make it fine-grained. 

The XC6200 cells operate in a very different manner to those of the Xilinx 

LCA. Each cell contains a set of configurable multiplexors and a state element. 

Combinatorial functions are synthesised by configuring the flow of input bits 

through the cell multiplexors in a particular manner. Sequential functions use 

the state element at the cell output and a feedback path connecting the output of 

the state element to the cell inputs. One notable omission in the cell architecture, 

however, is the lack of any dedicated carry propagation or cascade logic. 

The geometric layout of the architecture and its routing infrastructure adhere, 

mainly, to the hierarchic organisation shown in Figure 2.8. Cells and nearest-

neighbour connections between cells form the lowest level of the hierarchy. Above 

this, cells are grouped into 4 x 4 clusters. Dedicated switch multiplexors, placed 

at the periphery of each 4 x 4 cluster, to provide access to length-4 wires which 

interconnect adjacent 4 x 4 clusters. Similarly, at the next level, cells are grouped 

into 16x16 clusters with length-16 wires to interconnect them. Rather than having 

physically separate 16 x 16 switch multiplexors at the edge of a 16x16 cluster, 

additional switches for length-16 interconnects are provided in the 4 x 4 switch 
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Figure 2.8: The XC6000 Routing Hierarchy 

multiplexors that align with the boundary of a 16 x 16 cluster. The remainder of 

the device geometry is constructed from tiles of 16 x 16 clusters, whilst the top 

level of the routing hierarchy provides interconnects which span the entire width 

and height of the array, are also available through the switching multiplexors at 

the 16 x 16 cluster edges. 

The hierarchical organisation of cells and routing is intended to provide a 

logarithmic scaling of signal delay as the distance between communicating cells 

increases. This is in contrast to most other architectures where the scaling of 

signal delay tends towards linear as the distance between cells increases. The 
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sources. Here, a device may be reconfigured from a remote station. The dangers 

of this style of system for architectures that are susceptible to signal contention 

is discussed in the literature on 'FPGA Viruses' [47]. 

One final noteworthy feature of the XC6200, but one that will not be consid-

ered in depth at this point in the thesis, is its programming interface. In stark 

contrast to the other architectures of its generation, the XC6200 has a very rich 

programming interface to the configuration SRAM of the device. The FastMap 

[21] interface is a microprocessor style interface that presents the configuration 

of the device to the outside world through a set of address, data, and control 

pins. Every part of the SRAM which controls the configuration of the device and 

the SRAM which contains the current logical values of the cell state elements 

is addressable. By simply reading and writing addresses through the FastMap 

interface, the device can be reconfigured. A fuller treatment of the features of 

FastMap interface, and its place in a continuum of interface styles is given in 

Chapter 3. 

2.6.2 The Atmel AT6000 

The Atmel AT6000 series [8] is an alternative example of a commercial, partially 

reconfigurable FPGA and also has a cell architecture, shown in Figure 2.9 unlike 

any of the FPGAs described above. Function synthesis in the cells of the AT6000 

uses multiplexors to orchestrate the flow of input signals through a series of fixed 

logic gates and a state element. By using the multiplexors and feedback paths 

within the cell structure, the fixed logic elements can be organised in a number 

of different permutations. Unlike the use of multiplexors in the XC6200 archi-

tecture, which actually serve as computational elements, the multiplexors of the 

AT6000 are control elements whose selection of output is governed entirely by the 

configuration SRAM and cannot be directly influenced by the output of any other 

component in the cell. Like the XC6200, however, the Atmel 6000 cell contains 
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Figure 2.9: The AT6000 Cell Structure 

no dedicated logic for arithmetic carry or cascade chains. 

The geometric organisation of the Atmel array bears some similarities to that 

of the XC6200. Cells in the array are organised in a grid which is then partitioned 

into tiles of 8 x 8 cells by repeater units used in the routing infrastructure. The 

routing resources available are a combination of nearest neighbour, local bus, and 

express bus. Local and express buses form routing channels that run horizontally 

and vertically between each row and column of cells. Cells within a cluster can 

exploit their adjacent local buses within the cluster in much the same manner 

as length-4 routes serve the cells of a 4 x 4 cluster in the XC6200 architecture. 

Express buses are less segmented than local buses as they may only be driven 

by a local bus when they both intersect at a repeater. As a result, the express 

buses propagate signals more quickly across their length. Essentially, the role 

of a repeater unit is to provide endpoints for local and express bus segments, 

join adjacent local and express segments of the same orientation, and provide 

an intersection point for signals to traverse between local and express buses. 

This orgarlisation is shown in Figure 2.10. Whilst all routing in the XC6200 
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Figure 2.10: General Organisation of the AT6000 Array 

architecture was uni-directional, however, long tristate buses can be constructed 

in the Atmel architecture. 

Neither the XC6200 nor the AT6000 series remain in production, although a 

successor to the AT6000 was designed and released. The AT40K [9] is an evolution 

on the basic architecture of the earlier series and includes a set of performance 

enhancing features that make the AT40K particularly effective for implementing 

a class of DSP functions. Firstly, within the AT40K cell, LUTs have replaced 

discrete logic gates as the main computational element. As shown in Figure 2.11, 

two 8-input wide LUTs are combined with a single state element. In terms of 

granularity, the AT40K is of much coarser granularity than either of the earlier 

partially reconfigurable architectures. 

Secondly, the device architecture is extended to include nearest neighbour 

routing in the four diagonal directions, making AT40K cells octagonal in shape. 

The inclusion of diagonal routing resources simplifies the construction of multi- 
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plier circuitry, which is used heavily in DSP applications. Overall, the geometry 

of cell layout within the AT40K keeps to the same clustered grid of cells, as used 

in the earlier AT6000s, but with fewer cells per cluster. Finally, small block mem-

ories are distributed throughout the array at the crossover points of the routing 

channels that run horizontally and vertically between the 4x4 cell clusters. The 

overall geometric layout of the architecture is shown in Figure 2.12. 

2.7 New Generation FPGA architectures 

As mentioned earlier, the current set of VLSI design practices do not scale to the 

integration levels being offered through advances in fabrication technology. As 

a result, VLSI designers are migrating from traditional VLSI design techniques 

to SLI design. The regularity of FPGA architectures has consistently positioned 

them to aggressively exploit increasing transistor counts. As FPGA architects 

begin to exploit the same fabrication technologies being used by SLI designers, a 
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new generation of FPGAs is being formed. At the moment, the main examples 

of such FPGAs are devices with architectures that scale to implement circuitry 

beyond one million equivalent gates. In the longer term, however, the important 

distinguishing features of the new generation architectures will be the facilities 

they include to counteract the physical effects of SLI fabrication processes. Fur-

thermore, the usefulness of embedded memory blocks in successful first generation 

architectures has elevated embedded data RAM to now being one of the funda-

mental building blocks of a new generation FPGA. So far, the four fundamental 

components of a new generation architecture are: cells; routing resources; JOBs; 

and embedded memory blocks. 

2.7.1 Virtex 

The Xilinx Virtex is the first commercial example of a new generation FPGA and 

is similar to the architecture of a first-generation Xilinx series, the Xilinx XC5200 

[109]. The high level organisation of the Virtex is shown in Figure 2.14 and its 

cell structure is shown in Figure 2.13. Like the earlier XC4000s, the Virtex array 
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Figure 2.14: General Organisation of the Virtex Architecture 

is a two dimensional grid of cells separated by horizontal and vertical interconnect 

channels. 

A Virtex cell is built hierarchically from a basic collection of "logic cells" 

where each logic cell contains a four-input LUT, some dedicated carry logic, and 

a state element. From here, two logic cells are joined to form a single "slice". The 

slice joins the carry propagation logic of the two individual logic cells and, under 

certain circumstances, allows the outputs of the logic cell LUTs to be combined 

themselves and synthesise a logic function of five inputs. Two independent slices 

then form the contents of a single Virtex CLB. 
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The routing resources of the Virtex can he broadly split into three categories: 

a set of general routing resources that efficiently and flexibly interconnect the 

CLBs at various points in the array; a routing resource local to each CLB that 

serves to connect the individual slices and logic cells within that CLB, whilst also 

giving internal components of the CLB a wide access port to the general routing 

resources through a General Routing Matrix(or GRM): and. lastly. a smaller set 

of dedicated routing resources that provide a particular style of interconnect to a 

set of CLBs. 

The isolation of the local CLB routing from the general resources through 

the GRIM gives an important degree of mobility to subcircuits mapped into a 

particular logic cell or slice. A suhcircuit can he remapped to a different part 

of the CLB whilst still retaining its connection to subcircuits in different CLBs. 

The changes to the circuit placement, when contained within the CLB, would not 

affect any components beyond that CLB's general routing matrix. Furthermore, 

the Virtex has a very rich routing infrastructure consisting of multiple, wide 

routing channels that interconnect the cellular resources of the array. 

The local routing resources of a CLB perform three main functions: firstly, 

they provide an interconnection between the CLB LUTs, CLB state elements, 

and the GRM; secondly, they provide a feedback path so that the outputs of 

the CLB may drive the CLB inputs with a minimum of delay and, finally, they 

eliminate the delay of the GRM when communicating to certain neighbour CLBs 

by directly connecting horizontally adjacent CLBs. 

The general routing resources of the Virtex are intended to form high-speed 

paths, of different lengths, for signals that travel between CLBs. In total, there 

are three types of path that intersect at a GRM: single length paths interconnect 

adjacent GRMs in all four compass directions; hex-paths also reach out in all 

four compass directions and span six CLBs before intersecting with a GRM. 

Furthermore, the distribution of hex-lines is staggered along the width and height 
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of the array; and chip-length "long-lines" form unsegmented spanning the entire 

width and height of the array before intersecting with a GRM. The dedicated 

interconnect resources consist of the routes that join the carry propagation logic 

of each CLB to the propagation logic in the CLBs vertically adjacent, and the 

tristate-capable horizontal lines each CLB may directly drive. 

Beyond its architectural organisation. the Virtex is notable for its partial re-

configurability. As will be shown in Chapter 3, the exact manner in which it is 

partially reconfigurable is less ambitious than the XC6200 and the Atrnel devices. 

Nonetheless, the availability of partial reconfigurability in such a mainstream 

FPGA architecture is interesting as it provides an insight to the current corniner-

cial tradeoff point between the value of the feature and the cost of the silicon area 

required to implement it. 

2.7.2 Apex 

The Altera Apex series is the second example of a next-generation commercial 

FPGA. There are two main differences (beyond device density) between the Apex 

and the earlier Altera Flex architectures. Firstly, in addition to the embedded 

memory blocks and cell clusters of the Flex, an Apex device also includes em-

bedded product-term style blocks. Secondly, the Apex includes an extra layer of 

routing hierarchy in the form of a horizontal channel that interconnects a group 

of cell clusters, embedded memories and product-term components. The overall 

device organisation is shown in Figure2.15 and shows how the additional layer of 

routing is used to form heterogeneous mega-clusters. Beyond these main differ-

ences, however, the Apex architecture is a scaling up of the earlier Flex series. 

2.8 Device Architecture Research 

The previous section has characterised a number of commercial FPGA archi- 

tectures. Collectively, these architectures identify an architectural norm within 
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Figure 2.15: General Organisation of the Altera APEX 

the FPGA design space which, in 2000, is characterised by LUT based, two di-

mensional FPGAs with hierarchical, segmented routing infrastructures. They 

are dynamically reconfigurable with coarse-grained core cells that can generally 

synthesise logic functions of up to approximately ten variables. 

In addition to such mainstream, commercial architectures, there is also a sig-

nificant amount of device architecture research. However, the intention in this 

thesis is not to give a comprehensive enumeration of such research architectures. 

Instead, we just note here that research into device architectures is exploring 

the FPGA design space beyond the architectural norm, on four broad fronts: 

array geometries and layouts [20, 371 ; routing and interconnect infrastructures 

[63, 33, 37, 83]; cell architectures and granularities [60, 381; and device program-

ming and configuration [20, 11, 83]. In the two subsections below we shall briefly 

characterise the architectural features of two research FPGAs. Whilst being ar- 



chitecturally interesting in their own right, we consider them explicitly as their 

programming interfaces are of significant interest to the discussion in Chapter 3. 

2.8.1 PipeRench 

The PipeRench [20] architecture is designed specifically to support pipelmed ap-

plications. In the FPGA architectures already discussed, the array's configurable 

resources were organised as a two dimensional grid of cells. In contrast, the 

configurable resources in PipeRench are organised on the granularity of stripes' 

where each stripe is roughly equivalent to a single pipeline stage. Figure 2.16 

gives a general view of the PipeRench configurable fabric's structure. The con-

tents and internal structure of a configurable stripe are considered in [90, 61]. We 

should note that the granularity of the device architecture is not chosen simply 

to ease the process of statically mapping a section of application logic circuitry 

to the device. Rather, stripes are primarily chosen to represent the atomic unit 

of reconfiguration. PipeRench attempts to support runtime reconfiguration more 

effectively by matching the device's atomic unit of reconfiguration to an appropri-

ate level of abstraction in the architecture's target application class. As such, we 

can broadly classify PipeRench as a pipeline reconfigurable [90, 69] architecture. 

2.8.2 Colt 

The Colt architecture [11]. like PipeRench. is designed to support runtime re-

configuration for a particular class of applications. The basic architecture of a 

Colt device is given in Figure 2.17. Colt implements Wormhole runtime recon-

figuration as a means of supporting stream oriented computing and applications. 

In the architecture, streams of configuration and operand data enter the device 

through stream ports. Configuration control is distributed throughout the de-

vice, allowing streams to steer themselves through the array fabric, between the 

function units, over the crossbar interconnect, and out through a chosen stream 

port. Configuration data is stripped from the stream as it flows through the ar- 

56 



Cornbinutonal Function 

___ - *' i 

Global Bus 

Combinatonal Function 

Combnutucar Funct,cn 

Figure 2.16: General Structure of the PipeRench Fabric and Stripe Functionality 

chitecture's cell array. A similar approach is also taken in the abstract Plastic 

Cell Architecture [83]. 

2.9 Reconfigurable Computing Systems 

On their own, the device architectures we have presented (10 not comprise a 

complete computing system and, typically, FPGAs are harnessed in larger system 

architectures with other forms of processing element. Whilst a comprehensive 

discussion of reconfigurable systems architectures is is beyond the scope of this 

thesis, we can identify two broad generations of reconfigurable computing system: 

• first generation reconfigurable computing systems [42, 6, 7] are typically 

macro-architectures where the entire system is built from discrete devices 

interconnected on PCBs. Reconfigurable co-processor boards [107, 84, 801, 

where a FPGA subsystem is integrated within a standard PC-style host 

over the host's peripheral or system bus, fall within this class; 
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• second generation reconfigurable computing systems, on the other hand, are 

integrated system-on-chip micro-architectures. The majority of second gen-

eration systems available in 2000 combine different forms of general purpose 

microprocessor with FPGA style reconfigurable logic on the same silicon die 

[102, 4, 39]. 

Macro-architecture style reconfigurable computing systems, and particularly 

reconfigurable co-processors, are often constrained by their low-bandwidth in-

terfaces to the other system components. Indeed, the use of reconfigurable co-

processors to accelerate general purpose processor systems is often thwarted by 

the constraints placed on the reconfigurable subsystem by the host's peripheral 

bus interconnect. However, we should also note that, even for system-on-chip 

microarchitectures, the inherent nature of a system architecture's style can still 

introduce bottlenecks between the system components. 

2.10 Summary 

In this chapter we explored the form and evolution of reconfigurable logic devices. 

We began with an exploration of early, historical devices and rioted some of the 

key programmable logic systems that preceded the first generations of PLDs and 

FPGAs. From there, we considered the state of the art in programmable logic 

devices in 2000 through three successive generations of device architectures. This 

included a detailed exploration of the partially reconfigurable FPGA architec- 



tures and technology that underpins the work described in the later chapters of 

this thesis. The chapter concluded with a description of some notable research 

device architectures whose form and philosophy are particularly relevant to the 

discussions in the forthcoming chapters. 
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Chapter 3 

The Programmable Logic 
Interface 

In this chapter we consider programmable logic devices beyond their physical 

architectures, and now within applications and dynamically reconfigurable com-

putational systems. The discussion in this chapter has two main components: 

• First we explore the concept of the programmable logic interface at different 

levels within dynamically reconfigurable systems. In particular, we use a 

short exploration of the structure and design of dynamically reconfigurable 

applications and systems to provide a context within which we can identify 

different abstractions of the programmable logic interface. 

• In the second section we focus on the programmable logic device interface 

and explore different device interface styles in detail. In particular we con-

sider the evolution of device interfaces from the relatively simple, serial 

interfaces used by early programmable logic devices, through to richer par-

allel interfaces, and on to streaming, protocol style device interfaces used in 

more advanced research device architectures. 

3.1 Defining the Programmable Logic Interface 

The general design flow for a mainstream FPGA architecture is very static in na- 

ture and is primarily oriented to the use of FPGAs for rapid system prototyping 
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or ASIC replacement. Despite this, there are many applications [107, 93, 59, 17] 

whose existence demonstrate the potential of runtime reconfiguration. Gener-

ally speaking, a dynamic, runtime reconfigurable application comprises three lay-

ers: high-level, application code; a runtime system supporting the mechanics of 

dynamic reconfiguration; and the low-level programmable logic subsystem. In 

this context we can identify three interfaces to the reconfigurable system's pro-

grammable logic, and these are discussed in the following sections. 

3.1.1 The Programming Language Interface 

The highest level of interface abstraction we consider is the programming lan-

guage interface at the application level. No widely accepted design methodology 

and underlying theory that automates the systematic construction of runtime 

reconfigurable applications has emerged in 2000. The automatic synthesis of run-

time reconfigurable applications from entirely behavioural problem descriptions 

is therefore difficult. Typically, it is the responsibility of the application designer 

to convey the partitioning and reconfigurable aspects of the application explicitly 

using the features of the programming language. This in itself is also difficult as 

the descriptive languages from either the software or the hardware communities 

do not express dynamic reconfiguration well. However, we can highlight two exist-

ing language mechanisms used to express dynamic reconfiguration: the dynamic 

instantiation of parameterised circuitry objects [79, 45, 10] in object-oriented lan-

guages such as C++ or Java; or partial evaluation in functional languages [99]. 

Whilst the complete design methodology for dynamic reconfiguration is still 

lacking, there are some proposed frameworks and partial methodologies [105, 46, 

67], some approaches to the modeling and simulation of dynamically reconfig-

urable systems [75, 67, 106], and associated tool-sets [68, 72] which provide some 

degree of support to the dynamic reconfiguration application designer. 
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3.1.2 The Runtime System Interface 

The main role of the dynamic runtime system is to provide resource manage-

ment and communication facilities to higher level applications wishing to interact 

with the programmable logic subsystem. Ideally, such a runtime system provides 

an abstracted interface to the programmable logic subsystem, allowing it to be 

shared between multiple applications in much the same way that resources are 

shared in multitasking operating systems. However, for most runtime reconfig -

uration applications, the runtime management of programmable logic resources 

is typically implemented in an ad hoc manner and is highly application and sys-

tem specific. More generalised runtime environments for dynamic reconfiguration 

have been suggested [19, 94, 104] for first generation reconfigurable co-processor 

systems. 

3.1.3 The Device Interface 

The lowest level interface is formed by the programmable logic's own physical, 

device interface. The challenges posed by the implementation of dynamic, runtime 

reconfiguration at this level are what we shall consider for the remainder of this 

thesis. 

3.2 Programmable Logic Device Interfaces 

In this section we characterise different styles of programmable logic interface 

at the device level. The most basic functionality in the programmable logic 

device interface is the mechanism for loading programming data into the device's 

configuration memory. In addition to this, however, the device interface may 

also facilitate access to the state of circuitry that is configured and active on 

the cell array. The form and semantics of a given device interface is influenced 

by its application domain and the device's architectural style. In the following 

subsections we explore the three main device interface styles and relate their 
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facilities to the architectures and application domains they target. 

3.2.1 Bit-serial programming interfaces 

The Xilinx LCAs discussed in the previous chapter are examples of FPGAs with 

a bit-serial programming interface. This is a consequence of the way that their 

configuration memories are structured: essentially, the entire configuration mem-

ory in an LCA is a single, long shift-register. Configuration data for the entire 

device is synchronously shifted into the configuration memory through a dedi-

cated device pin. Whilst this interface style is suited to the ASIC replacement 

and rapid system prototyping application domains, it is much less suitable for the 

dynamic, runtime reconfigurable domain we are considering. 

The main advantage of the serial style interface is its very low resource utili-

sation: very few device pins need to be dedicated to the programming interface 

and the silicon overhead of the configuration logic within the array architecture 

itself is small relative to the area of the array resources it controls. Both of these 

are relevant concerns in ASIC replacement and rapid system prototyping. Fur-

thermore, the relative infrequency of reconfiguration in these domains means that 

the slow process of loading the programming data for the entire device bit-by-bit 

does not represent a significant overhead. 

Support for interaction and interrogation of circuits configured in FPGAs with 

a serial interface is limited and, in most cases, the device interface only supports 

loading of programming bitstreams. In later generations of Xilinx LCAs, a config-

uration readback mechanism [28] is initiated through the FPGA's test-access port 

logic, the allocation of some device pins to output the configuration data and the 

status of the readback mechanism, and some additional circuitry configured on 

the array which links the device pins with the LCA's internal readback circuitry. 

When triggered, the readback mechanism serially shifts the current contents of 

the LCA's configuration memory out through a defined readback interface pin. 
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We should note that the mechanism does not explicitly read back the state of 

registers within the architecture. Rather, this information is distributed through-

out the programming bitstream for the entire device. A suitable toolset [44, 64] 

can excise this data from the proprietary bitstream and allow the device state to 

be interrogated. Effecting changes to the state requires reconfiguring the entire 

device with a modified version of the read-back programming data. 

3.2.2 Parallel, Random-access Interfaces 

From the previous section we can see that the programming mechanism and in-

terface of mainstream FPGAs is a significant drawback for implementations of 

dynamic, runtime reconfiguration. However, we can also identify partially recon-

figurable architectures such as the Xilinx XC6200 which are inherently designed 

to support dynamic, run-time reconfiguration. From a physical perspective, the 

main difference between the device interfaces presented in this section and those 

of the previous section is the bit-parallel nature of the programming port. How-

ever, we should note that, as the density of LCA style architectures has increased, 

the bit-serial device interface becomes less convenient for loading the successively 

larger amounts of programming data required to configure the device. To combat 

this, it is common for LCA style architectures to also support bit-parallel device 

programming interfaces. For example, the Xilinx Spartan series of FPGAs is 

closely derived from the basic Xilinx LCA architecture but itself has a byte-wide 

Express'-mode programming interface [29]. This does facilitate an increase in 

the rate that programming data can be loaded into the configuration store of the 

device, but the fundamental programming mechanism within the device is still 

serial in nature. 

In this section we will explore the device level interface of two partially re-

configurable architectures, the XC6200 and Xilinx Virtex. The Atmel series of 

FPGAs introduced in the previous chapter also provides support for runtime re- 



configuration through their partial reconfigurability, but the proprietary nature 

of this underlying programming mechanism precludes them from this discussion. 

The interfaces of the XC6200 and Virtex are interesting here because the pro-

gramming mechanisms they exploit are better suited to dynamic, runtime recon-

figuration. In both cases, rather than simply evolving the serial configuration 

port to a bit-parallel version, the organisation of the architecture's configuration 

memory and its related programming mechanism are also evolved. 

3.2.2.1 The XC6200 FastMap Interface 

The FastMap [21] interface is a parallel, 'microprocessor' style device interface 

used in the Xilinx XC6200 that allows the the configuration memory of the device 

to be accessed as a RAM rather than a shift register. Furthermore, rather than 

just providing a mechanism for altering the configuration bits that govern the 

functionality of cells within the array, the interface also provides an integrated 

mechanism for directly reading and writing to the cell registers within the array. 

The FastMap is commonly described as a 'microprocessor' style interface because 

its basic semantics match those used on the memory bus of a microprocessor 

system. 

Physically, the FastMap interface is formed by a set of address, data, and 

control signals. Table 3.1 lists the different FastMap interface signals' and de-

scribes their roles. In this table we can see that only a subset of the FastMap 

signals are mapped to device pins on the array and a number of control signals 

are only available inside the cell array. A particularly interesting feature of the 

FastMap interface, and one which distinguishes the XC6200 from other FPGA 

architectures, is that the entire device programming interface can be accessed 

from within the array. This is considered further in the discussion contained in 

the next two chapters. 

In addition to the explicit interface signals, the functionality of the FastMap 

'signal names with a preceding / are active-low 
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Signal Role 

address The address lines identify which word, nibble, or byte within the 
XC6200's configuration memory will be read or written. 	The 
exact width of the address bus is typically either 16 or 18 bits, 
depending on the exact model of XC6200 being used. 

data Configuration and state data being read and written to the ar- 
ray's configuration store arrive over the bi-directional data lines. 
There are 32 physical data lines, although the logical width 
of this port is, itself, configurable. 	The interface can be pro- 
grammed to respond as an 8-bit, 16-bit, or 32-bit wide data 
port. This has a corresponding effect on how many bits of the 
address port are treated as significant. 

/cs, 	rd/wr, These signals have analogous rOles to their standard memory 
and be interface counterparts. 	/cs is a chip-select, rd/wr is a mode 

select indicating whether the current transaction is a read or a 
write to the configuration memory, and be is an output-enable 
signal controlling the driving state of the physical device pins. 

/reset An input signal that, 	when asserted, 	triggers a clearing of 
the device's entire configuration memory. This also places the 
FastMap interface circuitry in its default state, in which the 
XC6200 responds as if it were a basic SRAM. 

GC1k A global clock signal to which all transactions over the FastMap 
interface are synchronised. 

configOK This is an internal signal asserted by the FastMap control logic 
when the FastMap ID register has been loaded with an appro- 
priate value. 

/RdEn 	and These are also both internal signals accessible from the East JOB 
/WrEn serving each row of cells in the array. The signals are strobed 

when the FastMap interface is reading or writing directly to the 
registers within cells and can be exploited by user designs to 
detect when the registers in a given row are being accessed. 

regword Like /RdEn and /WrEn, regword is strobed when the FastMap 
interface is accessing cell state within the array. In particular, 
the signal can be used to detect when the FastMap interface is 
being used to access the state of cells in a particular column of 
the array. 

Table 3.1: FastMap Interface Signals and their ROles 



interface is also influenced by a series of device configuration registers. In total, 

there are five sets of device configuration registers, all of which are also accessed 

via the FastMap's address, data, and control signals. The device configuration 

registers respond as distinct locations that are addressable within the XC6200's 

configuration store. To fully explain the influence the device registers have, we 

must first expand on the way that the FastMap interface is used to load configu-

ration data and access cell state. 

As well as presenting the configuration store as a RAM, the FastMap also con-

tains additional logic to support fast circuit configuration and cell state accesses. 

These are the features that are primarily influenced by the device configuration 

registers. In its most basic form, using the FastMap interface to load circuit con-

figuration data involves writing data words to the appropriate addresses within 

the configuration RAM. Address decoders within the FastMap interface circuitry 

route the programming data word to the correct region of the configuration store. 

Essentially, the bytes within the configuration store that govern each cell, JOB, 

routing switch, and device pad have defined addresses. 

The first enhancement to the basic memory interface is the placement of a 

32-bit mask register between the data port and the FastMap control circuitry. 

The register is used to identify which bits of the data bus are significant during 

a read or write to the XC6200's configuration RAM. During a FastMap write, if 

a bit is set at the nth position in the mask register, the corresponding nth bit in 

the word at the target address will not be affected. Similarly, during a read from 

the configuration RAM, if the nth mask register bit is set then the nth bit of the 

word asserted on the data port will be a logic zero rather than the contents of the 

configuration memory. When writing, the mask register can be used to preserve 

parts of the existing configuration word and, when reading, the mask register can 

be used to mask out irrelevant parts of the configuration word. 

The second enhancement to the memory interface is the introduction of a 
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'wildcard' unit placed between the FastMap address port and its address decoding 

logic. The main function of the wildcard unit is to allow a write to a single address 

to actually write the same data to multiple addresses in the configuration RAM. 

Two device control registers are used in this process: the first wildcard register 

influences the row address decoder whilst the other influences the column address 

decoder. Any bit that is set in either register is treated as a 'don't care' bit by the 

associated address decoder. Consider, for example, if the column wildcard register 

is set to 00000001 2  and the column address before wildcarding  is 00101000 2 . The 

column address decoder treats the lowest bit position as a 'don't care' bit and the 

column addresses that are actually activated during the write are 00101000 2  and 

0101001 2 . The primary motivation for supporting wildcarding is that circuits 

that are configured onto the array often have a regular, repeated structure. This 

regularity is reflected in the data that is written to the FPGA's configuration 

store, so the wildcarding mechanism is an effective means of broadcasting the 

repeated data simultaneously to the relevant parts of the configuration store. 

An alternative wildcarding mechanism, where the wildcard control registers are 

placed at the output of the address decoders, has also been proposed [55]. 

The mask and wildcard registers are primarily used for controlling FastMap 

writes to regions of the configuration RAM that govern the functionality of cells, 

JOBS, etc. We should note that, although the mask unit does not affect FastMap 

reads or writes to cell state, the wildcard unit does. FastMap state accesses occur 

on a column by column basis. That is, it is possible to read or write the state 

of the cells in a single column in each state access. However, since the column 

height exceeds the bit-width of the FastMap data port in every XC6200 family 

member, a mapping mechanism identifies which cells within a given column are 

targeted by the state access. 

2 the exact number of bits in the column address is dependent on the geometric size of the 
cell array. We are assuming that the column address in this example is for a XC6216 which has 
an 8-bit column address. 
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Figure 3.1: FastMap access to cell state using the XC6200 Map Register 

Figure 3.1 shows the mapping mechanism being used to read the value con-

tained in a 17-bit register placed in disjoint cells within a single column of the 

cell array. The mapping mechanism is controlled through a map register whose 

bitwidth matches the geometric height of the array's column of cells. Each bit 

position in the map register corresponds to a cell row and a logic zero in the nth 

bit position indicates that the cell in the nth row of the selected column is being 

accessed. Fundamentally this is a masking operation, similar to the masking fa-

cilities described earlier. However, in addition to selecting which cells are affected 

by the state access, the mechanism derives its name from the mapping operation 

it performs on the selected column bits. During a read, the selected bits from 

each cell in the column are packed onto the data port, starting with the row bit 

selected by the least significant bit in the map register. We can see this in Figure 

3.1 where, even though the bits of the register are in disjoint cells of the column, 



they are repacked in order, onto consecutive bits of the FastMap data port. The 

inverse situation applies during FastMap state writes. Here, the asserted bits of 

the map register define how the consecutive bits of the data port are distributed 

to the selected cells within the column. 

The above discussion has introduced three of the five device configuration 

register types: the mask register, wildcard registers, and the map registers 3 . The 

"Device Configuration Register" and the "Device Identification Register" are used 

to influence general features of the device interface and do not directly facilitate 

fast circuit configuration or state access. Table 3.1 describes the relationship 

between the FastMap's configOK signal and the device identification register and 

we shall see that, the device identification register does have a significant role 

during the discussion in Chapter 5. 

3.2.2.2 The Virtex SelectMap Interface 

In 2000, the XC6200's FastMap interface remained the most flexible implementa-

tion of a programmable logic device interface. However, we can attribute a cost to 

such flexibility. Implementing the random access nature of the Fast Map interface, 

in particular, incurs a significant silicon area cost. In this section we will briefly 

consider SelectMap interface of the Virtex architecture. In commercial terms, 

the Virtex series is considerably more successful than the XC6200 and, although 

the Virtex's SelectMap interface is substantially less flexible than the XC6200's 

FastMap, its form is indicative of a cost-flexibility tradeoff that is acceptable to 

mainstream FPGA vendors. 

The Virtex architecture, like the XC6200, is partially reconfigurable and, phys-

ically, has a bit-parallel external programming interface. In contrast to both the 

FastMap and the earlier serial interfaces, the configuration memory of the Virtex 

is neither randomly accessible nor is it organised as a single, long shift register. 

'Since the height of the map register matches the cell array height, it also exceeds the 
maximum bit-width of the data port. In practice it is therefore segmented and considered as 
multiple consecutive map registers. 
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The Virtex array is instead reconfigurable on a column by column basis and, 

whilst the underlying configuration store for each column is organised as a single 

shift register, the SelectMap interface allows columns to be reconfigured inde-

pendently of each other. Unlike the FastMap interface, the SelectMap does not 

have inherent support for accessing cell state and embedded block-RAM state. 

Instead, the array uses the same readback mechanism employed by the earlier 

serial-style device programming interfaces. 

3.2.3 Streaming, Packet-style Interfaces 

In the previous sections we considered two dominant styles of programmable logic 

device interface. In this section we consider the programmable logic interfaces 

of the PipeRench and Colt device architectures introduced in Chapter 2. The 

interfaces of these architectures are significant as they represent a third style of 

programmable logic interface which supports runtime reconfiguration in a manner 

which is specific to the architecture's target application class. In particular, the 

interfaces of both architectures have a packet oriented approach to configuration 

and communication. 

3.2.3.1 PCI-PipeRench 

Figure 3.2 shows the basic structure of PCI-PipeRench [61], a prototype imple-

mentation of the PipeRench fabric. Physically, PCI-PipeRench interfaces to the 

host system through two 32-bit communication ports. Stripe configurations and 

application data are transmitted to the device as a formatted packet stream and 

arrive in the device through the 32-bit physical input port. The integrated, on-

chip input controller decodes the stream into its constituent packets and takes 

action depending on the addressing contained in the packet's control section. The 

packet data is either directed to the dedicated configuration controller, forwarded 

to the striped fabric as application data, or immediately directed on to the output 

controller. The main task of the output controller is to format data received from 
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Figure 3.2: Structure of the PCI-PipeRench 

the striped fabric into outgoing data packets. Additionally, the output controller 

re-sends packets that the input controller determines are not addressed to the 

current device. 

The general format of a PCI-PipeRench stream packet is shown in Figure 3.3 

and comprises three sections: a header, a marker, and payload contents. Both the 

header and marker are one word in size, whilst the payload may be dynamically 

sized. Generally, the header identifies how the packet should be processed whilst 

the marker is used to describe the contents of the packet payload. For example, 

the header word contains a simple form of addressing in the form of a chip-ID 

used by the input controller to determine whether it should consume the packet. 

The marker, on the other hand, generally specifies the amount of data within the 

packet payload. The input controller would then use this information to route 

the next n words to the appropriate part of the device. 
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Figure 3.4: General Format of a Colt Stream 

3.2.3.2 Colt 

The general format of a Colt stream is shown in Figure 3.4. Colt takes a decen-

tralised approach to configuration management and this is reflected in its stream 

structure. Whilst PCI-PipeR.ench uses explicit control headers to delimit the type 

and content of the incoming packets, the Colt stream has a path configuration 

header which is then followed by the application datastream. In Figure 3.4, we 

see that the path configuration header is built from packets of configuration data 

arranged in the order that they are consumed by each part of the distributed 

configuration control. The path configuration header allows the stream to guide 

itself through the array. An appropriate configuration packet is stripped from the 

path configuration header as the stream winds its way through the architecture. 

Specifically, each configuration packet contains all the data necessary to configure 

the device resource at the head of the path. 
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3.2.4 Adaptive Packet-style Device Interfaces 

The PCI-PipeRench and Colt interfaces have one main limitation: although both 

device interfaces benefit from being tailored to a particular application class, the 

semantics of the packet interface is statically defined in the hardware implemen-

tations of, for PCI-PipeRench, the input and output controllers or, for Colt, the 

distributed configuration control logic. The remainder of this thesis considers a 

more flexible approach to packet style device interfaces. In particular, our aim 

is to develop a style of device interface where we can dynamically alter the se-

mantics of the interface protocol to better support different application classes, 

or even specific applications. 

3.3 Summary 

In this chapter we considered the nature of the programmable logic interface at 

different levels of abstraction within dynamically reconfigurable systems. Focus-

ing on the programmable logic interface at the device level, the chapter then 

considered the evolution of programmable logic device interfaces from their fairly 

simple serial origins, through to parallel interfaces such as the FastMap and Se-

lectMap. We then considered newer forms of packet based, protocol oriented 

device interfaces used in the PipeRench and Colt architectures and, from there, 

approached the concept of a flexible, adaptive packet-style device interface. In 

the following chapters of this thesis, we will consider the implementation of such 

a flexible packet-style interface using the rich features of the XC6200 architecture 

to support the implementation. 
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Chapter 4 

An Abstract Architecture for 
Virtual Circuitry 

The previous chapter explored the concept and form of programmable logic in-

terfaces which support dynamic, runtime reconfiguration. In this chapter we will 

describe the features of an abstract architecture which supports dynamic recon-

figuration applications realised as virtual circuitry systems. The discussion has 

three main themes: 

• First, we define the concept of virtual circuitry and discuss the two main 

models of virtual circuitry. 

• Second, we introduce an abstract architecture which supports the existing 

models of virtual circuitry and broaden the discussion briefly to consider 

that abstract architecture within the class of Transport-Triggered Architec-

tures (TTAs). 

• Finally, we describe a third model of virtual circuitry using features of the 

abstract architecture. 

4.1 Virtual Circuitry 

Virtual Circuitry is a metaphor applied to runtime reconfiguration, typically in 

the context of FPGA based co-processor systems. Here, we wish to present the 

illusion of having a much larger programmable logic resource for the higher level 
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application software that wishes to exploit custom circuitry to gain increased 

performance. Specifically, VC encapsulates the act of dynamic, runtime reconfig-

uration as an analogue of virtual memory. Instead of swapping virtual memory 

regions in and out of physical memory, though, we dynamically swap circuitry on 

and off of the programmable logic subsystem. 

In a virtual memory system, the granularity of virtualisation is balanced 

against the cost associated with each act of swapping to preserve an adequate 

level of overall performance. The same is true in VC where the cost of instantiat-

ing and removing logic circuits on the underlying FPGA must be balanced with 

its impact on the overall system performance [70]. 

There are a number of synonyms for virtual circuitry'; in the literature it 

is commonly referred to as virtual hardware [12, 98, 104], cache-logic [8] or logic 

caching [71]. From this, we can see that the rudimentary notions of VC have been 

present within in the FPGA community for some time. However, the advent of 

partially reconfigurable device architectures represents the watershed point be-

yond which VC became, practically, much more tractable. One of the most sig-

nificant contributions [12] at that point was the introduction of two fundamental 

models of VC. A brief description of both models, set in the context of an FPGA 

with at least the dynamic reconfiguration facilities of the XC6200, is given in the 

following section. 

4.2 Models of Virtual Circuitry 

4.2.1 The requirements to support Virtual Circuits 

Although the section above highlights the introduction of partially reconfigurable 

FPGAs as a watershed point in the tractability of VC, before we consider either 

of the two VC models it is useful to explore just what the requirements to sup-

port virtual circuits are. An important point to note here is that the specific 

'We adopt the term virtual circuitry in this thesis for the reasons presented in [16]. 
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quantifications of the requirements to support VC are heavily dependent on the 

particular VC application. Throughout this discussion, however, we should recall 

that the two fundamental operations that we must support in the VC environ-

ment are the configuration of a circuit onto the reconfigurable resource and the 

subsequent interaction with that circuit to process data. 

The first requirement to support virtual circuits is that the target platform is 

a partially reconfigurable FPGA architecture. This is for two primary reasons: 

first, partially reconfigurable architectures allow us to support multiple indepen-

dent virtual circuits on the same platform; and, second, partially reconfigurable 

architectures support SLU reconfigurations in the timescale of a few microseconds 

at the coarsest granularity. Early VC applications were targeted at dynamically 

reconfigurable FPGA architectures and have reconfiguration timescales on the or-

der of milliseconds. Whilst this matched the reconfiguration timescales supported 

by that generation of architectures, it is less appropriate in contemporary VC ap-

plications. For such applications, we want to support reconfiguration typically in 

the order of hundreds of nanoseconds to a few microseconds. One specific exam-

ple of this style of application would be within network routing switches. Here, 

high speed datastreams traveling over the network backbone require rapid recon-

figurations to switching circuitry that is implemented within the reconfigurable 

array. 

A second functional requirement relates to our ability to interact with the 

virtual circuits. Our general aim here is to be able to interact with the circuits 

at close to their core speeds, as much as possible. Early generation virtual circuit 

applications on architectures such as the Xilinx XC4000 series typically operate 

with clock speeds in the order of tens of megahertz. For the contemporary appli-

cations when this thesis was written in 2000, circuitry can operate at clock speeds 

of the order of 100MHz. Our functional circuit interfacing requirement, therefore, 

is that we should be able to support interactions with a circuit at up to its core 
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clock speed. Taking this further, the actual data throughput of a virtual circuit 

can be large because of the potential to support very wide datapaths. For high 

performance applications, it is feasible to support wide datapaths, on the order 

of hundreds of bits, within the target FPGA architecture. Overall, this means 

that our interfacing strategy for streaming data to and from virtual circuits must 

be powerful enough to supply such wide datapaths at core clock speeds. 

Size is an important consideration for VC applications: we must ensure that 

enough reconfigurable resource is available to host the virtual circuits for the given 

application. This is analogous to balancing the ratio of physical to virtual memory 

in a virtual memory system to avoid unnecessary swapping and paging. Here we 

require that there is a balance between the amount of array resource dedicated 

to supporting virtual circuits, versus that allocated to the circuits themselves. A 

further concern here is that the scaling of the FPGA area itself should require at 

worst a linear scaling in the resources required to support the virtual circuits. 

Again, the exact quantification of resource that is required is highly applica-

tion dependent. However, we can generalize that the array resources required for 

a typical virtual circuit are on the order of hundreds of gates for the simplest 

circuits to tens of thousands of gates for complex circuits. In the context of con-

temporary platforms, we would wish to host such applications on platforms with 

a minimum of tens of thousands and, more likely, hundreds of thousands of gates. 

Further to this we would then restrict the reconfigurable resources dedicated solely 

to virtual circuitry management to at most 10% of the available reconfigurable 

resource. In 2000, this seems an appropriate figure to choose: VC applications 

targeted at the device architectures available in 2000 do not typically attempt 

to instantiate such large numbers of virtual circuits that a 10investment of array 

resource is unreasonable. Furthermore, in this context we are more likely to be 

challenged with constraints on reconfiguration bandwidth for each of the circuits, 

and physical constraints such as the available 10 pins within the resource, before 
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we exceed constraints on the available reconfigurable resource itself. 

We have noted in earlier Chapters that, towards the end of 2000, device densi-

ties were rapidly approaching millions of gates. When this class of device becomes 

the target for VC applications, we may conceivably see a reduction of this percent-

age of array resources dedicated to reconfiguration management. Our argument 

for this stems from an observation that virtual circuits are unlikely to scale in 

size with the technology. Rather, we would be more inclined to support more 

of them simultaneously, keeping essentially the same reconfiguration managment 

task and scaling its implementation slightly to account for the extra managment 

load. Rather than investing 100k gates of a million gate architecture, we could 

quite conceivably exploit 60k of those gates for virtual circuits and leave 40k for 

an expanded virtual circuit manager. 

Gathering these requirements into an overall assessment of the performance to 

be met by a system supporting virtual circuits, we make the following assertions. 

To support configuration and interaction with virtual circuits, the supporting 

system should drive the configuration and circuit interaction interfaces at their 

core speed. In the case of the XC6200, the most advanced partially reconfigurable 

device available when this thesis was written in 2000, we must support a 32bit 

configuration port with a 40ns access cycle  with a corresponding raw data rate 

of 25MB/s. We can also consider our earlier requirement constraint of 10% of 

array resources dedicated to reconfiguration managment. For the XC6264, the 

primary target platform for the implementation work described in Chapter 5, the 

resource investment we would be considering for reconfiguration managment will 

be in the order of 8000 gates. 

2 40ns is the shortest cycle time in the product literature that the XC6200 configuration 
interface can be accessed with. 
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4.2.2 Fundamentals: The Swappable Logic Unit 

The Swappable Logic Unit(SLU) [14] is the VC analogue of a page or segment in a 

virtual memory system. At the conceptual level, an SLU is a logic circuit capable 

of performing a given logic function, transforming its inputs into a set of function 

outputs. It has two key attributes: a fixed geometry implementation; and input 

and output interfaces that are fixed in structure and relative positioning within 

the overall circuit design. Three general models for SLU input and output are 

suggested: wired signals on its perimeter, dedicated registers accessible through 

the host device's programming interface, and active interface accesses driven by 

the SLU itself. 

The practical management of an SLU has been described within the context 

of a benevolent VC operating system [12] and requires that some constraints are 

placed on the array resources that can be directly accessed by an SLU. Two gen-

eral examples of such constraints would be limiting the influence of the SLU con-

figurations to within its geometric bounding box, and preventing it from directly 

interacting with JOBs. The notion of privileged, system SLUs was introduced 

to accommodate instances where a VC application may have valid reasons for 

accessing "protected" resources. However, we should also note that the notion 

of privileged and protected resources is entirely conceptual, and enforced by the 

programmed VC operating system. The device architectures available in 2000 do 

not have explicit hardware support for protecting resources allocated to one SLU 

from another SLU. 

4.2.3 The Sea of Accelerators Model 

Figure 4.1(i) shows a visualisation of the sea of accelerators VC model. In this 

model, SLUs are entirely independent units of computation and have no direct 

interaction with each other. All communication with the SLUs is done by state 

accesses through the device's programming interface to registers placed at the 
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Figure 4.1: The two primary models of virtual circuitry: (i) The Sea of Acceler-
ators and (ii) The Parallel Harness 

SLU's inputs and outputs. In this model, the VC operating system has two main 

responsibilities: swapping SLUs on and off of the programmable logic and facili-

tating access to the SLU input and outputs from the higher level VC application. 

4.2.4 The Parallel Harness Model 

Figure 4.1 (ii) shows a parallel harness style VC model. Here, SLUs are essentially 

cooperating parallel processing elements. Whilst SLUs in the sea of accelerators 

never directly communicate, parallel harness SLUs are explicitly interconnected in 

a wired routing harness that is instantiated by the higher level operating system 3 . 

The use of explicit, wired routing implies that there is a regular structure to 

the overall parallel harness. FPGA routing resources tend to favour datapath 

circuitry which has regular interconnect wiring, making the mapping of irregular 

wiring structures generally more difficult. 

At this point we should clarify the difference between the notions of a parallel 

harness SLU and a parallel harness circuit. In this thesis, we shall consider a 

3 1n [16], the parallel harness interconnect strategy includes the deliberate abutment of SLU 
interfaces to facilitate interconnection. For the sake of this discussion, we will focus on the use 
of an explicit, routed harness since this provokes more challenges to the efficient implementation 
of the VC operating system. 



parallel harness circuit to be the collective functionality created by the intercon-

nection of many, typically homogeneous, parallel harnessSLUs within the wired 

routing harness. That is, to the VC application, it is the compounded functional-

ity of SLUs within parallel harness that constitutes the main unit of computation 

rather than computational features of the individual SLUs themselves. In Figure 

4.1(u), we can see that the parallel harness SLUs are bounded by a set of system 

SLUs which function as a wrapper to the whole parallel harness circuit. It is 

through this wrapper that the VC operating system would typically interact with 

the harness's constituent SLUs. 

4.3 An Abstract VC Architecture 

In an abstract sense, the virtual circuitry metaphor provides an intermediary be-

tween the program oriented world of the high level VC application and the circuit 

oriented world of dynamically programmable logic. Essentially, the VC system 

encapsulates the FPGA's fine-grained computational parallelism behind a run-

time system interface used by the von-Neumann style, sequentially programmed 

high level VC applications. Implementing a mapping in an efficient manner is 

difficult. It is often the case that the implementation of the VC interface can-

not preserve the potential performance gains that runtime reconfiguration makes 

available. We can present the three general causes of this performance drain: 

• first, the narrow bandwidth peripheral bus interfaces in VC system architec-

ture makes it difficult to interact with the programmable logic subsystem; 

and 

• second, the standard programmable logic device interfaces make it difficult 

to interact with the programmable cell resources and the SLUs configured 

on them; and 

• third, on a conceptual level the system must rapidly bridge between the 
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Figure 4.2: The Abstract Virtual Circuitry Architecture 

domains of programs and circuitry because of the close couplings that VC 

applications try to establish. There is a significant degree of inertia that 

must be overcome each time the two domains interact. 

In this section we consider the form and semantics of an abstract architecture 

that will address all three of these points. The architecture, shown in Figure 4.2, 

is implemented entirely within the programmable logic sub-system and supports 

the two virtual circuitry models that have been presented above. It has three 

constituent components: a set of SLUs with memory-mappable, register based 

interfaces; an underlying bus-style network that interconnects all the components 

in the abstract architecture; and, at its heart, a programmable system controller. 

It is the combination of a self contained implementation coupled with a particular 

style of programmable system controller that will let us overcome all three VC 

system performance issues. 

We must clarify the concept of a SLU within the abstract architecture be-

cause the assertion that SLUs have register based interfaces appears, at first, to 

prevent the architecture from supporting parallel harness style VC. The abstract 

architecture SLUs are, at the conceptual level, somewhat abstracted from those 



we described earlier. In particular, we do not rigorously apply the same explicit 

distinction between parallel harness and sea of accelerator SLU types. In the 

earlier discussion, the interface of a parallel harness SLU is formed by a collec-

tion of signal wires at the circuit periphery. However, what we considered as a 

parallel harness circuit, i.e. a collection of wired SLUs wrapped by register inter-

face oriented system SLUs. constitutes a single "abstracted" SLU in the abstract 

architecture. Essentially, the abstract SLU definition captures the "task-level" 

computational completeness of the unit. 

The programmable system controller has two main conceptual roles: first, it 

supports the insertion and removal of SLUs to and from the current set of instan-

tiated SLUs; and. second, it facilitates communication between the VC operating 

system and the instantiated SLUs. The underlying bus-style interconnect net-

work is used to map the architecture components into the controller's memory 

map. The register oriented nature of each SLU interface is also significant as it 

reduces the complexity of mapping an SLU's JO ports into the system controller's 

memory map. 

Although the controller supports two conceptual operations, the "memory-

mapped everything" nature of the abstract architecture means that there is only 

one fundamental operation: the system controller implements data transports 

within its memory map. The programmable nature of the system controller is 

defined in terms of its ability to execute a sequence of data transports stored in 

a region of program memory. Indeed, Figure 4.2 contains an explicit memory 

interface SLU for this purpose 4.  We should also note that, in this basic imple-

mentation, the memory interface is single ported. 
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and function units. As a member of the TTA class, the higher level compiler 

for the abstract VC architecture would also have the opportunity to exploit such 

optimisations. 

4.3.2 Alternative Architectures 

This section addresses potential alternatives to the TTA-style abstract archi-

tecture we introduced above. There are two main alternatives: first, replacing 

the TTA style architecture with a mainstream instruction set architecture such 

as a microcontroller; and, second, state-machine oriented custom reconfigura-

tion controllers. Section 4.3.3.3 discusses the advantages and disadvantages of 

state-machine oriented controllers and in this section we will focus on the use of 

alternative microarchitectures. 

Our motivation for considering a full-blown embedded microcontroller to pro-

vide virtual circuit management is that it has the apparent advantage of having 

more computational power than our existing TTA approach. At first glance, 

the TTA world of the abstract VC architecture with its single move instruction 

appears computationally under-powered in comparison to instruction set microar-

chitectures: it effects only simple data transports within a memory map. In 2000, 

there are a large variety of microcontroller and embedded microprocessor archi-

tectures. It is difficult to give a succinct characterisation of their features: the 

diversity of the embedded control applications that such microarchitectures are 

used in means that it is common to see many variations and extensions on a basic 

instruction set family. The classic Intel 8051 embedded controller provides a good 

example: in 2000, there are easily tens of implementation variants of this basic 

controller. 

In broad terms, a standard microcontroller will typically have intrinsic arith-

metic support through an inbuilt ALU structure, conditional branching opera-

tions, and mechanisms for interacting with memories such as a variety of address- 



ing modes and, quite possibly, DMA controllers. Interrupt handling is also an 

important feature of these architectures since, for example, their physical control 

applications must react to real-world stimuli. 

For the specific application we are considering here - a microcontroller for 

virtual circuitry management - a pertinent question is: what does it cost to 

implement a microcontroller architecture within an FPGA architecture? Again in 

broad terms, the gate level cost of hosting a microcontroller is on the order of tens 

of thousands of gates. For example, the contemporary cost of a synthesised 8051 

architecture is upwards of 20K gates, depending on the speed requirements of the 

final artifact. For this approximate budget we could conceivably implement a 10-

20MHz microcontroller on what is considered a standard density, standard speed 

FPGA available in 2000. If we were to make an approximation of how this figure 

would rise in more aggressive and future technologies, microcontrollers on high-

end future devices operating in the region of 100-150MHz are not unreasonable 

given the projected core circuit speeds within the prospective architectures. 

Beyond the raw costs associated with the approach, it is also important to 

consider how a standard microcontroller interacts with the array it is reconfigur-

ing and the SLUs it is interfacing with. A primary conceptual advantage of the 

abstract VC architecture is that its data transport oriented nature actually maps 

well to the fundamental tasks we wish to perform in a VC model. For the ma-

jority of our time we wish to manage the motion of data flowing between SLUs, 

the higher level VC operating system, and the configuration memory of the host 

FPGA. A data transport is fundamentally a very appropriate conceptualisation 

for this purpose. In the case of a microcontroller, the mapping between the SLUs 

resident on the reconfigurable logic and the configuration store of that same re-

configurable logic is not so clear. Micro controllers, particularly in the RISC style, 

are predominantly register-operation oriented. To interact with SLUs residing on 

a FPGA like the XC6200, we could conceptually make them appear as registers 
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within the main architecture (the approach commonly used in research where 

reconfigurable functional units are added to a microprocessor). However, tech-

nically achieving this, even in the context of a relatively benevolent architecture 

like the XC6200 would be difficult given the basic interface abstractions presented 

by the two technologies. 

In the context of contemporary devices, and in the context of our earlier 

discussion on the requirements to support virtual circuits, a microcontroller dedi-

cated purely to virtual circuitry management is a substantial investment of array 

resources. By contrast, the implementation of the abstract VC architecture given 

in the next chapter requires a resource budget in the order of 4K gates. Based 

on this estimate, an abstract VC architecture implementation is more attractive 

in terms of raw resource utilisation. Furthermore, the relative complexities of 

the circuitry in the two approaches indicates that there is more scope to exploit 

raw performance increases in the device architecture and apply pipelining to the 

relatively simple circuitry of the abstract architecture. 

The transport oriented style of the abstract VC architecture supports the 

conceptual mapping of SLUs into the sequential-style processing world of the 

microprocessor well. However, it is worth exploring whether aspects of the mi-

crocontroller architecture, such as branching, interrupts, or advanced memory 

interfacing and addressing could be usefully appended to the abstract VC ar-

chitecture. For example, would it be useful to have an integrated adder circuit 

within the datapath of the abstract architectures circuitry and if so, how could 

it best be integrated? 

There are two functionalities that appear to be of immediate interest in this 

case: first is the support of an incremental indexed addressing mode; and the 

second is the support of interrupt processing. Indexed addressing is of interest 

because it supports the style of sequential data accesses we expect to perform 

when transporting SLU configurations from memory to the configuration store 
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of the host device. Access to DMA controllers would be a natural technical 

evolution of this augmentation. Interrupt support is of interest for the purpose 

of implementing the active SLUs we considered within the SLU model earlier. 

Beyond identifying these features as potentially useful augmentations to the 

pure architecture it is interesting to consider how we may actually perform the 

augmentation. One option is to erode the transport triggered nature of the ab-

stract architecture and turn it into a very basic instruction processing architecture 

(this effectively means that we would add an instruction decoder to the abstract 

architecture. We would have integrated the additional instructions but since we 

access them explicitly by decoding an instruction operator, we could no longer 

consider the resulting architecture as purely transport triggered.). Alternatively, 

we could aim to preserve the TTA nature of the architecture and in the case of 

the indexed addressing extension, fold the additional features into the existing 

memory SLU that resides on the architecture's system bus. In comparing the two 

approaches we can see that there is an additional conceptual advantage to the 

TTA style abstract architecture: it inherently supports the addition of instruction 

logic by dynamically inserting SLUs on the system bus. 

In summary, implementations of microcontroller style VC managers are tech-

nically feasible, but with current technologies and in the context of our earlier 

requirements to support virtual circuits, it is difficult to justify their resource 

utilisation. Furthermore, an integrated microcontroller is not simpler to interface 

with the host array architecture and the SLUs it contains. Despite this, there are 

architectural features of a microcontroller that, for performance reasons, may be 

complementary to the pure move-based abstract architecture. Furthermore, the 

nature of the TTA model supports the augmentation of these features without 

resorting to extending the core instruction set itself. This allows us to continue ex-

ploiting raw performance gains within the logic implementing the data transport 

and benefit from higher level compiler optimisations available to TTAs. 



4.3.3 Self-modifying Circuitry 

So far, we have just indicated that the immediate environment of the abstract 

architecture is a fairly generic programmable logic subsystem. We can now define 

the controller's environment more clearly and say that, in the scope of this thesis, 

the abstract VC architecture is contained entirely within a single host FPGA. 

In this context, the programmable system controller takes on the very interest-

ing role of an array resident configuration agent and, at the abstract level, this 

involves mapping the host FPGA's configuration memory into its own memory 

space. In doing so, however, the system controller gains the interesting attribute 

of self-reference, and exploiting this self- referentiali ty to actively drive the host 

FPGA's programming interface gives the architecture the potential to support 

"self-modifying" circuitry. 

4.3.3.1 Requirements for FPGA based Self-modifying Circuitry 

Hosting the abstract architecture places three main requirements on the target 

FPGA architecture: 

• first, the circuitry implementation of the system controller must be able to 

access the device interface logic of the host FPGA; 

• second, since the circuitry effecting the configuration is resident on the same 

FPGA, the FPGA architecture must be partially reconfigurable; and 

• third, the host FPGA must have an "open architecture". 

The first two requirements are hard technical requirements that are essen-

tial to the system controller's implementation. The third, however, is more a 

conceptual requirement. Hosting a configuration agent within the target FPGA 

represents the closest, most intimate coupling to the device's programming in-

terface that is possible. Since the programmable system controller interacts with 

the host FPGA at this level, it is important that, as designers of such a system, 



we have a clear understanding of the host architecture's operation and nuances. 

A closed architecture prompts the designer to be either fairly conservative or risk 

potentially physically damaging the host FPGA by effecting configurations that 

create electrical contention within the device. 

One extension to the first requirement, although not a strict requirement in 

itself, is that the host FPGA's device interface presents the FPGAs configuration 

store as a memory style interface. If this is the case, it reduces the semantic gap 

that must be bridged by the abstract architecture to integrate the host FPGA's 

configuration store into its own memory map. Specifically, it reduces the amount 

of interfacing logic required to map the host FPGA into the system controller's 

memory map. 

In total, there are three conceptually distinct regions in the programmed con-

troller's memory map. Earlier we discussed a region of generic memory for holding 

the programmed transport sequence that is executed by the controller. In this sec-

tion we discussed the mapping of the host's configuration store into the memory 

map, enabling the architecture's data transports to implement circuit configura-

tion and fulfil the first VC role. This leaves the fulfilment of the architecture's 

second conceptual rOle as a communication agent for instantiated SLUs. In terms 

of the abstract architecture, this rOle is facilitated by bus-style interconnect to 

the architecture's components. Specifically, integrating the host FPGA's state 

memory as the third region of the abstract architecture's memory map allows 

the controller's programmed transports to access the registers at the inputs and 

outputs of instantiated SLUs. 

4.3.3.2 The Self Modification Taboo 

Traditional software which has access to its program text and data segments has 

the potential for self-reference, and hence, self-modification. In modern software 

engineering practices, however, the exploitation of such properties is rare and 

taboo. For large software systems, this is a justified notion as the unruly appli- 
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cation of self-modification makes self-modifying software particularly difficult to 

debug. Indeed, it is common for processor architectures to reinforce this taboo 

through read only instruction caches. Significant cache penalties await programs 

which override the memory protection facilities of an operating system since mod-

ified sections of the text segment in the instruction cache must be flushed. 

Striving for efficiency in a resource constrained environment is, traditionally, 

the main reason for exploiting self-modification. For example, the limited mem-

ory, storage, and processing time available in early computer systems justified the 

use of self-modification to gain increased code flexibility whilst limiting resource 

utilisation. VC systems in 2000 find themselves in an analogous situation to early 

software systems: FPGA device densities are still limited and the performance 

penalties associated with SLU instantiation and interaction are high. Therefore, 

the raw performance advantages to be gained from adopting self-modification as 

the technique for altering the configuration of a resident circuit, are particularly 

alluring. 

4.3.3.3 Self-modification in related research 

The concept, potential, and mechanisms of self-modifying circuitry using pro-

grammable logic was suggested in the literature [95, 108] we discussed in Chapter 

2. The introduction of dynamic and partially reconfigurable FPGA architec-

tures rekindled this interest. In particular, there are two notable conceptual 

systems: the self-reconfiguring processor [41] and the self-reconfiguring computer 

system [88]. We have also presented concepts, mechanisms, and novel proper-

ties of the self-modifying abstract architecture discussed in this section in the 

literature [32, 16]. Other work has advocated use of self-configuration within a 

framework for managing runtime reconfigurable designs [94] and, in subsequent 

literature, both the modeling and synthesis of controllers for self-configuration 

[87] was explored. 

In 1999, a small number of applications of circuit self-modification have also 
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been presented in the literature, ranging from applications of genetic program-

ming [96] to string-matching [97, 76]. Although we characterise the abstract 

architecture as supporting self-modifying circuitry, the intention of this thesis is 

not to pursue application case studies of self-modification in logic circuitry. It is 

nonetheless interesting to explore how McGregor and Lysaght [76], as an appli-

cation of self modification, relates to our abstract architecture since they both 

apply the same technique on the same FPGA platform. 

Specifically, this application attempts to take control of the XC6200's config-

uration port using the mechanism described in Chapter 5. When applied suc-

cessfully, this places the XC6200 into a self modifying state. Two circuits are 

transferred onto the array by this stage, a circuit dedicated to controlling the 

reconfiguration process and the application circuitry (this is the circuit targeted 

by the reconfiguration process). The application circuitry implements bit level 

pattern matching on a serial datastream: it observes a bit serial stream of data 

arriving on a device pin and attempts to match sequences within that datastream 

against a specific match sequence that is specified though a second, separate bit 

serial stream. As the matching pattern changes, the application logic triggers the 

reconfiguration logic to reconfigure a constrained region within the application 

circuitry dynamically, adapting parts of the match circuitry to implement the 

matching sequence. 

The application is notable for two reasons: first, it exploits a custom config-

uration controller circuit designed specifically to reconfigure the specific applica-

tion circuit at hand; and, second, as a consequence of its customised nature, the 

reconfiguration circuitry itself generates the dataword that is used to alter the 

application circuitry. However, one significant limitation that the approach has 

is that it is designed specifically to effect only reconfigurations. The abstract VC 

architecture described above is designed to inherently support the reconfiguration 

of the host device and facilitate interactions with the SLUs that it has reconfig- 
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Figure 4.4: Organisation of the self-configuring pattern matcher[76] 

ured. By contrast, the custom reconfiguration circuitry approach, as described, 

used explicitly routed signals to support communication between the application 

logic and the reconfiguration controller. Furthermore, this communication was 

solely for the purposes of expressing reconfiguration requests and not to inter -

act with any registers within the SLU. Data communication within the pattern 

matching example essentially resembles a parallel harness circuit with data ar -

riving through system SLUs that interface with application data ports physically 

wired to specific device JOBs. Figure 4.4 shows the general architecture of the 

application and its relation to the host FPGA's control logic. 

There are some immediate comparisons that we can make between the ap-

proach in this application and the approach we will pursue through the abstract 

VC architecture described above. The first of these relates to the application 

specific nature of the reconfiguration controller. In [76], the authors describe 

the design methodology, modelling and synthesis approach used to generate the 

circuitry of the custom reconfiguration logic. For each application and reconfig-

uration schedule within that application, a new reconfiguration controller circuit 

is created to embody the reconfiguration task. By contrast, the abstract VC ar -

chitecture's circuitry maintains a static size with respect to the reconfiguration 

schedule. Rather than generating bitstreams to embody alternative reconfigura-

tion schedules, we encode them as sequences of executable software. However, 

one particular advantage that the custom reconfiguration controller approach has 
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is that, for a suitably constrained set of reconfigurations, it can generate the re-

configuration data internally. This avoids a potentially costly series of memory 

transactions, especially if the memory blocks are external to the reconfigurable 

resource. 

An interesting question to raise at this point is which of the two approaches 

is most effective for supporting virtual circuitry. We can answer this relative 

to the context of the reconfigurable application we wish to support. The string 

matching application we have discussed above is an example of a small, well 

constrained reconfigurable application. The constrained nature of the application 

and, in particular, reconfiguration schedules are important as the size of the 

reconfiguration logic will grow with complexity of the reconfiguration schedule 

and the overall application. The custom reconfiguration controller approach may 

have performance benefits to gain in certain system architectures (particularly 

where there is a high cost to memory transactions), but the approach is more 

difficult to scale as applications grow in size. 

Conversely, the abstract VC architecture has a constant size and performance' 

but the circuitry itself is not constrained to supporting any one application or re-

configuration schedule. We can argue that there is a cutoff point at which the 

static size of the abstract VC architecture's circuitry will be more attractive than 

the custom reconfiguration controller circuitry. An additional point to consider 

is that the abstract VC architecture, though its intrinsic support of SLU inter-

action, can be used for tasks other than supporting reconfiguration. The custom 

reconfiguration controller, on the other hand, remains a static investment of ar-

ray resources that can only be offset if we have an application that demands a 

saturation of the reconfiguration port. 

In terms of overall performance, the custom reconfiguration controller is at-

tractive because we can dedicate as much circuitry resource to it as needed to 

5 in effect, size and performance are relatively constant since the architecture supports the 
dynamic use of other SLUs to accelerate the reconfiguration process. 
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ensure that it meets the timing requirements of the application. In performance 

terms, the generality of the abstract VC architecture is of concern since, as a 

rule, generality tends to dampen performance. However, implementations of the 

abstract architecture that are capable of saturating the reconfiguration interface 

of the host FPGA are conceivable (we will consider the performance potential of 

the abstract VC architecture in the latter sections of Chapter 7). Reconfiguration 

bandwidths available in the FPGA architectures in 2000 are unlikely to outstrip 

the performance of the abstract VC architecture. However, if that situation were 

to arise in future device architectures, then we would have the option of adopting 

custom reconfiguration controllers or timesharing the raw configuration interface 

between multiple instances of the abstract architecture. 

Chapter 5 contains a discussion of the implementation of this chapter's ab-

stract architecture. In it, we address the challenges of supporting self-modifying 

circuitry and may allude to uses of self-modification within the abstract architec-

ture throughout later chapters. 

4.4 Performance Enhancing Techniques for VC 

Earlier in the chapter, we approached the subject of performance penalties associ-

ated with SLU swapping. Even with partially reconfigurable architectures, where 

we only need to configure the array resources required by the incoming SLU, the 

configuration cost is prohibitive for rapid, runtime reconfiguration. For early VC 

systems and applications, a significant part of this cost is associated with the 

limited bandwidth available in the loosely coupled co-processor system context. 

The abstract architecture discussed above, because of its intimate placement and 

relationship with its.host FPGA, avoids this primary source of bandwidth star -

vation by tightly coupling the programmable system controller with the SLUs on 

the system bus. However, as we also noted in Chapter 2, bypassing the limited 

bandwidth peripheral bus of first generation co-processor architectures does not 



completely remove the cost associated with SLU swapping since there are inherent 

limitations associated with particular styles of system interconnection architec-

ture. We could argue that the bus-oriented nature of the abstract VC architecture 

is an example of such an inherent limitation. However, the abstract VC archi-

tecture presented is a fairly basic, conservative incarnation of a TTA. Comparing 

the abstract architecture with the generalised TTA architecture shown in Figure 

4.3, we can see that there is scope for increasing the flexibility of the system bus 

into a system interconnect network. 

In the sections below, we give an overview and discussion of different tech-

niques that attempt to reduce some of the fundamental costs associated with 

SLU swapping. The majority of these techniques were introduced to combat the 

bandwidth limitations of first generation VC co-processors. However, they are 

equally applicable in the context of the abstract VC architecture. Indeed, some 

of the techniques are particularly effective for increasing the parallelism available 

within the bus-oriented abstract architecture. 

4.4.1 Partial Reconfiguration 

An implicit assumption in the discussion so far is that partial reconfiguration is 

the mechanism that replaces configuration granularity at the device level with 

configuration granularity at the SLU or, conceptually, task level. However, the 

techniques in the next two sections exploit partial reconfiguration to reduce the 

amount of SLU configuration data that must be applied between successive SLU 

configurations. 

4.4.1.1 Incremental Differences 

Rather than applying the complete SLU bitstreams, we can exploit commonali-

ties between the array features that two different SLUs use and only apply the 

incremental difference between the two. At best, the incremental difference will 

be much smaller than the second SLU bitstream and, at worst, we will have to 
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resort to applying the entire SLU configuration 6 . The application of incremental 

differences was considered as part of the framework in the original VC model 

descriptions [12, 13] and a toolset for calculating incremental differences exists 

[68]. The Virtual Hardware Handler [104] also calculates the inverse incremental 

differences, allowing the system to move backwards and forwards between SLUs 

in the configuration schedule. 

4.4.1.2 Runtime Reconfigurable Routing 

In most cases, partial reconfiguration of SLU circuitry is focused on changing 

the configured functionality of the array cells used by the SLU and routing is 

considered a second-class object. The design of partially reconfigurable circuitry 

typically holds the wired routing of the circuit as static and focuses on making 

constrained changes to the array cells. Applications of partial reconfiguration 

that specifically target the wired routing of an SLU are rare. 

Runtime reconfigurable routing [16] for parallel harness style VC can be advo-

cated as a means of increasing the flexibility of the wired routing harness synthe-

sised by the VC operating system. The earlier discussions imply that the parallel 

routing harness is large, and statically defined for the duration of the parallel 

harness circuit's instantiation. In [16], the concept of a reconfigurable switching 

fabric is presented. The fabric is essentially a complete parallel routing harness 

with the exception that a set of configurable switching points are defined. Chang-

ing the configuration at the switching points allows the interconnection topology 

of the harness to be rapidly altered. The form and distribution of the switching 

points must be carefully chosen to avoid making the partial reconfiguration of the 

switching fabric too costly. An application case study of a configurable crossbar 

switch [34] demonstrates an effective implementation of a 32 x 32 crossbar. 

'Applying this technique at runtime assumes that it takes zero time to discover the common-
alities between SLUs and generate the difference bitstream. If there are no common features, 
we also assume that it takes zero time to determine this. This is impractical in reality so 
incremental differences are calculated offline', using a pre-determined configuration schedule. 
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The cost of the flexibility in the configurable switching fabric is the possibility 

that it will serialise the SLU communication that can occur within the harness. 

That is, SLUs have a higher chance of being isolated from the harness when the 

fabric is configured in a particular way. However, this may actually be beneficial 

and, in some situations, actually extend the applicability of virtual circuitry. For 

example, consider two SLUs that require access to the same, contested resource 

on the cell array. The arbitration that is required can be achieved automatically 

by swapping the SLUs on and off of the host cell array - the act of swapping itself 

serialises access to the contested resource. However, we cannot rely on standard 

SLU swapping to implement arbitration if the SLUs require a tightly interleaved 

access schedule: the cost of the frequent and rapid swapping of SLUs would soon 

overwhelm the system'. 

Runtime reconfigurable routing can be used to alter the configuration of a 

switching fabric that connects either SLU to the contested resource. We should 

note that we are assuming the spatial costs of having both SLUs simultaneously 

present on some part of the array can be justified. The form of the switching 

fabric supports the desired serialising effect and we apply partial reconfigurations 

to it to determine which of the two SLUs has access to the contested resource. 

The configuration cost of changing the fabric's switchpoint configuration is much 

less than that of swapping an entire SLU. The rapid reconfiguration of the fabric 

is, therefore, less likely to overwhelm the system in the same way that full SLU 

swapping would. 

4.4.2 Partial Evaluation and Constant Propagation 

Partial evaluation [99] and data folding [40] are synonymous references to design- 

time optimising techniques based on constant propagation. They produce spe- 

cialised instances of SLU circuitry based on the constant propagation of a semi- 

'We assume that a single context device architecture is being used here. A similar serialising 
effect without the configuration performance penalty could be achieved by placing SLUs on 
independent contexts of a multicontext FPGA and rapidly swapping between them. 



static input. The main benefit of partial evaluation is that a specialised SLU 

will generally operate faster than the non-specialised version. However, partial 

evaluation is also interesting in the context of this discussion because specialised 

SLUs are typically also smaller. We should clarify our notion of smaller in this 

instance since the geometric area of a partially evaluated circuit depends on the 

style of partial evaluation that is used. For example, the partial evaluation engine 

described in [77, 78] produces specialised SLUs that take up the same geomet-

ric area, whilst the approach outlined in [19, 52] may also reduce the geometric 

area of the specialised SLU. In both cases, there is a reduction in the size of 

the S LU's configuration bitstream since the specialised circuit requires less of the 

array resources than the generalised version. 

4.4.3 Configuration Compression 

The amount of raw data that must be transferred to an FPGA in order to instan-

tiate a particular SLU can be reduced by various data compression techniques. 

Specifically, these techniques use data compression algorithms that exploit any 

regularity within an SLU's raw bitstream data to reduce its overall size. The 

performance of the VC system using compressed bitstreams may then increase 

because less data needs to be transferred to the target FPGA over the slow co-

processor interface. However, this assumes that the costs associated with decom-

pressing the bitstream are sufficiently low. Decompression is typically done by 

decompression circuitry that has either been especially configured onto the array 

for that purpose, or actually forms part of the underlying device architecture. 

A compelling example of configuration compression using the wildcarding fa-

cilities of the XC6200's FastMap interface is given in [49, 65]. Wildcard based 

compression tries to identify writes of the same, or suitably similar, data words 

to multiple distinct addresses. Rather than perform, say, four individual writes, 

the sequence is re-encoded as a single wildcarded write that would simultaneously 

100 



transfer the data word to the appropriate configuration memory locations. Since 

the wildcarding hardware is actually part of the underlying device architecture, 

decompression is essentially free. 

The wildcarding approach is device architecture specific, but other work has 

considered the use of general data compression algorithms from the software do-

main [50]. For example, standard Huffman or Liv-Zempel compression of the 

bitstream may be used to reduce its raw size. On the target FPGA, however, we 

must instantiate a corresponding Huffman decompression engine. The outputs of 

the decompressor would then be fed to the host FPGA's programming interface. 

To increase the decompression performance, it is even conceivable that the Huff-

man decompression circuit could itself be runtime reconfigurable [17]. It seems 

clear that as the compression and decompression schemes become more complex, 

the investment in managing the compression also increases. This must therefore 

be balanced to prevent the potential performance gains from applying compressed 

configurations being lost in the complexity of the decompression scheme. 

4.4.4 Configuration Prefetching 

In the discussion so far, we have presented a variety of techniques that try to 

reduce the amount of configuration that must be done to instantiate an SLU. 

Configuration prefetching [48] takes an entirely different approach and attempts, 

instead, to hide the reconfiguration penalty behind an ongoing "useful" computa-

tion. In the context of this chapter, the VC application code issues a non-blocking 

prefetch request for an SLU to the VC operating system before it plans to inter-

act with it. The SLU would be pre-fetched by the operating system whilst the 

application continues processing in parallel. The main challenge for configuration 

prefetching is to determine the best point in the application code to issue the 

prefetch request or for the operating system to guess the best point. 
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4.4.5 Configuration Interleaving 

Configuration interleaving is related to configuration prefetching, although it was 

introduced independently [32] as an abstract architecture specific technique. Con-

figuration interleaving takes advantage of the transport programmed, memory 

mapped nature of the abstract VC architecture to mix transports from different 

architecture roles at the granularity of a single transport. For example, one possi-

ble sequence of transports executed by the programmable system controller could 

begin with a single transport configuring part of SLU a, immediately followed 

by a transport configuring SLU b, which is, itself, followed by a transport for 

interfacing with a previously configured SLU. 

Configuration interleaving is important in the context of the VC abstract 

architecture because the architecture typically has only a single access port to 

the host FPGA's programming interface. This prevents the parallel configura-

tion and SLU interaction that is implied for configuration prefetch. However, 

through the fine granularity data transports used in interleaved configuration, we 

can implement an approximation of the parallel configuration used in configura-

tion prefetching. Indeed, a real-time embedded-system application could exploit 

knowledge of hard deadlines and real-time priority scheduling techniques to al-

low gradual variations in the proportion of abstract architecture data transports 

that are applied to different application tasks. For example, more transports 

can be dedicated to configuring a particular SLU as its configuration deadline 

approaches. 

4.4.6 Analysis 

From the discussion above we can see that there is potential to apply a number 

of techniques to offset the performance penalty associated with SLU swapping. 

In this section we approach the techniques from a critical standpoint with the 

aim of prioritising them in the order that they are most likely to be effective for 
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general VC applications. Below, we consider each of the techniques in increasing 

order of desirability. 

Not all of the techniques described earlier can be applied in the same applica-

tion without one adversely influencing another. For example, partial evaluation 

and incremental differences are not complementary techniques. The application 

of incremental differences relies on similarities being present within the circuitry 

but the partial evaluation, as described in [99], actually produces successive con-

figurations of a circuit that are structurally different. Also, although the general 

concept of partial evaluation is attractive, it requires a non-trivial processing 

effort and time, relative to the timescales within which we will reconfigure cir-

cuits, to generate the optimised, partially evaluated circuits. Using the technique 

we can clearly generate smaller circuits with higher processing capability, but in 

the situation where circuits must be specialised rapidly according to a particu-

lar changing parameter, the investment required to actually apply the technique 

would overwhelm the reconfiguration schedule. 

Reconfigurable routing, like partial evaluation, is a potentially powerful tech-

nique but it has a major conceptual limitation: routing is considered a second 

class object by circuit design methodologies and their corresponding tools. Nev-

ertheless, the fundamental technical features exist within reconfigurable devices 

such as the Xilinx XC6200 to implement reconfigurable routing by, for example, 

rapidly altering the configurations of switching points in a wired switching fabric. 

However, without a clear way to describe routing as a first-class object within the 

design framework for reconfigurable systems, the large amount of implementation 

effort required to deploy the technique will offset any benefits available to general 

VC applications. 

Prefetching and incremental differences are, potentially, complementary tech-

niques which are both based on having advance knowledge of the configuration 

schedule. Of the two, we can argue that incremental differences are much more 
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relevant to contemporary reconfigurable systems. Prefetching hides the latency 

associated with loading a particular SLU behind other system processing and re-

lies on statistical profiling of the application to determine as close to optimally a 

point at which loading should begin. However, the arguments for investing such 

offline efforts to hide loading latency are waning as physical device densities in 

FPGAs increase. The latency associated with transferring the SLU bitstream 

into the FPGA's configuration memory is less and less relevant as increasing 

numbers of SLUs can be made resident on high density architectures. Whilst 

earlier architectures had difficulty holding an application's working set of SLUs, 

new architectures allow the full set to be accommodated within the array with-

out repeatedly prefetching. Furthermore, as the bandwidth to the configuration 

interface increases, the cost of applying an incremental difference to a circuit will 

become less significant. In the instances where we still cannot accommodate the 

entire working set, rapidly modifying resident circuits with incremental configu-

rations over a high bandwidth configuration interface involves less effort, and is 

simply more generic over multiple applications than profiling and prefetching. 

From the reasoning and discussion above, and to return to our aim of priori-

tising the techniques according to their effectiveness, we can now advocate that 

partial evaluation is the least effective technique for VC applications. This is 

followed by runtime reconfigurable routing and then prefetching. The final tech-

nique we considered, and the one we consider most effective, is the application of 

incremental differences. 

4.5 Sequential Algorithmic VC 

We discussed two VC models earlier in this chapter. This section introduces a 

third, new model of virtual circuitry produced as part of the original research of 

this thesis. The fundamental feature that differentiates this third, new model and 

the two other VC models is the restriction they place on the way that VC SLUs 
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may interact. In the sea of accelerators, there is absolutely no interaction between 

SLUs whilst, at the opposite end of the spectrum in the parallel harness, there 

is a high degree of very tightly-coupled interaction between SLUs. In the third 

model of virtual circuitry, the "Sequential Algorithmic" model, SLUs are neither 

tightly-coupled nor completely independent. Instead, we use the VC abstract 

architecture to facilitate a flexible harness of loosely-coupled, co-operating SLUs 

that are configured within the cell array. The programmable system controller has 

the ability to effect data transports in any region of its memory map. We discussed 

earlier how programmed transports can effect configuration, how programmed 

transports can effect communication, and equated these abilities to the abstract 

architecture's two fundamental roles of configuration agent, and communication 

agent. 

The sequential algorithmic model taxes the full range of the abstract architec-

ture's facilities to cast it in the third rOle of computation agent. As a computation 

agent, the architecture is responsible for implementing the loosely-coupled inter-

actions between the instantiated sequential algorithmic SLUs. In the operational 

terms of memory-mapped data transports, this rOle involves the rapid transport 

of data within the region of the abstract architecture's memory map that contains 

the host FPGA's device state. Each transport within this region has the effect 

of briefly interconnecting the output of one SLU to the input of another. The 

sequential algorithmic model's flexible harness is actually a programmed sequence 

of transports executed by the abstract architecture in its rOle as a computation 

agent. Essentially, while the parallel harness has explicit and fairly static wired 

routing between SLUs, the SLUs of the sequential algorithmic model are inter-

connected by dynamic software routing. Just as the higher level operating system 

is charged with supplying the wired routing of the parallel harness, it is also re-

sponsible for supplying the programmed transport sequence for implementing the 

flexible harness. 
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The system controller applies its programmed data transports in a sequential 

manner. The serialised nature of this execution means that interaction within 

the sequential algorithmic model's flexible harness is also serialised'. In practice, 

we can envision modifications to the abstract architecture that would make SLU 

interaction within the flexible harness increasingly parallelised. For example, a 

multi-ported interface to the host FPGA's programming interface would allow 

a parallelised system controller to effect simultaneous data transports within its 

memory map. The FastMap interface of the XC6200 has a number of technology 

specific features that we could exploit to parallelise interconnections in the flexible 

harness. Specifically, the XC6200's wildcard mechanism also affects writes to the 

FPGA's state memory and would facilitate multicast-style transports. The map 

register mechanism could also be used to implement 'bin-packed' data transports 

in which two data operands are transported within the one data word. The map 

registers would define the appropriate distribution of the separate data operands 

to the target SLU's register interface. 

Explaining the "algorithmic" component of the sequential algorithmic model 

name requires us to look more closely at the programmed transport sequence that 

implements the flexible harness. The programmed sequence could be just that: 

an enumeration of elaborated data transports that interconnect a defined set of 

SLUs, in a defined order. An alternative interpretation of the flexible harness 

transports is that they constitute an algorithm that actually consumes the results 

from some of the operations triggered by its transports. These results influence 

the interconnection sequence according to the particular algorithm encoded within 

the flexible harness's transport sequence. 

8Jt is this attribute of the abstract architecture that inspires the "sequential" component of 
the model name. 
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4.6 Summary 

This chapter began with a comprehensive discussion of the two main VC models 

and an abstract architecture that would support them. From there, we explored 

some of the auxiliary techniques that are deployed to make SLU swapping more 

tractable and closed the main body of the chapter by discussing a third, sequential 

algorithmic VC model, motivated by the abstract architecture. 

In Chapter 3 we noted that programmable logic device interfaces have evolved 

and are specific to a class of applications. In this chapter we have, essentially, 

presented three general variations from the class of virtual circuitry applications. 

The next three chapters will present an implementation of the abstract architec-

ture introduced in this chapter. We then show that this implementation is also 

an instance of Chapter 3's flexible programmable logic interface. 
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Chapter 5 

The Flexible Ultimate RISC 

In this chapter we present the design and implementation of the Flexible Ultimate 

RISC, an instance of the abstract microarchitecture introduced in the previous 

chapter. We tackle this in two main sections: 

• First, we introduce the original Ultimate RISC architecture and present de-

tail of its design and operation. This includes a description of the challenges 

of implementing even the simple Ultimate RISC architecture on the target 

XC6200 FPGA architecture. 

• Second, we present details of the Flexible Ultimate RISC which is an evolved 

version of the simple URISC that is capable of autonomous self-modification. 

This discussion focuses on the challenges of facilitating self-modifying cir-

cuitry on the target FPGA architecture. 

• Third we present details of the design, development and general program-

ming and runtime environment of the Flexible Ultimate RISC. 

5.1 The Ultimate RISC(URISC) 

The Ultimate RISC(URISC)[57] is a minimal processor architecture with only 

one instruction: move memory to memory. On each instruction cycle, a single 

word in memory is moved from one location to another. Computation is done by 

migrating devices onto the system bus, then mapping the input-output registers 
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Figure 5.1: A minimal URISC Implementation 

of those devices into the memory space of the URISC processor core. For example, 

the datapath of the URISC has no explicit arithmetic-logic unit(ALU); instead, a 

series ALU-like components reside on the system bus with their registers mapped 

into the memory space of the URISC core. Operands and results are then moved 

to and from the memory addresses which correspond to the registers of ALU 

components, as a means of performing arithmetic computations. 

The URISC was first introduced as a novel example of the reduced instruction-

set philosophy taken to an extreme and, given its simplicity, was not intended to 

be competitive with mainstream RISC and CISC processors. Despite this, it was 

noted in subsequent literature that, with some slight modifications to the basic 

architecture [43], it is possible to implement a more powerful URISC which fared 

better against other microarchitectures executing the same benchmark. 

There are four main components in a minimal URISC implementation, shown 

in Figure 5.1: the heart of the URISC itself, the Instruction Execution Unit; a 

single-ported memory for holding program instructions and operands; a collec-

tion of ALU fragments to support computation and program control flow; and 

a general input-output interface to allow the processor to interface with periph-

eral devices. Faster implementations of the URISC are conceivable by increasing 

the number of memory ports and pipelining the IEU, but for the sake of this 

discussion, we will focus on a basic implementation. 

5.1.1 The Instruction Execution Unit(IEU) 

The IEU, shown in Figure 5.2, is responsible for implementing the move instruc- 

tion and we can decompose it into two basic parts: a processor datapath and 
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Figure 5.2: The Ultimate RISC Datapath 

processor control logic. The IEU datapath is particularly lean. It consists of 

only three 32-bit registers, a 32-bit incrernentor, a simple address decoder, and 

some basic 32-bit multiplexors. The URISC system bus contains a bidirectional 

data-bus and a uni-directional address bus which are both 32 bits wide. Some 

auxiliary control signals for read and write control of system bus elements also 

form part of the system bus. 

From left to right, the three registers in the IEU operate as a program counter 

(PC), a memory address register (MAR), and a 'temporary' register. The program 

counter always contains the address of the next part' of a move instruction that 

will be fetched from memory. The MAR holds the source address, and then 

the destination address of the operand that will be transferred by the currently 

executing move instruction. The temporary register is used to hold the operand 

between the time that it is fetched from its source address to the point that it 

can be written to its destination address. A tristate buffer is present between 

the output of the temporary register and the data bus to facilitate bidirectional 

communication on the data bus. 

The control program for the URISC is also quite simple. Since move is the 

only instruction no operand decoding is necessary. Within each move instruc-

tion cycle, there are four discernable micro-cycles. Table 5.1 gives a pseudocode 

'We are assuming that a move instruction consists of two separate memory words. 
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Microcycle I Activities 

1 addr 	M[pc];pc--pc+l 
2 temp +- M[addr]; 
3 addr+—M[pc];pc+--pc+l 
4 M[addr] +- temp; 

Table 5.1: Control Microprogram for basic URISC implementation 

style specification of the activities undertaken at each instruction 'microcycle'. 

Each row in the table corresponds to a single microcycle. The first microcycle 

fetches the source address for the move from the address contained in the program 

counter which is then incremented. The second microcycle then fetches the da-

tum contained in that source address and latches it into a temporary register. In 

the third microcycle, the destination address is fetched from the program counter 

address which is subsequently incremented. The final microcycle transfers the 

datum held in the temporary register to the destination address. 

There is one notable limitation of the control program as it is presented: 

there is no way to actively change the contents of the program counter, so it is 

not possible to branch. This is solved by simply making the PC addressable and 

then moving a branching address into it. The address decoder present in the 

IEU datapath is used for this purpose. When the MAR outputs the PC address  

onto the address bus, and an appropriate control signal is asserted by the control 

program, the PC can be written. Otherwise, the PC takes its next value from the 

output of the IEU incrementor which is, itself, in a latched feedback loop with 

the output of the PC. 

In total, there are eight control signals used by the control logic to operate the 

IEU datapath. These signals are listed and their rOles explained in Table 5.2. The 

actual implementation of the control microprogram with respect to these control 

signals is shown in Figure 5.3 as a timing diagram. In the single-ported memory 

implementation of the URISC, 16 core clock cycles are required to implement 

2  b convention we use address zero for the program counter. 

111 



Signal Role 

PCMUX Controls the multiplexor which decides whether the next 
value to be stored in the program counter comes from 
the output of the incrementor, or is the operand that 
was fetched from the source address. 

WTEMP Controls the tristate buffer allowing the output of the 
temporary register to be asserted on the bidirectional 
data bus. This signal is asserted in the final microcycle 
when we wish to write to the destination address. 

CTEMP, All three of these signals are used to control when reg- 
CMAR, 	and isters in the IEU datapath may latch in the data in the 
CPC operand data that has been presented on the data bus. 
ADMUX The ADMUX signal is used to define which IEU register 

may drive the address bus. The PC is driven onto the 
bus in microcycles one and three, whilst the MAR drives 
the address bus in microcycles two and four. 

READ 	and These signals form part of the system bus that inter- 
WRITE connects the IEU with the system bus elements. They 

indicate whether the current operation being performed 
over the system bus is a read or a write. 

ADDR 	and These signals are also part of the system bus and corn- 
DATA municate the address and data word being transported 

between system bus elements. 

Table 5.2: Control signals used in the control path of the original URISC 
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Figure 5.3: Control Waveform for the basic URISC 

a single move operation, 4 cycles for each instruction microcycle. One notable 

point in the timing diagram is the assertion of PCMUX for the entire fourth 

microcycle. The signal is held high to facilitate writing to the PC if the address 

currently driven onto the address bus matches the PC address. The PC decoder 

present in the IEU datapath uses all system bus address signals but only asserts 

its output when the WRITE signal is also asserted. 

5.1.2 URISC Programming 

Generally speaking, a URISC program is a sequence of move instructions. Tech-

nically, each move performs the same fundamental operation, but logically some 

moves effect computation to further the current calculation directly. Other moves 

effect computation to manage the program control flow. 

5.1.2.1 Branches 

Implementing branches in a URISC program can sometimes be complex. The 

simplest form of control flow branch in a URISC program is an unconditional 

jump and is simple to implement. Since the jump address is static, we just move 

the jump address into the memory mapped program counter. 
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In a conditional branch, however, the final jump address depends on the re-

sult of some conditional test. Generally, processors have dedicated instructions 

which perform the conditional test and have the side-effect of altering the pro-

gram counter based on the result of that test. In the URISC there are no such 

instructions. Instead, we use a memory mapped condition code register in an 

ALU fragment to bias the destination address of an unconditional jump. This 

allows the destination of the jump to be offset by the equivalent integer value 

of the boolean result contained in the condition code register. In this manner, 

it is possible to skip at least one move instruction following the unbiased jump 

address. If the instruction either of the possible jump addresses was itself an 

unconditional jump then effectively, based on the result of the conditional test, 

we would either take the unconditional jump or skip it entirely. 

To make this approach work, we adopt a convention where the boolean truth 

value for a conditional test is an integer multiple of the size of a single move 

instruction, measured in words, and the boolean false value is integer zero. This 

is important as it allows us to guarantee that the biased jump address is still 

aligned with the start of a move instruction. For the URISC implementations 

described in the later sections of this chapter, each move instruction will comprise 

two 32-bit addresses and, therefore, occupies two consecutive words in memory. 

The integer equivalent to the boolean truth value in this situation, therefore, 

would be the integer value two 3 . 

5.1.2.2 Addressing modes 

One primary characteristic of a RISC architecture is its lack of complex addressing 

modes. All addressing in the basic URISC implementation is absolute. Although 

we do not have inherent access to immediate or indirect addressing modes, we 

may again adopt programming conventions to emulate these two useful modes. 

3 1n some circumstances this is not the case: Section 6.3.2.1 contains examples of truth values 
that must be larger than two. 
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Immediate addresses, for example, can easily be converted into absolute address-

ing of operand data placed in a predefined location. The assembler, described 

later in this chapter, automatically converts immediate addresses in the source 

code to absolute addresses of literal values pre-placed in a data table. 

Indirect addressing is slightly more difficult to emulate and requires that we 

use self-modifying program code. Pointer dereferencing is a main motivating 

example of indirect addressing. The arguments against the use of self-modifying 

code do not particularly apply here since we are not using self-modification to 

radically change the program structure or behavior. Instead, the technique is 

limited to use in a narrow and well defined problem instance. 

We can emulate indirect addressing for both the source and destination ad-

dresses of a move instruction. For example, we use two absolute move instructions 

to implement a single, indirected read. The destination address in the first move 

instruction is actually the address of the following move's source address. When 

we execute the first move, it overwrites the source address of the following move 

instruction with the address of the actual data we wish to read. Essentially, we 

are dynamically synthesising a customised absolute-addressed move instruction, 

one instruction cycle before it is required. If we want to perform an indirectly 

addressed write, then we alter the destination address of the first move so that 

it overwrites the destination address of the second move. If we wish to indirectly 

address both source and destination, then we need three consecutive move in-

structions. The first two modify the source and destination addresses of the third 

which then performs the desired transport. 

5.1.3 Challenges of a XC6200 URISC Implementation 

In this section we describe an original, technical implementation of the URISC 

IEU on a XC6200 FPGA undertaken as part of the research programme for this 

thesis. The components of the URISC architecture that were implemented at this 
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Figure 5.4: Basic architecture of the initial URISC implementation on the XC6200 

stage in the research programme are shown in Figure 5.4 and there are two main 

problems that we are going to consider: a means of avoiding or limiting the use 

of tristate logic in the URISC core; and, second, bootstrapping the control logic 

of the IEU so that the processor is immediately capable of processing at the end 

of the configuration process. 

5.1.3.1 Lack of Tristate Signalling 

There are very few tristate resources available to logic on the XC6200 but, in 

the URISC IEU datapath shown earlier, a single tristate data bus is used to 

connect the URISC with each of its system bus components. The general routing 

resources of the XC6200, as we discussed in Chapter 2, are based on multiplexors 

and directed routes. The only tristate resources that are available to XC6200 

circuits exist within the device's input-output pads. Physically, it is possible to 

connect a single bidirectional signal to a device pad and, when that signal is 

routed through the associated JOB, it is separated into independent read and 

write nets. The device pad contains a single tristate driver whose control signal 

is available to user circuitry through the pad's JOB. This allows the write signal 

to be driven onto the physical device pin and, hence, interact with a bidirectional 

physical bus. 

For the URISC implementations we describe in this chapter, the intention is 

not to explicitly wire each SLU to the FPGA implementation of the URISC core. 

Instead, as we alluded in Chapter 4, the XC6200's FastMap interface is used to 

allow us to both configure and interact with the SLUs implemented on the logic 
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array. Essentially, we use the FastMap interface as a dedicated, memory-style 

interface to the system bus computational elements. There is no physical tristate 

data bus that the URISC must explicitly manage 4 : the FastMap itself implements 

the SLU section of the system bus. 

We cannot avoid a direct, physical, tristate interface between the URISC core 

and the memory subsystem since memory is provided by physically interfacing 

with external memory components. The data bus of the memory interface is 

inherently bidirectional. Our challenge is therefore to use the tristate buffers in 

the device pad and the facilities of the JOB to manage this by providing separate 

read and write ports into the memory system. The URISC 'WRITE' control 

signal triggers the tristate driver within the device pad whenever a write is made 

by the URISC to the device memory. An updated IEU datapath in Figure 5.5 

shows two temporary data registers which interface with the separated read and 

write interfaces of the memory system. An updated control timing diagram is 

also given as Figure 5.6. 

We use two temporary registers since all data arriving from external memory 

must pass through the temporary incoming register. In the original system, the 

temporary register only ever held the operand being moved; the inputs of each 

register in the core had an individual connection to the raw data bus. In the 

adapted design, we hide the raw data bus behind the temporary incoming register 

and, hence, avoid connecting the inputs of core registers indiscriminately to JOBs. 

This is useful since we can use it to abstract the details of more than one memory 

interface away behind a single temporary incoming register. 

However, the temporary register is now successively overwritten in the first 

three microcycles. We must preserve the data to be written during microcycle 

four by transferring it to a secondary 'outgoing' temporary register at the end of 

microcycle two. If this was not done, the transport datum would be overwritten 

4 although it is acknowledged that, internally, the FastMap data bus is also implemented as 
a collection of tristate data lines. 
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by the destination address arriving in microcycle three. A side effect of this 

arrangement, now noticeable in the control timing diagram, is that the CMAR 

control signal is activated one clock period later. This is because it takes one 

clock cycle to latch the value on the SRAM data bus into the temporary incoming 

register. Only after that cycle has passed can the incoming data be moved to the 

appropriate destination register. 

5.1.3.2 IEU Control Implementation 

One of the primary requirements of our URISC implementation is that it is de- 

signed to be autonomous. Whilst we may ultimately communicate with the exter- 

nal environment, we must not rely on the services of an external host to initialise 

or activate the URISC. This places an important requirement on the bootstrap- 

ping of the URISC itself. That is, from the point that we complete configuration 

of the XC6200 with the URISC bitstream, the core must become active immedi- 

ately and begin processing its first instructions from memory. This should be done 

without the direct influence of an external source like a system's host processor. 

In short, the URISC implementation must be self-initialising and self-activating. 

Each of the IEU control signals for the URISC is implemented as a 16-bit 

circular shift register. Each bit in the shift register maps to one state of that 
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Figure 5.7: Self-initialising and self-activating control logic shift register 

signal at a given instruction clock cycle and we tap the register at an appropriate 

point so that the register output at that point matches the control waveform. This 

repeats ad infinitum. The main challenge that we must address, however, is how 

to inject the waveform values into the register before the main circuitry becomes 

active and in such a way that the outputs of each shift register are aligned and 

synchronised to the control waveform. 

Figure 5.7 shows a schematic representation of an URISC control shift register. 

In this figure FD components are d-type flip-flops and RPFD components are register 

protected d-type flip-flops. Both types of register are synchronised to the same 

global clock source. When a cell in the XC6200 architecture is placed in protected 

mode, its register is isolated from the remaining cell logic and is only sensitive 

to an underlying control input from the FastMap interface. Therefore, a RPFD 
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can only he modified by the XC6200 FastMap interface. It is possible to embed 

FastMap writes inside a configuration bitstream such that a RPFD can he initialised 

(luring the configuration process. This requires, however, that the clock source 

for the RPFD being initialised is active during configuration. 

Each control shift-register, therefore, is shadowed by a RPFD register which 

is initialised during configuration to contain the appropriate control waveform 

values. The outputs of each RPFD are connected to the inputs of a corresponding 

shift register FD. Since the clock is free running (luring configuration. the FD com-

ponents will latch in the correct initial state value. \Ve must take care, however, 

to prevent the shift register from actually circularly shifting the waveform data 

during configuration. 

We require the FD components to only clock data from the RPFDs for as long 

as we are configuring the FPGA. As soon as configuration ends, however, we 

must simultaneously change the input sources of each FD so that the cyclic shift 

structure is established. To do this, we place a multiplexor at the input of each 

FD component and use the select input of the multiplexor to source input data 

from either the associated RPFD or the output of the previous FD. Tying the 

select inputs of all control multiplexors to the same initialisation signal allows us 

to switch between the initialisation and shift modes. Figure 5.8 shows the two 

effective modes of the control shift-register. 

ConfigOK is a FastMap control signal and indicates when a valid configuration 

has been loaded into the configuration SHAM of the device. In detail, this signal 

is asserted when the correct values have been written into the XC6200's device 

ID register. When the XC6200 is reset, the device ID registers are set to zero and 

the ConfigOK signal is dc-asserted. By convention, the last group of configuration 

writes to occur in a XC6200 configuration bitstream load the appropriate values 

into the ID register. We therefore know that the ConfigOK signal should only 

he asserted when the circuitry contained in the bitstream has been configured 
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Figure 5.8: The Control Shift-register in action: (i) Initialisation mode; and (ii) 
Shift Mode. 

onto the array. Recalling our discussion of the XC6200 programming interface in 

Chapter 3, it is possible to access the FastMap control interface from user circuitry 

implemented within the array. This allows the ConfigoK signal to be used as the 

select net for the shift-register multiplexors and facilitates the self-activation of 

the control logic. At the end of the configuration process, the ConfigOK signal is 

asserted and the shift-register is then forced out of initialisation mode and into 

shift mode. 

Using shift registers to implement the XC6200 URISC control logic may at 

first seem wasteful of logic area. A more traditional approach to control logic 

design is to combine a counter with a decoder circuit. The decoder is hard 

coded to translate each counter value into the appropriate control signals. Logic 

minimisation techniques can reduce the area cost of the control decoder. Such 

an implementation is conceivable for the XC6200 URISC, and could he designed 

in such a way that it satisfies the self-initialising and self-activating constraints. 

That is, we would simply use the ConfigOK signal to enable the connection from 

the control counter's output to the control decoder's input. 
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The shift register approach has one primary advantage for the FPGA imple-

mentation: the logic for each control signal is separate and when floorplanning 

the URISC core, we can place each control-logic signal close to the datapath el-

ements that it influences. This degree of floorplanning flexibility is very useful 

for reducing routing delays in the URISC circuitry. Furthermore, the shift reg-

ister design, as we have described it, actually maps well to the underlying cell 

architecture of the XC6200. The circuit inherently has regular layout and routing 

and the FD and multiplexor can be mapped into a single cell with the RPFD in an 

adjacent cell. Furthermore, the same fundamental design is required to ensure 

the program counter is initialised with the entry point for the system program. 

5.2 The Flexible URISC(FURI) 

5.2.1 Differentiating FURl and the URISC 

The FURl core is a realisation of the abstract architecture we presented in Chap-

ter 4 and is evolved from the URISC implementation we described in the previous 

section. The primary technical difference between the two implementations is that 

the memory interface of the FURl core is extended to include access to the host 

XC6200's FastMap interface. This is in contrast to the earlier, basic URISC im-

plementation where data is only moved between SRAM locations or from SRAM 

to the PC. By allowing the FURl core to control the underlying configuration 

SRAM of the host FPGA, we integrate the host FPGA's memory map into the 

memory map of the FURl core. This effectively creates a self-modifying system. 

Programs that execute on the FURl core can exploit the FastMap interface to 

configure, communicate, and compute with the "system bus" SLUs. The funda-

mental programming model of the URISC is not changed the integration of the 

FastMap interface: the move is still performs the same basic function. 
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5.2.2 FURl Implementation Details and Challenges 

Figure 5.9 shows the datapath of the FURl core. The main thing to note from 

this diagram is that there is little additional datapath logic involved in integrating 

the FastMap interface with the URISC core. This is mainly because there is 

only a small semantic gap that we must bridge between the two kinds of memory 

interface used in the URISC core. That given, there are still challenging technical 

issues that must be addressed in implementing the datapath logic that is required. 

5.2.2.1 The FURl Datapath 

There are three main changes to the IEU datapath: first is the addition of the 

FastMap interface ports themselves; the second is a subtle modification to the PC 

incrementor; and third is the addition of a multiplexor to manage the input source 

of the IEU incoming data register. The form and, where necessary, motivation of 

each change is discussed below. 

The FastMap interface consists of three main port types: an address port; 

the input and output data ports; and control signal ports. The format of the 

data and control ports is essentially fixed, and independent of the exact model of 

XC6200 being used. The width of the FastMap address port varies depending on 

the size of the device being used. For example, the address bus of the XC6216 

is 16 bits wide whilst the XC6264 requires an 18-bit address. The raw width of 

the data bus is 32 bits, although the interface can be programmed to react as 

if it was actually a 16-bit or 8-bit interface, disregarding the inactive interface 

bits. This variability in the effective data bus width has an impact on the way 

that we interpret XC6200 addresses. In 32-bit mode, addresses align to word 

boundaries and the two least-significant address bits are ignored. In 16-bit mode, 

we address at nibble boundaries, ignoring the least significant bit, and in 8-bit 

mode all address bits are significant since each byte is individually addressable. 

The second alteration to the datapath concerns the PC incrementor. In the 
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earlier URISC implementation, the addressing of the memory interface operated 

on the granularity of words. In the FastMap interface, however, addressing is 

at the granularity of bytes. The FURl memory map, therefore, basically com-

prises two address spaces which operate at different granularities. Supporting 

both interfaces translates to the requirement that the PC incrementor must alter 

the increment value to either 1 or 4, depending on the type of address the PC 

currently contains. This raises an interesting design issue: how it is possible to 

differentiate an external memory address and a FastMap address. We could argue 

that FastMap addresses should never be loaded into the PC, and that instruction 

sequences are always loaded from memory. It is clear in the later sections of 

this chapter that this is not a sustainable argument since, in some situations, is 

imperative that the PC and its incrementor be able to handle FastMap addresses. 

A simple convention is adopted to differentiate FastMap addresses from stan-

dard memory addresses. A FURl address contains an additional bit in the most 

significant bit position which indicates whether the address is in the FastMap 

segment of the memory map, or the standard memory segment. This approach 

is useful because of its low decoding overhead: we do not need to place complex 

decoding logic within the datapath to determine the type of an address. For ex-

ample, the PC incrementor simply examines the most-significant address bit on 

its input and tailors the increment value appropriately. Furthermore, the changes 

to the actual incrementor circuitry are small since there are only two potential 

increment values to select from. 

Adding the FastMap interface ports to the datapath means there are now 

two potential data sources for the IEU temporary incoming register. The final 

addition to the datapath, therefore, is the introduction of a multiplexor to select 

whether data arriving on the FastMap or the standard memory interface should 

be latched. The incoming data multiplexor is mentioned as a separate entity 

from the FastMap ports because of its control requirement. The selection control 
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Figure 5.9: Datapath of the Flexible URTSC. 

for this multiplexor actually comes from an address decoding of the value being 

asserted by the address multiplexor, AD\IUX. In the first three microcycles, the 

upper bit of this address determines which of the two potential data sources is 

the correct one. 

5.2.2.2 Accessing the FastMap Interface from user circuitry 

One of the unique features of the XC6200 series, and one which underpins the 

FURl implementation, is that circuitry configured on the array can have both 

read and write access to its control interface. There are technical difficulties in 

achieving this state, however. In Chapter 3 we gave a detailed discussion of the 

form and semantics of the XC6200 control interface. We have already begun to use 

some of the control interface features through our exploitation of the ConfigOK 

signal in Section 5.1.3.2. 

Each signal of the FastMap interface is associated with a particular lOB in the 

array. A given signal can made available within the array with the appropriate 

configuration of its associated JOB. The standard design flow for a XC6200 device 

includes a special type of design symbol called a cbuf, or control buffer, for exactly 

this purpose. The circuit designer may instantiate input or output cbufs within 
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their circuit design. The input and output ports of each cbuf can be sampled 

or driven by any user signals which are subsequently attached to it. To access 

the ConfigOK signal used in the previous section, for example, we instantiate 

the cbuf_out design primitive and use the appropriate mechanisms in the design 

environment to identify that control buffer as the signal source for ConfigOK 5 . 

When the design description is processed by the XC6200 design environment, the 

resulting l)itstream will configure the JOB associated with the ConfigOK signal 

such that one of the JOB outputs is a source for ConfigOK within the user design. 

ConfigOK is an example of a benign control signal. By benign, we mean that 

instantiating a cbuf and configuring an JOB with the resulting bitstream for that 

cbuf will not affect the external operation of the XC6200. However, this is not 

the case for all control signals. The heart of the problem is that the FastMap 

interface, as it is implemented on the XC6200, is single-ported. We may configure 

JOBs to provide access to control signals on a signal by signal basis. In doing 

so, however, the FastMap control logic no longer responds to any control signals 

being asserted through device pins: if we configure a signal for internal access, 

it is no longer available externally. This appears, initially, to be an appropriate 

design decision. We wish to avoid physical signal contention that could potentially 

damage the device and it is therefore fair to assert that only one signal source 

should be directly, physically wired to the signal input for the FastMap control 

logic. 

For control signals like ConfigoK the external isolation problem does not ap-

ply. The ConfigOK signal is actually classed as an internal control signal: it is 

only available for use inside the cell array through a CBIJF. Simply configuring 

access to internal control signals does not pose an immediate threat to the general 

operation of the hardware system. The act of configuration does riot change the 

VHDL was used as the description language in the URISC and FURl implementations. 
VHDL 'attributes' are the language mechanism used to associate each cbuf instance with a 
particular control signal. 
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external device interface in this case Our main problem arises when we try to 

assume control of signals such as the Fa.stMap address and data inputs. Here, 

simply configuring the array to allow access to the control signal is enough to 

alter the devices external interface. Within the space of one such configuration, 

we can alter the external interface enough to make the device inaccessible. For 

example. the FURl core requires complete write access to the FastMap address 

port. This is done by configuring the appropriate address signal cbuf instances 

one at a time. However, the section of configuration address space represented 

by each address line we assume control of becomes unavailable in any future 

configuration. 

\Ve cannot avoid the problem by seeking a configuration sequence for FastMap 

cbufs that would leave enough of the Fast-Map interface available externally at 

any one point to be able to complete the entire configuration. Configuring cbufs 

for the incoming data port prevents us from completing configurations for the 

address port and vice versa. We can survive for a short time with limited access 

to the configuration address space. However, configuring the FastMap chip-select 

signal for internal access would make the device immediately inaccessible since all 

subsequent external Fast Map transactions involve strohing of the external chip-

select pin. 

An alternative approach involves using the XC6200's wildcarding facilities to 

simultaneously configure all the relevant JOBs with the desired cbuf configura-

tion. This is theoretically a more elegant solution since it would provide a single 

point in time where device control switches between the external and internal 

FastMap ports. However, this approach has three primary requirements which 

we cannot completely satisfy: first, the target JOBs must have a suitably regu-

lar geometric arrangement that can be encoded by column and row wildcards; 

secondly, we must he able to pack the critical configuration data into a single 

write over the FastMap interface; and, finally, it must he the same configuration 
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data that is applied to each target JOB. We find an immediate problem with the 

first requirement, since the JOBs used for the address, data, chip select and read-

write signals are spread across the East. South, and \Vest edges of the array. We 

must therefore broadcast configuration data over three of the four device edges to 

achieve our task. If we couple this with physical limitations  of the wildcarding 

facilities, then the approach quickly becomes intractable. 

5.2.2.3 Bootstrapping with the Serial Interface 

In short, we know from the previous section that we cannot use the external 

FastMap ports to apply the configurations which give complete control of the 

FastMap signals to internal circuitry. However, the underlying assumption up to 

this point is that we must use the FastMap interface to perform the inital config-

uration of the FURl core's FastMap logic. The alternative which is successfully 

employed in the FURl implementation bypasses the FastMap interface altogether 

during the bootstrapping phase of the FURl core cicruitrv and, instead, applies 

the initial configuration through the XC6200's serial interface. However, once 

the initial boot configuration of the core has been successfully configured onto 

the target XC6200, the serial interface is discarded. From that point, all subse-

quent interactions with the host FPGA occur through the FURl core's configured 

interface to the host's FastMap port. 

Serial interfaces generally operate in both slave' and 'master' modes: in slave 

mode, the device responds passively to control signals asserted from an external 

source; a device in master mode actively asserts its own control signals to source 

configuration data from a passive configuration store. The serial interface of the 

XC6200 is similar to the serial interfaces in most mainstream commercial FPGA 

architectures and, specifically, consists of the six dedicated device pins which are 

6 details of the wildcarding mechanism in XC6200 literature[109] state that there is a limit to 
the number of cells which can be simultaneously written using the mechanism. In each device 
model, the number of addresses we can simultaneously target is smaller than the number of 
simultaneous writes that we must apply to complete the switch-over between interface ports. 
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Signal I ROle 

/serial Controls whether the XC6200 should enter serial or par- 
allel mode 

wait Causes the XC6200 to stop loading configuration data 
until the signal is de-asserted. 

SEReset Asserted by the XC6200 to reset the serial data source 
and prepare it for subsequent access 

/SECE A chip-enable signal asserted by the master FPGA to 
enable data output in the serial PROM 

SEC1k The clock signal to which serial transmissions are syn- 
chronised 

SEData Data being received from the PROM for consumption by 
the serial interface. 

Table 5.3: Control signals used in the XC6200 serial interface 

listed and explained in Table 5.3. Data are shifted into the XC6200 over the serial 

interface and is then passed to the FastMap control logic. The FastMap operations 

that can be (lone through the parallel interface can also be (lone serially. 

Whilst it is true that the control logic design presented earlier does not require 

any external control signal to kick-start the URISC core, it is not clear how the 

URISC bitstream arrives at the FPGA in the first place. If we rely on the services 

of an external agent to actively configure the XC6200 then the implementation 

is not truly autonomous. Using the serial interface to communicate the initial 

design actually addresses both issues: it allows us to configure each JOB with an 

appropriate cbuf to facilitate internal access to the desired FastMap signals; and, 

second, it serves as a low-level physical mechanism for making the FURl core 

autonomous. When the XC6200 is powering up or is reset, the signals asserted 

on the /serial' and wait pins define whether the device enters master serial, 

slave serial, or parallel mode. The device context for time autonomous FURl 

implementation is shown in Figure 5.10. The FURl bitstrearn is held in a serial 

PROM which is hardwired to the XC6200 serial interface. Physically tying the 

/serial and wait pins to ground initially locks the device into master serial 

1 signal names with a preceding / are active-low. 
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Figure 5.10: Autonomous FURl system using XC6200 master serial configuration 

mode. After the XC6200 completes its internal power-up sequence, it actively 

reads the FUR.I bitstream held in the serial PROM. In this organisation, no 

external control source is needed to manage the boot-configuration of a FURl 

core. 

5.2.3 FURl Control Logic 

Fundamentally, the same control logic design is used for the FastMap control 

signals as is used in the earlier basic URISC implementation. However, it is 

necessary to scale the circuitry slightly to accommodate changes in the control 

timing diagram that arise from the inclusion of the FastMap interface in the IEU 

memory map. 

5.2.3.1 FastMap Timing 

Figure 5.11 contains the timing diagrams which specify the series of events that 

the IEU control logic must trigger to perform a FastMap read and write to the 

XC6200 configuration memory. The diagrams show examples of both basic and 

extended transactions over the FastMap interface. The FastMap interface oper-

ates synchronously with respect to the global clock signal, GC1k. The clashed lines 

in each timing diagram show the points where the interface signals are sampled 

by the XC6200's internal control logic. This always occurs at the rising edge 

of the GC1k signal. In a basic read or write cycle, /cs is first sampled low and 
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Figure 5.11: FastMap Interface Timing Diagrams: (i) Configuration SRAM 
Write; (ii) Configuration SRAM Read 

then sampled high before another cycle can start. If a longer sequence of reads 

or writes is to be undertaken, a basic cycle can become an extended cycle by 

returning /cs to low immediately after it has been sampled high, at the end of 

the basic cycle. The FastMap interface will continue to process inputs until the 

/cs signal becomes high again, signalling the end of the extended cycle. 

The timing requirements for a FastMap state access differ slightly from a 

configuration SRAM access. A state read takes longer than a configuration SRAM 

read, although writes have the same cycle time. The FUR.I implementations in 

this thesis have moderate system clock speeds of up to 32MHz and the longer 
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Figure 5.12: FURl Control Timing with integrated FastMap Read and Write 
support 

state cycle time does not pose a particular problem. We should note that, at 

this stage of the thesis, the intent is not to explore circuit level performance 

enhancements to the FURl core. The main challenge here is implementing the 

standard architecture itself. However, if the system clock period was sufficiently 

high, it would be necessary to have separate control logic to manage state accesses. 

A FastMap transaction may be involved in at least two of the four FUR! 

microcycles. For example, our general aim is to exploit the FastMap interface 

within the FURl core as a means of customising which components are present 

on the URISC system bus, and also interact with those components. In terms 

of FURl accesses to the FastMap interface, this translates to being capable of 

reading and writing both configuration and state data during the second and 
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fourth FURl inicrocycles. The actual source and destination addresses of each 

move instruction are still fetched from external memory and we do not consider 

program code which may be embedded within the cell array itself. Section 6.3.2, 

however, describes a situation where it is imperative that the FURl core can 

execute such internal' code. We therefore support FastMap transactions in all 

four microcvcles. 

Although the tuning diagrams in Figure 5.11 appear fairly simple. there are 

some challenges involved in integrating theni with the underlying URISC con-

trol. The first challenge is to meet the hard timing requirements for the correct 

sampling of the /cs signal. If the /cs signal is sarripled low at T0  then it must 

be sampled high exactly one GC1k cycle later, at T1 . If this does not happen, 

the transaction will not complete. In the basic cycle, other signals in the timing 

diagram need only be sampled correctly at T0 . 

Furthermore, the timing diagrams in Figure 5.11 show that the signals that 

driven onto the FastMap interface are slightly out of phase with the main GC1k 

signal. This is because the FastMap control signals each have minimum setup 

time constraints. We must guarantee that these constraints will be met before 

the signals are sampled at the rising edge of GC1k. To facilitate this, the imple-

mentation of the FURl core presented here synthesises a FastMap control clock 

that is 1800  out of phase from the main GC1k. This is done by routing the GC1k 

signal through an inverter and, from there, directly to the input of one of the 

XC6200's low-skew global nets. A low-skew global net is appropriate for use in 

this instance since the FastMap control logic, like the general URISC control logic, 

may be spatially separated across the cell array. Using standard routing resources 

would undoubtedly result in subtle signal skews which could then interfere with 

the correct tinning behaviour of the control logic. 

Figure 5.12 contains a modified timing diagram showing the FURl control 

timing, including the FastMap signals applied during each microcvcle. One of 
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the first things to note about this diagram is that an instruction cycle now takes 

19 clock cycles. The first three instruction microcycles are extended by one clock 

cycle. This is to accommodate the three clock cycles required for a FastMap 

read transaction. In the original URISC timing, only the first two cycles in a 

microcvcle were required to setup an SRAM read transaction: in the first cycle, 

the address is asserted on the bus and on the second cycle the appropriate control 

signal is asserted'. 

At, first glance, the three clock cycle FastMap transaction does riot appear 

problematic since the incoming data register will also latch its input on the rising 

edge of the third clock period. However, it the phase difference between the stan-

dard URISC control signals and the FastMap controls that complicates matters 

and provides the motivation for the extra clock period. In short, the extra GC1k 

cycle allows us to meet the setup timing constraints for /cs signal by giving /cs 

the time to do a complete transition from high to low then back to high. If/cs is 

sampled low at the second GC1k and high at the third, the FastMap data will still 

not he valid until the rising edge of the fourth GC1k. This is too late for standard 

URISC tinning since the incoming temporary data register latches its input on 

the rising edge of the third GC1k. 

An alternative solution involves initialising the /cs signal to start at low and 

rise to high half way through the first GC1k period. Correspondingly, for future 

instruction cycles /cs must then begin its transition to low at the end of the 

fourth microcycle. We rely on the mechanics of the self-initialising control regis-

ters to ensure that /cs is initialised to the correct value. The net effect, however, 

is that the FastMap transaction begins one cycle earlier and falls back into align-

ment with the original URISC timing. Provided we guarantee the validity of the 

appropriate address as the first GC1k rises, the first three rnicrocycles could be 

'it is acknowledged that this is also not the most efficient timing and that, when this thesis 
was written in 2000, it is commonplace for SRAM interfaces to allow simultaneous assertion of 
address and control signals. 
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again shortened to four clock periods. The FURl implementation used in this 

thesis does not use this timing approach, although it is presented as a potential 

design enhancement that would increase the core performance. 

The foiji -th instruction inicrocycle has a simpler implementation since a basic 

FastMap write has only two significant GC1k sampling points: it is not necessary 

to wait for any result on the Fast-Map data port. Again we allocate the first 

clock period in the nhicro(vcle to setting up the address and, in this case, data 

buses. In the second clock period, the PC multiplexor is set to allow the program 

counter to he overwritten whilst the /cs signal simultaneously makes its high-to-

low transition within the setup time constraint. By the time we reach the rising 

edge of the third GC1k. /cs has settled low and the FastMap write can begin. It is 

also (luring the third GC1k period that /cs will make its rise back to high ensuring 

the nhinirnuin setup period will have been met when the signal is sampled at the 

rising edge of the fourth clock. 

5.2.3.2 Implementation of the FastMap Control Circuitry 

In the timing diagrams presented so far, the read and write events have been 

separated into two different control signals. This has been the case for both the 

FastMap and basic memory control timings. We should note that, in reality, 

both signals are physically represented by a single 'read-not-write" control. This 

is evident in the timing diagrams for the FastMap interface and the FURl im- 

plementation of the FastMap: the first diagram has only a single rd/wr control 

whereas the second has two separate signals. In the original URISC timing dia- 

gram, tile, active state of a device was derived from the current assertion on the 

read and write controls. Since the two signals are operationally mutually exclu- 

sive, if neither is driven then we can deduce that the target device is inactive. 

Conversely, the target device is activated by an assertion of either control input. 

In reality, both memory interfaces in the FURl core use an explicit chip- 

select signal to identify when the interface should be active. This allows a single 
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read-write signal to identify which action should be performed when the device 

is active. Originally, the read and write controls were presented separately to 

provide a slightly more intuitive indication of what a particular interface was 

doing in a given clock period. For example, a single pulse on the read control at a 

given clock period clearly identifies that a read is occurring, when it is occurring. 

and how long it lasts. Furthermore, we need not explicitly cross-referencing the 

state of a chip-enable signal to identify whether the action is actually happening. 

or whether it is ignored. 

In the first design iterations of the FURl core, the Fast -Map read and write 

signals were indeed instantiated as two distinct control logic shift registers. This 

was motivated by a potential area saving based on the observation that, when 

taken separately, the two signals were simply repetitions of bit sequences of length 

5 at most. Two smaller shift registers of length 4 and 5 respectively were designed 

to capture the repeating patterns of the FastMap read and write signals. A simple 

multiplexor was used to select which of the two signals should be driven onto the 

actual FastMap rd/wr input. The FastMap write control shift-register should 

drive the read-write port during microcvcle four with the read control register 

driving at all other times. Since the PCMUX signal is only ever active during the 

fourth rniicrocycle, it is reused as the select input to the FastMap read/write 

multiplexor9 . 

A further motivation for reducing the size of the FastMap control logic was to 

attempt to balance the routahility of the FURl core with the tuning requirements 

of the FastMap control signals. A floorplan of the FURl core that surrounds the 

FastMap control signals is shown in Figure 5.13. The main point to draw from 

this diagram is that there is a large amount of datapath logic surrounding the 

FastMap control signal JOBs. Additionally, the access points for the SRAM 

9 Using the PCMUX signal in this manner is not an optimal solution to this problem as it adds 
extra semantics to the signal. However, it is also arguable that the PCMUX is already asserted 
for longer than it need he: in the original URISC literature, the PC multiplexor is enabled for 
all of microcycle four when it could be restricted to match the timing of the CPC signal. 
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Figure 5.13: Floorplan of FURl core around the FastMap control Ports 

address and FastMap data port are on the west edge of the cell array. This 

increases the routing congestion in this part of the cell array further since the 

nature of these signals meant they consumed significant amounts of the upper 

levels of the XC6200 routing hierarchy. Essentially, the /cs and rd/wr control 

logic must be placed close to the lOBs providing those FastMap ports. The /cs 

control logic was implemented similarly. 

In the final design iteration, shift register logic for read and write control was 

removed completely and control for the /cs signal was implemented as a single 

19-bit shift register. Our main motivation for taking this approach is to increase 

the routability of the design in the congested region around the FastMap control 

signal ports. In the strictest technical terms, the resulting control waveform does 

not match the FastMap timing since the FastMap read and write signals are 

now asserted for entire URISC microcycles. However, there is enough tolerance 
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in the specification of the interface to maintain correct operation. The /cs logic 

is clocked from the inverted GC1k signal to facilitate the phase shift between the 

FastMap and normal core signals. 

5.2.4 Debugging the FURl Core Circuitry 

5.2.4.1 The Effects of Device Isolation 

One of the greatest strengths of the XC6200 architecture is the relative ease that 

circuitry can be interrogated and interacted with using the Fast-Map interface 

from the outside environment. However, we lose this valuable debugging interface 

and the XC6200 effectively becomes isolated from the outside world wlieii we 

give control of the FastMap interface to circuitry within the cell array. This 

complicates the development of circuitry and programs for the FURl system since 

the FastMap interface cannot be used to monitor the progress of the circuitry and 

core as the program executes. Developing and testing the FURl core circuitry 

itself is challenging in this environment. Since the FastMap interface becomes 

inactive during serial configuration it is often not immediately clear if a failure 

is caused during configuration or because of an error in the executing FURl 

program. 

The isolation of the XC6200 from the external system has a significant impact 

at different design levels in the FURl system. In this section, our primary con-

cern is describing the particular approach taken during the implementation and 

debugging of the FURl circuitry. Immediately following this section, however, is 

a larger presentation of the FURl design and programming environment. This in-

cludes details of the tools used to develop the FURl core arid, in particular, a tool 

to help compensate for the isolation of the FURl core when designing circuitry 

off-line. 

A lack of access to the FastMap interface means it is necessary to resort to 

physically debugging the FURl core circuitry. That is, be of analytical instrumen- 
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Figure 5.14: The VCC Hotworks Development Card 

tation such as logic analysers and oscilliscopes to monitor FURl circuitry state 

via the signals driven on the XC6200's device pins. Generally speaking, this is a 

much poorer debugging interface than the FastMap. We are limited to passively 

observing the device outputs and, if we wish to observe an internal core signal, 

it must first be routed to a device pin that is accessible to the logic analyser 

probes. To complicate matters further, there are only a limited number of de-

vice pins that we can use to output the state of internal signals. The analogue 

nature of physical debugging does serve as an advantage. The physical traces 

we collect are actual samples of the circuitry outputs taken in real time. This 

can reveal physical timing glitches and hazards that are otherwise not evident 

through the synchronous FastMap. Since we are using multiple clocks of different 

phases, being able to physically observe any such behaviours in the core circuitry 

is valuable. 

5.2.4.2 The FURl Development Platform 

To give an adequate description of the hardware testing platform, some general 

details of the hardware platform used for FURl development are appropriate 

at this point. The URISC and FURl implementations described so far have 

both been targeted at a PCI prototyping card that is compliant with the Xilinx 
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XC6200 Development System architecture [84, 30]. In particular, they have both 

been implemented on a VCC Hotworks development card. The Hotworks/XC6200 

board architecture is shown in Figure 5.14. For our current aim, the main thing 

to notice from this architecture is the existence of a series of PCI daughtercard 

connectors. These connectors are physically routed to the device pins of the 

XC6200 and allow a daughtercard to physically interact with the XC6200. Figure 

5.15 shows the VCC Hotworks prototyping daughtercard which maps selected pins 

from the XC6200 to a collection of wire-wrap header pins. Logic analyser probes 

attached to these pins can observe data being transferred between the XC6200 

and the onboard SRAM and also from the serial PROM to the XC6200 serial 

interface. The DA and DB ports are mapped to the JOBs on the North edge of the 

FPGA and form part of a console (CON) port. This port is also available as a 

readable device register implemented by the XC4000 board controller. Software 

executing oil the host processor can read values driven onto the CON port lOBs 

and, theoretically, we could use this register to inspect the internal state of the 

device. However, since we do not have write access to the XC6200, it is not 

possible to use single-step software clocking: the FURl core must execute at full 

clock speed. A logic analyser is more appropriate for capturing such free-running 

signal traces. Fortunately, the signals from user logic driven to the CON port 

JOBs can he physically sampled at the prototyping card's corresponding headers. 

5.2.4.3 The FURl Design-Debug Test Cycle 

Time design-debug cycle for testing the FURl core circuitry is shown in figure 5.16. 

The diagram shows some of the tools and auxiliary design tasks that are involved 

at different stages. The first two stages of the cycle are simply design capture, 

compilation, and mapping. With the FastMap interface, it is rarely necessary to 

instantiate additional logic to support debugging alone' 0 . Here, however, we must 

configure and explicitly route internal user signals to JOBs so that we can sample 

10 A form of software controlled clocking is the exception to this rule. 
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Figure 5.15: The VCC Hotworks Prototypiiig Daughtercard 

them with logic analyser probes attached to the daughtercard. The system clock 

speed is low enough in this instance that there are no adverse effects on circuit 

timing. Expressing this additional debugging logic in VHDL is not difficult but 

makes the place and route task even more demanding. Indeed, routing congestion 

means it is sometimes necessary to limit the number of signals routed to the lOBs. 

Stages three and four are an artifact of our use of the serial programming inter-

face on the Hotworks board to load the FURl bitstream. We must program each 

new bitstream onto a PROM or, preferably, EEPROM and then physically install 

the new EEPROM in the appropriate board socket. This is, generally, one of the 

most cumbersome ways to achieve our serial configuration goal. More elegant so-

lutions could have involved in-system re-programming of the EEPROM or wiring 

the serial interface directly to a software accessable register in the XC4000 board 

controller. Unfortunately neither of these were supported by the development 

platform. 

In the next stage, the testing equipment must be physically reconfigured to 

match, for example, any changes in the signals mapped to the debugging interface. 

This includes recalibrating and reprogramming the equipment, and also updating 

the probe attachment configuration to match any changes to the debugging signals 

driven to the prototyping card. Once this is done. we can capture a signal trace 
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of the FURl core in operation. In our earlier discussions regarding the XC6200 

serial interface, we considered both master and slave serial configuration and 

advocated the use of master configuration to facilitate an autonomous FURl. In 

the Hotworks platform, the XC6200 has a slave relationship to the serial PROM 

and relies on the services of the hoard controller to initiate the serial download. 

Whilst the current implementation does not quite achieve full autonom, this is an 

attribute of the development platform used and riot a symptom of a fundamental 

inability to achieve full autonomy. 

A simple board console program, QPCItest, allows us to trigger the initial 

serial configuration from the host systern and is described in more detail in a 

later section. An auxiliary design task at this stage is to create small fragments of 

FURl code that will exercise the core feature we wish to test. This would include, 

for example, hand coding a small sequence of instructions that repeatedly cause 

a FastMap transaction. The hoard console also facilitates loading this instruction 

sequence into the appropriate region of onboard memory. The serial configuration 

sequence is then initiated and we capture traces of the internal FURl signals 

SRAM bus transactions as they occur in real time. The final cycle stage is 

dedicated to analysing these waveforms and traces to identify the existence any 

errors and deduce their cause. 

5.2.4.4 Reducing the number of debug iterations 

Each design change to the FURl core involved an iteration of this long debug 

cycle. The incremental approach used in the development programme, however, 

helped to reduce the number of FURl debug iterations. For example, since the 

FURl core implementation was evolved directly from the simpler URISC imple-

mentation which does not require the isolation of the XC6200 to operate. We 

could, therefore, debug the URISC implementation relatively rapidly using the 

facilities of the FastMap interface and single-cycle software clocking. The net 

effect of this is that it provided a strong foundation and helped to validate the 
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Figure 5.16: FURl Core Hardware Debugging Cycle 

FURl core circuitry. 

The design-debug cycle in Figure 5.16 shows an limited debugging stage ad-

jacent to the placement and routing of the core design and feeding directly back 

to the first cycle. Here, we avoid configuring the internal FastMap interface and 

interact with a limited or constrained version of the FURl core circuitry. For 

example, a circuit simulation of the FastMap interface was initially designed and 

attached to the internal address, data, and control paths of the FURl core. The 

simulated internal interface was designed to respond as closely as possible to the 

real FastMap interface. Circuitry debugging tools such as Qlnspector, which is 

described in the following section, could then be used over the FastMap interface 

to monitor the FURl core as it interacted with the simulated interface. In the 

early stages of the FURl core implementation, this path dominated the design- 
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Figure 5.17: qlnspector Design Views 

debug cycle. We only pursued a full debug cycle after the core reached a suitable 

level of functionality. 

5.2.4.5 Qlnspector 

qlnspector is a Linux tool that facilitates interactive, visual validation of the 

functionality of XC6200 SLU circuitry. The tool offers three design views: an 

interactive board view; and both waveform and trace views of selected symbols 

within the SLU circuitry. Figure 5.17 shows a snapshot of these views as the main 

debugging environment used in the development of both the FURl core circuitry 

and FURl-compatible SLUs. The tool uses the XC6200's FastMap interface to 

determine the state of the target SLU. A rich scripting language is implemented 

to allow the SLU designer to apply sequences of test vectors, gather the trace 

results, and access most of the user interface control functionality. 
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5.3 Summary 

This chapter presented the design and implementation of the Flexible Ultimate 

RISC, an evolution of the Ultimate RISC. We presented a detailed discussion on 

the challenges of implementing a self-modifying microarchitecture on the target 

FPGA architecture. From here we then considered some features of the develop-

ment and debugging process and environment of the FURl core. 
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Chapter 6 

The FURl Programming and 
Runtime Environment 

In this chapter we present details of a programming and runtime environment 

for the FURl core described in the previous chapter. The chapter has two main 

components: 

• First, we present details of the design flow and an associated toolset for 

programming the FURl core. This discussion pays particular attention to 

the merits and complications associated with different approaches to loading 

SLU bitstreams. 

• Second, we introduce the FURl executive as a basic, multitasking runtime 

environment for the FURl core. During this discussion we describe a base 

protocol for interacting with the executive and consider issues such as FURl 

code embedded within the host FPGA itself. 

6.1 Programming the FURl Core 

So far, we have presented a comprehensive discussion of the design, operation and 

implementation of the FURl core. What we have yet to present, however, is a 

programming environment and associated tools that will allow us to exploit the 

FURl core. Figure 6.1 shows the design flow that has been developed to facilitate 

FURl system construction. Before we can explore this in detail, however, it is 
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worthwhile clarifying the definition of a FURl program. 

6.1.1 What is a FURl program? 

In a fundamental sense, a FURl program is simply the sequence of move in-

structions that is executed by the FURl core. However, when taken literally, 

the raw sequence of moves rarely amounts to any form of complex calculation. 

As a transport-triggered architecture, FURl depends on the availability of the 

appropriate system bus SLUs for use as transport targets. A FURl application, 

therefore, comprises a collection of SLUs that are used as targets for the data 

transports effected by the execution of the move instruction sequence on the 

FURl core. From this point of view, it is clearer that the design flow presented 

in Figure 6.1 addresses more than just the construction of FURl programs: it is 

a framework of tools and libraries used to create FURl applications. 

6.1.2 The FURl Design Flow 

We can broadly partition the design flow into two sections: the right side of the 

flow addresses the construction and execution of FURl programs whilst the flow 

to the left considers the construction of SLU circuitry. In between these two 

sections is a central flow that provides a bridging mechanism to facilitate the 

loading and interaction of SLUs within a FURl program. 

6.1.2.1 SLU Design Flow 

SLUs enter the design flow either as unprocessed 'soft' VHDL descriptions or 

as 'hard' pre-defined SLU bitstreams in circuit libraries. The VHDL side of the 

design flow uses two of the XC6200 standard design tools to compile SLU descrip-

tions to bitstreams: Velab compiles the structural VHDL description of an SLU 

into an EDIF netlist and the XC6200 place and route software maps the netlist to 

the FPGA architecture and generates an appropriate bitstream'. Essentially this 

1 xC6200 bitstreams are commonly referred to as CAL files where the term CAL is an historic 
reference to the Algotronix CAL which preceded the XC6200. 
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Figure 6.1: The FUR.I Design Flow 

is the same circuitry design flow used for the FURl core circuitry. Rather than 

outputting a formatted data file for use with an EEPR.OM programmer, however, 

the place and route tools produce a raw bitstream. 

Once the SLU has been rendered into a bitstream, the intermediate tools are 

used to convert it into a form that we can use within a FURl program. Two of 

these tools, cal2img and cal2furi convert the bitstream into a loadable' form. 

That is, we convert the raw bitstream data into an assembly representation of one 

form or another that can be used later to instantiate the SLU on the cell array. 

The two tools, discussed below, generate different assembly representations of a 

circuit bitstream. 

Instantiating the SLU involves the services of a circuit loading subroutine. 

We will describe different forms of circuit loading routines in the later sections of 

this chapter, but a short, high level overview of the loading process is appropriate 

before discussing the loader support tools below. The main task of an SLU 
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loader is to transfer each word of an SLU's bitstream data from the general data 

memory into the configuration memory of the host XC6200. The exact sequence 

of actions performed to transfer the bitstream depends on the organisation of the 

bitstream in data memory. The loader subroutine understands the structured 

layout of the bitstream data and can transfer each word of the bitstream image 

to its appropriate destination within the XC6200's configuration memory. 

cal2furi takes the bitstream data and generates two files. The first file 

contains a specialised assembly subroutine that, when run, transfers the target 

SLU bitstream data from a specific, hardcoded locations in data memory to the 

XC6200's configuration memory. The second file contains the raw bitstream data 

encoded as a memory image. This memory image is actually a sequence of com-

mands to the execution interface of the execution environment 2 . When each 

command is applied, it places a single word of the bitstream data at a particular 

location in board memory. Each location matches a location that the specialised 

loader subroutine expects to find a single word of the bitstream. cal2img converts 

the SLU bitstream into an assembly datastructure, along with some assembly con-

stants to describe the contents of the structure. A generalised loader subroutine 

can be passed these constants as operands, allowing it to dynamically instantiate 

different bitstreams. 

With cal2furi it is necessary to define, in advance of the main program 

assembly, a region in program memory where the SLU bitstream can reside. It 

is also necessary to explicitly 'link' the SLU memory image with the memory 

image containing the application program itself. Manually arranging the memory 

floorplan of the FURl application is not sustainable in anything other than the 

small scale. However, the cal2furi mechanism has the advantage of avoiding 

the control-flow calculations required by a generalised circuit loader programmed 

2 llere, the execution interface is formed by the debugging tool qPCltest. This tool has a 
script-style command interface. One of the features of this interface allows allows the SRAM of 
the Hotworks board to be populated with data. It is this operation that we exploit to fill the 
program and data memory of the Hotworks board prior to activating the FURl core itself. 
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in FURl assembly. 

A third tool, sym2asm, generates an assembly-level SLU interface description 

to facilitate interaction with an SLU after it is loaded. The assembly interface does 

not contain any program code; rather, it comprises a series of literal declarations 

and constants that define the position of an SLU within the FURl memory map. 

In particular, the interface specifies the exact memory locations of each SLU input 

and output along with the map register values that must be applied when the 

registers are being accessed. Earlier research [13], has shown that deriving this 

interface information from the raw XC6200 bitstream is non-trivial. The intention 

here is not to derive this information from the raw bitstream, although it is noted 

that the approach used in the XC6200 configuration compression technique[49] 

shows some promise for this. Instead, sym2asm exploits a file containing symbolic 

information about an SLU that is produced as a by-product of the place and 

route process. 

6.1.3 The FURl Assembler 

Expressing anything other than the simplest of algorithms using only the FURl 

core's move instruction is very cumbersome. To facilitate the construction and 

expression of larger FURl programs, a FURl assembler was developed. The 

FURl assembler operates on sequences of raw move instructions at its core, but 

is itself flexible and supports the definition of a higher level instruction set in-

terface using instruction macros. This is similar to the dynamic assembler used 

in the programming environment [22] of the DISC project. In both situations, 

we have a processor microarchitecture capable of using dynamic reconfiguration 

to facilitate a flexible instruction set. However, the operational characteristics of 

the FURl core are quite different from the DISC processor. The DISC dynamic 

assembler focuses on supporting a flexible instruction set through defining dif-

ferent instruction formats. The FURl assembler, on the other hand, has a fixed 
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basic instruction and format and facilitates a flexible programming instruction 

set through macros which define the set of basic data transports to SLUs that 

are required to implement each particular instruction. A complex compound' 

instruction can be defined from a sequence smaller, simpler instructions. Each 

macro has a header, which defines the instruction operator name and number of 

operands, and a body comprising the sequence of instructions which implement 

the compound instruction. When the FURl assembler is processing a particular 

assembly file, it substitutes each macro instruction with a specialised instance of 

the macro body. Using this mechanism, it is possible to build a richer assembly 

programming interface on top of the minimal FURl core instruction set. 

Earlier in this chapter, we discussed the lack of URISC addressing modes and 

how their absence can be overcome with programming conventions. The FURl 

assembler supports many of the standard features of an assembler, such as declara-

tion of data literals, symbolic references to those literals, and named instruction 

labels. The assembler also supports or applies programming conventions used 

to implement the more complex addressing modes over the underlying absolute 

addressing mode. For example, the assembler supports immediate addressing 

explicitly through a table of immediately-addressed literals. Every instance of 

immediate addressing is converted to an absolute address within this data table 

which is then included in the final binary image of the program. Indirect ad-

dressing is supported in two forms. In the first form, an asterisk '*' operator can 

be applied to dereference any literal operand during assembly, effectively substi-

tuting it for its initially defined literal value. The second form is more dynamic 

and uses the self-modifying code strategy described earlier in this chapter, but 

requires that the FURl assembler supports the application of a static offset to an 

instruction label. This allows us to define the point in the instruction stream that 

is to be modified relative to a particular instruction label. The implementation 

of the strategy can be captured as a specialised version of an instruction macro. 
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6.1.4 Kernel Circuitry 

The calculations that underpin basic control flow in a FURl program require that 

we define a set of kernel' circuits. In implementation terms, the kernel circuits are 

a set of SLUs that are loaded onto the host FPGA after the FURl core circuitry 

has been bootstrapped and before the main control program of the FURl core 

begins executing. The SLUs perform simple ALU calculations that are used when 

implementing the URISC-style conditional branches that we described in Section 

5.1.2.1. The kernel circuits themselves are not directly wired to the datapath of 

the FURl IEU, we use the standard FastMap mechanism to access their input and 

output registers. However, their use as primitive, low level operations in system 

operations such as branching advocates that we consider them as something other 

than standard application SLUs. We may consider the kernel circuits as "system" 

SLUs, but the term, as defined in Chapter 4, refers to a different context does not 

directly translate onto the role kernel circuits play: the circuits themselves do not 

access any privilaged resources within the host array. Rather, we use the term 

kernel to indicate that the circuits are at the heart of the set of circuits required 

to support computation within the FURl system. 

The FURl system, as implemented, uses three kernel circuits: a 32-bit adder, a 

32-bit comparator, and a 32-bit logical-AND. Together, the three circuits provide 

enough computational facility to implement a branch-if-not-equal operation. In 

detail, the 32-bit comparator implements the equality test. We use careful circuit 

floorplanning to contrive a placement of the comparator's output register such 

that it lies in the second bit position with respect to the circuit inputs. This 

allows the same map register values to be used for accessing both inputs and 

outputs of the SLU. Reading the comparator output with the FastMap interface 

will then return either an integer zero or integer two. The logic-AND SLU is used 

to mask out any result bits that are not actually part the comparison result. The 

masked result and proposed branch address can then be fed into the inputs of the 
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32-bit adder which has the effect of biasing the jump address according to the 

result of the logical test operation. The biased address presented on the outputs 

of the adder is then moved directly into the PC, causing the conditional branch 

to take effect. 

Kernel circuits are generally the first circuits to be loaded by any bootstrap 

or control program executing on the FURl core. This assumes, of course, that 

we do not include them as part of the FURl core bitstream that is programmed 

onto the serial PROM. Not taking that approach affords slightly more flexibility 

overall but, in the early stages of the FURl core debugging, some limited test 

SLUs where included in the FURl PROM. This was done solely to verify, using 

an appropriate FURl test harness, that state accesses were operating correctly 

over the FURl core's internal FastMap interface. Development of the cal2furi 

tool was motivated as a means of systematically loading kernel circuits without 

relying on the services of any SLUs: to recall, only basic move instructions are 

used in the loader subroutines generated by cal2furi. 

6.1.5 Assembly Libraries 

In the FURl design flow, we see that the FURl assembler receives source files 

from the SLU point tools and application code created by the system program-

mer. However, a third set of source files are used by the assembler to actually 

define and shape the programming environment. Normally, the assembly level 

programming environment seen by the system programmer is already specified 

by the hardwired features of the processor architecture itself. For example, the 

processor may have a defined set of ALU operations and a particular number of 

device registers. Even subroutine call stack processing will be influenced by the 

underlying microarchitecture. 

This is not the case in the FURl environment. Here, we can define an instruc-

tion set interface through the macros contained in one of the standard assembly 
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library files. On a larger scale, we can define and control, in detail, exactly how 

the FURl subroutine mechanism operates. The following sections describe some 

of the main assembly library files that underly the FURl programming environ-

ment used by the programs in this thesis. 

6.1.5.1 Core Programming Environment Features: Instructions and 
Constants 

A series of assembly library files provide a definition of one core instruction set 

that is available to FURl programs. This includes the definition of instruction 

macros which are directly based on the existing facilities of the FURl core. For 

example, the address of the PC and macros for the unconditional jump instruction 

'jmp' are defined here. Instruction macros and interface constants which harness 

and represent the facilities of the kernel SLUs are also introduced here. For 

example, with respect to our earlier discussion of the three basic kernel circuits, 

we define the three kernel SLU instructions and, add, and cmp. We also define the 

conditional branch macro alongside the kernel SLU macros because of the close 

relationship it shares with them. 

6.1.5.2 Subroutines 

Subroutines are an essential programming construct and their implementation in 

the FURl programming environment can be slightly complicated. Two forms of 

subroutine are supported in the initial programming environment: lightweight 

subroutines; and full-strength subroutines. The primary difference between the 

two is the amount of context information that is saved and restored between 

calling and returning from a subroutine. 

Lightweight subroutines are defined via two macro instruction definitions, j sr 

and ret, and maintain the absolute minimum amount of state information needed 

to make, and return from, a single subroutine call. Specifically, we define a 

single location in memory that acts as a minimal call-stack. On making the 
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subroutine call, we place the address of the instruction that follows immediately 

after jsr in the minimal call-stack. Calling ret to return from the subroutine 

then simply involves moving the contents of the single-cell stack to the PC. At 

first this approach seems overly restrictive, but it has the advantage of having 

a very low processing overhead. We only need two move instructions to effect 

the subroutine call: one to store the address of the return point, and one to 

unconditionally branch to the subroutine entry point. Returning only requires 

a single move to unconditionally jump to the return point. Furthermore, the 

mechanism relies only on the facilities of the FURl core circuitry and there is no 

need to interact with any kernel SLUs. However, since this approach only supports 

subroutine calls with a depth of one, it is quite significantly constrained. 

Full-strength subroutines allow a deeper nesting of subroutine calls using a 

call stack implemented in program memory and a frame pointer which traverses 

up and down the stack as subroutines are called and return. This motion requires 

the support of the kernel adder SLU to calculate each new frame pointer address. 

Our use of the adder makes modifying the state of the XC6200's device registers 

unavoidable. We must enforce the appropriate kernel context' on the device 

before interacting with the kernel SLUs. Specifically, the correct map and mask 

register values must be set when we use the adder SLU to modify the frame pointer 

(we can recall from the discussion in Chapter 3 how these registers influence 

register state accesses within the XC6200). To protect the subroutine caller from 

these changes, the device context is stored alongside the return address in the 

call stack. In comparison to the lightweight subroutines, however, this translates 

to an additional overhead when making and returning from each call. 

6.1.6 Challenges and approaches to Loading SLUs 

Using the memory-mapped FastMap interface to configure a new SLU onto the 

cell array is another fundamental operation in the FURl environment. The SLU 
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loader facilitates this using some of the subroutine facilities introduced above 

and the output of the cal2img point tool. Loading the configuration bitstream 

of an SLU into the cell array at first appears to be a fairly trivial matter of 

moving each word of the bitstream into the appropriate section of the FastMap 

memory map. However, the situation becomes complicated when we plan to use 

circuitry already resident on the array to effect that configuration. We must 

address the fact that a bitstream can modify device registers as a valid part of 

its configuration. For example, we have already seen this characteristic in use to 

implement the initialisation of the rpfds used in the FURl control logic. The 

discussion of FURl subroutines has already shown how code executing on the 

FURl core can be influenced by subroutines altering the device state. Here, we 

must protect the loader subroutine from any modifications to the device state 

that occur as a side-effect of loading the valid configuration data. 

This overall situation raises the interesting question of, what is a valid bit-

stream? In the literature introducing the two basic models of VC applied some 

constraints to which array resources a bitstream could access. Only cells within 

the bounding box of the SLU and, of particular relevance to this discussion, only 

limited access to the XC6200's control registers would be allowed in a valid bit-

stream. Two immediate candidate device registers for constrained access would 

be config and devicelD. These registers control aspects of the physical format 

of the XC6200's device interface and should not be altered after the FURl core 

becomes active. However, the map, mask, and wildcard registers are valid con-

figuration register accesses within a given bitstream since they directly influence 

the correct instantiation of the SLU circuitry. 

The loader subroutine is sensitive to modifications of the device state because 

it uses kernel SLUs to make dynamic control flow decisions. The specialised 

subroutines generated by the cal2furi point tool are not sensitive to the modifi-

cation of device registers as they are linear sequences of move instructions that are 
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executed from start to finish: their control flow is being entirely defined through 

the sequential incrementation of the PC. However, this approach requires that we 

also store a specialised loader subroutine for each bitstream, increasing the spatial 

memory costs. For a generalised loader, the programmer identifies the location of 

a particular SLU data structure in memory along with the length of that struc-

ture when calling the loader subroutine. With that information, the generalised 

loader subroutine iterates through the SLU datastructure, transferring it to the 

host FPGA's configuration memory. 

To protect the control flow of the loader from changes to the device state, an 

explicit restore and save of device state occurs before and after any configuration. 

Specifically, two instruction macros, save-device-state and restore _devi ce_state 

allow the programmer to specify a state buffer in memory to which device state is 

then captured and restored. Two device state buffers are used by the subroutine: 

a kernel state buffer, identical to that used by the full-strength subroutine imple-

mentation; and a CAL-state buffer to retain a copy of the device state created 

when loading the SLU bitstream. The kernel state buffer is essentially static and 

is applied after each set of configuration writes. The CAL-state buffer maintains 

the device state created by loading the bitstream data of the SLU. Since this can 

change as a consequence of each act of configuration, it is captured after each set 

of configuration writes and re-applied before any subsequent configurations. For 

example, if a write changes the value of a map register, subsequent writes in the 

bitstream may depend on the map register being set to that value. The CAL-

state buffer would maintain these map register settings between writes, ensuring 

that subsequent writes occur within the correct device state. 

Having to save and restore the device state amounts to an overhead. However, 

we can consider amortising that overhead by segmenting the bitstream data into 

blocks which contain more than one write to the configuration memory, and then 

applying a block of configuration writes. Still, we should note that we cannot rely 
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on the services of the kernel SLUs to implement a conditional loop construct for 

transferring the bitstream. Instead, we dynamically synthesise a sequence of move 

instructions that will, when executed, explicitly move the block of configuration 

data to the correct set of Fastfvlap addresses. One instruction is generated for 

each datum in the block of the SLU bitstream being configured. Once the loader 

subroutine has re-applied the CAL state, an unconditional jump can be made into 

the code buffer to effect the transfer of configuration data. The last instruction 

synthesised for this code buffer is an unconditional jump so that, when the block 

configuration completes, control returns to the point in the loader subroutine 

which will immediately start to capture the device state. 

A small experiment was run to explore the effectiveness of the block based 

loader with different block sizes. The FURl core was assigned the task of re-

peatedly loading a 32-bit adder SLU as many times as possible in a fixed time 

period. The experiment was repeated with successively larger block sizes to see 

how the effectiveness of the loader changes. Since only the block size is changing 

between experiment iterations, the count of completed SLU loads at the end of 

each experiment run is indicative of the effectiveness of the block based loader for 

that particular block size. We should note here that we are specifically explor-

ing the overheads associated with different block sizes, rather than advocating 

the arbitrary segmentation of a bitstream into fixed size blocks irrespective of 

context. 

To implement this experiment, a small test harness program was created in 

FURl assembly language to maintain a counter variable and repeatedly invoke 

the loader subroutine. Other experiments using a similar harness had already val-

idated the block loader subroutine and we did not concern ourselves with proving 

that the SLU is indeed loaded properly since this is demonstrable separately. 

The FURl assembler outputs a memory image of the test harness which is com-

bined with the memory images of the kernel circuitry and then presented to the 
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qPCltest board console program. qPCltest is a Linux application that provides 

very low level access to the features of the Hotworks development system. For the 

purpose of this experiment, we use a qPCltest command script to transfer the 

application memory image to the development system's onboard SRAM, hand 

subsequent control of the onboard SRAM to the XC6200, and then initiate a 

serial download of the FURl core. The FURl core then executes the test harness 

program, whilst qPCltest waits for the fixed time period of one second to expire. 

At that point the command script forceably triggers a reset of the XC6200 and 

retakes control of the onboard SRAM. We can then recover the contents of pro-

gram variables, in particular the load counter, using qPCltest's hoard memory 

interrogation commands, augmented with symbol table information generated by 

the FURl assembler. 

Figure 6.2 contains a graph showing the results of this experiment run at three 

different clock speeds on the FURl core. We show the three experiment variations 

to demonstrate that there is no disproportionate increase in loader effectiveness 
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to be gained by simply increasing the physical clock speed of the FURl core 

itself. qPCltest relies on the Linux sleep system call to implement the delay 

between activating the FURl core and resetting the XC6200. However, scheduling 

variations in such a multitasking environment mean the actual amount of time 

that a process is suspended by sleep can vary. Therefore, the load counts plotted 

on this graph for each block size are averages of the load count values observed 

through repeated runs of the test harness for the given block size. The first 

thing that we can note about this graph is that there is indeed an increase in 

the effectiveness of the loader subroutine by increasing the block size. The SLU 

circuit we are loading comprises 615 writes and we can see from the graph that, 

as we approach block sizes of 256, 512, and 1024, there is little increase in the 

loader's effectiveness. 

We can compare the effectiveness of the block loader against the effectiveness 

of the cal2furi loader subroutine. Figure 6.3 shows the results of a similar 

experiment to that executed for the block loader. In detail, a FURl test harness 

program is created to count the number of times that the FURl core can load 

the same 32-bit adder SLU using the loader subroutine generated by cal2furi. 

The FURl core executes for the same time period used earlier to facilitate a fair 

comparison with the results from the previous experiment. Again, to reduce any 

impact from scheduling variations on the delay period, the experiment is run 

multiple times at each clock speed. 

The data plotted in the graph of Figure 6.3 shows the loader count produced 

on each iteration of the experiment, again at the three different clock speeds. One 

of the first things we can note about this graph is that the load count magnitudes 

are significantly higher than those achieved in the previous experiment, even after 

amortising the state buffering overheads of the block loader. This difference can 

be attributed to the cost of dynamically synthesising the code buffer instructions 

used in the block loader. The runtime performance of the cal2furi loader repre- 
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sents the maximum attainable by a FURl circuit loader implemented solely as a 

FURl program since it does not suffer from instruction synthesis or device state 

buffering overheads. The only runtime overhead associated with the cal2furi 

loader is the cost of the subroutine call to invoke it. Whilst the runtime effec-

tiveness of this loader is apparent, we pay for this through the significant static 

spatial overhead incurred by accommodating both the bitstream image and its 

corresponding loader program in memory. 

In comparing the two approaches, we can see that. there is a significant cost 

associated with synthesising the block loadefs code buffer instructions. Whilst 

this cost cannot be eliminated, it may still be possible to make the block loader 

more effective by helping it more rapidly amortise the state buffering costs. The 

block loader discussion assumed a static block size and split the bitstream data 

accordingly. However, this essentially disregards any potential structure within 

the SLU bitstream. An interesting alternative approach amounts to an adaptive 

block size. Here, the block size naturally adapts to fit the underlying structure of 
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the bitstream data in the hope that the bitstream naturally segments into a few 

large, but irregularly sized blocks which are delimited by harmful device register 

accesses. If this is true, we can load each large block in its entirety and benefit 

by eliminating the need to capture and restore device state between block loads 

since we know that the influence of the device registers does not extend beyond 

the edge of the block. The only overhead that remains would be the need to 

reapply a kernel-state since, similarly to the static block approach, we cannot be 

sure that the device has been left in a suitable state after the adaptive block has 

been loaded. 

To advocate this approach further, however, we must perform an analysis 

of the structure of some actual SLU bitstreams. What we are particularly inter-

ested in is exploring the relationships between parts of the configuration bitstream 

which modify the device state to those which actually effect changes to cell con-

figurations. For example, investigating what fraction of the overall bitstream is 

actually involved in modifying the device state and then considering how these 

writes are actually distributed throughout the whole bitstream. It is worth noting 

that the open architecture of the XC6200 is key in facilitating such an analysis 

since we must understand in detail what different parts of the bitstream data are 

actually responsible for. 

The first set of analyses that were run were used to determine the relative 

distributions of different address types in the bitstream. To recall, the bitstream 

of the XC6200 is comprised of a series of address and data pairs. The upper bits of 

the address reveal whether the data will be written into a device control register, 

or into a region of configuration RAM directly influencing a cell structure. A 

series of adder SLUs and SLUs from an implementation of the Data Encryption 

Standard (DES), which is discussed later in Chapter 7, were analysed. Both sets 

of bitstreams were generated using the standard XC6200 place and route tool. 

The first graph from this analysis, contained in Figure 6.7, shows the address 
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distribution for a sequence of adder SLU bitstreams with successively larger bit-

widths. The graph shows, for each SLU, the collective percentage of 'cell-data' 

writes: that is, writes applied to the cells, lOBs, and routing switches. Then, a 

more detailed breakdown of the writes to each type of control register is given. 

From this first graph we can see that a large majority of writes in basic adder 

SLU bitstreams are configuring cell data: even for the smallest adder, over 94% of 

the bitstream is cell data. However, aspects of the bitstream generation process 

may colour our interpretation of the graph. The standard place and route tool 

for the XC6200 actually supports the customisation of the style of SLU bitstream 

that is produced. For example, the bitstreams presented in this first graph were 

specifically generated for a 32-bit FastMap data bus. 

Figure 6.8 shows an address distribution for the same SLU bitstreams gen-

erated for an 8-bit wide FastMap data bus. We can see in this graph that the 

percentage of cell data writes is lower than that for the same SLUs in 32-bit mode. 

This is partly due to a proportional increase in the number of distinct writes that 

are required to load 32-bit wide data values into the 32-bit wide device registers. 

However, a closer examination of the raw statistics from the analysis reveals that 

for the smaller sizes of adder, an 8-bit wide data bus can be more effective for 

encoding the circuit bitstream. For example, the total size of the bitstream data 

for adder02 was 174 writes in 8-bit mode, whilst the same bitstream in 32-bit 

mode requires 245 writes. As the size of the adder increases, this benefit reduces 

and the 8-bit mode becomes costly for adders with a bitwidth of 16 or higher. 

Overlay bitstreams are another variation in bitstream style that are actually 

critically important to the FURl environment: all system bus SLUs loaded by 

FURl are generated as bitstreams in overlay mode. The two previous sets of 

bitstreams contain configurations of not only the adder circuitry, but also to 

initialise the XC6200 itself. In effect these SLU bitstreams were generated with 

the assumption that they would be the first circuits placed on the cell array after 
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it has been reset. Bitstreams in 'overlay' mode, on the other hand, are generated 

with the belief that the device is already initialised and that other circuitry may 

be already configured on the cell array. 

A third set of adder SLU bitstreams was generated, this time in 'overlay' 

mode and Figure 6.9 shows a graph of their address distributions. We can see 

immediately that SLUs in overlay mode have a much lower percentage of cell 

data writes than either of the two other bitstream styles. Also we can note that 

there are no writes to the FastMap ID register since we are assuming the register 

has already properly configured with at least one 'full' SLU bitstream. In the 

graph we see that over a quarter of the bitstream is now occupied by writes to 

the XC6200's mask register. 

To determine if this behaviour is a feature of the adder circuitry we re-ran the 

address distribution analysis on a different set of SLUs. Figures 6.10 and 6.11 

show the address distribution graphs for two sets of SLUs from an implemen-

tation of the DES in standard and overlay modes respectively. The DES SLUs 

in each of these graphs, with the exception of the SBOX SLUs, are structurally 

heterogeneous whereas the adder SLUs were all essentially variations on the same 

structural theme. From the two graphs we can see that, although the magnitudes 

are slightly different from those we have seen in the adder SLU distributions, 

the general form of the distributions is indeed the same. The FURl-compatible 

overlay SLUs again have a high percentage of writes to the device configuration 

registers, in particular to the mask register. 

We can argue that the increase in the mask register usage is directly related to 

the nature of overlay SLUs. To clarify, a 32-bit write to the cell configuration store 

for a standard SLU may actually influence more features of the cell than it needs. 

For example, only one byte of the 32-bit configuration word may actually contain 

significant configuration data. Imposing the remaining bytes will also influence 

the other features of the cell. The explicit assumption that the standard SLU is 

164 



not sharing the target cells with any previously configured SLUs means we do not 

have to worry about overwriting configurations from a different SLUs. Therefore, 

writing the additional bytes is a safe operation. However, the overlay SLU cannot 

support the same assumption. It is entirely possible that writing the whole 32-

bit configuration word would overwrite previous valid configuration data from a 

different SLU. The heavy use of the mask register by overlay SLUs in comparison 

to the standard SLUs, therefore, is to protect cell configurations already applied 

by previous SLUs. 

In the address distributions presented so far, we have assumed that all writes 

to the XC6200's control registers are potentially harmful but this is not the case. 

Whether a control register access is benign or harmful depends on the degree 

of strictness that we wish to impose on the assumptions made by the loader 

subroutine. At one extreme there are writes to some control registers that are 

fundamentally benign: the FastMap ID register writes are an example of this. 

The map register, however, is at the opposite extreme. We know that writes to 

the map register are potentially much more harmful, since they impact on our 

use of the kernel circuitry. They threaten not just the correct loading of the SLU 

bitstream, but the operation of the loader subroutine itself. 

The mask register, on the other hand, does not influence FastMap state trans-

actions and therefore does not pose a threat to the control flow calculations of 

the loader. We can argue that the heavy use of the mask register in overlay SLUs 

should not indicate the start or end of a loader block. However, the mask reg-

ister setting does affect any cell-data configurations that follow it and, as such, 

is part of the device state that must be present for the correct loading of the 

SLU bitstream. If we approach the adaptive block definition conservatively, we 

would therefore include writes to the mask register as a feature of the bitstream 

that delimits a cell-data block. The use of wildcard registers within the bitstream 

can affect the FastMap state transactions but is potentially less damaging to the 

165 



loader's control flow. Changing the wildcard register values whilst the SLU is be-

ing loaded means that we may broadcast operands intended for one kernel logic 

SLU to multiple registers but does not stop the operand reaching its intended 

destination. The main danger is that the operand will also reach input registers 

of other SLUs and overwrite meaningful values. Whilst this is acknowledged as 

a potential danger, we can also observe from the raw bitstreams themselves that 

the standard place and route tools limit the influence of wildcard registers to 

cell-data configurations'. Therefore, we can argue that the wildcard registers are 

akin to the mask register in terms of their limited potential harm to the loader 

subroutine. 

The address type distributions presented above establish the potential for dif-

ferent cell-data block sizes but they do not demonstrate the effect that the de-

vice register accesses have on the actual distribution of block sizes within the 

bitstream. Therefore, the same collection of SLUs was analysed to reveal their 

actual cell-data block sizes. This was done twice: first, allowing all device register 

writes to delimit a cell-data block; and, second, allowing only the map register 

accesses to delimit the block. 

Figures 6.12, 6.13, and 6.14 show the actual distribution of cell-data block 

sizes in the three sets of adder SLUs. Similarly, Figures 6.15 and 6.16 show the 

distribution of block sizes for the two DES SLU sets. In both cases, any device 

register access can delimit a block. From these graphs, we can see that there is 

a striking difference in the magnitude of block sizes in standard SLUs to those 

observed in overlay SLUs. For example, the block size distributions for standard 

adder SLUs contain blocks easily approaching lengths of 100 cell-data writes. 

Overlay SLUs, on the other hand, appear to struggle to reach block lengths of 

more than 10 for all bar the adders with the largest bitwidths. We can also see 

'We should note that this does not consider other XC6200 toolsets. However, we discussed 
constraints on the validity of an SLU bitstream earlier and applying those constraints in this 
context would prevent the SLU bitstream's influence reaching beyond the bounding box of the 
SLU itself. 
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that a similar situation exists in the two DES SLU graphs: the standard DES 

SLUs often have potentially long cell-data blocks of nearly 1000 writes whilst the 

DES overlay SLUs again struggle to reach block sizes of more than 10 consecutive 

cell-data writes. 

Whilst the block size distribution graphs give a feel for the kind of block sizes 

contained within each of the SLU sets, we cannot deduce how often a particular 

block size is likely to occur. It remains possible that, even in the overlay SLU 

sets, the larger block sizes are still the most commonly occurring. Therefore, an 

additional analysis of the bitstream data was run to determine the frequency of 

the different constituent block types. For the adder and DES SLUs generated as 

normal bitstreams, the block frequency did not tend towards either small or large 

block sizes. Figures 6.17 and 6.18 show the frequency of the different block sizes 

for the adder and DES overlay SLU sets, but excluding the 8-bit adder SLU set. 

From these graphs we can see that the overlay SLUs do indeed comprise mainly 

very small blocks. Both graphs show a bias towards large numbers of very small 

blocks with only a few of the larger block sizes used in each overlay bitstream. 

Figures 6.19, 6.20, 6.21, and 6.22 show the block distributions for the adder 

and DES SLUs in both normal and overlay modes when only the map register ac-

cesses delimit blocks. Figures 6.23 and 6.24 also show the frequency of block sizes 

within the DES SLU sets. For the adder SLUs, there was a very low frequency 

count for all block sizes. The DES SLUs show higher frequency distributions 

because the SBOX SLUs in both overlay and normal modes exploit the register 

resources of the XC6200 function unit to implement LUTs containing each SBOX 

value. The register rich nature of these designs means there are more map regis-

ter accesses during configuration. In these graphs we can see that, when we only 

consider the most harmful style of device register access as a block delimiter, the 

block sizes tend to be larger and there is less of a bias towards very large numbers 

of small blocks in the overlay SLUs. 
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6.1.6.1 Analysis and Conclusions 

The major conclusion that we can draw from the analysis and experimentation 

in this section is that the SLU bitstreams can indeed contain large regions of 

device configuration that are benign with respect to other FastMap transactions. 

In making this conclusion we must nonetheless acknowledge an important caveat: 

the nature of the SLU bitstream can be radically different depending on the 

parameters that have been asserted during its generation. This is an important 

caveat since the performance enhancing VC techniques that we discussed earlier in 

Section 4.4 actually worsen the block-size distributions. Applying mask register 

based configuration compression, for example, will actually have the effect of 

decreasing the average block size. 

In relation to our search for sequences of benign FastMap transactions, we 

have found that the block sizes that are observable within the bitstream can 

be radically different depending on the block-delimiting criteria that we wish to 

apply. When we took a conservative approach to defining which features of the 

bitstream can actually delimit a block, then the block sizes we observed in the 

overlay bitstreams tend to be small. With a less conservative approach, however, 

the block sizes within the bitstream not only grew, but also began to reflect the 

structure of the SLU circuitry itself. This is most apparent in the map-delimited 

block strategy applied to the DES SBOX overlay SLUs: the bitstreams separated 

into more small blocks than any of the other DES SLUs because of the register-

rich nature of the circuitry. 

Overall, our main conclusion is positive since it shows that there is promise 

in using the adaptive loading strategy for SLUs. However, we can also conclude 

that the analysis has demonstrated that there are some classes of circuit that 

have a higher proportion of malignant FastMap transactions. As a technique, 

adaptive block loading is very relevant over more than one FPGA technology. 

Since the Virtex architecture also has a modal loading strategy, device context 
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settings within the architecture also encourage us to pursue an adaptive block-

based loading approach for future FURl implementations. 

The results from our analysis in this section have a direct influence on the 

evolution of the FURl framework. We have seen that there are different block 

delimiting criteria that can be applied to circuits depending on their context 

and usage. However, the choice of when we apply one delimiting strategy over 

another is of direct relevance to the FURl framework and the toolset which would 

support the decision making process. For example, although we have seen overlay 

SLUs that decompose into many small blocks, there is potential to create larger 

composite blocks for the benefit of the SLU loading strategy. The process of 

building such composite blocks from a flat sequence of bitstream data is, in itself, 

non-trivial. A central reason for this is that we must maintain the integrity 

of the circuit represented by the bitstream whilst potentially re-arranging its 

sequence to support the loading strategy. This requires a detailed knowledge 

of the SLU's circuit structure and, for reasons that we explore in the following 

section, recovering such information from a bitstream is non-trivial. However, the 

approach described in [49, 65] may be exploited to enhance the FURl framework 

and toolset with additional, higher level tools that support the selection and 

compilation of appropriate loading strategies for different SLUs. 

6.1.7 Circuit Debugging 

In addition to the low level board console, qPCltest, and qlnspector, one other 

tool for working with SLU circuitry has been designed. 

6.1.7.1 QOverlay 

We can recall from the earlier discussion in Chapter 2, that the mainstream 

design-flows for reconfigurable systems are typically very static in nature. Tool 

support for dynamic reconfiguration remains, by and large, a product of the dy-

namic reconfiguration research community. However, there are specific problems 
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associated with dynamic reconfiguration that are not addressed in a traditional 

hardware/software design flow. For example, the contemporary design tools of 

the late 1990s generally did not facilitate designs involving the dynamic overlay -

ing of circuitry. In the FURl system, this is a pertinent problem: we would like to 

know if loading a SLU bitstream will have an adverse effect on the configuration 

of any other SLUs already present on the array, or on the FURl core circuitry 

itself. 

The existing XC6200 toolset does attempt to cater for dynamic reconfiguration 

by generating standard or overlay bitstreams. Even although the toolset will try 

to minimise the impact of configuration through liberal use of the mask register, 

we cannot use it to directly determine whether two bitstreams can be safely 

overlayed. One possible approach to solving this problem without resorting to 

the development of a new tool from scratch is to attempt to place and route all 

the desired SLUs as a single design. If it is possible to accommodate the same 

circuits on the array simultaneously, the place and route process will succeed and 

we can generate overlay bitstreams for the design components. This would give 

us the assurance that loading one of the design subcomponents when some of the 

others are already present will not adversely affect the operation of the others. 

If the place and route process fails, however, we can conclude that the SLUs 

spatially cannot be accommodated within the array at the same point in time. 

There are two assumptions that underpin this approach and limit its effective-

ness: first, we assume that we have access to the source netlist of the SLU; and, 

second, we are assuming that placement and routing is an entirely determinis-

tic process. Furthermore, the approach only eliminates possible clashes between 

SLUs within the design. To handle the dynamic instantiation and removal of 

SLUs from the design, we would have to create new designs with each change 

to the SLU set and reapply the place and route cycle each time. Regarding the 

first assumption, the FURl design flow presented above includes the possibility of 
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pre-defined SLU bitstream libraries to which we would not have access to a source 

netlist. We can consider these libraries as equivalent to 'hard' cores defined for 

SLI design[56]: instead of having libraries of fixed circuit layouts, we have libraries 

of fixed circuit bitstreams. For the second assumption, the use of simulated an-

nealing in placement and routing is a potential source of non-determinism. It is 

possible that two different iterations of the placement and routing process could 

result in different bitstreams being produced. 

To clarify, the FURl core represents an immutable 'backdrop' configuration 

that we must consider all subsequent configurations as being relative to. How-

ever, if we do try to place and route SLUs along with the netlist for the FURl 

core, then there is no guarantee that we have preserved the same placement and 

routing for the FURl reference bitstream. This is especially important where we 

are motivated to overlay SLU circuitry with parts of the FURl core because of a 

low utilisation of cell resources. We cannot guarantee that the introduction of ad-

ditional circuitry will not bias the 'underlying' FURl circuitry whilst at the same 

time we require the placement and routing tools to take into account the resources 

consumed by the FURl core. Collectively, this is one reason why we cannot pur-

sue the application of incremental differences facilitated by the ConfigDiff[68] 

tool. ConfigDiff generates a set of incremental bitstreams from a sequence of full 

bitstreams. Each of the full bitstreams can be recreated, in sequence, by applying 

the incremental bitstreams in order over the initial, base bitstream. However, the 

identical placement and routing of the FURl core in each of the full bitstream 

images cannot be guaranteed. As such, we cannot rely on ConfigDiff to produce 

incremental bitstreams that only instantiate the SLU circuitry: the incremental 

bitstreams produced would also make subtle modifications to the FURl core's 

circuitry. We should note that the self-modifying nature of the FURl core means 

that it is technically possible for the FURl core to apply bitstream 'diffs' to its 

own circuitry. Self-modification, however, is both powerful and delicate: in this 
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case, its application must be very carefully orchestrated to avoid damaging the 

core circuitry as it runs. 

To deal with this problem, qoverlay, is a visual tool that was designed so 

that the system designer can investigate the interactions between SLU bitstreams 

as they are loaded on and off a simulation of the XC6200. Again, because of the 

intimate understanding of the bitstream and device's loading mechanism that is 

required, the openness of the XC6200 architecture is key in facilitating this tool. 

The tool assumes no additional information about an SLU other than that given in 

its raw bitstream data. At its heart is a complete software implementation of the 

configuration memory of the XC6200 that, in particular, performs an appropriate 

simulation of wildcarding and masking of the bitstream data being written into 

it. We simulate the underlying configuration RAM rather than applying the 

bitstream to a real device because the latter approach would only reveal whether 

if the circuits could be simultaneously accommodated or not. It would not yield 

information about why they cannot co-exist or, in more detail, which points of 

the bitstreams collide. 

Operationally, the user specifies a series of bitstream files which are each 

loaded into the simulated memory interface. This produces a set of fully elabo-

rated configuration RAM images, one for each bitstream. The images produced 

at this stage are independent of one another, but we know that they fully artic-

ulate the SLU's desired device configuration since any wildcarded configurations 

in the source bitstream are applied and any use of the mask register results in 

the appropriately masked writes to the memory image. The user also specifies 

a particular configuration schedule for the loading and unloading of each SLU 

bitstream. The schedule and memory images are then given to an 'overlay en-

gine' which computes a memory image resulting from the loading of each of the 

independent SLU configuration images according to the configuration schedule. 

Rather than just containing the final bitstream data, however, the overlay engine 
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tags each bit in the overlay memory image with one of four states: 

. a 'default' state is defined for bits which have not yet been written to; 

• the 'written' state is used for bits which have been written only once since 

the device was initialised; 

• a bit is 'safely overwritten' if it is written more than once with the same bit 

value and has never been 'unsafely overwritten'; 

• and, finally, if a bit has ever been written with conflicting values it is marked 

as being 'unsafely overwritten'. 

A coloured visualisation of the state of each cell, switch, lOB, and device pad 

is generated from the overlay image. However, because we compute the overlay 

image at the bit level, we can also produce a more detailed breakdown of the state 

within each cell, switch, etc. Rather than showing only the raw configuration data 

for a cell, for example, a 'translation' view interprets the raw configuration data 

for the cell and presents the functional configuration of its features. 

As implemented, the tool is effective but has some notable limitations. The 

highest level of abstraction that the tool operates at is the level of cell features in 

the translation view. Whilst it is clear how the features of the cell are affected by 

the change in configuration, it is not immediately clear how a potentially unsafe 

configuration will actually affect the higher level SLU circuitry. Furthermore, it 

is possible that a number of false-positive unsafe writes may be identified by the 

overlay engine. These are produced as a consequence of overzealous configuration 

by a previously loaded SLU bitstream. 

For example, it is possible that part of an SLU bitstream will include a write 

that affects all 32 bits of a cell configuration when only a subset of the cell features 

are required. However, we may overlay that cell with another bitstream at some 

future point which changes some of these non-essential cell features. If the values 
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Figure 6.4: qOverlay Design Views 

written conflict with the non-essential hit-data, the overlay engine would flag the 

writes potentially unsafe. By convention, the cell features which are written but 

not required by the the SLU circuitry are given the value zero. In theory, we could 

use this convention to tag cell features that have the value zero as being 'unused'. 

This means that if we come to overlay those parts of the cell functionality with 

another SLU bitstream at some later point we will not conservatively assume that 

the bitstreanis are incompatible. However, from the open nature of the XC6200 

architecture, we know also that zero is actually a valid cell configuration and 

therefore we cannot rely on it as an identifier of non-essential bitwrites. 

From our earlier discussion of 'overlay' SLU bitstreams, we can argue that 

their liberal use of the mask register means that only the appropriate bits in a 

cell configuration will be altered. In this case, the detailed structural information 

available within the place and route tool facilitates the generation of such safer 

bitstreams. However. the FURl bitstream is riot generated in overlay mode and 

we cannot rely on bitstreams generated from all sources to he as precise with 

the configuration bits they alter. One potential solution to the problem would 
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be to attempt to recover some information about the circuit structure that is 

configured by a bitstream. We can use the structural information to determine 

exactly which parts of each bitstream write are essential. 

Even with the open nature of the XC6200 architecture and bitstream, recover-

ing circuit structure from the raw bitstream data is not a simple task. Any value 

applied to a cell feature is potentially valid, so we must resort to heuristics to in-

crease the degree of certainty that any given configuration bit is actually required 

by the SLU circuitry. Whilst this approach is not implemented for qoverlay, 

it has been considered in the XC6200 configuration compression work of Hauck 

et al[65]. Their observation was that they can increase the effectiveness of their 

compression algorithm if they preserve just the essential features of the original 

bitstream. The same information could be used in the generation of the final 

configuration memory image. This allows us to narrow the effect of the write to 

only the bits that are absolutely essential to the proper instantiation of the SLU 

and hence reduce the likelihood of falsely identified unsafe writes. 

6.2 The FURl Executive 

The FURl executive is an implementation of a lightweight co-operative multitask-

ing 'operating system' that executes on the FURl core. The simple test harness 

programs discussed in the earlier sections use an assembly bootstrap library to 

initiate their execution. This sort of bootstrapping is very basic, however, and 

requires the program to manage most of its own execution flow. If we want to 

perform logically distinct tasks in such an environment, then we need to explic-

itly code the execution flow for each programmed task. The executive provides 

a simple multi-tasking framework to allow program tasks generated by the FURl 

assembler to enter and leave the core's execution flow in a more flexible manner. 
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6.2.1 Tasks 

The existing subroutine mechanism underpins the executive's implementation of 

tasks. In the basic implementation described here, each FURl task is essentially a 

subroutine whose entry point has been introduced to the executive. The executive 

maintains a list of current tasks and, when it has cooperatively received control 

of the FURl core, schedules a task to run by invoking it as a subroutine call. 

6.2.2 Task Switching 

In the basic implementation presented here, task switching in the FURl core is 

entirely co-operative. A task is activated by the executive, but is then respon-

sible for handing control back to the executive when it completes. This has one 

major advantage: the task is responsible for managing its own context which 

then reduces the amount of work that the FURl executive must do when giving 

control to another task. The task list implemented in the cooperative version of 

the FURl executive is a circular list of task entry points. The executive defines 

two subroutines that allow the currently executing task to manipulate this list to 

introduce a new task or remove itself from the task list. The main body of the ex-

ecutive cycles through the tasks contained in this list, implementing round-robin 

style scheduling. 

A pre-emptive implementation of the executive is conceivable but requires 

additional circuitry support in the datapath of the FURl core. In a preemptive 

implementation, task switching is triggered on the expiration of a countdown 

timer. The current implementation of the FURl core does not contain such 

timers within the IEU datapath, but an enhanced version of the core with an 

integrated timer is feasible. The integrated countdown timer then facilitates pre-

emptive multitasking by periodically buffering the address of the task instruction 

being pre-empted and forcing the PC to the address of the pre-emptive executive's 

context switching subroutine. The context switching subroutine must preserve the 
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state of pre-empted task and restore the state of the task scheduled for execution 

next. In a traditional processor microarchitecture this context would amount to 

saving and restoring registers. In the pre-emptive FURl environment, we would 

have to save not only the XC6200's device state, but also the state of the kernel 

SLUs. 

6.3 Standard System Tasks 

Up to this point we have given a comprehensive description of the design and im-

plementation of the FURl core and the fundamental features of its programming 

and runtime environment. The mechanics of bootstrapping the circuitry of the 

FURl core have been presented, but we have not yet explored the means by which 

an active FURl core can receive its programming. The earlier description of SLU 

loader experiments presented one means of populating the FURl core's program 

memory, but that approach is only really effective within that constrained ex-

perimental environment. Also, relying on an external host to provide the initial 

system programming of the FURl core undermines its autonomy. 

This section gives a brief discussion of a fundamental low-level communica-

tion model that the FURl executive, as implemented, uses to interact with the 

external system environment without sacrificing the autonomy of the FURl core. 

In particular, two FURl executive system tasks that facilitate a more flexible 

means of interacting with the FURl core are described. Through the discussion 

of these tasks, we also see how the programming of the FURl executive itself can 

be bootstrapped. 

6.3.1 The FURl base protocol and base protocol handler 
task 

The earlier discussion on debugging the FURl core circuitry characterised the 

isolating effect of assuming internal control of the XC6200's FastMap interface. In 

addition to making the circuitry debugging process more challenging, the isolation 
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of the FastMap interface also affects the way that the FURl core can interact 

with the external system environment. The FastMap interface cannot be used to 

stream new programming information to the FURl executive, but the onboard 

memory of the Hotworks development platform is accessible by both the XC6200 

and the PCI card's host processor. This can be used as the physical basis of a 

simple shared memory model of communication from the external environment 

to the FURl executive. 

The main role of the FURl base protocol is to allow the introduction of new 

FURl tasks into the FURl environment. Specifically, the FURl base protocol 

provides us with a mechanism to introduce more complex protocol handler tasks 

and Chapter 7 expands on the nature of FURl communication protocols. A 

general overview of the base protocol is shown in Figure 6.5. To implement the 

base protocol, we define a statically sized region of shared memory as a buffer for 

holding a single base protocol packet. Base protocol packets are written to the 

buffer by FURl clients and the buffer is periodically examined by a base protocol 

handler task executing on the FURl executive. One particular aim here is to avoid 

introducing a significant processing overhead for the base protocol. Ideally, the 

processing requirements of the protocol are sufficiently lightweight that managing 

the buffer and processing any packet it contains would not adversely affect the 

performance of other application protocol handlers resident in the executive. 

The FURl base protocol, as implemented, allows a FURl client running on 

the PCI host processor to write what are essentially 'active packets' into the base 

protocol buffer. That is, each packet consists of a data section and a code section. 

Since we are using the base protocol to introduce new tasks, the data section 

would typically contain fragments of the new task's program code. The code 

section of the packet contains FURl code defining how the contents of the data 

section should be processed. Periodically, the base protocol handler examines the 

base protocol buffer and determines if it contains a valid base protocol packet. If 
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Figure 6.5: The FURl Base Protocol 

so, the handler calls the program code contained within the protocol packet as a 

subroutine. 

An explicit status word is used by the protocol handler running on the execu-

tive and the FURl client to identify the state of the buffer. Specifically, the status 

word indicates whether the buffer contains a processed or unprocessed base pro-

tocol packet and is used to synchronise the activities of the protocol handler and 

FURl client. The base protocol handler will only take action if the status word 

indicates that buffer contains an unprocessed packet. When the code within the 

packet has been executed, it returns control to the base protocol handler which 

marks the packet as processed. Similarly, the FURl client only marks the buffer 

as unprocessed when it has completely written a packet and only fills the buffer 

when it has been marked as processed. By convention, an empty buffer is marked 

as processed. It is worth noting that having multiple FURl clients accessing 

the same base protocol buffer would require a mechanism for granting mutually 

exclusive access to the buffer. 

Using the base protocol to introduce a new FURl task to the executive involves 

transmission of base protocol packets that are split into two segments: a data 

segment to contain the new task's memory image; and a code segment to contain 

the packet's FURl code. The code segment of the packet is aligned at the start 
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of the protocol buffer to reduce the number of calculations the protocol handler 

must perform before it can invoke the active code. For the most part, the packet's 

FURl code transfers the image in the data to a predetermined region of FURl 

program memory. This could conceivably be programmed as a loop or, since we 

know the source and destination addresses explicitly, as elaborated sequences of 

basic move instructions: the active nature of the protocol gives the flexibility 

to choose. The elaborated move instruction sequence, having no loop overhead, 

has a better runtime performance but is spatially less efficient and slightly less 

flexible than a programmed loop. Once the task image has been transferred, the 

last action of the final packet's program code section, besides returning, is to call 

the executive's add-task subroutine. This inserts the task's entry point into the 

executive's task list. The task will then be invoked by the executive's scheduler at 

a later point. Although its primary purpose is to facilitate loading new executive 

tasks, its active nature makes the base protocol quite flexible. For example, we 

could use the protocol to load fragments of SLU bitstreams by embedding suitable 

loader code and bitstream blocks in the active base protocol packet. 

6.3.2 The Detacher 

Implementing shared access to the Hotworks development system's onboard RAM 

provokes an interesting programming issue for the FURl core. Physically, the 

memory used on the Hotworks board is single-ported and uses a wide multiplexor 

to determine whether the XC6200 or the host PCI processor currently has access 

to the RAM's address lines. This makes the implementation of a shared memory 

communication mechanism for the FURl core slightly more complicated since only 

one of the two potential memory controllers can have access to the actual memory 

interface at any one point. However, the FURl core has been, so far, presented as 

reliant on continuous access to the onboard memory for its instruction sequence. 

Taking access away from the core to allow the PCI host to transfer packets into 



the shared region of the board memory leaves the FURl core's memory interface 

in a dangerous, undefined state. 

Whilst this is a specific issue related to this particular development system, the 

challenge it poses to the current FURl implementation prompts the exploration 

of embedding executable FURl code somewhere within the host FPGA itself. 

Allowing the FURl core to execute an instruction sequence contained within 

the XC6200 can alleviate the core's dependency on the onboard SRAM. The 

detacher task utilises embedded code to periodically put the FURl core into an 

'introspective' state. 

When the detacher task is scheduled, it invokes a block of embedded, internal 

code. Specifically, this code causes the FURl core to detach its interface to the 

onboard memory for a short period of time. When that period of time expires, 

the internal code reactivates the board memory interface and returns control to 

the main body of the detacher task. The host processor can then interact with the 

shared region of the board memory safely for as long as the FURl core remains 

detached. The detacher uses a system SLU that wraps around the physical CON 

port providing it with a register accessible interface, to communicate the state of 

its internal memory interface to the outside world. When the embedded section 

of the detacher code releases or resumes control the memory interface, it signals a 

state change over the CON port. The low level code in a FURl base protocol client 

that executes on the host processor therefore monitors the CON port to determine 

when a new packet can be written to the shared buffer. 

6.3.2.1 Embedding code within the XC6200's configuration RAM 

We can recall from Chapter 2 that the XC6200 architecture, unlike new generation 

FPGA architectures, does not have embedded block RAM. This leaves two choices 

for where to embed a FURl program: we can either embed the code as values 

written to and read from 32-bit wide register SLUs that have been configured 

on the array; or we can place the program code in the actual, underlying cell 

181 



configuration memory of the array'. In reality, these are both different regions 

of the XC6200's memory map that we can access through the internal FastMap 

interface. Although they have the same access port, they have different access 

characteristics which justifies identifying them as distinct alternatives. 

FURl code embedded within specially configured register SLUs ultimately 

resides within the cell-state region of the XC6200 memory map. As such it is 

sensitive to the settings of the device's map registers: if the map register values 

change as a consequence of the internal code being executed, the FURl core may 

be unable to fetch the next instruction word or data operand. The linear incre-

mentation of the PC means the register SLUs must be laid out over consecutive 

rows. The map register settings also constrain the registers to alignment with 

particular rows. The sensitivity of this approach to the current map register set-

tings, and the fact that the state region of the XC6200 memory map is relatively 

small in comparison to the cell data region are two significant limiting factors. 

The map register sensitivity, in particular, limits the embedded code to either 

only accessing SLUs which are aligned to the same map register settings or or-

chestrating the placement of the code registers to coincide with changes to the 

map register values. 

We should recall that the onboard memory of the development system operates 

at a different address granularity to the XC6200's configuration memory. To 

accommodate this, a slight change is made to the FURl IEU's incrementor. The 

incrementor dynamically changes the amount that it adds to the PC value based 

on the memory region that the current PC addresses. In the implementation of 

the FURl core described in this thesis, the incrementor adds 4 if the address in the 

PC is a FastMap address, and 1 otherwise. This has an important side effect on 

the conditional branch mechanism since we must now bias the conditional branch 

4  W should note here that, for XC6200 FPGAs, this is harmless. It is a property of the 
architecture that loading arbitrary data into the cell configuration memory will not create 
internal signal contentions. In 2000, this is a property that is unique to the XC6200. 
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address according to the address space granularity. Effectively, this means that 

the integer equivalent to the boolean truth value must change depending on the 

address space. 

On the other hand, FURl code embedded within the cell configuration region 

of the memory map is sensitive to the settings of the FastMap's mask register. 

This is generally less constraining than the map register dependence of the alter-

native approach since it does not impose a geographic limitation on the placement 

of the embedded program. However, we must still ensure that any embedded code 

does not adversely limit the data that can be read from the cell configuration 

RAM. Conceivably, we could also reuse the regions of the configuration RAM 

that control routing switches and JOBs for storing embedded FURl programs. 

Any region of the configuration RAM we use to hold FURl code will no longer 

be available for loading SLUs and the more program code we embed, the larger 

the geometric region of the array that is consumed. Just as we consider the 

geometric placement of SLU circuits, we must consider the geometric area of 

the array that is consumed by storing a FURl program in a linear sequence of 

configuration words. To do this, again requires a detailed understanding how the 

underlying configuration RAM maps to the FPGA geometry. A visualisation of 

the XC6200's memory map is given in Figure 6.6. From the open nature of the 

XC6200 we know that the total size of each cell configuration is contained in 3 

bytes. However, the arrangement of the XC6200's address space means that a 

single 32-bit word in the cell data region does not completely configure a single 

cell: rather, it affects a subset of the features in each cell within a particular 4 x 1 

column of cells in the 4 x 4 cell group that is targeted by the write. The row 

addressed by the FastMap write to the cell configuration region is contained in the 

less significant bit positions relative to the bits that define the column address. 

Each program word we embed in the cell configuration RAM, therefore, affects 

a 4 x 1 column of cells. The first two words of the FURl program, when placed in 
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two consecutive words of the cell configuration RAM actually affect a column of 

8 x 1 cells. When a FURl program is embedded in the cell configuration RAM, 

it rapidly affects a column of cells equal to the height of the array itself. This, 

in turn, may have an adverse affect on the placement of any other SLUs: ideally 

we wish to localise the region of the cell array that is consumed by the embedded 

program code. If the entire configuration for a single cell was referred to by a 

single address within the XC6200's address space then the first two program words 

embedded in the configuration RAM would only affect two cells. However, it is 

acknowledged that the configuration RAM was never intended to store linear data 

such as FURl programs, and that the structure of the address space does actually 

help to rapidly configure SLU circuitry: the complete configuration for four cells 

can be packed into three 32-bit writes to the cell region of the configuration RAM. 

Rather than consuming an entire column of the array, the embedded FURl 

code used by the detacher is actually distributed over disjoint blocks of the address 

space. We preserve the linear execution of the code by threading blocks together 

with unconditional jumps from the end of one block to the beginning of the next. 

For example, we can allocate the configuration RAM from a column of 32 cells for 

holding part of a FURl program. We can then observe that the set of configuration 

words controlling this column of cells actually comprises three disjoint blocks of 

the configuration RAM. Most of each block is allocated to holding part of the 

embedded program code, with the exception of the space for the last instruction 

in the block which is hard coded to be an unconditional jump to the start of the 

next block which again contains 'real' program code. We can see that introducing 

an extra instruction to thread blocks together does constitute an overhead. To 

balance this we must be careful not to constrain the column size so much that 

there are so few program instructions per blocks that we spend a large percentage 

of the embedded code's execution time jumping between the internal code blocks. 
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6.3.2.2 Alternative application of embedded code 

The embedded code of the detacher task demonstrates that it is possible to exe-

cute programs held internal to the host FPGA. However, the original, development-

system specific motivation for the detacher task does not completely characterise 

the usefulness of embedded code. A far more compelling reason for embedding 

code is to facilitate the complete autonomy of the FURl core and FURl executive. 

To recall, we introduced the FURl executive as the control program that would 

be executed from the point that the FURl core itself becomes active. The means 

of supplying the executive's program code, though, was not discussed. However, 

the discussion above has shown how FURl programs can effectively be encoded 

as XC6200 bitstrearns. The bitstream of the FURl core could be combined with 

a bitstream encoding of the FURl executive and its basic system tasks. Au-

tonomously bootstrapping the FURl circuitry from a serial PROM, as described 

earlier, would then also load the code for the FURl executive. Altering the PC 

circuitry so that the hardcoded boot vector for the FURl core points within the 

configuration RAM would then kickstart execution the executive's program code 5 . 

6.4 Analysis and Conclusions on the FURl Frame-
work 

The major contribution to the thesis of this chapter has been the description of 

a complete programming and runtime environment for the FURl core. However, 

we should now consider the effectiveness of the FURl framework for creating 

reconfigurable computing applications. Throughout the course of the research 

programme, the FURl framework has been used to create applications that ran 

on the developing FURl core. As the FURl core's implementation evolved, so to 

has its associated toolset. 

5 typically, a small embedded bootstrap subroutine would transfer the embedded executive 
code to the onboard memory to free the region of the cell array it occupies for SLUs loaded 
through FURl protocols. 
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In this chapter, the FURl framework has been used to create system applica-

tions that demonstrate the FURl core's ability to support the two fundamental 

operations in a virtual circuitry system: the dynamic instantiation and interaction 

with SLUs. Furthermore, we also described the operation of the FURl Executive, 

the FURl base protocol, and detatcher tasks, all three of which have been com-

pletely implemented using the FURl framework and constitute the largest system 

implemented with the toolset. In total, the toolset has been used to create and 

assemble thousands of lines of FURl code. The next chapter considers the larger 

research questions that we can address using the FURl Framework, namely at 

what points we can dynamically adapt the interface protocols executing within 

the FURl executive to better support the demands of a particular VC application. 

Whilst the FURl framework and its toolset have been effective for creating a 

low level VC environment, applying the framework to larger research questions 

does motivate the further evolution of the toolset to incorporate the tools and 

techniques that were described in Section 4.4. The major characteristic of this 

evolution is the development of a higher level compiler for the description of VC 

applications. For example, techniques such as configuration interleaving and the 

TTA specific compilation techniques such as operand sharing are applicable within 

a FURl compiler architecture. Evolving the FURl framework in this manner 

increases its attractiveness as a VC application environment. For example, in the 

discussion of SLU loading strategies, we have seen that there are performance 

gains to be had by adapting the loading strategy to the features of the circuit 

being loaded. Applying such an adaptive loading strategy is most sensibly done 

within a FURl compiler and will make the adaptive loading performance increases 

available to FURl VC applications. 

Overall, the FURl framework will form a high level basis for ongoing research 

into reconfigurable computing based on virtual circuitry techniques. The next 

chapter gives an example of one use of the framework as a high-level research, 



namely for supporting adaptive interface protocols. An example of further per-

tinent research beyond that covered in this thesis is the use of the framework to 

explore meta-configuration languages to support architecture portable SLUs. 

6.5 Summary 

In this chapter we described a programming and runtime environment for the 

FURl core introduced in Chapter 5. This began with the presentation and explo-

ration of the components within a design flow and toolset used for programming 

the FURl core. The programming toolset and design flow was then used to ex-

plore different mechanisms for supporting fundamental system constructs such as 

subroutines. The chapter then presented alternative strategies implemented using 

the FURl design flow for dynamically loading SLUs. The issues and overheads 

associated with particular loader strategies were explored and an analysis of the 

internal structure of bitstreams was given. This analysis provided rationalisa-

tions for the inherent complexity and overheads associated SLU loading that had 

been described in the earlier section. The chapter concluded with a description 

of the FURl executive, a self-contained multitasking runtime environment for the 

FURl core. The basic mechanism through which the executive interacts with the 

external environment was described in the form of a FURl base protocol. 
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Figure 6.7: Address type distributions in a series of adder SLUs 
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Figure 6.9: Address type distributions in a series of adder SLUs generated as 
circuit overlays 
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Figure 6.10: Address type distributions in DES SLUs 
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Figure 6.11: Address type distributions in DES SLUs generated as circuit overlays 
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Figure 6.12: Cell-data block size distributions in a series of adder SLUs 
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Figure 6.13: Cell-data block size distributions in a series of adder SLUs using an 
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Figure 6.15: Cell-data block size distributions in DES SLUs 

Figure 6.16: Cell-data block size distributions in DES SLUs generated as circuit 
overlays 

193 



Block Size Frequency for 

eddecl6.eflayjieque - 

N
adderoverlayfreqtxr 

r4)eS1y 1e-0tl 
N 	 - 	 -4--- 

5 tyer y ç 

6: 1; 1 16 	
18 

Block Size 

Figure 6.17: Block Frequencies for Adder SLU bitstreams in Overlay mode 

Block Size Frequency for 

es_invjp64_hamees_ov.tlay. $ req tXI — 

despc_64_hamessrnerlay_freq brt 

- 'des sbc464hama66Overlay I rPq lxr — 

desswap_64_harnessoverlayJreq txr -C-- 

\\ 

\\ 

U 	

/ 

2 	 4 	 6 	 8 	 10 	 12 	 14 
Block Size 
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Figure 6.21: Map-delimited Block Sizes for DES SLU bitstrearns 
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Figure 6.23: Frequency of Map-delimited Block Sizes for DES SLU bitstreams 
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Chapter 7 

Virtual Circuitry on the Flexible 
URISC 

The aim of this chapter is to explore the implementation of the three different 

models of virtual circuitry introduced in Chapter 4 on the Flexible Ultimate RISC. 

The chapter is structured as follows: 

• first, we define a FURl system context that the virtual circuitry applications 

operate within. Rather than simply defining a single context, this section 

gives a flavour of the diversity of potential FURl system contexts; 

• second, we consider FURl protocols expanded from the basic protocol de-

scribed in the previous chapter, and qualify the design space; and 

• third, we present details on, and results from, a related experimental pro-

gramme. In this programme, we gauge the effectiveness of different proto-

cols used to interface a virtual circuitry application being managed by the 

FURl core, within a given FURl environment. 

7.1 The FURl System Context 

Before we can consider the use of the FURl core for implementing virtual circuitry, 

we must define a particular system context that the applications exist within. In 

general, we consider the FURl core as operating within a network of co-operating 

components and each application is partitioned over these components. Figure 

IM 
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Figure 7.1: Main FURl System Context for Virtual Circuitry Applications 

7.1 shows the main system context that we will consider for the experimental work 

in the later part of this chapter. In it, we see that the algorithms used within 

a given application are partitioned over a simple network of FURl components. 

Circuit-centric algorithms are mapped to a FURl network component which is 

intrinsically circuit-centric, and vice versa for the mapping of sequential, program-

centric algorithms to processor elements which are intrinsically program-centric. 

Application partitioning is generally a difficult problem and the development of 

methodologies to solve it is beyond the scope of this thesis. We will, however, 

alude to possible themes for design methodologies for FURl systems in Chapter 

8. 

The protocols used between the FURl core and other components within the 

network are influenced by the surrounding network architecture. The simple 

system context shown in Figure 7.1 does not capture the full spectrum of possible 

FURl networks and as such will not allow us to present the full variety of FURl 

protocols. Our motivation for considering different FURl networks in the first 

place is simple: applications can often operate more effectively, and be partitioned 

more easily, onto one style network than another. Before exploring the FURl 
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protocols in detail, it is worth considering the potential different forms of FURl 

network architecture. 

In the following discussions, the term "network architecture" is used to refer 

to the features of a network holistically: this would include the characteristics 

of the components used within a network, the protocols used by communicating 

components, and the network topology. The term "network topology", however, 

refers only to the geometric and structural attributes of a network. For example, 

the topological ordering of network components and the geometric classification 

of the topology are constituent members of a network topology. The logical 

operation of protocols on a given topology is a separate concern, although there 

can be clear mappings between topologies and the protocol requirements they 

prompt. 

7.1.1 FURl Network Components 

It is possible to distinguish different component types within the FURl network 

architecture. FURl-managed programmable logic devices and FURl-compatible 

processor elements are the two primary, active component types. They are the 

system's computational elements and use FURl protocols to interact through 

the computationally passive elements of the network. Memories and physical 

interconnect channels are the two types of passive elements. For each of these 

four component types, we can identify attributes which influence the network 

architecture. Some of these attributes are common to all components whilst 

others may only be relevant to a subset. The following subsections describe six 

of the primary component attributes. 

7.1.1.1 Degree of Connectivity 

Here, we consider how many other components a particular component type may 

be connected to. This attribute can be considered for all component styles. 
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7.1.1.2 Connectivity Type Constraints 

In this case, we are considering constraints on which types of component may 

be directly connected. In a general sense, this is an attribute of interconnect 

components as it defines which components may be present at the endpoints of 

any given interconnect channel. 

7.1.1.3 Direction constraints on connectivity 

Interconnect channels can be considered to have direction properties. For ex-

ample, a given channel may support either directed or undirected/bidirectional 

communication. 

7.1.1.4 Communication Mode 

The communication mode is tightly related to the above directionality constraints. 

Some directionalities are mutually exclusive with respect to some communication 

modes. We can consider a particular channel to support duplex, simplex, or half-

duplex communication modes. However, duplex and half-duplex communication 

require a bidirectional underlying channel. Given a particular mode, it is possible 

to identify the simplest degree of channel directionality required to facilitate it. 

Even so, it remains valid to consider directionality as a separate attribute. 

7.1.1.5 Synchronisation Policy 

Just as we consider the communications mode for a channel, the synchronisation 

models adopted at the interfaces of network components are also of interest. 

For example, components could adopt any one of synchronous, asynchronous, or 

isochronous synchronisation styles. Initially, we will consider synchronisation to 

be, primarily, an attribute of network component types rather than interconnect 

channels. 
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7.1.1.6 Latency 

At the low level of abstraction we have been considering so far, interconnect chan-

nels themselves have very little physical latency. However, two potential sources 

of latency exist in the FURl network environment. As data flows through active, 

computational components like processor elements, a degree of computational 

latency will most likely be introduced into the datastream. However, the main 

source of communication latency in the datastream arises from the use of mem-

ory components as communication buffers. Specifically, a memory component 

and the physical channels which connect it to other network components can be 

considered as a form of compound communication channel. Relatively speaking, 

the physical interconnect channels have no latency and it is the memory compo-

nent sandwiched between the interconnect channels which acts as a variable-delay 

element and may potentially introduce latency. 

7.1.1.7 Discussion 

In the above sections, the motivation for constraining attributes to a subset of the 

possible network components may not always be clear-cut. When considering the 

connectivity type constraint, an underlying assumption is that all communication 

happens over an explicit interconnect channel. However, there is an alternative 

to this model: communication may be implicit between components which are 

physically adjacent. The interfaces of such components may be directly abutting 

therefore creating an implicit communication channel. 

The key point here is the distinction between a form of explicit interconnect 

and a much more implicit form of connectivity between components. Explicit 

interconnect channels are those which support communication between compo-

nents using FURl protocols. Implicit interconnect could occur in a FURl system 

when we consider, for example, a static slave accelerator attached to either a 

processor element or a FURl-managed programmable logic device. We do not 
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consider the slave accelerator to be a processor element in its own right as it does 

not interface to the rest of the system through a FURl protocol. However, we 

can include it in the network model if we consider it as an adjacent component to 

one of the primary, active system components. Here the interconnect channel is 

implicit between the static accelerator and FURl-compatible component. There 

will undoubtedly be some form of physical interconnect channel between the two 

elements, but the semantics of that channel do not constitute a FURl protocol. 

From the viewpoint of a FURl-compatible device, the computational facilities of 

the slave accelerator are not differentiated from the native facilities of the active 

component hosting it. 

One further point remains to be clarified: we must consider memory as an ex-

ception to the above discussion. From a computational point of view, memories 

implement identity functions. We can consider them to be a very simplistic forms 

of auxiliary computation logic. Yet, in the network model we have described so 

far, memory components need not implement a FURl protocol on the intercon-

nect channels that join them with other elements in the system. In reality, this 

discussion is prompting us to define the role of explicit memories in a FURl net-

work more clearly. We have already stated that memories are passive components 

and hence do not directly contribute to the ongoing computation in the network. 

Rather, memories exist to facilitate shared-memory network topologies. It is the 

set of protocol issues, provoked when using shared memory buffers between ac-

tive components, that justify the explicit notation of when memories are used in 

an interconnection path. Since we have limited the rOle of memory, we can also 

constrain some of its possible interconnection permutations in the network: as a 

passive element, for example, it makes no sense to allow two memory components 

to be directly interconnected. In such a situation, neither memory element is 

capable of actively driving the interface of the other. 

On a different theme, it is also interesting to consider the motivation for 
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attributing synchronisation policies directly to physical interconnect channels. 

From the physical perspective, an interconnect channel is naturally asynchronous. 

Network component interfaces situated at the channel endpoints provide the map-

ping of the three potential synchronisation styles onto the underlying physical 

channel. We could consider a channel as inheriting a synchronisation style from 

the attached components, but it is also possible that component interfaces may 

employ different synchronisation policies over the same physical channel. Es-

sentially, this amounts to logical channels being supported over an underlying 

physical channel. The discussion of such high level, logical architectures is better 

addressed as part of the protocol and network topology discussions later in this 

chapter. 

7.1.2 FURl Network Topologies 

In the previous section we defined four fundamental components in a FURl net-

work and elaborated some of their primary characteristics. The aim of this sec-

tion is to show how they may be combined to form different network topologies. 

However, rather than simply enumerating a few different topologies, we highlight 

how the design choices at work in a FURl network give rise to different styles 

of network. Through this, it is possible to build a classification of the resulting 

topologies which can be used to relate classes of topology to the protocol design 

issues they provoke. Throughout this section we will use graphical representa-

tions to demonstrate instances of particular topologies and classes. Figure 7.2 

gives symbolic renderings of the four FURl network component types. We use a 

boxed 'F' to denote the programmable logic devices which contain FURl cores. 

A boxed 'C' denotes a processor element which is FURl compatible (although we 

may also consider them to be FURl clients). In addition to network classifica-

tion, we can also consider how some topologies may be implemented on existing 

reconfigurable hardware platforms. 
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Figure 7.2: Symbolic Representations of the FURl Network Component Types 

7.1.2.1 FURl Network Topologies 

In network design there are a number of recognised standard topologies. All 

of these topologies are connected graph structures and examples include simple 

buses, star networks, ring networks, meshes, trees, and toroidal networks. The 

type of a given graph is primarily a function of the organisation of its interconnect 

channels. The organisation of interconnect channels, in general, is closely related 

to the variation in degrees of connectivity that nodes in the graph may assume. 

Furthermore, we can identify three main structural classifications within these 

graph types: 

• regular versus irregular: ring, toroidal, and mesh networks are examples of 

regular graph structures. The set of possible connectivity degrees in a graph 

with regular structure will be small. Furthermore, there is a patterned uni-

formity in the distribution of connectivity degree within the graph. For 

irregular graph structures, the set of possible degrees that a node may as-

sume is potentially much larger. But even when the degree set is small, 

irregular graphs lack the patterned distribution of connectivity degree seen 

in regular structures. 

• directed versus undirected: this classification derives directly from the direc-

tionality attribute of interconnect channels described earlier. In theory, a 
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network topology could contain both directed and undirected channels, but 

more often either one or the other is used. For example, the uniformity of 

datafiow in parallel algorithms that map well to regular network topologies 

like meshes also tends to have a homogenising effect on the interconnect 

directionality. 

• cyclic versus acyclic: the probability of cyclic structures in a network can be 

related to an interaction between the set of potential connectivity degrees 

and particular topological orderings. For example, when topological order-

ings permit interconnections of node types with high connective degrees, 

there is a greater probability that two nodes may interconnect to form a cy-

cle. Acyclic topologies, like a star network, have interconnection degree and 

topological orderings which focus nodes with a connectivity degree of one 

around single instances of node types with a much higher connective degree. 

However, even when the topologic orderings and degree spread are uniform 

and minimal, the directionality of interconnect can still create cycles. 

Bridged versus localised is a fourth, conceptual classification and is derived 

from the constraint on the maximum length of the logical connecting path be-

tween any two nodes in the topology. If a network allows two nodes which are 

not directly connected by a physical interconnect channel to interact, then it is 

bridged. However, if a node can only ever communicate with nodes to which it 

is physically adjacent, then it is localised. We treat this as a conceptual classi-

fication because it considers the nature of a logical path between two nodes as 

opposed to the direct structural interconnect architecture. 

FURl network topologies conceptually exist in all these forms. Figures 7.3, 

7.4, 7.5, and 7.6, show examples of FURl networks in star, bus, mesh and ring 

topologies, respectively. 
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Figure 7.4: FURl Bus networks 

7.1.2.2 FURl Network Topological Orderings 

By topological ordering, we are concerned with classifying a network topology 

based on its rules for defining which types of network component can be directly 

connected with another. The topological ordering of a FURl network is influenced 

directly by the type constraints applied to interconnect channels. Three FURl 

network classifications can be derived from the graph topological ordering: 

• A homogeneous topology, in the context of a FURl network, represents 

networks where the computationally active elements are comprised entirely 

of FURl-managed programmable logic devices. Homogeneous networks of 

FURl-compatible processor elements are conceivable but are not considered. 

Indeed, our earlier assertion, that a FURl network contain at least one 

FURl-managed programmable logic device, actually precludes them. The 

type rules associated with interconnect channels in a homogeneous network 

only permit the interconnection of FURl network components of the same 

type; 
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Figure 7.6: FURl Ring Networks 

• Heterogeneous networks make no constraints on the type of active com-

ponents in the network. FURl-managed programmable logic and FURl-

compatible processor elements may be freely intermixed. The type rules for 

interconnect in a heterogenous network, therefore, explicitly permit mixed 

interconnect of different active component types; 

• The shared memory class is supplimentary to the previous two orderings. 

In a shared memory network, the interconnect type rules ensure that the 

computationally active components are only allowed to connect to the com-

putationally passive memory components. 

The heterogeneous and homogeneous orderings are, by definition, mutually 

exclusive. We say that the shared memory ordering is supplementary to them 

as it is defined in relation to passive memory elements. Both heterogeneous and 

homogeneous topological orderings can exist in shared memory forms as they 

only constrain the network's active component types. Neither ordering makes 

any constraint on the presence nor absence of passive elements in the network. 

The topology figures introduced earlier also contain permutations of networks in 



homogeneous/ heterogeneous and shared memory forms. Just as we argued the 

case for maintaining memories as explicit components in the network model, we 

can apply derivative arguments to justify the presence of a shared memory class. 

In the earlier section, we considered the effect of memory components on channel 

latency. A distinct shared memory class serves as a binding from these issues to 

the protocol design issues later in this chapter. 

7.1.3 Mapping Network Topologies to Existing Platforms 

The FURl network models of the preceding sections may at first seem rather 

theoretical. In this section, we take the discussion out of the purely theoretical 

domain and consider how these networks can actually be constructed using exist-

ing reconfigurable computing platforms. Indeed, the existence of mappings from 

the logical topologies to existing physical architectures motivates and justifies the 

broader analysis of protocol issues discussed in the following sections. 

The hardware architecture of reconfigurable computing platforms typically 

imposes a fixed, physical architecture. For example, physical architectures of the 

SPACE2[80], and Hotworks 1  platforms are shown in Figures 7.7, and 7.8 respec-

tively. Although we may be constrained by an underlying physical architecture 

in each of these platforms, we may still consider which logical FURl topologies 

may be mapped onto them. For example, the SPACE2 board physically has a 

toroidal interconnect architecture which could easily support mesh and ring FURl 

networks. 

The Hotworks development platform has been both the design and experi-

mental platform throughout the course of this research. In terms of a network 

topology, the physical architecture of the Hotworks development system resembles 

a simple bus network. From Figure 7.8 we can see the XC6200 and XC4000/Host 

components share a common bus to the on-board SRAM. Figure 7.8 shows the 

mapping of a minimal heterogenous, acyclic, shared-memory topology to this plat- 

'The Hotworks platform is a commercial implementation of the XC6200DS specification [841. 
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Figure 7.7: Toroidal interconnect of the SPACE2 Computing Surface 

form. The logical side of the diagram shows two separate interconnect channels 

with independent access to the shared memory. This is different from the physical 

nature of the VCC system where a single-ported memory is temporally shared 

between the two FPGA components. To prevent signal contention, the memory 

accesses of either FPGA must be mutually exclusive. The temporal separation of 

physical bus accesses facilitates the mapping of the two independent logical chan-

nels onto the physical interconnect channel. The network is heterogeneous from 

the point of view that the XC6200 FPGA on the Hotworks board is managed by a 

FURl core. The FURl-compatible processor element in this situation is the entire 

host processor system of the Hotworks PCI card. The XC4000 FPGA operates as 

part of the host processor's interface to the FURl network. It is the host system 

in its entirety that forms a FURl-compatible processor element. For brevity we 

do not show the entire host system architecture. The diagram instead shows the 

mapping of the boxed 'C' symbol in the logical topology onto the XC4000 as a 

representative of the host system. 

The previous sections show that there is a rich design space of FURl topolo-

gies. The following discussion of FURl protocols will continue to relate the in-

teresting aspects of the full design space to the issues they provoke. To focus 

the experimental programme, however, we will demonstrate protocols in the sys- 
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Figure 7.8: Mapping the basic homogeneous, shared-memory topology to the 
VCC Hotworks Platform 

tern context we introduced earlier, with the topology mapped to the Hotworks 

system. This allows us to first experiment with the fundamental protocol issues 

between FURl components "in the small". However, insights will still be offered, 

where relevant, on how the results from the experimentation scale to larger FURl 

networks. 

7.2 FURl Protocols 

The role of protocol designer is to devise communication conventions which fa-

cilitate an efficient and effective transfer of data in a defined network topology. 

When faced with this task in the FURl system context, the protocol designer, 

initially, must consider two questions: 

. First, what are the communication characteristics of applications which 

employ a particular virtual circuitry model? 

• Second, what are the potential data structures, transmission rules, and 

transmission mechanisms that can be used to implement the desired com-

munication? 

We will use the next sections to consider both of these questions. 
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7.2.1 Communication Characteristics of Virtual Circuitry 
Models 

In Chapter 4, we defined three models of virtual circuitry: the parallel harness 

model, the sea of accelerators model, and the sequential algorithmic model. We 

must understand the communication characteristics of each model before devel-

oping protocols to support them. We shall see in the sections that follow how the 

concept of cohesion within the communication datastream has an influential role 

in our understanding of each model's communication characteristics. The virtual 

circuitry models we intend to implement can, themselves, be used to implement 

a variety of different applications. Since the range of applications is not statically 

defined, we cannot define hard-and-fast characteristics for the three models. We 

must accept a degree of variability in the characterisations, but need not settle 

for a complete generalisation. 

A large part of our task is to contrast the communication requirements of 

different models. The more we understand the differences between the commu-

nication characteristics of the models, the better equipped we are to advocate 

particular and alternative protocol implementations. What is equally important, 

however, is that we also develop of a reasoned understanding of the commu-

nication requirements of application classes within a particular virtual circuitry 

model. In the later experimental sections we will compare different protocols for 

use within a given virtual circuitry application. 

The type of data we communicate in a FURl network is common to all three 

models. The hierarchy shown in Figure 7.9 introduces the four fundamental 

datatypes in the FURl datastream. Each level in the hierarchy defines an addi-

tional interpretation of the raw data in the datastream which is, itself, represented 

by the root node of the hierarchy. 

The first level of the hierarchy shows that we are either communicating an 

encoding of an algorithm, or operands to be processed by that algorithm. It is 
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Figure 7.9: A hierarchical rationalisation of types in the FURl datastream 

tempting to consider just the transmission of algorithms and 'data' but the term 

data is too generic to convey the differences in information types we are commu-

nicating. "Operand" is much more appropriate term to use: it carries the explicit 

connotation that something is the subject of an act of processing. At the second 

level, we use circuit and program as terms which denote a particular encoding of 

an algorithm. We must also consider the division of operands as being explicitly 

for processing by circuits or by programs. In the design of FURl protocols, it is 

important to capture aspects like the distribution of these two operand subtypes. 

We should also note, though, that there is a raw data format that underpins all 

four of these data types. Both the FURl core and the configuration memory of 

the XC6200 operate on 32-bit data words 2 . 

7.2.1.1 Characteristics of the Parallel Harness Model 

In general, the parallel harness operates at a much coarser level of granularity 

than the other two virtual circuitry models. This applies particularly to the area 

cost of the circuits and their reconfiguration timescales. 

Communication in the parallel harness is dominated by the transmission of 

circuits and circuit operands and computation is effected completely in the circuit 

itself. There is no need to augment the circuit with algorithms specified as pro- 

'We can acknowledge that this is slightly inaccurate since the XC6200 is actually capable 
of operating over 8-, 16-, and 32-bit data words. However, when the current implementation 
of the FURl core takes control of the FastMap interface, as described in Chapter 5, it has the 
side effect of fixing the XC6200's physical interface width in 32 bit mode 
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grams for the FURl core. Therefore, programs and program operands constitute 

a much smaller fraction of the datastream traffic in a parallel harness application. 

The small amount of program operand traffic that does exist in the datastream 

is for transmitting operands that influence the operating system executing on the 

FURl core. 

Also, there is a large amount of cohesiveness in the parallel harness datas-

tream. The large size of parallel harness circuits  means that we must spend a 

long time configuring them on the logic array before we can use them. Since 

the parallel harness circuits are also much more likely to be stateful we cannot, 

as a rule, consider streaming operands through a partially constructed parallel 

harness. The circuits must be configured in their entirety before any operands 

are injected. Once the circuit is resident, a long period of operand streaming is 

required to recoup the cost of circuit configuration. 

The cohesiveness we describe above exists within the communication between 

the FURl core and a single application, or single process within an application. 

Because of their size, there are likely to be very few parallel harness circuits 

resident on the array simultaneously: as the circuits are configured, they will 

very rapidly consume the available array area. Temporal sharing of the array 

is also unlikely. The costs of a context switch between parallel harness circuits 

involves reconfiguring the array with the new circuit and safely packaging the 

internal state of the parallel harness circuit being removed. For the majority of 

FPGA architectures, the cost of implementing such a switch is prohibitive 4 . 

The conclusion which follows from this is that there are very few applications 

or application processes trying to simultaneously configure the FURl-managed 

3  W argue that parallel harness circuits are large relative to the circuitry used in the other 
models because they comprise multiple SLUs plus an explicit wiring harness. In this context, 
the term 'circuit' is referring to the complete collection of parallel harness SLUs and the harness 
wiring. 

4 Time-multiplexed architectures are an exception here as their multiple configuration planes 
would support rapid context switches. Most time multiplexed architectures also have facilities 
for buffering, restoring and sharing circuit context between configurations. 
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logic. Once a circuit has been configured, however, it is conceivable that the 

operands being streamed through it could originate from more than one applica-

tion or application process. The degree of cohesiveness of the operand section of 

the datastream in this situation depends on the statefulness of the circuit being 

used. For example, if the parallel harness circuit is a linear pipeline of SLUs, the 

operands already within the pipeline would not influence the operand being in-

jected at the pipeline input. This kind of parallel harness circuit could be shared 

between applications and processes on a per-operand basis. 

However, if the circuit was a systolic array with internal counterfiow paths, 

the processing of an operand entering the circuit will be affected by the operands 

that were injected earlier. The results from processing the operands of one appli-

cation must be protected from the circuit state induced by operands from another 

application. In short, temporally sharing a parallel harness circuit involves con-

text switching its internal state. The cost of that context switch translates to a 

performance penalty so enough circuit operands from a single application must be 

allowed to flow through to make the cost of a context switch statistically insignif-

icant. The cohesiveness of circuit operands in the parallel harness datastream 

depends on how much state is maintained in the circuit and how far back in the 

harness that state can influence operand processing. Therefore, parallel harness 

circuits have the potential for enforcing highly cohesive operand streams which 

originate from a strictly limited number of applications or processes. 

Latency is an important issue in the parallel harness and we will consider it on 

three fronts: circuit configuration latency; operand processing latency; and result 

processing latency. Circuit configuration latency is the time between the virtual 

circuitry application initiating the configuration of a parallel harness circuit, and 

the point that circuit can be used for operand processing. Configuration latency 

is generally much larger in the parallel harness than in either of the other two 

virtual circuitry models. The large size and statefulness of the parallel harness 
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circuits support this assertion. The main conclusion that we can draw from this is 

that parallel harness applications expect to experience high configuration latency 

and will offset its cost by immediately following circuit configuration with long 

operand streams. 

For parallel harness circuits where the state induced by earlier operands affects 

later operands, it is imperative that circuit operands be presented to the circuit at 

a specific time. Operands will continue to flow through a parallel harness circuit 

and the internal state of the circuit will change on each circuit cycle. If we inject 

an operand too late, the internal state that it depends on to produce a correct 

result may no longer exist. This provokes the concept of an "operand latency" as 

the measure of the time between the arrival of operands at the inputs of a given 

circuit. Similarly, we can consider a "result processing latency" to be the amount 

of time between each valid result being removed from the circuit outputs. Just as 

the internal circuit state changes from the constant motion of operands flowing 

through it, a result may only be present at the circuit output for a particular 

period of time. If the result processing latency is too high, we will lose results. 

Our computational efficiency may fall drastically as a result of the large amount 

of internal state that would need recreated before the missing result could be 

recalculated. 

From this, we argue that parallel harness circuits whose internal state radically 

influences the circuit output have very strict operand and result latencies that 

they can operate within. Furthermore, the parallel harness circuits would be very 

susceptible to variation in the operand and result processing latency, i.e. jitter. 

In [100], Tennenhouse considers the impact of jitter on protocol design. Operand 

latency is less of a concern for circuits whose cumulative state does not feedback to 

influence the result of processing an arriving operand. Only the result processing 

latency is still imperative here. It remains possible that we will miss the arrival 

of a valid result at the circuit output if our processing latency is too high. If 
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this occurs, however, the situation is less severe than for the very stateful circuit. 

Since the result is not dependent on the recreation of a delicate internal circuit 

state, it is possible to re-present the circuit operand at the next available circuit 

cycle. 

7.2.1.2 Characteristics of the Sea of Accelerators Model 

In the sea of accelerators, many small, independent circuits are used to effect 

independent computations. This is in contrast to the much larger circuits used 

in the parallel harness above. 

In general, the logic array's geometric area is shared to a much higher de-

gree when implementing the sea of accelerators model than it is in the other two 

models. Accelerator circuits are small enough for many of them to exist simul-

taneously within the array. The spatial resources of the array are consumed less 

rapidly than they are in the parallel harness. Furthermore, the sea of accelerators 

datastream does not necessarily exhibit much cohesion. Since accelerator circuits 

are independent units of computation, the act of configuration is asynchronous 

with respect to the configuration of other circuits: each application or process 

can begin the configuration of a circuit on the array at disjoint times. The circuit 

transmissions of one application are therefore intermingled with the circuit and 

operand transmissions of other applications. 

Circuit and circuit operands dominate the sea of accelerator datastream. The 

programs which combine the computationally simple accelerator circuits into 

much higher level algorithms execute on the FURl compatible processor elements 

at another part of the network. There is, therefore, little need to transmit pro-

grams for execution on the FURl core. The small amount of program operand 

traffic that does exist is, again, used to influence the FURl executive. 

For the sea of accelerators model we must consider the data cohesion at two 

levels: within the raw datastream itself; and within the logical datatreams of 

individual applications and processes. Although circuits and circuit operands 
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are the dominant types communicated, there is very little cohesion in the raw 

datastream itself. This is a result of having many independent applications and 

processes sharing access to the FURl-managed logic resource. Circuits from dif-

ferent applications enter and leave the array independently of each other. It is 

therefore much more likely that, in the raw datastream, transmissions from one 

application will be intermingled with transmissions from another. 

The extent to which transmissions from independent applications are inter-

mingled in the raw datastream depends on the exact protocol in place between 

the FURI-compatable client and the FURl core. At the finest level of granular -

ity, we can conceive of communication streams being interleaved at the individual 

operand or single circuit datum level. Alternatively, communication may respect 

the local cohesion present in a particular application's datastream and only mix 

datastreams when there is a break in the cohesion of the logical datastream cur-

rently being transmitted. A logical question to pose at this point is, "although 

there is potentially little cohesion in the allocation of the raw datastream to differ-

ent applications, is there cohesion within the type of data being intermingled?". 

For example, we may only multiplex data of the same type but from different 

applications, or we may multiplex data of any type and from any application. 

In general, there is a high probability that circuits may be intermixed with 

circuit operands from separate logical datastreams. This is a direct result of the 

fact there is likely to be other circuitry already configured on the FURl-managed 

array. Once an application has successfully configured a circuit, it will attempt 

to stream operands through it. Whilst this is occurring, a different application or 

process may also attempt to configure its own accelerator circuit onto the array 

and hence the operand stream from the initial circuit could be interleaved with 

the circuit configuration stream of the arriving circuit. 

Latency is an important issue in the sea of accelerators but for slightly different 

reasons than it is for the parallel harness. Again, we must consider latency on a 
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number of different fronts. Firstly, the delay between requesting the configuration 

of a circuit on the array and the point at which the circuit is configured and ready 

is notionally short. This is primarily because of the relatively small size of an 

accelerator circuit in comparison to the unit of circuitry used in the other models. 

We say that the configuration latency is notionally short because multiplexing 

communication traffic from multiple applications increases the effective latency. 

However, in the sea of accelerators model, we do not have to adhere to strict 

circuit operand and result processing latencies. In their pure form, accelerator 

circuits are entirely combinatorial and therefore have no persistent state. Since 

the circuit results are not influenced by any form of internal circuit state, we 

do not have to worry about presenting subsequent operands within a given time 

period. The result at a circuit output is a direct function of the circuit's current 

inputs. We therefore do not have to adhere to a stringent result processing latency 

provided the current result is removed before new input operands are injected into 

the circuit. 

7.2.1.3 Characteristics of the Sequential Algorithmic Model 

The sequential algorithmic model combines operational characteristics of both 

the parallel harness and sea of accelerators. We know from the discussions in 

Chapter 4 that, in essence, we are attempting to implement a virtual parallel 

harness circuit where the FURl core emulates what would have been explicit 

routing between the processing elements of the harness circuit. Specifically, mul-

tiple smaller circuits are transmitted along with a FURl program which defines 

a software routing algorithm. 

The first characteristic we note about this model is that programs and program 

operands play a larger and more central role than they have in either of the 

earlier models. Previous models generally only exploited program operands to 

conduct a control conversation with the FURl executive. Here, we are not only 

interested in influencing the existing control system, but actively inserting new 
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control algorithms on demand. Implementations of both the sea of accelerator and 

parallel harness models are conceivable were we to communicate an initial control 

algorithm for the class of virtual circuitry model. In the sequential algorithmic 

model we must communicate a control algorithm not just for the model, but for 

each circuit presented by an application or application process. These control 

algorithms, which are rendered into FURl programs and communicated to the 

FURl core as a program stream, account for the majority of the program traffic 

in the sequential algorithmic datastream. 

The role of program operands is potentially quite different in the sequential 

algorithmic model. Up to this point an implicit assumption has been that the 

FURl core implements parallelised versions of computations for the sole purpose 

of accelerating the effective computation on a FURl-compatible processor ele-

ment. Applications which use a sequential algorithmic model have the potential 

to reverse this assumption. It is conceivable that the FURl core could transmit 

program operands to the compatible processor element in the FURl network as 

a means of using the computational resources available in the network to aug-

ment or accelerate the software routing algorithm it is currently executing. When 

this technique is used, the FURl core implementing the software routing for the 

current application must wait for the processed result. Sustaining a high level 

of computational throughput for an application, therefore, requires the efficient 

communication of these operands and their corresponding results. 

Cohesion is difficult to generalise in this model. We inherit the potential 

for a very cohesive datastream because the computations being implemented are 

similar to those in a parallel harness: they are relatively large, potentially very 

stateful, and we are willing to invest significant amounts of the spatial array 

resource to house them. The knock-on effect from this is that there is little 

spatial sharing of the resource and, since temporal context switches still incur the 

recommunication of circuitry, temporal sharing remains too costly to implement. 
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This implies that we simply transmit the entire computation in one go and follow 

it with a large enough stream of operands to amortize the setup cost. 

However, the sequential algorithmic model is not just an alternative imple-

mentation of parallel harness. In the parallel harness we had to configure the 

entire circuit in one step because the computation itself was specified as one 

large circuit element. In the sequential algorithmic model, the computation is 

broken into multiple sub-circuits and program fragments. Provided we maintain 

the correct transmission order, each computation fragment could be transmitted 

independently of the other and independently of any other sequential algorithmic 

application running on the array at the time. This is much more characteristic 

of the situation that we have in the sea of accelerators where the configuration 

of one circuit can be interspersed with the transmission of operands or circuit 

configuration for a completely separate application. 

In comparison to a parallel harness circuit which effects the same computa-

tion, we generally have less circuitry information to transmit for a sequential 

algorithmic computation. Explicit routes between processing elements are not 

configured as the FURl core has taken over their role. The result of this is that 

we can actually envisage more spatial sharing of the array resource between dif-

ferent applications than we would have considered for the parallel harness. As 

such, the potential cohesion in the datastream correspondingly decreases. How-

ever, and unlike the sea of accelerators, if the amount of circuitry used in the 

computation increases to consume more of the array resource, then the amount 

of cohesion in the datastream will increase as a result of the reduced sharing of 

the array resource. 

We can draw the same distinction between logical and actual cohesion in the 

sequential algorithmic datastream as we made for the sea of accelerators. There 

is potentially strong cohesion in the logical datastream associated with a single 

application or process. The assumption that underlies this statement, however, is 
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that we transmit all the circuitry elements before we can begin to send operands. 

This is certainly the case for the sea of accelerators and parallel harness, but 

it does not necessarily hold in the sequential algorithmic model. For example, 

in the sea of accelerators the entire unit of computation was represented by the 

accelerator circuit itself and operands could not be streamed through the partially 

configured, stateless accelerator circuit. 

However, in the case of the sequential algorithmic model, the unit of com-

putation is much larger than the unit of circuitry being communicated. Within 

the logical datastream for a single application circuit, operands may indeed be 

streamed through the partially constructed computation. As we transmit the first 

N circuits that are involved in the sequential algorithmic computation, we only 

need transmit enough of the sequential algorithm's programmed routing to han-

dle operand streaming through those N circuits, yet we still have the opportunity 

to begin computation after the first circuit and program fragments have arrived. 

In short, the entire sequential algorithmic computation can be constructed incre-

mentally, with partially computed results streamed and buffered through circuits 

and the sequential algorithmic control code as they become available. 

To summarise, we cannot state conclusively that there is either strong or 

weak cohesion in the logical datastreams of a sequential algorithmic application. 

The opportunity to employ interleaved circuit configuration and computation is a 

compelling reason for deploying the sequential algorithmic model in an application 

in the first place. If there are a large enough number of circuit operands to follow 

the complete transmission of all the circuits used by the sequential algorithmic 

model then we can say that the logical datastream will eventually enter a state of 

cohesiveness where we are only communicating circuit operands. What we cannot 

guarantee in this situation is that the circuit operands themselves will all be from 

the same application. 

Latency is also a complicated issue but from our understanding of the role of 
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state in the model, we can argue that it leans more towards the kind of latencies 

we see in the sea of accelerators than those we argued for the parallel harness. 

Configuration latency incurred in the model is low because of our ability to inter-

leave the computation of partial results with the arrival of circuitry. The impact 

of the configuration latency on the initial computation latency is masked since 

we start the streaming of circuit operands and program code before all of the 

circuitry for the complete computation has arrived. 

Once we have overcome the initial configuration latency, computational la-

tency becomes the time between presenting an operand and receiving the re-

sult. The general computational latency of a sequential algorithmic application 

is longer than the equivalent latency in a parallel harness circuit. This is due to 

the serialising effect of the FURl core. We generally execute the software routing 

algorithm step by step and hence, what would have been direct and parallel in-

terconnect in the parallel harness, is now done serially'. It therefore takes longer 

to transform each operand into a result. 

The influence of circuit operand and result processing latency varies according 

to the kind of state used in the sequential algorithmic computation. If stateful 

circuits are used in the computation, then the application is more demanding in 

terms of circuit operand and result processing latencies. The same justification 

that applied in the parallel harness discussion applies here. That is, we must 

present new operands only when the correct circuit state exists for them to be 

processed correctly. Similarly, each result may only be present at the circuit 

outputs for a specified period of time before being overwritten by the results 

of subsequent operands. We are therefore responsible for ensuring the timely 

processing of results as they arrive. However, if we only employ stateless circuits 

in the computation then we know that computational state is managed by the 

'from the discussions in Chapters 4 and 5 we can argue that this is not a strict rule. Operand 
Multicasting using the wildcarding mechanisms of the underlying XC6200 means that the FURl 
core can employ some parallelism in the software routing it implements. 
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software routing algorithm executing on the FURl core. 

Program operands generally require very low communication latencies in this 

model. This is a direct consequence of their potential role in the implementation 

of the software routing algorithm: if we have long latencies for program operands 

then the routing algorithm, and hence application performance, must stall until 

the result arrives. If program operands cannot be guaranteed low communica-

tion latencies, perhaps as a result of making multiple hops through the FURl 

network, we can still conceivably hide their latency by processing a different cir-

cuit operand stream. Essentially, we are performing a miniature context switch 

within the software routing algorithm to a 'thread' which has not reached the 

stage where it requires the services of the external node. This assumes, however, 

that there are sufficiently large sections of the routing algorithm that do not inter-

act with external network nodes. Without this assumption, each circuit operand 

stream would very quickly reach a stage in the software algorithm where it must 

stall. Therefore in general we consider program operand traffic to have a high 

transmission priority when it is used in this rOle within the sequential algorithmic 

model. 

7.2.2 The FURl Protocol Design Space 

In this section we explore the design space of FURl protocols. There are three 

main protocol components that we will consider: packets; packet buffers; and 

protocol handlers. Previously, we considered the communication characteristics 

of the three main models of virtual circuitry. What we did not consider, however, 

were the overheads that are associated with each act of communication. Such 

overhead cannot be completely avoided for all bar the simplest systems, and is 

influenced by the network topology in which the data is being transmitted. Our 

previous discussion on communication characteristics allows us to mitigate the 

effect by tailoring the distribution of the overhead between, and specialising the 
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implementations of, different protocol components. 

The enumeration of protocol components above is actually skewed towards 

the heterogeneous, shared-memory FURl network that was described earlier as 

our main system context. That is, the fact that we are considering packet buffers 

explicitly is a direct consequence of selecting a shared-memory FURl network. 

This can be interpreted as a high level indication of how the form of a protocol 

is influenced by the topology of the surrounding network. However, we will not 

limit the following discussion to the system context alone. Instead, we take each 

of the three protocol components, discuss their function, and then explore some 

of their potential forms. We can then relate such forms to the network topologies 

that require them and the communication characteristics that justify them. 

Design choices interact closely between protocol components. Selecting a par-

ticular packet style, for example, will undoubtedly affect the implementation of 

the protocol handler and, depending on the class of network topology, could also 

impact on the packet buffer format. Enumerating these complex interactions is 

not our goal, however. We may allude to such relationships but generally avoid 

detailed discussion. 

7.2.2.1 Packet Formats 

A FURl packet encapsulates a data payload for transmission in a given FURl 

network. The packet is the basic quantum of information that is transferred in 

any one communication cycle. We can generalise the structure of a FURl packet 

into two main sections: 

• the packet payload which is the application data being transmitted across 

the network. The payload in a FURl packet comprises data from at least 

one of the four fundamental communication datatypes introduced in the 

previous section; and 
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• a packet header  which contains contextual information regarding the con-

tents of the payload and the way that the packet should be processed by 

the protocol handler. 

We measure the overhead of a packet by the ratio of packet header to packet 

payload. In theory, the packet header can be eliminated completely. However, this 

does not mean that we have entirely eliminated the transmission overhead, only 

redistributed it to the other protocol components. The contextual information 

excised from the packet header has to be subsequently encoded in either the 

packet buffer or the protocol handler or, most likely, both. We should note that 

this is not an all-or-nothing approach. In fact, our ability to balance overhead 

from different networks and virtual circuitry models comes from the ability to 

selectively migrate state that would be repeatedly transmitted in packet headers 

to other protocol components and vice-versa. 

A packet can be either fixed size or variable size and the approach we adopt 

for a given protocol depends more on the communication characteristics of the 

virtual circuitry model than the network topology we communicate the packet 

within. The main motivation for adopting variable-sized FURl packets comes 

from datastreams which exhibit a high degree of cohesion. In this situation we 

have the opportunity to amortise the overhead of the packet header over a larger 

section of the datastream: we transmit large amounts of the datastream in a 

few large variable-size packets rather than segmenting the datastream into many 

smaller, fixed size packets which each have their own packet headers and corre-

sponding overheads. 

Furthermore, the question of whether a packet has a completely fixed format 

is orthogonal to whether the packet has a fixed or variable size. In the most 

general sense, a packet format is fixed since we do separate a packet into a header 

'We should note that some network protocols use 'trailers' rather than headers for effi-
ciency reasons. In the abstract sense, both headers and trailers simply correspond to control 
information embedded within the packet. 
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which is communicated before the corresponding payload. However, the format 

of data within those two broad divisions could be either fixed or flexible. Since 

the format of the packet itself could be encoded in the packet header. 

For instance, a packet payload could have contain a mixture of different 

datatypes or be constrained to only one. A motivating example of this is em-

bedding program data with any of the other three datatypes. This effectively 

creates active packets where the program code contained within the packet ac-

tually defines the processing to be applied to the remaining payload. However, 

mixing datatypes in the packet payload implies that the payload itself has some 

form of internal structure. If there was no format imposed on a mixed payload 

packet, the protocol handler would be unable to discern one datatype from an-

other'. Therefore, we must consider how to communicate the payload structure 

to the protocol handler. This can be done by encoding structural information 

into the header of the packet itself and designing the protocol handler so it can 

interpret the embedded structural information. With respect to the active FURl 

packet example, the protocol handler would be unable to discern the entry point 

of the embedded program unless we encode that information in the FURl packet 

header. 

The simplest form of structural encoding is a type field where we specify the 

type of a packet in the header and the protocol handler is capable of handling 

one or more of packet types. This is a fairly static approach as the number of 

packet types has to be explicitly enumerated before communication begins and 

the protocol handlers will only ever understand a specific subset of packet types. 

A more flexible alternative would be to employ a programmed meta-description 

of the packet format in the header. The protocol handler has to understand 

where to find the format definition and how to decode that definition but after 

that it can, conceptually, process any packet format that can be encoded in 

7 1t is not possible to arbitrarily mix datatypes in the packet payload since the type of a 
given datum is not directly encoded into its raw datastream representation. 
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the meta language. These two examples are at opposite extremes of possible 

approaches to encoding packet formats. We either have a dense encoding in the 

form of a packet type coupled with specialised protocol handlers or we define 

the packet using format specification embedded in the packet header, and have 

a generalised protocol handler. In terms of their respective impact on overhead, 

with a meta-language approach we reduce the number of context switches by 

having few generalised protocol handlers executing on the FURl executive. On 

the other hand, with a type field there is potentially a larger number of specialised 

protocol handlers which, as a function of their specialisation, will have a faster 

processing rate than the generalised handler. 

In addition to encoding structural details of a packet in its header, we also 

convey addressing information. We need addresses in the packet header to identify 

the node and program or circuit that a packet is destined for within the network. 

The style of packet addressing required is heavily dependent on the exact network 

topology and the virtual circuitry model being used. We generally require an 

address to identify the source and destination of a payload. However, we can 

reduce the amount of explicit addressing required for each packet by adopting 

conventions in the protocol handler and packet buffers. 

The virtual circuitry model influences packet addressing since the higher the 

degree of sharing that a model supports, the larger the address space is within a 

node. Furthermore, the choice between adopting a connection oriented or connec-

tionless scheme is related to the amount of cohesion in the model datastream. A 

high degree of cohesion generally justifies a connection oriented addressing style 

since we know that the datastream traffic is going to exhibit a suitable degree 

of regularity. The most desirable address encodings are compact and have a low 

processing overhead when the packet eventually arrives at the appropriate proto-

col handler. It is theoretically possible to eliminate the addressing requirement 

completely but requires that we severely constrain the network topology and 



communication style. i.e., we limit ourselves to a single application or process 

partitioned over a network where a physically dedicated channel connects two 

nodes and, more specifically, there is one program or circuit element in each of 

those those nodes. 

Since there are only two nodes in the system context we defined earlier, we 

can potentially eliminate node addresses from the packets in this style of network. 

The network has the minimum number of nodes and we need only specify the 

circuit or program element within the destination node explicitly. At the other 

extreme, if the network topology and communication style is more complex, the 

addressing information required increases. In the case of a bridged network, 

for example, packets are hopping between explicit interconnect channels through 

intermediate nodes. Essentially we are approaching the complexity of a packet 

switched network, where intermediate nodes must make routing decisions in the 

transmission of packets. The processing overheads in such a network make it 

generally unsuitable for the virtual circuitry applications we are considering but 

it is interesting to consider as an extreme point on the style of addressing that 

may be theoretically implemented over the FURl network. 

We can also consider the potential difference between packets from a shared 

memory network and packets from a directly connected network. In a directly con-

nected network, the receiving protocol handler has no real choice in which packet 

to process since the packets arriving are simply those that have been transmit-

ted from another host. In a shared memory network, there is a greater chance 

that a packet will experience communication latency by being stalled within a 

packet buffer. For latency intolerant models like the parallel harness and sea of 

accelerators the protocol handler must make rapid decisions about which packet 

to process next. One argument here could be that we simply restrict the class 

of networks that are suitable for latency intolerant models to those with directly 

connected nodes. However, forcing all communication to be explicit and direct 
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between nodes makes sharing of the logic array more difficult and the protocol 

handlers have to arbitrate direct access to the channel. A shared memory network 

facilitates sharing of the array by increasing the amount of simultaneous access 

to the packet buffer. Essentially there is a tradeoff between the overhead cost 

of arbitrating a direct medium and the overhead cost of processing extra packet 

data required in a shared memory context. The worst case situation for a shared 

memory network is a single-ported memory component in place between network 

nodes. However, this is logically equivalent to the direct connection of nodes since 

we have to arbitrate access to the memory component rather than channel. For 

dual ported memories and beyond, the amount of sharing facilitated increases 

since we have greater independent access to the packet buffers. Here, the pro-

tocol handlers executing on FURl components have a larger selection of packets 

available for processing so the packet may contain extra header information, such 

as a packet priority or a sequence number, to assist in the decision process. 

7.2.2.2 Packet Buffers 

Packet buffers exist mainly in the context of a shared memory FURl network 

and their main purpose is to hold packets that are in transit, between protocol 

handlers, over a given channel. The FURl protocol handlers insert and remove 

packets from a particular buffer in order to communicate algorithms and operands 

between nodes in the FURl network. There are two components that define a 

packet buffer: 

• The first component is a set of operating semantics that define how the 

FURl protocol handler may insert and remove packets from the region of 

memory that is allocated for a particular buffer. 

• The second component is the context information that must be maintained 

alongside the buffer to support both the operating convention and the pro-

tocol itself. 
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Generally speaking, there is a correlation between the amount of state we need 

to maintain for a particular style of buffer and the complexity of its semantics. 

The more complex buffer schemes require that we maintain more dynamic state 

to implement the buffer's data structure. Potentially, we could consider a number 

of different packet buffer styles ranging from first-in-first-out(FIFO) queues, to 

priority queues, and then fully random-access buffers. The styles are differentiated 

according to the flexibility with which packets can enter and leave the buffer. For 

example, FIFO queues allow packets to enter and leave only at given insertion and 

removal points and only in the order that they were inserted. A priority queue 

style buffer also constrains how packets enter and leave the buffer but loosens the 

constraint on the order that packets leave - the lowest priority  packet is always 

the first to be removed, even if it was not the first to enter. In the random access 

buffer, there are essentially no constraints on how packets would enter or leave. 

FIFO's are common in communication systems and, in this discussion, we will 

mainly consider FURl buffers in the style of FIFO queues. 

In the context of FURl protocols, FIFO style buffers have two useful prop-

erties: first, they implicitly preserve packet ordering and, second, the process of 

inserting and removing a given packet has 0(1) time complexity. From the dis-

cussion on communication characteristics, we know that packets, especially from 

operand streams, arrive and leave frequently. This makes the constant-time in-

sertion and removal of a packet an important consideration. Figure 7.10 presents 

three variations of FURl FIFO-style buffers. 

The different FIFO implementations show that we can, even within the restric-

tions of the given style, still make some tradeoffs in the amount of dynamic state 

we support. In particular, the cases in Figure 7.10 show the effects of altering the 

buffer's granularity of access on its state requirements. For FURl FIFO buffers, 

the access granularity itself breaks down into two components: the insertion gran- 

'This is an assumed convention. Different queue implementations may assert that the highest 
priority packet should be the first to be removed from the buffer. 
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Figure 7.10: FUR! Buffers with FIFO style operating conventions: (i) a minimal 
FIFO buffer containing one packet; (ii) a multiple packet FIFO filled with an 
access granularity matching the buffer size; and (iii) a multiple packet FIFO 
supporting single-packet access granularity. 

ularity determines how many packets enter the buffer with each access, and the 

consumption granularity defines how many packets should leave the buffer with 

each access. It is worth clarifying, however, that we are assuming the memory 

region allocated to any FURl buffer is itself static and that each protocol handler 

associated with a given buffer has explicit knowledge of both the memory size of 

this region and its start address. 

Figure 7.10(i) shows the simplest form of FIFO buffer that we will consider, 

and is essentially the same buffer form that was used in the FURl base-protocol 

in Chapter 6. In terms of access granularity, this buffer must he either entirely 
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filled or entirely emptied each time it is accessed. The only state information 

that we need to associate with an instance of this buffer style is a flag indicating 

whether the buffer is currently full, or whether it is currently empty. A single 

packet buffer may, at first, seem quite limited, especially in the context of small, 

fixed-size packets. However, this buffer style effectively demonstrates the smallest 

quantum of buffer state required to exchange a single packet between two protocol 

handlers and would be effective in situations where the VC application datastream 

is cohesive enough to warrant large variable-sized packets. 

Figure 7.10(u) shows a multi-packet variant of the first buffer. Although 

the buffer may contain multiple distinct packets, it is still filled or emptied in 

its entirety with each access. Now, in addition to maintaining the full-empty 

indicator, we must maintain a count of the number of packets that are currently 

held in the buffer. Given the current set of constraints, this is actually redundant 

when the packet size is also fixed. If that were the case, the number of packets 

could be deduced from the memory size of the buffer and the size of the packet 

and the memory region allocated to the buffer would be a multiple of the packet 

size. The packet count is primarily needed to let the receiving protocol handler 

know how many variable sized packets are held within the buffer. With this 

information, the receiving protocol hander can then consume the appropriate 

number of packets, starting with the first packet whose header is aligned with the 

start of the buffer's memory region. 

Finally, Figure 7.10(iii) shows the FURl model of a multi-packet FIFO with 

an access granularity on the scale of a single packet for both insertion and con-

sumption. For this buffer style, in addition to the status word identifying whether 

or not the buffer contains any valid packets, we maintain two dynamic pointers 

into the buffer's memory region. These pointers define the start and end of a 

valid-packet region respectively. The FIFO operates cyclically, so the pointers 

wrap around whenever they reach the end of the buffer's memory region. 
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As with the previous two FIFO styles, the receiving protocol handler starts 

to consume packets based on the value of the status flag, but now only consumes 

packets within the valid-packet region delimited by the start and end pointers. 

When all the packets within that region are consumed, the two pointers align 

at the same address and the status word must be inverted to show that all the 

packet data is consumed. This is important because the protocol handler inserting 

new packets must stall if it wraps around to the start of valid packet data that 

has not been consumed by the receiving handler. The inserting protocol handler 

increments the valid region's end pointer each time it adds a packet. Before 

adding a packet, however, it tests whether or not the valid region's end pointer 

matches the start pointer and whether the buffer's status indicator is set to show 

the buffer still has valid packet data. If both conditions are true, then the buffer is 

full and the inserting protocol handler must wait until either the buffer is marked 

as empty again or the valid-region pointers no longer align. 

In comparison to the two earlier FIFO styles, this buffer style is less likely to 

introduce latency into the VC datastream. The main reason for this is that the 

entire buffer does not need to be filled before the receiving protocol handler can 

begin processing the incoming packets. In the general sense, increasing the access 

granularity allows us to reduce some of the dynamic state overhead associated 

with a given buffer style, but we pay for that with an increased latency in the 

data stream. In theory, we could partially fill the buffer with valid packets and 

partially fill it with identifiably invalid packets. The receiving protocol handler 

would then be responsible for ignoring the invalid packets, but if the time taken 

to generate and filter out the invalid packets was less than the time it would take 

to fill the buffer with valid data, then we would reduce the overall delay. Even 

if this approach was tractable from an implementation perspective, we must still 

approach it cautiously as it increases the potential for variation of the latency 

in the datastream. We mentioned earlier, when discussing the communication 
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characteristics of the different VC models, how such jitter may be harmful in 

models such as the parallel harness. 

7.2.2.3 FURl Protocol Handlers 

FURl protocol handlers are the programmed tasks that execute within the frame-

work of the FURl executive to implement a particular FURl protocol. The precise 

actions of a handler are specific to the protocol being implemented, but we can 

generalise its actions into two roles: first, the protocol handler interacts with a 

given network channel to orchestrate the exchange of protocol packets and, sec-

ond, the protocol handler processes the packet data it receives and, potentially, 

generates result packets. Essentially, each protocol handler provides an inter-

face to a particular array resource or SLU. The exact feature set that a handler 

manages, though, is defined through the protocol itself. Effectively, it is the col-

lection of protocol handlers currently active in the FURl executive that define 

the programmable logic interface. Furthermore, it is the ability to add and re-

move handler tasks through the FURl base protocol that facilitates the adaptive, 

packet based programmable logic interface we aspired to in Chapter 3. 

We can differentiate protocol handlers according to how much they have been 

specialised to deal with a particular packet style or buffer format. If the protocol 

handler only ever processes packets of a fixed size and certain format then we can 

specialise its programmed implementation accordingly. For example, consider the 

implementation of a protocol handler that interacts with a FIFO buffer similar 

to that shown in Figure 7.10(u), but containing fixed-size packets instead of the 

variable-sized packets shown. In this situation, the number of packets that must 

be consumed with each buffer access becomes static and can be folded into the 

code of the protocol handler. Each specialisation of this kind, where we fold 

detailed assumptions about the packet and buffer format into the protocol han-

dler's implementation increases its efficiency at processing those packet and buffer 

types. 
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However, we have to trade off the specialisation applied to a handler against 

the constraining effect it has on which packets the handler can process. If the 

protocol handlers are too constrained, we may require more independent handler 

tasks running on the executive to handle the full diversity of the VC datastream. 

In particular, this means we effectively have to balance the handler's specialisation 

against the cost of context switching between many different handler tasks. 

For example, in the sea of accelerators context, we could assert that each SLU 

is managed by a dedicated, specialised protocol handler. Since there might be a 

relatively large number of SLUs resident on the cell array in this VC model, there 

would be a correspondingly large number of handler tasks. Although the handler 

code is itself more efficient, the larger number of executive tasks means it may 

actually take longer before it is scheduled and the context switch penalty is more 

apparent. In this case, we can perhaps argue that the round-robin scheduling 

policy of the FURl executive should be replaced by an alternative policy that 

applies a higher level of reasoning in selecting which handler task should be ex-

ecuted next. A similar approach would apply to generalised protocol handlers 

that manage multiple input buffers where the protocol handler itself must make 

'micro-scheduling' decisions about which of its multiple buffers to service next. 

7.3 Implementing Virtual Circuitry Models 

The discussion in the previous section addressed the general form and design space 

for FURl protocols and in this section we shall propose implementations of the 

three VC models in the FURl environment. The Data Encryption Standard(DES) 

is used as an example application in this section. Each implementation discussion 

proposes renditions of the DES algorithm in combinations of FURl managed 

circuitry and application program code to accentuate the role and challenges 

facing the FURl core in the different VC styles. 

The DES is an appropriate algorithm to use in the proposed implementations 
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because its basic elements can be composed into the appropriate circuitry forms. 

For example, the DES contains many basic combinatorial computational elements 

which are individually appropriate candidates for becoming sea of accelerator 

SLUs. We can also explicitly wire all of the basic computational elements of 

the DES together within a pipelining parallel harness circuit. The resulting DES 

circuitry can then be presented to the FURl core for management. Specifically, its 

pipelined nature provokes the complex and particularly demanding timing issues 

that are characteristic of FURl managed parallel harness circuitry and that the 

FURl core must handle in parallel harness applications. The same computational 

elements can also be combined in a sequential algorithmic flexible harness that 

takes over the same fundamental role as the parallel harness interconnect circuitry 

but using highly optimised FURl code. 

A short description of the DES is given in the following section. 

7.3.1 The Data Encryption Standard(DES) 

The DES is a 64 bit block cipher exploiting a 56 bit key length. It combines 

the two basic techniques of encryption: confusion (substitution) and diffusion 

(permutation). This section gives a very brief overview of the algorithm and a 

detailed description of the DES can be found in [91]. The algorithm, as shown in 

Figure 7.11, comprises 16 almost identical "rounds" which are bounded by initial 

and inverse initial plaintext permutations. The same algorithm is used for both 

encryption and decryption. 

IP and 1P' are the plaintext permutations applied at the periphery of the 16 

DES rounds and they have very little cryptographic value. Software implementa-

tions of DES often omit them completely' as word-oriented microprocessors have 

difficulty implementing bit level permutations as efficiently as they can be done 

in circuitry. 

'Although this means, strictly, that they no longer implement the DES and therefore typi-
cally refer to themselves as implementations of DES' or DES* .  
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Figure 7.11: The Data Encryption Standard Algorithm 

The Key Permutation(KBOX) is applied at the beginning of the encryption 

or decryption to extract the 56-bit key from the 64-bit input vector. Specifically, 

the permutation ignores the eighth bit of each byte which is typically used for 

parity. Key-shift is a circular shift of one half of the 56-bit compression key. For 

encryption, the 28-bit sub-key is shifted left according to a key schedule which 

varies how much the sub-key is shifted by, based on the round number. The 

situation is similar for decryption excepting that the sub-key is circularly shifted 

to the right and the key schedule re-creates the inverse key sequence to that 

applied during encryption. Permuted Choice(PC) is another bit-level permutation 

that selects 48 bits from the 56 bits contained in the shifted key. The resulting 
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value is then injected into the main flow of the algorithm to influence the encoding 

of the plaintext during the current round. 

The expansion permutation(EBOX) is used to rapidly increase the dependency 

of every bit in the ciphertext on every bit in the plaintext. The permutation 

converts the 32-hit right hand data word to a 48-bit expanded data word by 

regularly repeating certain bits in the input word. Substitution Boxes(SBOX) 

are the main cryptographic feature of the DES and apply non-linear substitutions 

to 6-bit segments taken in sequence from the expanded data word after it has 

been XORed with the current round's encryption key. The resulting nibbles are 

re-packed into a 32-bit data word for the following permutation. The straight 

permutation(PBOX) is applied immediately after the SBOX substitutions and is 

essentially a standard permutation where no bits are repeated or omitted from 

the input word. 

7.3.1.1 The DES modes 

The basic DES algorithm is a symmetric block cipher where a ciphertext block is 

the direct product of the input plaintext and encryption key. In the standard algo-

rithm itself, there is no cumulative relationship between plaintext blocks that are 

encrypted in sequence. This makes the encrypted ciphertext particularly suscep-

tible to differential cryptanalysis techniques. To combat this, four DES operating 

modes are specified: electronic-codebook (just the application of the standard 

algorithm); cipher-block chaining; output-block feedback; and cipher-block feed-

back. Although the cryptographic aspects of these modes are interesting, the 

discussions below will consider just the standard, electronic-codebook operating 

mode. 

7.3.2 The Application Context 

The overall system context for this section was shown in Figure 7.1. Figure 7.12 

expands that view to include more of the details from the discussions earlier in 
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Figure 7.12: Lower level view of the FURl system context 

this section and the discussion of the FURl base protocol given in Chapter 6. 

In all of the following examples, a FURl client executing on the host processor 

system allows the main application code to interact with the FURl managed 

programmable logic via a series of FURl protocols. 

Initially, only the FURl base protocol is available and the FURl client must 

use it to instantiate other protocol handlers that are more specific to the \7C model 

being supported. Figure 7.12 shows the state of the FURl managed programmable 

logic after the base protocol has been used to instantiate two handlers. One 

handler is dedicated to managing SLU configuration and the other to facilitating 

SLU interaction. 

7.3.2.1 Configuration Protocols 

Chapter 6 presented a detailed, low level discussion on the mechanics and issues 

related to the use of the FURl core in the role of configuration agent. The same 

fundamental issues raised in the discussion of a SLU loader in Chapter 6 also 

apply to the proposed VC model implementations discussed in this section. Since 

the discussion in Chapter 6 is fairly comprehensive, this section focuses more on 

the issues surrounding SLU interaction. 
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7.3.3 Sea of Accelerators 

7.3.3.1 Overview 

In the sea of accelerators implementation of the DES, the majority of the algo-

rithm executes on the host microprocessor. We map one of the basic computations 

in the DES algorithm onto an SLU implementation. The main algorithm interacts 

with that SLU by passing packets of circuit operands to the appropriate protocol 

handler and collecting the corresponding result packets. 

7.3.3.2 Interacting with a PBOX SLU 

PBOX is an interesting candidate for a sea of accelerators SLU: the irregularity 

of the permutation makes it fairly difficult to implement efficiently in software, 

although an SLU implementation is nothing more than wiring between two 32-bit 

registers. Generally speaking, interacting with an SLU involves processing pack-

ets containing circuit operand data - the operands excised from that packet are 

presented to the appropriate SLU and the results generated by the SLU are cap-

tured and placed into a result packet for transmission back to the FURl client. 

Of the three VC models, SLUs in the sea of accelerators model have the sim-

plest set of requirements associated with their interaction. Every operand packet 

received by the protocol handler for a sea of accelerators SLU would directly gen-

erate a corresponding result packet. This is in contrast with the more complex 

circuit state and timing issues that we must address for the Parallel Harness and 

Sequential Algorithmic models. 

Interacting with the PBOX SLU is fairly straightforward as it has the simplest 

form of SLU interface - there is one input register, one output register, and both 

JO registers can be aligned to the same vertical positioning. All of these factors 

make the protocol handler's job of presenting operands and recovering results 

much simpler since the SLU registers share the same map register settings and, 

once the appropriate device state has been applied, they can be read and written 
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with a single FastMap transaction each. However, this is not the case for all 

SLUs and we must address the fact that different SLU interfaces place different 

requirements on the SLU interaction protocol handler. 

7.3.3.3 Interacting with an EBOX SLU 

The general form of the EBOX SLU is similar to that of the PB0X but with one 

important exception: the input and output registers of the EB0X are different 

sizes and, in particular, the output register exceeds the width of the FastMap data 

bus. We cannot rely on sharing map register settings and must now arrange for 

two separate FastMap reads to recover the result from the SLU's output. Com-

paratively speaking, interacting with the PBOX is much simpler than interacting 

with the EBOX solely because of the arrangement and form of its 10 registers. 

7.3.3.4 SLU Interface classifications 

Figure 7.13 shows five common register interface arrangements for sea of acceler-

ator SLUs and, underneath each, the approximate sequence of device state and 

interface register accesses required to effect a single computation. An underlying 

assertion in the first four interface arrangements is that the interface registers 

are at most 32 bits wide. The PBOX SLU we described above is an example of 

a Figure 7.13(i) SLU. In Figure 7.13(u), the situation is slightly more complex 

since the input and output registers have differing sizes. This means that a differ-

ent device state must be applied before accessing either to present the incoming 

operand or retrieve the corresponding result. Figure 7.13(iii) is an extension of 

the PBOX-style SLU demonstrating the effect of having multiple input registers 

in the SLU although, since the registers share common map register requirements, 

the only effect is an increase in the number of register writes corresponding to 

the number of input registers. 

Figure 7.13(iv) shows three forms of SLU where there are multiple input reg-

isters, but without the ability to share map register state between accesses. In 
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Figure 7.13: Interface Arrangements for FURl SLUs 

this case, we must apply the appropriate control register settings before any read 

or write to an SLU register. In Figure 7.13(v), the 32-bit size constraint on the 

interface registers is removed so SLUs with a much wider data path can be con-

sidered. The EBOX SLU is a close relative of the Figure 7.13(v) since its output 

register is larger than 32 bits wide. Furthermore, although the tall SLU shown 

in Figure 7.13(v) is logically identical to the first interface type, the fact that it 

exceeds the width of the host FPGA's physical interface makes the presentation 

of operands and capture of results more complex. Presenting a single operand 

to one of the wide SLU interface registers requires multiple writes, each of which 

is preceded by an appropriate device state setting. A parallel situation holds for 

recovering an operand from a wide SLU output. 

7.3.3.5 Managing interface arrangements in the Protocol Handler 

The protocol handler requirements in the initial PBOX SLU description are fairly 

routine: the operand data in each packet can be neatly packed into the words 
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of the shared memory region and, with the appropriate placement constraints, 

the registers can share common map register values. However, the section above 

demonstrates that the amount of effort required to communicate with the SLU 

varies according to its interface style. Essentially, we must communicate format-

ting information to the protocol handler to let it know how individual operands 

are packed into the data payload of the packet. Furthermore, if the SLU has 

multiple input registers, we must somehow be able to address each operand to a 

particular destination register. 

One immediate option is to specialise each protocol handler to a target SLU's 

interface. In particular, details of the operand characteristics, and transport 

scheduling are folded directly into the handler's packet processing code. At the 

opposite extreme, though, a single generalised protocol handler could be written 

to manage all possible SLU interface arrangements. To support each SLU inter-

face arrangement, the packet's header information would contain all the necessary 

meta-data to allow the generic protocol handler to present the circuit operands 

correctly and, symmetrically, gather and re-pack the circuit results. 

Generally speaking, neither of these situations is particularly ideal. We con-

sidered the effect of specialising protocol handlers within the sea of accelerators 

model earlier. The potentially large number of independent SLUs would increase 

the elapsed time between a given protocol handler being scheduled. The com-

pletely generic protocol handler would increase the control-data overhead in each 

operand packet. Furthermore, unless there are a large number of operands in each 

packet, the overall efficiency of the generalised handler would be relatively low 

because of its very general nature and correspondingly complex programming. 

7.3.3.6 Dynamically binding to specialised SLU interface subroutines 

One potential compromise between the two approaches, however, involves the late 

binding of operand processing to specialised interfacing routines that are dynam- 

ically generated when the SLU is first iistantiated on the array. For example, 
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rather than just being responsible for transferring a SLUs bitstream image to the 

host FPGA's configuration memory, the configuration protocol handler can also 

create specialised instances of interface code templates. The specialised instances 

of the code templates essentially define two FURl subroutines. The first con-

sumes operand data from a given position in the current packet and presents it 

to the specific SLU inputs whilst the other, when called, captures the output of 

the specific SLU and packs it into a given position in a results packet. Although 

there is a cost associated with generating the templates, we can consider this part 

of the overall configuration cost for the SLU and amortise it accordingly. 

The important thing to note here is that we are not dynamically synthesising 

large amounts of code each time we process a new packet. Rather, the entry 

points for the synthesised interface code subroutines would be maintained in a 

binding table, keyed by an appropriately unique SLU instance identifier. Read 

and write operations to the SLU interface would be dynamically bound to the 

correct, specialised subroutines when we begin to process each operand packet. 

A crucial aspect of this style of protocol handler is an efficient dynamic bind-

ing scheme. The focused application of self-modifying code is very useful here - 

we can perform a single lookup of the interface binding table once per operand 

packet and overwrite the interface subroutine call entry points within the han-

dler's code. This eliminates the cost of repeatedly calculating the dynamic binding 

at each SLU interface access and allows us to amortise the cost of the code self-

modification as each operand is presented to the appropriate SLU. Conceivably 

we can amortise the binding cost over multiple operand packets, provided we can 

justify maintaining separate input FIFOs for each SLU. 
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Figure 7.14: Pipelined Parallel Harness DES Circuitry 

7.3.4 Parallel Harness 

7.3.4.1 Overview 

In the parallel harness implementation of the DES, we construct a single, large 

circuit that implements all the functionality of a single, highly pipelined DES 

round. As shown in Figure 7.14, pipeline registers of an appropriate width are 

placed between each of the main computational stages of the algorithm. For 

example, this would include pipeline stage registers between the EBOX and logic-

XOR and the insertion of appropriate delay registers to ensure that the left word 

of the plaintext arrives at the round's final logic-XOR on schedule. We should 

note that, in this example, the harness itself is the pipeline register circuitry 

juxtaposed with the computational SLUs. As we described in Chapter 4, system 

SLUs are placed at the periphery of the harness circuit to form a register oriented 

wrapper interface. The parallel harness operand handler executing on the FURl 

core uses this wrapper interface to present operands and collect results from the 

circuit. 
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The intention here is not to propose a particularly fast or novel implementation 

of the DES circuitry, but rather to combine the basic computational elements of 

the algorithm in a parallel harness style circuit. The overall efficiency of the 

circuit itself is less important than the fact that it exhibits the timing issues that 

we must consider when implementing the parallel harness model on the FURl 

core. We should clarify that the pipelined tuning of this circuit is fairly simple 

in comparison to other possible parallel circuit timing requirements. However, 

it is still appropriate for discussing the basic challenges that must be addressed 

within the circuit's protocol handler. 

7.3.4.2 The challenges of interacting with a parallel harness circuit 

The iiiain challenge for the parallel harness DES circuit's protocol handler is that 

the presentation of an operand is temporally separated from the collection of its 

corresponding results. The mechanical aspects of presenting operands and cap-

turing results is essentially the same as that used in the sea of accelerators: the 

interface arrangement influences the amount of work required to effect each in-

terface access. However, the protocol handler must schedule its interface accesses 

to match the timing of the parallel harness circuitry. For example, when the 

parallel harness circuit is clocked from a freely-running clock source, it is impera-

tive that the exact scheduling of SLU interface accesses coincides with the timing 

requirements of the harness circuit. If this is not the case, the protocol handler 

may miss results as they arrive at the circuitry output. There are three potential 

approaches to addressing this issue and each one is considered in turn below. 

7.3.4.3 Matching the harness timing with specialised transport 
scheduling 

The first approach requires a highly specialised and optimised implementation 

of the handler. Specifically, this handler uses advance knowledge of the DES 

harness's circuit latency and I/O schedule to synchronise the harness protocol 
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Figure 7.15: Operand and Result sequences for the pipelined DES Parallel Har-
ness Circuit 

handler's instruction sequence with the raw timing of the harness circuit. Spe-

cialised protocol handlers that are specific to a particular SLU are more likely 

in the parallel harness context because of the potentially low number of circuits 

sharing the spatial resources of the array at any one point in time. Scheduling 

an appropriate instruction sequence within the protocol handler is a task suited 

to the optiinising stages of a higher level TTA compiler. 

Aligning the execution of FURl instructions to the I/O schedule of the harness 

circuit is challenging and has two underlying assumptions. First, we assume 

that the FURl core and the parallel harness circuits are in physically compatible 

clock domains. The FURl core may exist in a separate clock domain from the 

circuitry it manages, for example, when the parallel harness circuitry has a longer 

critical path than the FURl core. Specifically, the clock frequency of the FastMap 

interface must be in phase with the clock being used at harness circuit's register 

interface. If this is not the case then we risk presenting an operand to the harness 

circuit at a point when it would not be latched. Alternatively, the FastMap 

interface may sample an incorrect result from the SLU output because its registers 

are in a transitional state. 

The FURl core executes its instruction sequence serially but in this instance 

we need to capture results and present inputs in parallel. The core cannot perform 

both of these operations simultaneously in a single move instruction so the second 



assumption is that we can actually execute enough FURl instructions within a 

single cycle of the DES harness circuit to present operands and capture results. 

Figure 7.15 shows a schedule of operands arriving at the inputs to the DES harness 

circuitry.,and the corresponding result sequence. A breakdown of the interface 

accesses performed by the protocol handler is given underneath the operand and 

result schedules. We can see in this diagram that, after we overcome the initial 

latency of the DES harness's pipelined implementation, two interface accesses are 

required on each cycle of the harness circuit. However, sequential execution of 

FURl instructions means that the FURl core would have to execute more than 

one instruction within the clock period of the DES harness to give the illusion 

of capturing the harness's result and writing the next operand simultaneously. 

Effectively, the FURl core must have a very low instruction cycle time relative 

to the DES harness's cycle time. Supporting this practically is challenging since 

pipelining has the effect of reducing the clock period of the DES harness. 

7.3.4.4 Isolating the FURl core timing from the DES harness 

Whilst interacting with the DES harness at its natural timing is theoretically 

possible, we can see from the above discussion that a practical implementation 

would require a very fast implementation of the FURl core. The discussion in 

this section focuses on changing the style of system SLU at the harness circuitry's 

periphery as a means of making the task of interfacing with the circuit simpler. 

In both the cases presented, we increase the intelligence of the harness's interface 

SLUs to reduce the demands on the protocol handler and the FURl core. 

Figure 7.16(i) shows the same DES harness circuit used in the discussion 

above, but this time bounded by system SLUs that contain FIFO circuitry. A 

particular point to note here is that the FIFO-based system SLU at the harness 

output is capable of stalling the harness circuit when the FIFO becomes full. This 

prevents the loss of results and, essentially, the use of FIFOs allows us to detach 

the internal timing of the harness from the FURl core. In this context, the FIFO 
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Figure 7.16: Parallel Harness DES circuitry 

at the harness output allows the FURl core to interact with the harness circuitry 

at its own speed without risking the loss of any results. If we were dealing with a 

more complex parallel harness circuit which demanded new operands arrive at a 

particular rate, the FIFO at the harness input would also stall the harness circuit 

when it became empty, this time to protect any internal state that is required for 

the correct processing of future operands. 

In the above approach, the FIFOs within the system interface SLUs provide a 

bridge across the two clock domains. The parallel harness circuit can still process 

operands and produce results at its core clock speed, even if the FURl core itself is 

not capable of supplying them at that rate. The third approach, shown in Figure 

7.16(u) uses a specific feature of the XC6200 to completely replace the harness 

circuitry's free running clock with a clock signal that is triggered once each time 

the FURl core captures a result or presents a new operand. Specifically, we use 

the FastMap interface's regword signal, described in Table 3.1, to replace the free 
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running clock with a single pulse that is generated each time a value is written 

to the DES harness's register inputs. In this context, the FURl core is actually 

implicitly responsible for clocking the DES harness each time it supplies a new 

set of operands. In this situation, the parallelism of the harness is still intact, 

but its computational rate is determined by the rate of its interactions with the 

FURl core. 

An interesting point here is that the underlying XC6200 FPGA architecture 

gives us this facility essentially for free whereas, if we were to implement the 

earlier FIFO model, we would have to invest an explicit amount of circuit area. 

At the same time however, the implementation of FIFOs in an architecture such 

as Virtex is much more routine and less demanding of array resources. This is 

not to say that the two approaches are architecture dependent, though, since it 

is possible to implement FIFOs on the XC6200 and gated-clocks on the Virtex. 

7.3.5 Sequential Algorithmic 

7.3.5.1 Overview 

We know from Chapter 4 that a sequential algorithmic circuit comprises a set 

of SLUs and FURl code that implements a flexible harness for interconnecting 

them. Figure 7.21 shows the general organisation of the sequential algorithmic 

DES implementation. Although the SLUs in this figure are in the sea of ac-

celerators style, the SLUs used within the flexible harness could be either sea of 

accelerators style or parallel harness style. The programmed flexible harness com-

bines them all into one conceptual circuit. From a comparative standpoint, the 

sequential algorithmic implementation of the DES used in this section is similar 

to the previous section's parallel harness circuit. Again, we are implementing a 

single DES round using SLU implementations of the main computational stages. 

However, the explicitly wired parallel harness interconnecting those elements is 

now replaced by the software routing executing on the FURl core. 
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7.3.5.2 Interacting with Sequential Algorithmic DES 

The basic role of the protocol handler is unchanged in the sequential algorithmic 

model: it is still responsible for presenting operands to the harness circuit and 

collecting results. Like the parallel harness handler, the sequential algorithmic 

handler must also deal with the temporal separation of presenting operands and 

collecting the corresponding results. However the sequential algorithmic handler 

does not interact with circuitry configured on the array explicitly. Rather, it ex-

changes operands and results with the flexible harness task using shared memory 

FIFO queues as an inter-task communication mechanism. 

There are two points we can note about this arrangement. The first is that, 

although the operand presentation and result gathering are temporally separate, 

because the protocol handler is not interacting directly with circuitry, we do not 

have the same complex timing issues that exist for the DES parallel harness' 0 . 

The second point concerns the difference this arrangement makes to the measure 

of latency within the sequential algorithmic circuit. In the DES parallel harness, 

it is theoretically possible for the results from processing the current packet to be 

captured and re-transmitted within one scheduled run of the protocol handler. 

In this situation, however, the latency between an operand being presented and 

the result being captured depends on the flexible harness task being scheduled to 

run. The latency of the sequential algorithmic DES harness is therefore influenced 

by the scheduling policy implemented within the executive. The critical path of 

the sequential algorithmic DES circuit is defined by the runtime of the flexible 

harness code itself. 

The flexible harness task is highly specialised to the particular form and layout 

of the SLUs it contains. This helps to counteract the loss of parallelism, incurred 

10 1t is acknowledged that these timing issues could exist within a sequential algorithmic 
circuit if it contains a parallel harness SLU. However, the flexible harness task imposes a level 
of abstraction that that isolates the protocol handler from being directly concerned by the 
parallel harness timing issues. Instead, the timing issues are managed explicitly within the 
specialised flexible harness code. 
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as a result of the FURl core's serialised execution by giving the higher level TTA 

compiler the opportunity to deploy the optimisation techniques we discussed in 

Chapter 4. For example, because the location and form of the DES SLUs are 

fixed and the harness's communication sequence defined in advance, the compiler 

can apply operand multicasting using the XC6200's wildcards. The application of 

bin-packed writes using the XC6200's map register mechanism is also calculated 

at this stage. In the DES harness, for example, we can bin-pack multiples of the 

SBOX operands into a single write. 

Essentially, the flexible harness code trades away as much of its dynamic deci-

sion making as possible to increase its efficiency. The downside to this, however, 

is that it limits the potential benefits available through some TTA optimisations. 

Operand sharing, for example, could be very effective if an operand becomes a 

semi-static value for a period of time. For example, whilst the plaintext inputs 

to the DES circuit are highly variable, the key itself may be static over succes-

sive operand processing cycles. We could potentially eliminate a series of data 

transports related to the key that are not required whilst it is in a semi-static 

state. An interesting way to implement this by analogy with the concept of run-

time reconfigurable routing, discussed in Chapter 4, by dynamically patching the 

flexible harness's code. Instead of supplying new circuitry bitstream data to re-

configure explicitly wired routing, we actually supply new FURl program code 

and dynamically alter the flexible harness's software routing. 

7.4 Performance Analysis and Projection 

In this section we analyse the performance of the DES application implemented 

in the style of the three VC models. 

253 



7.4.1 Performance of the FURl core 

Before we explore the implementations of the three VC DES implementations, 

we will first establish the instruction processing rates available through different 

configurations of the FURl core. In Chapter 5, we considered the FURl core's 

performance when loading SLU bitstreams at different clock speeds. In addition 

to scaling the clock period of the FURl core, a second dimension explored here 

is the effects of applying pipelining to the core's implementation. The overall 

aim of this section is to explore the instruction processing rates available through 

enhancements to the basic FURl core. By building cost models of the different 

VC DES implementations, and in combination with a cost model of the FURl 

Executive and its related components, we can determine the performance of the 

applications with respect to a given implementation of the FURl core. 

Chapter 5 has a comprehensive description of the basic implementation of the 

FURl core. To recall, the basic implementation of the core required 19 cycles to 

execute each move instruction. Using this, we can derive an instruction process-

ing performance relative to the core's clock speed. Furthermore, we can derive 

the instruction processing rate relative to different degrees of pipelining that we 

wish to apply to the core. These derivations are accurate indicators of the per-

formance of each core implementation since each move instruction is executed in 

a deterministic manner and in constant time. Table 7.1 contains the instruction 

processing rates available at different clock speeds and pipelining configurations 

of the FURl core". 

The viability of these performance details should be considered relative to a 

scaling of FPGA technology into future device generations. We can state that the 

application of pipelining to the core will involve increasing the gate count of the 

core's implementation. XC6200 technology, because of its relatively limited device 

"The figures in Table 7.1 describe deeply pipelined FURl implementations down to cores 
supporing single-cycle instructions. We should note that such deeply pipelined implementations 
are tractable, provided we have a suitably high bandwidth memory hierarchy. 
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Clock 
Frequency 

Basic, 19 
Cycles 

per 
instr 

16 
Cycles 

per 
instr 

8 
Cycles 

per 
instr 

4 
Cycles 

per 
instr 

2 
Cycles 

per 
instr 

1 
Cycle 
per 

instr 

8MHz 421052 500000 1000000 2000000 4000000 8000000 
16MHz 842105 1000000 2000000 4000000 8000000 16000000 
33MHz 1736842 2062500 4125000 8250000 16500000 33000000 
66MHz 3473684 4125000 8250000 16500000 33000000 66000000 
100MHz 5263158 6250000 12500000 25000000 50000000 1E+8 
200MHz 10526313 12500000 25000000 50000000 1E+8 2E+8 
400MHz 21052632 25000000 50000000 1E+8 2E+8 4E+8 
800MHz 42105263 50000000 1E+8 2E+8 4E+8 8E+8 

1GHz 52631579 62500000 1.25E+8 2.5E+8 5E+8 1E+9 
1.2GHz 63157895 75000000 1.5E+8 3E+8 6E+8 1.2E+9 

Table 7.1: FURl Core instruction processing rates at different clock speeds and 
with pipelining to reduce instruction cycle times. 

density, may not be attractive for implementing a single cycle implementation of 

the core. A similar situation applies to the system clock speeds considered in the 

table. A 100MHz FURl core will tax the XC6200 technology we are targeting 

for the implementations of this thesis but circuitry speeds beyond 100MHz and 

into the 1GHz range are becoming tractable in the Virtex architecture and will 

be commonplace in future architectures. 

We can assert that there is a relationship between the implementation tech-

nology and the degree to which we can pipeline and increase the clock speed of 

an implementation. As the target architectures gain density, the gate costs asso-

ciated with pipelining become less relevant. Since pipelining enables higher clock 

frequencies above and beyond the frequency gains of the physical device architec-

ture scaling, FURl instruction processing performance on the scale of billions of 

transports per second is conceivable. 

7.4.2 Analysis of the framework costs and overheads 

The data in Table 7.1 allows us to establish some basic instruction budgets ac- 

cording to a particular FURl implementation. In this section, we will characterise 
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the basic costs incurred by the fundamental elements of the FURl Framework. 

There are three framework components that we will examine for this purpose: the 

processing costs associated with the FURl executive and its basic system tasks; 

the costs for dynamically loading SLUs; and the costs for communicating new 

protocol handlers via the FURl base protocol. 

7.4.2.1 Gathering Cost Information within the FURl Framework 

Cost in this context relates to the number of move instructions that we must 

allocate to perform a particular task. In some cases, a static characterisation of 

the instruction cost is adequate. For example, we will present the instruction cost 

for the FURl executive's entry point code which captures the cost of initialising 

the overall FURl framework. This code is only executed once, when the FURl 

core first begins processing instructions and constitutes a static overhead that we 

must pay when bringing the FURl managed programmable logic online for the 

first time. Other tasks, such as loading an SLU, have costs that are relative to the 

context when the task is executing. The total instruction cost of loading an SLU 

depends on the size of the bitstream for that SLU and the parameters passed to 

the block loading subroutine. In this situation, the cost model used will have an 

assessment of any static instruction costs in the task and then a quantification of 

the dynamic cost involved in each unit of processing for that task. In the case of 

the SLU loader, the unit of processing we are interested in is, mainly, the cost of 

configuring each block of the SLU's configuration bitstream. 

Throughout this section, the assessment of instruction processing costs comes 

from statistics generated by the FURl assembler on actual code. In detail, when 

the FURl assembler reaches the final stages of the assembly process, it can gen-

erate a breakdown of the number of actual move instructions associated with 

sections of the code being assembled. The assembler does not directly produce 

the dynamic characterisations discussed above but, with the static code costs 

available, we can calculate an appropriate dynamic model of the costs manually. 
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7.4.2.2 Costs associated with the FURl executive 

As we discussed in Chapter 6, the FURl executive provides the low level runtime 

management of the software component of the FURl framework. The executive 

is the first layer of processing overhead within the framework that must be char-

acterised. Because of its fundamental nature, however, the code of the executive 

has been optimised to increase its efficiency. This is reflected in the number of 

instructions that are used by the executive for basic system tasks such as making 

the decision on which task should be the next to be scheduled. 

Table 7.2 shows the main code costs incurred by the FURl executive. The 

startup costs incurred when the FURl core first begins processing are 1775 move 

instructions and the recurring cost each time the executive selects a new task to 

run equates to 72 move instructions. As part of its setup process, the FURl core 

populates its task list with two basic system tasks: the first is an "idle" task that 

costs 130 instructions each time it is scheduled; and second is the FURl base 

protocol task. Quantifying the costs associated with the base protocol is slightly 

more complex than the previous components because of the nature of the protocol 

itself. Each base protocol packet contains a mixture of code and data and each 

time the protocol handler is scheduled to run, it checks the base protocol's packet 

buffer for a new packet. If one is found, the code section within the packet is 

executed. 

The protocol handler itself has a packet processing overhead of 92 instructions. 

The cost of executing the code section of each packet must be added to this to 

determine the cost of communicating any new protocol handlers. The packet 

buffer for the base protocol, as it was implemented for this thesis, is 1024 words 

in length. A utility written to assist FURl clients executing on a standard PC 

architecture generates base protocol packets that meet the processing conventions 

of the base protocol handler. The packets generated are structured such that the 
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Code Section Description Instruction 
Cost 

System Entry Point First code sequence executed by the 14 
FURl 	core 	on 	power-up. 	Per- 
forms general housekeeping and trig- 
gers loading of the kernel SLUs  

Loading 	Kernel High speed transfer of kernel SLU bit- 1385 
SLUS streams to host FPGA's configuration 

RAM  
Subroutine Initialise Housekeeping tasks associated with 2 

preparing the subroutine call stack 
Executive 	Initialisa- Harness code orchestrating the setup 18 
tion of the Executive 
Task-list Setup Preloading of the task list data struc- 222 

ture 	to 	reduce 	recurring 	scheduler 
overheads 

Initial Task Loading Repeated calls to the add-task sub- 62 
routine to populate the executive's 
task list with the basic system tasks 
(idle task and base protocol)  

Add Task Actual cost of inserting a task into the 31 
task list. 

Remove Task Cost of ending a task's execution per- 48 
manently by removing it from the task 
list completely  

Executive Main Loop Selects a task from the task list and 72 
runs it. The only recurring cost in the 
executive code after the setup phase 
has passed. Every task switch has this 
as an overhead. 

Table 7.2: Breakdown of the instruction costs for the FURl Executive 
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Code Section I Description I Instruction Cost 

Recurring Costs involved in managing the exchange 97 
Packet 	Pro- and processing of the configuration packets 
cessing and general buffer management  
Static 	proto- Housekeeping performed at the end of the 62 
col overhead configuration protocol  
Code 	Buffer Cost of dynamically generating instruc- 94 x block-size 
Generation tions that perform the transfer of config- 

uration data. The exact cost for the code 
buffer is the product of this figure and the 
code block size. 

Code 	Buffer Static cost incurred after each code block 100 
Exit is executed 
Executing Cost of executing the code block. The ex- block-size 
Code Buffer act cost is scaled according to the chosen 

block size. 

Table 7.3: Breakdown of the instruction costs from the configuration protocol. 

data payload is one third of the overall packet size' 2 . The remaining two thirds of 

the packet contents, equivalent to 680 words (340 instructions), contain the code 

executed each time the base protocol processes a packet. The setup costs of each 

of the VC DES implementations below include the time taken to transmit and 

process the base protocol packets that make the handler code resident within the 

FURl core. 

The last system component considered in this section is the configuration 

protocol handler. To recall, the configuration protocol handler is responsible for 

instantiating SLU bitstreams communicated over the FURl network environment. 

Packets of configuration data arrive and the protocol handler uses the block-based 

configuration subroutine from Chapter 6 to transport the bitstream data from 

the packet payload to the host FPGA's configuration memory. A breakdown 

of the costs associated with this protocol handler is given in Table 7.3. The 

actual cost for loading a particular bitstream depends on the chosen block size, 

12 We should recall that, for efficiency reasons, the base protocol buffer contains only a single 
packet which is consumed and overwritten in its entirety. The packet size mentioned here is, 
therefore, equivalent to the size of the base protocol buffer itself. 

259 



the number of configuration blocks within any given packet payload, and the 

number of packets required to transmit the SLU's bitstream data. From our 

earlier experiments in Chapter 6, we saw that the block loader's efficiency peaked 

when size of the bitstream blocks being configured was approximately 128 words 

long. An important thing to note from Table 7.3 is that generating the code 

buffer for each block is an expensive operation due to the calculations required to 

synthesise instructions. The number of blocks we process per packet depends on 

the size of the packet payload. The working figure chosen for packet payload size 

is 512 data words although, if we were exploring different ways to optimise the 

loader protocol, adapting this figure dynamically to amortise protocol processing 

costs would be the first optimisation. 

Overall, the cost of loading a bitstream, taking into account some of the main 

costs from Table 7.3, is: 

pack et-pr ocessing = block-count x ((94 x block-size) + 100 + block-size) 

loader -processing = (packet-count x (packet-processing + 97)) + 62 

We can use these expressions to calculate the loading costs associated with 

the DES SLUs used in the VC DES applications below. Table 7.4 contains the 

instruction costs associated with loading each of the DES SLUs used in the three 

VC DES implementations. We can consider briefly the loading times for some of 

the SLUs in this Table, relative to some of the key FURl configurations of Table 

7.1. The PBOX SLU, on a 33MHz basic FURl implementation as a loading 

time of approximately 0.72 seconds. The parallel harness SLU on the much 

faster, 1.2GHz single-cycle FURl implementation has a loading time of just over 

1 second. Both of these timings are relatively slow as a result of the processing 

overheads associated with the block loader and its code buffer. We shall return 

in the later part of this section to consider enhancements that would reduce the 

SLU loading costs and timings. Also, as mentioned above, we assume a packet 
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SLU Name Size (words) Transmitted 
Packets 

Loading Cost 

EBOX 3844 8 3237662 
PBOX 2352 5 1264922 
KBOX 5316 11 6120770 
Key Shift 1356 3 455522 
Permuted Choice 3500 7 2478930 
SBOX1-8 8086 16 12948990 
Parallel Harness DES 86876 j 170 1.46E+9 
Sequential Algorithmic DES 81060 1 159 1.28+9 

Table 7.4: Configuration costs for the DES examples. 

payload of 512 words and, in this instance, we assume the configuration protocol 

handler has a communications buffer capable of holding in the order of 6 to 8 

unprocessed packets. 

7.4.3 VC DES Implementations 

In this section we discuss details of three VC DES implementations with the aim of 

deriving instruction costs for each implementation from which we will ultimately 

make performance assessments. Where relevant, we will characterise three costs 

for each of the implementations: an implementation setup cost; a maintainence 

cost; and an active processing cost. The setup cost encapsulates the overheads 

associated with transferring any protocol handlers and SLUs before application 

processing begins and the maintainence cost characterises the instruction costs in-

curred by the application when it is scheduled, but has no outstanding application 

processing to perform. The active processing cost captures the instruction costs 

for each implementation when it is actively processing packets, implementing the 

given VC DES model. 

7.4.3.1 Sea of Accelerators VC DES Implementation 

In this section, we will consider a basic implementation of sea of accelerators 

style DES. The organisation of this implementation is shown in Figure 7.17. In 
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Figure 7.17: Basic Sea of Accelerators VC DES Implementation 

detail, we are concerned with instantiating and interacting with only a single sea 

of accelerators style SLU through a dedicated protocol handler. 

In the setup phase, the FURl client uses the base and configuration protocols 

to transmit both the protocol handler and the SLU to be managed. From that 

point, the application protocol handler is then ready to process operand pack-

ets. The SLU we are managing for this basic implementation is the DES PBOX 

SLU. We know from the previous discussion that this has an instruction budget 

requirement of 1776496 instructions. Based on the assembly statistics of the code 

implementation, the total size of the protocol handler is 161 instructions. This 

fits within a single base protocol packet and so we can assert a base protocol 

transmission cost of 432 instructions. A breakdown of the costs for the protocol 

handler is given in Table 7.5. 

Establishing the rnaintainence and active processing costs of the handler re-

quires a breakdown of the total handler cost into sections identified for protocol 

overhead versus operand processing. Again, from statistics generated by the 

FURl assembler from the protocol handler's code, the handler consumes 85 in-

structions when there are no operand packets to process. The active processing 

cost of the implementation is 33 instructions per operand, but the cost of actually 

processing each packet is relative to the operand payload of the packet and the 

protocol overheads. From instruction costs generated by the FUR.1 assembler, we 

can characterise the active cost of this implementation as: 
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Code Block Description Instruction 
Cost 

Protocol Instruction 	costs 	from 	managing 	the 85 
Overhead packet buffer and integration of the han- 

dler with the FURl Executive 
Packet Over- Instruction 	budget 	required 	to 	process 43 
head packet headers and prepare the protocol 

handler for dealing with given input and  
output packets  

Operand Pro- Instruction budget for applying an operand 33 
cessing to the SLU inputs and capturing its out- 

put into the result packet. The packet se- 
quence IDs that are used to allow the client 
to relate result packets to operand packets 
are preserved as part of the packet over- 

_____________ head. 

Table 7.5: Breakdown of costs for the sea of accelerators VC DES protocol han-
dler. 

soades_active = (((33 x packet-payload) + 43) x packet-count) + 85 

The exact figure chosen for the packet payload component of the above ex-

pression is generally application dependent but the figure used in this discussion 

is 64 words. This is chosen to balance the protocol cost and operand processing 

cost to give a packet processing overhead below 5% of the protocol handler's in-

struction budget. From our earlier discussions characterising the likely payloads 

within a sea of accelerators application, we know that we cannot assume large 

packet payloads: the PBOX SLU is likely to be shared with multiple applications 

(one example of this would be, multiple encryption sessions within the network 

stack of a host system) and preventing latency crosstalk between the FURl com-

munication streams advocates compact operand payloads. Actively processing a 

packet requires each operand is presented to the SLU from the source packet's 

payload section after which the corresponding result is captured from the SLU's 

output and placed in the payload of a result packet. Given all these considera- 
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Figure 7.18: Parallel Harness VC DES Implementation 

tions, we can assert that the overall cost for processing each operand packet in 

this implementation is 2155 instructions. 

The PBOX SLIJ, as we have noted previously, is the most benevolent of the 

DES SLUs for transporting operands to and capturing results from. We can ex-

plore, briefly, the cost differences that would occur if we were to interact with 

a different DES SLU. If we replace the PBOX SLU with the EBOX SLU, for 

example, we must now manage extra device state context to transport operands 

to registers in the SLU interface that can no longer share device contexts. This 

results in an increase in the operand processing budget of the order of 5 instruc-

tions. In this case, we must invest an extra 320 instructions to process the same 

data packet used with the PBOX SLU. 

7.4.3.2 Parallel Harness VC DES Implementation 

The overall organisation of the parallel harness implementation of VC DES, shown 

in Figure 7.18, shares some of the basic features of the sea of accelerators imple-

mentation. Again we have a single protocol handler interfacing to clients on the 

FURl network that are transmitting operand packets for processing within the 

parallel harness style DES SLU. The main difference in this implementation is 

that we must manage the temporal aspect of the SLU's behaviour. The parallel 

harness SLU used here is based on the pipelined DES circuitry shown struc-

turally in Figure 7.14. The algorithm is fully unrolled and pipelined with 6 stages 

per round. The circuitry is not freely clocked it exploits the transport triggered 

clocking mechanism described in Section 7.3.4.4. Each time we write to the SLU's 
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register that holds the last byte of plaintext entering the harness, it triggers a 

clock pulse within the harness. 

Effectively, the harness circuitry manages its own timing and has an input 

interface comprising two 64 bit registers: one to hold the encryption key applied 

to the plaintext block and the other to hold the plaintext block. The output 

of the harness is the 64 bit ciphertext register. This output is not buffered and 

an unread result will be lost if not read before the next harness clock cycle is 

triggered. In total, sixteen 6-cycle DES rounds within the harness result in a 

96 cycle latency within the harness. Before the protocol handler begins to read 

any results from the harness, it must first issue 96 operands. After this point, 

the handler may issue and capture operands until all packet payloads have been 

exhausted. At this point, if no new packets arrive, the handler flushes the SLU 

to capture the 96 results delayed by the circuit latency. The breakdown of the 

instruction costs for this implementation is given in Table 7.6. 

The encryption key is static for each operand packet and the first two words 

of the packet payload specify the key for the plaintext operands contained in the 

remainder of the payload. This forms part of the packet processing overhead and 

remains essentially independent of the overall operand processing cost. Because 

of the nature of the model and the resulting latency within the harness circuitry, 

the packet payloads communicated to the implementation are large, on the scale 

of 512 operands per packet. This guarantees, that we will not repeatedly incur a 

penalty for flushing the harness, especially when we consider the likely availability 

of multiple protocol packets. 

The setup cost for this application is quite large although this mainly comes 

from the costs associated with loading the harness SLU itself. We will address 

this as a key performance issue in the Performance Projections section later in 

this chapter. The protocol handler for VC DES is 210 instructions in length. 

This fits within a single base protocol transmission packet and, like the sea of 
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Code Block Description Instruction 
Cost 

Protocol Instruction 	costs 	from 	managing 	the 98 
Overhead packet buffer and integration of the han- 

dler with the FURl Executive  
Packet 	Over- Instruction 	budget 	required 	to 	process 60 
head packet headers and prepare the protocol 

handler for dealing with given input and 
output packets and setup the harness SLU 
with the encryption key from the packet 
payload  

Harness Write Transport of a single operand to the plain- 24 
text input register of the harness. 

Harness Read Transport of a single result from the ci- 24 
phertext output register of the harness. 

Harness Combined 	transport 	and 	capture 	of 52 
Write-Read operand and result, respectively, 	to the 

harness SLU. Includes a quantification of 
a loop control overhead incurred at this 
stage.  

Harness Pop- Instruction cost to overcome the pipelining 2304 
ulate, Harness latency of the harness SLU. This cost is 
Depopulate incurred when we populate the harness and 

again when we depopulate the harness. 

Table 7.6: Breakdown of costs for the Parallel Harness VC DES protocol handler. 
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accelerators implementation above, our overall base protocol transmission costs 

432 instructions. From our earlier table of loader costs, we can see that the 

parallel harness DES SLU is extremely expensive at 1.36E+9 instructions. 

The maintainence cost for the handler, at 98 instructions, is comparable to 

the maintainence cost of the sea of accelerators handler. However, the cost is 

generally less applicable here because we know from our earlier discussions that we 

are less likely to share the array with multiple parallel harness SLUs. Conversely, 

the maintainence cost for the sea of accelerators is important for exploring the 

saturation point of the FURl core when multiple protocol harnesses reside within 

the executive. 

We have approached the active processing cost of this handler in the earlier 

discussion on the latency characteristics of the harness SLU. There are three dis-

tinct phases the handler goes through when processing an operand packet. If this 

is the first packet since the handler has been re-scheduled, the harness is popu-

lated with the first 96 operands from the first packet's payload at an instruction 

cost of 2304. After this threshold has been met, we must iteratively apply and 

capture operands and results until the packet payload has been exhausted. This 

costs 52 instructions on each iteration, during which we are effectively processing 

one operand completely. This iterative harness write-read continues until all of 

the packet data has been consumed. The buffer in this implementation operates 

circularly to circumvent pipeline stalls: new packets may arrive from the FURl 

clients as packets are being processed and consumed". When the datastream it-

self stalls, the pipelined SLU is flushed by the handler to capture the outstanding 

results from operands input 96 cycles earlier. Again, this comes at a total cost of 

exactly 2304 instructions. From this, we can assert that the cost for processing 

one 512 word packet is 26398 instructions, giving an average cost of approximately 

"The shared memory synchronisation facilities of the detacher task facilitate this, but we do 
not consider the detacher cost in these performance assessments since it is a specific feature of 
the implementation within the test platform. Its resource requirements are normalised out of 
these performance assessments. 
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51 instructions per operand. The general cost of this handler, if we prolong the 

datastream, is: 

active-cost = (2304 x 2) + ((datastream-length - 96) x 52) + static_overheads 

We should note here that the first 96 operands processed do not pay the 

overhead for loop control that iterated operands do' 4 . Effectively, this means 

that the first 96 operands of this implementation have a better average processing 

cost (48 instructions per operand) than iterated operands (52 instructions per 

operand). This difference is entirely due to the unrolling of loops that would 

have otherwise iterated through the population and depopulation of the harness 

circuitry. If we pay the spatial costs and unroll the code of the whole payload 

processing region of the harness then we would obtain, at best, an average raw 

operand processing cost of 48 instructions. 

7.4.3.3 Sequential Algorithmic VC DES Implementation 

The organisation of the VC DES sequential algorithmic implementation is shown 

in Figure 7.19. The primary difference between this implementation and the 

two we have explored above is that the protocol handler is split into two com-

ponents: the first of these interfaces directly the FURl network packet buffers 

and, by extension, the FURl clients; and the second implements an optimised 

series of transports through 13 DES SLUs (EBOX, PBOX, KBOX, Key Shift, 

Permuted Choice, the eight SBOX SLUs, and a wide XOR) instantiated for the 

implementation. 

The main focus of this implementation discussion falls on the costs associated 

with the second handler component. The first component essentially performs 

"We should clarify that the 2304 cost is applied twice because it is representing the initial 
population of the harness SLU and the final depopulation of the harness when we have no 
more operands to process. Each investment of 2304 actually covers half the cost of completely 
processing an operand. 
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Figure 7.19: Sequential Algorithmic VC DES 

very basic packet handling and has an overhead equivalent to the protocol and 

packet processing overheads of the parallel harness handler. However, there are 

no equivalent costs to operand processing since there are no direct circuit inter-

actions. 

The sequence of 14 data transports performed in the soft routing handler to 

implement a single DES round are specified in Figure 7.20. The instruction cost 

associated with actually implementing this sequence is 48 instructions. Trans-

forming the operand into the completed DES ciphertext requires 16 such rounds 

so we can declare the processing cost for each operand as 768 instructions. This 

is the primary recurring cost for the model implementation and the overriding 

processing cost since it applies to the processing of each operand. There were two 

optimisations applied to reduce the amount of processing within the soft routing 

code. First, a suitable floor planning for the SLU circuitry was devised to limit 

the number of device context transitions required whenever a transport was being 

made. For example, we may align the interfaces of SLUs so that they all begin 

at the same row in the host array. This gives a degree of commonality to the 

device state that must be applied to access each SLU's interface. The second op-

timisation involved packing multiple operands into a single data transport. This 

allows us to target the SBOX SLUs and, rather than performing 8 individual 

data transports, we make a single transport that affects all 8 SLUs because their 

interfaces have been vertically aligned. If the operands are packed in the correct 
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Figure 7.20: Data transport sequence applied in a single round of the Sequential 
Algorithmic VC DES Implementation 

bit positions within the word being transported, it will arrive at the correct SLU's 

input. 

In the wider context, the packet payloads that are relevant to the sequential 

algorithmic implementation required some consideration. The separated architec-

ture of the protocol handler is designed to prevent the network processing side of 

the implementation from being stalled by the relatively slow soft routing handler. 

We discussed earlier how the communications characteristics of the sequential 

algorithmic model resembled that of the parallel harness, but without the same 

degree of complex timing requirements. Whilst these requirements drove us to 

provide large packet payloads in the parallel harness, for the sequential algorith-

mic model we can return to more compact payloads. In this implementation, 

we assert that the packet payload in each packet is in the order of 128 operands 

and has a processing cost in the order of 100165 instructions. The buffers inter-

connecting the two protocol elements handle "bursty" datastream traffic. The 
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network buffers, on the other hand, do not need to be deep because the respon-

sive network handler consumes packets rapidly, populating the internal reservoir 

of outstanding operands and depopulating the set of outstanding results. For this 

implementation, network buffers of depth 5 would provide sufficient numbers of 

operands to keep the soft routing handler active. 

The setup costs for this implementation, like the costs we have seen in the Par-

allel Harness implementation, are high as a result of the amount of SLU loading 

that occurs prior to operand processing. For this implementation, we configure 

the FURl managed reconfigurable logic with the bitstream information for 13 

DES SLUs. In total we require in order of 1.19 billion instructions, a compa-

rable figure to the parallel harness implementation and significantly high. The 

increased size of the protocol handler code required for this model, means that we 

now require the transmission of two base protocol packets at a cost of 864 instruc-

tions. Clearly, the base protocol costs are dwarfed by the configuration overheads 

for the implementation's SLUs and the overall setup cost is best characterised 

through the configuration costs of the SLUs. 

Because of the relative simplicity of the protocol code surrounding the soft 

routing core of the model implementation, the packet and protocol processing 

overheads are not particularly interesting for this model. The above discussion 

on operand processing costs gives a sufficient characterisation to carry into the 

discussion and performance projections in the following section. 

7.4.4 Performance Projections 

Table 7.7 collates the salient features of the three VC DES implementations de-

scribed above. Our aim in this section is to take the analyses from the previous 

sections and derive some application oriented performance assessments for differ-

ent configurations of the FURl core. We will relate these results to some of the key 

implementations of the DES algorithm on other architectures and technologies. 
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Model Setup 
cost 

Maintainence 
cost 

Processing 
cost (per operand) 

Sea of Accelerators 2352992 85 33 
Parallel Harness 2.72E+9 98 48-52 

Sequential Algorithmic 2.38E+9 100-150 768 

Table 7.7: Summary of the main instruction costs from the three VC DES imple-
mentations 

Additionally, we will consider how the implementations can be enhanced to 

project the performance of the FURl framework onto future generations of device 

architecture. By retrospectively analysing the implementations we can identify 

their main performance limiting features and explore how modifications to the 

approach and environment would affect performance. 

We will begin our performance assessment by deriving the number of operands 

per second we can process for the sea of accelerators implementation. We are 

assuming the protocol handler has packet buffers capable of holding 5 operand 

and result packets respectively. In this situation, the protocol handler has a 

workload of 10575 instructions to completely process the incoming packet buffer 

before the executive schedules other tasks, incurring a 72 instruction switching 

cost. We assume here that the FURl core is lightly loaded, essentially allowing 

the protocol handler to be rescheduled immediately after it finishes processing 

one buffer set. Based on the workload above, the instruction processing rates 

from Table 7.1, and assuming that the model's setup phase has passed, Table 7.8 

contains the sea of accelerator operand processing rates on a selection of FURl 

core implementations. 

Tables 7.9 and 7.10 give the processing performance of the parallel harness 

and sequential algorithmic implementations respectively. The same approach 

used for the sea of accelerators is applied to both models when generating these 

tables, with the main difference in each instance being the seeding of the workload 

to packet ratio. This ratio is tailored in each table to follow the packet payload 
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Core Packets/Sec I Operands/Sec it/sec 
19 Cycle, 33MHz 822 52608 1.6 

19 Cycle, 100MHz 2465 157760 4.8 
19 Cycle, 1GHz 24885 1592640 48.6 
8 Cycle, 33MHz 1951 124864 3.8 
8 Cycle, 100MHz 5911 378304 11.5 
8 Cycle, 1GHz 47282 3026408 92.3 

2 Cycle, 100MHz 23641 1513204 46.2 
2 Cycle, 400MHz 94563 6052032 184.6 
2 Cycle, 1GHz 236407 15130048 461.7 
1 Cycle, 1GHz 567376 36312064 1108.1 

Table 7.8: Processing Performance of Sea of Accelerators VC DES 

Core Packets/Sec I Operands/Sec Mbit/sec 

19 Cycle, 33MHz 66 33792 1 
19 Cycle, 100MHz 198 101376 3 

19 Cycle, 1GHz 1994 1020928 31.1 
8 Cycle, 33MHz 157 80384 2.4 
8 Cycle, 100MHz 474 242688 7.4 
8 Cycle, 1GHz 3789 1939968 59.2 

2 Cycle, 100MHz 1895 970240 29.6 
2 Cycle, 400MHz 7577 3879424 118.3 
2 Cycle, 1GHz 18941 9697792 295.9 
1 Cycle, 1GHz 45458 23274496 710.2 

Table 7.9: Processing Performance of Parallel Harness VC DES 

descriptions given earlier for each of the implementations. For the parallel harness 

model, we consider the protocol handler processing a single packet with a 512 word 

payload. To process this, the FURl core must process 26398 instructions. For the 

sequential algorithmic model, we consider processing a single packet with a 128 

operand payload and a workload requirement of 100165 instructions per packet. 

7.4.4.1 Comparing the three VC model implementations 

In this section we present some conclusions on how the three VC models relate 

to each other based on the results we have presented. The first statement that 

we can make is that, strictly in terms of per operand processing costs, the sea of 
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Core Packets/Sec I Operands/Sec Mbit/sec 

19 Cycle, 33MHz 18 2304 0.07 
19 Cycle, 100MHz 53 6784 0.2 

19 Cycle, 1GHz 527 67456 2.05 
8 Cycle, 33MHz 42 5376 0.16 
8 Cycle, 100MHz 125 16000 0.48 
8 Cycle, 1GHz 1000 128000 3.9 

2 Cycle, 100MHz 500 64000 1.95 
2 Cycle, 400MHz 2000 256000 7.81 
2 Cycle, 1GHz 5000 640000 19.53 
1 Cycle, 1GHz 12000 1536000 46.8 

Table 7.10: Processing Performance of Sequential Algorithmic VC DES 

accelerators was the most effective model, followed by the parallel harness and 

then the sequential algorithmic model. This is a valid conclusion, even although 

the ranking of the models is just what we would expect based on the level of 

prescribed level of effort required to process operands. 

Setup costs are very expensive in all three models relative to the actual pro-

cessing costs within the models. This is predominantly due to the inefficient 

nature of the kernel of the configuration protocol that has been implemented. 

However, this does not affect our overall ranking of the models in terms of their 

effectiveness: the operand processing costs are more relevant over time as the cost 

of loading SLUs is amortised over successive operands. We return to tackle the 

poor loading performance in a later section, describing some specific performance 

enhancements. 

Beyond these basic conclusions, it is difficult to make further comparisons 

between the three models that are not biased by the model's intrinsic suitability 

for the particular application. We must acknowledge that the models have dif-

ferent aspects that will suit a given application to different degrees. In relation 

to this, we can say that the sequential algorithmic implementation of DES has, 

overall, very poor processing performance with respect to the other two model 

implementations presented here. We should interpret this as signifying that the 
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many hundreds of data transports required to implement the soft routing harness 

and process a single DES operand goes beyond what is sensible for a sequential 

algorithmic VC application. Using same model to interconnect a few SLUs of 

coarser granularity would provide more promising results for the model in terms 

of performance. 

7.4.4.2 Comparison to existing implementations 

In this section, we attempt to compare the performance of existing DES imple-

mentations to those we have described in this chapter. Table 7.11 quotes the DES 

performance statistics collated in [85]. 

Of the three model implementations, only the performance results of the par-

allel harness and sequential algorithmic implementations are directly comparable 

to the performance figures quoted in Table 7.11. In the Sea of Accelerators im-

plementation we are only partially completing the DES algorithm. We must bear 

this in mind, even although we can see that the raw performance details are higher 

for this model than any of the others. 

We can roughly extrapolate a performance estimate for a full DES imple-

mentation in the sea of accelerators style if we consider explicitly replacing the 

single PBOX SLU with a sea of accelerators SLU that implemented the entire 

DES algorithm. We differentiate this organisation from the parallel harness im-

plementation, based on the different timing models used in the SLUs. We treat 

the timing of the parallel harness SLU explicitly whereas the sea of accelerators 

SLU, in its pure form, is expected to be internally stateless and therefore have 

no timing issues to manage. For an implementation of a full sea of accelerators 

DES, the operand processing costs would increase slightly to reflect the increased 

complexity of the SLU interface (from a 32 bit input to a 128 bit input, and 

from a 32 bit output to a 64 bit output). The performance results we observed 

for the earlier PBOX sea of accelerators implementation should map closely onto 

the full DES implementation. There are two points we should note however: the 
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first is that the raised operand processing cost from the increased SLU interface 

complexity means that the processing rate for the full sea of accelerators DES 

has a lower bound equivalent to the performance from the earlier parallel harness 

VC DES implementation; and, second, the setup costs associated with the sea 

of accelerators would increase to be directly comparable with the parallel har -

ness and sequential algorithmic costs. We will still amortise the setup cost more 

rapidly in the sea of accelerators full DES than in either of the other two models. 

However, because the setup costs are now much more comparable, we can state 

that the actual points at which the setup cost becomes negligible for each model 

will reflect, proportionally, the operand processing costs of the three models. 

For the two complete algorithm implementations, the performance as quoted 

for these basic implementations lags behind what has been achieved in other 

technologies and architectures. The parallel harness comes closest to gigabit 

computational rates, with a throughput of over 700Mbit/sec on the fastest FURl 

configuration. This is still slower than the contemporary implementations that 

approach lOGbit/sec rates with lower clock frequencies. One point that we should 

note about the higher performance implementations, however, is that they are 

reflections on the core speed of the DES circuitry rather than performance results 

taken from directly equivalent VC style implementations. The system interfaces 

for these high performance circuits come in the form of dedicated communications 

ports tied to actual device pins. None of the cases directly consider the VC style 

of SLU interfacing that we have explored in our implementations. 

7.4.4.3 Performance enhancements and projections 

From the performance comparisons above, we have seen that a significant clock 

speed and pipelined implementation of the FURl core is required before the per-

formance of the VC DES implementations approach existing circuit implementa-

tions. In this section we will propose some enhancements to the implementations 

and consider modifications to the device architecture to better support our VC 
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Year Technology 
__________________ 

Clock Rate 
MHz 

Throughput 
Mbit/sec  

Unrolling 

1997 Xilinx 4000 7 26 none 
1998 Xilinx 6000 23 57 none 
1999 Xilinx 4000 43 172 none 
2000 Xilinx S2 94 376 none 
1998 Xilinx 4000 25 384 partial 
1998 Virtex 101 404 none 
1999 4 Altera 1OK100 20 1280 full 
1999 Virtex 60 3656 full 
2000 Virtex 105 6720 full 
1999 Sandia ASIC 145 9280 full 
2000 Virtex 168 10752 full 

Table 7.11: Performance Ratings of existing DES implementations (source: Pat-
terson [85]) 

DES applications. 

In the ideal situation, only one transport is required to interact with a register 

in an SLU interface. In the current XC6200 implementation of the FURl core, 

this is not the case and we must pay a penalty to set up the appropriate device 

context within the architecture before being able to transport operands to or 

from SLU interface registers. This is a very relevant constraint to the sequential 

algorithmic implementation since almost half of the data transports within the 

soft routing handler's core are handling device context rather than actual operand 

transports. The first enhancement we suggest is the removal of device context 

from the host FPGA architecture. By this, we mean that the architecture should 

no longer require that we make the appropriate map, mask, and wildcard register 

settings before we can interact with one of the SLU interfaces. Effectively we 

want to remove state from the logic that controls the configuration memory of 

the host architecture. If this was done", the operand processing cost associated 

with a single round of DES in the sequential algorithmic model would fall from 

48 to 14 instructions (the theoretical maximum in the situation where we do 

"Chapter 8 discusses and characterises a future device architecture style that would support 
single transport interactions between SLU interfaces. 
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not attempt to increase performance through parallelism in the raw transport 

mechanism). The overall cost for operand processing for the complete algorithm 

falls, correspondingly, from 768 to 224 instructions 16 . Similarly, removing the data 

transports associated with device context management in the sea of accelerators 

and parallel harness implementations reduces the core operand processing costs 

from 33 and 52 instructions to 23 and 34 instructions respectively. 

The high setup costs of the parallel harness and sequential algorithmic mod-

els can be tackled by enhancements to the FURl framework. For example, the 

addition of indexed and indirect addressing support to the FURl core's mem-

ory interface SLU will allow us to increase the performance of the configuration 

protocol. To recall, generating the contents of the code buffer used to transport 

the actual raw bitstream data from the packet payload to configuration memory 

is a significant cost incurred by the protocol handler. The best theoretical per-

formance we can hope to achieve for loading configurations was explored in the 

SLU loading strategies section of Chapter 6. We know from that discussion that 

precomputing the entire transport sequence required to load the SLU offline gave 

almost an order of magnitude increase in loader performance. Following that ap-

proach for the SLU sizes we have used in this section is generally impractical from 

the point of view of the spatial resource required to store the elaborated trans-

port sequence and the temporal cost of communicating it. Using indexed and 

indirect addressing that is explicitly supported by the FURl framework allows us 

to collapse the instruction costs per configuration word from 96 instructions to 

a budget of approximately 20 instructions per word, avoiding the use of synthe-

sised code blocks completely. Based on this, we can say that the SLU loading 

component of the setup cost for each of the models will scale to approximately 

20-25% of its earlier cost. 

"We acknowledge that this requires the underlying architecture to support variable bitwidth 
transports, but argue this is an acceptable feature to have in a device architecture supporting 
VC. 
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Core Sea of Sea of Parallel Parallel Sequential Sequential 
Accel. Accel. Harness Harness Aig. Alg 

Original Enhanced Original Enhanced Original Enhanced 
Mbit/sec Mbit/sec Mbit/sec Mbit/sec Mbit/sec Mbit/sec 

19 Cycle, 1.6 2.3 1.03 1.57 0.07 0.23 
33MHz  

19 Cycle, 4.8 6.9 3.09 4.7 0.2 0.69 
100MHz  
19 Cycle, 48.6 69.7 31.1 47.6 2.05 7.05 

1GHz  
8 Cycle, 3.8 5.4 2.45 3.73 0.16 0.55 
33MHz  
8 Cycle, 11.5 16.5 7.4 11.32 0.48 1.6 
100MHz  
8 Cycle, 92.3 132.4 59.2 90.5 3.9 13.39 

1GHz  
2 Cycle, 46.17 66.25 29.6 45.3 1.95 6.69 
100MHz  
2 Cycle, 184.6 264.9 118.3 181 7.81 26.7 
400MHz  
2 Cycle, 461.7 662.4 295.9 452.6 19.53 66.96 

1GHz 
Cycle, 1108 1590 710.2 1086.3 46.8 160.7 

1GHz F
1 

_______ ______ ______ L______  

Table 7.12: Projected performance of the VC DES models after device enhance-
ments 

Table 7.12 contains the performance projections of the three VC DES imple-

mentations, based on our removal of device context and the resulting projected 

drop in operand processing costs. 

7.5 Summary 

This chapter has explored the implementation of the three VC models discussed in 

Chapter 4 on the FURl core. We have seen that there is scope for many different 

FURl network environments. We then considered how the form of protocol used 

to communicate with FURl managed programmable logic can be influenced by 

the communication characteristics of the VC model it supports and the network 
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environment it is used within. The chapter was then concluded with a discussion 

of the proposed implementations of the DES in each of the three VC model styles. 



FURl Managed 

Programmable Logic 

I______ 	
-j 	

SBOX1 

- 	SBOX2 	i... . 

— 	
} 0 EBOX 	 SBOX3 PBOX  

SBOX4 jj 0 

- 	SBOX5 
- XOR 

II Key 
L

- 	SBOX6 

PC 	
SBOX7 	0 

SBOXB 

FURl Executive 

Programmed 
Flexible Harness 

Task 

DES Harness Protocol Handler Task 

Incoming Operand Packets 	 Outgoing Operand Packets 

Figure 7.21: Sequential Algorithmic DES: This figure captures the processing 
stages applied in the FUR.I environment to support Sequential Algorithmic DES. 
The FURl executive section holds the two software components of the model. 
The programmed flexible harness task consumes data packets at stage (b) and 
produces result packets at stage (c) (the overall packet flow is indicated via the 
solid black arrows). The DES harness protocol handler task decouples the pro-
cessing of packet operands from their reception and transmission over external 
FURl network channels. In stage (a), the task is feeding packets arriving over 
the FURl network into the flexible harness's processing queue and at stage (ci), 
the task consumes the result packets from the flexible harness task and deals 
with their transmission. The dashed red arrows are operand transports through 
each DES SLU, invoked by the flexible harness as it transforms each operand 
into a result. The programmed execution the flexible harness task ensures each 
operand flows through the SLUs in the appropriate sequence to implement the 
DES. For clarity, the diagram does not show the total, connected flow sequence 
of the operands through every SLU. However, this sequence would be equivalent 
to a flowchart style abstraction of the Flexible Harness Task's programmed code. 
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Chapter 8 

Conclusions and Further Work 

8.1 Overview of Thesis 

Chapter 2 introduced the basic features and history of programmable logic de-

vices, and gave particular focus to dynamically reconfigurable FPGAs across two 

generations of mainstream device architectures. 

Chapter 3 discussed the form of mechanisms used to interface and interact with 

FPGAs within reconfigurable computing systems. At that point we noted how dy -

namic reconfiguration has encouraged the gradual evolution of the programmable 

logic device interface in mainstream architectures from their relatively simple, 

serialised interface origins into more sophisticated parallel interfaces. From there 

we noted that research device architectures have moved towards application fo-

cused, packet oriented, streaming device interfaces. With this backdrop we then 

considered the concept of a flexible programmable logic device interface capa-

ble of adapting to the demands of one of the most compelling uses of dynamic 

reconfiguration, virtual circuitry. 

In Chapter 4, the concept of virtual circuitry was explored in much more detail 

and we presented the two fundamental VC models. We then described the form 

and function of an abstract architecture that would be capable of supporting both 

fundamental VC models, and a third model of our devising. 

Chapter 5 presented the design and implementation of an instance of the 

previous chapter's abstract VC architecture. In particular, the chapter described 
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the implementation of the Flexible URISC and gave a detailed discussion of its 

significant design and implementation challenges and their novel solutions. 

Chapter 6 looked at the design and runtime environment for the FURl core 

and paid particular attention to different strategies for loading SLU bitstreams 

onto the FURl core. The FURl executive was presented as a basic runtime, 

operating environment and the base protocol used to interact with an operational 

FURl core was described. 

Chapter 7 opened up the discussion of FURl protocols and characterised their 

form relative to the communication requirements of the different VC models and 

the influence of different network architectures. The chapter closed with a dis-

cussion of the proposed implementations of the DES in each of the three VC 

styles. 

8.2 Contribution 

8.2.1 Technical Contribution 

The primary technical contribution of this thesis is the novel implementation of 

the Flexible URISC. In particular, we gave a comprehensive description of the 

technical requirements, implementation challenges, and corresponding solutions 

that resulted in the implementation of the first microarchitecture that has an 

intimate, self-modifying relationship with its host FPGA. Indeed, the technical 

component in this thesis was first published in [32] and, at the time, was the first 

detailed paper to tackle the technical challenges, requirements, and approaches 

to implementing self-modifying circuitry on the only FPGA architecture capable 

of actually supporting it, the Xilinx XC6200. Furthermore, the technical validity 

of the approach pioneered in that paper and this thesis has been subsequently 

reinforced through a small application case study [76] that adopted the same 

techniques we have described in this thesis. 
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8.2.2 Conceptual Contribution 

Beyond the interesting and novel technical contribution of the Flexible URISC it-

self, the second, conceptual contribution of this thesis comes from the description 

of how the unique relationship the FURl core has with its host FPGA architec-

ture can be exploited to implement a flexible, adaptable programmable device 

interface. In particular, this thesis has described how the implementation of the 

FURl core and its accompanying runtime environment, the FURl executive, can 

be used to implement a programmable logic interface that can be adapted to pro-

vide support to both of the fundamental models of virtual circuitry plus a third 

VC model that was previously considered generally impractical. 

8.3 Conclusions and Future Directions 

8.3.1 Conclusions 

There are two broad, immediate conclusions we can draw from the work pre-

sented in this thesis. The first is that an implementation of the abstract VC 

architecture described in Chapter 4 is technically viable, but undertaking such 

an implementation taxed all of the facilities of the most sophisticated partially 

reconfigurable FPGA available when this work was carried out in 1996-2000 and 

still presented many non-trivial technical challenges. The second conclusion we 

can draw, however, is that overcoming those challenges did produce an imple-

mentation of the abstract VC architecture that would support all three of the VC 

models we described in Chapter 4. 

This thesis was written at a very interesting time for runtime reconfiguration 

research. In 2000, the XC6200 still represents the pinnacle of mainstream, par-

tially reconfigurable device architectures in terms of the facilities it provided to 

support runtime reconfiguration. As we have mentioned at various points in the 

thesis, the XC6200 left commercial production in 1998 and its departure essen-

tially marks the end of an era of runtime reconfiguration research. Whilst some 



of the subsequent mainstream FPGA architectures are partially reconfigurable to 

a degree, they provide fewer facilities to support runtime reconfiguration and vir-

tual circuitry than the XC6200. The FPGA architectures of mainstream vendors 

in 2000 have relatively poor support for partial runtime reconfiguration and lean 

more towards supporting ASIC replacement and rapid system prototyping. 

In the general sense, mainstream vendors and the runtime reconfiguration re-

search community are on divergent paths: device vendors are continually striving 

to increase the static density of their devices whilst runtime reconfiguration re-

searchers are striving to find the mechanisms that will increase the functional 

density of their devices through rapid runtime reconfiguration. With the de-

parture of the XC6200, the two most interesting device architectures supporting 

partial reconfiguration, Colt and Piperench, have come from within the runtime 

reconfiguration research community itself. The contributions of this thesis are 

therefore particularly interesting at this point since they essentially constitute a 

framework for exploring the effectiveness of a new style of programmable logic 

device interface that is highly adaptive to the demands of different VC models. 

The implementation of the FURl core, as presented in this thesis, has relied 

heavily on the novel features of the XC6200 and an interesting question, therefore, 

is what effect does the departure of the XC6200 have on potential future imple-

mentations of the FURl core? Theoretically, the core could be re-implemented 

on other mainstream architectures such as the Virtex, provided the system level 

design could be customised to allow the Virtex access to its own configuration 

port. The greater challenge in this context would be bridging the gap between 

the semantics of the Virtex's SelectMap interface and the memory oriented world 

of the FURl core. The XC6200 implementation has the advantage here because 

its underlying physical device interface has a natural mapping into the memory 

oriented world of the FURl core. 

To explore the implementation of FURl on the Virtex architecture further we 
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Figure 8.1: FURl Virtex: remapping the configuration port 

must overcome at least the two challenges identified above. The first of these, tak-

ing control of the device's configuration port, requires quite a different approach 

to that taken for the XC6200 implementation. The XC6200 supports access to its 

configuration port from within the device itself but the Virtex architecture does 

not'. However, this does not mean that all is lost. Rather, we must resort to phys-

ically re-mapping the Virtex's own control port to user pins that the FUR.I core 

within the device could use subsequently to drive it's host configuration interface. 

This organisation is shown in Figure 8.1. Once we have achieved this, however, 

the device pins driven by the FURl core respond in a comparable manner to the 

cbuf components that we instantiated for the XC6200 FURl implementation. 

Another important consideration builds on the column-based reconfigurability 

of the Virtex architecture. In the XC6200, function units can he reconfigured in 

isolation, independent of any other parts of the device. However, since we can 

only reconfigure on a column by column basis in the Virtex, we are encouraged 

An internally accessable configuration port is a listed feature of the Virtex II architecture, 
although this version of the architecture is not yet available in 2000. 
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to make the geometric area occupied by the Virtex FURl core as lean as possible. 

Increasing the spread of the core's circuitry over successive columns means we 

must take greater care when reconfiguring those columns to ensure that the core 

circuitry is not adversely affected by the configuration. By this rationale, we 

should consider the placement of SLU 5 in Figure 8.1 as dangerous: we must take 

care to preserve both the infrastructure (routing and CLB allocations) and the 

context within any state elements of the column. Overall, this problem is similar 

to the problems we discussed in Chapter 6 on overlaying SLUs with the XC6200 

FURl's core circuitry. Here, however, we can see that the problem exists at a 

much coarser granularity. 

Just as we used the FastMap interface of the XC6200 to reconfigure the device 

and interact with SLUs, we would also use the Virtex's SelectMap interface to 

access SLU inputs and outputs. However, we must acknowledge that this task 

is significantly more complex in the Virtex architecture. Rather than reading 

just the bits of the register we require, we must read the entire configuration 

sequence of a column and then extract the pertinent bits that reveal the register 

state. Essentially, much of the processing that was done implicitly within the 

XC6200 architecture must now be done explicitly by extensions to the FURl 

core's memory interface. In particular, the layer of logic that we place between 

the FURl core's memory buses and the SLUs must grow to allow us to transport 

operands to and from the SLUs. 

Besides this complication, however, there are some interesting advantages to 

a FURI-Virtex implementation. Firstly, the Virtex architecture supports much 

faster logic circuit implementations, far in excess of the clock speeds that can be 

achieved on a XC6200 implementation. From this, FURl cores operating in the 

scale of hundreds of megahertz are very achievable. Furthermore, a FURl Vir-

tex implementation can take advantage of architectural features that facilitate 

interaction between circuits operating at different clock speeds. For example, the 
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architecture supports compact implementations of multi-ported memories that 

operate in FIFO mode. As we alluded to in our discussions of the DES im-

plementation in Chapter 7, these embedded memory blocks are very effective 

for bridging timing differences between clock domains. Other wide embedded 

memories in the architecture allow us to support internal code regions within the 

architecture without explicitly consuming cell resources. This is relevant since on-

chip memory blocks are much more effective at supporting instruction streams 

for the high speed FURl cores we would expect to implement. 

Although there are issues regarding the FURl Virtex's ability to interact with 

SLUs, we cannot advocate the XC6200's memory interface implementation as 

the ideal. One of the XC6200 implementation of the FURl core's strengths is 

to interleave SLU configuration, communication and computation on the granu-

larity of single data transfers. This challenges a fundamental premise in many 

implementations of VC - that relatively long periods of time must be dedicated 

exclusively to SLU configuration. This has encouraged the view of the whole 

bitstream as the granular unit of configuration. Additionally, the commonality of 

closed, proprietary bitstream formats, encourages the designer of reconfigurable 

systems to abstract away from the low level aspects of SLU loading and ignore 

the fact that loading each individual datum from an SLU bitstream is a context 

sensitive process. 

We witnessed this, in the case of the XC6200, through the bitstream's depen-

dence on the correct map, mask, and wildcard register settings. The discussion on 

SLU loading in Chapter 6 described how these features of the XC6200's FastMap 

interface makes the FURl core's task more complex. Although the FURl core is 

capable of interleaving data transfers at such fine granularities we cannot treat the 

configuration bitstream as a sequence of individual, context-free data transfers. 

The compromise between the two granularities, also discussed in Chapter 6, is 

therefore to define the unit of configuration according to the structure within the 
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SLU bitstream itself. One observation, however, is that the compelling technique 

of configuration compression [49] increases the influence of wildcarding within 

a bitstream and, as a consequence, actually creates more context dependencies 

between individual data transfers and the device state. 

A prospective solution for future FPGA architectures that we would like to 

suggest in this thesis involves moving away from interacting with SLUs based 

on their geometric location within the array and towards support for a symbolic 

mapping' to SLU ports. Such a "SymbolMap" interface would essentially bind a 

symbolic reference to each input and output register of an SLU as it is instanti-

ated onto the array fabric. Any future references to the SLU interface are done 

by reading and writing to symbolic names of the target SLU's interface registers. 

We acknowledge this approach would involve paying a physical cost to add the 

functionality to the array resource. Prospectively, we would be making parts of 

the configuration memory of the host FPGA respond as slightly complex content 

addressable memories. However, the elimination of a significant proportion of de-

vice control state handling from the FURl framework leaves it free to orchestrate 

the flow of operands and configurations over the reconfigurable resource. 

8.3.1.1 Supporting Variant Virtual Circuitry Models 

Besides the three main VC models considered in this thesis, we can identify other 

notable VC models, such as the Virtual Pipeline [69] in particular, that are inter-

esting to relate to the FURl framework. Virtual Pipelines are strategies applied 

to the reconfiguration of regular pipelined and systolic style virtual circuits. The 

aim of the strategies are to minimise the latency incurred when reconfiguring the 

pipeline. This is achieved by overlapping the configuration of each pipelines stage 

within ongoing computation within the unaltered stages. Rather than flushing 

the entire pipeline of its data, reconfiguring it in its entirety, and re-filling it 

with new operand data, the pipeline gradually "morphs" between full configura- 

2 By symbolic, we mean a logical reference encoded as an integer. 
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tions. Data from the original pipeline circuitry continues to flow through what 

remains of that circuitry, ahead of the point of reconfiguration. Behind the point 

of reconfiguration, the new pipeline structure has been established and begins to 

immediately receive new operand data. 

Fundamentally, this model is a close relative to the parallel harness VC model 

we have discussed but with a degree of reconfigurability targeted at the SLUs 

within the wired harness. FURl support for the parallel harness model was dis-

cussed Chapter 7. We can generalise that discussion and consider how we could 

take advantage of the reconfigurability provided by FURl to support the vir-

tual pipelines. In [69], the Luk and Shirazi state that the cost of reconfiguring 

a pipeline stage within the virtual pipeline should ideally be balanced with the 

processing rate of the pipeline as a whole. The FURl core is in an ideal position 

to effect this style of reconfiguration: its close coupling to the configuration port 

of the virtual pipeline's host FPGA means that we can effect the reconfigurations 

without incurring physical latencies in the system architecture. In FURl terms, 

the act of morphing a single pipeline stage is equivalent to loading a new SLU 

over an existing SLU in the parallel harness. As we mentioned previously in the 

thesis, the three VC models that we gave particular emphasis too should not be 

taken as the definitive set of models: the virtual pipeline is an example of the 

fluidity of definition that exists between the different models as we trade off the 

degrees of reconfigurability and degrees of SLU interaction. 

From the discussion above, we can see how additional conceptual VC models 

map to the FURl framework. Also, the discussion on the FURl Virtex implemen-

tation, demonstrates how the framework itself can map onto newer generations of 

device architecture. Besides this, it is also interesting to address the relationship 

between FURl and other platforms for virtual circuit models. The Piperench 

architecture we described in Chapter2 is a particularly relevant here: essentially, 

it is a hardware implementation of a one dimensional virtual pipeline. We saw in 
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Chapter 2 how Piperench's architecture is specifically designed for SLUs in the 

form of pipeline stages. Further, the architecture's reconfiguration facilities ex-

plicitly support the reconfiguration of pipeline stages in the incremental manner 

required by the virtual pipeline model: the device architecture can rapidly move 

the configuration data used to implement one stage to a different part of the 

reconfigurable fabric. In terms of raw performance, the Piperench architecture is 

likely to exceed that of a basic FURl implementation of a virtual pipeline. Since 

the performance difference is the result of tailoring the physical architecture of 

the FPGA platform, this effectively constrains the device to the one virtual cir-

cuitry model. FURl is unlikely to compete in terms of raw performance for the 

main enumerations of the virtual pipeline model that Piperench targets, but its 

overall performance for a series of VC models will be higher. Furthermore, even 

within the virtual pipeline model, there are potentially malignant cases that will 

map better to a FURl implementation because they, for example, do not map 

well to the reconfigurable stripes of Piperench. 

8.3.1.2 Meeting the requirements for Virtual Circuits 

In Chapter 4 we outlined some basic requirements for supporting virtual circuits. 

We now consider how well these were met by the FURl framework. There are 

three points that we will make regarding this. The first here is that the XC6264 

implementation of the FURl core produced for this thesis meets the 10% resource 

utilisation constraint. 

Further to this, we can consider how well we can configure the host FPGA 

using the FURl framework with respect to the earlier constraint on saturating 

the host FPGA's configuration port. The basic, 33MHz FURl implementation 

has a transport cycle time of 2.6is which is above our target rate of 40ns. The 

requirement is met for a single-cycle 33MHz implementation of the core whose 

corresponding transport cycle time is 30ns. Successive increases in clock speed 

reduce the degree of pipelining required. For example, the 200MHz, 8 cycle core 
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has a transport cycle time of exactly 40ns. 

Finally, we can note that driving SLU interfaces at the core circuitry speed 

is a much more demanding requirement, that we cannot meet with the current 

generation of device architectures. The interfaces that FPGAs provide to interact 

with SLUs typically operate at much lower speeds than the circuitry itself. The 

XC6200 is more benevolent than the Virtex architecture in this matter, but it 

still lags behind the bandwidths that would be required to access, for example, a 

66MHz pipelined DES SLU. 

8.3.2 Future Directions 

Chapter 7 proposed FURl implementations of the DES in the style of each of 

the VC models with the aim of demonstrating that the FURl core can indeed 

support all three VC models. The first extension to this work would be a full 

implementation of each of the VC models with the aim of quantifying the rela-

tive effectiveness of different FURl protocols when they are used for particular 

applications and communication traffic patterns. 

The aim of this thesis was not to present a particularly high performance 

implementation of the FURl core, its kernel circuitry, or its surrounding system. 

However, the performance of the FURl core circuitry could be increased through 

pipelining, but this must be carefully balanced against the number of memory 

ports available within the system. There is also room to explore alternative 

scheduling mechanisms within the FURl executive using supporting circuitry to 

aid the decision process. At various points in the thesis we described potential 

optimisation techniques that would be applied by a higher level FURl compiler. 

Implementing such a compiler was beyond the scope of this thesis, but the FURl 

core's membership of the transport triggered architecture class means future work 

in this area has the potential to exploit existing TTA compiler technology [54]. 

The FURl core has the potential to become a testbed for an emerging design 
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methodology for runtime reconfiguration that is based on the notable philosophy 

presented in [15]. Instead of attempting to extend traditional hardware-software 

co-design into the reconfigurable domain, this paper advocates a control flow-data 

flow co-design methodology where the system design is repeatedly partitioned 

into control and dataflow components. Here, rather than making a single, initial 

partition of the system into hardware and software components. In the control-

dataflow methodology described here, we allow components to be re-partitioned 

into sub-components elements of control-flow or data-flow with each level of sys-

tem decomposition. This is different from the predominantly static system parti-

tioning undertaken once at the beginning of the hardware-software co-design pro-

cess. Furthermore, it creates a close interplay between control flow components 

and data flow components within the system hierarchy and requires an efficient 

and effective control flow-data flow interface. The FURl system described in this 

thesis is relevant to this methodology because it comprises elements of control 

flow, elements of data flow, and approaches the issues related to maintaining an 

effective and tightly integrated control flow-data flow interface. An historical ar-

chitecture, the 1CL2900 with the Distributed Array Processor (DAP)[86], is also 

notable here for its combination of tightly coupled processor and programmable 

array core. 

8.4 Conclusion 

When Kean introduced the first partially reconfigurable FPGA in 1989, he con-

cluded his thesis with the following statement: 

Configurable logic was an idea that arrived before its time: now that 

its time has come it would be a pity to go on ignoring it. 

In the decade between the introduction of the CAL architecture and the pre-

sentation of this thesis, configurable logic has been anything but ignored: in 
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2000, configurable logic is a multi-million dollar industry. FPGAs have become a 

well established technology for ASIC replacement and rapid system prototyping, 

but the most compelling use of partially reconfigurable FPGAs, runtime recon-

figuration, has remained the most elusive. The challenge in 2000 is to take the 

experiences of the past decade and define the new form device architecture and, 

particularly device interface, that will transport runtime reconfiguration from 

being a delicate, niche technique into mainstream acceptance. 
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Appendix A 

FURl Core Implementation 
Details 

A.1 Introduction 

This appendix describes the status of the implementations of the components of 

the FURl framework discussed in the main body of the thesis. 

A.2 The FURl Core 

The main core of the Flexible URISC, described in Chapter 5, has been fully 

implemented on both the XC6216 and XC6264 versions of the XC6200. The final 

implementation produced through this thesis used 860 XC6200 function units 

which is approximately 20% of the available function units in a host XC6216 and 

5% in a host XC6264. Figure A.1 shows the actual layout of the implemented 

FURl core on a XC6264. Although the majority of the cells are not consumed 

in the XC6216 implementation, it is difficult to utilise the unoccupied cells for 

dynamically instantiating SLUs. The routing resources of the XC6216 are heavilly 

utilised by the FURl SRAM address and data buses that traverse the array. 

Any SLU that would be instantiated alongside the FURl core would have to be 

carefully overlayed with the existing core routes. However, the XC6200's routing 

resources become congested as the FURl SRAM signals approach the device lOBs. 

Since these signals begin to consume the same low level routing resources that 
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Figure A.1: Placed and Routed Layout of the FURl core on a Xilinx XC6264 

are predominantly targeted by FURl SLUs, it is difficult to dynamically overlay 

the SLUs without affecting the underlying core cirtuitry. 

A.3 The FURl Assembler 

The FURl assembler is the central tool in the FURl design flow that we introduced 

in Chapter 7. In this section we will give an expanded description of its operation. 

As mentioned earlier, the FURl assembler is "macro" based. It accepts a stream 

of instructions and instruction definitions (instruction macros) and translates the 

instruction stream into a FURl executable. 

A.3.1 Basic Assembly Constructs 

The fundamental constructs the FURl assembler accepts in its input stream are 

macro definitions, code blocks, data literal definitions, and assembler pragmas. 

A.3.1.1 Macros 

The assembler understands that the single fundamental instruction in the code 

stream is the single-word move. This forms the root of a tree of instruction defini- 
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begin macro <macro_name> ( <operand names> ) 

move <addr>, <addr> 
instrA liti, op2, 1it2 
.labell instrB opi 
instrC opi, labell, lit3, 1it4 
• end macro 

Figure A.2: The basic format of a macro definition 

tions and, as macros are introduced, the set of available instructions expands. A 

macro definition takes the form given in Figure A.2. The first line of the definition 

identifies the name of the instruction and the exact series of operators that are 

required to satisfy the instantiation of that macro. The code section of the macro 

can contain a mixture of basic move instructions and other higher level macro 

instructions. In this way, more complex hierarchical instruction definitions can 

be created from lower level sequences of instructions. The only restriction on this 

hierarchical composition is that macro instructions referenced within the body of 

the macro must have been declared earlier. 

Instructions within the body of the macro can make reference to any globally 

defined data literals, labels within the body of the macro itself, and any of the 

macro's parameter operands. In addition to these, a special symbol "next" is 

provided. When this symbol is referenced within the body of the macro it is re-

placed with the address of the instruction that will follow the instantiated macro. 

This functionality is required specifically to support branching instructions where 

it is necessary to jump either to the branch address or to the address of the in-

struction following the branch instruction itself. Labels on macro instructions 

are treated specially during the code generation phase. Each time an instruction 

macro is instantiated, versions of the instruction labels specific to that instantia-

tion are also synthesised and all internal references to the label are redirected to 

the synthesised label. 

297 



A.3.1.2 Code Blocks 

Code blocks are instruction sequences that will eventually be instantiated into 

the memory image. Figure A.3 contains a code block from the source tree of the 

FURl executive. Using the assembly pragmas discussed below, the assembler is 

aware of which address in the memory image that a code block should be placed 

at. The amount of space required per instruction can be calculated by referring 

to the macro that will be used to implement that instruction. Instructions within 

a code block can be prefixed with labels which are entered into a global symbol 

table and can be referred to as operands in other instructions. 

A.3.1.3 Data Literals 

Data literals are supported by the assembler in two ways. Firstly, sections of 

the memory image can be explicitly reserved for a literal using the . literal 

directive. This places an entry for the literal in the symbol table and can also 

be used to specify a particular location in the memory image for the literal to be 

placed. In addition to this, the directive can also identify a default value for the 

literal. 

The second route for introducing data literals is through implicit references 

within the operand lists of an instruction. In Chapter 5, we discussed how the 

FURl architecture has no immediate addressing mode. The FURl assembler, as 

implemented for this thesis, supports immediate addressing of operands within 

the assembly source and, for each immediate operand, synthesises a new entry 

in the symbol table, reserves a location in the memory image, and ultimately 

populates that location with the correct (immediately addressed) data value. A 

C-language style "address of" operator is implemented in a similar manner. 

A.3.1.4 Assembly pragmas 

Embedded within the source files parsed by the FURl assembler are a series of 

directives. These pragmas influence different stages of the assembly process and 
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begin code add-task 

;; Which address can I put this task at? 
.add-task add #Oxl, freeNodePtr, fnPtrAddr 

move_da fnPtrAddr, freeNodeAddr 
add #Oxl, freeNodeAddr, freeNodePRVAddr 
add #0x2, freeNodeAddr, freeNodeNXTAddr 

ASSERT the last node added is pointed to by the global 
lastTasklnserted 

move lastTasklnserted, prevNodeAddr 
add #Oxl, prevNodeAddr, prevNodePRVAddr 
add #0x2, prevNodeAddr, prevNodeNXlAddr 

;; Store the exe addr in the EXE field of the free node 
move_db newTaskAddr, freeNodeAddr 

;; Store the addr of the prevNode in the PRV field... 
move_db prevNodeAddr, freeNodePRVAddr 

Store the NXT field from the prevNode as the NXT field 
in this node 

move-dab prevNodeNXTAddr, freeNodeNXTAddr 

Modify the fields of the prevNode NXT field so it now 
points to the new node... 

move _db freeNodeAddr, prevNodeNXTAddr 

I've consumed a cell in the freeTaskNodes, reduce the 
stackpointer to compensate... 

move_da freeNodePtr, freeNodePtr 

;; point to the new node as the last one to be inserted 
move freeNodeAddr, lastTasklnserted 

end-add-task ret OxO 
end 

Figure A.3: A FURl Assembler Code Block 
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generally provide information about the size of the FURl memory image and the 

locations at which code blocks and data segments should be placed. Evocations 

of the pragmas in the assembly source are prefixed by the . pragma directive 

followed by the name of the particular pragma being used. The effect of the three 

supported pragmas is described below. 

map-device This pragma is used to describe which address regions of the poten-

tial 32-bit address space are actually populated. During the code generation 

phase, the assembler checks that each population of the memory image is 

to a region that has actually been mapped to a memory device. 

data-segment The data-segment pragma identifies a point in the memory image 

where literals will be placed at if they do not have an explicit address 

associated with them. 

load-point The load-point pragma has a similar effect to the data-segment 

pragma but influences where the elaborated code blocks will be placed in 

the memory image. 

A.3.2 Outline of the Assembly Process 

There are three phases to the assembly process. In the first phase, the assembler 

parses all of the source files and their dependancies. The result of this is the 

creation of two internal datastructures: a macro list to hold the set of currently 

available instruction definitions; and a code fragment list to track information 

on which instructions and data literals are to be instantiated into the FURl 

memory map of the output executable. During this initial parsing phase, there 

are no strict requirements on the declaration of symbolic labels before they are 

referenced. Forward references to labels and symbols within the assembly code is 

a basic functionality that is supported. 

The second phase of the assembly process is code generation. Here, each of 

the instructions are elaborated down to a set of fundamental move instructions 



and placed within an internal representation of the FURl memory image. Data 

literal definitions are also inserted into the memory image at this stage. To 

elaborate an instruction down to it's sequence of data transport moves involves 

locating the correct instruction macro definition and then creating a new instance 

of the macro's primitive instruction template. This is specialised to the particular 

destination address that the instantiated instruction will have in memory and 

the addresses of the data literals that were supplied as operands to the higher 

level instruction. Before an instruction is presented for elaboration, it's symbolic 

references (if there were any that could not be resolved when the instruction was 

first parsed) are resolved. This allows all of the references to operands within 

the macro's code template to be matched to the actual addresses of the data 

literals in memory. Once a specialised instance of the macro's code template has 

been created, it's instruction sequence (which is now a fully elaborated set of 

primitive move instructions with no symbolic references remaining) is written to 

the appropriate segments of the FURl memory image. 

In the third assembly phase the memory image produced through code gen-

eration is dumped out in one of three main formats: a core dump of the entire 

memory region; a command file for qPCltest; or a data stream file for use in 

FURl protocols. Side products of this phase include symbolic debugging data 

such as a symbol table dump and code footprint dump. Both of these files can 

be used within qPCltest for interrogating the actual, executing memory image 

of the FURl core. 

A.3.3 Assembling FURl Protocol code 

To assemble FURl protocol code, the assembler supports two main funcionalities: 

the linking of symbolic information from previously-assembled code to the code 

currently being assembled; and the conversion and output of the final, assembled 

memory image as a stream of data words that can be transmitted as packets over 
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the FURl base protocol. 

Linking to previously assembled code is necessary here as the code transmitted 

over the FURl base protocol will require access to the services of, for example, the 

FURl executive. Since these involve subroutine calls and access to pre-defined 

literals, the protocol code is given access to the symbol table of the FURl executive 

through the assimilation of the symbolic debugging information described above 

into the symbol table when the protocol code is transmitted. 

The generation of a dataword stream is different from the approach taken by 

the qPCltest command script generator. Commands scripts make more assump-

tions about the physical, board RAM having a known state initially. Because of 

the dynamic nature of the code's transmission, a datastream does not make any 

assumptions about the board's RAM state. 
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