
Reconfigurable Microarchitectures at
the Programmable Logic Interface

Adam Donlin

Doctor of Philosophy
University of Edinburgh

2001

/"J•

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text. Some of

the work also appears in the following papers:

G. Brebner and A. Donlin. "Runtime Reconfigurable Routing". In José

Rolim, editor, Parallel and distributed Processing, volume 1388 of LNCS,

pages 25-30. Springer-Verlag, 1998.

• A. Donlin. "Self Modifying Circuitry - A Platform for Tractable Virtual

Circuitry". In A. Keevallik, R. W. Hartenstein, editor, Field Programmable

Logic and Applications - From FPGAs to Computing Paradigm, volume

1482 of LNCS, pages 199-208. Springer-Verlag, 1998.

Abstract

Dynamic, runtime reconfiguration is one of the most compelling, yet elusive

applications of programmable logic. The lack of an accepted design methodology

and limitations of the programmable logic interface are identified as two significant

factors constraining the mainstream acceptance of runtime reconfiguration and

virtual circuitry(VC). This thesis presents a framework for investigating a new

form of flexible programmable logic interface capable of adapting to the demands

of different VC models. An abstract architecture for virtual circuitry is presented

in the context of two fundamental models of VC: the sea of accelerators and the

parallel harness. The abstract architecture's position within the class of Transport

Triggered Architectures(TTAs) is considered and we discuss how attributes of the

architecture are harnessed to facilitate a third, sequential algorithmic VC model.

A novel implementation of the abstract architecture is described: the imple-

mentation of the Ultimate RISC(URISC), a minimal microarchitecture, is pre-

sented and is then evolved into the Flexible URISC(FURI), an instance of the

abstract VC architecture. A design flow and associated toolset for the FURl core

is presented. This includes a discussion of the merits and complications of dif-

ferent strategies for circuitry loading plus the features of a multitasking runtime

environment for the FURl core, the FURl executive. Starting with the descrip-

tion of a simple base protocol, the design space for FURl protocols is qualified.

The communication characteristics of the three VC models are described and

their influence on the form of FURl protocols considered. Implementations of

the Data Encryption Standard(DES) are proposed, demonstrating how the FURl

system supports each of the three VC models.

To my parents.

Acknowledgements

Over the years, I have had the tremendous privilege of working with and being

inspired by many wonderful people. I am grateful to each and every one, but I

feel it is appropriate to offer special thanks to three of them in particular:

• First, I wish to thank Gordon Brebner for his support and supervision. His

insightful guidance, patience, and overall dedication are what make him a

truly great supervisor.

• Second, I wish to thank John Gray for many stimulating discussions. His

verve, encouragement, and insights have inspired me many times whilst

working on this thesis.

• Third, I wish to thank Ray Welland for his support and encouragement

during the years I spent studying in Glasgow.

Table of Contents

List of Figures 	 7

List of Tables 	 13

Chapter 1 	Introduction 15

1.1 	Runtime Reconfiguration 15

1.1.1 	Challenges 16

1.2 	Aim of the thesis 17

1.3 	Thesis Outline 17

Chapter 2 Reconfigurable Architectures and Systems 19

2.1 	History of the Programmable Machine 19

2.1.1 Evolution of the Microprocessor 20

2.1.2 Logic Circuitry 21

2.1.3 Programmable Logic 23

2.2 	Early Forms of Programmable Logic 24

2.2.1 The Fixed-plus-Variable Structure (F+VS) Computer . 24

2.2.2 Cutpoint Cellular Logic 25

2.2.3 Wahistrom's Programmable Logic Array 27

2.2.4 Shoup and the Programmable Cellular Logic Array 	. . 28

2.2.5 First Generation Programmable Logic 29

2.3 	Field Programmable Gate Arrays (FPGAs) 32

2.3.1 ASIC Replacement 32

1

2.3.2 	Rapid System Prototyping 33

2.3.3 	Dynamic Reconfiguration 34

2.4 Basic FPGA Architecture 35

2.4.1 	FPGA Programming Technologies 37

2.4.2 	Classes of Reprogrammability 38

2.5 Dynamically Reconfigurable FPGAs 39

2.5.1 	Xilinx LCAs 39

2.5.2 	Altera Flex 42

2.6 Partially Reconfigurable FPGAs 43

2.6.1 	The Xilinx XC6200 43

2.6.2 	The Atmel AT6000 47

2.7 New Generation FPGA architectures 50

2.7.1 	Virtex 51

2.7.2 	Apex 54

2.8 Device Architecture Research 54

2.8.1 	PipeRench 56

2.8.2 	Colt 56

2.9 Reconfigurable Computing Systems 57

2.10 Summary 58

Chapter 3 The Programmable Logic Interface 60

3.1 	Defining the Programmable Logic Interface 60

3.1.1 The Programming Language Interface 61

3.1.2 The Runtime System Interface 62

3.1.3 The Device Interface 62

3.2 	Programmable Logic Device Interfaces 62

3.2.1 Bit-serial programming interfaces 63

3.2.2 Parallel, Random-access Interfaces 64

3.2.3 Streaming, Packet-style Interfaces 71

2

3.2.4 Adaptive Packet-style Device Interfaces74

3.3 	Summary 74

Chapter 4 	An Abstract Architecture for Virtual Circuitry 75

4.1 Virtual Circuitry 75

4.2 Models of Virtual Circuitry 76

4.2.1 	The requirements to support Virtual Circuits 76

4.2.2 	Fundamentals: The Swappable Logic Unit 80

4.2.3 	The Sea of Accelerators Model 80

4.2.4 	The Parallel Harness Model 81

4.3 An Abstract VC Architecture 82

4.3.1 	Transport Triggered Architectures 85

4.3.2 	Alternative Architectures 86

4.3.3 	Self-modifying Circuitry 90

4.4 Performance Enhancing Techniques for VC 96

4.4.1 	Partial Reconfiguration 97

4.4.2 	Partial Evaluation and Constant Propagation 99

4.4.3 	Configuration Compression 100

4.4.4 	Configuration Prefetching 101

4.4.5 	Configuration Interleaving 102

4.4.6 	Analysis 102

4.5 Sequential Algorithmic VC 104

4.6 Summary 107

Chapter 5 The Flexible Ultimate RISC 	 108

5.1 The Ultimate RISC(URISC)108

	

5.1.1 	The Instruction Execution Unit(IEU)109

	

5.1.2 	URISC Programming113

5.1.3 Challenges of a XC6200 URISC Implementation115

3

5.2 	The Flexible URISC(FURI) 122

5.2.1 	Differentiating FURl and the URISC 122

5.2.2 	FURl Implementation Details and Challenges 123

5.2.3 	FURl Control Logic 130

5.2.4 	Debugging the FURl Core Circuitry 138

5.3 	Summary 145

Chapter 6 The FURl Programming and Runtime Environment 146

6.1 Programming the FURl Core 146

6.1.1 	What is a FURl program? 147

6.1.2 	The FURl Design Flow 147

6.1.3 	The FURl Assembler 150

6.1.4 	Kernel Circuitry 152

6.1.5 	Assembly Libraries 153

6.1.6 	Challenges and approaches to Loading SLUs 155

6.1.7 	Circuit Debugging 169

6.2 The FURl Executive 175

6.2.1 	Tasks 176

6.2.2 	Task Switching 176

6.3 Standard System Tasks 177

6.3.1 	The FURl base protocol and base protocol handler task 177

6.3.2 	The Detacher 180

6.4 Analysis and Conclusions on the FURl Framework 185

6.5 Summary 187

Chapter 7 Virtual Circuitry on the Flexible URISC 	 198

7.1 	The FURl System Context198

	

7.1.1 	FURl Network Components200

	

7.1.2 	FURl Network Topologies204

7.1.3 	Mapping Network Topologies to Existing Platforms 209

7.2 FURl 	Protocols 211

7.2.1 	Communication Characteristics of Virtual Circuitry Models 212

7.2.2 	The FURl Protocol Design Space 224

7.3 Implementing Virtual Circuitry Models 236

7.3.1 	The Data Encryption Standard(DES) 237

7.3.2 	The Application Context 239

7.3.3 	Sea of Accelerators 241

7.3.4 	Parallel Harness 246

7.3.5 	Sequential Algorithmic 251

7.4 Performance Analysis and Projection 253

7.4.1 	Performance of the FURl core 254

7.4.2 	Analysis of the framework costs and overheads 255

7.4.3 	VC DES Implementations 261

7.4.4 	Performance Projections 271

7.5 Summary 279

Chapter 8 Conclusions and Further Work 282

8.1 Overview of Thesis 282

8.2 Contribution 283

8.2.1 	Technical Contribution 283

8.2.2 	Conceptual Contribution 284

8.3 Conclusions and Future Directions 284

8.3.1 	Conclusions 284

8.3.2 	Future Directions 292

8.4 Conclusion 293

Appendix A FURl Core Implementation Details 	 295

A.1 	Introduction295

5

A.2 The FURl Core 	 . 295

A.3 The FURl Assembler296

A.3.1 Basic Assembly Constructs296

A.3.2 Outline of the Assembly Process300

A.3.3 Assembling FURl Protocol code301

Bibliography 	 303

List of Figures

2.1 Minnick's Cutpoint Array 26

2.2 The Wahistrom Programmable array 27

2.3 Sum-of-products PLD Architectures: (i) Basic PLD Organisation,

(ii) Programmable Read-only Memory (PROM), (iii) Programmable

Array Logic(PAL), and (iv) Programmable Logic Array (PLA) 30

2.4 The basic architecture of an FPGA 36

2.5 General Features of the XC4000 Cell Array 40

2.6 XC4000 Configurable Logic Block 41

2.7 The XC6000 Function Unit 44

2.8 The XC6000 Routing Hierarchy 45

2.9 The AT6000 Cell Structure 48

2.10 General Organisation of the AT6000 Array 49

2.11 The AT40K Cell Structure 50

2.12 General organisation of AT40K Cell Array and Interconnect 	. 51

2.13 A Virtex 2-Slice CLB 52

2.14 General Organisation of the Virtex Architecture 52

2.15 General Organisation of the Altera APEX 55

2.16 General Structure of the PipeRench Fabric and Stripe Functionality 57

2.17 The Colt Architecture 58

3.1 FastMap access to cell state using the XC6200 Map Register . . 	69

3.2 Structure of the PCI-PipeRench72

7

3.3 Typical Packet Format for the PipeRench Architecture73

3.4 General Format of a Colt Stream73

4.1 The two primary models of virtual circuitry: (i) The Sea of Accel-

erators and (ii) The Parallel Harness81

4.2 The Abstract Virtual Circuitry Architecture83

4.3 	General Structure of a TTA85

4.4 Organisation of the self-configuring pattern matcher[76] 94

5.1 A minimal URISC Implementation109

5.2 The Ultimate RISC Datapath110

5.3 Control Waveform for the basic URISC113

5.4 Basic architecture of the initial URISC implementation on the

XC6200 116

5.5 The URISC XC62000 Datapath 118

5.6 The URISC XC62000 Control Timing Diagram 119

5.7 Self- initialising and self-activating control logic shift register 	. 119

5.8 The Control Shift-register in action: 	(i) Initialisation mode; and

(ii) 	Shift 	Mode 121

5.9 Datapath of the Flexible URISC 125

5.10 Autonomous FURl system using XC6200 master serial configuration 130

5.11 FastMap Interface Timing Diagrams: 	(i) Configuration SRAM

Write; (ii) Configuration SRAM Read 131

5.12 FURl Control Timing with integrated FastMap Read and Write

support 132

5.13 Floorplan of FURl core around the FastMap control Ports 137

5.14 The VCC Hotworks Development Card 139

5.15 The VCC Hotworks Prototyping Daughtercard 141

5.16 FURl Core Hardware Debugging Cycle 143

5.17 qlnspector Design Views 	 . 144

6.1 The FURl Design Flow 148

6.2 Graph of Block Based Cal Loader Performance with Various Block

Sizes 159

6.3 Graph of cal2furi Loader Subroutine Performance 161

6.4 qOverlay Design Views 174

6.5 The FURl Base Protocol 179

6.6 XC6216 Memory Map for Cells starting in row 0 188

6.7 Address type distributions in a series of adder SLUs 189

6.8 Address type distributions in a series of adder SLUs using an 8-bit

configuration interface 189

6.9 Address type distributions in a series of adder SLUs generated as

circuit overlays 190

6.10 Address type distributions in DES SLUs 190

6.11 Address type distributions in DES SLUs generated as circuit overlays191

6.12 Cell-data block size distributions in a series of adder SLUs 191

6.13 Cell-data block size distributions in a series of adder SLUs using

an 8-bit configuration interface 192

6.14 Cell-data block size distributions in a series of adder SLUs gener-

ated as circuit overlays 192

6.15 Cell-data block size distributions in DES SLUs 193

6.16 Cell-data block size distributions in DES SLUs generated as circuit

overlays 193

6.17 Block Frequencies for Adder SLU bitstreams in Overlay mode 	194

6.18 Block Frequencies for DES SLU bitstreams in Overlay mode . 	194

6.19 Map-delimited Block Sizes for Adder SLU bitstreams195

6.20 Map-delimited Block Sizes for Adder SLU bitstreams in Overlay

mode..................................195

6.21 Map-delimited Block Sizes for DES SLU bitstreams196

6.22 Map-delimited Block Sizes for DES SLU bitstreams in Overlay mode196

6.23 Frequency of Map-delimited Block Sizes for DES SLU bitstreams 197

6.24 Frequency of Map-delimited Block Sizes for DES SLU bitstreams

in Overlay mode 197

7.1 Main FURl System Context for Virtual Circuitry Applications . . 199

7.2 Symbolic Representations of the FURl Network Component Types 205

7.3 FURl Networks containing a Star topology: (i) homogeneous, shared-

memory; (ii) heterogeneous, shared-memory; (iii) shared-memory,

bridged.................................207

7.4 FURl Bus networks 207

7.5 FURl Mesh Networks 208

7.6 FURl Ring Networks 208

7.7 Toroidal interconnect of the SPACE2 Computing Surface 210

7.8 Mapping the basic homogeneous, shared-memory topology to the

VCC Hotworks Platform 211

7.9 A hierarchical rationalisation of types in the FURl datastream . 213

7.10 FURl Buffers with FIFO style operating conventions: (i) a minimal

FIFO buffer containing one packet; (ii) a multiple packet FIFO

filled with an access granularity matching the buffer size; and (iii)

a multiple packet FIFO supporting single-packet access granularity. 232

7.11 The Data Encryption Standard Algorithm 238

7.12 Lower level view of the FURl system context 240

7.13 Interface Arrangements for FURl SLUs 243

7.14 Pipelined Parallel Harness DES Circuitry 246

7.15 Operand and Result sequences for the pipelined DES Parallel Har-

ness 	Circuit 248

7.16 Parallel Harness DES circuitry 250

10

7.17 Basic Sea of Accelerators VC DES Implementation262

7.18 Parallel Harness VC DES Implementation264

7.19 Sequential Algorithmic VC DES269

7.20 Data transport sequence applied in a single round of the Sequential

Algorithmic \'C DES Implementation270

7.21 Sequential Algorithmic DES: This figure captures the processing

stages applied in the FURl environment to support Sequential Al-

gorithmic DES. The FURl executive section holds the two software

components of the model. The programmed flexible harness task

consumes data packets at stage (b) and produces result packets at

stage (c) (the overall packet flow is indicated via the solid black

arrows). The DES harness protocol handler task decouples the

processing of packet operands from their reception and transmis-

sion over external FURl network channels. In stage (a), the task

is feeding packets arriving over the FURl network into the flexi-

ble harness's processing queue and at stage (d), the task consumes

the result packets from the flexible harness task and deals with

their transmission. The dashed red arrows are operand transports

through each DES SLU, invoked by the flexible harness as it trans-

forms each operand into a result. The programmed execution the

flexible harness task ensures each operand flows through the SLUs

in the appropriate sequence to implement the DES. For clarity,

the diagram does not show the total, connected flow sequence of

the operands through every SLU. However, this sequence would be

equivalent to a flowchart style abstraction of the Flexible Harness

Task's programmed code .. 281

8.1 FURl Virtex: remapping the configuration port286

11

A.1 Placed and Routed Layout of the FURl core on a Xilinx XC6264 296

A.2 The basic format of a macro definition297

A.3 A FURl Assembler Code Block299

12

List of Tables

3.1 FastMap Interface Signals and their Roles66

5.1 Control Microprogram for basic URISC implementation111

5.2 Control signals used in the control path of the original URISC 	112

5.3 Control signals used in the XC6200 serial interface129

7.1 FURl Core instruction processing rates at different clock speeds

and with pipelining to reduce instruction cycle times 255

7.2 Breakdown of the instruction costs for the FURl Executive 258

7.3 Breakdown of the instruction costs from the configuration protocol. 259

7.4 Configuration costs for the DES examples 261

7.5 Breakdown of costs for the sea of accelerators VC DES protocol

handler . 	
. 	 263

7.6 Breakdown of costs for the Parallel Harness VC DES protocol han-

dler . 	
. 	 266

7.7 Summary of the main instruction costs from the three VC DES

implementations 272

7.8 Processing Performance of Sea of Accelerators VC DES 273

7.9 Processing Performance of Parallel Harness VC DES 273

7.10 Processing Performance of Sequential Algorithmic VC DES 274

7.11 Performance Ratings of existing DES implementations (source:

Patterson 	[85]) 277

13

7.12 Projected performance of the VC DES models after device en-

hancements 279

14

Chapter 1

Introduction

1.1 Runtime Reconfiguration

Dynamic, runtime reconfiguration is one of the most compelling and yet, at the

same time, elusive applications of field programmable logic devices. Its main goal

is to exact a higher degree of system performance by dynamically adapting the

logic circuitry used within an application. This is done by realising at least part

of a system as application-specific logic circuitry to be implemented on an FPGA.

The re-programmability of FPGAs is then harnessed to dynamically instantiate,

and then possibly specialise or alter, the logic circuitry as the computational

demands of the application change.

In essence, runtime reconfiguration makes the traditional tradeoff between

system performance and system flexibility much more fluid: it gives the applica-

tion designer the opportunity to harness the low level parallelism of circuitry to

gain performance while retaining flexibility through the dynamic instantiation of

circuitry on the programmable logic array. Virtual circuitry is a technique that

exploits dynamic reconfiguration to implement circuit swapping. Effectively, dy-

namic reconfiguration is used to facilitate the illusion of having a larger circuitry

resource than is actually, physically available.

15

1.1.1 Challenges

The density and degree of programmability of FPGAs has improved over succes-

sive generations and this has done much to improve the tractability of virtual cir-

cuitry by, in theory, enabling more complex computational elements to be mapped

onto reconfigurable logic. Despite these advances, runtime reconfiguration is still

a delicate technique, typically applied in an ad hoc manner. Furthermore, just

as the programmable logic world has evolved to become more flexible, general-

purpose, so microprocessors have evolved to be increasingly parallel. Indeed, a

case study [92] has shown that such advances in microprocessor architecture have

been successful in recouping some of the readily available performance advan-

tages demonstrated in early virtual circuitry systems with a comparable degree

of design effort.

In 2000, there are two particularly notable challenges to the general deploy-

ment of runtime reconfiguration:

• first, there is no widely accepted design methodology that facilitates the

design of runtime reconfigurable systems and, as a consequence, only very

limited CAD support; and

• second, the interface to the programmable logic resource itself predomi-

nantly fails to adequately support runtime reconfiguration and virtual cir-

cuitry.

Furthermore, it is often the case that the typical system environment in which

runtime reconfiguration, and virtual circuitry in particular, is deployed places the

reconfigurable logic on the host system's peripheral bus and starves it of band-

width. Whilst this is an effective means of introducing programmable logic into

mainstream systems, the resulting architecture is not conducive to implementing

rapid, tightly integrated runtime reconfiguration and virtual circuitry.

16

1.2 Aim of the thesis

In general, this thesis focuses on the second of the two challenges discussed above,

although we may allude to aspects of design methodologies for runtime reconfigu-

ration and tool support at various points. In a holistic sense, this thesis presents

a framework for investigating a new form of flexible, adaptable programmable

logic interface. In particular, we shall consider the nature of the programmable

logic interface and discuss a challenging, novel implementation of an abstract,

reconfigurable microarchitecture that has a unique relationship to its host FPGA

and supports three major models of virtual circuitry.

1.3 Thesis Outline

Chapter 2 gives an overview of the history of programmable logic and pro-

grammable logic device architectures. In particular, the chapter describes

those architectures that define the state of the art in mainstream, commer-

cial FPGA architecture when this thesis was written in 2000. Particular

attention is also given to the partially reconfigurable mainstream architec-

tures that have shaped dynamic reconfiguration research.

Chapter 3 explores the concept of the programmable logic interface at its dif-

ferent abstractions within a dynamically reconfigurable system. Focusing

down at the level of the programmable logic device interface, the chapter

discusses how the programmable logic device interface has evolved from its

early, serialised forms to the more advanced streaming, packet oriented de-

vice interfaces that are tailored to support particular application classes.

The notion of a flexible programmable logic interface that is capable of

adapting to the demands of different applications is then introduced.

Chapter 4 defines an abstract architecture supporting virtual circuitry. First,

the two fundamental models of virtual circuitry are introduced, then the

17

form and semantics of the abstract architecture are presented. The discus-

sion is broadened, briefly, to consider the architecture within the class of

Transport-Triggered Architectures(TTAs). The discussion continues on to

consider how the attributes of the abstract architecture are harnessed in a

way that facilitates a third model of virtual circuitry.

Chapter 5 presents the implementation of the abstract microarchitecture intro-

duced in the previous chapter. The design and operation of the Ultimate

RISC (URISC) is presented in detail and is then evolved into the Flexi-

ble URISC (FURl). The main component of this chapter, therefore, is a

detailed technical discussion of the FURl core and the unique challenges

to the implementation of a self-modifying microarchitecture on the Xilinx

XC6200 FPGA. Key features of the target FPGA architecture, such as the

FastMap interface and an open configuration bitstream, are highlighted.

Chapter 6 presents the design flow, its associated toolset, and a runtime envi-

ronment for the FURl core. This chapter pays particular attention to the

merits and complications associated with different approaches to loading

SLU bitstreams. The FURl executive is introduced as a basic runtime op-

erating environment for the FURl core and the chapter concludes with a

description of the base protocol used to communicate with the core.

Chapter 7 expands the discussion of FURl protocols and explores how the form

of a protocol can be influenced by the communication characteristics of the

three VC models and the particular FURl network architecture. The chap-

ter concludes with a description of three proposed implementations of the

Data Encryption Standard (DES) in each of the VC styles to demonstrate

how the FURl system can support all three VC models.

Chapter 8 ends the thesis with a presentation of conclusions and suggested areas

for future work.

Chapter 2

Reconfigurable Architectures and
Systems

Programmable logic is a central enabling technology exploited by this thesis. This

chapter has three aims related to programmable logic:

. the first aim is to present a short history of field programmable logic, dis-

cussing the key points in the evolution of the programmable machine, and

by highlighting significant architectural research contributions;

. the second aim is to present the current state of the art in field pro-

grammable logic device architecture. This covers both contemporary com-

mercial and research architectures;

. the third is to briefly introduce the two main classes of Reconfigurable

Computing systems in which programmable logic devices and architectures

are typically harnessed.

Field Programmable Logic Arrays are a new class of computational device. A

clearer definition of what is meant by a programmable logic device is appropriate

at this point.

2.1 History of the Programmable Machine

The microprocessor has held position as the dominant form of programmable

computing device for the last 20 years and has a rich history of predecessors.

19

The first widely acknowledged programmable device was conceived by Charles

Babbage in the early 1800s [66] but his efforts to build the ambitious "Analytical

Engine" were confounded by the engineering limitations of the time. Approxi-

mately one hundred years later, however, Alan Turing introduced his model of a

universal computing machine called, simply, the "Turing Machine". The distin-

guishing feature of Turing's machine was that it had a mathematically complete,

underlying model of computation allowing it to implement any of the "decid-

able problems" [103]. So profound was this contribution that Turing's model is

recognised as sparking the development of the modern electronic computer.

2.1.1 Evolution of the Microprocessor

In the early 1940s, J.P. Eckert and J. Mauchly developed the first electronic pro-

grammable device, called ENIAC. Their ideas were crystalised further by John

von Neumann who suggested the model of the "stored-program" computer. This

architecture was first realised in the Manchester Mark I [62] which is acknowl-

edged as the first electronic computer to execute a stored program. In the fifty

years that have followed, many different forms of electronic computer have been

designed and built. The underlying electronic technologies have changed: vac-

uum tubes yielded to discrete transistors which, in turn, yielded to Integrated

Circuits(ICs) which then yielded to Very Large Scale Integration (VLSI). With

each change of technology, a new generation of computer has arisen but, despite

these technological changes, the core of the majority of electronic computers devel-

oped has essentially remained the stored-program architecture of the 1940s. The

microprocessor is a direct product of the VLSI generation of computer devices

and is, essentially, a complete stored-program architecture in a single packaged

IC. The millions of micro-scale transistors at the disposal of the VLSI designer

enable the integration of such complex architectures. Indeed, Moore's law ob-

serves that, over the last 20 years, IC transistor feature size has, on average,

AiJ

halved every eighteen months and provided designers with double the number of

transistors to exploit. In 2000, the state of the art in integrated circuit technol-

ogy has a transistor feature size of 0.13i and is leading designers towards a new

generation of computers implemented as deep-submicron ICs containing over a

billion transistors. Exploiting such deep-submicron devices efficiently has become

an important system architecture research challenge [18]. System-level integra-

tion is one approach to this problem, facilitating the integration of not just the

microprocessor, but a complete system on a single chip [74].

2.1.2 Logic Circuitry

The essential programmability of the microprocessor lies in its ability to execute

different sequences of a set of "core" instructions. These core instructions do not

change and are effectively cast in stone within the physical design of the device

itself. At this low level, however, the microprocessor is implemented as a set of

digital logic circuits. The vast majority of microprocessors and computing de-

vices designed in the last 50 years are digital devices. They harness a physical

phenomenon, typically the flow of electrical current, and reduce the continuous

nature of that phenomenon to a finite set of discrete states, typically two. Ab-

stract values represented in the digital domain are then encoded as a sequence

of discrete digital values. The programmable logic devices discussed in the next

section are digital devices, although there are notable examples of analog and

mixed-signal architectures [39].

Logic circuits are implementations of boolean logic expressions, constructed

according to the principles of digital design. Digital design can be broadly clas-

sified in two categories, differentiated by the timing discipline they employ: that

is, synchronous and asynchronous digital design. Both categories have advan-

tages and disadvantages. Synchronous systems are widely regarded as simpler

to design but the timing abstraction realised through the use of a global clock

21

creates inefficiencies in the system. Fast elements in the design are constrained

to the timing flow of the slowest element in the design. On the other hand, asyn-

chronous systems exploit the "natural" timing of components, and are efficient at

the implementation level: the system as a whole reacts on a continuous timescale

as opposed to the discrete, stepped nature of a synchronous design. This tim-

ing efficiency has a proportional effect on the speed and power consumption of

the asynchronous system. The continuous, analogue timing discipline, however,

means designers of asynchronous systems face a more difficult design task. Tim-

ing hazards and glitches, for example, must be explicitly managed in the design

process. This thesis will consider mainly synchronous digital systems.

Synchronous digital design defines differing levels of abstractions to assist logic

circuit design. At the lowest level, the switch level, the fundamental component

in the implementation is a simple switch. The switch provides a physical basis for

the two state digital system by either allowing or preventing the flow of current

depending on the presence of an electrical charge at the switch's control line. An

engineer may construct the physical analogue of boolean algebra expressions by

constructing networks of interlinked switches.

The switch level is inconvenient for all but the smallest designs. At the next

level of digital design abstraction, the logic level, switches are grouped into struc-

tures which are equivalent to familiar boolean logic operations. These structures,

called logic gates, are then used as the fundamental design component. The

interconnected network of logic gates forms a "logic circuit" which may then be

hierarchically composed with other circuits to form increasingly complex systems.

Logic and switch level circuits are inherently parallel entities. Whilst the user per-

ceives the sequential execution of a sequence of instructions on a microprocessor,

at the logic and switch levels, components are operating in parallel to implement

a particular computation. This is the fundamental difference in the nature of logic

devices and microprocessors. In general, the ability to exploit parallelism in an

22

implementation yields a faster computation. This is reflected in the advancement

of microprocessor architectures in the last 20 years, where a gradual erosion of the

purely sequential execution nature has occurred. Each new generation of micro-

processor presents more and more of the underlying parallelism of their physical

implementation to the programmer in an attempt to gain higher performance at

the software level.

2.1.3 Programmable Logic

A logic device is the physical implementation of a logic circuit in a particular

electronic technology. Whilst valve and discrete transistor implementations of

logic devices are possible, it is really the advent of IC technology that has had the

most significant impact on logic device density. To that effect, the first generation

of commodity logic devices did not appear until the advent of small scale ICs in

the late 1960s. These devices underpinned a whole generation of computers but

three of their characteristics are notable: firstly, the devices had a small density in

the order of tens of transistors; secondly, like all new technologies, logic devices

were expensive to manufacture; and, finally, a logic device is a fixed purpose

component. Unlike the preceding generations of electronic computer, which were

capable of executing different sequences of instructions, a traditional logic device

only ever implements one particular logic circuit. In essence, traditional logic

devices are not programmable.

A programmable logic device is defined as a physical device which can be

programmed to implement a variety of different logic circuits without the loss

of inherent parallelism. This differs from a microprocessor emulation of a logic

circuit which serialises the effect of each component in the circuit to fit the pro-

cessor's sequential execution model.

Like the microprocessor, it is possible to identify different generations of pro-

grammable logic device, classifying them in relation to their architecture, degree of

23

re-programmability, and underlying semiconductor technology. Currently, three

main generations of programmable logic can be discerned, each of which are dis-

cussed in the subsections below. Just as the visionary research contributions

which influenced the development of the microprocessor and electronic computer

are noted, the equivalent contributions which influenced the development of pro-

grammable logic before practical implementation was feasible can be discerned.

These significant contributions are discussed below.

2.2 Early Forms of Programmable Logic

2.2.1 The Fixed-plus-Variable Structure (F+VS) Computer

The earliest notion of a custom-computing machine which supported alterations

to its logic hardware configuration was proposed in Estrin's F+VS Computer

[35]. Estrin's architecture was a stored program machine comprising a fixed part,

in the form of a general purpose computer, and a variable part, in the form

of an inventory of special-purpose circuit substructures. Substructures would

be added or removed from the machine as a means of temporarily transforming

that machine from a general-purpose computer, into a high-speed special-purpose

computer. He proposed that, as the application demands varied with time, the

set of substructures present in the machine could be altered to maintain the high-

performance of a specialised architecture. Essentially, Estrin describes an early

form of architecture supporting the philosophy of contemporary, programmable

logic driven Custom Computing machines. Applications which could benefit from

the flexible nature of the F+VS were even considered [36].

It is notable that, in the spirit of the F+VS machine, substructures are not

simply peripheral devices: instead of being resident on an auxiliary bus or JO bus,

substructures are have a close relationship to the fixed core of the machine. One

question raised explicitly in the F+VS literature considers the extent to which

substructures can interface to the fixed core - in particular, how much memory

24

should they directly share and to what degree can a substructure vary bit widths

of its datapaths from the fixed core bitwidth?

Estrin's machine predated even the beginnings of the IC era and the physi-

cal mechanisms available for supporting a flexible machine architecture were not

particularly elaborate. Substructures were Printed Circuit Board(PCB) daugh-

tercards and altering the logical configuration of the machine would most likely

require the physical installation (i.e. soldering) of the required substructures.

These technological limitations of the time would prevent the rapid reconfigura-

tion seen in later programmable logic devices, constraining the machine to being

configured strictly on a per-application basis.

2.2.2 Cutpoint Cellular Logic

A cellular array is a geometric arrangement of homogeneous cells that are in-

terconnected in some regular topology. The cells of the array perform some

particular logical function and, in early arrays, that function was fixed by the

physical design of the device. The interconnection of cells is dynamic and, using

this property, a customised datafiow between cells can be constructed. Cascading

data through cells allowed more complex logical functions to be computed. Later

cellular arrays allowed both the interconnect and cell function to be customised

so that, although the circuits fabricated were still homogeneous, each cell could

implement a more flexible range of functions. The typical means of programming

the arrays included physically blowing fuses to make 'cuts' at appropriate points

in the cell circuitry, or implementing switches with photo-conductors.

Cellular logic devices appeared in the early 1960s [82]. The cellular techniques

they embodied became popular as a means of exploiting the increasingly reliable

batch-fabrication processes emerging at the same time. Designers were motivated

to take advantage of the new fabrication processes to produce devices which

were cheaper, smaller, and potentially more reliable. Notably, the architecture of

25

'I

X

x 2

x3

x4

X

x 2

x3

x4

x x

OIA

Z 	z 2 	z3

Figure 2.1: Minnick's Cutpoint Array

cellular arrays had a key role in increasing their reliability. Faults in the physical

device could be tolerated by customising the flow of data around an affected cell

or interconnect.

The architecture of cellular arrays makes them close, early relatives to devices

from the second generation of programmable logic. Cutpoint Cellular Logic [81],

for example, is a class of cellular array devices whose architecture influenced an

important series of FPGAs. The basic architecture of the cutpoint array is a two-

dimensional grid of cutpoint cells interconnected by directed, horizontal busses

and directed, vertical cell-to-cell routes (this is shown in Figure 2.1). Each cell is

specialised according to four bits and can implement one function from a set of

64, plus a reset-set flip-flop. Cutpoint arrays are derived from a Maitra cascade

[73] in such a way that they are capable of implementing arbitrary functions of n

inputs in a cutpoint array of n - 1 cells high and no more than 2n - 2 cells wide.

011

Programming Line 	Data Line 	Data Bus

Figure 2.2: The Wahistrom Programmable array

(The reader is referred to [81] for details of the limitations of the basic Maitra

cascade and a discussion of how the cutpoint array was then derived.)

2.2.3 Wahistrom's Programmable Logic Array

The Wahistrom Array [108] also adopted the cellular logic array approach, but

is notable for some of the architectural features it possessed. The cells of the

Wahistrom array were arranged in a conventional rectangular grid but had a mix-

ture of interconnections allowing direct communication with the nearest neigh-

bours of a cell in any compass direction and, additionally, non-adjacent cells could

exploit a set of 'flight-lines' spanning the array in both the X and Y directions.

The Wahistrom architecture and cell structure is shown in Figure 2.2. The pro-

gramming of the Wahlstrom array was particularly advanced for its time: each

cell in the array had 13 control flip-flops that governed key switching points in

the cell circuitry. The entire array would be programmed by loading data values

into the control flip flops of each cell.

The Wahlstrom array is notable for the number of features it possessed that

27

are found in the FPGA devices developed some 25 years later. The use of re-

programmable state elements to hold the configuration of a cell underpins the

most successful generation of FPGA devices that use SRAM memories to hold

cell and interconnect configurations. Also, the availability of both bussed and

neighbour interconnects is similar to the complex routing structures available in

contemporary FPGAs.

One particularly interesting feature of the Wahistrom array was that each

cell had access to the programming controls of the neighbour cells above and

uncommitted to the right. Essentially one cell could reprogram a neighbour

cell by writing values on the programming lines of that neighbour cell. As will

be discussed in more detail in Chapter 4, allowing access to the programming

interface from inside a programmable logic device is one of the key requirements

for implementing self-modifying circuitry.

2.2.4 Shoup and the Programmable Cellular Logic Array

By 1970, a decade of research on cellular logic arrays had passed, and designers

were on the eve of the widespread introduction of LSI fabrication technologies. At

this point, Shoup presented a thesis [95] that forecast in detail the FPGA devices

that were to be introduced some 15 years later. The main contributions of Shoup's

thesis come from, firstly, his attempts to systematically assess cellular architec-

tures along a variety of dimensions and, additionally, from the array architectures

designed in relation to these assessments. He defines a number of different dimen-

sions for this purpose that include generality, logical size, the array geometry, the

cell functionality, the array's interconnection structure, and the number of state

elements available per cell. By constructing metrics that are based on these di-

mensions, the thesis then considers the design of three programmable cell arrays:

two for low-generality applications and one for high-generality applications.

The overall theme of the thesis is concerned with the details of array archi-

tecture design. That given, however, the thesis remains notable for making such

early reference to aspects of programmable logic that have remained active re-

search topics 15 years after the introduction of FPGAs. Topics equivalent to

dynamic reconfiguration, and self-modifying circuitry, are given explicit mention

and singled out as worthy areas of future research.

2.2.5 First Generation Programmable Logic

Hardware designs typically exploit a variety of commodity logic devices and re-

quire small amounts of "glue logic" circuitry to implement design dependent adap-

tations between the main system components. A combination of economic and

design constraints motivated the development of a flexible device whose initial

logic operation is "uncommitted". These devices would be later programmed by

the system designer to implement a particular piece of glue logic circuitry.

These first generation of programmable logic devices are historically referred to

simply as Programmable Logic Devices(PLDs). Although the same term may be

applied to all generations of programmable device, unless otherwise mentioned,

the remainder of this thesis will use the historical interpretation of the term

"PLD" and reserve the expression "programmable logic" to refer to the wider

notion of programmable logic device. In the same way, further generations of

programmable devices will be explicitly referred to using appropriate terms as

adopted by the community.

PLD architectures consist of two main components: a logic-AND array which

feeds the inputs of a logic-OR array. Permuting which of the two components are

programmable gives a series of PLD sub-classes. For example, a fixed AND-array

and programmable OR-array is equivalent to a programmable read-only memory

(PROM). When both arrays are programmable, the device is conventionally re-

ferred to as a programmable logic array (PLA) and with a fixed OR-array, the

device is programmable array logic (PAL). PLDs use their AND-OR arrays to

Logic-AND 	 Logic-OR

Array 	 Array

(I)

Logic-AND Logic-OR
Array Array

(Programmable) (Fixed)

Logic-AND Logic-OR

Array Array

(Fixed) (Programmable)

(ii)

Logic-AND 	 Logic-OR
Array 	 Array

(Programmable) 	(Programmable)

(iii) 	 (iv)

Figure 2.3: Sum-of-products PLD Architectures: (i) Basic PLD Organisa-
tion, (ii) Programmable Read-only Memory (PROM), (iii) Programmable Array
Logic(PAL), and (iv) Programmable Logic Array (PLA)

implement simple boolean logic equations that can be expressed in a canonical,

or "sum-of-products" form.

Early PLDs were typically one-time programmable devices that used an anti-

fuse technology to implement their programmability: the device is programmed by

effectively "blowing" fuses at strategic points in the architecture. Antifuse tech-

nologies are particularly appropriate for glue logic applications, which normally

require very low pin-to-pin latencies. The act of blowing an antifuse creates an

actual, physical conductive path in the underlying silicon substrate thereby elim-

inating the propagation delay incurred by the active circuitry used in other pro-

gramming technologies. Newer generations of PLD [109] use advances in IC fab-

rication techniques to facilitate electrically-erasable devices which offer a degree

more flexibility but without imposing much higher pin-to-pin latencies through

the architecture.

The target applications of PLDs amount to small, well defined, simple combi-

30

natorial logic, e.g., address decoding or implementing small finite state machines

(FSMs). This fits well with the low device density of PLDs.

The reasons for this are threefold and involve both architecture and market

influences:

• The fundamental architecture of PLDs does not scale well: as the archi-

tectural parameters increase, so too does the size of the AND/OR array.

Increasing the number of inputs, outputs or product terms, for example,

has a non-linear effect on the silicon area and power consumption of the

device. Some PLD architectures attempt to circumvent this by segmenting

the AND-OR array into pages [51].

• In addition to not being scalable, implementing arbitrary logic in a sum-

of-products form is not generally appropriate. PLDs, unlike the FPGAs

discussed in the following section, are not register-rich devices. Only a few

registers will be provided within a PLD and these are mainly used to latch

inputs and outputs at the device periphery. Even advanced PLD archi-

tectures in production in 2000 [109] have very limited numbers of register

components, making the implementation of complex, stateful calculations

difficult.

• Finally, PLDs were efficient at implementing the simple glue-logic applica-

tions they were targeted at. Since the application domain itself was limited

to such relatively small designs, the market demand for high density PLDs

remained low. The most significant increase in the size of glue logic appli-

cations has come from implementing more complex FSMs such as DRAM

controllers.

31

2.3 Field Programmable Gate Arrays (FPGAs)

Whilst PLDs were the dominant form of programmable logic from the mid-1980s

to the early 1990s, three new application domains for programmable logic ap-

peared: Application-specific IC(ASIC) replacement; Rapid system prototyping;

and Dynamic Runtime Reconfiguration. Motivated by these new applications

and fueled by the availablilty of VLSI fabrication techniques, a new generation of

programmable logic device arose in the form of the FPGA.

Each of the main FPGA application domains is characterised below.

2.3.1 ASIC Replacement

ASIC replacement has become the dominant driving application for FPGA de-

vices. ASICs present one primary advantage to the system designer: their applica-

tion specific nature means their implementation is tailored to exact the maximum

performance for a defined application. To their detriment, however, ASICs re-

quire considerable expertise to develop, and, since they are fabricated directly

into silicon, they also require a significant economic investment. Such high de-

velopment costs must be either amortised through large production runs to bring

down the unit cost, or a high unit cost must be justified by becoming the dom-

inant solution in a defined niche-market. The architecture of FPGA devices is

much more suited to implementing a wider range of logic circuitry than their

PLD predecessors. FPGAs are register-rich architectures and, as will be noted in

sections below, some architectures contain additional cell logic that makes them

particularly efficient for certain application classes. The programmability of FP-

GAs also allows them to be tailored to implement a high performance solution to

a particular application whilst, at the same time, avoiding the costly fabrication

cycle required for ASICs. This, combined with the relatively inexpensive unit-

cost per FPGA device, forms a compelling economic reason for replacing ASICs

with FPGA devices.

32

Although the FPGA implementation of a circuit will be physically less effi-

cient than a direct implementation in silicon, designers found that many of their

application-specific solutions could achieve adequate performance when imple-

mented in FPGAs. Furthermore, FPGAs have shown strong growth in both speed

and density, so that more and more ASIC applications have become tractable in

an FPGA implementation. As fabrication technologies have advanced, the reg-

ularity of FPGA architectures has allowed FPGA manufacturers to make more

aggressive use of increased silicon real-estate than the majority of other VLSI

applications which generally do not possess such architectural regularity. This

has, in turn, become the driving factor in FPGA growth.

2.3.2 Rapid System Prototyping

In the second FPGA application domain, Rapid System Prototyping, the re-

programmability of FPGAs is exploited to decrease the time between design

iterations of a system being developed. In contrast to ASIC replacement, the

aim of rapid system prototyping is not to replace a system with one or more

FPGAs, but to use the reprogrammability of FPGAs to quickly obtain accurate

quantification of design metrics of proposed system designs. A very high-level

view of a traditional approach to complex logic system design typically requires

repeated periods of design capture and design simulation that eventually lead to

the development of intermediate system prototypes. The construction of physi-

cal prototypes, akin to the development of custom ASICs, is expensive and time

consuming. At the same time, however, it is necessary to ensure that the final

system design will meet design constraints that cannot be completely guaranteed

through simulation.

A rapid system prototyping approach using FPGAs, however, typically in-

volves a design capture phase followed directly by an implementation phase where

the design is mapped to a particular FPGA prototyping environment. The design

33

is exercised within that environment by configuring one or more FPGAs with the

mapped system design, then providing them with real-time stimuli, and recover-

ing actual results. The advantages of this approach are that, firstly, long periods

of simulation can be reduced or avoided completely as the design can often run at

up to system speeds on the FPGA prototyping environment. Secondly, the data

obtained from an actual execution in the prototyping environment will he more

realistic and reliable than those gained through simulation (which is typically

conservative and pessimistic, essentially erring on the side of caution). Finally,

the number of physical prototypes that must be constructed during the system

design can be reduced, although probably not eliminated altogether as the final

system will be a custom implementation of the rapidly developed prototype.

2.3.3 Dynamic Reconfiguration

Whilst ASIC replacement has become the dominant commercial application for

FPGAs, the final application domain, Dynamic Reconfiguration, has become a

focal point in the FPGA research community. The main goal of dynamic, run-

time reconfiguration is to exact some degree of higher performance by dynam-

ically adapting the logic circuitry used within an application. This is done by

implementing at least part of the application's logic circuitry on an FPGA then

harnessing the reprogrammability of FPGAs to specialise or alter the logic cir-

cuitry as the computational demands of the application change. An important

requirement placed on FPGA architectures that support dynamic reconfigura-

tion is that they be 'in-system programmable'. By this we mean that altering

the configuration of the FPGA does not require its removal from the application

hardware environment and installation in special-purpose reprogramming devices

(some forms of Electrically Erasable PROM technologies require this). Instead,

the FPGA has embedded control circuitry and a defined programming interface

available to other devices in the system through its device pins. Different styles

34

of dynamic reconfiguration can be related to the exact timescales on which the

FPGA is reprogrammed and the particular performance gain being sought. The

primary difference to be noted in this application domain, however, is that it at-

tempts to exploit all the features of FPGAs: their ability to implement complex

arbitrary logic and their highly reprogrammable nature. In ASIC replacement,

the reprogrammability of FPGAs is useful, but definitely not essential. Rapid

system prototyping benefits from re-programmability, but can be served, if at

greater expense, by high density FPGA architectures which are one-time pro-

grammable. Further, even when rapid prototyping demands reprogrammability,

the timescales involved are quite different to those of dynamic reconfiguration:

prototyping timescales are upwards of hours and days, whilst dynamic, runtime

reconfiguration timescales, at their coarsest measure, are downwards of minutes

and seconds.

The topic of dynamic, runtime reconfiguration is central to this thesis and

through the following sections and chapters will be explored in much more de-

tail. The remainder of this chapter, in particular, will present variety of FPGA

architectures and systems which are relevant to the dynamic reconfiguration. For

a wider review of ASIC replacement and rapid system prototyping, the reader is

referred to the wider literature within the FPGA community [2, 3]. Rapid system

prototyping is also well served by a series of dedicated international workshops

[1].

2.4 Basic FPGA Architecture

A basic FPGA architecture has three main components: a collection of pro-

grammable logic blocks; a programmable routing infrastructure; and a number

programmable input-output blocks(IOBs). FPGA architectures commonly have

a symmetric organization, with logic blocks laid out in a grid structure. The

routing infrastructure is usually organised as channels that run horizontally and

35

Ej

PIN

Figure 2.4: The basic architecture of an FPGA

vertically between the rows and columns of logic blocks; it is also common to aug-

ment these channels with direct nearest-neighbour routes between logic blocks.

A series of JOBs are located around the periphery of the array with the primary

purpose of allowing logic circuitry to interact with the FPGA's device pins. A

generic FPGA architecture of this style is shown in Figure 2.4.

At this stage, the resemblance between the basic architecture of an FPGA

and the cellular arrays discussed earlier is much clearer. The programmable logic

blocks of the FPGA are equivalent to the cells of a cellular array, and the pro-

grammable routing infrastructure is equivalent to the cellular array's interconnect

network. Indeed, FPGAs can be considered as VLSI implementations of evolved,

highly flexible versions of the relatively simple cellular arrays that were being

designed in the 1960s. For the remainder of this thesis, the term "cell" is adopted

as a short hand for "programmable logic block" and aspects of the routing infras-

tructure of the FPGA may be referred to simply as routing.

Within this basic FPGA architecture, there is a large amount of scope for

architectural diversity: the main computational elements of cells can be based on

lookup tables(LUTs), multiplexors (MUXes), or combinations of basic logic gates;

36

the number of state elements in each logic block and the permutations it may form

with the computational logic elements are variable; the layout of cells need not

be a simple array, or even restricted to two dimensional geometries; the routing

infrastructure may be segmented into channels of various lengths, form buses

spanning the entire length of a device, or adopt a hierarchical structure; and, lOBs

can be either simple interfaces to device pins, perform complex signal adaptations,

or provide logic circuitry with access to the internal features of the array. Far

from being a complete enumeration, this list is merely a characterisation of some

of the potential design variations.

In the following sections, the architectural details of some important commer-

cial and research FPGA architectures will be presented. As mentioned earlier,

these are presented, primarily, to highlight the features of FPGA architectures

that make them appropriate to dynamic, runtime reconfiguration. Additionally,

however, the collected architectural details also testify to the diversity within the

FPGA design space.

2.4.1 FPGA Programming Technologies

The particular programming technology underlying an FPGA architecture will

govern, at the lowest levels, how effective the device is for implementing dynam-

ically reconfigurable circuitry. At higher levels, the details of the programming

technology are somewhat abstracted behind the programming interface of the

device. This forms a central theme to the discussion in Chapter 3.

By and large, FPGAs use SRAM to retain their programming information:

a physical layer of SRAM underlies the main architecture of the FPGA. The

values that are loaded into that SRAM layer directly influence the operation of

the logic blocks, routing lines, and lOBs in the conceptual layer above. Since

the configuration store is basically a memory, it can be loaded and reloaded with

different configurations when required. The term bitstream is used to refer to the

37

collection of data values that must be loaded into the configuration memory in

order to realise a particular circuit on that FPGA. 'Configuration' is a slightly

more nebulous term that is often used to mean bitstream, but can also refer to

the current state of the entire device - an FPGA can be said to have a particular

configuration after being loaded with at least one bitstream.

SRAM is not the exclusive programming technology used in FPGA devices,

but it supports more flexible degrees of reprogram inability. Some architectures

are antifuse programmable [25] whilst others [26] use non-volatile 'Flash' mem-

ory. Flash re-programmable devices are slower to reprogram but retain their

configuration state even after the FPGA is powered down. High-speed, dynamic

reconfiguration demands a fast and flexible FPGA architecture and, for this rea-

son, the remainder of this thesis will focus on SRAM re-programmable FPGAs.

Unless explicitly stated, the term FPGA will imply an SRAM based architecture.

2.4.2 Classes of Reprogrammability

The organisation of the three fundamental features of an FPGA architecture

define how well that architecture will support static logic circuitry. It is also

possible to classify instances of a particular architecture based on the exact degree

of programmability they support. The presence or absence of two attributes of

an FPGA's configuration memory form the basis of this classification:

• Firstly, when one part of the configuration SRAM is to be altered, does

the entire SRAM have to be reprogrammed or can selective regions of the

memory be altered independently of others.

• Secondly, must the entire device be taken offline when a new set of values

are being loaded into the configuration SRAM, or can existing circuitry

implemented on the device remain active whilst changes to the underlying

configuration store are being made.

The exact terminology used within the FPGA community for each of these

classes remained the subject of some debate when this thesis was written in 2000.

However, we will define three main classes of programmability as follows:

• The programmability base class is characterised by devices that require

their entire configuration memory to be reprogrammed and must be taken

offline during the configuration process. In this thesis we shall refer to these

devices as dynamically reconfigurable. This is the least flexible of the three

programmability classes.

• The first extension to the base class adds a degree of flexibility by allowing

circuitry to remain active whilst a new configuration is loaded. It is still

necessary to load configurations for every cell, routing switch, and JOB in

the architecture in each configuration cycle. We shall refer to these devices

as multiplanar.

• The third programmability class is evident in devices where only the relevant

parts of the configuration RAM need to be altered and this can be done

whilst other circuitry in the array remains active. Device architectures of

this type are referred to as partially reconfigurable.

Of the three classes, dynamically reconfigurable and partially reconfigurable

are the two most common forms of FPGA. A number of multiplanar style devices

exist [39, 31, 101, 89] and are often referred to as 'multicontext' or time-shared'.

2.5 Dynamically Reconfigurable FPGAs

2.5.1 Minx LCAs

The first commercially successful FPGA architecture was introduced by the semi-

conductor company Xilinx in 1985. Their architecture, termed a Logic Cell Ar-

ray(LCA) and shown in Figure 2.5, was dynamically reconfigurable and has been

39

	

iI 	 IMf

Switch Matrix
Cl_B 	 Cl_B

_l 	
Single Length

Routes

	

I 	 =

	

II 	Cl_B 	 I 	 Double Length
Routes

=: 	 Global Longline

L 	fi 	
Routes

u'

Figure 2.5: General Features of the XC4000 Cell Array

at the core of three generations of Xilinx LCAs. In this section, the XC4000 series

is used to characterise the Xilinx LCA architecture.

Cells in the Xilinx architecture are called configurable logic blocks(CLBs) and

are arranged in a simple two-dimensional grid. Figure 2.6 shows the XC4000

CLB structure. Xilinx CLBs are LUT based and, over the successive generations

of LCA, the number of LUTs per CLB has increased. The CLB of the XC4000

has two independent 4-input lookup tables (f and g) capable of synthesising any

function of their four inputs. A third LUT combines the outputs of the other two

LUTs and one additional cell input, synthesising any function of the three inputs.

Each cell also has two flip-flop state elements and, within later versions of the

XC4000 series, LUTs not being used to synthesise combinatorial logic may instead

be used as small, embedded data memories. One particularly important feature of

the Xilinx CLB is the inclusion of dedicated logic to support fast carry propaga-

tion. Arithmetic intensive applications, such as many found within digital-signal

processing (DSP), can exploit both of these features to gain performance.

The main programmable element in the routing infrastructure of the XC4000 is

a programmable switch matrix situated between each CLB in the array. The exact

configuration of each switch matrix defines how signals entering the matrix on one

40

M.mp4. cont,o11.d by

onfgfflon

Figure 2.6: XC4000 Configurable Logic Block

side will be routed out on the other sides. For example, a signal entering from the

top side of the matrix can be routed to one or more of the left, right, or bottom

sides. Complex, irregular routes that exploit routing tracks of different lengths

and orientations are constructed by configuring sequences of switch matrices.

The XC4000 architecture has three main types of wired routing resource which

are characterised by the relative length of their segments:

• single-length lines span exactly one CLB horizontally or vertically and in-

tersect at the programmable switch matrices between each CLB;

• double-length lines span two CLBs in either horizontal or vertical directions

and intersect at alternate switch matrices;

• finally, chip-length 'long-lines' span the entire length or width of the array

and can be used by CLBs to connect with arbitrary CLBs in either the same

column or row.

41

2.5.2 Altera Flex

The Flex architecture [27], produced by the semiconductor company Altera, is

another example of commercially successful, dynamically reconfigurable FPGA.

Although Flex devices contain the same three fundamental FPGA components,

some aspects of the organisation of these components is radically different from

the Xilinx LCA.

The first difference to note is that cells in the Flex architecture are grouped

into clusters called Logic Array Blocks, or LABs. The exact number of cells con-

tained within a cluster varies from device model to device model but, internally,

cells contain LUTs, state elements, and dedicated logic to accelerate arithmetic

operations. The cells in a cluster are interconnected through a routing resource

local to the cluster itself. This local routing also serves as an access point to the

main device routing, described below.

The second difference between the Flex architecture and the LCA architecture

is that, in a Flex device, data memories are explicit components. Rather than

converting unused LUTs into small data memories, as LCAs do, cell clusters

are substituted for small blocks of embedded memory at various points in the

array. These memories may be configured into various bitwidths by trading off

the address space depth.

Finally, whilst the routing of a Xilinx array is based mainly on multi-length

segments intersecting at switch boxes, the primary routing resource in the Flex

architecture takes the form of long, unsegmented routing channels. These multi-

bit wide channels run horizontally and vertically between the cell clusters and

embedded memory blocks that connect to them. The unsegmented nature of this

resource means that, at a physical level, signals are propagated faster as they do

not incur delays as they pass through switch boxes.

In a very general sense, the Flex architecture rewards logic designs that map

well onto cell clusters. If a design subcomponent may be mapped, in its entirety,

to a particular cell cluster, it can exploit the fast local routing within the cluster

for its interconnect. Designs which do not partition well into clusters would

ultimately consume more of the unsegmented tracks between clusters as signals

internal to the subcomponent get mapped to 'global' wires. The knock-on effect

from this is that placement and routing of the design becomes much less tenable

as the routing infrastructure becomes congested.

2.6 Partially Reconfigurable FPGAs

The majority of commercial FPGA devices are dynamically reconfigurable de-

vices. Of particular relevance to this thesis, though, there are some notable

partially reconfigurable devices which have been instrumental in dynamic recon-

figuration research.

2.6.1 The Xilinx XC6200

The Xilinx XC6200 [109] series has, arguably, had the most significant impact

of any partially reconfigurable device on the field of runtime reconfiguration.

The XC6200 series is an evolution of the Algotronix CAL [58, 5] architecture

which, in turn, draws on the function synthesis approach used in the Cutpoint

cellular arrays described earlier. Indeed, many of the architectural features of

the XC6200 are quite different from the 'mainstream' dynamically reconfigurable

architectures.

The cells of the XC6200, shown in Figure 2.7, are 'fine grained'. The gran-

ularity of cells is often used as a broad means of classifying different FPGA

architectures: depending on the style of cells it contains, an FPGA is said to

be either fine-grained or coarse-grained. The exact definition of these terms is

nebulous and there is no real quantification of when an architecture stops being

fine-grained and starts being coarse grained. Rather, the distinction is based

on the relative complexity of the logic function that a cell is capable of synthe-

43

xl

Figure 2.7: The XC6000 Function Unit

sising, with respect to other architectures of the same generation. In this way,

the LCA and Flex architectures described above are examples of coarse grained

architectures whilst the relatively simple XC6200 cells make it fine-grained.

The XC6200 cells operate in a very different manner to those of the Xilinx

LCA. Each cell contains a set of configurable multiplexors and a state element.

Combinatorial functions are synthesised by configuring the flow of input bits

through the cell multiplexors in a particular manner. Sequential functions use

the state element at the cell output and a feedback path connecting the output of

the state element to the cell inputs. One notable omission in the cell architecture,

however, is the lack of any dedicated carry propagation or cascade logic.

The geometric layout of the architecture and its routing infrastructure adhere,

mainly, to the hierarchic organisation shown in Figure 2.8. Cells and nearest-

neighbour connections between cells form the lowest level of the hierarchy. Above

this, cells are grouped into 4 x 4 clusters. Dedicated switch multiplexors, placed

at the periphery of each 4 x 4 cluster, to provide access to length-4 wires which

interconnect adjacent 4 x 4 clusters. Similarly, at the next level, cells are grouped

into 16x16 clusters with length-16 wires to interconnect them. Rather than having

physically separate 16 x 16 switch multiplexors at the edge of a 16x16 cluster,

additional switches for length-16 interconnects are provided in the 4 x 4 switch

44

xl

Figure 2.7: The XC6000 Function Unit

sising, with respect to other architectures of the same generation. In this way,

the LCA and Flex architectures described above are examples of coarse grained

architectures whilst the relatively simple XC6200 cells make it fine-grained.

The XC6200 cells operate in a very different manner to those of the Xilinx

LCA. Each cell contains a set of configurable multiplexors and a state element.

Combinatorial functions are synthesised by configuring the flow of input bits

through the cell multiplexors in a particular manner. Sequential functions use

the state element at the cell output and a feedback path connecting the output of

the state element to the cell inputs. One notable omission in the cell architecture,

however, is the lack of any dedicated carry propagation or cascade logic.

The geometric layout of the architecture and its routing infrastructure adhere,

mainly, to the hierarchic organisation shown in Figure 2.8. Cells and nearest-

neighbour connections between cells form the lowest level of the hierarchy. Above

this, cells are grouped into 4 x 4 clusters. Dedicated switch multiplexors, placed

at the periphery of each 4 x 4 cluster, to provide access to length-4 wires which

interconnect adjacent 4 x 4 clusters. Similarly, at the next level, cells are grouped

into 16x16 clusters with length-16 wires to interconnect them. Rather than having

physically separate 16 x 16 switch multiplexors at the edge of a 16x16 cluster,

additional switches for length-16 interconnects are provided in the 4 x 4 switch

44

iv T T Ti
Cell *Cell Cell Cell

!Cell Cell Cen Ce

Cell Cell Cell Cell

Cell Cell Cell c&i;
4! _i_ _J_ _4L

A 	4! 	4!

I

I

I

I

IIIuIuIl

MEMOMMUM
.—..—..—..-
IuIuIlII I.

1* 	r, 	T* 	F*
First Level: Nearest Neighbour

Interconnect
Second Level: Length 4

Fastlanes in 4x4 Cell Block

Eadr anon, S acluelly IS
O*p-Lonh FoCnac S (O.iy

00. 0 CrOwn IorIIy)

I...uuuuBuuu..uw-

p NoMOEN
SEEN

M.

J

IIiiihiIi'ILIj
•iuuuuuuuiuuiun.uuuiuuiu

Th 0,o Foo, L.neD
6 FootI,.,b,

9.n69y. 0y on. C
660on In, oCrOy

44 44 4X4

4*4 4x4 4*4 4*4

4*4 4*4 4*4 4*4

4*4

L1
4*4 4*4

!_

4*4

Third Level: Length 16
Fastlanes Spanning 16x16 Cell 	 Fourth Level: Chip Length

Tile 	 Fastlanes

Figure 2.8: The XC6000 Routing Hierarchy

multiplexors that align with the boundary of a 16 x 16 cluster. The remainder of

the device geometry is constructed from tiles of 16 x 16 clusters, whilst the top

level of the routing hierarchy provides interconnects which span the entire width

and height of the array, are also available through the switching multiplexors at

the 16 x 16 cluster edges.

The hierarchical organisation of cells and routing is intended to provide a

logarithmic scaling of signal delay as the distance between communicating cells

increases. This is in contrast to most other architectures where the scaling of

signal delay tends towards linear as the distance between cells increases. The

45

sources. Here, a device may be reconfigured from a remote station. The dangers

of this style of system for architectures that are susceptible to signal contention

is discussed in the literature on 'FPGA Viruses' [47].

One final noteworthy feature of the XC6200, but one that will not be consid-

ered in depth at this point in the thesis, is its programming interface. In stark

contrast to the other architectures of its generation, the XC6200 has a very rich

programming interface to the configuration SRAM of the device. The FastMap

[21] interface is a microprocessor style interface that presents the configuration

of the device to the outside world through a set of address, data, and control

pins. Every part of the SRAM which controls the configuration of the device and

the SRAM which contains the current logical values of the cell state elements

is addressable. By simply reading and writing addresses through the FastMap

interface, the device can be reconfigured. A fuller treatment of the features of

FastMap interface, and its place in a continuum of interface styles is given in

Chapter 3.

2.6.2 The Atmel AT6000

The Atmel AT6000 series [8] is an alternative example of a commercial, partially

reconfigurable FPGA and also has a cell architecture, shown in Figure 2.9 unlike

any of the FPGAs described above. Function synthesis in the cells of the AT6000

uses multiplexors to orchestrate the flow of input signals through a series of fixed

logic gates and a state element. By using the multiplexors and feedback paths

within the cell structure, the fixed logic elements can be organised in a number

of different permutations. Unlike the use of multiplexors in the XC6200 archi-

tecture, which actually serve as computational elements, the multiplexors of the

AT6000 are control elements whose selection of output is governed entirely by the

configuration SRAM and cannot be directly influenced by the output of any other

component in the cell. Like the XC6200, however, the Atmel 6000 cell contains

47

A A A A 	 B B B B

Figure 2.9: The AT6000 Cell Structure

no dedicated logic for arithmetic carry or cascade chains.

The geometric organisation of the Atmel array bears some similarities to that

of the XC6200. Cells in the array are organised in a grid which is then partitioned

into tiles of 8 x 8 cells by repeater units used in the routing infrastructure. The

routing resources available are a combination of nearest neighbour, local bus, and

express bus. Local and express buses form routing channels that run horizontally

and vertically between each row and column of cells. Cells within a cluster can

exploit their adjacent local buses within the cluster in much the same manner

as length-4 routes serve the cells of a 4 x 4 cluster in the XC6200 architecture.

Express buses are less segmented than local buses as they may only be driven

by a local bus when they both intersect at a repeater. As a result, the express

buses propagate signals more quickly across their length. Essentially, the role

of a repeater unit is to provide endpoints for local and express bus segments,

join adjacent local and express segments of the same orientation, and provide

an intersection point for signals to traverse between local and express buses.

This orgarlisation is shown in Figure 2.10. Whilst all routing in the XC6200

Express

Local

Nearest
Neighbour

F 	Repeater

Figure 2.10: General Organisation of the AT6000 Array

architecture was uni-directional, however, long tristate buses can be constructed

in the Atmel architecture.

Neither the XC6200 nor the AT6000 series remain in production, although a

successor to the AT6000 was designed and released. The AT40K [9] is an evolution

on the basic architecture of the earlier series and includes a set of performance

enhancing features that make the AT40K particularly effective for implementing

a class of DSP functions. Firstly, within the AT40K cell, LUTs have replaced

discrete logic gates as the main computational element. As shown in Figure 2.11,

two 8-input wide LUTs are combined with a single state element. In terms of

granularity, the AT40K is of much coarser granularity than either of the earlier

partially reconfigurable architectures.

Secondly, the device architecture is extended to include nearest neighbour

routing in the four diagonal directions, making AT40K cells octagonal in shape.

The inclusion of diagonal routing resources simplifies the construction of multi-

49

!PMSESW 	 I 	 I P45 SW

NE SW

Figure 2.11: The AT40K Cell Structure

plier circuitry, which is used heavily in DSP applications. Overall, the geometry

of cell layout within the AT40K keeps to the same clustered grid of cells, as used

in the earlier AT6000s, but with fewer cells per cluster. Finally, small block mem-

ories are distributed throughout the array at the crossover points of the routing

channels that run horizontally and vertically between the 4x4 cell clusters. The

overall geometric layout of the architecture is shown in Figure 2.12.

2.7 New Generation FPGA architectures

As mentioned earlier, the current set of VLSI design practices do not scale to the

integration levels being offered through advances in fabrication technology. As

a result, VLSI designers are migrating from traditional VLSI design techniques

to SLI design. The regularity of FPGA architectures has consistently positioned

them to aggressively exploit increasing transistor counts. As FPGA architects

begin to exploit the same fabrication technologies being used by SLI designers, a

50

Lc

N4 "Ilk 	Ilk 	11~

Row
" 	 Repeater

Column 	 Bus Turning
Repeater 	 - 	 Point

Local/Express Bus Interconnect Plane

2:2TQ:T
Cell - Cell Interconnect Plane

Figure 2.12: General organisation of AT40K Cell Array and Interconnect

new generation of FPGAs is being formed. At the moment, the main examples

of such FPGAs are devices with architectures that scale to implement circuitry

beyond one million equivalent gates. In the longer term, however, the important

distinguishing features of the new generation architectures will be the facilities

they include to counteract the physical effects of SLI fabrication processes. Fur-

thermore, the usefulness of embedded memory blocks in successful first generation

architectures has elevated embedded data RAM to now being one of the funda-

mental building blocks of a new generation FPGA. So far, the four fundamental

components of a new generation architecture are: cells; routing resources; JOBs;

and embedded memory blocks.

2.7.1 Virtex

The Xilinx Virtex is the first commercial example of a new generation FPGA and

is similar to the architecture of a first-generation Xilinx series, the Xilinx XC5200

[109]. The high level organisation of the Virtex is shown in Figure 2.14 and its

cell structure is shown in Figure 2.13. Like the earlier XC4000s, the Virtex array

51

— .-

YB

133t ftc Gil Cont G1

BY >- BY

F'EF

TF !

 !

Figure 2.13: A Virtex 2-Slice CLB

Ott 	 $08 	 Ott

VersaRing I/O Interface

R
A 	 CIB ShcS
M 	 M

8 	 8

--i-

01_i. 	 Ices 	 Dii.

Virtex Architecture Overview

1; Adjacent

GRM

(RM

4CLB 	Drew

Con 	o

Adce'CLB 	 - 	- 	AdICLB

''irtex Local Routing

Figure 2.14: General Organisation of the Virtex Architecture

is a two dimensional grid of cells separated by horizontal and vertical interconnect

channels.

A Virtex cell is built hierarchically from a basic collection of "logic cells"

where each logic cell contains a four-input LUT, some dedicated carry logic, and

a state element. From here, two logic cells are joined to form a single "slice". The

slice joins the carry propagation logic of the two individual logic cells and, under

certain circumstances, allows the outputs of the logic cell LUTs to be combined

themselves and synthesise a logic function of five inputs. Two independent slices

then form the contents of a single Virtex CLB.

52

The routing resources of the Virtex can he broadly split into three categories:

a set of general routing resources that efficiently and flexibly interconnect the

CLBs at various points in the array; a routing resource local to each CLB that

serves to connect the individual slices and logic cells within that CLB, whilst also

giving internal components of the CLB a wide access port to the general routing

resources through a General Routing Matrix(or GRM): and. lastly. a smaller set

of dedicated routing resources that provide a particular style of interconnect to a

set of CLBs.

The isolation of the local CLB routing from the general resources through

the GRIM gives an important degree of mobility to subcircuits mapped into a

particular logic cell or slice. A suhcircuit can he remapped to a different part

of the CLB whilst still retaining its connection to subcircuits in different CLBs.

The changes to the circuit placement, when contained within the CLB, would not

affect any components beyond that CLB's general routing matrix. Furthermore,

the Virtex has a very rich routing infrastructure consisting of multiple, wide

routing channels that interconnect the cellular resources of the array.

The local routing resources of a CLB perform three main functions: firstly,

they provide an interconnection between the CLB LUTs, CLB state elements,

and the GRM; secondly, they provide a feedback path so that the outputs of

the CLB may drive the CLB inputs with a minimum of delay and, finally, they

eliminate the delay of the GRM when communicating to certain neighbour CLBs

by directly connecting horizontally adjacent CLBs.

The general routing resources of the Virtex are intended to form high-speed

paths, of different lengths, for signals that travel between CLBs. In total, there

are three types of path that intersect at a GRM: single length paths interconnect

adjacent GRMs in all four compass directions; hex-paths also reach out in all

four compass directions and span six CLBs before intersecting with a GRM.

Furthermore, the distribution of hex-lines is staggered along the width and height

53

of the array; and chip-length "long-lines" form unsegmented spanning the entire

width and height of the array before intersecting with a GRM. The dedicated

interconnect resources consist of the routes that join the carry propagation logic

of each CLB to the propagation logic in the CLBs vertically adjacent, and the

tristate-capable horizontal lines each CLB may directly drive.

Beyond its architectural organisation. the Virtex is notable for its partial re-

configurability. As will be shown in Chapter 3, the exact manner in which it is

partially reconfigurable is less ambitious than the XC6200 and the Atrnel devices.

Nonetheless, the availability of partial reconfigurability in such a mainstream

FPGA architecture is interesting as it provides an insight to the current corniner-

cial tradeoff point between the value of the feature and the cost of the silicon area

required to implement it.

2.7.2 Apex

The Altera Apex series is the second example of a next-generation commercial

FPGA. There are two main differences (beyond device density) between the Apex

and the earlier Altera Flex architectures. Firstly, in addition to the embedded

memory blocks and cell clusters of the Flex, an Apex device also includes em-

bedded product-term style blocks. Secondly, the Apex includes an extra layer of

routing hierarchy in the form of a horizontal channel that interconnects a group

of cell clusters, embedded memories and product-term components. The overall

device organisation is shown in Figure2.15 and shows how the additional layer of

routing is used to form heterogeneous mega-clusters. Beyond these main differ-

ences, however, the Apex architecture is a scaling up of the earlier Flex series.

2.8 Device Architecture Research

The previous section has characterised a number of commercial FPGA archi-

tectures. Collectively, these architectures identify an architectural norm within

54

 10E 0€_— 10€

0€ 	P,oduCJTem

M

odT.m1 tF'I

LUT Wi LL11J

PmdctTm

L

11.11

Poc1Tom

LW

Po,ctTem JOE

Memoiy

LW

0€ 	PrdclTo,m

My

-

LUT

o&clTem

Ma

LUT

PmdctTe.,,

Usmy

LUT

PmdJOTem

UJT

P1o&.,ctT.fm

_

JOE

L_JH 	 II 	 l:l 	 :1

Pm.,cJ Te,m

	

T 	LW

	

y 	 Memory

LIlT

Product Tern,

Memory -1 LW

e,,,,

LUT

P,odect Trnrn

Memory

P,o,L,ct Tern,

Memory

JOE

JOE 	 0€ ICE JOE JOE

ICE

FastTrack
Interconnect 	10 Elements 	Clock Phase

Lock Control

Figure 2.15: General Organisation of the Altera APEX

the FPGA design space which, in 2000, is characterised by LUT based, two di-

mensional FPGAs with hierarchical, segmented routing infrastructures. They

are dynamically reconfigurable with coarse-grained core cells that can generally

synthesise logic functions of up to approximately ten variables.

In addition to such mainstream, commercial architectures, there is also a sig-

nificant amount of device architecture research. However, the intention in this

thesis is not to give a comprehensive enumeration of such research architectures.

Instead, we just note here that research into device architectures is exploring

the FPGA design space beyond the architectural norm, on four broad fronts:

array geometries and layouts [20, 371 ; routing and interconnect infrastructures

[63, 33, 37, 83]; cell architectures and granularities [60, 381; and device program-

ming and configuration [20, 11, 83]. In the two subsections below we shall briefly

characterise the architectural features of two research FPGAs. Whilst being ar-

chitecturally interesting in their own right, we consider them explicitly as their

programming interfaces are of significant interest to the discussion in Chapter 3.

2.8.1 PipeRench

The PipeRench [20] architecture is designed specifically to support pipelmed ap-

plications. In the FPGA architectures already discussed, the array's configurable

resources were organised as a two dimensional grid of cells. In contrast, the

configurable resources in PipeRench are organised on the granularity of stripes'

where each stripe is roughly equivalent to a single pipeline stage. Figure 2.16

gives a general view of the PipeRench configurable fabric's structure. The con-

tents and internal structure of a configurable stripe are considered in [90, 61]. We

should note that the granularity of the device architecture is not chosen simply

to ease the process of statically mapping a section of application logic circuitry

to the device. Rather, stripes are primarily chosen to represent the atomic unit

of reconfiguration. PipeRench attempts to support runtime reconfiguration more

effectively by matching the device's atomic unit of reconfiguration to an appropri-

ate level of abstraction in the architecture's target application class. As such, we

can broadly classify PipeRench as a pipeline reconfigurable [90, 69] architecture.

2.8.2 Colt

The Colt architecture [11]. like PipeRench. is designed to support runtime re-

configuration for a particular class of applications. The basic architecture of a

Colt device is given in Figure 2.17. Colt implements Wormhole runtime recon-

figuration as a means of supporting stream oriented computing and applications.

In the architecture, streams of configuration and operand data enter the device

through stream ports. Configuration control is distributed throughout the de-

vice, allowing streams to steer themselves through the array fabric, between the

function units, over the crossbar interconnect, and out through a chosen stream

port. Configuration data is stripped from the stream as it flows through the ar-

56

Cornbinutonal Function

___ - *' i

Global Bus

Combinatonal Function

Combnutucar Funct,cn

Figure 2.16: General Structure of the PipeRench Fabric and Stripe Functionality

chitecture's cell array. A similar approach is also taken in the abstract Plastic

Cell Architecture [83].

2.9 Reconfigurable Computing Systems

On their own, the device architectures we have presented (10 not comprise a

complete computing system and, typically, FPGAs are harnessed in larger system

architectures with other forms of processing element. Whilst a comprehensive

discussion of reconfigurable systems architectures is is beyond the scope of this

thesis, we can identify two broad generations of reconfigurable computing system:

• first generation reconfigurable computing systems [42, 6, 7] are typically

macro-architectures where the entire system is built from discrete devices

interconnected on PCBs. Reconfigurable co-processor boards [107, 84, 801,

where a FPGA subsystem is integrated within a standard PC-style host

over the host's peripheral or system bus, fall within this class;

57

/ 	Cell Array

Crossbar
Sw,tch Pw

Figure 2.17: The Colt Architecture

• second generation reconfigurable computing systems, on the other hand, are

integrated system-on-chip micro-architectures. The majority of second gen-

eration systems available in 2000 combine different forms of general purpose

microprocessor with FPGA style reconfigurable logic on the same silicon die

[102, 4, 39].

Macro-architecture style reconfigurable computing systems, and particularly

reconfigurable co-processors, are often constrained by their low-bandwidth in-

terfaces to the other system components. Indeed, the use of reconfigurable co-

processors to accelerate general purpose processor systems is often thwarted by

the constraints placed on the reconfigurable subsystem by the host's peripheral

bus interconnect. However, we should also note that, even for system-on-chip

microarchitectures, the inherent nature of a system architecture's style can still

introduce bottlenecks between the system components.

2.10 Summary

In this chapter we explored the form and evolution of reconfigurable logic devices.

We began with an exploration of early, historical devices and rioted some of the

key programmable logic systems that preceded the first generations of PLDs and

FPGAs. From there, we considered the state of the art in programmable logic

devices in 2000 through three successive generations of device architectures. This

included a detailed exploration of the partially reconfigurable FPGA architec-

tures and technology that underpins the work described in the later chapters of

this thesis. The chapter concluded with a description of some notable research

device architectures whose form and philosophy are particularly relevant to the

discussions in the forthcoming chapters.

59

Chapter 3

The Programmable Logic
Interface

In this chapter we consider programmable logic devices beyond their physical

architectures, and now within applications and dynamically reconfigurable com-

putational systems. The discussion in this chapter has two main components:

• First we explore the concept of the programmable logic interface at different

levels within dynamically reconfigurable systems. In particular, we use a

short exploration of the structure and design of dynamically reconfigurable

applications and systems to provide a context within which we can identify

different abstractions of the programmable logic interface.

• In the second section we focus on the programmable logic device interface

and explore different device interface styles in detail. In particular we con-

sider the evolution of device interfaces from the relatively simple, serial

interfaces used by early programmable logic devices, through to richer par-

allel interfaces, and on to streaming, protocol style device interfaces used in

more advanced research device architectures.

3.1 Defining the Programmable Logic Interface

The general design flow for a mainstream FPGA architecture is very static in na-

ture and is primarily oriented to the use of FPGAs for rapid system prototyping

NO

or ASIC replacement. Despite this, there are many applications [107, 93, 59, 17]

whose existence demonstrate the potential of runtime reconfiguration. Gener-

ally speaking, a dynamic, runtime reconfigurable application comprises three lay-

ers: high-level, application code; a runtime system supporting the mechanics of

dynamic reconfiguration; and the low-level programmable logic subsystem. In

this context we can identify three interfaces to the reconfigurable system's pro-

grammable logic, and these are discussed in the following sections.

3.1.1 The Programming Language Interface

The highest level of interface abstraction we consider is the programming lan-

guage interface at the application level. No widely accepted design methodology

and underlying theory that automates the systematic construction of runtime

reconfigurable applications has emerged in 2000. The automatic synthesis of run-

time reconfigurable applications from entirely behavioural problem descriptions

is therefore difficult. Typically, it is the responsibility of the application designer

to convey the partitioning and reconfigurable aspects of the application explicitly

using the features of the programming language. This in itself is also difficult as

the descriptive languages from either the software or the hardware communities

do not express dynamic reconfiguration well. However, we can highlight two exist-

ing language mechanisms used to express dynamic reconfiguration: the dynamic

instantiation of parameterised circuitry objects [79, 45, 10] in object-oriented lan-

guages such as C++ or Java; or partial evaluation in functional languages [99].

Whilst the complete design methodology for dynamic reconfiguration is still

lacking, there are some proposed frameworks and partial methodologies [105, 46,

67], some approaches to the modeling and simulation of dynamically reconfig-

urable systems [75, 67, 106], and associated tool-sets [68, 72] which provide some

degree of support to the dynamic reconfiguration application designer.

61

3.1.2 The Runtime System Interface

The main role of the dynamic runtime system is to provide resource manage-

ment and communication facilities to higher level applications wishing to interact

with the programmable logic subsystem. Ideally, such a runtime system provides

an abstracted interface to the programmable logic subsystem, allowing it to be

shared between multiple applications in much the same way that resources are

shared in multitasking operating systems. However, for most runtime reconfig -

uration applications, the runtime management of programmable logic resources

is typically implemented in an ad hoc manner and is highly application and sys-

tem specific. More generalised runtime environments for dynamic reconfiguration

have been suggested [19, 94, 104] for first generation reconfigurable co-processor

systems.

3.1.3 The Device Interface

The lowest level interface is formed by the programmable logic's own physical,

device interface. The challenges posed by the implementation of dynamic, runtime

reconfiguration at this level are what we shall consider for the remainder of this

thesis.

3.2 Programmable Logic Device Interfaces

In this section we characterise different styles of programmable logic interface

at the device level. The most basic functionality in the programmable logic

device interface is the mechanism for loading programming data into the device's

configuration memory. In addition to this, however, the device interface may

also facilitate access to the state of circuitry that is configured and active on

the cell array. The form and semantics of a given device interface is influenced

by its application domain and the device's architectural style. In the following

subsections we explore the three main device interface styles and relate their

62

facilities to the architectures and application domains they target.

3.2.1 Bit-serial programming interfaces

The Xilinx LCAs discussed in the previous chapter are examples of FPGAs with

a bit-serial programming interface. This is a consequence of the way that their

configuration memories are structured: essentially, the entire configuration mem-

ory in an LCA is a single, long shift-register. Configuration data for the entire

device is synchronously shifted into the configuration memory through a dedi-

cated device pin. Whilst this interface style is suited to the ASIC replacement

and rapid system prototyping application domains, it is much less suitable for the

dynamic, runtime reconfigurable domain we are considering.

The main advantage of the serial style interface is its very low resource utili-

sation: very few device pins need to be dedicated to the programming interface

and the silicon overhead of the configuration logic within the array architecture

itself is small relative to the area of the array resources it controls. Both of these

are relevant concerns in ASIC replacement and rapid system prototyping. Fur-

thermore, the relative infrequency of reconfiguration in these domains means that

the slow process of loading the programming data for the entire device bit-by-bit

does not represent a significant overhead.

Support for interaction and interrogation of circuits configured in FPGAs with

a serial interface is limited and, in most cases, the device interface only supports

loading of programming bitstreams. In later generations of Xilinx LCAs, a config-

uration readback mechanism [28] is initiated through the FPGA's test-access port

logic, the allocation of some device pins to output the configuration data and the

status of the readback mechanism, and some additional circuitry configured on

the array which links the device pins with the LCA's internal readback circuitry.

When triggered, the readback mechanism serially shifts the current contents of

the LCA's configuration memory out through a defined readback interface pin.

63

We should note that the mechanism does not explicitly read back the state of

registers within the architecture. Rather, this information is distributed through-

out the programming bitstream for the entire device. A suitable toolset [44, 64]

can excise this data from the proprietary bitstream and allow the device state to

be interrogated. Effecting changes to the state requires reconfiguring the entire

device with a modified version of the read-back programming data.

3.2.2 Parallel, Random-access Interfaces

From the previous section we can see that the programming mechanism and in-

terface of mainstream FPGAs is a significant drawback for implementations of

dynamic, runtime reconfiguration. However, we can also identify partially recon-

figurable architectures such as the Xilinx XC6200 which are inherently designed

to support dynamic, run-time reconfiguration. From a physical perspective, the

main difference between the device interfaces presented in this section and those

of the previous section is the bit-parallel nature of the programming port. How-

ever, we should note that, as the density of LCA style architectures has increased,

the bit-serial device interface becomes less convenient for loading the successively

larger amounts of programming data required to configure the device. To combat

this, it is common for LCA style architectures to also support bit-parallel device

programming interfaces. For example, the Xilinx Spartan series of FPGAs is

closely derived from the basic Xilinx LCA architecture but itself has a byte-wide

Express'-mode programming interface [29]. This does facilitate an increase in

the rate that programming data can be loaded into the configuration store of the

device, but the fundamental programming mechanism within the device is still

serial in nature.

In this section we will explore the device level interface of two partially re-

configurable architectures, the XC6200 and Xilinx Virtex. The Atmel series of

FPGAs introduced in the previous chapter also provides support for runtime re-

configuration through their partial reconfigurability, but the proprietary nature

of this underlying programming mechanism precludes them from this discussion.

The interfaces of the XC6200 and Virtex are interesting here because the pro-

gramming mechanisms they exploit are better suited to dynamic, runtime recon-

figuration. In both cases, rather than simply evolving the serial configuration

port to a bit-parallel version, the organisation of the architecture's configuration

memory and its related programming mechanism are also evolved.

3.2.2.1 The XC6200 FastMap Interface

The FastMap [21] interface is a parallel, 'microprocessor' style device interface

used in the Xilinx XC6200 that allows the the configuration memory of the device

to be accessed as a RAM rather than a shift register. Furthermore, rather than

just providing a mechanism for altering the configuration bits that govern the

functionality of cells within the array, the interface also provides an integrated

mechanism for directly reading and writing to the cell registers within the array.

The FastMap is commonly described as a 'microprocessor' style interface because

its basic semantics match those used on the memory bus of a microprocessor

system.

Physically, the FastMap interface is formed by a set of address, data, and

control signals. Table 3.1 lists the different FastMap interface signals' and de-

scribes their roles. In this table we can see that only a subset of the FastMap

signals are mapped to device pins on the array and a number of control signals

are only available inside the cell array. A particularly interesting feature of the

FastMap interface, and one which distinguishes the XC6200 from other FPGA

architectures, is that the entire device programming interface can be accessed

from within the array. This is considered further in the discussion contained in

the next two chapters.

In addition to the explicit interface signals, the functionality of the FastMap

'signal names with a preceding / are active-low

65

Signal Role

address The address lines identify which word, nibble, or byte within the
XC6200's configuration memory will be read or written. 	The
exact width of the address bus is typically either 16 or 18 bits,
depending on the exact model of XC6200 being used.

data Configuration and state data being read and written to the ar-
ray's configuration store arrive over the bi-directional data lines.
There are 32 physical data lines, although the logical width
of this port is, itself, configurable. 	The interface can be pro-
grammed to respond as an 8-bit, 16-bit, or 32-bit wide data
port. This has a corresponding effect on how many bits of the
address port are treated as significant.

/cs, 	rd/wr, These signals have analogous rOles to their standard memory
and be interface counterparts. 	/cs is a chip-select, rd/wr is a mode

select indicating whether the current transaction is a read or a
write to the configuration memory, and be is an output-enable
signal controlling the driving state of the physical device pins.

/reset An input signal that, 	when asserted, 	triggers a clearing of
the device's entire configuration memory. This also places the
FastMap interface circuitry in its default state, in which the
XC6200 responds as if it were a basic SRAM.

GC1k A global clock signal to which all transactions over the FastMap
interface are synchronised.

configOK This is an internal signal asserted by the FastMap control logic
when the FastMap ID register has been loaded with an appro-
priate value.

/RdEn 	and These are also both internal signals accessible from the East JOB
/WrEn serving each row of cells in the array. The signals are strobed

when the FastMap interface is reading or writing directly to the
registers within cells and can be exploited by user designs to
detect when the registers in a given row are being accessed.

regword Like /RdEn and /WrEn, regword is strobed when the FastMap
interface is accessing cell state within the array. In particular,
the signal can be used to detect when the FastMap interface is
being used to access the state of cells in a particular column of
the array.

Table 3.1: FastMap Interface Signals and their ROles

interface is also influenced by a series of device configuration registers. In total,

there are five sets of device configuration registers, all of which are also accessed

via the FastMap's address, data, and control signals. The device configuration

registers respond as distinct locations that are addressable within the XC6200's

configuration store. To fully explain the influence the device registers have, we

must first expand on the way that the FastMap interface is used to load configu-

ration data and access cell state.

As well as presenting the configuration store as a RAM, the FastMap also con-

tains additional logic to support fast circuit configuration and cell state accesses.

These are the features that are primarily influenced by the device configuration

registers. In its most basic form, using the FastMap interface to load circuit con-

figuration data involves writing data words to the appropriate addresses within

the configuration RAM. Address decoders within the FastMap interface circuitry

route the programming data word to the correct region of the configuration store.

Essentially, the bytes within the configuration store that govern each cell, JOB,

routing switch, and device pad have defined addresses.

The first enhancement to the basic memory interface is the placement of a

32-bit mask register between the data port and the FastMap control circuitry.

The register is used to identify which bits of the data bus are significant during

a read or write to the XC6200's configuration RAM. During a FastMap write, if

a bit is set at the nth position in the mask register, the corresponding nth bit in

the word at the target address will not be affected. Similarly, during a read from

the configuration RAM, if the nth mask register bit is set then the nth bit of the

word asserted on the data port will be a logic zero rather than the contents of the

configuration memory. When writing, the mask register can be used to preserve

parts of the existing configuration word and, when reading, the mask register can

be used to mask out irrelevant parts of the configuration word.

The second enhancement to the memory interface is the introduction of a

67

'wildcard' unit placed between the FastMap address port and its address decoding

logic. The main function of the wildcard unit is to allow a write to a single address

to actually write the same data to multiple addresses in the configuration RAM.

Two device control registers are used in this process: the first wildcard register

influences the row address decoder whilst the other influences the column address

decoder. Any bit that is set in either register is treated as a 'don't care' bit by the

associated address decoder. Consider, for example, if the column wildcard register

is set to 00000001 2 and the column address before wildcarding is 00101000 2 . The

column address decoder treats the lowest bit position as a 'don't care' bit and the

column addresses that are actually activated during the write are 00101000 2 and

0101001 2 . The primary motivation for supporting wildcarding is that circuits

that are configured onto the array often have a regular, repeated structure. This

regularity is reflected in the data that is written to the FPGA's configuration

store, so the wildcarding mechanism is an effective means of broadcasting the

repeated data simultaneously to the relevant parts of the configuration store.

An alternative wildcarding mechanism, where the wildcard control registers are

placed at the output of the address decoders, has also been proposed [55].

The mask and wildcard registers are primarily used for controlling FastMap

writes to regions of the configuration RAM that govern the functionality of cells,

JOBS, etc. We should note that, although the mask unit does not affect FastMap

reads or writes to cell state, the wildcard unit does. FastMap state accesses occur

on a column by column basis. That is, it is possible to read or write the state

of the cells in a single column in each state access. However, since the column

height exceeds the bit-width of the FastMap data port in every XC6200 family

member, a mapping mechanism identifies which cells within a given column are

targeted by the state access.

2 the exact number of bits in the column address is dependent on the geometric size of the
cell array. We are assuming that the column address in this example is for a XC6216 which has
an 8-bit column address.

.........

U
U...

NEEMEMEMENNO

EMEEMEMENEEMENSEEN
I

UUUU•UUUUUUUUU
MEMOMMENEEMENEENNNOM

1 4 U•UU••UU•U•••UUUU

Ii

OMMOMEMENEEMEMEEMONE

EMOMMEMEENEENEEMEN
XC6200 Internal Map 	 LI

32-bit Data Register

Register

Address
FastMap Address

Decode - — Bus 	_/

Logic Column Select
Signal

Figure 3.1: FastMap access to cell state using the XC6200 Map Register

Figure 3.1 shows the mapping mechanism being used to read the value con-

tained in a 17-bit register placed in disjoint cells within a single column of the

cell array. The mapping mechanism is controlled through a map register whose

bitwidth matches the geometric height of the array's column of cells. Each bit

position in the map register corresponds to a cell row and a logic zero in the nth

bit position indicates that the cell in the nth row of the selected column is being

accessed. Fundamentally this is a masking operation, similar to the masking fa-

cilities described earlier. However, in addition to selecting which cells are affected

by the state access, the mechanism derives its name from the mapping operation

it performs on the selected column bits. During a read, the selected bits from

each cell in the column are packed onto the data port, starting with the row bit

selected by the least significant bit in the map register. We can see this in Figure

3.1 where, even though the bits of the register are in disjoint cells of the column,

they are repacked in order, onto consecutive bits of the FastMap data port. The

inverse situation applies during FastMap state writes. Here, the asserted bits of

the map register define how the consecutive bits of the data port are distributed

to the selected cells within the column.

The above discussion has introduced three of the five device configuration

register types: the mask register, wildcard registers, and the map registers 3 . The

"Device Configuration Register" and the "Device Identification Register" are used

to influence general features of the device interface and do not directly facilitate

fast circuit configuration or state access. Table 3.1 describes the relationship

between the FastMap's configOK signal and the device identification register and

we shall see that, the device identification register does have a significant role

during the discussion in Chapter 5.

3.2.2.2 The Virtex SelectMap Interface

In 2000, the XC6200's FastMap interface remained the most flexible implementa-

tion of a programmable logic device interface. However, we can attribute a cost to

such flexibility. Implementing the random access nature of the Fast Map interface,

in particular, incurs a significant silicon area cost. In this section we will briefly

consider SelectMap interface of the Virtex architecture. In commercial terms,

the Virtex series is considerably more successful than the XC6200 and, although

the Virtex's SelectMap interface is substantially less flexible than the XC6200's

FastMap, its form is indicative of a cost-flexibility tradeoff that is acceptable to

mainstream FPGA vendors.

The Virtex architecture, like the XC6200, is partially reconfigurable and, phys-

ically, has a bit-parallel external programming interface. In contrast to both the

FastMap and the earlier serial interfaces, the configuration memory of the Virtex

is neither randomly accessible nor is it organised as a single, long shift register.

'Since the height of the map register matches the cell array height, it also exceeds the
maximum bit-width of the data port. In practice it is therefore segmented and considered as
multiple consecutive map registers.

70

The Virtex array is instead reconfigurable on a column by column basis and,

whilst the underlying configuration store for each column is organised as a single

shift register, the SelectMap interface allows columns to be reconfigured inde-

pendently of each other. Unlike the FastMap interface, the SelectMap does not

have inherent support for accessing cell state and embedded block-RAM state.

Instead, the array uses the same readback mechanism employed by the earlier

serial-style device programming interfaces.

3.2.3 Streaming, Packet-style Interfaces

In the previous sections we considered two dominant styles of programmable logic

device interface. In this section we consider the programmable logic interfaces

of the PipeRench and Colt device architectures introduced in Chapter 2. The

interfaces of these architectures are significant as they represent a third style of

programmable logic interface which supports runtime reconfiguration in a manner

which is specific to the architecture's target application class. In particular, the

interfaces of both architectures have a packet oriented approach to configuration

and communication.

3.2.3.1 PCI-PipeRench

Figure 3.2 shows the basic structure of PCI-PipeRench [61], a prototype imple-

mentation of the PipeRench fabric. Physically, PCI-PipeRench interfaces to the

host system through two 32-bit communication ports. Stripe configurations and

application data are transmitted to the device as a formatted packet stream and

arrive in the device through the 32-bit physical input port. The integrated, on-

chip input controller decodes the stream into its constituent packets and takes

action depending on the addressing contained in the packet's control section. The

packet data is either directed to the dedicated configuration controller, forwarded

to the striped fabric as application data, or immediately directed on to the output

controller. The main task of the output controller is to format data received from

71

32-bit Input
FIFO

Input Controller

1T 	 Assembly Butter

128-bit Input FIFO

Configuration

Controller
	 Striped Reconfigurable Fabric

and Cache

32-bit Output
FIFO

100 MHz

'1J ,j 	
Region

Output
Controller 	14

128-bit Output FIFO 	 I

33 MHz

Region

Data 	 Configuration 	 Control

Figure 3.2: Structure of the PCI-PipeRench

the striped fabric into outgoing data packets. Additionally, the output controller

re-sends packets that the input controller determines are not addressed to the

current device.

The general format of a PCI-PipeRench stream packet is shown in Figure 3.3

and comprises three sections: a header, a marker, and payload contents. Both the

header and marker are one word in size, whilst the payload may be dynamically

sized. Generally, the header identifies how the packet should be processed whilst

the marker is used to describe the contents of the packet payload. For example,

the header word contains a simple form of addressing in the form of a chip-ID

used by the input controller to determine whether it should consume the packet.

The marker, on the other hand, generally specifies the amount of data within the

packet payload. The input controller would then use this information to route

the next n words to the appropriate part of the device.

72

Header
(Packet Type, 	 Marker

Chip ID. Configuration 	
Size, eIc) Cactus Address. Slate

Dump Command

Contents
(Data. Configuration.

Initial state

Figure 3.3: Typical Packet Format for the PipeR.ench Architecture

Stream Port

Configuration

Crossbar

Configuration

Path
Configuration

Header

Configuration

Function Unit
Configuration

Function Unit
Configuration

Function Unit
Configuration

Data

Crossbar
Coneguration

Stream Pod
Configuratron -

Figure 3.4: General Format of a Colt Stream

3.2.3.2 Colt

The general format of a Colt stream is shown in Figure 3.4. Colt takes a decen-

tralised approach to configuration management and this is reflected in its stream

structure. Whilst PCI-PipeR.ench uses explicit control headers to delimit the type

and content of the incoming packets, the Colt stream has a path configuration

header which is then followed by the application datastream. In Figure 3.4, we

see that the path configuration header is built from packets of configuration data

arranged in the order that they are consumed by each part of the distributed

configuration control. The path configuration header allows the stream to guide

itself through the array. An appropriate configuration packet is stripped from the

path configuration header as the stream winds its way through the architecture.

Specifically, each configuration packet contains all the data necessary to configure

the device resource at the head of the path.

73

3.2.4 Adaptive Packet-style Device Interfaces

The PCI-PipeRench and Colt interfaces have one main limitation: although both

device interfaces benefit from being tailored to a particular application class, the

semantics of the packet interface is statically defined in the hardware implemen-

tations of, for PCI-PipeRench, the input and output controllers or, for Colt, the

distributed configuration control logic. The remainder of this thesis considers a

more flexible approach to packet style device interfaces. In particular, our aim

is to develop a style of device interface where we can dynamically alter the se-

mantics of the interface protocol to better support different application classes,

or even specific applications.

3.3 Summary

In this chapter we considered the nature of the programmable logic interface at

different levels of abstraction within dynamically reconfigurable systems. Focus-

ing on the programmable logic interface at the device level, the chapter then

considered the evolution of programmable logic device interfaces from their fairly

simple serial origins, through to parallel interfaces such as the FastMap and Se-

lectMap. We then considered newer forms of packet based, protocol oriented

device interfaces used in the PipeRench and Colt architectures and, from there,

approached the concept of a flexible, adaptive packet-style device interface. In

the following chapters of this thesis, we will consider the implementation of such

a flexible packet-style interface using the rich features of the XC6200 architecture

to support the implementation.

74

Chapter 4

An Abstract Architecture for
Virtual Circuitry

The previous chapter explored the concept and form of programmable logic in-

terfaces which support dynamic, runtime reconfiguration. In this chapter we will

describe the features of an abstract architecture which supports dynamic recon-

figuration applications realised as virtual circuitry systems. The discussion has

three main themes:

• First, we define the concept of virtual circuitry and discuss the two main

models of virtual circuitry.

• Second, we introduce an abstract architecture which supports the existing

models of virtual circuitry and broaden the discussion briefly to consider

that abstract architecture within the class of Transport-Triggered Architec-

tures (TTAs).

• Finally, we describe a third model of virtual circuitry using features of the

abstract architecture.

4.1 Virtual Circuitry

Virtual Circuitry is a metaphor applied to runtime reconfiguration, typically in

the context of FPGA based co-processor systems. Here, we wish to present the

illusion of having a much larger programmable logic resource for the higher level

75

application software that wishes to exploit custom circuitry to gain increased

performance. Specifically, VC encapsulates the act of dynamic, runtime reconfig-

uration as an analogue of virtual memory. Instead of swapping virtual memory

regions in and out of physical memory, though, we dynamically swap circuitry on

and off of the programmable logic subsystem.

In a virtual memory system, the granularity of virtualisation is balanced

against the cost associated with each act of swapping to preserve an adequate

level of overall performance. The same is true in VC where the cost of instantiat-

ing and removing logic circuits on the underlying FPGA must be balanced with

its impact on the overall system performance [70].

There are a number of synonyms for virtual circuitry'; in the literature it

is commonly referred to as virtual hardware [12, 98, 104], cache-logic [8] or logic

caching [71]. From this, we can see that the rudimentary notions of VC have been

present within in the FPGA community for some time. However, the advent of

partially reconfigurable device architectures represents the watershed point be-

yond which VC became, practically, much more tractable. One of the most sig-

nificant contributions [12] at that point was the introduction of two fundamental

models of VC. A brief description of both models, set in the context of an FPGA

with at least the dynamic reconfiguration facilities of the XC6200, is given in the

following section.

4.2 Models of Virtual Circuitry

4.2.1 The requirements to support Virtual Circuits

Although the section above highlights the introduction of partially reconfigurable

FPGAs as a watershed point in the tractability of VC, before we consider either

of the two VC models it is useful to explore just what the requirements to sup-

port virtual circuits are. An important point to note here is that the specific

'We adopt the term virtual circuitry in this thesis for the reasons presented in [16].

76

quantifications of the requirements to support VC are heavily dependent on the

particular VC application. Throughout this discussion, however, we should recall

that the two fundamental operations that we must support in the VC environ-

ment are the configuration of a circuit onto the reconfigurable resource and the

subsequent interaction with that circuit to process data.

The first requirement to support virtual circuits is that the target platform is

a partially reconfigurable FPGA architecture. This is for two primary reasons:

first, partially reconfigurable architectures allow us to support multiple indepen-

dent virtual circuits on the same platform; and, second, partially reconfigurable

architectures support SLU reconfigurations in the timescale of a few microseconds

at the coarsest granularity. Early VC applications were targeted at dynamically

reconfigurable FPGA architectures and have reconfiguration timescales on the or-

der of milliseconds. Whilst this matched the reconfiguration timescales supported

by that generation of architectures, it is less appropriate in contemporary VC ap-

plications. For such applications, we want to support reconfiguration typically in

the order of hundreds of nanoseconds to a few microseconds. One specific exam-

ple of this style of application would be within network routing switches. Here,

high speed datastreams traveling over the network backbone require rapid recon-

figurations to switching circuitry that is implemented within the reconfigurable

array.

A second functional requirement relates to our ability to interact with the

virtual circuits. Our general aim here is to be able to interact with the circuits

at close to their core speeds, as much as possible. Early generation virtual circuit

applications on architectures such as the Xilinx XC4000 series typically operate

with clock speeds in the order of tens of megahertz. For the contemporary appli-

cations when this thesis was written in 2000, circuitry can operate at clock speeds

of the order of 100MHz. Our functional circuit interfacing requirement, therefore,

is that we should be able to support interactions with a circuit at up to its core

77

clock speed. Taking this further, the actual data throughput of a virtual circuit

can be large because of the potential to support very wide datapaths. For high

performance applications, it is feasible to support wide datapaths, on the order

of hundreds of bits, within the target FPGA architecture. Overall, this means

that our interfacing strategy for streaming data to and from virtual circuits must

be powerful enough to supply such wide datapaths at core clock speeds.

Size is an important consideration for VC applications: we must ensure that

enough reconfigurable resource is available to host the virtual circuits for the given

application. This is analogous to balancing the ratio of physical to virtual memory

in a virtual memory system to avoid unnecessary swapping and paging. Here we

require that there is a balance between the amount of array resource dedicated

to supporting virtual circuits, versus that allocated to the circuits themselves. A

further concern here is that the scaling of the FPGA area itself should require at

worst a linear scaling in the resources required to support the virtual circuits.

Again, the exact quantification of resource that is required is highly applica-

tion dependent. However, we can generalize that the array resources required for

a typical virtual circuit are on the order of hundreds of gates for the simplest

circuits to tens of thousands of gates for complex circuits. In the context of con-

temporary platforms, we would wish to host such applications on platforms with

a minimum of tens of thousands and, more likely, hundreds of thousands of gates.

Further to this we would then restrict the reconfigurable resources dedicated solely

to virtual circuitry management to at most 10% of the available reconfigurable

resource. In 2000, this seems an appropriate figure to choose: VC applications

targeted at the device architectures available in 2000 do not typically attempt

to instantiate such large numbers of virtual circuits that a 10investment of array

resource is unreasonable. Furthermore, in this context we are more likely to be

challenged with constraints on reconfiguration bandwidth for each of the circuits,

and physical constraints such as the available 10 pins within the resource, before

In

we exceed constraints on the available reconfigurable resource itself.

We have noted in earlier Chapters that, towards the end of 2000, device densi-

ties were rapidly approaching millions of gates. When this class of device becomes

the target for VC applications, we may conceivably see a reduction of this percent-

age of array resources dedicated to reconfiguration management. Our argument

for this stems from an observation that virtual circuits are unlikely to scale in

size with the technology. Rather, we would be more inclined to support more

of them simultaneously, keeping essentially the same reconfiguration managment

task and scaling its implementation slightly to account for the extra managment

load. Rather than investing 100k gates of a million gate architecture, we could

quite conceivably exploit 60k of those gates for virtual circuits and leave 40k for

an expanded virtual circuit manager.

Gathering these requirements into an overall assessment of the performance to

be met by a system supporting virtual circuits, we make the following assertions.

To support configuration and interaction with virtual circuits, the supporting

system should drive the configuration and circuit interaction interfaces at their

core speed. In the case of the XC6200, the most advanced partially reconfigurable

device available when this thesis was written in 2000, we must support a 32bit

configuration port with a 40ns access cycle with a corresponding raw data rate

of 25MB/s. We can also consider our earlier requirement constraint of 10% of

array resources dedicated to reconfiguration managment. For the XC6264, the

primary target platform for the implementation work described in Chapter 5, the

resource investment we would be considering for reconfiguration managment will

be in the order of 8000 gates.

2 40ns is the shortest cycle time in the product literature that the XC6200 configuration
interface can be accessed with.

79

4.2.2 Fundamentals: The Swappable Logic Unit

The Swappable Logic Unit(SLU) [14] is the VC analogue of a page or segment in a

virtual memory system. At the conceptual level, an SLU is a logic circuit capable

of performing a given logic function, transforming its inputs into a set of function

outputs. It has two key attributes: a fixed geometry implementation; and input

and output interfaces that are fixed in structure and relative positioning within

the overall circuit design. Three general models for SLU input and output are

suggested: wired signals on its perimeter, dedicated registers accessible through

the host device's programming interface, and active interface accesses driven by

the SLU itself.

The practical management of an SLU has been described within the context

of a benevolent VC operating system [12] and requires that some constraints are

placed on the array resources that can be directly accessed by an SLU. Two gen-

eral examples of such constraints would be limiting the influence of the SLU con-

figurations to within its geometric bounding box, and preventing it from directly

interacting with JOBs. The notion of privileged, system SLUs was introduced

to accommodate instances where a VC application may have valid reasons for

accessing "protected" resources. However, we should also note that the notion

of privileged and protected resources is entirely conceptual, and enforced by the

programmed VC operating system. The device architectures available in 2000 do

not have explicit hardware support for protecting resources allocated to one SLU

from another SLU.

4.2.3 The Sea of Accelerators Model

Figure 4.1(i) shows a visualisation of the sea of accelerators VC model. In this

model, SLUs are entirely independent units of computation and have no direct

interaction with each other. All communication with the SLUs is done by state

accesses through the device's programming interface to registers placed at the

Ull

U

a _rn .. • a

i"!i UI1

Figure 4.1: The two primary models of virtual circuitry: (i) The Sea of Acceler-
ators and (ii) The Parallel Harness

SLU's inputs and outputs. In this model, the VC operating system has two main

responsibilities: swapping SLUs on and off of the programmable logic and facili-

tating access to the SLU input and outputs from the higher level VC application.

4.2.4 The Parallel Harness Model

Figure 4.1 (ii) shows a parallel harness style VC model. Here, SLUs are essentially

cooperating parallel processing elements. Whilst SLUs in the sea of accelerators

never directly communicate, parallel harness SLUs are explicitly interconnected in

a wired routing harness that is instantiated by the higher level operating system 3 .

The use of explicit, wired routing implies that there is a regular structure to

the overall parallel harness. FPGA routing resources tend to favour datapath

circuitry which has regular interconnect wiring, making the mapping of irregular

wiring structures generally more difficult.

At this point we should clarify the difference between the notions of a parallel

harness SLU and a parallel harness circuit. In this thesis, we shall consider a

3 1n [16], the parallel harness interconnect strategy includes the deliberate abutment of SLU
interfaces to facilitate interconnection. For the sake of this discussion, we will focus on the use
of an explicit, routed harness since this provokes more challenges to the efficient implementation
of the VC operating system.

parallel harness circuit to be the collective functionality created by the intercon-

nection of many, typically homogeneous, parallel harnessSLUs within the wired

routing harness. That is, to the VC application, it is the compounded functional-

ity of SLUs within parallel harness that constitutes the main unit of computation

rather than computational features of the individual SLUs themselves. In Figure

4.1(u), we can see that the parallel harness SLUs are bounded by a set of system

SLUs which function as a wrapper to the whole parallel harness circuit. It is

through this wrapper that the VC operating system would typically interact with

the harness's constituent SLUs.

4.3 An Abstract VC Architecture

In an abstract sense, the virtual circuitry metaphor provides an intermediary be-

tween the program oriented world of the high level VC application and the circuit

oriented world of dynamically programmable logic. Essentially, the VC system

encapsulates the FPGA's fine-grained computational parallelism behind a run-

time system interface used by the von-Neumann style, sequentially programmed

high level VC applications. Implementing a mapping in an efficient manner is

difficult. It is often the case that the implementation of the VC interface can-

not preserve the potential performance gains that runtime reconfiguration makes

available. We can present the three general causes of this performance drain:

• first, the narrow bandwidth peripheral bus interfaces in VC system architec-

ture makes it difficult to interact with the programmable logic subsystem;

and

• second, the standard programmable logic device interfaces make it difficult

to interact with the programmable cell resources and the SLUs configured

on them; and

• third, on a conceptual level the system must rapidly bridge between the

Higher Level Application

and Virtual Circuitry OS

SLU 	 SLU 	 SLU

Programmable
System Controller

emory 	 SLU 	 SLU

- -+
Data 	 Interconnection 	Memory Mapped

Transport 	 Network 	 Register

Figure 4.2: The Abstract Virtual Circuitry Architecture

domains of programs and circuitry because of the close couplings that VC

applications try to establish. There is a significant degree of inertia that

must be overcome each time the two domains interact.

In this section we consider the form and semantics of an abstract architecture

that will address all three of these points. The architecture, shown in Figure 4.2,

is implemented entirely within the programmable logic sub-system and supports

the two virtual circuitry models that have been presented above. It has three

constituent components: a set of SLUs with memory-mappable, register based

interfaces; an underlying bus-style network that interconnects all the components

in the abstract architecture; and, at its heart, a programmable system controller.

It is the combination of a self contained implementation coupled with a particular

style of programmable system controller that will let us overcome all three VC

system performance issues.

We must clarify the concept of a SLU within the abstract architecture be-

cause the assertion that SLUs have register based interfaces appears, at first, to

prevent the architecture from supporting parallel harness style VC. The abstract

architecture SLUs are, at the conceptual level, somewhat abstracted from those

we described earlier. In particular, we do not rigorously apply the same explicit

distinction between parallel harness and sea of accelerator SLU types. In the

earlier discussion, the interface of a parallel harness SLU is formed by a collec-

tion of signal wires at the circuit periphery. However, what we considered as a

parallel harness circuit, i.e. a collection of wired SLUs wrapped by register inter-

face oriented system SLUs. constitutes a single "abstracted" SLU in the abstract

architecture. Essentially, the abstract SLU definition captures the "task-level"

computational completeness of the unit.

The programmable system controller has two main conceptual roles: first, it

supports the insertion and removal of SLUs to and from the current set of instan-

tiated SLUs; and. second, it facilitates communication between the VC operating

system and the instantiated SLUs. The underlying bus-style interconnect net-

work is used to map the architecture components into the controller's memory

map. The register oriented nature of each SLU interface is also significant as it

reduces the complexity of mapping an SLU's JO ports into the system controller's

memory map.

Although the controller supports two conceptual operations, the "memory-

mapped everything" nature of the abstract architecture means that there is only

one fundamental operation: the system controller implements data transports

within its memory map. The programmable nature of the system controller is

defined in terms of its ability to execute a sequence of data transports stored in

a region of program memory. Indeed, Figure 4.2 contains an explicit memory

interface SLU for this purpose 4. We should also note that, in this basic imple-

mentation, the memory interface is single ported.

HE

and function units. As a member of the TTA class, the higher level compiler

for the abstract VC architecture would also have the opportunity to exploit such

optimisations.

4.3.2 Alternative Architectures

This section addresses potential alternatives to the TTA-style abstract archi-

tecture we introduced above. There are two main alternatives: first, replacing

the TTA style architecture with a mainstream instruction set architecture such

as a microcontroller; and, second, state-machine oriented custom reconfigura-

tion controllers. Section 4.3.3.3 discusses the advantages and disadvantages of

state-machine oriented controllers and in this section we will focus on the use of

alternative microarchitectures.

Our motivation for considering a full-blown embedded microcontroller to pro-

vide virtual circuit management is that it has the apparent advantage of having

more computational power than our existing TTA approach. At first glance,

the TTA world of the abstract VC architecture with its single move instruction

appears computationally under-powered in comparison to instruction set microar-

chitectures: it effects only simple data transports within a memory map. In 2000,

there are a large variety of microcontroller and embedded microprocessor archi-

tectures. It is difficult to give a succinct characterisation of their features: the

diversity of the embedded control applications that such microarchitectures are

used in means that it is common to see many variations and extensions on a basic

instruction set family. The classic Intel 8051 embedded controller provides a good

example: in 2000, there are easily tens of implementation variants of this basic

controller.

In broad terms, a standard microcontroller will typically have intrinsic arith-

metic support through an inbuilt ALU structure, conditional branching opera-

tions, and mechanisms for interacting with memories such as a variety of address-

ing modes and, quite possibly, DMA controllers. Interrupt handling is also an

important feature of these architectures since, for example, their physical control

applications must react to real-world stimuli.

For the specific application we are considering here - a microcontroller for

virtual circuitry management - a pertinent question is: what does it cost to

implement a microcontroller architecture within an FPGA architecture? Again in

broad terms, the gate level cost of hosting a microcontroller is on the order of tens

of thousands of gates. For example, the contemporary cost of a synthesised 8051

architecture is upwards of 20K gates, depending on the speed requirements of the

final artifact. For this approximate budget we could conceivably implement a 10-

20MHz microcontroller on what is considered a standard density, standard speed

FPGA available in 2000. If we were to make an approximation of how this figure

would rise in more aggressive and future technologies, microcontrollers on high-

end future devices operating in the region of 100-150MHz are not unreasonable

given the projected core circuit speeds within the prospective architectures.

Beyond the raw costs associated with the approach, it is also important to

consider how a standard microcontroller interacts with the array it is reconfigur-

ing and the SLUs it is interfacing with. A primary conceptual advantage of the

abstract VC architecture is that its data transport oriented nature actually maps

well to the fundamental tasks we wish to perform in a VC model. For the ma-

jority of our time we wish to manage the motion of data flowing between SLUs,

the higher level VC operating system, and the configuration memory of the host

FPGA. A data transport is fundamentally a very appropriate conceptualisation

for this purpose. In the case of a microcontroller, the mapping between the SLUs

resident on the reconfigurable logic and the configuration store of that same re-

configurable logic is not so clear. Micro controllers, particularly in the RISC style,

are predominantly register-operation oriented. To interact with SLUs residing on

a FPGA like the XC6200, we could conceptually make them appear as registers

M.

within the main architecture (the approach commonly used in research where

reconfigurable functional units are added to a microprocessor). However, tech-

nically achieving this, even in the context of a relatively benevolent architecture

like the XC6200 would be difficult given the basic interface abstractions presented

by the two technologies.

In the context of contemporary devices, and in the context of our earlier

discussion on the requirements to support virtual circuits, a microcontroller dedi-

cated purely to virtual circuitry management is a substantial investment of array

resources. By contrast, the implementation of the abstract VC architecture given

in the next chapter requires a resource budget in the order of 4K gates. Based

on this estimate, an abstract VC architecture implementation is more attractive

in terms of raw resource utilisation. Furthermore, the relative complexities of

the circuitry in the two approaches indicates that there is more scope to exploit

raw performance increases in the device architecture and apply pipelining to the

relatively simple circuitry of the abstract architecture.

The transport oriented style of the abstract VC architecture supports the

conceptual mapping of SLUs into the sequential-style processing world of the

microprocessor well. However, it is worth exploring whether aspects of the mi-

crocontroller architecture, such as branching, interrupts, or advanced memory

interfacing and addressing could be usefully appended to the abstract VC ar-

chitecture. For example, would it be useful to have an integrated adder circuit

within the datapath of the abstract architectures circuitry and if so, how could

it best be integrated?

There are two functionalities that appear to be of immediate interest in this

case: first is the support of an incremental indexed addressing mode; and the

second is the support of interrupt processing. Indexed addressing is of interest

because it supports the style of sequential data accesses we expect to perform

when transporting SLU configurations from memory to the configuration store

r.i.

of the host device. Access to DMA controllers would be a natural technical

evolution of this augmentation. Interrupt support is of interest for the purpose

of implementing the active SLUs we considered within the SLU model earlier.

Beyond identifying these features as potentially useful augmentations to the

pure architecture it is interesting to consider how we may actually perform the

augmentation. One option is to erode the transport triggered nature of the ab-

stract architecture and turn it into a very basic instruction processing architecture

(this effectively means that we would add an instruction decoder to the abstract

architecture. We would have integrated the additional instructions but since we

access them explicitly by decoding an instruction operator, we could no longer

consider the resulting architecture as purely transport triggered.). Alternatively,

we could aim to preserve the TTA nature of the architecture and in the case of

the indexed addressing extension, fold the additional features into the existing

memory SLU that resides on the architecture's system bus. In comparing the two

approaches we can see that there is an additional conceptual advantage to the

TTA style abstract architecture: it inherently supports the addition of instruction

logic by dynamically inserting SLUs on the system bus.

In summary, implementations of microcontroller style VC managers are tech-

nically feasible, but with current technologies and in the context of our earlier

requirements to support virtual circuits, it is difficult to justify their resource

utilisation. Furthermore, an integrated microcontroller is not simpler to interface

with the host array architecture and the SLUs it contains. Despite this, there are

architectural features of a microcontroller that, for performance reasons, may be

complementary to the pure move-based abstract architecture. Furthermore, the

nature of the TTA model supports the augmentation of these features without

resorting to extending the core instruction set itself. This allows us to continue ex-

ploiting raw performance gains within the logic implementing the data transport

and benefit from higher level compiler optimisations available to TTAs.

4.3.3 Self-modifying Circuitry

So far, we have just indicated that the immediate environment of the abstract

architecture is a fairly generic programmable logic subsystem. We can now define

the controller's environment more clearly and say that, in the scope of this thesis,

the abstract VC architecture is contained entirely within a single host FPGA.

In this context, the programmable system controller takes on the very interest-

ing role of an array resident configuration agent and, at the abstract level, this

involves mapping the host FPGA's configuration memory into its own memory

space. In doing so, however, the system controller gains the interesting attribute

of self-reference, and exploiting this self- referentiali ty to actively drive the host

FPGA's programming interface gives the architecture the potential to support

"self-modifying" circuitry.

4.3.3.1 Requirements for FPGA based Self-modifying Circuitry

Hosting the abstract architecture places three main requirements on the target

FPGA architecture:

• first, the circuitry implementation of the system controller must be able to

access the device interface logic of the host FPGA;

• second, since the circuitry effecting the configuration is resident on the same

FPGA, the FPGA architecture must be partially reconfigurable; and

• third, the host FPGA must have an "open architecture".

The first two requirements are hard technical requirements that are essen-

tial to the system controller's implementation. The third, however, is more a

conceptual requirement. Hosting a configuration agent within the target FPGA

represents the closest, most intimate coupling to the device's programming in-

terface that is possible. Since the programmable system controller interacts with

the host FPGA at this level, it is important that, as designers of such a system,

we have a clear understanding of the host architecture's operation and nuances.

A closed architecture prompts the designer to be either fairly conservative or risk

potentially physically damaging the host FPGA by effecting configurations that

create electrical contention within the device.

One extension to the first requirement, although not a strict requirement in

itself, is that the host FPGA's device interface presents the FPGAs configuration

store as a memory style interface. If this is the case, it reduces the semantic gap

that must be bridged by the abstract architecture to integrate the host FPGA's

configuration store into its own memory map. Specifically, it reduces the amount

of interfacing logic required to map the host FPGA into the system controller's

memory map.

In total, there are three conceptually distinct regions in the programmed con-

troller's memory map. Earlier we discussed a region of generic memory for holding

the programmed transport sequence that is executed by the controller. In this sec-

tion we discussed the mapping of the host's configuration store into the memory

map, enabling the architecture's data transports to implement circuit configura-

tion and fulfil the first VC role. This leaves the fulfilment of the architecture's

second conceptual rOle as a communication agent for instantiated SLUs. In terms

of the abstract architecture, this rOle is facilitated by bus-style interconnect to

the architecture's components. Specifically, integrating the host FPGA's state

memory as the third region of the abstract architecture's memory map allows

the controller's programmed transports to access the registers at the inputs and

outputs of instantiated SLUs.

4.3.3.2 The Self Modification Taboo

Traditional software which has access to its program text and data segments has

the potential for self-reference, and hence, self-modification. In modern software

engineering practices, however, the exploitation of such properties is rare and

taboo. For large software systems, this is a justified notion as the unruly appli-

91

cation of self-modification makes self-modifying software particularly difficult to

debug. Indeed, it is common for processor architectures to reinforce this taboo

through read only instruction caches. Significant cache penalties await programs

which override the memory protection facilities of an operating system since mod-

ified sections of the text segment in the instruction cache must be flushed.

Striving for efficiency in a resource constrained environment is, traditionally,

the main reason for exploiting self-modification. For example, the limited mem-

ory, storage, and processing time available in early computer systems justified the

use of self-modification to gain increased code flexibility whilst limiting resource

utilisation. VC systems in 2000 find themselves in an analogous situation to early

software systems: FPGA device densities are still limited and the performance

penalties associated with SLU instantiation and interaction are high. Therefore,

the raw performance advantages to be gained from adopting self-modification as

the technique for altering the configuration of a resident circuit, are particularly

alluring.

4.3.3.3 Self-modification in related research

The concept, potential, and mechanisms of self-modifying circuitry using pro-

grammable logic was suggested in the literature [95, 108] we discussed in Chapter

2. The introduction of dynamic and partially reconfigurable FPGA architec-

tures rekindled this interest. In particular, there are two notable conceptual

systems: the self-reconfiguring processor [41] and the self-reconfiguring computer

system [88]. We have also presented concepts, mechanisms, and novel proper-

ties of the self-modifying abstract architecture discussed in this section in the

literature [32, 16]. Other work has advocated use of self-configuration within a

framework for managing runtime reconfigurable designs [94] and, in subsequent

literature, both the modeling and synthesis of controllers for self-configuration

[87] was explored.

In 1999, a small number of applications of circuit self-modification have also

92

been presented in the literature, ranging from applications of genetic program-

ming [96] to string-matching [97, 76]. Although we characterise the abstract

architecture as supporting self-modifying circuitry, the intention of this thesis is

not to pursue application case studies of self-modification in logic circuitry. It is

nonetheless interesting to explore how McGregor and Lysaght [76], as an appli-

cation of self modification, relates to our abstract architecture since they both

apply the same technique on the same FPGA platform.

Specifically, this application attempts to take control of the XC6200's config-

uration port using the mechanism described in Chapter 5. When applied suc-

cessfully, this places the XC6200 into a self modifying state. Two circuits are

transferred onto the array by this stage, a circuit dedicated to controlling the

reconfiguration process and the application circuitry (this is the circuit targeted

by the reconfiguration process). The application circuitry implements bit level

pattern matching on a serial datastream: it observes a bit serial stream of data

arriving on a device pin and attempts to match sequences within that datastream

against a specific match sequence that is specified though a second, separate bit

serial stream. As the matching pattern changes, the application logic triggers the

reconfiguration logic to reconfigure a constrained region within the application

circuitry dynamically, adapting parts of the match circuitry to implement the

matching sequence.

The application is notable for two reasons: first, it exploits a custom config-

uration controller circuit designed specifically to reconfigure the specific applica-

tion circuit at hand; and, second, as a consequence of its customised nature, the

reconfiguration circuitry itself generates the dataword that is used to alter the

application circuitry. However, one significant limitation that the approach has

is that it is designed specifically to effect only reconfigurations. The abstract VC

architecture described above is designed to inherently support the reconfiguration

of the host device and facilitate interactions with the SLUs that it has reconfig-

93

CWWW Ls

Figure 4.4: Organisation of the self-configuring pattern matcher[76]

ured. By contrast, the custom reconfiguration circuitry approach, as described,

used explicitly routed signals to support communication between the application

logic and the reconfiguration controller. Furthermore, this communication was

solely for the purposes of expressing reconfiguration requests and not to inter -

act with any registers within the SLU. Data communication within the pattern

matching example essentially resembles a parallel harness circuit with data ar -

riving through system SLUs that interface with application data ports physically

wired to specific device JOBs. Figure 4.4 shows the general architecture of the

application and its relation to the host FPGA's control logic.

There are some immediate comparisons that we can make between the ap-

proach in this application and the approach we will pursue through the abstract

VC architecture described above. The first of these relates to the application

specific nature of the reconfiguration controller. In [76], the authors describe

the design methodology, modelling and synthesis approach used to generate the

circuitry of the custom reconfiguration logic. For each application and reconfig-

uration schedule within that application, a new reconfiguration controller circuit

is created to embody the reconfiguration task. By contrast, the abstract VC ar -

chitecture's circuitry maintains a static size with respect to the reconfiguration

schedule. Rather than generating bitstreams to embody alternative reconfigura-

tion schedules, we encode them as sequences of executable software. However,

one particular advantage that the custom reconfiguration controller approach has

94

is that, for a suitably constrained set of reconfigurations, it can generate the re-

configuration data internally. This avoids a potentially costly series of memory

transactions, especially if the memory blocks are external to the reconfigurable

resource.

An interesting question to raise at this point is which of the two approaches

is most effective for supporting virtual circuitry. We can answer this relative

to the context of the reconfigurable application we wish to support. The string

matching application we have discussed above is an example of a small, well

constrained reconfigurable application. The constrained nature of the application

and, in particular, reconfiguration schedules are important as the size of the

reconfiguration logic will grow with complexity of the reconfiguration schedule

and the overall application. The custom reconfiguration controller approach may

have performance benefits to gain in certain system architectures (particularly

where there is a high cost to memory transactions), but the approach is more

difficult to scale as applications grow in size.

Conversely, the abstract VC architecture has a constant size and performance'

but the circuitry itself is not constrained to supporting any one application or re-

configuration schedule. We can argue that there is a cutoff point at which the

static size of the abstract VC architecture's circuitry will be more attractive than

the custom reconfiguration controller circuitry. An additional point to consider

is that the abstract VC architecture, though its intrinsic support of SLU inter-

action, can be used for tasks other than supporting reconfiguration. The custom

reconfiguration controller, on the other hand, remains a static investment of ar-

ray resources that can only be offset if we have an application that demands a

saturation of the reconfiguration port.

In terms of overall performance, the custom reconfiguration controller is at-

tractive because we can dedicate as much circuitry resource to it as needed to

5 in effect, size and performance are relatively constant since the architecture supports the
dynamic use of other SLUs to accelerate the reconfiguration process.

95

ensure that it meets the timing requirements of the application. In performance

terms, the generality of the abstract VC architecture is of concern since, as a

rule, generality tends to dampen performance. However, implementations of the

abstract architecture that are capable of saturating the reconfiguration interface

of the host FPGA are conceivable (we will consider the performance potential of

the abstract VC architecture in the latter sections of Chapter 7). Reconfiguration

bandwidths available in the FPGA architectures in 2000 are unlikely to outstrip

the performance of the abstract VC architecture. However, if that situation were

to arise in future device architectures, then we would have the option of adopting

custom reconfiguration controllers or timesharing the raw configuration interface

between multiple instances of the abstract architecture.

Chapter 5 contains a discussion of the implementation of this chapter's ab-

stract architecture. In it, we address the challenges of supporting self-modifying

circuitry and may allude to uses of self-modification within the abstract architec-

ture throughout later chapters.

4.4 Performance Enhancing Techniques for VC

Earlier in the chapter, we approached the subject of performance penalties associ-

ated with SLU swapping. Even with partially reconfigurable architectures, where

we only need to configure the array resources required by the incoming SLU, the

configuration cost is prohibitive for rapid, runtime reconfiguration. For early VC

systems and applications, a significant part of this cost is associated with the

limited bandwidth available in the loosely coupled co-processor system context.

The abstract architecture discussed above, because of its intimate placement and

relationship with its.host FPGA, avoids this primary source of bandwidth star -

vation by tightly coupling the programmable system controller with the SLUs on

the system bus. However, as we also noted in Chapter 2, bypassing the limited

bandwidth peripheral bus of first generation co-processor architectures does not

completely remove the cost associated with SLU swapping since there are inherent

limitations associated with particular styles of system interconnection architec-

ture. We could argue that the bus-oriented nature of the abstract VC architecture

is an example of such an inherent limitation. However, the abstract VC archi-

tecture presented is a fairly basic, conservative incarnation of a TTA. Comparing

the abstract architecture with the generalised TTA architecture shown in Figure

4.3, we can see that there is scope for increasing the flexibility of the system bus

into a system interconnect network.

In the sections below, we give an overview and discussion of different tech-

niques that attempt to reduce some of the fundamental costs associated with

SLU swapping. The majority of these techniques were introduced to combat the

bandwidth limitations of first generation VC co-processors. However, they are

equally applicable in the context of the abstract VC architecture. Indeed, some

of the techniques are particularly effective for increasing the parallelism available

within the bus-oriented abstract architecture.

4.4.1 Partial Reconfiguration

An implicit assumption in the discussion so far is that partial reconfiguration is

the mechanism that replaces configuration granularity at the device level with

configuration granularity at the SLU or, conceptually, task level. However, the

techniques in the next two sections exploit partial reconfiguration to reduce the

amount of SLU configuration data that must be applied between successive SLU

configurations.

4.4.1.1 Incremental Differences

Rather than applying the complete SLU bitstreams, we can exploit commonali-

ties between the array features that two different SLUs use and only apply the

incremental difference between the two. At best, the incremental difference will

be much smaller than the second SLU bitstream and, at worst, we will have to

97

resort to applying the entire SLU configuration 6 . The application of incremental

differences was considered as part of the framework in the original VC model

descriptions [12, 13] and a toolset for calculating incremental differences exists

[68]. The Virtual Hardware Handler [104] also calculates the inverse incremental

differences, allowing the system to move backwards and forwards between SLUs

in the configuration schedule.

4.4.1.2 Runtime Reconfigurable Routing

In most cases, partial reconfiguration of SLU circuitry is focused on changing

the configured functionality of the array cells used by the SLU and routing is

considered a second-class object. The design of partially reconfigurable circuitry

typically holds the wired routing of the circuit as static and focuses on making

constrained changes to the array cells. Applications of partial reconfiguration

that specifically target the wired routing of an SLU are rare.

Runtime reconfigurable routing [16] for parallel harness style VC can be advo-

cated as a means of increasing the flexibility of the wired routing harness synthe-

sised by the VC operating system. The earlier discussions imply that the parallel

routing harness is large, and statically defined for the duration of the parallel

harness circuit's instantiation. In [16], the concept of a reconfigurable switching

fabric is presented. The fabric is essentially a complete parallel routing harness

with the exception that a set of configurable switching points are defined. Chang-

ing the configuration at the switching points allows the interconnection topology

of the harness to be rapidly altered. The form and distribution of the switching

points must be carefully chosen to avoid making the partial reconfiguration of the

switching fabric too costly. An application case study of a configurable crossbar

switch [34] demonstrates an effective implementation of a 32 x 32 crossbar.

'Applying this technique at runtime assumes that it takes zero time to discover the common-
alities between SLUs and generate the difference bitstream. If there are no common features,
we also assume that it takes zero time to determine this. This is impractical in reality so
incremental differences are calculated offline', using a pre-determined configuration schedule.

4.1

The cost of the flexibility in the configurable switching fabric is the possibility

that it will serialise the SLU communication that can occur within the harness.

That is, SLUs have a higher chance of being isolated from the harness when the

fabric is configured in a particular way. However, this may actually be beneficial

and, in some situations, actually extend the applicability of virtual circuitry. For

example, consider two SLUs that require access to the same, contested resource

on the cell array. The arbitration that is required can be achieved automatically

by swapping the SLUs on and off of the host cell array - the act of swapping itself

serialises access to the contested resource. However, we cannot rely on standard

SLU swapping to implement arbitration if the SLUs require a tightly interleaved

access schedule: the cost of the frequent and rapid swapping of SLUs would soon

overwhelm the system'.

Runtime reconfigurable routing can be used to alter the configuration of a

switching fabric that connects either SLU to the contested resource. We should

note that we are assuming the spatial costs of having both SLUs simultaneously

present on some part of the array can be justified. The form of the switching

fabric supports the desired serialising effect and we apply partial reconfigurations

to it to determine which of the two SLUs has access to the contested resource.

The configuration cost of changing the fabric's switchpoint configuration is much

less than that of swapping an entire SLU. The rapid reconfiguration of the fabric

is, therefore, less likely to overwhelm the system in the same way that full SLU

swapping would.

4.4.2 Partial Evaluation and Constant Propagation

Partial evaluation [99] and data folding [40] are synonymous references to design-

time optimising techniques based on constant propagation. They produce spe-

cialised instances of SLU circuitry based on the constant propagation of a semi-

'We assume that a single context device architecture is being used here. A similar serialising
effect without the configuration performance penalty could be achieved by placing SLUs on
independent contexts of a multicontext FPGA and rapidly swapping between them.

static input. The main benefit of partial evaluation is that a specialised SLU

will generally operate faster than the non-specialised version. However, partial

evaluation is also interesting in the context of this discussion because specialised

SLUs are typically also smaller. We should clarify our notion of smaller in this

instance since the geometric area of a partially evaluated circuit depends on the

style of partial evaluation that is used. For example, the partial evaluation engine

described in [77, 78] produces specialised SLUs that take up the same geomet-

ric area, whilst the approach outlined in [19, 52] may also reduce the geometric

area of the specialised SLU. In both cases, there is a reduction in the size of

the S LU's configuration bitstream since the specialised circuit requires less of the

array resources than the generalised version.

4.4.3 Configuration Compression

The amount of raw data that must be transferred to an FPGA in order to instan-

tiate a particular SLU can be reduced by various data compression techniques.

Specifically, these techniques use data compression algorithms that exploit any

regularity within an SLU's raw bitstream data to reduce its overall size. The

performance of the VC system using compressed bitstreams may then increase

because less data needs to be transferred to the target FPGA over the slow co-

processor interface. However, this assumes that the costs associated with decom-

pressing the bitstream are sufficiently low. Decompression is typically done by

decompression circuitry that has either been especially configured onto the array

for that purpose, or actually forms part of the underlying device architecture.

A compelling example of configuration compression using the wildcarding fa-

cilities of the XC6200's FastMap interface is given in [49, 65]. Wildcard based

compression tries to identify writes of the same, or suitably similar, data words

to multiple distinct addresses. Rather than perform, say, four individual writes,

the sequence is re-encoded as a single wildcarded write that would simultaneously

100

transfer the data word to the appropriate configuration memory locations. Since

the wildcarding hardware is actually part of the underlying device architecture,

decompression is essentially free.

The wildcarding approach is device architecture specific, but other work has

considered the use of general data compression algorithms from the software do-

main [50]. For example, standard Huffman or Liv-Zempel compression of the

bitstream may be used to reduce its raw size. On the target FPGA, however, we

must instantiate a corresponding Huffman decompression engine. The outputs of

the decompressor would then be fed to the host FPGA's programming interface.

To increase the decompression performance, it is even conceivable that the Huff-

man decompression circuit could itself be runtime reconfigurable [17]. It seems

clear that as the compression and decompression schemes become more complex,

the investment in managing the compression also increases. This must therefore

be balanced to prevent the potential performance gains from applying compressed

configurations being lost in the complexity of the decompression scheme.

4.4.4 Configuration Prefetching

In the discussion so far, we have presented a variety of techniques that try to

reduce the amount of configuration that must be done to instantiate an SLU.

Configuration prefetching [48] takes an entirely different approach and attempts,

instead, to hide the reconfiguration penalty behind an ongoing "useful" computa-

tion. In the context of this chapter, the VC application code issues a non-blocking

prefetch request for an SLU to the VC operating system before it plans to inter-

act with it. The SLU would be pre-fetched by the operating system whilst the

application continues processing in parallel. The main challenge for configuration

prefetching is to determine the best point in the application code to issue the

prefetch request or for the operating system to guess the best point.

101

4.4.5 Configuration Interleaving

Configuration interleaving is related to configuration prefetching, although it was

introduced independently [32] as an abstract architecture specific technique. Con-

figuration interleaving takes advantage of the transport programmed, memory

mapped nature of the abstract VC architecture to mix transports from different

architecture roles at the granularity of a single transport. For example, one possi-

ble sequence of transports executed by the programmable system controller could

begin with a single transport configuring part of SLU a, immediately followed

by a transport configuring SLU b, which is, itself, followed by a transport for

interfacing with a previously configured SLU.

Configuration interleaving is important in the context of the VC abstract

architecture because the architecture typically has only a single access port to

the host FPGA's programming interface. This prevents the parallel configura-

tion and SLU interaction that is implied for configuration prefetch. However,

through the fine granularity data transports used in interleaved configuration, we

can implement an approximation of the parallel configuration used in configura-

tion prefetching. Indeed, a real-time embedded-system application could exploit

knowledge of hard deadlines and real-time priority scheduling techniques to al-

low gradual variations in the proportion of abstract architecture data transports

that are applied to different application tasks. For example, more transports

can be dedicated to configuring a particular SLU as its configuration deadline

approaches.

4.4.6 Analysis

From the discussion above we can see that there is potential to apply a number

of techniques to offset the performance penalty associated with SLU swapping.

In this section we approach the techniques from a critical standpoint with the

aim of prioritising them in the order that they are most likely to be effective for

102

general VC applications. Below, we consider each of the techniques in increasing

order of desirability.

Not all of the techniques described earlier can be applied in the same applica-

tion without one adversely influencing another. For example, partial evaluation

and incremental differences are not complementary techniques. The application

of incremental differences relies on similarities being present within the circuitry

but the partial evaluation, as described in [99], actually produces successive con-

figurations of a circuit that are structurally different. Also, although the general

concept of partial evaluation is attractive, it requires a non-trivial processing

effort and time, relative to the timescales within which we will reconfigure cir-

cuits, to generate the optimised, partially evaluated circuits. Using the technique

we can clearly generate smaller circuits with higher processing capability, but in

the situation where circuits must be specialised rapidly according to a particu-

lar changing parameter, the investment required to actually apply the technique

would overwhelm the reconfiguration schedule.

Reconfigurable routing, like partial evaluation, is a potentially powerful tech-

nique but it has a major conceptual limitation: routing is considered a second

class object by circuit design methodologies and their corresponding tools. Nev-

ertheless, the fundamental technical features exist within reconfigurable devices

such as the Xilinx XC6200 to implement reconfigurable routing by, for example,

rapidly altering the configurations of switching points in a wired switching fabric.

However, without a clear way to describe routing as a first-class object within the

design framework for reconfigurable systems, the large amount of implementation

effort required to deploy the technique will offset any benefits available to general

VC applications.

Prefetching and incremental differences are, potentially, complementary tech-

niques which are both based on having advance knowledge of the configuration

schedule. Of the two, we can argue that incremental differences are much more

103

relevant to contemporary reconfigurable systems. Prefetching hides the latency

associated with loading a particular SLU behind other system processing and re-

lies on statistical profiling of the application to determine as close to optimally a

point at which loading should begin. However, the arguments for investing such

offline efforts to hide loading latency are waning as physical device densities in

FPGAs increase. The latency associated with transferring the SLU bitstream

into the FPGA's configuration memory is less and less relevant as increasing

numbers of SLUs can be made resident on high density architectures. Whilst

earlier architectures had difficulty holding an application's working set of SLUs,

new architectures allow the full set to be accommodated within the array with-

out repeatedly prefetching. Furthermore, as the bandwidth to the configuration

interface increases, the cost of applying an incremental difference to a circuit will

become less significant. In the instances where we still cannot accommodate the

entire working set, rapidly modifying resident circuits with incremental configu-

rations over a high bandwidth configuration interface involves less effort, and is

simply more generic over multiple applications than profiling and prefetching.

From the reasoning and discussion above, and to return to our aim of priori-

tising the techniques according to their effectiveness, we can now advocate that

partial evaluation is the least effective technique for VC applications. This is

followed by runtime reconfigurable routing and then prefetching. The final tech-

nique we considered, and the one we consider most effective, is the application of

incremental differences.

4.5 Sequential Algorithmic VC

We discussed two VC models earlier in this chapter. This section introduces a

third, new model of virtual circuitry produced as part of the original research of

this thesis. The fundamental feature that differentiates this third, new model and

the two other VC models is the restriction they place on the way that VC SLUs

104

may interact. In the sea of accelerators, there is absolutely no interaction between

SLUs whilst, at the opposite end of the spectrum in the parallel harness, there

is a high degree of very tightly-coupled interaction between SLUs. In the third

model of virtual circuitry, the "Sequential Algorithmic" model, SLUs are neither

tightly-coupled nor completely independent. Instead, we use the VC abstract

architecture to facilitate a flexible harness of loosely-coupled, co-operating SLUs

that are configured within the cell array. The programmable system controller has

the ability to effect data transports in any region of its memory map. We discussed

earlier how programmed transports can effect configuration, how programmed

transports can effect communication, and equated these abilities to the abstract

architecture's two fundamental roles of configuration agent, and communication

agent.

The sequential algorithmic model taxes the full range of the abstract architec-

ture's facilities to cast it in the third rOle of computation agent. As a computation

agent, the architecture is responsible for implementing the loosely-coupled inter-

actions between the instantiated sequential algorithmic SLUs. In the operational

terms of memory-mapped data transports, this rOle involves the rapid transport

of data within the region of the abstract architecture's memory map that contains

the host FPGA's device state. Each transport within this region has the effect

of briefly interconnecting the output of one SLU to the input of another. The

sequential algorithmic model's flexible harness is actually a programmed sequence

of transports executed by the abstract architecture in its rOle as a computation

agent. Essentially, while the parallel harness has explicit and fairly static wired

routing between SLUs, the SLUs of the sequential algorithmic model are inter-

connected by dynamic software routing. Just as the higher level operating system

is charged with supplying the wired routing of the parallel harness, it is also re-

sponsible for supplying the programmed transport sequence for implementing the

flexible harness.

105

The system controller applies its programmed data transports in a sequential

manner. The serialised nature of this execution means that interaction within

the sequential algorithmic model's flexible harness is also serialised'. In practice,

we can envision modifications to the abstract architecture that would make SLU

interaction within the flexible harness increasingly parallelised. For example, a

multi-ported interface to the host FPGA's programming interface would allow

a parallelised system controller to effect simultaneous data transports within its

memory map. The FastMap interface of the XC6200 has a number of technology

specific features that we could exploit to parallelise interconnections in the flexible

harness. Specifically, the XC6200's wildcard mechanism also affects writes to the

FPGA's state memory and would facilitate multicast-style transports. The map

register mechanism could also be used to implement 'bin-packed' data transports

in which two data operands are transported within the one data word. The map

registers would define the appropriate distribution of the separate data operands

to the target SLU's register interface.

Explaining the "algorithmic" component of the sequential algorithmic model

name requires us to look more closely at the programmed transport sequence that

implements the flexible harness. The programmed sequence could be just that:

an enumeration of elaborated data transports that interconnect a defined set of

SLUs, in a defined order. An alternative interpretation of the flexible harness

transports is that they constitute an algorithm that actually consumes the results

from some of the operations triggered by its transports. These results influence

the interconnection sequence according to the particular algorithm encoded within

the flexible harness's transport sequence.

8Jt is this attribute of the abstract architecture that inspires the "sequential" component of
the model name.

106

4.6 Summary

This chapter began with a comprehensive discussion of the two main VC models

and an abstract architecture that would support them. From there, we explored

some of the auxiliary techniques that are deployed to make SLU swapping more

tractable and closed the main body of the chapter by discussing a third, sequential

algorithmic VC model, motivated by the abstract architecture.

In Chapter 3 we noted that programmable logic device interfaces have evolved

and are specific to a class of applications. In this chapter we have, essentially,

presented three general variations from the class of virtual circuitry applications.

The next three chapters will present an implementation of the abstract architec-

ture introduced in this chapter. We then show that this implementation is also

an instance of Chapter 3's flexible programmable logic interface.

107

Chapter 5

The Flexible Ultimate RISC

In this chapter we present the design and implementation of the Flexible Ultimate

RISC, an instance of the abstract microarchitecture introduced in the previous

chapter. We tackle this in two main sections:

• First, we introduce the original Ultimate RISC architecture and present de-

tail of its design and operation. This includes a description of the challenges

of implementing even the simple Ultimate RISC architecture on the target

XC6200 FPGA architecture.

• Second, we present details of the Flexible Ultimate RISC which is an evolved

version of the simple URISC that is capable of autonomous self-modification.

This discussion focuses on the challenges of facilitating self-modifying cir-

cuitry on the target FPGA architecture.

• Third we present details of the design, development and general program-

ming and runtime environment of the Flexible Ultimate RISC.

5.1 The Ultimate RISC(URISC)

The Ultimate RISC(URISC)[57] is a minimal processor architecture with only

one instruction: move memory to memory. On each instruction cycle, a single

word in memory is moved from one location to another. Computation is done by

migrating devices onto the system bus, then mapping the input-output registers

Chapter 5

The Flexible Ultimate RISC

In this chapter we present the design and implementation of the Flexible Ultimate

RISC, an instance of the abstract microarchitecture introduced in the previous

chapter. We tackle this in two main sections:

• First, we introduce the original Ultimate RISC architecture and present de-

tail of its design and operation. This includes a description of the challenges

of implementing even the simple Ultimate RISC architecture on the target

XC6200 FPGA architecture.

• Second, we present details of the Flexible Ultimate RISC which is an evolved

version of the simple URISC that is capable of autonomous self-modification.

This discussion focuses on the challenges of facilitating self-modifying cir-

cuitry on the target FPGA architecture.

• Third we present details of the design, development and general program-

ming and runtime environment of the Flexible Ultimate RISC.

5.1 The Ultimate RISC(URISC)

The Ultimate RISC(URISC)[57] is a minimal processor architecture with only

one instruction: move memory to memory. On each instruction cycle, a single

word in memory is moved from one location to another. Computation is done by

migrating devices onto the system bus, then mapping the input-output registers

	

Instruction 	 System Bus

	

Execution Unit 	I 	 I 	 I

Arithmetic Unit 	I 	I 	Memory 	I 	I 	Input/Output

Figure 5.1: A minimal URISC Implementation

of those devices into the memory space of the URISC processor core. For example,

the datapath of the URISC has no explicit arithmetic-logic unit(ALU); instead, a

series ALU-like components reside on the system bus with their registers mapped

into the memory space of the URISC core. Operands and results are then moved

to and from the memory addresses which correspond to the registers of ALU

components, as a means of performing arithmetic computations.

The URISC was first introduced as a novel example of the reduced instruction-

set philosophy taken to an extreme and, given its simplicity, was not intended to

be competitive with mainstream RISC and CISC processors. Despite this, it was

noted in subsequent literature that, with some slight modifications to the basic

architecture [43], it is possible to implement a more powerful URISC which fared

better against other microarchitectures executing the same benchmark.

There are four main components in a minimal URISC implementation, shown

in Figure 5.1: the heart of the URISC itself, the Instruction Execution Unit; a

single-ported memory for holding program instructions and operands; a collec-

tion of ALU fragments to support computation and program control flow; and

a general input-output interface to allow the processor to interface with periph-

eral devices. Faster implementations of the URISC are conceivable by increasing

the number of memory ports and pipelining the IEU, but for the sake of this

discussion, we will focus on a basic implementation.

5.1.1 The Instruction Execution Unit(IEU)

The IEU, shown in Figure 5.2, is responsible for implementing the move instruc-

tion and we can decompose it into two basic parts: a processor datapath and

109

data

System Bus
Seysats

Figure 5.2: The Ultimate RISC Datapath

processor control logic. The IEU datapath is particularly lean. It consists of

only three 32-bit registers, a 32-bit incrernentor, a simple address decoder, and

some basic 32-bit multiplexors. The URISC system bus contains a bidirectional

data-bus and a uni-directional address bus which are both 32 bits wide. Some

auxiliary control signals for read and write control of system bus elements also

form part of the system bus.

From left to right, the three registers in the IEU operate as a program counter

(PC), a memory address register (MAR), and a 'temporary' register. The program

counter always contains the address of the next part' of a move instruction that

will be fetched from memory. The MAR holds the source address, and then

the destination address of the operand that will be transferred by the currently

executing move instruction. The temporary register is used to hold the operand

between the time that it is fetched from its source address to the point that it

can be written to its destination address. A tristate buffer is present between

the output of the temporary register and the data bus to facilitate bidirectional

communication on the data bus.

The control program for the URISC is also quite simple. Since move is the

only instruction no operand decoding is necessary. Within each move instruc-

tion cycle, there are four discernable micro-cycles. Table 5.1 gives a pseudocode

'We are assuming that a move instruction consists of two separate memory words.

110

Microcycle I Activities

1 addr 	M[pc];pc--pc+l
2 temp +- M[addr];
3 addr+—M[pc];pc+--pc+l
4 M[addr] +- temp;

Table 5.1: Control Microprogram for basic URISC implementation

style specification of the activities undertaken at each instruction 'microcycle'.

Each row in the table corresponds to a single microcycle. The first microcycle

fetches the source address for the move from the address contained in the program

counter which is then incremented. The second microcycle then fetches the da-

tum contained in that source address and latches it into a temporary register. In

the third microcycle, the destination address is fetched from the program counter

address which is subsequently incremented. The final microcycle transfers the

datum held in the temporary register to the destination address.

There is one notable limitation of the control program as it is presented:

there is no way to actively change the contents of the program counter, so it is

not possible to branch. This is solved by simply making the PC addressable and

then moving a branching address into it. The address decoder present in the

IEU datapath is used for this purpose. When the MAR outputs the PC address

onto the address bus, and an appropriate control signal is asserted by the control

program, the PC can be written. Otherwise, the PC takes its next value from the

output of the IEU incrementor which is, itself, in a latched feedback loop with

the output of the PC.

In total, there are eight control signals used by the control logic to operate the

IEU datapath. These signals are listed and their rOles explained in Table 5.2. The

actual implementation of the control microprogram with respect to these control

signals is shown in Figure 5.3 as a timing diagram. In the single-ported memory

implementation of the URISC, 16 core clock cycles are required to implement

2 b convention we use address zero for the program counter.

111

Signal Role

PCMUX Controls the multiplexor which decides whether the next
value to be stored in the program counter comes from
the output of the incrementor, or is the operand that
was fetched from the source address.

WTEMP Controls the tristate buffer allowing the output of the
temporary register to be asserted on the bidirectional
data bus. This signal is asserted in the final microcycle
when we wish to write to the destination address.

CTEMP, All three of these signals are used to control when reg-
CMAR, 	and isters in the IEU datapath may latch in the data in the
CPC operand data that has been presented on the data bus.
ADMUX The ADMUX signal is used to define which IEU register

may drive the address bus. The PC is driven onto the
bus in microcycles one and three, whilst the MAR drives
the address bus in microcycles two and four.

READ 	and These signals form part of the system bus that inter-
WRITE connects the IEU with the system bus elements. They

indicate whether the current operation being performed
over the system bus is a read or a write.

ADDR 	and These signals are also part of the system bus and corn-
DATA municate the address and data word being transported

between system bus elements.

Table 5.2: Control signals used in the control path of the original URISC

112

PCMUX

WTEMP

CTEMP

CMAR

CPC

ADMUX

WRITE

READ

Microcycle 1 	Microcycle 2 	Microcycle 3 	Microcycle 4

Figure 5.3: Control Waveform for the basic URISC

a single move operation, 4 cycles for each instruction microcycle. One notable

point in the timing diagram is the assertion of PCMUX for the entire fourth

microcycle. The signal is held high to facilitate writing to the PC if the address

currently driven onto the address bus matches the PC address. The PC decoder

present in the IEU datapath uses all system bus address signals but only asserts

its output when the WRITE signal is also asserted.

5.1.2 URISC Programming

Generally speaking, a URISC program is a sequence of move instructions. Tech-

nically, each move performs the same fundamental operation, but logically some

moves effect computation to further the current calculation directly. Other moves

effect computation to manage the program control flow.

5.1.2.1 Branches

Implementing branches in a URISC program can sometimes be complex. The

simplest form of control flow branch in a URISC program is an unconditional

jump and is simple to implement. Since the jump address is static, we just move

the jump address into the memory mapped program counter.

113

In a conditional branch, however, the final jump address depends on the re-

sult of some conditional test. Generally, processors have dedicated instructions

which perform the conditional test and have the side-effect of altering the pro-

gram counter based on the result of that test. In the URISC there are no such

instructions. Instead, we use a memory mapped condition code register in an

ALU fragment to bias the destination address of an unconditional jump. This

allows the destination of the jump to be offset by the equivalent integer value

of the boolean result contained in the condition code register. In this manner,

it is possible to skip at least one move instruction following the unbiased jump

address. If the instruction either of the possible jump addresses was itself an

unconditional jump then effectively, based on the result of the conditional test,

we would either take the unconditional jump or skip it entirely.

To make this approach work, we adopt a convention where the boolean truth

value for a conditional test is an integer multiple of the size of a single move

instruction, measured in words, and the boolean false value is integer zero. This

is important as it allows us to guarantee that the biased jump address is still

aligned with the start of a move instruction. For the URISC implementations

described in the later sections of this chapter, each move instruction will comprise

two 32-bit addresses and, therefore, occupies two consecutive words in memory.

The integer equivalent to the boolean truth value in this situation, therefore,

would be the integer value two 3 .

5.1.2.2 Addressing modes

One primary characteristic of a RISC architecture is its lack of complex addressing

modes. All addressing in the basic URISC implementation is absolute. Although

we do not have inherent access to immediate or indirect addressing modes, we

may again adopt programming conventions to emulate these two useful modes.

3 1n some circumstances this is not the case: Section 6.3.2.1 contains examples of truth values
that must be larger than two.

114

Immediate addresses, for example, can easily be converted into absolute address-

ing of operand data placed in a predefined location. The assembler, described

later in this chapter, automatically converts immediate addresses in the source

code to absolute addresses of literal values pre-placed in a data table.

Indirect addressing is slightly more difficult to emulate and requires that we

use self-modifying program code. Pointer dereferencing is a main motivating

example of indirect addressing. The arguments against the use of self-modifying

code do not particularly apply here since we are not using self-modification to

radically change the program structure or behavior. Instead, the technique is

limited to use in a narrow and well defined problem instance.

We can emulate indirect addressing for both the source and destination ad-

dresses of a move instruction. For example, we use two absolute move instructions

to implement a single, indirected read. The destination address in the first move

instruction is actually the address of the following move's source address. When

we execute the first move, it overwrites the source address of the following move

instruction with the address of the actual data we wish to read. Essentially, we

are dynamically synthesising a customised absolute-addressed move instruction,

one instruction cycle before it is required. If we want to perform an indirectly

addressed write, then we alter the destination address of the first move so that

it overwrites the destination address of the second move. If we wish to indirectly

address both source and destination, then we need three consecutive move in-

structions. The first two modify the source and destination addresses of the third

which then performs the desired transport.

5.1.3 Challenges of a XC6200 URISC Implementation

In this section we describe an original, technical implementation of the URISC

IEU on a XC6200 FPGA undertaken as part of the research programme for this

thesis. The components of the URISC architecture that were implemented at this

115

Instruction
Execution Unit

Memory

Figure 5.4: Basic architecture of the initial URISC implementation on the XC6200

stage in the research programme are shown in Figure 5.4 and there are two main

problems that we are going to consider: a means of avoiding or limiting the use

of tristate logic in the URISC core; and, second, bootstrapping the control logic

of the IEU so that the processor is immediately capable of processing at the end

of the configuration process.

5.1.3.1 Lack of Tristate Signalling

There are very few tristate resources available to logic on the XC6200 but, in

the URISC IEU datapath shown earlier, a single tristate data bus is used to

connect the URISC with each of its system bus components. The general routing

resources of the XC6200, as we discussed in Chapter 2, are based on multiplexors

and directed routes. The only tristate resources that are available to XC6200

circuits exist within the device's input-output pads. Physically, it is possible to

connect a single bidirectional signal to a device pad and, when that signal is

routed through the associated JOB, it is separated into independent read and

write nets. The device pad contains a single tristate driver whose control signal

is available to user circuitry through the pad's JOB. This allows the write signal

to be driven onto the physical device pin and, hence, interact with a bidirectional

physical bus.

For the URISC implementations we describe in this chapter, the intention is

not to explicitly wire each SLU to the FPGA implementation of the URISC core.

Instead, as we alluded in Chapter 4, the XC6200's FastMap interface is used to

allow us to both configure and interact with the SLUs implemented on the logic

116

array. Essentially, we use the FastMap interface as a dedicated, memory-style

interface to the system bus computational elements. There is no physical tristate

data bus that the URISC must explicitly manage 4 : the FastMap itself implements

the SLU section of the system bus.

We cannot avoid a direct, physical, tristate interface between the URISC core

and the memory subsystem since memory is provided by physically interfacing

with external memory components. The data bus of the memory interface is

inherently bidirectional. Our challenge is therefore to use the tristate buffers in

the device pad and the facilities of the JOB to manage this by providing separate

read and write ports into the memory system. The URISC 'WRITE' control

signal triggers the tristate driver within the device pad whenever a write is made

by the URISC to the device memory. An updated IEU datapath in Figure 5.5

shows two temporary data registers which interface with the separated read and

write interfaces of the memory system. An updated control timing diagram is

also given as Figure 5.6.

We use two temporary registers since all data arriving from external memory

must pass through the temporary incoming register. In the original system, the

temporary register only ever held the operand being moved; the inputs of each

register in the core had an individual connection to the raw data bus. In the

adapted design, we hide the raw data bus behind the temporary incoming register

and, hence, avoid connecting the inputs of core registers indiscriminately to JOBs.

This is useful since we can use it to abstract the details of more than one memory

interface away behind a single temporary incoming register.

However, the temporary register is now successively overwritten in the first

three microcycles. We must preserve the data to be written during microcycle

four by transferring it to a secondary 'outgoing' temporary register at the end of

microcycle two. If this was not done, the transport datum would be overwritten

4 although it is acknowledged that, internally, the FastMap data bus is also implemented as
a collection of tristate data lines.

117

SRAM data ir

yst SRAM data ot 	S em Bus
S4gnals

Figure 5.5: The URISC XC62000 Datapath

by the destination address arriving in microcycle three. A side effect of this

arrangement, now noticeable in the control timing diagram, is that the CMAR

control signal is activated one clock period later. This is because it takes one

clock cycle to latch the value on the SRAM data bus into the temporary incoming

register. Only after that cycle has passed can the incoming data be moved to the

appropriate destination register.

5.1.3.2 IEU Control Implementation

One of the primary requirements of our URISC implementation is that it is de-

signed to be autonomous. Whilst we may ultimately communicate with the exter-

nal environment, we must not rely on the services of an external host to initialise

or activate the URISC. This places an important requirement on the bootstrap-

ping of the URISC itself. That is, from the point that we complete configuration

of the XC6200 with the URISC bitstream, the core must become active immedi-

ately and begin processing its first instructions from memory. This should be done

without the direct influence of an external source like a system's host processor.

In short, the URISC implementation must be self-initialising and self-activating.

Each of the IEU control signals for the URISC is implemented as a 16-bit

circular shift register. Each bit in the shift register maps to one state of that

118

PCMUX

CTempin

ClempOut

CMAR

CPC

ADMUX

WRITE

READ

Microcycle 1 	Microcycle 2 	Microcycle 3 	Microcycle 4

Figure 5.6: The URJSC XC62000 Control Timing Diagram

Figure 5.7: Self-initialising and self-activating control logic shift register

signal at a given instruction clock cycle and we tap the register at an appropriate

point so that the register output at that point matches the control waveform. This

repeats ad infinitum. The main challenge that we must address, however, is how

to inject the waveform values into the register before the main circuitry becomes

active and in such a way that the outputs of each shift register are aligned and

synchronised to the control waveform.

Figure 5.7 shows a schematic representation of an URISC control shift register.

In this figure FD components are d-type flip-flops and RPFD components are register

protected d-type flip-flops. Both types of register are synchronised to the same

global clock source. When a cell in the XC6200 architecture is placed in protected

mode, its register is isolated from the remaining cell logic and is only sensitive

to an underlying control input from the FastMap interface. Therefore, a RPFD

119

can only he modified by the XC6200 FastMap interface. It is possible to embed

FastMap writes inside a configuration bitstream such that a RPFD can he initialised

(luring the configuration process. This requires, however, that the clock source

for the RPFD being initialised is active during configuration.

Each control shift-register, therefore, is shadowed by a RPFD register which

is initialised during configuration to contain the appropriate control waveform

values. The outputs of each RPFD are connected to the inputs of a corresponding

shift register FD. Since the clock is free running (luring configuration. the FD com-

ponents will latch in the correct initial state value. \Ve must take care, however,

to prevent the shift register from actually circularly shifting the waveform data

during configuration.

We require the FD components to only clock data from the RPFDs for as long

as we are configuring the FPGA. As soon as configuration ends, however, we

must simultaneously change the input sources of each FD so that the cyclic shift

structure is established. To do this, we place a multiplexor at the input of each

FD component and use the select input of the multiplexor to source input data

from either the associated RPFD or the output of the previous FD. Tying the

select inputs of all control multiplexors to the same initialisation signal allows us

to switch between the initialisation and shift modes. Figure 5.8 shows the two

effective modes of the control shift-register.

ConfigOK is a FastMap control signal and indicates when a valid configuration

has been loaded into the configuration SHAM of the device. In detail, this signal

is asserted when the correct values have been written into the XC6200's device

ID register. When the XC6200 is reset, the device ID registers are set to zero and

the ConfigOK signal is dc-asserted. By convention, the last group of configuration

writes to occur in a XC6200 configuration bitstream load the appropriate values

into the ID register. We therefore know that the ConfigOK signal should only

he asserted when the circuitry contained in the bitstream has been configured

120

RMAINFIN
 I 	 I 	I 	I 	I

1 	III 	Iii 	1 	iII 	-]

Co.lroI

Figure 5.8: The Control Shift-register in action: (i) Initialisation mode; and (ii)
Shift Mode.

onto the array. Recalling our discussion of the XC6200 programming interface in

Chapter 3, it is possible to access the FastMap control interface from user circuitry

implemented within the array. This allows the ConfigoK signal to be used as the

select net for the shift-register multiplexors and facilitates the self-activation of

the control logic. At the end of the configuration process, the ConfigOK signal is

asserted and the shift-register is then forced out of initialisation mode and into

shift mode.

Using shift registers to implement the XC6200 URISC control logic may at

first seem wasteful of logic area. A more traditional approach to control logic

design is to combine a counter with a decoder circuit. The decoder is hard

coded to translate each counter value into the appropriate control signals. Logic

minimisation techniques can reduce the area cost of the control decoder. Such

an implementation is conceivable for the XC6200 URISC, and could he designed

in such a way that it satisfies the self-initialising and self-activating constraints.

That is, we would simply use the ConfigOK signal to enable the connection from

the control counter's output to the control decoder's input.

121

The shift register approach has one primary advantage for the FPGA imple-

mentation: the logic for each control signal is separate and when floorplanning

the URISC core, we can place each control-logic signal close to the datapath el-

ements that it influences. This degree of floorplanning flexibility is very useful

for reducing routing delays in the URISC circuitry. Furthermore, the shift reg-

ister design, as we have described it, actually maps well to the underlying cell

architecture of the XC6200. The circuit inherently has regular layout and routing

and the FD and multiplexor can be mapped into a single cell with the RPFD in an

adjacent cell. Furthermore, the same fundamental design is required to ensure

the program counter is initialised with the entry point for the system program.

5.2 The Flexible URISC(FURI)

5.2.1 Differentiating FURl and the URISC

The FURl core is a realisation of the abstract architecture we presented in Chap-

ter 4 and is evolved from the URISC implementation we described in the previous

section. The primary technical difference between the two implementations is that

the memory interface of the FURl core is extended to include access to the host

XC6200's FastMap interface. This is in contrast to the earlier, basic URISC im-

plementation where data is only moved between SRAM locations or from SRAM

to the PC. By allowing the FURl core to control the underlying configuration

SRAM of the host FPGA, we integrate the host FPGA's memory map into the

memory map of the FURl core. This effectively creates a self-modifying system.

Programs that execute on the FURl core can exploit the FastMap interface to

configure, communicate, and compute with the "system bus" SLUs. The funda-

mental programming model of the URISC is not changed the integration of the

FastMap interface: the move is still performs the same basic function.

122

5.2.2 FURl Implementation Details and Challenges

Figure 5.9 shows the datapath of the FURl core. The main thing to note from

this diagram is that there is little additional datapath logic involved in integrating

the FastMap interface with the URISC core. This is mainly because there is

only a small semantic gap that we must bridge between the two kinds of memory

interface used in the URISC core. That given, there are still challenging technical

issues that must be addressed in implementing the datapath logic that is required.

5.2.2.1 The FURl Datapath

There are three main changes to the IEU datapath: first is the addition of the

FastMap interface ports themselves; the second is a subtle modification to the PC

incrementor; and third is the addition of a multiplexor to manage the input source

of the IEU incoming data register. The form and, where necessary, motivation of

each change is discussed below.

The FastMap interface consists of three main port types: an address port;

the input and output data ports; and control signal ports. The format of the

data and control ports is essentially fixed, and independent of the exact model of

XC6200 being used. The width of the FastMap address port varies depending on

the size of the device being used. For example, the address bus of the XC6216

is 16 bits wide whilst the XC6264 requires an 18-bit address. The raw width of

the data bus is 32 bits, although the interface can be programmed to react as

if it was actually a 16-bit or 8-bit interface, disregarding the inactive interface

bits. This variability in the effective data bus width has an impact on the way

that we interpret XC6200 addresses. In 32-bit mode, addresses align to word

boundaries and the two least-significant address bits are ignored. In 16-bit mode,

we address at nibble boundaries, ignoring the least significant bit, and in 8-bit

mode all address bits are significant since each byte is individually addressable.

The second alteration to the datapath concerns the PC incrementor. In the

123

earlier URISC implementation, the addressing of the memory interface operated

on the granularity of words. In the FastMap interface, however, addressing is

at the granularity of bytes. The FURl memory map, therefore, basically com-

prises two address spaces which operate at different granularities. Supporting

both interfaces translates to the requirement that the PC incrementor must alter

the increment value to either 1 or 4, depending on the type of address the PC

currently contains. This raises an interesting design issue: how it is possible to

differentiate an external memory address and a FastMap address. We could argue

that FastMap addresses should never be loaded into the PC, and that instruction

sequences are always loaded from memory. It is clear in the later sections of

this chapter that this is not a sustainable argument since, in some situations, is

imperative that the PC and its incrementor be able to handle FastMap addresses.

A simple convention is adopted to differentiate FastMap addresses from stan-

dard memory addresses. A FURl address contains an additional bit in the most

significant bit position which indicates whether the address is in the FastMap

segment of the memory map, or the standard memory segment. This approach

is useful because of its low decoding overhead: we do not need to place complex

decoding logic within the datapath to determine the type of an address. For ex-

ample, the PC incrementor simply examines the most-significant address bit on

its input and tailors the increment value appropriately. Furthermore, the changes

to the actual incrementor circuitry are small since there are only two potential

increment values to select from.

Adding the FastMap interface ports to the datapath means there are now

two potential data sources for the IEU temporary incoming register. The final

addition to the datapath, therefore, is the introduction of a multiplexor to select

whether data arriving on the FastMap or the standard memory interface should

be latched. The incoming data multiplexor is mentioned as a separate entity

from the FastMap ports because of its control requirement. The selection control

124

SRAM data rfl

5cr 	Irr- 	
- 	 mp1 	 act Map data ,n

temp OUT I

PC 	 MAR 	

SPAM data out

SRAM address
PCnd
	

- 	
-...t%...--.f-----•i 	 Fastmap daa Oct - 	 I

Fastrnap Addr out

Figure 5.9: Datapath of the Flexible URTSC.

for this multiplexor actually comes from an address decoding of the value being

asserted by the address multiplexor, AD\IUX. In the first three microcycles, the

upper bit of this address determines which of the two potential data sources is

the correct one.

5.2.2.2 Accessing the FastMap Interface from user circuitry

One of the unique features of the XC6200 series, and one which underpins the

FURl implementation, is that circuitry configured on the array can have both

read and write access to its control interface. There are technical difficulties in

achieving this state, however. In Chapter 3 we gave a detailed discussion of the

form and semantics of the XC6200 control interface. We have already begun to use

some of the control interface features through our exploitation of the ConfigOK

signal in Section 5.1.3.2.

Each signal of the FastMap interface is associated with a particular lOB in the

array. A given signal can made available within the array with the appropriate

configuration of its associated JOB. The standard design flow for a XC6200 device

includes a special type of design symbol called a cbuf, or control buffer, for exactly

this purpose. The circuit designer may instantiate input or output cbufs within

125

their circuit design. The input and output ports of each cbuf can be sampled

or driven by any user signals which are subsequently attached to it. To access

the ConfigOK signal used in the previous section, for example, we instantiate

the cbuf_out design primitive and use the appropriate mechanisms in the design

environment to identify that control buffer as the signal source for ConfigOK 5 .

When the design description is processed by the XC6200 design environment, the

resulting l)itstream will configure the JOB associated with the ConfigOK signal

such that one of the JOB outputs is a source for ConfigOK within the user design.

ConfigOK is an example of a benign control signal. By benign, we mean that

instantiating a cbuf and configuring an JOB with the resulting bitstream for that

cbuf will not affect the external operation of the XC6200. However, this is not

the case for all control signals. The heart of the problem is that the FastMap

interface, as it is implemented on the XC6200, is single-ported. We may configure

JOBs to provide access to control signals on a signal by signal basis. In doing

so, however, the FastMap control logic no longer responds to any control signals

being asserted through device pins: if we configure a signal for internal access,

it is no longer available externally. This appears, initially, to be an appropriate

design decision. We wish to avoid physical signal contention that could potentially

damage the device and it is therefore fair to assert that only one signal source

should be directly, physically wired to the signal input for the FastMap control

logic.

For control signals like ConfigoK the external isolation problem does not ap-

ply. The ConfigOK signal is actually classed as an internal control signal: it is

only available for use inside the cell array through a CBIJF. Simply configuring

access to internal control signals does not pose an immediate threat to the general

operation of the hardware system. The act of configuration does riot change the

VHDL was used as the description language in the URISC and FURl implementations.
VHDL 'attributes' are the language mechanism used to associate each cbuf instance with a
particular control signal.

126

external device interface in this case Our main problem arises when we try to

assume control of signals such as the Fa.stMap address and data inputs. Here,

simply configuring the array to allow access to the control signal is enough to

alter the devices external interface. Within the space of one such configuration,

we can alter the external interface enough to make the device inaccessible. For

example. the FURl core requires complete write access to the FastMap address

port. This is done by configuring the appropriate address signal cbuf instances

one at a time. However, the section of configuration address space represented

by each address line we assume control of becomes unavailable in any future

configuration.

\Ve cannot avoid the problem by seeking a configuration sequence for FastMap

cbufs that would leave enough of the Fast-Map interface available externally at

any one point to be able to complete the entire configuration. Configuring cbufs

for the incoming data port prevents us from completing configurations for the

address port and vice versa. We can survive for a short time with limited access

to the configuration address space. However, configuring the FastMap chip-select

signal for internal access would make the device immediately inaccessible since all

subsequent external Fast Map transactions involve strohing of the external chip-

select pin.

An alternative approach involves using the XC6200's wildcarding facilities to

simultaneously configure all the relevant JOBs with the desired cbuf configura-

tion. This is theoretically a more elegant solution since it would provide a single

point in time where device control switches between the external and internal

FastMap ports. However, this approach has three primary requirements which

we cannot completely satisfy: first, the target JOBs must have a suitably regu-

lar geometric arrangement that can be encoded by column and row wildcards;

secondly, we must he able to pack the critical configuration data into a single

write over the FastMap interface; and, finally, it must he the same configuration

127

data that is applied to each target JOB. We find an immediate problem with the

first requirement, since the JOBs used for the address, data, chip select and read-

write signals are spread across the East. South, and \Vest edges of the array. We

must therefore broadcast configuration data over three of the four device edges to

achieve our task. If we couple this with physical limitations of the wildcarding

facilities, then the approach quickly becomes intractable.

5.2.2.3 Bootstrapping with the Serial Interface

In short, we know from the previous section that we cannot use the external

FastMap ports to apply the configurations which give complete control of the

FastMap signals to internal circuitry. However, the underlying assumption up to

this point is that we must use the FastMap interface to perform the inital config-

uration of the FURl core's FastMap logic. The alternative which is successfully

employed in the FURl implementation bypasses the FastMap interface altogether

during the bootstrapping phase of the FURl core cicruitrv and, instead, applies

the initial configuration through the XC6200's serial interface. However, once

the initial boot configuration of the core has been successfully configured onto

the target XC6200, the serial interface is discarded. From that point, all subse-

quent interactions with the host FPGA occur through the FURl core's configured

interface to the host's FastMap port.

Serial interfaces generally operate in both slave' and 'master' modes: in slave

mode, the device responds passively to control signals asserted from an external

source; a device in master mode actively asserts its own control signals to source

configuration data from a passive configuration store. The serial interface of the

XC6200 is similar to the serial interfaces in most mainstream commercial FPGA

architectures and, specifically, consists of the six dedicated device pins which are

6 details of the wildcarding mechanism in XC6200 literature[109] state that there is a limit to
the number of cells which can be simultaneously written using the mechanism. In each device
model, the number of addresses we can simultaneously target is smaller than the number of
simultaneous writes that we must apply to complete the switch-over between interface ports.

128

Signal I ROle

/serial Controls whether the XC6200 should enter serial or par-
allel mode

wait Causes the XC6200 to stop loading configuration data
until the signal is de-asserted.

SEReset Asserted by the XC6200 to reset the serial data source
and prepare it for subsequent access

/SECE A chip-enable signal asserted by the master FPGA to
enable data output in the serial PROM

SEC1k The clock signal to which serial transmissions are syn-
chronised

SEData Data being received from the PROM for consumption by
the serial interface.

Table 5.3: Control signals used in the XC6200 serial interface

listed and explained in Table 5.3. Data are shifted into the XC6200 over the serial

interface and is then passed to the FastMap control logic. The FastMap operations

that can be (lone through the parallel interface can also be (lone serially.

Whilst it is true that the control logic design presented earlier does not require

any external control signal to kick-start the URISC core, it is not clear how the

URISC bitstream arrives at the FPGA in the first place. If we rely on the services

of an external agent to actively configure the XC6200 then the implementation

is not truly autonomous. Using the serial interface to communicate the initial

design actually addresses both issues: it allows us to configure each JOB with an

appropriate cbuf to facilitate internal access to the desired FastMap signals; and,

second, it serves as a low-level physical mechanism for making the FURl core

autonomous. When the XC6200 is powering up or is reset, the signals asserted

on the /serial' and wait pins define whether the device enters master serial,

slave serial, or parallel mode. The device context for time autonomous FURl

implementation is shown in Figure 5.10. The FURl bitstrearn is held in a serial

PROM which is hardwired to the XC6200 serial interface. Physically tying the

/serial and wait pins to ground initially locks the device into master serial

1 signal names with a preceding / are active-low.

129

EReset 	 No

SECE 	 ON

SECIk 	 No

3EData

I
Figure 5.10: Autonomous FURl system using XC6200 master serial configuration

mode. After the XC6200 completes its internal power-up sequence, it actively

reads the FUR.I bitstream held in the serial PROM. In this organisation, no

external control source is needed to manage the boot-configuration of a FURl

core.

5.2.3 FURl Control Logic

Fundamentally, the same control logic design is used for the FastMap control

signals as is used in the earlier basic URISC implementation. However, it is

necessary to scale the circuitry slightly to accommodate changes in the control

timing diagram that arise from the inclusion of the FastMap interface in the IEU

memory map.

5.2.3.1 FastMap Timing

Figure 5.11 contains the timing diagrams which specify the series of events that

the IEU control logic must trigger to perform a FastMap read and write to the

XC6200 configuration memory. The diagrams show examples of both basic and

extended transactions over the FastMap interface. The FastMap interface oper-

ates synchronously with respect to the global clock signal, GC1k. The clashed lines

in each timing diagram show the points where the interface signals are sampled

by the XC6200's internal control logic. This always occurs at the rising edge

of the GC1k signal. In a basic read or write cycle, /cs is first sampled low and

130

T 	 T,

GCIk

Cs

RDWR

Address

Data

T 	 T 	 1, 	 1 3

GCIk

Cs

RDWR

Address

Data

Figure 5.11: FastMap Interface Timing Diagrams: (i) Configuration SRAM
Write; (ii) Configuration SRAM Read

then sampled high before another cycle can start. If a longer sequence of reads

or writes is to be undertaken, a basic cycle can become an extended cycle by

returning /cs to low immediately after it has been sampled high, at the end of

the basic cycle. The FastMap interface will continue to process inputs until the

/cs signal becomes high again, signalling the end of the extended cycle.

The timing requirements for a FastMap state access differ slightly from a

configuration SRAM access. A state read takes longer than a configuration SRAM

read, although writes have the same cycle time. The FUR.I implementations in

this thesis have moderate system clock speeds of up to 32MHz and the longer

131

GOUT Temp

GIN Temp

PCMUX

CADDR

CPC

ADMUX

SRAM Read

SRAM Write

FMap Read

FMap Write

FMap CS

GCLK

GCLK

Figure 5.12: FURl Control Timing with integrated FastMap Read and Write
support

state cycle time does not pose a particular problem. We should note that, at

this stage of the thesis, the intent is not to explore circuit level performance

enhancements to the FURl core. The main challenge here is implementing the

standard architecture itself. However, if the system clock period was sufficiently

high, it would be necessary to have separate control logic to manage state accesses.

A FastMap transaction may be involved in at least two of the four FUR!

microcycles. For example, our general aim is to exploit the FastMap interface

within the FURl core as a means of customising which components are present

on the URISC system bus, and also interact with those components. In terms

of FURl accesses to the FastMap interface, this translates to being capable of

reading and writing both configuration and state data during the second and

132

fourth FURl inicrocycles. The actual source and destination addresses of each

move instruction are still fetched from external memory and we do not consider

program code which may be embedded within the cell array itself. Section 6.3.2,

however, describes a situation where it is imperative that the FURl core can

execute such internal' code. We therefore support FastMap transactions in all

four microcvcles.

Although the tuning diagrams in Figure 5.11 appear fairly simple. there are

some challenges involved in integrating theni with the underlying URISC con-

trol. The first challenge is to meet the hard timing requirements for the correct

sampling of the /cs signal. If the /cs signal is sarripled low at T0 then it must

be sampled high exactly one GC1k cycle later, at T1 . If this does not happen,

the transaction will not complete. In the basic cycle, other signals in the timing

diagram need only be sampled correctly at T0 .

Furthermore, the timing diagrams in Figure 5.11 show that the signals that

driven onto the FastMap interface are slightly out of phase with the main GC1k

signal. This is because the FastMap control signals each have minimum setup

time constraints. We must guarantee that these constraints will be met before

the signals are sampled at the rising edge of GC1k. To facilitate this, the imple-

mentation of the FURl core presented here synthesises a FastMap control clock

that is 1800 out of phase from the main GC1k. This is done by routing the GC1k

signal through an inverter and, from there, directly to the input of one of the

XC6200's low-skew global nets. A low-skew global net is appropriate for use in

this instance since the FastMap control logic, like the general URISC control logic,

may be spatially separated across the cell array. Using standard routing resources

would undoubtedly result in subtle signal skews which could then interfere with

the correct tinning behaviour of the control logic.

Figure 5.12 contains a modified timing diagram showing the FURl control

timing, including the FastMap signals applied during each microcvcle. One of

133

the first things to note about this diagram is that an instruction cycle now takes

19 clock cycles. The first three instruction microcycles are extended by one clock

cycle. This is to accommodate the three clock cycles required for a FastMap

read transaction. In the original URISC timing, only the first two cycles in a

microcvcle were required to setup an SRAM read transaction: in the first cycle,

the address is asserted on the bus and on the second cycle the appropriate control

signal is asserted'.

At, first glance, the three clock cycle FastMap transaction does riot appear

problematic since the incoming data register will also latch its input on the rising

edge of the third clock period. However, it the phase difference between the stan-

dard URISC control signals and the FastMap controls that complicates matters

and provides the motivation for the extra clock period. In short, the extra GC1k

cycle allows us to meet the setup timing constraints for /cs signal by giving /cs

the time to do a complete transition from high to low then back to high. If/cs is

sampled low at the second GC1k and high at the third, the FastMap data will still

not he valid until the rising edge of the fourth GC1k. This is too late for standard

URISC tinning since the incoming temporary data register latches its input on

the rising edge of the third GC1k.

An alternative solution involves initialising the /cs signal to start at low and

rise to high half way through the first GC1k period. Correspondingly, for future

instruction cycles /cs must then begin its transition to low at the end of the

fourth microcycle. We rely on the mechanics of the self-initialising control regis-

ters to ensure that /cs is initialised to the correct value. The net effect, however,

is that the FastMap transaction begins one cycle earlier and falls back into align-

ment with the original URISC timing. Provided we guarantee the validity of the

appropriate address as the first GC1k rises, the first three rnicrocycles could be

'it is acknowledged that this is also not the most efficient timing and that, when this thesis
was written in 2000, it is commonplace for SRAM interfaces to allow simultaneous assertion of
address and control signals.

134

again shortened to four clock periods. The FURl implementation used in this

thesis does not use this timing approach, although it is presented as a potential

design enhancement that would increase the core performance.

The foiji -th instruction inicrocycle has a simpler implementation since a basic

FastMap write has only two significant GC1k sampling points: it is not necessary

to wait for any result on the Fast-Map data port. Again we allocate the first

clock period in the nhicro(vcle to setting up the address and, in this case, data

buses. In the second clock period, the PC multiplexor is set to allow the program

counter to he overwritten whilst the /cs signal simultaneously makes its high-to-

low transition within the setup time constraint. By the time we reach the rising

edge of the third GC1k. /cs has settled low and the FastMap write can begin. It is

also (luring the third GC1k period that /cs will make its rise back to high ensuring

the nhinirnuin setup period will have been met when the signal is sampled at the

rising edge of the fourth clock.

5.2.3.2 Implementation of the FastMap Control Circuitry

In the timing diagrams presented so far, the read and write events have been

separated into two different control signals. This has been the case for both the

FastMap and basic memory control timings. We should note that, in reality,

both signals are physically represented by a single 'read-not-write" control. This

is evident in the timing diagrams for the FastMap interface and the FURl im-

plementation of the FastMap: the first diagram has only a single rd/wr control

whereas the second has two separate signals. In the original URISC timing dia-

gram, tile, active state of a device was derived from the current assertion on the

read and write controls. Since the two signals are operationally mutually exclu-

sive, if neither is driven then we can deduce that the target device is inactive.

Conversely, the target device is activated by an assertion of either control input.

In reality, both memory interfaces in the FURl core use an explicit chip-

select signal to identify when the interface should be active. This allows a single

135

read-write signal to identify which action should be performed when the device

is active. Originally, the read and write controls were presented separately to

provide a slightly more intuitive indication of what a particular interface was

doing in a given clock period. For example, a single pulse on the read control at a

given clock period clearly identifies that a read is occurring, when it is occurring.

and how long it lasts. Furthermore, we need not explicitly cross-referencing the

state of a chip-enable signal to identify whether the action is actually happening.

or whether it is ignored.

In the first design iterations of the FURl core, the Fast -Map read and write

signals were indeed instantiated as two distinct control logic shift registers. This

was motivated by a potential area saving based on the observation that, when

taken separately, the two signals were simply repetitions of bit sequences of length

5 at most. Two smaller shift registers of length 4 and 5 respectively were designed

to capture the repeating patterns of the FastMap read and write signals. A simple

multiplexor was used to select which of the two signals should be driven onto the

actual FastMap rd/wr input. The FastMap write control shift-register should

drive the read-write port during microcvcle four with the read control register

driving at all other times. Since the PCMUX signal is only ever active during the

fourth rniicrocycle, it is reused as the select input to the FastMap read/write

multiplexor9 .

A further motivation for reducing the size of the FastMap control logic was to

attempt to balance the routahility of the FURl core with the tuning requirements

of the FastMap control signals. A floorplan of the FURl core that surrounds the

FastMap control signals is shown in Figure 5.13. The main point to draw from

this diagram is that there is a large amount of datapath logic surrounding the

FastMap control signal JOBs. Additionally, the access points for the SRAM

9 Using the PCMUX signal in this manner is not an optimal solution to this problem as it adds
extra semantics to the signal. However, it is also arguable that the PCMUX is already asserted
for longer than it need he: in the original URISC literature, the PC multiplexor is enabled for
all of microcycle four when it could be restricted to match the timing of the CPC signal.

136

SRAM Addr 	[IL IL Buffer 	
[lE]DL PC
I)ILJL

LII IL][I1LiU
Decoder

I nte rleaved 	 üi ILU / Address

SRAM Address 	 ciII ILJLH[IL 	11 	Th MUX

and FastMaP
Data Ports MAR

PC
4Tncrernentor

FastMapCS L I[][]UI Control Logic
 jUt

lE 	IUEIIIL

P

IL

C

 I [i
L

	

I 	EL

i

E

i
IL iIIt

 t 	lUt
IL

	I

1 	 :

FastMapRDWR t 1, 1,

 it m
Control Logic 	-, 1111 	tUE][)UflEU

UI 	IL 	II 	IL ii 	it 	lUE II]ULiLiU
UL1LJLJHHHULjLJUrnrnfl f==i~ ==[=)= _

Fastmap 	Fastmap

RDWR 	CS

Figure 5.13: Floorplan of FURl core around the FastMap control Ports

address and FastMap data port are on the west edge of the cell array. This

increases the routing congestion in this part of the cell array further since the

nature of these signals meant they consumed significant amounts of the upper

levels of the XC6200 routing hierarchy. Essentially, the /cs and rd/wr control

logic must be placed close to the lOBs providing those FastMap ports. The /cs

control logic was implemented similarly.

In the final design iteration, shift register logic for read and write control was

removed completely and control for the /cs signal was implemented as a single

19-bit shift register. Our main motivation for taking this approach is to increase

the routability of the design in the congested region around the FastMap control

signal ports. In the strictest technical terms, the resulting control waveform does

not match the FastMap timing since the FastMap read and write signals are

now asserted for entire URISC microcycles. However, there is enough tolerance

137

in the specification of the interface to maintain correct operation. The /cs logic

is clocked from the inverted GC1k signal to facilitate the phase shift between the

FastMap and normal core signals.

5.2.4 Debugging the FURl Core Circuitry

5.2.4.1 The Effects of Device Isolation

One of the greatest strengths of the XC6200 architecture is the relative ease that

circuitry can be interrogated and interacted with using the Fast-Map interface

from the outside environment. However, we lose this valuable debugging interface

and the XC6200 effectively becomes isolated from the outside world wlieii we

give control of the FastMap interface to circuitry within the cell array. This

complicates the development of circuitry and programs for the FURl system since

the FastMap interface cannot be used to monitor the progress of the circuitry and

core as the program executes. Developing and testing the FURl core circuitry

itself is challenging in this environment. Since the FastMap interface becomes

inactive during serial configuration it is often not immediately clear if a failure

is caused during configuration or because of an error in the executing FURl

program.

The isolation of the XC6200 from the external system has a significant impact

at different design levels in the FURl system. In this section, our primary con-

cern is describing the particular approach taken during the implementation and

debugging of the FURl circuitry. Immediately following this section, however, is

a larger presentation of the FURl design and programming environment. This in-

cludes details of the tools used to develop the FURl core arid, in particular, a tool

to help compensate for the isolation of the FURl core when designing circuitry

off-line.

A lack of access to the FastMap interface means it is necessary to resort to

physically debugging the FURl core circuitry. That is, be of analytical instrumen-

138

S... 	 •sss

.... 	S...

XC6200/
FURl 	 SHAM 	SRAM

SP..\M 	SRAM
XC4000
PQ&Boaid

Figure 5.14: The VCC Hotworks Development Card

tation such as logic analysers and oscilliscopes to monitor FURl circuitry state

via the signals driven on the XC6200's device pins. Generally speaking, this is a

much poorer debugging interface than the FastMap. We are limited to passively

observing the device outputs and, if we wish to observe an internal core signal,

it must first be routed to a device pin that is accessible to the logic analyser

probes. To complicate matters further, there are only a limited number of de-

vice pins that we can use to output the state of internal signals. The analogue

nature of physical debugging does serve as an advantage. The physical traces

we collect are actual samples of the circuitry outputs taken in real time. This

can reveal physical timing glitches and hazards that are otherwise not evident

through the synchronous FastMap. Since we are using multiple clocks of different

phases, being able to physically observe any such behaviours in the core circuitry

is valuable.

5.2.4.2 The FURl Development Platform

To give an adequate description of the hardware testing platform, some general

details of the hardware platform used for FURl development are appropriate

at this point. The URISC and FURl implementations described so far have

both been targeted at a PCI prototyping card that is compliant with the Xilinx

139

XC6200 Development System architecture [84, 30]. In particular, they have both

been implemented on a VCC Hotworks development card. The Hotworks/XC6200

board architecture is shown in Figure 5.14. For our current aim, the main thing

to notice from this architecture is the existence of a series of PCI daughtercard

connectors. These connectors are physically routed to the device pins of the

XC6200 and allow a daughtercard to physically interact with the XC6200. Figure

5.15 shows the VCC Hotworks prototyping daughtercard which maps selected pins

from the XC6200 to a collection of wire-wrap header pins. Logic analyser probes

attached to these pins can observe data being transferred between the XC6200

and the onboard SRAM and also from the serial PROM to the XC6200 serial

interface. The DA and DB ports are mapped to the JOBs on the North edge of the

FPGA and form part of a console (CON) port. This port is also available as a

readable device register implemented by the XC4000 board controller. Software

executing oil the host processor can read values driven onto the CON port lOBs

and, theoretically, we could use this register to inspect the internal state of the

device. However, since we do not have write access to the XC6200, it is not

possible to use single-step software clocking: the FURl core must execute at full

clock speed. A logic analyser is more appropriate for capturing such free-running

signal traces. Fortunately, the signals from user logic driven to the CON port

JOBs can he physically sampled at the prototyping card's corresponding headers.

5.2.4.3 The FURl Design-Debug Test Cycle

Time design-debug cycle for testing the FURl core circuitry is shown in figure 5.16.

The diagram shows some of the tools and auxiliary design tasks that are involved

at different stages. The first two stages of the cycle are simply design capture,

compilation, and mapping. With the FastMap interface, it is rarely necessary to

instantiate additional logic to support debugging alone' 0 . Here, however, we must

configure and explicitly route internal user signals to JOBs so that we can sample

10 A form of software controlled clocking is the exception to this rule.

140

Ll1i 	 VCC •.i..uj •.i..._••••••••
'S......

C
1.1..•

CTRL
•.i.S.
•.I..0

DB Port

........

..'..l
•.I..•
.. I •. -

-I-----

•SSS••S•
•S S
S.!... S. SS •L11111

•••,,••'AYI.I
•u....I

JiJJ I WA
West Data
SS••S•SS

.....S..• E A1l 5••SS••I
West Data •.......•

e1I. ED••....S..i

Figure 5.15: The VCC Hotworks Prototypiiig Daughtercard

them with logic analyser probes attached to the daughtercard. The system clock

speed is low enough in this instance that there are no adverse effects on circuit

timing. Expressing this additional debugging logic in VHDL is not difficult but

makes the place and route task even more demanding. Indeed, routing congestion

means it is sometimes necessary to limit the number of signals routed to the lOBs.

Stages three and four are an artifact of our use of the serial programming inter-

face on the Hotworks board to load the FURl bitstream. We must program each

new bitstream onto a PROM or, preferably, EEPROM and then physically install

the new EEPROM in the appropriate board socket. This is, generally, one of the

most cumbersome ways to achieve our serial configuration goal. More elegant so-

lutions could have involved in-system re-programming of the EEPROM or wiring

the serial interface directly to a software accessable register in the XC4000 board

controller. Unfortunately neither of these were supported by the development

platform.

In the next stage, the testing equipment must be physically reconfigured to

match, for example, any changes in the signals mapped to the debugging interface.

This includes recalibrating and reprogramming the equipment, and also updating

the probe attachment configuration to match any changes to the debugging signals

driven to the prototyping card. Once this is done. we can capture a signal trace

141

of the FURl core in operation. In our earlier discussions regarding the XC6200

serial interface, we considered both master and slave serial configuration and

advocated the use of master configuration to facilitate an autonomous FURl. In

the Hotworks platform, the XC6200 has a slave relationship to the serial PROM

and relies on the services of the hoard controller to initiate the serial download.

Whilst the current implementation does not quite achieve full autonom, this is an

attribute of the development platform used and riot a symptom of a fundamental

inability to achieve full autonomy.

A simple board console program, QPCItest, allows us to trigger the initial

serial configuration from the host systern and is described in more detail in a

later section. An auxiliary design task at this stage is to create small fragments of

FURl code that will exercise the core feature we wish to test. This would include,

for example, hand coding a small sequence of instructions that repeatedly cause

a FastMap transaction. The hoard console also facilitates loading this instruction

sequence into the appropriate region of onboard memory. The serial configuration

sequence is then initiated and we capture traces of the internal FURl signals

SRAM bus transactions as they occur in real time. The final cycle stage is

dedicated to analysing these waveforms and traces to identify the existence any

errors and deduce their cause.

5.2.4.4 Reducing the number of debug iterations

Each design change to the FURl core involved an iteration of this long debug

cycle. The incremental approach used in the development programme, however,

helped to reduce the number of FURl debug iterations. For example, since the

FURl core implementation was evolved directly from the simpler URISC imple-

mentation which does not require the isolation of the XC6200 to operate. We

could, therefore, debug the URISC implementation relatively rapidly using the

facilities of the FastMap interface and single-cycle software clocking. The net

effect of this is that it provided a strong foundation and helped to validate the

142

- 	 - 	(i) Limited FastMap
Circuit Test and

Debug
0

M hoc Ph

Inredc. Cie0on 	 .- -- 	 N

Conuol Logic Reomog 	- - - 	I 	Circuit

L Bitstream
-

	

Circuit 	- 	-- 	-
Netlist

1. Modify the FURl 	
2. Re-place and Re-

Core DesrgnNHDl 	
route the core design tI source

6. Analyse physical
signal traces to

determine success/
failure of design

modifications

- 5. Reconfigure and
- use analytical

instrumentation to
capture design trace

oo

- 	 EEPROM
Bitstream

Ape s.

3. Reprogram Boot
Configuration 	rcrooe

EEPROM

Programmed
EEPROM

4. Replace existing
Boot Configuration

---- 1 	EEPROcI

Hood Coded FURl

ieStharneso code

Figure 5.16: FURl Core Hardware Debugging Cycle

FURl core circuitry.

The design-debug cycle in Figure 5.16 shows an limited debugging stage ad-

jacent to the placement and routing of the core design and feeding directly back

to the first cycle. Here, we avoid configuring the internal FastMap interface and

interact with a limited or constrained version of the FURl core circuitry. For

example, a circuit simulation of the FastMap interface was initially designed and

attached to the internal address, data, and control paths of the FURl core. The

simulated internal interface was designed to respond as closely as possible to the

real FastMap interface. Circuitry debugging tools such as Qlnspector, which is

described in the following section, could then be used over the FastMap interface

to monitor the FURl core as it interacted with the simulated interface. In the

early stages of the FURl core implementation, this path dominated the design-

143

• 	 -

JOT 	1J1JE
• 	11ST/ 000400

'.'. 	 S 	rsi,coo 	1k

S 	JST(CONPCT 005
• 	JST/C0000ECT_006
S 11ST/C0LCT 007 	 El I 	I ig I [B

V A.0W 	 .

S NSTICOPO40CT 010 	 - -
CSLF

_________________________________ • 	4T/C0NtCT Oil 	 1As,g,l_0_l0 	 - GCUO

• 	ir15T/C00040CT0iZ 	V rA,S9l_0_11

1.

• 	S /CC) 	Cioi0 	V 	n_Q_ 	 10

! 	
14ST/C0EC' 014

mQ 	f]

OoVo(
DI

1T719

-i (000 JUl30 0 	0000500 00
3 J 0fl51fl0O01k:0 	04Qfl5fl3fl0

0 	010
3;0 	 _IDIXI1 	I) 	(Ii 500ft0 	100000000000 00

7 	8UUU0U0u0000000

000000000)iU III)
0l__• 	 9 	9000000080000000 	00000000000Th80

 : -Do04& 	0

Figure 5.17: qlnspector Design Views

debug cycle. We only pursued a full debug cycle after the core reached a suitable

level of functionality.

5.2.4.5 Qlnspector

qlnspector is a Linux tool that facilitates interactive, visual validation of the

functionality of XC6200 SLU circuitry. The tool offers three design views: an

interactive board view; and both waveform and trace views of selected symbols

within the SLU circuitry. Figure 5.17 shows a snapshot of these views as the main

debugging environment used in the development of both the FURl core circuitry

and FURl-compatible SLUs. The tool uses the XC6200's FastMap interface to

determine the state of the target SLU. A rich scripting language is implemented

to allow the SLU designer to apply sequences of test vectors, gather the trace

results, and access most of the user interface control functionality.

144

5.3 Summary

This chapter presented the design and implementation of the Flexible Ultimate

RISC, an evolution of the Ultimate RISC. We presented a detailed discussion on

the challenges of implementing a self-modifying microarchitecture on the target

FPGA architecture. From here we then considered some features of the develop-

ment and debugging process and environment of the FURl core.

145

Chapter 6

The FURl Programming and
Runtime Environment

In this chapter we present details of a programming and runtime environment

for the FURl core described in the previous chapter. The chapter has two main

components:

• First, we present details of the design flow and an associated toolset for

programming the FURl core. This discussion pays particular attention to

the merits and complications associated with different approaches to loading

SLU bitstreams.

• Second, we introduce the FURl executive as a basic, multitasking runtime

environment for the FURl core. During this discussion we describe a base

protocol for interacting with the executive and consider issues such as FURl

code embedded within the host FPGA itself.

6.1 Programming the FURl Core

So far, we have presented a comprehensive discussion of the design, operation and

implementation of the FURl core. What we have yet to present, however, is a

programming environment and associated tools that will allow us to exploit the

FURl core. Figure 6.1 shows the design flow that has been developed to facilitate

FURl system construction. Before we can explore this in detail, however, it is

WC

worthwhile clarifying the definition of a FURl program.

6.1.1 What is a FURl program?

In a fundamental sense, a FURl program is simply the sequence of move in-

structions that is executed by the FURl core. However, when taken literally,

the raw sequence of moves rarely amounts to any form of complex calculation.

As a transport-triggered architecture, FURl depends on the availability of the

appropriate system bus SLUs for use as transport targets. A FURl application,

therefore, comprises a collection of SLUs that are used as targets for the data

transports effected by the execution of the move instruction sequence on the

FURl core. From this point of view, it is clearer that the design flow presented

in Figure 6.1 addresses more than just the construction of FURl programs: it is

a framework of tools and libraries used to create FURl applications.

6.1.2 The FURl Design Flow

We can broadly partition the design flow into two sections: the right side of the

flow addresses the construction and execution of FURl programs whilst the flow

to the left considers the construction of SLU circuitry. In between these two

sections is a central flow that provides a bridging mechanism to facilitate the

loading and interaction of SLUs within a FURl program.

6.1.2.1 SLU Design Flow

SLUs enter the design flow either as unprocessed 'soft' VHDL descriptions or

as 'hard' pre-defined SLU bitstreams in circuit libraries. The VHDL side of the

design flow uses two of the XC6200 standard design tools to compile SLU descrip-

tions to bitstreams: Velab compiles the structural VHDL description of an SLU

into an EDIF netlist and the XC6200 place and route software maps the netlist to

the FPGA architecture and generates an appropriate bitstream'. Essentially this

1 xC6200 bitstreams are commonly referred to as CAL files where the term CAL is an historic
reference to the Algotronix CAL which preceded the XC6200.

147

-u

SLU LA-7

Co,,pUs)
V 	 - PJft

V 	 UDC 	 - -

WN) 	 £

V

XactG000 	 FUMI.sn,
-

(PI..nd 	 042hfl 	 SW dV C.

Rod.)

V
V

SLU ftwo-
FAAW 9..y

.ym2..m 	 J

Tat I*a..
- (Ett.aon

PMW-
E,on Va

(TXT

Figure 6.1: The FUR.I Design Flow

is the same circuitry design flow used for the FURl core circuitry. Rather than

outputting a formatted data file for use with an EEPR.OM programmer, however,

the place and route tools produce a raw bitstream.

Once the SLU has been rendered into a bitstream, the intermediate tools are

used to convert it into a form that we can use within a FURl program. Two of

these tools, cal2img and cal2furi convert the bitstream into a loadable' form.

That is, we convert the raw bitstream data into an assembly representation of one

form or another that can be used later to instantiate the SLU on the cell array.

The two tools, discussed below, generate different assembly representations of a

circuit bitstream.

Instantiating the SLU involves the services of a circuit loading subroutine.

We will describe different forms of circuit loading routines in the later sections of

this chapter, but a short, high level overview of the loading process is appropriate

before discussing the loader support tools below. The main task of an SLU

148

loader is to transfer each word of an SLU's bitstream data from the general data

memory into the configuration memory of the host XC6200. The exact sequence

of actions performed to transfer the bitstream depends on the organisation of the

bitstream in data memory. The loader subroutine understands the structured

layout of the bitstream data and can transfer each word of the bitstream image

to its appropriate destination within the XC6200's configuration memory.

cal2furi takes the bitstream data and generates two files. The first file

contains a specialised assembly subroutine that, when run, transfers the target

SLU bitstream data from a specific, hardcoded locations in data memory to the

XC6200's configuration memory. The second file contains the raw bitstream data

encoded as a memory image. This memory image is actually a sequence of com-

mands to the execution interface of the execution environment 2 . When each

command is applied, it places a single word of the bitstream data at a particular

location in board memory. Each location matches a location that the specialised

loader subroutine expects to find a single word of the bitstream. cal2img converts

the SLU bitstream into an assembly datastructure, along with some assembly con-

stants to describe the contents of the structure. A generalised loader subroutine

can be passed these constants as operands, allowing it to dynamically instantiate

different bitstreams.

With cal2furi it is necessary to define, in advance of the main program

assembly, a region in program memory where the SLU bitstream can reside. It

is also necessary to explicitly 'link' the SLU memory image with the memory

image containing the application program itself. Manually arranging the memory

floorplan of the FURl application is not sustainable in anything other than the

small scale. However, the cal2furi mechanism has the advantage of avoiding

the control-flow calculations required by a generalised circuit loader programmed

2 llere, the execution interface is formed by the debugging tool qPCltest. This tool has a
script-style command interface. One of the features of this interface allows allows the SRAM of
the Hotworks board to be populated with data. It is this operation that we exploit to fill the
program and data memory of the Hotworks board prior to activating the FURl core itself.

149

in FURl assembly.

A third tool, sym2asm, generates an assembly-level SLU interface description

to facilitate interaction with an SLU after it is loaded. The assembly interface does

not contain any program code; rather, it comprises a series of literal declarations

and constants that define the position of an SLU within the FURl memory map.

In particular, the interface specifies the exact memory locations of each SLU input

and output along with the map register values that must be applied when the

registers are being accessed. Earlier research [13], has shown that deriving this

interface information from the raw XC6200 bitstream is non-trivial. The intention

here is not to derive this information from the raw bitstream, although it is noted

that the approach used in the XC6200 configuration compression technique[49]

shows some promise for this. Instead, sym2asm exploits a file containing symbolic

information about an SLU that is produced as a by-product of the place and

route process.

6.1.3 The FURl Assembler

Expressing anything other than the simplest of algorithms using only the FURl

core's move instruction is very cumbersome. To facilitate the construction and

expression of larger FURl programs, a FURl assembler was developed. The

FURl assembler operates on sequences of raw move instructions at its core, but

is itself flexible and supports the definition of a higher level instruction set in-

terface using instruction macros. This is similar to the dynamic assembler used

in the programming environment [22] of the DISC project. In both situations,

we have a processor microarchitecture capable of using dynamic reconfiguration

to facilitate a flexible instruction set. However, the operational characteristics of

the FURl core are quite different from the DISC processor. The DISC dynamic

assembler focuses on supporting a flexible instruction set through defining dif-

ferent instruction formats. The FURl assembler, on the other hand, has a fixed

150

basic instruction and format and facilitates a flexible programming instruction

set through macros which define the set of basic data transports to SLUs that

are required to implement each particular instruction. A complex compound'

instruction can be defined from a sequence smaller, simpler instructions. Each

macro has a header, which defines the instruction operator name and number of

operands, and a body comprising the sequence of instructions which implement

the compound instruction. When the FURl assembler is processing a particular

assembly file, it substitutes each macro instruction with a specialised instance of

the macro body. Using this mechanism, it is possible to build a richer assembly

programming interface on top of the minimal FURl core instruction set.

Earlier in this chapter, we discussed the lack of URISC addressing modes and

how their absence can be overcome with programming conventions. The FURl

assembler supports many of the standard features of an assembler, such as declara-

tion of data literals, symbolic references to those literals, and named instruction

labels. The assembler also supports or applies programming conventions used

to implement the more complex addressing modes over the underlying absolute

addressing mode. For example, the assembler supports immediate addressing

explicitly through a table of immediately-addressed literals. Every instance of

immediate addressing is converted to an absolute address within this data table

which is then included in the final binary image of the program. Indirect ad-

dressing is supported in two forms. In the first form, an asterisk '*' operator can

be applied to dereference any literal operand during assembly, effectively substi-

tuting it for its initially defined literal value. The second form is more dynamic

and uses the self-modifying code strategy described earlier in this chapter, but

requires that the FURl assembler supports the application of a static offset to an

instruction label. This allows us to define the point in the instruction stream that

is to be modified relative to a particular instruction label. The implementation

of the strategy can be captured as a specialised version of an instruction macro.

151

6.1.4 Kernel Circuitry

The calculations that underpin basic control flow in a FURl program require that

we define a set of kernel' circuits. In implementation terms, the kernel circuits are

a set of SLUs that are loaded onto the host FPGA after the FURl core circuitry

has been bootstrapped and before the main control program of the FURl core

begins executing. The SLUs perform simple ALU calculations that are used when

implementing the URISC-style conditional branches that we described in Section

5.1.2.1. The kernel circuits themselves are not directly wired to the datapath of

the FURl IEU, we use the standard FastMap mechanism to access their input and

output registers. However, their use as primitive, low level operations in system

operations such as branching advocates that we consider them as something other

than standard application SLUs. We may consider the kernel circuits as "system"

SLUs, but the term, as defined in Chapter 4, refers to a different context does not

directly translate onto the role kernel circuits play: the circuits themselves do not

access any privilaged resources within the host array. Rather, we use the term

kernel to indicate that the circuits are at the heart of the set of circuits required

to support computation within the FURl system.

The FURl system, as implemented, uses three kernel circuits: a 32-bit adder, a

32-bit comparator, and a 32-bit logical-AND. Together, the three circuits provide

enough computational facility to implement a branch-if-not-equal operation. In

detail, the 32-bit comparator implements the equality test. We use careful circuit

floorplanning to contrive a placement of the comparator's output register such

that it lies in the second bit position with respect to the circuit inputs. This

allows the same map register values to be used for accessing both inputs and

outputs of the SLU. Reading the comparator output with the FastMap interface

will then return either an integer zero or integer two. The logic-AND SLU is used

to mask out any result bits that are not actually part the comparison result. The

masked result and proposed branch address can then be fed into the inputs of the

152

32-bit adder which has the effect of biasing the jump address according to the

result of the logical test operation. The biased address presented on the outputs

of the adder is then moved directly into the PC, causing the conditional branch

to take effect.

Kernel circuits are generally the first circuits to be loaded by any bootstrap

or control program executing on the FURl core. This assumes, of course, that

we do not include them as part of the FURl core bitstream that is programmed

onto the serial PROM. Not taking that approach affords slightly more flexibility

overall but, in the early stages of the FURl core debugging, some limited test

SLUs where included in the FURl PROM. This was done solely to verify, using

an appropriate FURl test harness, that state accesses were operating correctly

over the FURl core's internal FastMap interface. Development of the cal2furi

tool was motivated as a means of systematically loading kernel circuits without

relying on the services of any SLUs: to recall, only basic move instructions are

used in the loader subroutines generated by cal2furi.

6.1.5 Assembly Libraries

In the FURl design flow, we see that the FURl assembler receives source files

from the SLU point tools and application code created by the system program-

mer. However, a third set of source files are used by the assembler to actually

define and shape the programming environment. Normally, the assembly level

programming environment seen by the system programmer is already specified

by the hardwired features of the processor architecture itself. For example, the

processor may have a defined set of ALU operations and a particular number of

device registers. Even subroutine call stack processing will be influenced by the

underlying microarchitecture.

This is not the case in the FURl environment. Here, we can define an instruc-

tion set interface through the macros contained in one of the standard assembly

153

library files. On a larger scale, we can define and control, in detail, exactly how

the FURl subroutine mechanism operates. The following sections describe some

of the main assembly library files that underly the FURl programming environ-

ment used by the programs in this thesis.

6.1.5.1 Core Programming Environment Features: Instructions and
Constants

A series of assembly library files provide a definition of one core instruction set

that is available to FURl programs. This includes the definition of instruction

macros which are directly based on the existing facilities of the FURl core. For

example, the address of the PC and macros for the unconditional jump instruction

'jmp' are defined here. Instruction macros and interface constants which harness

and represent the facilities of the kernel SLUs are also introduced here. For

example, with respect to our earlier discussion of the three basic kernel circuits,

we define the three kernel SLU instructions and, add, and cmp. We also define the

conditional branch macro alongside the kernel SLU macros because of the close

relationship it shares with them.

6.1.5.2 Subroutines

Subroutines are an essential programming construct and their implementation in

the FURl programming environment can be slightly complicated. Two forms of

subroutine are supported in the initial programming environment: lightweight

subroutines; and full-strength subroutines. The primary difference between the

two is the amount of context information that is saved and restored between

calling and returning from a subroutine.

Lightweight subroutines are defined via two macro instruction definitions, j sr

and ret, and maintain the absolute minimum amount of state information needed

to make, and return from, a single subroutine call. Specifically, we define a

single location in memory that acts as a minimal call-stack. On making the

154

subroutine call, we place the address of the instruction that follows immediately

after jsr in the minimal call-stack. Calling ret to return from the subroutine

then simply involves moving the contents of the single-cell stack to the PC. At

first this approach seems overly restrictive, but it has the advantage of having

a very low processing overhead. We only need two move instructions to effect

the subroutine call: one to store the address of the return point, and one to

unconditionally branch to the subroutine entry point. Returning only requires

a single move to unconditionally jump to the return point. Furthermore, the

mechanism relies only on the facilities of the FURl core circuitry and there is no

need to interact with any kernel SLUs. However, since this approach only supports

subroutine calls with a depth of one, it is quite significantly constrained.

Full-strength subroutines allow a deeper nesting of subroutine calls using a

call stack implemented in program memory and a frame pointer which traverses

up and down the stack as subroutines are called and return. This motion requires

the support of the kernel adder SLU to calculate each new frame pointer address.

Our use of the adder makes modifying the state of the XC6200's device registers

unavoidable. We must enforce the appropriate kernel context' on the device

before interacting with the kernel SLUs. Specifically, the correct map and mask

register values must be set when we use the adder SLU to modify the frame pointer

(we can recall from the discussion in Chapter 3 how these registers influence

register state accesses within the XC6200). To protect the subroutine caller from

these changes, the device context is stored alongside the return address in the

call stack. In comparison to the lightweight subroutines, however, this translates

to an additional overhead when making and returning from each call.

6.1.6 Challenges and approaches to Loading SLUs

Using the memory-mapped FastMap interface to configure a new SLU onto the

cell array is another fundamental operation in the FURl environment. The SLU

155

loader facilitates this using some of the subroutine facilities introduced above

and the output of the cal2img point tool. Loading the configuration bitstream

of an SLU into the cell array at first appears to be a fairly trivial matter of

moving each word of the bitstream into the appropriate section of the FastMap

memory map. However, the situation becomes complicated when we plan to use

circuitry already resident on the array to effect that configuration. We must

address the fact that a bitstream can modify device registers as a valid part of

its configuration. For example, we have already seen this characteristic in use to

implement the initialisation of the rpfds used in the FURl control logic. The

discussion of FURl subroutines has already shown how code executing on the

FURl core can be influenced by subroutines altering the device state. Here, we

must protect the loader subroutine from any modifications to the device state

that occur as a side-effect of loading the valid configuration data.

This overall situation raises the interesting question of, what is a valid bit-

stream? In the literature introducing the two basic models of VC applied some

constraints to which array resources a bitstream could access. Only cells within

the bounding box of the SLU and, of particular relevance to this discussion, only

limited access to the XC6200's control registers would be allowed in a valid bit-

stream. Two immediate candidate device registers for constrained access would

be config and devicelD. These registers control aspects of the physical format

of the XC6200's device interface and should not be altered after the FURl core

becomes active. However, the map, mask, and wildcard registers are valid con-

figuration register accesses within a given bitstream since they directly influence

the correct instantiation of the SLU circuitry.

The loader subroutine is sensitive to modifications of the device state because

it uses kernel SLUs to make dynamic control flow decisions. The specialised

subroutines generated by the cal2furi point tool are not sensitive to the modifi-

cation of device registers as they are linear sequences of move instructions that are

156

executed from start to finish: their control flow is being entirely defined through

the sequential incrementation of the PC. However, this approach requires that we

also store a specialised loader subroutine for each bitstream, increasing the spatial

memory costs. For a generalised loader, the programmer identifies the location of

a particular SLU data structure in memory along with the length of that struc-

ture when calling the loader subroutine. With that information, the generalised

loader subroutine iterates through the SLU datastructure, transferring it to the

host FPGA's configuration memory.

To protect the control flow of the loader from changes to the device state, an

explicit restore and save of device state occurs before and after any configuration.

Specifically, two instruction macros, save-device-state and restore _devi ce_state

allow the programmer to specify a state buffer in memory to which device state is

then captured and restored. Two device state buffers are used by the subroutine:

a kernel state buffer, identical to that used by the full-strength subroutine imple-

mentation; and a CAL-state buffer to retain a copy of the device state created

when loading the SLU bitstream. The kernel state buffer is essentially static and

is applied after each set of configuration writes. The CAL-state buffer maintains

the device state created by loading the bitstream data of the SLU. Since this can

change as a consequence of each act of configuration, it is captured after each set

of configuration writes and re-applied before any subsequent configurations. For

example, if a write changes the value of a map register, subsequent writes in the

bitstream may depend on the map register being set to that value. The CAL-

state buffer would maintain these map register settings between writes, ensuring

that subsequent writes occur within the correct device state.

Having to save and restore the device state amounts to an overhead. However,

we can consider amortising that overhead by segmenting the bitstream data into

blocks which contain more than one write to the configuration memory, and then

applying a block of configuration writes. Still, we should note that we cannot rely

157

on the services of the kernel SLUs to implement a conditional loop construct for

transferring the bitstream. Instead, we dynamically synthesise a sequence of move

instructions that will, when executed, explicitly move the block of configuration

data to the correct set of Fastfvlap addresses. One instruction is generated for

each datum in the block of the SLU bitstream being configured. Once the loader

subroutine has re-applied the CAL state, an unconditional jump can be made into

the code buffer to effect the transfer of configuration data. The last instruction

synthesised for this code buffer is an unconditional jump so that, when the block

configuration completes, control returns to the point in the loader subroutine

which will immediately start to capture the device state.

A small experiment was run to explore the effectiveness of the block based

loader with different block sizes. The FURl core was assigned the task of re-

peatedly loading a 32-bit adder SLU as many times as possible in a fixed time

period. The experiment was repeated with successively larger block sizes to see

how the effectiveness of the loader changes. Since only the block size is changing

between experiment iterations, the count of completed SLU loads at the end of

each experiment run is indicative of the effectiveness of the block based loader for

that particular block size. We should note here that we are specifically explor-

ing the overheads associated with different block sizes, rather than advocating

the arbitrary segmentation of a bitstream into fixed size blocks irrespective of

context.

To implement this experiment, a small test harness program was created in

FURl assembly language to maintain a counter variable and repeatedly invoke

the loader subroutine. Other experiments using a similar harness had already val-

idated the block loader subroutine and we did not concern ourselves with proving

that the SLU is indeed loaded properly since this is demonstrable separately.

The FURl assembler outputs a memory image of the test harness which is com-

bined with the memory images of the kernel circuitry and then presented to the

158

Block Loader Performance

1000 	 -

01111IR

I i:-
Adder32 - 32MHz

1 	2 	4 	8 	16 	32 	64 	128 256 512 1024

Block Size

Figure 6.2: Graph of Block Based Cal Loader Performance with Various Block
Sizes

qPCltest board console program. qPCltest is a Linux application that provides

very low level access to the features of the Hotworks development system. For the

purpose of this experiment, we use a qPCltest command script to transfer the

application memory image to the development system's onboard SRAM, hand

subsequent control of the onboard SRAM to the XC6200, and then initiate a

serial download of the FURl core. The FURl core then executes the test harness

program, whilst qPCltest waits for the fixed time period of one second to expire.

At that point the command script forceably triggers a reset of the XC6200 and

retakes control of the onboard SRAM. We can then recover the contents of pro-

gram variables, in particular the load counter, using qPCltest's hoard memory

interrogation commands, augmented with symbol table information generated by

the FURl assembler.

Figure 6.2 contains a graph showing the results of this experiment run at three

different clock speeds on the FURl core. We show the three experiment variations

to demonstrate that there is no disproportionate increase in loader effectiveness

159

to be gained by simply increasing the physical clock speed of the FURl core

itself. qPCltest relies on the Linux sleep system call to implement the delay

between activating the FURl core and resetting the XC6200. However, scheduling

variations in such a multitasking environment mean the actual amount of time

that a process is suspended by sleep can vary. Therefore, the load counts plotted

on this graph for each block size are averages of the load count values observed

through repeated runs of the test harness for the given block size. The first

thing that we can note about this graph is that there is indeed an increase in

the effectiveness of the loader subroutine by increasing the block size. The SLU

circuit we are loading comprises 615 writes and we can see from the graph that,

as we approach block sizes of 256, 512, and 1024, there is little increase in the

loader's effectiveness.

We can compare the effectiveness of the block loader against the effectiveness

of the cal2furi loader subroutine. Figure 6.3 shows the results of a similar

experiment to that executed for the block loader. In detail, a FURl test harness

program is created to count the number of times that the FURl core can load

the same 32-bit adder SLU using the loader subroutine generated by cal2furi.

The FURl core executes for the same time period used earlier to facilitate a fair

comparison with the results from the previous experiment. Again, to reduce any

impact from scheduling variations on the delay period, the experiment is run

multiple times at each clock speed.

The data plotted in the graph of Figure 6.3 shows the loader count produced

on each iteration of the experiment, again at the three different clock speeds. One

of the first things we can note about this graph is that the load count magnitudes

are significantly higher than those achieved in the previous experiment, even after

amortising the state buffering overheads of the block loader. This difference can

be attributed to the cost of dynamically synthesising the code buffer instructions

used in the block loader. The runtime performance of the cal2furi loader repre-

160

caI2luri Loader Performance

10000 	 - 	 - - 	 ----

C

0
o

0
-J

JAdder32 - 32MHz
[M Adder32 - 16MHz
1 Adder32 - 8MHz

100

1 	2 	3 	4 	5 	6 	7 	8 	9 	10

Experiment Number

Figure 6.3: Graph of cal2furi Loader Subroutine Performance

sents the maximum attainable by a FURl circuit loader implemented solely as a

FURl program since it does not suffer from instruction synthesis or device state

buffering overheads. The only runtime overhead associated with the cal2furi

loader is the cost of the subroutine call to invoke it. Whilst the runtime effec-

tiveness of this loader is apparent, we pay for this through the significant static

spatial overhead incurred by accommodating both the bitstream image and its

corresponding loader program in memory.

In comparing the two approaches, we can see that. there is a significant cost

associated with synthesising the block loadefs code buffer instructions. Whilst

this cost cannot be eliminated, it may still be possible to make the block loader

more effective by helping it more rapidly amortise the state buffering costs. The

block loader discussion assumed a static block size and split the bitstream data

accordingly. However, this essentially disregards any potential structure within

the SLU bitstream. An interesting alternative approach amounts to an adaptive

block size. Here, the block size naturally adapts to fit the underlying structure of

161

the bitstream data in the hope that the bitstream naturally segments into a few

large, but irregularly sized blocks which are delimited by harmful device register

accesses. If this is true, we can load each large block in its entirety and benefit

by eliminating the need to capture and restore device state between block loads

since we know that the influence of the device registers does not extend beyond

the edge of the block. The only overhead that remains would be the need to

reapply a kernel-state since, similarly to the static block approach, we cannot be

sure that the device has been left in a suitable state after the adaptive block has

been loaded.

To advocate this approach further, however, we must perform an analysis

of the structure of some actual SLU bitstreams. What we are particularly inter-

ested in is exploring the relationships between parts of the configuration bitstream

which modify the device state to those which actually effect changes to cell con-

figurations. For example, investigating what fraction of the overall bitstream is

actually involved in modifying the device state and then considering how these

writes are actually distributed throughout the whole bitstream. It is worth noting

that the open architecture of the XC6200 is key in facilitating such an analysis

since we must understand in detail what different parts of the bitstream data are

actually responsible for.

The first set of analyses that were run were used to determine the relative

distributions of different address types in the bitstream. To recall, the bitstream

of the XC6200 is comprised of a series of address and data pairs. The upper bits of

the address reveal whether the data will be written into a device control register,

or into a region of configuration RAM directly influencing a cell structure. A

series of adder SLUs and SLUs from an implementation of the Data Encryption

Standard (DES), which is discussed later in Chapter 7, were analysed. Both sets

of bitstreams were generated using the standard XC6200 place and route tool.

The first graph from this analysis, contained in Figure 6.7, shows the address

162

distribution for a sequence of adder SLU bitstreams with successively larger bit-

widths. The graph shows, for each SLU, the collective percentage of 'cell-data'

writes: that is, writes applied to the cells, lOBs, and routing switches. Then, a

more detailed breakdown of the writes to each type of control register is given.

From this first graph we can see that a large majority of writes in basic adder

SLU bitstreams are configuring cell data: even for the smallest adder, over 94% of

the bitstream is cell data. However, aspects of the bitstream generation process

may colour our interpretation of the graph. The standard place and route tool

for the XC6200 actually supports the customisation of the style of SLU bitstream

that is produced. For example, the bitstreams presented in this first graph were

specifically generated for a 32-bit FastMap data bus.

Figure 6.8 shows an address distribution for the same SLU bitstreams gen-

erated for an 8-bit wide FastMap data bus. We can see in this graph that the

percentage of cell data writes is lower than that for the same SLUs in 32-bit mode.

This is partly due to a proportional increase in the number of distinct writes that

are required to load 32-bit wide data values into the 32-bit wide device registers.

However, a closer examination of the raw statistics from the analysis reveals that

for the smaller sizes of adder, an 8-bit wide data bus can be more effective for

encoding the circuit bitstream. For example, the total size of the bitstream data

for adder02 was 174 writes in 8-bit mode, whilst the same bitstream in 32-bit

mode requires 245 writes. As the size of the adder increases, this benefit reduces

and the 8-bit mode becomes costly for adders with a bitwidth of 16 or higher.

Overlay bitstreams are another variation in bitstream style that are actually

critically important to the FURl environment: all system bus SLUs loaded by

FURl are generated as bitstreams in overlay mode. The two previous sets of

bitstreams contain configurations of not only the adder circuitry, but also to

initialise the XC6200 itself. In effect these SLU bitstreams were generated with

the assumption that they would be the first circuits placed on the cell array after

163

it has been reset. Bitstreams in 'overlay' mode, on the other hand, are generated

with the belief that the device is already initialised and that other circuitry may

be already configured on the cell array.

A third set of adder SLU bitstreams was generated, this time in 'overlay'

mode and Figure 6.9 shows a graph of their address distributions. We can see

immediately that SLUs in overlay mode have a much lower percentage of cell

data writes than either of the two other bitstream styles. Also we can note that

there are no writes to the FastMap ID register since we are assuming the register

has already properly configured with at least one 'full' SLU bitstream. In the

graph we see that over a quarter of the bitstream is now occupied by writes to

the XC6200's mask register.

To determine if this behaviour is a feature of the adder circuitry we re-ran the

address distribution analysis on a different set of SLUs. Figures 6.10 and 6.11

show the address distribution graphs for two sets of SLUs from an implemen-

tation of the DES in standard and overlay modes respectively. The DES SLUs

in each of these graphs, with the exception of the SBOX SLUs, are structurally

heterogeneous whereas the adder SLUs were all essentially variations on the same

structural theme. From the two graphs we can see that, although the magnitudes

are slightly different from those we have seen in the adder SLU distributions,

the general form of the distributions is indeed the same. The FURl-compatible

overlay SLUs again have a high percentage of writes to the device configuration

registers, in particular to the mask register.

We can argue that the increase in the mask register usage is directly related to

the nature of overlay SLUs. To clarify, a 32-bit write to the cell configuration store

for a standard SLU may actually influence more features of the cell than it needs.

For example, only one byte of the 32-bit configuration word may actually contain

significant configuration data. Imposing the remaining bytes will also influence

the other features of the cell. The explicit assumption that the standard SLU is

164

not sharing the target cells with any previously configured SLUs means we do not

have to worry about overwriting configurations from a different SLUs. Therefore,

writing the additional bytes is a safe operation. However, the overlay SLU cannot

support the same assumption. It is entirely possible that writing the whole 32-

bit configuration word would overwrite previous valid configuration data from a

different SLU. The heavy use of the mask register by overlay SLUs in comparison

to the standard SLUs, therefore, is to protect cell configurations already applied

by previous SLUs.

In the address distributions presented so far, we have assumed that all writes

to the XC6200's control registers are potentially harmful but this is not the case.

Whether a control register access is benign or harmful depends on the degree

of strictness that we wish to impose on the assumptions made by the loader

subroutine. At one extreme there are writes to some control registers that are

fundamentally benign: the FastMap ID register writes are an example of this.

The map register, however, is at the opposite extreme. We know that writes to

the map register are potentially much more harmful, since they impact on our

use of the kernel circuitry. They threaten not just the correct loading of the SLU

bitstream, but the operation of the loader subroutine itself.

The mask register, on the other hand, does not influence FastMap state trans-

actions and therefore does not pose a threat to the control flow calculations of

the loader. We can argue that the heavy use of the mask register in overlay SLUs

should not indicate the start or end of a loader block. However, the mask reg-

ister setting does affect any cell-data configurations that follow it and, as such,

is part of the device state that must be present for the correct loading of the

SLU bitstream. If we approach the adaptive block definition conservatively, we

would therefore include writes to the mask register as a feature of the bitstream

that delimits a cell-data block. The use of wildcard registers within the bitstream

can affect the FastMap state transactions but is potentially less damaging to the

165

loader's control flow. Changing the wildcard register values whilst the SLU is be-

ing loaded means that we may broadcast operands intended for one kernel logic

SLU to multiple registers but does not stop the operand reaching its intended

destination. The main danger is that the operand will also reach input registers

of other SLUs and overwrite meaningful values. Whilst this is acknowledged as

a potential danger, we can also observe from the raw bitstreams themselves that

the standard place and route tools limit the influence of wildcard registers to

cell-data configurations'. Therefore, we can argue that the wildcard registers are

akin to the mask register in terms of their limited potential harm to the loader

subroutine.

The address type distributions presented above establish the potential for dif-

ferent cell-data block sizes but they do not demonstrate the effect that the de-

vice register accesses have on the actual distribution of block sizes within the

bitstream. Therefore, the same collection of SLUs was analysed to reveal their

actual cell-data block sizes. This was done twice: first, allowing all device register

writes to delimit a cell-data block; and, second, allowing only the map register

accesses to delimit the block.

Figures 6.12, 6.13, and 6.14 show the actual distribution of cell-data block

sizes in the three sets of adder SLUs. Similarly, Figures 6.15 and 6.16 show the

distribution of block sizes for the two DES SLU sets. In both cases, any device

register access can delimit a block. From these graphs, we can see that there is

a striking difference in the magnitude of block sizes in standard SLUs to those

observed in overlay SLUs. For example, the block size distributions for standard

adder SLUs contain blocks easily approaching lengths of 100 cell-data writes.

Overlay SLUs, on the other hand, appear to struggle to reach block lengths of

more than 10 for all bar the adders with the largest bitwidths. We can also see

'We should note that this does not consider other XC6200 toolsets. However, we discussed
constraints on the validity of an SLU bitstream earlier and applying those constraints in this
context would prevent the SLU bitstream's influence reaching beyond the bounding box of the
SLU itself.

166

that a similar situation exists in the two DES SLU graphs: the standard DES

SLUs often have potentially long cell-data blocks of nearly 1000 writes whilst the

DES overlay SLUs again struggle to reach block sizes of more than 10 consecutive

cell-data writes.

Whilst the block size distribution graphs give a feel for the kind of block sizes

contained within each of the SLU sets, we cannot deduce how often a particular

block size is likely to occur. It remains possible that, even in the overlay SLU

sets, the larger block sizes are still the most commonly occurring. Therefore, an

additional analysis of the bitstream data was run to determine the frequency of

the different constituent block types. For the adder and DES SLUs generated as

normal bitstreams, the block frequency did not tend towards either small or large

block sizes. Figures 6.17 and 6.18 show the frequency of the different block sizes

for the adder and DES overlay SLU sets, but excluding the 8-bit adder SLU set.

From these graphs we can see that the overlay SLUs do indeed comprise mainly

very small blocks. Both graphs show a bias towards large numbers of very small

blocks with only a few of the larger block sizes used in each overlay bitstream.

Figures 6.19, 6.20, 6.21, and 6.22 show the block distributions for the adder

and DES SLUs in both normal and overlay modes when only the map register ac-

cesses delimit blocks. Figures 6.23 and 6.24 also show the frequency of block sizes

within the DES SLU sets. For the adder SLUs, there was a very low frequency

count for all block sizes. The DES SLUs show higher frequency distributions

because the SBOX SLUs in both overlay and normal modes exploit the register

resources of the XC6200 function unit to implement LUTs containing each SBOX

value. The register rich nature of these designs means there are more map regis-

ter accesses during configuration. In these graphs we can see that, when we only

consider the most harmful style of device register access as a block delimiter, the

block sizes tend to be larger and there is less of a bias towards very large numbers

of small blocks in the overlay SLUs.

167

6.1.6.1 Analysis and Conclusions

The major conclusion that we can draw from the analysis and experimentation

in this section is that the SLU bitstreams can indeed contain large regions of

device configuration that are benign with respect to other FastMap transactions.

In making this conclusion we must nonetheless acknowledge an important caveat:

the nature of the SLU bitstream can be radically different depending on the

parameters that have been asserted during its generation. This is an important

caveat since the performance enhancing VC techniques that we discussed earlier in

Section 4.4 actually worsen the block-size distributions. Applying mask register

based configuration compression, for example, will actually have the effect of

decreasing the average block size.

In relation to our search for sequences of benign FastMap transactions, we

have found that the block sizes that are observable within the bitstream can

be radically different depending on the block-delimiting criteria that we wish to

apply. When we took a conservative approach to defining which features of the

bitstream can actually delimit a block, then the block sizes we observed in the

overlay bitstreams tend to be small. With a less conservative approach, however,

the block sizes within the bitstream not only grew, but also began to reflect the

structure of the SLU circuitry itself. This is most apparent in the map-delimited

block strategy applied to the DES SBOX overlay SLUs: the bitstreams separated

into more small blocks than any of the other DES SLUs because of the register-

rich nature of the circuitry.

Overall, our main conclusion is positive since it shows that there is promise

in using the adaptive loading strategy for SLUs. However, we can also conclude

that the analysis has demonstrated that there are some classes of circuit that

have a higher proportion of malignant FastMap transactions. As a technique,

adaptive block loading is very relevant over more than one FPGA technology.

Since the Virtex architecture also has a modal loading strategy, device context

119

settings within the architecture also encourage us to pursue an adaptive block-

based loading approach for future FURl implementations.

The results from our analysis in this section have a direct influence on the

evolution of the FURl framework. We have seen that there are different block

delimiting criteria that can be applied to circuits depending on their context

and usage. However, the choice of when we apply one delimiting strategy over

another is of direct relevance to the FURl framework and the toolset which would

support the decision making process. For example, although we have seen overlay

SLUs that decompose into many small blocks, there is potential to create larger

composite blocks for the benefit of the SLU loading strategy. The process of

building such composite blocks from a flat sequence of bitstream data is, in itself,

non-trivial. A central reason for this is that we must maintain the integrity

of the circuit represented by the bitstream whilst potentially re-arranging its

sequence to support the loading strategy. This requires a detailed knowledge

of the SLU's circuit structure and, for reasons that we explore in the following

section, recovering such information from a bitstream is non-trivial. However, the

approach described in [49, 65] may be exploited to enhance the FURl framework

and toolset with additional, higher level tools that support the selection and

compilation of appropriate loading strategies for different SLUs.

6.1.7 Circuit Debugging

In addition to the low level board console, qPCltest, and qlnspector, one other

tool for working with SLU circuitry has been designed.

6.1.7.1 QOverlay

We can recall from the earlier discussion in Chapter 2, that the mainstream

design-flows for reconfigurable systems are typically very static in nature. Tool

support for dynamic reconfiguration remains, by and large, a product of the dy-

namic reconfiguration research community. However, there are specific problems

169

associated with dynamic reconfiguration that are not addressed in a traditional

hardware/software design flow. For example, the contemporary design tools of

the late 1990s generally did not facilitate designs involving the dynamic overlay -

ing of circuitry. In the FURl system, this is a pertinent problem: we would like to

know if loading a SLU bitstream will have an adverse effect on the configuration

of any other SLUs already present on the array, or on the FURl core circuitry

itself.

The existing XC6200 toolset does attempt to cater for dynamic reconfiguration

by generating standard or overlay bitstreams. Even although the toolset will try

to minimise the impact of configuration through liberal use of the mask register,

we cannot use it to directly determine whether two bitstreams can be safely

overlayed. One possible approach to solving this problem without resorting to

the development of a new tool from scratch is to attempt to place and route all

the desired SLUs as a single design. If it is possible to accommodate the same

circuits on the array simultaneously, the place and route process will succeed and

we can generate overlay bitstreams for the design components. This would give

us the assurance that loading one of the design subcomponents when some of the

others are already present will not adversely affect the operation of the others.

If the place and route process fails, however, we can conclude that the SLUs

spatially cannot be accommodated within the array at the same point in time.

There are two assumptions that underpin this approach and limit its effective-

ness: first, we assume that we have access to the source netlist of the SLU; and,

second, we are assuming that placement and routing is an entirely determinis-

tic process. Furthermore, the approach only eliminates possible clashes between

SLUs within the design. To handle the dynamic instantiation and removal of

SLUs from the design, we would have to create new designs with each change

to the SLU set and reapply the place and route cycle each time. Regarding the

first assumption, the FURl design flow presented above includes the possibility of

170

pre-defined SLU bitstream libraries to which we would not have access to a source

netlist. We can consider these libraries as equivalent to 'hard' cores defined for

SLI design[56]: instead of having libraries of fixed circuit layouts, we have libraries

of fixed circuit bitstreams. For the second assumption, the use of simulated an-

nealing in placement and routing is a potential source of non-determinism. It is

possible that two different iterations of the placement and routing process could

result in different bitstreams being produced.

To clarify, the FURl core represents an immutable 'backdrop' configuration

that we must consider all subsequent configurations as being relative to. How-

ever, if we do try to place and route SLUs along with the netlist for the FURl

core, then there is no guarantee that we have preserved the same placement and

routing for the FURl reference bitstream. This is especially important where we

are motivated to overlay SLU circuitry with parts of the FURl core because of a

low utilisation of cell resources. We cannot guarantee that the introduction of ad-

ditional circuitry will not bias the 'underlying' FURl circuitry whilst at the same

time we require the placement and routing tools to take into account the resources

consumed by the FURl core. Collectively, this is one reason why we cannot pur-

sue the application of incremental differences facilitated by the ConfigDiff[68]

tool. ConfigDiff generates a set of incremental bitstreams from a sequence of full

bitstreams. Each of the full bitstreams can be recreated, in sequence, by applying

the incremental bitstreams in order over the initial, base bitstream. However, the

identical placement and routing of the FURl core in each of the full bitstream

images cannot be guaranteed. As such, we cannot rely on ConfigDiff to produce

incremental bitstreams that only instantiate the SLU circuitry: the incremental

bitstreams produced would also make subtle modifications to the FURl core's

circuitry. We should note that the self-modifying nature of the FURl core means

that it is technically possible for the FURl core to apply bitstream 'diffs' to its

own circuitry. Self-modification, however, is both powerful and delicate: in this

171

case, its application must be very carefully orchestrated to avoid damaging the

core circuitry as it runs.

To deal with this problem, qoverlay, is a visual tool that was designed so

that the system designer can investigate the interactions between SLU bitstreams

as they are loaded on and off a simulation of the XC6200. Again, because of the

intimate understanding of the bitstream and device's loading mechanism that is

required, the openness of the XC6200 architecture is key in facilitating this tool.

The tool assumes no additional information about an SLU other than that given in

its raw bitstream data. At its heart is a complete software implementation of the

configuration memory of the XC6200 that, in particular, performs an appropriate

simulation of wildcarding and masking of the bitstream data being written into

it. We simulate the underlying configuration RAM rather than applying the

bitstream to a real device because the latter approach would only reveal whether

if the circuits could be simultaneously accommodated or not. It would not yield

information about why they cannot co-exist or, in more detail, which points of

the bitstreams collide.

Operationally, the user specifies a series of bitstream files which are each

loaded into the simulated memory interface. This produces a set of fully elabo-

rated configuration RAM images, one for each bitstream. The images produced

at this stage are independent of one another, but we know that they fully artic-

ulate the SLU's desired device configuration since any wildcarded configurations

in the source bitstream are applied and any use of the mask register results in

the appropriately masked writes to the memory image. The user also specifies

a particular configuration schedule for the loading and unloading of each SLU

bitstream. The schedule and memory images are then given to an 'overlay en-

gine' which computes a memory image resulting from the loading of each of the

independent SLU configuration images according to the configuration schedule.

Rather than just containing the final bitstream data, however, the overlay engine

172

tags each bit in the overlay memory image with one of four states:

. a 'default' state is defined for bits which have not yet been written to;

• the 'written' state is used for bits which have been written only once since

the device was initialised;

• a bit is 'safely overwritten' if it is written more than once with the same bit

value and has never been 'unsafely overwritten';

• and, finally, if a bit has ever been written with conflicting values it is marked

as being 'unsafely overwritten'.

A coloured visualisation of the state of each cell, switch, lOB, and device pad

is generated from the overlay image. However, because we compute the overlay

image at the bit level, we can also produce a more detailed breakdown of the state

within each cell, switch, etc. Rather than showing only the raw configuration data

for a cell, for example, a 'translation' view interprets the raw configuration data

for the cell and presents the functional configuration of its features.

As implemented, the tool is effective but has some notable limitations. The

highest level of abstraction that the tool operates at is the level of cell features in

the translation view. Whilst it is clear how the features of the cell are affected by

the change in configuration, it is not immediately clear how a potentially unsafe

configuration will actually affect the higher level SLU circuitry. Furthermore, it

is possible that a number of false-positive unsafe writes may be identified by the

overlay engine. These are produced as a consequence of overzealous configuration

by a previously loaded SLU bitstream.

For example, it is possible that part of an SLU bitstream will include a write

that affects all 32 bits of a cell configuration when only a subset of the cell features

are required. However, we may overlay that cell with another bitstream at some

future point which changes some of these non-essential cell features. If the values

173

S. S.

Con,o

Figure 6.4: qOverlay Design Views

written conflict with the non-essential hit-data, the overlay engine would flag the

writes potentially unsafe. By convention, the cell features which are written but

not required by the the SLU circuitry are given the value zero. In theory, we could

use this convention to tag cell features that have the value zero as being 'unused'.

This means that if we come to overlay those parts of the cell functionality with

another SLU bitstream at some later point we will not conservatively assume that

the bitstreanis are incompatible. However, from the open nature of the XC6200

architecture, we know also that zero is actually a valid cell configuration and

therefore we cannot rely on it as an identifier of non-essential bitwrites.

From our earlier discussion of 'overlay' SLU bitstreams, we can argue that

their liberal use of the mask register means that only the appropriate bits in a

cell configuration will be altered. In this case, the detailed structural information

available within the place and route tool facilitates the generation of such safer

bitstreams. However. the FURl bitstream is riot generated in overlay mode and

we cannot rely on bitstreams generated from all sources to he as precise with

the configuration bits they alter. One potential solution to the problem would

174

be to attempt to recover some information about the circuit structure that is

configured by a bitstream. We can use the structural information to determine

exactly which parts of each bitstream write are essential.

Even with the open nature of the XC6200 architecture and bitstream, recover-

ing circuit structure from the raw bitstream data is not a simple task. Any value

applied to a cell feature is potentially valid, so we must resort to heuristics to in-

crease the degree of certainty that any given configuration bit is actually required

by the SLU circuitry. Whilst this approach is not implemented for qoverlay,

it has been considered in the XC6200 configuration compression work of Hauck

et al[65]. Their observation was that they can increase the effectiveness of their

compression algorithm if they preserve just the essential features of the original

bitstream. The same information could be used in the generation of the final

configuration memory image. This allows us to narrow the effect of the write to

only the bits that are absolutely essential to the proper instantiation of the SLU

and hence reduce the likelihood of falsely identified unsafe writes.

6.2 The FURl Executive

The FURl executive is an implementation of a lightweight co-operative multitask-

ing 'operating system' that executes on the FURl core. The simple test harness

programs discussed in the earlier sections use an assembly bootstrap library to

initiate their execution. This sort of bootstrapping is very basic, however, and

requires the program to manage most of its own execution flow. If we want to

perform logically distinct tasks in such an environment, then we need to explic-

itly code the execution flow for each programmed task. The executive provides

a simple multi-tasking framework to allow program tasks generated by the FURl

assembler to enter and leave the core's execution flow in a more flexible manner.

175

6.2.1 Tasks

The existing subroutine mechanism underpins the executive's implementation of

tasks. In the basic implementation described here, each FURl task is essentially a

subroutine whose entry point has been introduced to the executive. The executive

maintains a list of current tasks and, when it has cooperatively received control

of the FURl core, schedules a task to run by invoking it as a subroutine call.

6.2.2 Task Switching

In the basic implementation presented here, task switching in the FURl core is

entirely co-operative. A task is activated by the executive, but is then respon-

sible for handing control back to the executive when it completes. This has one

major advantage: the task is responsible for managing its own context which

then reduces the amount of work that the FURl executive must do when giving

control to another task. The task list implemented in the cooperative version of

the FURl executive is a circular list of task entry points. The executive defines

two subroutines that allow the currently executing task to manipulate this list to

introduce a new task or remove itself from the task list. The main body of the ex-

ecutive cycles through the tasks contained in this list, implementing round-robin

style scheduling.

A pre-emptive implementation of the executive is conceivable but requires

additional circuitry support in the datapath of the FURl core. In a preemptive

implementation, task switching is triggered on the expiration of a countdown

timer. The current implementation of the FURl core does not contain such

timers within the IEU datapath, but an enhanced version of the core with an

integrated timer is feasible. The integrated countdown timer then facilitates pre-

emptive multitasking by periodically buffering the address of the task instruction

being pre-empted and forcing the PC to the address of the pre-emptive executive's

context switching subroutine. The context switching subroutine must preserve the

176

state of pre-empted task and restore the state of the task scheduled for execution

next. In a traditional processor microarchitecture this context would amount to

saving and restoring registers. In the pre-emptive FURl environment, we would

have to save not only the XC6200's device state, but also the state of the kernel

SLUs.

6.3 Standard System Tasks

Up to this point we have given a comprehensive description of the design and im-

plementation of the FURl core and the fundamental features of its programming

and runtime environment. The mechanics of bootstrapping the circuitry of the

FURl core have been presented, but we have not yet explored the means by which

an active FURl core can receive its programming. The earlier description of SLU

loader experiments presented one means of populating the FURl core's program

memory, but that approach is only really effective within that constrained ex-

perimental environment. Also, relying on an external host to provide the initial

system programming of the FURl core undermines its autonomy.

This section gives a brief discussion of a fundamental low-level communica-

tion model that the FURl executive, as implemented, uses to interact with the

external system environment without sacrificing the autonomy of the FURl core.

In particular, two FURl executive system tasks that facilitate a more flexible

means of interacting with the FURl core are described. Through the discussion

of these tasks, we also see how the programming of the FURl executive itself can

be bootstrapped.

6.3.1 The FURl base protocol and base protocol handler
task

The earlier discussion on debugging the FURl core circuitry characterised the

isolating effect of assuming internal control of the XC6200's FastMap interface. In

addition to making the circuitry debugging process more challenging, the isolation

177

of the FastMap interface also affects the way that the FURl core can interact

with the external system environment. The FastMap interface cannot be used to

stream new programming information to the FURl executive, but the onboard

memory of the Hotworks development platform is accessible by both the XC6200

and the PCI card's host processor. This can be used as the physical basis of a

simple shared memory model of communication from the external environment

to the FURl executive.

The main role of the FURl base protocol is to allow the introduction of new

FURl tasks into the FURl environment. Specifically, the FURl base protocol

provides us with a mechanism to introduce more complex protocol handler tasks

and Chapter 7 expands on the nature of FURl communication protocols. A

general overview of the base protocol is shown in Figure 6.5. To implement the

base protocol, we define a statically sized region of shared memory as a buffer for

holding a single base protocol packet. Base protocol packets are written to the

buffer by FURl clients and the buffer is periodically examined by a base protocol

handler task executing on the FURl executive. One particular aim here is to avoid

introducing a significant processing overhead for the base protocol. Ideally, the

processing requirements of the protocol are sufficiently lightweight that managing

the buffer and processing any packet it contains would not adversely affect the

performance of other application protocol handlers resident in the executive.

The FURl base protocol, as implemented, allows a FURl client running on

the PCI host processor to write what are essentially 'active packets' into the base

protocol buffer. That is, each packet consists of a data section and a code section.

Since we are using the base protocol to introduce new tasks, the data section

would typically contain fragments of the new task's program code. The code

section of the packet contains FURl code defining how the contents of the data

section should be processed. Periodically, the base protocol handler examines the

base protocol buffer and determines if it contains a valid base protocol packet. If

178

FURl Client
osg FURl Base Protocol

Base Protocol
Packet Buffer

(Storage lot a angle
protocol packet)J

FUR[
Executive

lith 	FURl Managed
Base 	Programmable Logic

Protocol
Handler

	

Code 	Data

	

Section 	Section

Entry
	 4

Figure 6.5: The FURl Base Protocol

so, the handler calls the program code contained within the protocol packet as a

subroutine.

An explicit status word is used by the protocol handler running on the execu-

tive and the FURl client to identify the state of the buffer. Specifically, the status

word indicates whether the buffer contains a processed or unprocessed base pro-

tocol packet and is used to synchronise the activities of the protocol handler and

FURl client. The base protocol handler will only take action if the status word

indicates that buffer contains an unprocessed packet. When the code within the

packet has been executed, it returns control to the base protocol handler which

marks the packet as processed. Similarly, the FURl client only marks the buffer

as unprocessed when it has completely written a packet and only fills the buffer

when it has been marked as processed. By convention, an empty buffer is marked

as processed. It is worth noting that having multiple FURl clients accessing

the same base protocol buffer would require a mechanism for granting mutually

exclusive access to the buffer.

Using the base protocol to introduce a new FURl task to the executive involves

transmission of base protocol packets that are split into two segments: a data

segment to contain the new task's memory image; and a code segment to contain

the packet's FURl code. The code segment of the packet is aligned at the start

179

of the protocol buffer to reduce the number of calculations the protocol handler

must perform before it can invoke the active code. For the most part, the packet's

FURl code transfers the image in the data to a predetermined region of FURl

program memory. This could conceivably be programmed as a loop or, since we

know the source and destination addresses explicitly, as elaborated sequences of

basic move instructions: the active nature of the protocol gives the flexibility

to choose. The elaborated move instruction sequence, having no loop overhead,

has a better runtime performance but is spatially less efficient and slightly less

flexible than a programmed loop. Once the task image has been transferred, the

last action of the final packet's program code section, besides returning, is to call

the executive's add-task subroutine. This inserts the task's entry point into the

executive's task list. The task will then be invoked by the executive's scheduler at

a later point. Although its primary purpose is to facilitate loading new executive

tasks, its active nature makes the base protocol quite flexible. For example, we

could use the protocol to load fragments of SLU bitstreams by embedding suitable

loader code and bitstream blocks in the active base protocol packet.

6.3.2 The Detacher

Implementing shared access to the Hotworks development system's onboard RAM

provokes an interesting programming issue for the FURl core. Physically, the

memory used on the Hotworks board is single-ported and uses a wide multiplexor

to determine whether the XC6200 or the host PCI processor currently has access

to the RAM's address lines. This makes the implementation of a shared memory

communication mechanism for the FURl core slightly more complicated since only

one of the two potential memory controllers can have access to the actual memory

interface at any one point. However, the FURl core has been, so far, presented as

reliant on continuous access to the onboard memory for its instruction sequence.

Taking access away from the core to allow the PCI host to transfer packets into

the shared region of the board memory leaves the FURl core's memory interface

in a dangerous, undefined state.

Whilst this is a specific issue related to this particular development system, the

challenge it poses to the current FURl implementation prompts the exploration

of embedding executable FURl code somewhere within the host FPGA itself.

Allowing the FURl core to execute an instruction sequence contained within

the XC6200 can alleviate the core's dependency on the onboard SRAM. The

detacher task utilises embedded code to periodically put the FURl core into an

'introspective' state.

When the detacher task is scheduled, it invokes a block of embedded, internal

code. Specifically, this code causes the FURl core to detach its interface to the

onboard memory for a short period of time. When that period of time expires,

the internal code reactivates the board memory interface and returns control to

the main body of the detacher task. The host processor can then interact with the

shared region of the board memory safely for as long as the FURl core remains

detached. The detacher uses a system SLU that wraps around the physical CON

port providing it with a register accessible interface, to communicate the state of

its internal memory interface to the outside world. When the embedded section

of the detacher code releases or resumes control the memory interface, it signals a

state change over the CON port. The low level code in a FURl base protocol client

that executes on the host processor therefore monitors the CON port to determine

when a new packet can be written to the shared buffer.

6.3.2.1 Embedding code within the XC6200's configuration RAM

We can recall from Chapter 2 that the XC6200 architecture, unlike new generation

FPGA architectures, does not have embedded block RAM. This leaves two choices

for where to embed a FURl program: we can either embed the code as values

written to and read from 32-bit wide register SLUs that have been configured

on the array; or we can place the program code in the actual, underlying cell

181

configuration memory of the array'. In reality, these are both different regions

of the XC6200's memory map that we can access through the internal FastMap

interface. Although they have the same access port, they have different access

characteristics which justifies identifying them as distinct alternatives.

FURl code embedded within specially configured register SLUs ultimately

resides within the cell-state region of the XC6200 memory map. As such it is

sensitive to the settings of the device's map registers: if the map register values

change as a consequence of the internal code being executed, the FURl core may

be unable to fetch the next instruction word or data operand. The linear incre-

mentation of the PC means the register SLUs must be laid out over consecutive

rows. The map register settings also constrain the registers to alignment with

particular rows. The sensitivity of this approach to the current map register set-

tings, and the fact that the state region of the XC6200 memory map is relatively

small in comparison to the cell data region are two significant limiting factors.

The map register sensitivity, in particular, limits the embedded code to either

only accessing SLUs which are aligned to the same map register settings or or-

chestrating the placement of the code registers to coincide with changes to the

map register values.

We should recall that the onboard memory of the development system operates

at a different address granularity to the XC6200's configuration memory. To

accommodate this, a slight change is made to the FURl IEU's incrementor. The

incrementor dynamically changes the amount that it adds to the PC value based

on the memory region that the current PC addresses. In the implementation of

the FURl core described in this thesis, the incrementor adds 4 if the address in the

PC is a FastMap address, and 1 otherwise. This has an important side effect on

the conditional branch mechanism since we must now bias the conditional branch

4 W should note here that, for XC6200 FPGAs, this is harmless. It is a property of the
architecture that loading arbitrary data into the cell configuration memory will not create
internal signal contentions. In 2000, this is a property that is unique to the XC6200.

lull

address according to the address space granularity. Effectively, this means that

the integer equivalent to the boolean truth value must change depending on the

address space.

On the other hand, FURl code embedded within the cell configuration region

of the memory map is sensitive to the settings of the FastMap's mask register.

This is generally less constraining than the map register dependence of the alter-

native approach since it does not impose a geographic limitation on the placement

of the embedded program. However, we must still ensure that any embedded code

does not adversely limit the data that can be read from the cell configuration

RAM. Conceivably, we could also reuse the regions of the configuration RAM

that control routing switches and JOBs for storing embedded FURl programs.

Any region of the configuration RAM we use to hold FURl code will no longer

be available for loading SLUs and the more program code we embed, the larger

the geometric region of the array that is consumed. Just as we consider the

geometric placement of SLU circuits, we must consider the geometric area of

the array that is consumed by storing a FURl program in a linear sequence of

configuration words. To do this, again requires a detailed understanding how the

underlying configuration RAM maps to the FPGA geometry. A visualisation of

the XC6200's memory map is given in Figure 6.6. From the open nature of the

XC6200 we know that the total size of each cell configuration is contained in 3

bytes. However, the arrangement of the XC6200's address space means that a

single 32-bit word in the cell data region does not completely configure a single

cell: rather, it affects a subset of the features in each cell within a particular 4 x 1

column of cells in the 4 x 4 cell group that is targeted by the write. The row

addressed by the FastMap write to the cell configuration region is contained in the

less significant bit positions relative to the bits that define the column address.

Each program word we embed in the cell configuration RAM, therefore, affects

a 4 x 1 column of cells. The first two words of the FURl program, when placed in

183

two consecutive words of the cell configuration RAM actually affect a column of

8 x 1 cells. When a FURl program is embedded in the cell configuration RAM,

it rapidly affects a column of cells equal to the height of the array itself. This,

in turn, may have an adverse affect on the placement of any other SLUs: ideally

we wish to localise the region of the cell array that is consumed by the embedded

program code. If the entire configuration for a single cell was referred to by a

single address within the XC6200's address space then the first two program words

embedded in the configuration RAM would only affect two cells. However, it is

acknowledged that the configuration RAM was never intended to store linear data

such as FURl programs, and that the structure of the address space does actually

help to rapidly configure SLU circuitry: the complete configuration for four cells

can be packed into three 32-bit writes to the cell region of the configuration RAM.

Rather than consuming an entire column of the array, the embedded FURl

code used by the detacher is actually distributed over disjoint blocks of the address

space. We preserve the linear execution of the code by threading blocks together

with unconditional jumps from the end of one block to the beginning of the next.

For example, we can allocate the configuration RAM from a column of 32 cells for

holding part of a FURl program. We can then observe that the set of configuration

words controlling this column of cells actually comprises three disjoint blocks of

the configuration RAM. Most of each block is allocated to holding part of the

embedded program code, with the exception of the space for the last instruction

in the block which is hard coded to be an unconditional jump to the start of the

next block which again contains 'real' program code. We can see that introducing

an extra instruction to thread blocks together does constitute an overhead. To

balance this we must be careful not to constrain the column size so much that

there are so few program instructions per blocks that we spend a large percentage

of the embedded code's execution time jumping between the internal code blocks.

MITI i

6.3.2.2 Alternative application of embedded code

The embedded code of the detacher task demonstrates that it is possible to exe-

cute programs held internal to the host FPGA. However, the original, development-

system specific motivation for the detacher task does not completely characterise

the usefulness of embedded code. A far more compelling reason for embedding

code is to facilitate the complete autonomy of the FURl core and FURl executive.

To recall, we introduced the FURl executive as the control program that would

be executed from the point that the FURl core itself becomes active. The means

of supplying the executive's program code, though, was not discussed. However,

the discussion above has shown how FURl programs can effectively be encoded

as XC6200 bitstrearns. The bitstream of the FURl core could be combined with

a bitstream encoding of the FURl executive and its basic system tasks. Au-

tonomously bootstrapping the FURl circuitry from a serial PROM, as described

earlier, would then also load the code for the FURl executive. Altering the PC

circuitry so that the hardcoded boot vector for the FURl core points within the

configuration RAM would then kickstart execution the executive's program code 5 .

6.4 Analysis and Conclusions on the FURl Frame-
work

The major contribution to the thesis of this chapter has been the description of

a complete programming and runtime environment for the FURl core. However,

we should now consider the effectiveness of the FURl framework for creating

reconfigurable computing applications. Throughout the course of the research

programme, the FURl framework has been used to create applications that ran

on the developing FURl core. As the FURl core's implementation evolved, so to

has its associated toolset.

5 typically, a small embedded bootstrap subroutine would transfer the embedded executive
code to the onboard memory to free the region of the cell array it occupies for SLUs loaded
through FURl protocols.

185

In this chapter, the FURl framework has been used to create system applica-

tions that demonstrate the FURl core's ability to support the two fundamental

operations in a virtual circuitry system: the dynamic instantiation and interaction

with SLUs. Furthermore, we also described the operation of the FURl Executive,

the FURl base protocol, and detatcher tasks, all three of which have been com-

pletely implemented using the FURl framework and constitute the largest system

implemented with the toolset. In total, the toolset has been used to create and

assemble thousands of lines of FURl code. The next chapter considers the larger

research questions that we can address using the FURl Framework, namely at

what points we can dynamically adapt the interface protocols executing within

the FURl executive to better support the demands of a particular VC application.

Whilst the FURl framework and its toolset have been effective for creating a

low level VC environment, applying the framework to larger research questions

does motivate the further evolution of the toolset to incorporate the tools and

techniques that were described in Section 4.4. The major characteristic of this

evolution is the development of a higher level compiler for the description of VC

applications. For example, techniques such as configuration interleaving and the

TTA specific compilation techniques such as operand sharing are applicable within

a FURl compiler architecture. Evolving the FURl framework in this manner

increases its attractiveness as a VC application environment. For example, in the

discussion of SLU loading strategies, we have seen that there are performance

gains to be had by adapting the loading strategy to the features of the circuit

being loaded. Applying such an adaptive loading strategy is most sensibly done

within a FURl compiler and will make the adaptive loading performance increases

available to FURl VC applications.

Overall, the FURl framework will form a high level basis for ongoing research

into reconfigurable computing based on virtual circuitry techniques. The next

chapter gives an example of one use of the framework as a high-level research,

namely for supporting adaptive interface protocols. An example of further per-

tinent research beyond that covered in this thesis is the use of the framework to

explore meta-configuration languages to support architecture portable SLUs.

6.5 Summary

In this chapter we described a programming and runtime environment for the

FURl core introduced in Chapter 5. This began with the presentation and explo-

ration of the components within a design flow and toolset used for programming

the FURl core. The programming toolset and design flow was then used to ex-

plore different mechanisms for supporting fundamental system constructs such as

subroutines. The chapter then presented alternative strategies implemented using

the FURl design flow for dynamically loading SLUs. The issues and overheads

associated with particular loader strategies were explored and an analysis of the

internal structure of bitstreams was given. This analysis provided rationalisa-

tions for the inherent complexity and overheads associated SLU loading that had

been described in the earlier section. The chapter concluded with a description

of the FURl executive, a self-contained multitasking runtime environment for the

FURl core. The basic mechanism through which the executive interacts with the

external environment was described in the form of a FURl base protocol.

187

Cell Function Unit
Configuration

Byte 0, Column 1

Cell Function Unit Stat

Cell Function Unit
Configuration

Byte 2, Column 0

Cell Function Unit
Configuration

Byte 1, Column 0

Cell Function Unit
Configuration

Byte 0, Column 0

- 1,63 1,62 1,61 1,60
1,59 1,58 1,57 1,56

1,15 1,14 1,13 1.12
1.11 1,10 1,9 1,8
1.7 1,6 1,5 1,4

- 1,3 1,2 1,1 1,0

State Address Region

- 0,63 0,62 0,61 0,60
0,59 0,58 0,57 0,56

0,15 0,14 0,13 0,12
0,11 0,10 019 0,8
0,7 0,6 0,5 0,4

- 0,3 0,2 0,1 0,0

0,63 0,62 0,61 0,60
0,59 0,58 0,57 0,56

0,15 0,14 0,13 0,12
0,11 0,10 019 018
0,7 0,6 0,5 0,4

- 0,3 0,2 0,1 0,0
0,63 0,62 0,61 0,60

0.59 0,58 0,57 0,56

0,15 0,14 0,13 0,12

0,11 0,10 0,9 018
0,7 1 0.6 0.5 0,4

0,3 - 0,2 0,1 0,0

Figure 6.6: XC6216 Memory Map for Cells starting in row 0

Address Type Distribution for Adder SLU

100%

98% - -

I%ID

96% •%Mask

o %Config

D%Wild

94% •%Map

•%CeIl

92% --

90%
C'J
0 0

(0 	CO
0 	0

C. 	(0 	0
z 	CJ 	(N

CO
(N

C'.1
()

CO
()

CO

1 (0

0)
V

0)
V

0) 	0)
V 	V

0) 	a) 	a) 	a)
V 	V 	V 	V

(1)
V

0)
V

0)
V

a)
V

a)
V

V
cu

V
Cu

V 	V
Cu 	CO

V 	V 	V 	V
CO 	Cu 	Cu 	Cu

V
Cu

V
Cu

V
Cu

V
Cu

V
Cu

SLU Bitstream

Figure 6.7: Address type distributions in a series of adder SLUs

Address Type Distribution for Adder SLU
in 8-bit Configuration Mode

100%

95%

90%

85%

80%

75%

• %Mask

D %Config

0 %WiId

•%Map

•%CelI

(N 	(0 CO 	0 	CD 0 	Iq 	 00 (N C) CO
2002 	 2 (2 • 	CD

a) 	() 	0) 	(1) 	a) 	0) 	a) 	(D 	0) 	(D 	0) 	() 	0)
V V V V V V V V V V V V V
V V V V V V V V V V V V V
Cu 	Cu 	(0 	Cu 	(0 	Cu 	Cu 	Cu 	(0 	Cu 	Cu 	Cu 	Cu

SLU Bitstream

Figure 6.8: Address type distributions in a series of adder SLUs using an 8-bit
configuration interface

I Me

Address Type Distribution for Adder SLU
(Overlay Mode)

100%

90%

1% ID

80% • %Mask

II1-IIi__IIIIIIIII -iI1-I_IIi[
El %Config

D%Wild

• %Map

Ii %CeIl

60%

50%
0 	(0 	0

.- 	' ('.4
(0
('.4

C'1 	c)
C') 	C')

(0 - (0
U) 	U) 	a) 	U) 	 !
V 	V 	- 	-o 	U) 	a) 	U) 	U) U) a) 	a) a) 0)

CU 	CO 	V 	V 	V 	V V V 	V V V
CO 	CO 	(0 	CO CO (0 	(0 CT) CO

SLU Bitstream

Figure 6.9: Address type distributions in a series of adder SLUs generated as
circuit overlays

Address Type Distribution for DES SLUs

100% 11 	EO
99%- 	- -
98% 	 - -

%ID

96% 	 - •%Mask

0 %Config
95% - D%WiId
94% 	 -- 	 - - •%Map

93% - •%CeIl

92%

>S 	 .-

- -
91% - -
90%

0.)()(0 	Q. 	Q. 	- 	('1 	C') 	 It) 	(0 	F'.. 	(0
0 	0 	0. 	CT))()()<)(X)()< 	X
.0 	.0 	 0 	0 	0 	0 	0 	0 	0 	0
0. 	U) 	 .0 	.0 	.0 	.0 	.0 	.0 	.0 	.0

U) 	(/) 	 U) 	 U) 	U) 	U) 	U) 	U)
a)

SLU Bitstream

Figure 6.10: Address type distributions in DES SLUs

190

Address Type Distribution for DES SLUs
(Overlay Mode)

100%

95%

90%

85%

80%

75%

70%

65%

60%

55%

50%

kl%ID

•%Mask

D%Config

E%WiId

•%Map

UJ %CeII

a 	 - 	
I-

0 	 0 	 5 	 X X X X X X X

SI 	 S 	 U, 	 .0 	.0 	.0
.0 	 .0 	 0 0 0 0 0 0 0 0

S

SLU Bitstream

Figure 6.11: Address type distributions in DES SLUs generated as circuit overlays

Cell-data Block Size Distribution
for Adder SLUs

1000

100
o

cn t1i4t4444 11 1 	111 It

SLU Bitstream

Figure 6.12: Cell-data block size distributions in a series of adder SLUs

191

Cell-data Block Size Distribution
for Adder SLUs (8-Bit Configuration Mode)

1000

100
N

C')

0
0

co
10

ii ittt:O4:k1
SLU Bitstream

Figure 6.13: Cell-data block size distributions in a series of adder SLUs using an
8-bit configuration interface

18

16

Cell-data Block Size Distribution
for Adder SLU5 (Overlay Mode)

- 	 -

14

12---

i7i 	10

SLU Bitstream

Figure 6.14: Cell-data block size distributions in a series of adder SLUs generated
as circuit overlays

192

Cell-data Block Size Distribution
for DES SLUs

10000

1000

T

100

00

10

M CL

SLU Bitstream

Figure 6.15: Cell-data block size distributions in DES SLUs

Figure 6.16: Cell-data block size distributions in DES SLUs generated as circuit
overlays

193

Block Size Frequency for

eddecl6.eflayjieque -

N
adderoverlayfreqtxr

r4)eS1y 1e-0tl
N 	 - 	 -4---

5 tyer y ç

6: 1; 1 16 	
18

Block Size

Figure 6.17: Block Frequencies for Adder SLU bitstreams in Overlay mode

Block Size Frequency for

es_invjp64_hamees_ov.tlay. $ req tXI —

despc_64_hamessrnerlay_freq brt

- 'des sbc464hama66Overlay I rPq lxr —

desswap_64_harnessoverlayJreq txr -C--

\\

\\

U 	

/

2 	 4 	 6 	 8 	 10 	 12 	 14
Block Size

Figure 6.18: Block Frequencies for DES SLU bitstrearns in Overlay mode

1000

100

C C 0
a C
IL

10

1000

100

C 0 0 C
U-

10

194

Map Delimited Block Size Distribution
for Adder SLUs

1000

100 - - -- - 	 -

10

Cj

:II
Co

 ; 	 ; 	 I 	I II Z 	I
Figure 6.19: Map-delimited Block Sizes for Adder SLU bitstreams

Map Delimited Block Size Distribution
for Adder SLUs (Overlay Mode)

1000

100

10]L
(0 	Co 	 00 	C14 	 00

Figure 6.20: Map-delimited Block Sizes for Adder SLU bitstreams in Overlay
mode

195

Figure 6.21: Map-delimited Block Sizes for DES SLU bitstrearns

Map Delimited Block Size Distribution
for DES SLUs (Overlay Mode)

10000

UUUdJ
he

Figure 6.22: Map-delimited Block Sizes for DES SLU bitstreams in Overlay mode

1000

11111]

10

I

196

Block Size Frequency for
35

30

25

20

is

10

5

0
1 	 10 	 100 	 1000 	 10000

Block Size

Figure 6.23: Frequency of Map-delimited Block Sizes for DES SLU bitstreams

Block Size Frequency for
35

30

25

20

15

10

5

1 	 10 	 100 	 1000 	 10000
Block Size

Figure 6.24: Frequency of Map-delimited Block Sizes for DES SLU bitstreams in
Overlay mode

197

Chapter 7

Virtual Circuitry on the Flexible
URISC

The aim of this chapter is to explore the implementation of the three different

models of virtual circuitry introduced in Chapter 4 on the Flexible Ultimate RISC.

The chapter is structured as follows:

• first, we define a FURl system context that the virtual circuitry applications

operate within. Rather than simply defining a single context, this section

gives a flavour of the diversity of potential FURl system contexts;

• second, we consider FURl protocols expanded from the basic protocol de-

scribed in the previous chapter, and qualify the design space; and

• third, we present details on, and results from, a related experimental pro-

gramme. In this programme, we gauge the effectiveness of different proto-

cols used to interface a virtual circuitry application being managed by the

FURl core, within a given FURl environment.

7.1 The FURl System Context

Before we can consider the use of the FURl core for implementing virtual circuitry,

we must define a particular system context that the applications exist within. In

general, we consider the FURl core as operating within a network of co-operating

components and each application is partitioned over these components. Figure

IM

Program-centric \ Virtual Circuitry 	
((k

Circuit-centric

(Algorithms
) 	 Applications 	

Algorithms

	

FURl Protocols 	 FURl Managed
FURl Compatible

Processor t:::j~SharVed 	
Programmable

_ 	
Logic

Figure 7.1: Main FURl System Context for Virtual Circuitry Applications

7.1 shows the main system context that we will consider for the experimental work

in the later part of this chapter. In it, we see that the algorithms used within

a given application are partitioned over a simple network of FURl components.

Circuit-centric algorithms are mapped to a FURl network component which is

intrinsically circuit-centric, and vice versa for the mapping of sequential, program-

centric algorithms to processor elements which are intrinsically program-centric.

Application partitioning is generally a difficult problem and the development of

methodologies to solve it is beyond the scope of this thesis. We will, however,

alude to possible themes for design methodologies for FURl systems in Chapter

8.

The protocols used between the FURl core and other components within the

network are influenced by the surrounding network architecture. The simple

system context shown in Figure 7.1 does not capture the full spectrum of possible

FURl networks and as such will not allow us to present the full variety of FURl

protocols. Our motivation for considering different FURl networks in the first

place is simple: applications can often operate more effectively, and be partitioned

more easily, onto one style network than another. Before exploring the FURl

199

protocols in detail, it is worth considering the potential different forms of FURl

network architecture.

In the following discussions, the term "network architecture" is used to refer

to the features of a network holistically: this would include the characteristics

of the components used within a network, the protocols used by communicating

components, and the network topology. The term "network topology", however,

refers only to the geometric and structural attributes of a network. For example,

the topological ordering of network components and the geometric classification

of the topology are constituent members of a network topology. The logical

operation of protocols on a given topology is a separate concern, although there

can be clear mappings between topologies and the protocol requirements they

prompt.

7.1.1 FURl Network Components

It is possible to distinguish different component types within the FURl network

architecture. FURl-managed programmable logic devices and FURl-compatible

processor elements are the two primary, active component types. They are the

system's computational elements and use FURl protocols to interact through

the computationally passive elements of the network. Memories and physical

interconnect channels are the two types of passive elements. For each of these

four component types, we can identify attributes which influence the network

architecture. Some of these attributes are common to all components whilst

others may only be relevant to a subset. The following subsections describe six

of the primary component attributes.

7.1.1.1 Degree of Connectivity

Here, we consider how many other components a particular component type may

be connected to. This attribute can be considered for all component styles.

200

7.1.1.2 Connectivity Type Constraints

In this case, we are considering constraints on which types of component may

be directly connected. In a general sense, this is an attribute of interconnect

components as it defines which components may be present at the endpoints of

any given interconnect channel.

7.1.1.3 Direction constraints on connectivity

Interconnect channels can be considered to have direction properties. For ex-

ample, a given channel may support either directed or undirected/bidirectional

communication.

7.1.1.4 Communication Mode

The communication mode is tightly related to the above directionality constraints.

Some directionalities are mutually exclusive with respect to some communication

modes. We can consider a particular channel to support duplex, simplex, or half-

duplex communication modes. However, duplex and half-duplex communication

require a bidirectional underlying channel. Given a particular mode, it is possible

to identify the simplest degree of channel directionality required to facilitate it.

Even so, it remains valid to consider directionality as a separate attribute.

7.1.1.5 Synchronisation Policy

Just as we consider the communications mode for a channel, the synchronisation

models adopted at the interfaces of network components are also of interest.

For example, components could adopt any one of synchronous, asynchronous, or

isochronous synchronisation styles. Initially, we will consider synchronisation to

be, primarily, an attribute of network component types rather than interconnect

channels.

201

7.1.1.6 Latency

At the low level of abstraction we have been considering so far, interconnect chan-

nels themselves have very little physical latency. However, two potential sources

of latency exist in the FURl network environment. As data flows through active,

computational components like processor elements, a degree of computational

latency will most likely be introduced into the datastream. However, the main

source of communication latency in the datastream arises from the use of mem-

ory components as communication buffers. Specifically, a memory component

and the physical channels which connect it to other network components can be

considered as a form of compound communication channel. Relatively speaking,

the physical interconnect channels have no latency and it is the memory compo-

nent sandwiched between the interconnect channels which acts as a variable-delay

element and may potentially introduce latency.

7.1.1.7 Discussion

In the above sections, the motivation for constraining attributes to a subset of the

possible network components may not always be clear-cut. When considering the

connectivity type constraint, an underlying assumption is that all communication

happens over an explicit interconnect channel. However, there is an alternative

to this model: communication may be implicit between components which are

physically adjacent. The interfaces of such components may be directly abutting

therefore creating an implicit communication channel.

The key point here is the distinction between a form of explicit interconnect

and a much more implicit form of connectivity between components. Explicit

interconnect channels are those which support communication between compo-

nents using FURl protocols. Implicit interconnect could occur in a FURl system

when we consider, for example, a static slave accelerator attached to either a

processor element or a FURl-managed programmable logic device. We do not

202

consider the slave accelerator to be a processor element in its own right as it does

not interface to the rest of the system through a FURl protocol. However, we

can include it in the network model if we consider it as an adjacent component to

one of the primary, active system components. Here the interconnect channel is

implicit between the static accelerator and FURl-compatible component. There

will undoubtedly be some form of physical interconnect channel between the two

elements, but the semantics of that channel do not constitute a FURl protocol.

From the viewpoint of a FURl-compatible device, the computational facilities of

the slave accelerator are not differentiated from the native facilities of the active

component hosting it.

One further point remains to be clarified: we must consider memory as an ex-

ception to the above discussion. From a computational point of view, memories

implement identity functions. We can consider them to be a very simplistic forms

of auxiliary computation logic. Yet, in the network model we have described so

far, memory components need not implement a FURl protocol on the intercon-

nect channels that join them with other elements in the system. In reality, this

discussion is prompting us to define the role of explicit memories in a FURl net-

work more clearly. We have already stated that memories are passive components

and hence do not directly contribute to the ongoing computation in the network.

Rather, memories exist to facilitate shared-memory network topologies. It is the

set of protocol issues, provoked when using shared memory buffers between ac-

tive components, that justify the explicit notation of when memories are used in

an interconnection path. Since we have limited the rOle of memory, we can also

constrain some of its possible interconnection permutations in the network: as a

passive element, for example, it makes no sense to allow two memory components

to be directly interconnected. In such a situation, neither memory element is

capable of actively driving the interface of the other.

On a different theme, it is also interesting to consider the motivation for

203

attributing synchronisation policies directly to physical interconnect channels.

From the physical perspective, an interconnect channel is naturally asynchronous.

Network component interfaces situated at the channel endpoints provide the map-

ping of the three potential synchronisation styles onto the underlying physical

channel. We could consider a channel as inheriting a synchronisation style from

the attached components, but it is also possible that component interfaces may

employ different synchronisation policies over the same physical channel. Es-

sentially, this amounts to logical channels being supported over an underlying

physical channel. The discussion of such high level, logical architectures is better

addressed as part of the protocol and network topology discussions later in this

chapter.

7.1.2 FURl Network Topologies

In the previous section we defined four fundamental components in a FURl net-

work and elaborated some of their primary characteristics. The aim of this sec-

tion is to show how they may be combined to form different network topologies.

However, rather than simply enumerating a few different topologies, we highlight

how the design choices at work in a FURl network give rise to different styles

of network. Through this, it is possible to build a classification of the resulting

topologies which can be used to relate classes of topology to the protocol design

issues they provoke. Throughout this section we will use graphical representa-

tions to demonstrate instances of particular topologies and classes. Figure 7.2

gives symbolic renderings of the four FURl network component types. We use a

boxed 'F' to denote the programmable logic devices which contain FURl cores.

A boxed 'C' denotes a processor element which is FURl compatible (although we

may also consider them to be FURl clients). In addition to network classifica-

tion, we can also consider how some topologies may be implemented on existing

reconfigurable hardware platforms.

204

	

EEl
	

EEl
FURl-managed
	

FUR I-compatible

programmable logic 	processor element

	

symbol
	

symbol

EEl
Memory

	

symbol
	 Interconnect

Channel symbols

Figure 7.2: Symbolic Representations of the FURl Network Component Types

7.1.2.1 FURl Network Topologies

In network design there are a number of recognised standard topologies. All

of these topologies are connected graph structures and examples include simple

buses, star networks, ring networks, meshes, trees, and toroidal networks. The

type of a given graph is primarily a function of the organisation of its interconnect

channels. The organisation of interconnect channels, in general, is closely related

to the variation in degrees of connectivity that nodes in the graph may assume.

Furthermore, we can identify three main structural classifications within these

graph types:

• regular versus irregular: ring, toroidal, and mesh networks are examples of

regular graph structures. The set of possible connectivity degrees in a graph

with regular structure will be small. Furthermore, there is a patterned uni-

formity in the distribution of connectivity degree within the graph. For

irregular graph structures, the set of possible degrees that a node may as-

sume is potentially much larger. But even when the degree set is small,

irregular graphs lack the patterned distribution of connectivity degree seen

in regular structures.

• directed versus undirected: this classification derives directly from the direc-

tionality attribute of interconnect channels described earlier. In theory, a

205

network topology could contain both directed and undirected channels, but

more often either one or the other is used. For example, the uniformity of

datafiow in parallel algorithms that map well to regular network topologies

like meshes also tends to have a homogenising effect on the interconnect

directionality.

• cyclic versus acyclic: the probability of cyclic structures in a network can be

related to an interaction between the set of potential connectivity degrees

and particular topological orderings. For example, when topological order-

ings permit interconnections of node types with high connective degrees,

there is a greater probability that two nodes may interconnect to form a cy-

cle. Acyclic topologies, like a star network, have interconnection degree and

topological orderings which focus nodes with a connectivity degree of one

around single instances of node types with a much higher connective degree.

However, even when the topologic orderings and degree spread are uniform

and minimal, the directionality of interconnect can still create cycles.

Bridged versus localised is a fourth, conceptual classification and is derived

from the constraint on the maximum length of the logical connecting path be-

tween any two nodes in the topology. If a network allows two nodes which are

not directly connected by a physical interconnect channel to interact, then it is

bridged. However, if a node can only ever communicate with nodes to which it

is physically adjacent, then it is localised. We treat this as a conceptual classi-

fication because it considers the nature of a logical path between two nodes as

opposed to the direct structural interconnect architecture.

FURl network topologies conceptually exist in all these forms. Figures 7.3,

7.4, 7.5, and 7.6, show examples of FURl networks in star, bus, mesh and ring

topologies, respectively.

206

El 	El
E]El ElE El El EM] :El

[] 	El

Figure 7.3: FURl Networks containing a Star topology: (i) homogeneous, shared-
memory; (ii) heterogeneous, shared-memory; (iii) shared-memory, bridged

UDDUEl DUOU

D-M F1 F1 UD

Figure 7.4: FURl Bus networks

7.1.2.2 FURl Network Topological Orderings

By topological ordering, we are concerned with classifying a network topology

based on its rules for defining which types of network component can be directly

connected with another. The topological ordering of a FURl network is influenced

directly by the type constraints applied to interconnect channels. Three FURl

network classifications can be derived from the graph topological ordering:

• A homogeneous topology, in the context of a FURl network, represents

networks where the computationally active elements are comprised entirely

of FURl-managed programmable logic devices. Homogeneous networks of

FURl-compatible processor elements are conceivable but are not considered.

Indeed, our earlier assertion, that a FURl network contain at least one

FURl-managed programmable logic device, actually precludes them. The

type rules associated with interconnect channels in a homogeneous network

only permit the interconnection of FURl network components of the same

type;

207

II 	ii.
Lii' Lii 	iii 	LI

II 	i 	1
LI 	Lii 	LJ 	U

II 	 i
U 	LJLJ U

ii 	II 	II 	II
LI LI LI U

Ei—D—c1-- cH—y— E1HIIHL L—Ei-1—L1
E—EHIHE EE-E1-4I1 -E1--Ei--E1 Ii-EHH

Figure 7.5: FURl Mesh Networks

Li=EHIi=EE1

_jTh II

LjLr LIIJ

EiFEi HiHI1

i=±i= =Ei=EE1

Figure 7.6: FURl Ring Networks

• Heterogeneous networks make no constraints on the type of active com-

ponents in the network. FURl-managed programmable logic and FURl-

compatible processor elements may be freely intermixed. The type rules for

interconnect in a heterogenous network, therefore, explicitly permit mixed

interconnect of different active component types;

• The shared memory class is supplimentary to the previous two orderings.

In a shared memory network, the interconnect type rules ensure that the

computationally active components are only allowed to connect to the com-

putationally passive memory components.

The heterogeneous and homogeneous orderings are, by definition, mutually

exclusive. We say that the shared memory ordering is supplementary to them

as it is defined in relation to passive memory elements. Both heterogeneous and

homogeneous topological orderings can exist in shared memory forms as they

only constrain the network's active component types. Neither ordering makes

any constraint on the presence nor absence of passive elements in the network.

The topology figures introduced earlier also contain permutations of networks in

homogeneous/ heterogeneous and shared memory forms. Just as we argued the

case for maintaining memories as explicit components in the network model, we

can apply derivative arguments to justify the presence of a shared memory class.

In the earlier section, we considered the effect of memory components on channel

latency. A distinct shared memory class serves as a binding from these issues to

the protocol design issues later in this chapter.

7.1.3 Mapping Network Topologies to Existing Platforms

The FURl network models of the preceding sections may at first seem rather

theoretical. In this section, we take the discussion out of the purely theoretical

domain and consider how these networks can actually be constructed using exist-

ing reconfigurable computing platforms. Indeed, the existence of mappings from

the logical topologies to existing physical architectures motivates and justifies the

broader analysis of protocol issues discussed in the following sections.

The hardware architecture of reconfigurable computing platforms typically

imposes a fixed, physical architecture. For example, physical architectures of the

SPACE2[80], and Hotworks 1 platforms are shown in Figures 7.7, and 7.8 respec-

tively. Although we may be constrained by an underlying physical architecture

in each of these platforms, we may still consider which logical FURl topologies

may be mapped onto them. For example, the SPACE2 board physically has a

toroidal interconnect architecture which could easily support mesh and ring FURl

networks.

The Hotworks development platform has been both the design and experi-

mental platform throughout the course of this research. In terms of a network

topology, the physical architecture of the Hotworks development system resembles

a simple bus network. From Figure 7.8 we can see the XC6200 and XC4000/Host

components share a common bus to the on-board SRAM. Figure 7.8 shows the

mapping of a minimal heterogenous, acyclic, shared-memory topology to this plat-

'The Hotworks platform is a commercial implementation of the XC6200DS specification [841.

209

-

xirx Xilin
	

Minx Xihnx
XC6200 	 XCS200 	 XC6200 	 X06200

Memory
Data and
Address

Minx 	 XiIm 	 XHx 	 XiIx
XC6200 	 XC6200 	 X06200 	 XC6200

V 	 I

Backp'ane Connectors

Figure 7.7: Toroidal interconnect of the SPACE2 Computing Surface

form. The logical side of the diagram shows two separate interconnect channels

with independent access to the shared memory. This is different from the physical

nature of the VCC system where a single-ported memory is temporally shared

between the two FPGA components. To prevent signal contention, the memory

accesses of either FPGA must be mutually exclusive. The temporal separation of

physical bus accesses facilitates the mapping of the two independent logical chan-

nels onto the physical interconnect channel. The network is heterogeneous from

the point of view that the XC6200 FPGA on the Hotworks board is managed by a

FURl core. The FURl-compatible processor element in this situation is the entire

host processor system of the Hotworks PCI card. The XC4000 FPGA operates as

part of the host processor's interface to the FURl network. It is the host system

in its entirety that forms a FURl-compatible processor element. For brevity we

do not show the entire host system architecture. The diagram instead shows the

mapping of the boxed 'C' symbol in the logical topology onto the XC4000 as a

representative of the host system.

The previous sections show that there is a rich design space of FURl topolo-

gies. The following discussion of FURl protocols will continue to relate the in-

teresting aspects of the full design space to the issues they provoke. To focus

the experimental programme, however, we will demonstrate protocols in the sys-

210

Physical Architecture Logical Topology

Figure 7.8: Mapping the basic homogeneous, shared-memory topology to the
VCC Hotworks Platform

tern context we introduced earlier, with the topology mapped to the Hotworks

system. This allows us to first experiment with the fundamental protocol issues

between FURl components "in the small". However, insights will still be offered,

where relevant, on how the results from the experimentation scale to larger FURl

networks.

7.2 FURl Protocols

The role of protocol designer is to devise communication conventions which fa-

cilitate an efficient and effective transfer of data in a defined network topology.

When faced with this task in the FURl system context, the protocol designer,

initially, must consider two questions:

. First, what are the communication characteristics of applications which

employ a particular virtual circuitry model?

• Second, what are the potential data structures, transmission rules, and

transmission mechanisms that can be used to implement the desired com-

munication?

We will use the next sections to consider both of these questions.

211

7.2.1 Communication Characteristics of Virtual Circuitry
Models

In Chapter 4, we defined three models of virtual circuitry: the parallel harness

model, the sea of accelerators model, and the sequential algorithmic model. We

must understand the communication characteristics of each model before devel-

oping protocols to support them. We shall see in the sections that follow how the

concept of cohesion within the communication datastream has an influential role

in our understanding of each model's communication characteristics. The virtual

circuitry models we intend to implement can, themselves, be used to implement

a variety of different applications. Since the range of applications is not statically

defined, we cannot define hard-and-fast characteristics for the three models. We

must accept a degree of variability in the characterisations, but need not settle

for a complete generalisation.

A large part of our task is to contrast the communication requirements of

different models. The more we understand the differences between the commu-

nication characteristics of the models, the better equipped we are to advocate

particular and alternative protocol implementations. What is equally important,

however, is that we also develop of a reasoned understanding of the commu-

nication requirements of application classes within a particular virtual circuitry

model. In the later experimental sections we will compare different protocols for

use within a given virtual circuitry application.

The type of data we communicate in a FURl network is common to all three

models. The hierarchy shown in Figure 7.9 introduces the four fundamental

datatypes in the FURl datastream. Each level in the hierarchy defines an addi-

tional interpretation of the raw data in the datastream which is, itself, represented

by the root node of the hierarchy.

The first level of the hierarchy shows that we are either communicating an

encoding of an algorithm, or operands to be processed by that algorithm. It is

212

Figure 7.9: A hierarchical rationalisation of types in the FURl datastream

tempting to consider just the transmission of algorithms and 'data' but the term

data is too generic to convey the differences in information types we are commu-

nicating. "Operand" is much more appropriate term to use: it carries the explicit

connotation that something is the subject of an act of processing. At the second

level, we use circuit and program as terms which denote a particular encoding of

an algorithm. We must also consider the division of operands as being explicitly

for processing by circuits or by programs. In the design of FURl protocols, it is

important to capture aspects like the distribution of these two operand subtypes.

We should also note, though, that there is a raw data format that underpins all

four of these data types. Both the FURl core and the configuration memory of

the XC6200 operate on 32-bit data words 2 .

7.2.1.1 Characteristics of the Parallel Harness Model

In general, the parallel harness operates at a much coarser level of granularity

than the other two virtual circuitry models. This applies particularly to the area

cost of the circuits and their reconfiguration timescales.

Communication in the parallel harness is dominated by the transmission of

circuits and circuit operands and computation is effected completely in the circuit

itself. There is no need to augment the circuit with algorithms specified as pro-

'We can acknowledge that this is slightly inaccurate since the XC6200 is actually capable
of operating over 8-, 16-, and 32-bit data words. However, when the current implementation
of the FURl core takes control of the FastMap interface, as described in Chapter 5, it has the
side effect of fixing the XC6200's physical interface width in 32 bit mode

213

grams for the FURl core. Therefore, programs and program operands constitute

a much smaller fraction of the datastream traffic in a parallel harness application.

The small amount of program operand traffic that does exist in the datastream

is for transmitting operands that influence the operating system executing on the

FURl core.

Also, there is a large amount of cohesiveness in the parallel harness datas-

tream. The large size of parallel harness circuits means that we must spend a

long time configuring them on the logic array before we can use them. Since

the parallel harness circuits are also much more likely to be stateful we cannot,

as a rule, consider streaming operands through a partially constructed parallel

harness. The circuits must be configured in their entirety before any operands

are injected. Once the circuit is resident, a long period of operand streaming is

required to recoup the cost of circuit configuration.

The cohesiveness we describe above exists within the communication between

the FURl core and a single application, or single process within an application.

Because of their size, there are likely to be very few parallel harness circuits

resident on the array simultaneously: as the circuits are configured, they will

very rapidly consume the available array area. Temporal sharing of the array

is also unlikely. The costs of a context switch between parallel harness circuits

involves reconfiguring the array with the new circuit and safely packaging the

internal state of the parallel harness circuit being removed. For the majority of

FPGA architectures, the cost of implementing such a switch is prohibitive 4 .

The conclusion which follows from this is that there are very few applications

or application processes trying to simultaneously configure the FURl-managed

3 W argue that parallel harness circuits are large relative to the circuitry used in the other
models because they comprise multiple SLUs plus an explicit wiring harness. In this context,
the term 'circuit' is referring to the complete collection of parallel harness SLUs and the harness
wiring.

4 Time-multiplexed architectures are an exception here as their multiple configuration planes
would support rapid context switches. Most time multiplexed architectures also have facilities
for buffering, restoring and sharing circuit context between configurations.

214

logic. Once a circuit has been configured, however, it is conceivable that the

operands being streamed through it could originate from more than one applica-

tion or application process. The degree of cohesiveness of the operand section of

the datastream in this situation depends on the statefulness of the circuit being

used. For example, if the parallel harness circuit is a linear pipeline of SLUs, the

operands already within the pipeline would not influence the operand being in-

jected at the pipeline input. This kind of parallel harness circuit could be shared

between applications and processes on a per-operand basis.

However, if the circuit was a systolic array with internal counterfiow paths,

the processing of an operand entering the circuit will be affected by the operands

that were injected earlier. The results from processing the operands of one appli-

cation must be protected from the circuit state induced by operands from another

application. In short, temporally sharing a parallel harness circuit involves con-

text switching its internal state. The cost of that context switch translates to a

performance penalty so enough circuit operands from a single application must be

allowed to flow through to make the cost of a context switch statistically insignif-

icant. The cohesiveness of circuit operands in the parallel harness datastream

depends on how much state is maintained in the circuit and how far back in the

harness that state can influence operand processing. Therefore, parallel harness

circuits have the potential for enforcing highly cohesive operand streams which

originate from a strictly limited number of applications or processes.

Latency is an important issue in the parallel harness and we will consider it on

three fronts: circuit configuration latency; operand processing latency; and result

processing latency. Circuit configuration latency is the time between the virtual

circuitry application initiating the configuration of a parallel harness circuit, and

the point that circuit can be used for operand processing. Configuration latency

is generally much larger in the parallel harness than in either of the other two

virtual circuitry models. The large size and statefulness of the parallel harness

215

circuits support this assertion. The main conclusion that we can draw from this is

that parallel harness applications expect to experience high configuration latency

and will offset its cost by immediately following circuit configuration with long

operand streams.

For parallel harness circuits where the state induced by earlier operands affects

later operands, it is imperative that circuit operands be presented to the circuit at

a specific time. Operands will continue to flow through a parallel harness circuit

and the internal state of the circuit will change on each circuit cycle. If we inject

an operand too late, the internal state that it depends on to produce a correct

result may no longer exist. This provokes the concept of an "operand latency" as

the measure of the time between the arrival of operands at the inputs of a given

circuit. Similarly, we can consider a "result processing latency" to be the amount

of time between each valid result being removed from the circuit outputs. Just as

the internal circuit state changes from the constant motion of operands flowing

through it, a result may only be present at the circuit output for a particular

period of time. If the result processing latency is too high, we will lose results.

Our computational efficiency may fall drastically as a result of the large amount

of internal state that would need recreated before the missing result could be

recalculated.

From this, we argue that parallel harness circuits whose internal state radically

influences the circuit output have very strict operand and result latencies that

they can operate within. Furthermore, the parallel harness circuits would be very

susceptible to variation in the operand and result processing latency, i.e. jitter.

In [100], Tennenhouse considers the impact of jitter on protocol design. Operand

latency is less of a concern for circuits whose cumulative state does not feedback to

influence the result of processing an arriving operand. Only the result processing

latency is still imperative here. It remains possible that we will miss the arrival

of a valid result at the circuit output if our processing latency is too high. If

216

this occurs, however, the situation is less severe than for the very stateful circuit.

Since the result is not dependent on the recreation of a delicate internal circuit

state, it is possible to re-present the circuit operand at the next available circuit

cycle.

7.2.1.2 Characteristics of the Sea of Accelerators Model

In the sea of accelerators, many small, independent circuits are used to effect

independent computations. This is in contrast to the much larger circuits used

in the parallel harness above.

In general, the logic array's geometric area is shared to a much higher de-

gree when implementing the sea of accelerators model than it is in the other two

models. Accelerator circuits are small enough for many of them to exist simul-

taneously within the array. The spatial resources of the array are consumed less

rapidly than they are in the parallel harness. Furthermore, the sea of accelerators

datastream does not necessarily exhibit much cohesion. Since accelerator circuits

are independent units of computation, the act of configuration is asynchronous

with respect to the configuration of other circuits: each application or process

can begin the configuration of a circuit on the array at disjoint times. The circuit

transmissions of one application are therefore intermingled with the circuit and

operand transmissions of other applications.

Circuit and circuit operands dominate the sea of accelerator datastream. The

programs which combine the computationally simple accelerator circuits into

much higher level algorithms execute on the FURl compatible processor elements

at another part of the network. There is, therefore, little need to transmit pro-

grams for execution on the FURl core. The small amount of program operand

traffic that does exist is, again, used to influence the FURl executive.

For the sea of accelerators model we must consider the data cohesion at two

levels: within the raw datastream itself; and within the logical datatreams of

individual applications and processes. Although circuits and circuit operands

217

are the dominant types communicated, there is very little cohesion in the raw

datastream itself. This is a result of having many independent applications and

processes sharing access to the FURl-managed logic resource. Circuits from dif-

ferent applications enter and leave the array independently of each other. It is

therefore much more likely that, in the raw datastream, transmissions from one

application will be intermingled with transmissions from another.

The extent to which transmissions from independent applications are inter-

mingled in the raw datastream depends on the exact protocol in place between

the FURI-compatable client and the FURl core. At the finest level of granular -

ity, we can conceive of communication streams being interleaved at the individual

operand or single circuit datum level. Alternatively, communication may respect

the local cohesion present in a particular application's datastream and only mix

datastreams when there is a break in the cohesion of the logical datastream cur-

rently being transmitted. A logical question to pose at this point is, "although

there is potentially little cohesion in the allocation of the raw datastream to differ-

ent applications, is there cohesion within the type of data being intermingled?".

For example, we may only multiplex data of the same type but from different

applications, or we may multiplex data of any type and from any application.

In general, there is a high probability that circuits may be intermixed with

circuit operands from separate logical datastreams. This is a direct result of the

fact there is likely to be other circuitry already configured on the FURl-managed

array. Once an application has successfully configured a circuit, it will attempt

to stream operands through it. Whilst this is occurring, a different application or

process may also attempt to configure its own accelerator circuit onto the array

and hence the operand stream from the initial circuit could be interleaved with

the circuit configuration stream of the arriving circuit.

Latency is an important issue in the sea of accelerators but for slightly different

reasons than it is for the parallel harness. Again, we must consider latency on a

218

number of different fronts. Firstly, the delay between requesting the configuration

of a circuit on the array and the point at which the circuit is configured and ready

is notionally short. This is primarily because of the relatively small size of an

accelerator circuit in comparison to the unit of circuitry used in the other models.

We say that the configuration latency is notionally short because multiplexing

communication traffic from multiple applications increases the effective latency.

However, in the sea of accelerators model, we do not have to adhere to strict

circuit operand and result processing latencies. In their pure form, accelerator

circuits are entirely combinatorial and therefore have no persistent state. Since

the circuit results are not influenced by any form of internal circuit state, we

do not have to worry about presenting subsequent operands within a given time

period. The result at a circuit output is a direct function of the circuit's current

inputs. We therefore do not have to adhere to a stringent result processing latency

provided the current result is removed before new input operands are injected into

the circuit.

7.2.1.3 Characteristics of the Sequential Algorithmic Model

The sequential algorithmic model combines operational characteristics of both

the parallel harness and sea of accelerators. We know from the discussions in

Chapter 4 that, in essence, we are attempting to implement a virtual parallel

harness circuit where the FURl core emulates what would have been explicit

routing between the processing elements of the harness circuit. Specifically, mul-

tiple smaller circuits are transmitted along with a FURl program which defines

a software routing algorithm.

The first characteristic we note about this model is that programs and program

operands play a larger and more central role than they have in either of the

earlier models. Previous models generally only exploited program operands to

conduct a control conversation with the FURl executive. Here, we are not only

interested in influencing the existing control system, but actively inserting new

219

control algorithms on demand. Implementations of both the sea of accelerator and

parallel harness models are conceivable were we to communicate an initial control

algorithm for the class of virtual circuitry model. In the sequential algorithmic

model we must communicate a control algorithm not just for the model, but for

each circuit presented by an application or application process. These control

algorithms, which are rendered into FURl programs and communicated to the

FURl core as a program stream, account for the majority of the program traffic

in the sequential algorithmic datastream.

The role of program operands is potentially quite different in the sequential

algorithmic model. Up to this point an implicit assumption has been that the

FURl core implements parallelised versions of computations for the sole purpose

of accelerating the effective computation on a FURl-compatible processor ele-

ment. Applications which use a sequential algorithmic model have the potential

to reverse this assumption. It is conceivable that the FURl core could transmit

program operands to the compatible processor element in the FURl network as

a means of using the computational resources available in the network to aug-

ment or accelerate the software routing algorithm it is currently executing. When

this technique is used, the FURl core implementing the software routing for the

current application must wait for the processed result. Sustaining a high level

of computational throughput for an application, therefore, requires the efficient

communication of these operands and their corresponding results.

Cohesion is difficult to generalise in this model. We inherit the potential

for a very cohesive datastream because the computations being implemented are

similar to those in a parallel harness: they are relatively large, potentially very

stateful, and we are willing to invest significant amounts of the spatial array

resource to house them. The knock-on effect from this is that there is little

spatial sharing of the resource and, since temporal context switches still incur the

recommunication of circuitry, temporal sharing remains too costly to implement.

220

This implies that we simply transmit the entire computation in one go and follow

it with a large enough stream of operands to amortize the setup cost.

However, the sequential algorithmic model is not just an alternative imple-

mentation of parallel harness. In the parallel harness we had to configure the

entire circuit in one step because the computation itself was specified as one

large circuit element. In the sequential algorithmic model, the computation is

broken into multiple sub-circuits and program fragments. Provided we maintain

the correct transmission order, each computation fragment could be transmitted

independently of the other and independently of any other sequential algorithmic

application running on the array at the time. This is much more characteristic

of the situation that we have in the sea of accelerators where the configuration

of one circuit can be interspersed with the transmission of operands or circuit

configuration for a completely separate application.

In comparison to a parallel harness circuit which effects the same computa-

tion, we generally have less circuitry information to transmit for a sequential

algorithmic computation. Explicit routes between processing elements are not

configured as the FURl core has taken over their role. The result of this is that

we can actually envisage more spatial sharing of the array resource between dif-

ferent applications than we would have considered for the parallel harness. As

such, the potential cohesion in the datastream correspondingly decreases. How-

ever, and unlike the sea of accelerators, if the amount of circuitry used in the

computation increases to consume more of the array resource, then the amount

of cohesion in the datastream will increase as a result of the reduced sharing of

the array resource.

We can draw the same distinction between logical and actual cohesion in the

sequential algorithmic datastream as we made for the sea of accelerators. There

is potentially strong cohesion in the logical datastream associated with a single

application or process. The assumption that underlies this statement, however, is

221

that we transmit all the circuitry elements before we can begin to send operands.

This is certainly the case for the sea of accelerators and parallel harness, but

it does not necessarily hold in the sequential algorithmic model. For example,

in the sea of accelerators the entire unit of computation was represented by the

accelerator circuit itself and operands could not be streamed through the partially

configured, stateless accelerator circuit.

However, in the case of the sequential algorithmic model, the unit of com-

putation is much larger than the unit of circuitry being communicated. Within

the logical datastream for a single application circuit, operands may indeed be

streamed through the partially constructed computation. As we transmit the first

N circuits that are involved in the sequential algorithmic computation, we only

need transmit enough of the sequential algorithm's programmed routing to han-

dle operand streaming through those N circuits, yet we still have the opportunity

to begin computation after the first circuit and program fragments have arrived.

In short, the entire sequential algorithmic computation can be constructed incre-

mentally, with partially computed results streamed and buffered through circuits

and the sequential algorithmic control code as they become available.

To summarise, we cannot state conclusively that there is either strong or

weak cohesion in the logical datastreams of a sequential algorithmic application.

The opportunity to employ interleaved circuit configuration and computation is a

compelling reason for deploying the sequential algorithmic model in an application

in the first place. If there are a large enough number of circuit operands to follow

the complete transmission of all the circuits used by the sequential algorithmic

model then we can say that the logical datastream will eventually enter a state of

cohesiveness where we are only communicating circuit operands. What we cannot

guarantee in this situation is that the circuit operands themselves will all be from

the same application.

Latency is also a complicated issue but from our understanding of the role of

222

state in the model, we can argue that it leans more towards the kind of latencies

we see in the sea of accelerators than those we argued for the parallel harness.

Configuration latency incurred in the model is low because of our ability to inter-

leave the computation of partial results with the arrival of circuitry. The impact

of the configuration latency on the initial computation latency is masked since

we start the streaming of circuit operands and program code before all of the

circuitry for the complete computation has arrived.

Once we have overcome the initial configuration latency, computational la-

tency becomes the time between presenting an operand and receiving the re-

sult. The general computational latency of a sequential algorithmic application

is longer than the equivalent latency in a parallel harness circuit. This is due to

the serialising effect of the FURl core. We generally execute the software routing

algorithm step by step and hence, what would have been direct and parallel in-

terconnect in the parallel harness, is now done serially'. It therefore takes longer

to transform each operand into a result.

The influence of circuit operand and result processing latency varies according

to the kind of state used in the sequential algorithmic computation. If stateful

circuits are used in the computation, then the application is more demanding in

terms of circuit operand and result processing latencies. The same justification

that applied in the parallel harness discussion applies here. That is, we must

present new operands only when the correct circuit state exists for them to be

processed correctly. Similarly, each result may only be present at the circuit

outputs for a specified period of time before being overwritten by the results

of subsequent operands. We are therefore responsible for ensuring the timely

processing of results as they arrive. However, if we only employ stateless circuits

in the computation then we know that computational state is managed by the

'from the discussions in Chapters 4 and 5 we can argue that this is not a strict rule. Operand
Multicasting using the wildcarding mechanisms of the underlying XC6200 means that the FURl
core can employ some parallelism in the software routing it implements.

223

software routing algorithm executing on the FURl core.

Program operands generally require very low communication latencies in this

model. This is a direct consequence of their potential role in the implementation

of the software routing algorithm: if we have long latencies for program operands

then the routing algorithm, and hence application performance, must stall until

the result arrives. If program operands cannot be guaranteed low communica-

tion latencies, perhaps as a result of making multiple hops through the FURl

network, we can still conceivably hide their latency by processing a different cir-

cuit operand stream. Essentially, we are performing a miniature context switch

within the software routing algorithm to a 'thread' which has not reached the

stage where it requires the services of the external node. This assumes, however,

that there are sufficiently large sections of the routing algorithm that do not inter-

act with external network nodes. Without this assumption, each circuit operand

stream would very quickly reach a stage in the software algorithm where it must

stall. Therefore in general we consider program operand traffic to have a high

transmission priority when it is used in this rOle within the sequential algorithmic

model.

7.2.2 The FURl Protocol Design Space

In this section we explore the design space of FURl protocols. There are three

main protocol components that we will consider: packets; packet buffers; and

protocol handlers. Previously, we considered the communication characteristics

of the three main models of virtual circuitry. What we did not consider, however,

were the overheads that are associated with each act of communication. Such

overhead cannot be completely avoided for all bar the simplest systems, and is

influenced by the network topology in which the data is being transmitted. Our

previous discussion on communication characteristics allows us to mitigate the

effect by tailoring the distribution of the overhead between, and specialising the

224

implementations of, different protocol components.

The enumeration of protocol components above is actually skewed towards

the heterogeneous, shared-memory FURl network that was described earlier as

our main system context. That is, the fact that we are considering packet buffers

explicitly is a direct consequence of selecting a shared-memory FURl network.

This can be interpreted as a high level indication of how the form of a protocol

is influenced by the topology of the surrounding network. However, we will not

limit the following discussion to the system context alone. Instead, we take each

of the three protocol components, discuss their function, and then explore some

of their potential forms. We can then relate such forms to the network topologies

that require them and the communication characteristics that justify them.

Design choices interact closely between protocol components. Selecting a par-

ticular packet style, for example, will undoubtedly affect the implementation of

the protocol handler and, depending on the class of network topology, could also

impact on the packet buffer format. Enumerating these complex interactions is

not our goal, however. We may allude to such relationships but generally avoid

detailed discussion.

7.2.2.1 Packet Formats

A FURl packet encapsulates a data payload for transmission in a given FURl

network. The packet is the basic quantum of information that is transferred in

any one communication cycle. We can generalise the structure of a FURl packet

into two main sections:

• the packet payload which is the application data being transmitted across

the network. The payload in a FURl packet comprises data from at least

one of the four fundamental communication datatypes introduced in the

previous section; and

225

• a packet header which contains contextual information regarding the con-

tents of the payload and the way that the packet should be processed by

the protocol handler.

We measure the overhead of a packet by the ratio of packet header to packet

payload. In theory, the packet header can be eliminated completely. However, this

does not mean that we have entirely eliminated the transmission overhead, only

redistributed it to the other protocol components. The contextual information

excised from the packet header has to be subsequently encoded in either the

packet buffer or the protocol handler or, most likely, both. We should note that

this is not an all-or-nothing approach. In fact, our ability to balance overhead

from different networks and virtual circuitry models comes from the ability to

selectively migrate state that would be repeatedly transmitted in packet headers

to other protocol components and vice-versa.

A packet can be either fixed size or variable size and the approach we adopt

for a given protocol depends more on the communication characteristics of the

virtual circuitry model than the network topology we communicate the packet

within. The main motivation for adopting variable-sized FURl packets comes

from datastreams which exhibit a high degree of cohesion. In this situation we

have the opportunity to amortise the overhead of the packet header over a larger

section of the datastream: we transmit large amounts of the datastream in a

few large variable-size packets rather than segmenting the datastream into many

smaller, fixed size packets which each have their own packet headers and corre-

sponding overheads.

Furthermore, the question of whether a packet has a completely fixed format

is orthogonal to whether the packet has a fixed or variable size. In the most

general sense, a packet format is fixed since we do separate a packet into a header

'We should note that some network protocols use 'trailers' rather than headers for effi-
ciency reasons. In the abstract sense, both headers and trailers simply correspond to control
information embedded within the packet.

226

which is communicated before the corresponding payload. However, the format

of data within those two broad divisions could be either fixed or flexible. Since

the format of the packet itself could be encoded in the packet header.

For instance, a packet payload could have contain a mixture of different

datatypes or be constrained to only one. A motivating example of this is em-

bedding program data with any of the other three datatypes. This effectively

creates active packets where the program code contained within the packet ac-

tually defines the processing to be applied to the remaining payload. However,

mixing datatypes in the packet payload implies that the payload itself has some

form of internal structure. If there was no format imposed on a mixed payload

packet, the protocol handler would be unable to discern one datatype from an-

other'. Therefore, we must consider how to communicate the payload structure

to the protocol handler. This can be done by encoding structural information

into the header of the packet itself and designing the protocol handler so it can

interpret the embedded structural information. With respect to the active FURl

packet example, the protocol handler would be unable to discern the entry point

of the embedded program unless we encode that information in the FURl packet

header.

The simplest form of structural encoding is a type field where we specify the

type of a packet in the header and the protocol handler is capable of handling

one or more of packet types. This is a fairly static approach as the number of

packet types has to be explicitly enumerated before communication begins and

the protocol handlers will only ever understand a specific subset of packet types.

A more flexible alternative would be to employ a programmed meta-description

of the packet format in the header. The protocol handler has to understand

where to find the format definition and how to decode that definition but after

that it can, conceptually, process any packet format that can be encoded in

7 1t is not possible to arbitrarily mix datatypes in the packet payload since the type of a
given datum is not directly encoded into its raw datastream representation.

227

the meta language. These two examples are at opposite extremes of possible

approaches to encoding packet formats. We either have a dense encoding in the

form of a packet type coupled with specialised protocol handlers or we define

the packet using format specification embedded in the packet header, and have

a generalised protocol handler. In terms of their respective impact on overhead,

with a meta-language approach we reduce the number of context switches by

having few generalised protocol handlers executing on the FURl executive. On

the other hand, with a type field there is potentially a larger number of specialised

protocol handlers which, as a function of their specialisation, will have a faster

processing rate than the generalised handler.

In addition to encoding structural details of a packet in its header, we also

convey addressing information. We need addresses in the packet header to identify

the node and program or circuit that a packet is destined for within the network.

The style of packet addressing required is heavily dependent on the exact network

topology and the virtual circuitry model being used. We generally require an

address to identify the source and destination of a payload. However, we can

reduce the amount of explicit addressing required for each packet by adopting

conventions in the protocol handler and packet buffers.

The virtual circuitry model influences packet addressing since the higher the

degree of sharing that a model supports, the larger the address space is within a

node. Furthermore, the choice between adopting a connection oriented or connec-

tionless scheme is related to the amount of cohesion in the model datastream. A

high degree of cohesion generally justifies a connection oriented addressing style

since we know that the datastream traffic is going to exhibit a suitable degree

of regularity. The most desirable address encodings are compact and have a low

processing overhead when the packet eventually arrives at the appropriate proto-

col handler. It is theoretically possible to eliminate the addressing requirement

completely but requires that we severely constrain the network topology and

communication style. i.e., we limit ourselves to a single application or process

partitioned over a network where a physically dedicated channel connects two

nodes and, more specifically, there is one program or circuit element in each of

those those nodes.

Since there are only two nodes in the system context we defined earlier, we

can potentially eliminate node addresses from the packets in this style of network.

The network has the minimum number of nodes and we need only specify the

circuit or program element within the destination node explicitly. At the other

extreme, if the network topology and communication style is more complex, the

addressing information required increases. In the case of a bridged network,

for example, packets are hopping between explicit interconnect channels through

intermediate nodes. Essentially we are approaching the complexity of a packet

switched network, where intermediate nodes must make routing decisions in the

transmission of packets. The processing overheads in such a network make it

generally unsuitable for the virtual circuitry applications we are considering but

it is interesting to consider as an extreme point on the style of addressing that

may be theoretically implemented over the FURl network.

We can also consider the potential difference between packets from a shared

memory network and packets from a directly connected network. In a directly con-

nected network, the receiving protocol handler has no real choice in which packet

to process since the packets arriving are simply those that have been transmit-

ted from another host. In a shared memory network, there is a greater chance

that a packet will experience communication latency by being stalled within a

packet buffer. For latency intolerant models like the parallel harness and sea of

accelerators the protocol handler must make rapid decisions about which packet

to process next. One argument here could be that we simply restrict the class

of networks that are suitable for latency intolerant models to those with directly

connected nodes. However, forcing all communication to be explicit and direct

229

between nodes makes sharing of the logic array more difficult and the protocol

handlers have to arbitrate direct access to the channel. A shared memory network

facilitates sharing of the array by increasing the amount of simultaneous access

to the packet buffer. Essentially there is a tradeoff between the overhead cost

of arbitrating a direct medium and the overhead cost of processing extra packet

data required in a shared memory context. The worst case situation for a shared

memory network is a single-ported memory component in place between network

nodes. However, this is logically equivalent to the direct connection of nodes since

we have to arbitrate access to the memory component rather than channel. For

dual ported memories and beyond, the amount of sharing facilitated increases

since we have greater independent access to the packet buffers. Here, the pro-

tocol handlers executing on FURl components have a larger selection of packets

available for processing so the packet may contain extra header information, such

as a packet priority or a sequence number, to assist in the decision process.

7.2.2.2 Packet Buffers

Packet buffers exist mainly in the context of a shared memory FURl network

and their main purpose is to hold packets that are in transit, between protocol

handlers, over a given channel. The FURl protocol handlers insert and remove

packets from a particular buffer in order to communicate algorithms and operands

between nodes in the FURl network. There are two components that define a

packet buffer:

• The first component is a set of operating semantics that define how the

FURl protocol handler may insert and remove packets from the region of

memory that is allocated for a particular buffer.

• The second component is the context information that must be maintained

alongside the buffer to support both the operating convention and the pro-

tocol itself.

230

Generally speaking, there is a correlation between the amount of state we need

to maintain for a particular style of buffer and the complexity of its semantics.

The more complex buffer schemes require that we maintain more dynamic state

to implement the buffer's data structure. Potentially, we could consider a number

of different packet buffer styles ranging from first-in-first-out(FIFO) queues, to

priority queues, and then fully random-access buffers. The styles are differentiated

according to the flexibility with which packets can enter and leave the buffer. For

example, FIFO queues allow packets to enter and leave only at given insertion and

removal points and only in the order that they were inserted. A priority queue

style buffer also constrains how packets enter and leave the buffer but loosens the

constraint on the order that packets leave - the lowest priority packet is always

the first to be removed, even if it was not the first to enter. In the random access

buffer, there are essentially no constraints on how packets would enter or leave.

FIFO's are common in communication systems and, in this discussion, we will

mainly consider FURl buffers in the style of FIFO queues.

In the context of FURl protocols, FIFO style buffers have two useful prop-

erties: first, they implicitly preserve packet ordering and, second, the process of

inserting and removing a given packet has 0(1) time complexity. From the dis-

cussion on communication characteristics, we know that packets, especially from

operand streams, arrive and leave frequently. This makes the constant-time in-

sertion and removal of a packet an important consideration. Figure 7.10 presents

three variations of FURl FIFO-style buffers.

The different FIFO implementations show that we can, even within the restric-

tions of the given style, still make some tradeoffs in the amount of dynamic state

we support. In particular, the cases in Figure 7.10 show the effects of altering the

buffer's granularity of access on its state requirements. For FURl FIFO buffers,

the access granularity itself breaks down into two components: the insertion gran-

'This is an assumed convention. Different queue implementations may assert that the highest
priority packet should be the first to be removed from the buffer.

231

roRu Protocol 	Sigu.FRlPck.0 	r ___________ Protocol

	

I:I 	
Consom

CoiswTue
-

FURl FURl 	 I 	 I
Polou 	 [

POlOCd

Figure 7.10: FUR! Buffers with FIFO style operating conventions: (i) a minimal
FIFO buffer containing one packet; (ii) a multiple packet FIFO filled with an
access granularity matching the buffer size; and (iii) a multiple packet FIFO
supporting single-packet access granularity.

ularity determines how many packets enter the buffer with each access, and the

consumption granularity defines how many packets should leave the buffer with

each access. It is worth clarifying, however, that we are assuming the memory

region allocated to any FURl buffer is itself static and that each protocol handler

associated with a given buffer has explicit knowledge of both the memory size of

this region and its start address.

Figure 7.10(i) shows the simplest form of FIFO buffer that we will consider,

and is essentially the same buffer form that was used in the FURl base-protocol

in Chapter 6. In terms of access granularity, this buffer must he either entirely

232

filled or entirely emptied each time it is accessed. The only state information

that we need to associate with an instance of this buffer style is a flag indicating

whether the buffer is currently full, or whether it is currently empty. A single

packet buffer may, at first, seem quite limited, especially in the context of small,

fixed-size packets. However, this buffer style effectively demonstrates the smallest

quantum of buffer state required to exchange a single packet between two protocol

handlers and would be effective in situations where the VC application datastream

is cohesive enough to warrant large variable-sized packets.

Figure 7.10(u) shows a multi-packet variant of the first buffer. Although

the buffer may contain multiple distinct packets, it is still filled or emptied in

its entirety with each access. Now, in addition to maintaining the full-empty

indicator, we must maintain a count of the number of packets that are currently

held in the buffer. Given the current set of constraints, this is actually redundant

when the packet size is also fixed. If that were the case, the number of packets

could be deduced from the memory size of the buffer and the size of the packet

and the memory region allocated to the buffer would be a multiple of the packet

size. The packet count is primarily needed to let the receiving protocol handler

know how many variable sized packets are held within the buffer. With this

information, the receiving protocol hander can then consume the appropriate

number of packets, starting with the first packet whose header is aligned with the

start of the buffer's memory region.

Finally, Figure 7.10(iii) shows the FURl model of a multi-packet FIFO with

an access granularity on the scale of a single packet for both insertion and con-

sumption. For this buffer style, in addition to the status word identifying whether

or not the buffer contains any valid packets, we maintain two dynamic pointers

into the buffer's memory region. These pointers define the start and end of a

valid-packet region respectively. The FIFO operates cyclically, so the pointers

wrap around whenever they reach the end of the buffer's memory region.

233

As with the previous two FIFO styles, the receiving protocol handler starts

to consume packets based on the value of the status flag, but now only consumes

packets within the valid-packet region delimited by the start and end pointers.

When all the packets within that region are consumed, the two pointers align

at the same address and the status word must be inverted to show that all the

packet data is consumed. This is important because the protocol handler inserting

new packets must stall if it wraps around to the start of valid packet data that

has not been consumed by the receiving handler. The inserting protocol handler

increments the valid region's end pointer each time it adds a packet. Before

adding a packet, however, it tests whether or not the valid region's end pointer

matches the start pointer and whether the buffer's status indicator is set to show

the buffer still has valid packet data. If both conditions are true, then the buffer is

full and the inserting protocol handler must wait until either the buffer is marked

as empty again or the valid-region pointers no longer align.

In comparison to the two earlier FIFO styles, this buffer style is less likely to

introduce latency into the VC datastream. The main reason for this is that the

entire buffer does not need to be filled before the receiving protocol handler can

begin processing the incoming packets. In the general sense, increasing the access

granularity allows us to reduce some of the dynamic state overhead associated

with a given buffer style, but we pay for that with an increased latency in the

data stream. In theory, we could partially fill the buffer with valid packets and

partially fill it with identifiably invalid packets. The receiving protocol handler

would then be responsible for ignoring the invalid packets, but if the time taken

to generate and filter out the invalid packets was less than the time it would take

to fill the buffer with valid data, then we would reduce the overall delay. Even

if this approach was tractable from an implementation perspective, we must still

approach it cautiously as it increases the potential for variation of the latency

in the datastream. We mentioned earlier, when discussing the communication

234

characteristics of the different VC models, how such jitter may be harmful in

models such as the parallel harness.

7.2.2.3 FURl Protocol Handlers

FURl protocol handlers are the programmed tasks that execute within the frame-

work of the FURl executive to implement a particular FURl protocol. The precise

actions of a handler are specific to the protocol being implemented, but we can

generalise its actions into two roles: first, the protocol handler interacts with a

given network channel to orchestrate the exchange of protocol packets and, sec-

ond, the protocol handler processes the packet data it receives and, potentially,

generates result packets. Essentially, each protocol handler provides an inter-

face to a particular array resource or SLU. The exact feature set that a handler

manages, though, is defined through the protocol itself. Effectively, it is the col-

lection of protocol handlers currently active in the FURl executive that define

the programmable logic interface. Furthermore, it is the ability to add and re-

move handler tasks through the FURl base protocol that facilitates the adaptive,

packet based programmable logic interface we aspired to in Chapter 3.

We can differentiate protocol handlers according to how much they have been

specialised to deal with a particular packet style or buffer format. If the protocol

handler only ever processes packets of a fixed size and certain format then we can

specialise its programmed implementation accordingly. For example, consider the

implementation of a protocol handler that interacts with a FIFO buffer similar

to that shown in Figure 7.10(u), but containing fixed-size packets instead of the

variable-sized packets shown. In this situation, the number of packets that must

be consumed with each buffer access becomes static and can be folded into the

code of the protocol handler. Each specialisation of this kind, where we fold

detailed assumptions about the packet and buffer format into the protocol han-

dler's implementation increases its efficiency at processing those packet and buffer

types.

235

However, we have to trade off the specialisation applied to a handler against

the constraining effect it has on which packets the handler can process. If the

protocol handlers are too constrained, we may require more independent handler

tasks running on the executive to handle the full diversity of the VC datastream.

In particular, this means we effectively have to balance the handler's specialisation

against the cost of context switching between many different handler tasks.

For example, in the sea of accelerators context, we could assert that each SLU

is managed by a dedicated, specialised protocol handler. Since there might be a

relatively large number of SLUs resident on the cell array in this VC model, there

would be a correspondingly large number of handler tasks. Although the handler

code is itself more efficient, the larger number of executive tasks means it may

actually take longer before it is scheduled and the context switch penalty is more

apparent. In this case, we can perhaps argue that the round-robin scheduling

policy of the FURl executive should be replaced by an alternative policy that

applies a higher level of reasoning in selecting which handler task should be ex-

ecuted next. A similar approach would apply to generalised protocol handlers

that manage multiple input buffers where the protocol handler itself must make

'micro-scheduling' decisions about which of its multiple buffers to service next.

7.3 Implementing Virtual Circuitry Models

The discussion in the previous section addressed the general form and design space

for FURl protocols and in this section we shall propose implementations of the

three VC models in the FURl environment. The Data Encryption Standard(DES)

is used as an example application in this section. Each implementation discussion

proposes renditions of the DES algorithm in combinations of FURl managed

circuitry and application program code to accentuate the role and challenges

facing the FURl core in the different VC styles.

The DES is an appropriate algorithm to use in the proposed implementations

236

because its basic elements can be composed into the appropriate circuitry forms.

For example, the DES contains many basic combinatorial computational elements

which are individually appropriate candidates for becoming sea of accelerator

SLUs. We can also explicitly wire all of the basic computational elements of

the DES together within a pipelining parallel harness circuit. The resulting DES

circuitry can then be presented to the FURl core for management. Specifically, its

pipelined nature provokes the complex and particularly demanding timing issues

that are characteristic of FURl managed parallel harness circuitry and that the

FURl core must handle in parallel harness applications. The same computational

elements can also be combined in a sequential algorithmic flexible harness that

takes over the same fundamental role as the parallel harness interconnect circuitry

but using highly optimised FURl code.

A short description of the DES is given in the following section.

7.3.1 The Data Encryption Standard(DES)

The DES is a 64 bit block cipher exploiting a 56 bit key length. It combines

the two basic techniques of encryption: confusion (substitution) and diffusion

(permutation). This section gives a very brief overview of the algorithm and a

detailed description of the DES can be found in [91]. The algorithm, as shown in

Figure 7.11, comprises 16 almost identical "rounds" which are bounded by initial

and inverse initial plaintext permutations. The same algorithm is used for both

encryption and decryption.

IP and 1P' are the plaintext permutations applied at the periphery of the 16

DES rounds and they have very little cryptographic value. Software implementa-

tions of DES often omit them completely' as word-oriented microprocessors have

difficulty implementing bit level permutations as efficiently as they can be done

in circuitry.

'Although this means, strictly, that they no longer implement the DES and therefore typi-
cally refer to themselves as implementations of DES' or DES* .

237

PbSINIEXTI63321 	1 	PiANTE)(113 O

•1
IWOX(6456)

KYI5628) 	 EV27OJ -

I 	PC5€48)

I SBOXI-8(6:4) I

I XOR32(32,32)

Mmmi~ MOON=
Fifteen Identical Rounds 	 Fifteen Identical Rounds

7[P(64:64)

Figure 7.11: The Data Encryption Standard Algorithm

The Key Permutation(KBOX) is applied at the beginning of the encryption

or decryption to extract the 56-bit key from the 64-bit input vector. Specifically,

the permutation ignores the eighth bit of each byte which is typically used for

parity. Key-shift is a circular shift of one half of the 56-bit compression key. For

encryption, the 28-bit sub-key is shifted left according to a key schedule which

varies how much the sub-key is shifted by, based on the round number. The

situation is similar for decryption excepting that the sub-key is circularly shifted

to the right and the key schedule re-creates the inverse key sequence to that

applied during encryption. Permuted Choice(PC) is another bit-level permutation

that selects 48 bits from the 56 bits contained in the shifted key. The resulting

238

value is then injected into the main flow of the algorithm to influence the encoding

of the plaintext during the current round.

The expansion permutation(EBOX) is used to rapidly increase the dependency

of every bit in the ciphertext on every bit in the plaintext. The permutation

converts the 32-hit right hand data word to a 48-bit expanded data word by

regularly repeating certain bits in the input word. Substitution Boxes(SBOX)

are the main cryptographic feature of the DES and apply non-linear substitutions

to 6-bit segments taken in sequence from the expanded data word after it has

been XORed with the current round's encryption key. The resulting nibbles are

re-packed into a 32-bit data word for the following permutation. The straight

permutation(PBOX) is applied immediately after the SBOX substitutions and is

essentially a standard permutation where no bits are repeated or omitted from

the input word.

7.3.1.1 The DES modes

The basic DES algorithm is a symmetric block cipher where a ciphertext block is

the direct product of the input plaintext and encryption key. In the standard algo-

rithm itself, there is no cumulative relationship between plaintext blocks that are

encrypted in sequence. This makes the encrypted ciphertext particularly suscep-

tible to differential cryptanalysis techniques. To combat this, four DES operating

modes are specified: electronic-codebook (just the application of the standard

algorithm); cipher-block chaining; output-block feedback; and cipher-block feed-

back. Although the cryptographic aspects of these modes are interesting, the

discussions below will consider just the standard, electronic-codebook operating

mode.

7.3.2 The Application Context

The overall system context for this section was shown in Figure 7.1. Figure 7.12

expands that view to include more of the details from the discussions earlier in

239

FURl Managed
Programmable Logic

Th. FURl

	

Cgo 	 - VC 	 B.
Po4oco1 	P,olccol 	Prowcal

	

neo 	H.ne.. 	Han.

	

A 	 A 	 4

MW
FUR Pml000l cb.t

Mn Application Code
on Host Processor

Figure 7.12: Lower level view of the FURl system context

this section and the discussion of the FURl base protocol given in Chapter 6.

In all of the following examples, a FURl client executing on the host processor

system allows the main application code to interact with the FURl managed

programmable logic via a series of FURl protocols.

Initially, only the FURl base protocol is available and the FURl client must

use it to instantiate other protocol handlers that are more specific to the \7C model

being supported. Figure 7.12 shows the state of the FURl managed programmable

logic after the base protocol has been used to instantiate two handlers. One

handler is dedicated to managing SLU configuration and the other to facilitating

SLU interaction.

7.3.2.1 Configuration Protocols

Chapter 6 presented a detailed, low level discussion on the mechanics and issues

related to the use of the FURl core in the role of configuration agent. The same

fundamental issues raised in the discussion of a SLU loader in Chapter 6 also

apply to the proposed VC model implementations discussed in this section. Since

the discussion in Chapter 6 is fairly comprehensive, this section focuses more on

the issues surrounding SLU interaction.

240

7.3.3 Sea of Accelerators

7.3.3.1 Overview

In the sea of accelerators implementation of the DES, the majority of the algo-

rithm executes on the host microprocessor. We map one of the basic computations

in the DES algorithm onto an SLU implementation. The main algorithm interacts

with that SLU by passing packets of circuit operands to the appropriate protocol

handler and collecting the corresponding result packets.

7.3.3.2 Interacting with a PBOX SLU

PBOX is an interesting candidate for a sea of accelerators SLU: the irregularity

of the permutation makes it fairly difficult to implement efficiently in software,

although an SLU implementation is nothing more than wiring between two 32-bit

registers. Generally speaking, interacting with an SLU involves processing pack-

ets containing circuit operand data - the operands excised from that packet are

presented to the appropriate SLU and the results generated by the SLU are cap-

tured and placed into a result packet for transmission back to the FURl client.

Of the three VC models, SLUs in the sea of accelerators model have the sim-

plest set of requirements associated with their interaction. Every operand packet

received by the protocol handler for a sea of accelerators SLU would directly gen-

erate a corresponding result packet. This is in contrast with the more complex

circuit state and timing issues that we must address for the Parallel Harness and

Sequential Algorithmic models.

Interacting with the PBOX SLU is fairly straightforward as it has the simplest

form of SLU interface - there is one input register, one output register, and both

JO registers can be aligned to the same vertical positioning. All of these factors

make the protocol handler's job of presenting operands and recovering results

much simpler since the SLU registers share the same map register settings and,

once the appropriate device state has been applied, they can be read and written

241

with a single FastMap transaction each. However, this is not the case for all

SLUs and we must address the fact that different SLU interfaces place different

requirements on the SLU interaction protocol handler.

7.3.3.3 Interacting with an EBOX SLU

The general form of the EBOX SLU is similar to that of the PB0X but with one

important exception: the input and output registers of the EB0X are different

sizes and, in particular, the output register exceeds the width of the FastMap data

bus. We cannot rely on sharing map register settings and must now arrange for

two separate FastMap reads to recover the result from the SLU's output. Com-

paratively speaking, interacting with the PBOX is much simpler than interacting

with the EBOX solely because of the arrangement and form of its 10 registers.

7.3.3.4 SLU Interface classifications

Figure 7.13 shows five common register interface arrangements for sea of acceler-

ator SLUs and, underneath each, the approximate sequence of device state and

interface register accesses required to effect a single computation. An underlying

assertion in the first four interface arrangements is that the interface registers

are at most 32 bits wide. The PBOX SLU we described above is an example of

a Figure 7.13(i) SLU. In Figure 7.13(u), the situation is slightly more complex

since the input and output registers have differing sizes. This means that a differ-

ent device state must be applied before accessing either to present the incoming

operand or retrieve the corresponding result. Figure 7.13(iii) is an extension of

the PBOX-style SLU demonstrating the effect of having multiple input registers

in the SLU although, since the registers share common map register requirements,

the only effect is an increase in the number of register writes corresponding to

the number of input registers.

Figure 7.13(iv) shows three forms of SLU where there are multiple input reg-

isters, but without the ability to share map register state between accesses. In

242

Li I Li
_L

4 	 4 	 4
— a—

(ti) 	 (ii)

11111 in
IiLIE1

(N)

Setup Device 	 Write 	 Capture 	 -- - 	(v)
State 	 Operand 	 Result

Figure 7.13: Interface Arrangements for FURl SLUs

this case, we must apply the appropriate control register settings before any read

or write to an SLU register. In Figure 7.13(v), the 32-bit size constraint on the

interface registers is removed so SLUs with a much wider data path can be con-

sidered. The EBOX SLU is a close relative of the Figure 7.13(v) since its output

register is larger than 32 bits wide. Furthermore, although the tall SLU shown

in Figure 7.13(v) is logically identical to the first interface type, the fact that it

exceeds the width of the host FPGA's physical interface makes the presentation

of operands and capture of results more complex. Presenting a single operand

to one of the wide SLU interface registers requires multiple writes, each of which

is preceded by an appropriate device state setting. A parallel situation holds for

recovering an operand from a wide SLU output.

7.3.3.5 Managing interface arrangements in the Protocol Handler

The protocol handler requirements in the initial PBOX SLU description are fairly

routine: the operand data in each packet can be neatly packed into the words

243

of the shared memory region and, with the appropriate placement constraints,

the registers can share common map register values. However, the section above

demonstrates that the amount of effort required to communicate with the SLU

varies according to its interface style. Essentially, we must communicate format-

ting information to the protocol handler to let it know how individual operands

are packed into the data payload of the packet. Furthermore, if the SLU has

multiple input registers, we must somehow be able to address each operand to a

particular destination register.

One immediate option is to specialise each protocol handler to a target SLU's

interface. In particular, details of the operand characteristics, and transport

scheduling are folded directly into the handler's packet processing code. At the

opposite extreme, though, a single generalised protocol handler could be written

to manage all possible SLU interface arrangements. To support each SLU inter-

face arrangement, the packet's header information would contain all the necessary

meta-data to allow the generic protocol handler to present the circuit operands

correctly and, symmetrically, gather and re-pack the circuit results.

Generally speaking, neither of these situations is particularly ideal. We con-

sidered the effect of specialising protocol handlers within the sea of accelerators

model earlier. The potentially large number of independent SLUs would increase

the elapsed time between a given protocol handler being scheduled. The com-

pletely generic protocol handler would increase the control-data overhead in each

operand packet. Furthermore, unless there are a large number of operands in each

packet, the overall efficiency of the generalised handler would be relatively low

because of its very general nature and correspondingly complex programming.

7.3.3.6 Dynamically binding to specialised SLU interface subroutines

One potential compromise between the two approaches, however, involves the late

binding of operand processing to specialised interfacing routines that are dynam-

ically generated when the SLU is first iistantiated on the array. For example,

AM

rather than just being responsible for transferring a SLUs bitstream image to the

host FPGA's configuration memory, the configuration protocol handler can also

create specialised instances of interface code templates. The specialised instances

of the code templates essentially define two FURl subroutines. The first con-

sumes operand data from a given position in the current packet and presents it

to the specific SLU inputs whilst the other, when called, captures the output of

the specific SLU and packs it into a given position in a results packet. Although

there is a cost associated with generating the templates, we can consider this part

of the overall configuration cost for the SLU and amortise it accordingly.

The important thing to note here is that we are not dynamically synthesising

large amounts of code each time we process a new packet. Rather, the entry

points for the synthesised interface code subroutines would be maintained in a

binding table, keyed by an appropriately unique SLU instance identifier. Read

and write operations to the SLU interface would be dynamically bound to the

correct, specialised subroutines when we begin to process each operand packet.

A crucial aspect of this style of protocol handler is an efficient dynamic bind-

ing scheme. The focused application of self-modifying code is very useful here -

we can perform a single lookup of the interface binding table once per operand

packet and overwrite the interface subroutine call entry points within the han-

dler's code. This eliminates the cost of repeatedly calculating the dynamic binding

at each SLU interface access and allows us to amortise the cost of the code self-

modification as each operand is presented to the appropriate SLU. Conceivably

we can amortise the binding cost over multiple operand packets, provided we can

justify maintaining separate input FIFOs for each SLU.

245

L 	 R 	 Key

Pipet— Stage Regale,

- 	 R

Figure 7.14: Pipelined Parallel Harness DES Circuitry

7.3.4 Parallel Harness

7.3.4.1 Overview

In the parallel harness implementation of the DES, we construct a single, large

circuit that implements all the functionality of a single, highly pipelined DES

round. As shown in Figure 7.14, pipeline registers of an appropriate width are

placed between each of the main computational stages of the algorithm. For

example, this would include pipeline stage registers between the EBOX and logic-

XOR and the insertion of appropriate delay registers to ensure that the left word

of the plaintext arrives at the round's final logic-XOR on schedule. We should

note that, in this example, the harness itself is the pipeline register circuitry

juxtaposed with the computational SLUs. As we described in Chapter 4, system

SLUs are placed at the periphery of the harness circuit to form a register oriented

wrapper interface. The parallel harness operand handler executing on the FURl

core uses this wrapper interface to present operands and collect results from the

circuit.

246

The intention here is not to propose a particularly fast or novel implementation

of the DES circuitry, but rather to combine the basic computational elements of

the algorithm in a parallel harness style circuit. The overall efficiency of the

circuit itself is less important than the fact that it exhibits the timing issues that

we must consider when implementing the parallel harness model on the FURl

core. We should clarify that the pipelined tuning of this circuit is fairly simple

in comparison to other possible parallel circuit timing requirements. However,

it is still appropriate for discussing the basic challenges that must be addressed

within the circuit's protocol handler.

7.3.4.2 The challenges of interacting with a parallel harness circuit

The iiiain challenge for the parallel harness DES circuit's protocol handler is that

the presentation of an operand is temporally separated from the collection of its

corresponding results. The mechanical aspects of presenting operands and cap-

turing results is essentially the same as that used in the sea of accelerators: the

interface arrangement influences the amount of work required to effect each in-

terface access. However, the protocol handler must schedule its interface accesses

to match the timing of the parallel harness circuitry. For example, when the

parallel harness circuit is clocked from a freely-running clock source, it is impera-

tive that the exact scheduling of SLU interface accesses coincides with the timing

requirements of the harness circuit. If this is not the case, the protocol handler

may miss results as they arrive at the circuitry output. There are three potential

approaches to addressing this issue and each one is considered in turn below.

7.3.4.3 Matching the harness timing with specialised transport
scheduling

The first approach requires a highly specialised and optimised implementation

of the handler. Specifically, this handler uses advance knowledge of the DES

harness's circuit latency and I/O schedule to synchronise the harness protocol

247

	

Operand Sequence 	1 2 3 4 5 6 1 8 0 10 11 12 13 14 15 16 Ii 18 18 20

	

Result Sequence 	 1j2 3 	s • 1 7 $ S 12 11 12 13 14 15 18 Il ta 18 20

	

FURl Instruction 	 - 	 -
Schedule 	 -

I

Write to Harness 	 Capture Harness 	 No Harness

Input Interface 	L 	Output Result 	 Interface Access

Figure 7.15: Operand and Result sequences for the pipelined DES Parallel Har-
ness Circuit

handler's instruction sequence with the raw timing of the harness circuit. Spe-

cialised protocol handlers that are specific to a particular SLU are more likely

in the parallel harness context because of the potentially low number of circuits

sharing the spatial resources of the array at any one point in time. Scheduling

an appropriate instruction sequence within the protocol handler is a task suited

to the optiinising stages of a higher level TTA compiler.

Aligning the execution of FURl instructions to the I/O schedule of the harness

circuit is challenging and has two underlying assumptions. First, we assume

that the FURl core and the parallel harness circuits are in physically compatible

clock domains. The FURl core may exist in a separate clock domain from the

circuitry it manages, for example, when the parallel harness circuitry has a longer

critical path than the FURl core. Specifically, the clock frequency of the FastMap

interface must be in phase with the clock being used at harness circuit's register

interface. If this is not the case then we risk presenting an operand to the harness

circuit at a point when it would not be latched. Alternatively, the FastMap

interface may sample an incorrect result from the SLU output because its registers

are in a transitional state.

The FURl core executes its instruction sequence serially but in this instance

we need to capture results and present inputs in parallel. The core cannot perform

both of these operations simultaneously in a single move instruction so the second

assumption is that we can actually execute enough FURl instructions within a

single cycle of the DES harness circuit to present operands and capture results.

Figure 7.15 shows a schedule of operands arriving at the inputs to the DES harness

circuitry.,and the corresponding result sequence. A breakdown of the interface

accesses performed by the protocol handler is given underneath the operand and

result schedules. We can see in this diagram that, after we overcome the initial

latency of the DES harness's pipelined implementation, two interface accesses are

required on each cycle of the harness circuit. However, sequential execution of

FURl instructions means that the FURl core would have to execute more than

one instruction within the clock period of the DES harness to give the illusion

of capturing the harness's result and writing the next operand simultaneously.

Effectively, the FURl core must have a very low instruction cycle time relative

to the DES harness's cycle time. Supporting this practically is challenging since

pipelining has the effect of reducing the clock period of the DES harness.

7.3.4.4 Isolating the FURl core timing from the DES harness

Whilst interacting with the DES harness at its natural timing is theoretically

possible, we can see from the above discussion that a practical implementation

would require a very fast implementation of the FURl core. The discussion in

this section focuses on changing the style of system SLU at the harness circuitry's

periphery as a means of making the task of interfacing with the circuit simpler.

In both the cases presented, we increase the intelligence of the harness's interface

SLUs to reduce the demands on the protocol handler and the FURl core.

Figure 7.16(i) shows the same DES harness circuit used in the discussion

above, but this time bounded by system SLUs that contain FIFO circuitry. A

particular point to note here is that the FIFO-based system SLU at the harness

output is capable of stalling the harness circuit when the FIFO becomes full. This

prevents the loss of results and, essentially, the use of FIFOs allows us to detach

the internal timing of the harness from the FURl core. In this context, the FIFO

249

Input
FIFO -

DES Parallel Harness
Circuit ITffi

Output Buffer Full - Stall

Access Triggered Clock

Figure 7.16: Parallel Harness DES circuitry

at the harness output allows the FURl core to interact with the harness circuitry

at its own speed without risking the loss of any results. If we were dealing with a

more complex parallel harness circuit which demanded new operands arrive at a

particular rate, the FIFO at the harness input would also stall the harness circuit

when it became empty, this time to protect any internal state that is required for

the correct processing of future operands.

In the above approach, the FIFOs within the system interface SLUs provide a

bridge across the two clock domains. The parallel harness circuit can still process

operands and produce results at its core clock speed, even if the FURl core itself is

not capable of supplying them at that rate. The third approach, shown in Figure

7.16(u) uses a specific feature of the XC6200 to completely replace the harness

circuitry's free running clock with a clock signal that is triggered once each time

the FURl core captures a result or presents a new operand. Specifically, we use

the FastMap interface's regword signal, described in Table 3.1, to replace the free

250

running clock with a single pulse that is generated each time a value is written

to the DES harness's register inputs. In this context, the FURl core is actually

implicitly responsible for clocking the DES harness each time it supplies a new

set of operands. In this situation, the parallelism of the harness is still intact,

but its computational rate is determined by the rate of its interactions with the

FURl core.

An interesting point here is that the underlying XC6200 FPGA architecture

gives us this facility essentially for free whereas, if we were to implement the

earlier FIFO model, we would have to invest an explicit amount of circuit area.

At the same time however, the implementation of FIFOs in an architecture such

as Virtex is much more routine and less demanding of array resources. This is

not to say that the two approaches are architecture dependent, though, since it

is possible to implement FIFOs on the XC6200 and gated-clocks on the Virtex.

7.3.5 Sequential Algorithmic

7.3.5.1 Overview

We know from Chapter 4 that a sequential algorithmic circuit comprises a set

of SLUs and FURl code that implements a flexible harness for interconnecting

them. Figure 7.21 shows the general organisation of the sequential algorithmic

DES implementation. Although the SLUs in this figure are in the sea of ac-

celerators style, the SLUs used within the flexible harness could be either sea of

accelerators style or parallel harness style. The programmed flexible harness com-

bines them all into one conceptual circuit. From a comparative standpoint, the

sequential algorithmic implementation of the DES used in this section is similar

to the previous section's parallel harness circuit. Again, we are implementing a

single DES round using SLU implementations of the main computational stages.

However, the explicitly wired parallel harness interconnecting those elements is

now replaced by the software routing executing on the FURl core.

251

7.3.5.2 Interacting with Sequential Algorithmic DES

The basic role of the protocol handler is unchanged in the sequential algorithmic

model: it is still responsible for presenting operands to the harness circuit and

collecting results. Like the parallel harness handler, the sequential algorithmic

handler must also deal with the temporal separation of presenting operands and

collecting the corresponding results. However the sequential algorithmic handler

does not interact with circuitry configured on the array explicitly. Rather, it ex-

changes operands and results with the flexible harness task using shared memory

FIFO queues as an inter-task communication mechanism.

There are two points we can note about this arrangement. The first is that,

although the operand presentation and result gathering are temporally separate,

because the protocol handler is not interacting directly with circuitry, we do not

have the same complex timing issues that exist for the DES parallel harness' 0 .

The second point concerns the difference this arrangement makes to the measure

of latency within the sequential algorithmic circuit. In the DES parallel harness,

it is theoretically possible for the results from processing the current packet to be

captured and re-transmitted within one scheduled run of the protocol handler.

In this situation, however, the latency between an operand being presented and

the result being captured depends on the flexible harness task being scheduled to

run. The latency of the sequential algorithmic DES harness is therefore influenced

by the scheduling policy implemented within the executive. The critical path of

the sequential algorithmic DES circuit is defined by the runtime of the flexible

harness code itself.

The flexible harness task is highly specialised to the particular form and layout

of the SLUs it contains. This helps to counteract the loss of parallelism, incurred

10 1t is acknowledged that these timing issues could exist within a sequential algorithmic
circuit if it contains a parallel harness SLU. However, the flexible harness task imposes a level
of abstraction that that isolates the protocol handler from being directly concerned by the
parallel harness timing issues. Instead, the timing issues are managed explicitly within the
specialised flexible harness code.

252

as a result of the FURl core's serialised execution by giving the higher level TTA

compiler the opportunity to deploy the optimisation techniques we discussed in

Chapter 4. For example, because the location and form of the DES SLUs are

fixed and the harness's communication sequence defined in advance, the compiler

can apply operand multicasting using the XC6200's wildcards. The application of

bin-packed writes using the XC6200's map register mechanism is also calculated

at this stage. In the DES harness, for example, we can bin-pack multiples of the

SBOX operands into a single write.

Essentially, the flexible harness code trades away as much of its dynamic deci-

sion making as possible to increase its efficiency. The downside to this, however,

is that it limits the potential benefits available through some TTA optimisations.

Operand sharing, for example, could be very effective if an operand becomes a

semi-static value for a period of time. For example, whilst the plaintext inputs

to the DES circuit are highly variable, the key itself may be static over succes-

sive operand processing cycles. We could potentially eliminate a series of data

transports related to the key that are not required whilst it is in a semi-static

state. An interesting way to implement this by analogy with the concept of run-

time reconfigurable routing, discussed in Chapter 4, by dynamically patching the

flexible harness's code. Instead of supplying new circuitry bitstream data to re-

configure explicitly wired routing, we actually supply new FURl program code

and dynamically alter the flexible harness's software routing.

7.4 Performance Analysis and Projection

In this section we analyse the performance of the DES application implemented

in the style of the three VC models.

253

7.4.1 Performance of the FURl core

Before we explore the implementations of the three VC DES implementations,

we will first establish the instruction processing rates available through different

configurations of the FURl core. In Chapter 5, we considered the FURl core's

performance when loading SLU bitstreams at different clock speeds. In addition

to scaling the clock period of the FURl core, a second dimension explored here

is the effects of applying pipelining to the core's implementation. The overall

aim of this section is to explore the instruction processing rates available through

enhancements to the basic FURl core. By building cost models of the different

VC DES implementations, and in combination with a cost model of the FURl

Executive and its related components, we can determine the performance of the

applications with respect to a given implementation of the FURl core.

Chapter 5 has a comprehensive description of the basic implementation of the

FURl core. To recall, the basic implementation of the core required 19 cycles to

execute each move instruction. Using this, we can derive an instruction process-

ing performance relative to the core's clock speed. Furthermore, we can derive

the instruction processing rate relative to different degrees of pipelining that we

wish to apply to the core. These derivations are accurate indicators of the per-

formance of each core implementation since each move instruction is executed in

a deterministic manner and in constant time. Table 7.1 contains the instruction

processing rates available at different clock speeds and pipelining configurations

of the FURl core".

The viability of these performance details should be considered relative to a

scaling of FPGA technology into future device generations. We can state that the

application of pipelining to the core will involve increasing the gate count of the

core's implementation. XC6200 technology, because of its relatively limited device

"The figures in Table 7.1 describe deeply pipelined FURl implementations down to cores
supporing single-cycle instructions. We should note that such deeply pipelined implementations
are tractable, provided we have a suitably high bandwidth memory hierarchy.

254

Clock
Frequency

Basic, 19
Cycles

per
instr

16
Cycles

per
instr

8
Cycles

per
instr

4
Cycles

per
instr

2
Cycles

per
instr

1
Cycle
per

instr

8MHz 421052 500000 1000000 2000000 4000000 8000000
16MHz 842105 1000000 2000000 4000000 8000000 16000000
33MHz 1736842 2062500 4125000 8250000 16500000 33000000
66MHz 3473684 4125000 8250000 16500000 33000000 66000000
100MHz 5263158 6250000 12500000 25000000 50000000 1E+8
200MHz 10526313 12500000 25000000 50000000 1E+8 2E+8
400MHz 21052632 25000000 50000000 1E+8 2E+8 4E+8
800MHz 42105263 50000000 1E+8 2E+8 4E+8 8E+8

1GHz 52631579 62500000 1.25E+8 2.5E+8 5E+8 1E+9
1.2GHz 63157895 75000000 1.5E+8 3E+8 6E+8 1.2E+9

Table 7.1: FURl Core instruction processing rates at different clock speeds and
with pipelining to reduce instruction cycle times.

density, may not be attractive for implementing a single cycle implementation of

the core. A similar situation applies to the system clock speeds considered in the

table. A 100MHz FURl core will tax the XC6200 technology we are targeting

for the implementations of this thesis but circuitry speeds beyond 100MHz and

into the 1GHz range are becoming tractable in the Virtex architecture and will

be commonplace in future architectures.

We can assert that there is a relationship between the implementation tech-

nology and the degree to which we can pipeline and increase the clock speed of

an implementation. As the target architectures gain density, the gate costs asso-

ciated with pipelining become less relevant. Since pipelining enables higher clock

frequencies above and beyond the frequency gains of the physical device architec-

ture scaling, FURl instruction processing performance on the scale of billions of

transports per second is conceivable.

7.4.2 Analysis of the framework costs and overheads

The data in Table 7.1 allows us to establish some basic instruction budgets ac-

cording to a particular FURl implementation. In this section, we will characterise

255

the basic costs incurred by the fundamental elements of the FURl Framework.

There are three framework components that we will examine for this purpose: the

processing costs associated with the FURl executive and its basic system tasks;

the costs for dynamically loading SLUs; and the costs for communicating new

protocol handlers via the FURl base protocol.

7.4.2.1 Gathering Cost Information within the FURl Framework

Cost in this context relates to the number of move instructions that we must

allocate to perform a particular task. In some cases, a static characterisation of

the instruction cost is adequate. For example, we will present the instruction cost

for the FURl executive's entry point code which captures the cost of initialising

the overall FURl framework. This code is only executed once, when the FURl

core first begins processing instructions and constitutes a static overhead that we

must pay when bringing the FURl managed programmable logic online for the

first time. Other tasks, such as loading an SLU, have costs that are relative to the

context when the task is executing. The total instruction cost of loading an SLU

depends on the size of the bitstream for that SLU and the parameters passed to

the block loading subroutine. In this situation, the cost model used will have an

assessment of any static instruction costs in the task and then a quantification of

the dynamic cost involved in each unit of processing for that task. In the case of

the SLU loader, the unit of processing we are interested in is, mainly, the cost of

configuring each block of the SLU's configuration bitstream.

Throughout this section, the assessment of instruction processing costs comes

from statistics generated by the FURl assembler on actual code. In detail, when

the FURl assembler reaches the final stages of the assembly process, it can gen-

erate a breakdown of the number of actual move instructions associated with

sections of the code being assembled. The assembler does not directly produce

the dynamic characterisations discussed above but, with the static code costs

available, we can calculate an appropriate dynamic model of the costs manually.

256

7.4.2.2 Costs associated with the FURl executive

As we discussed in Chapter 6, the FURl executive provides the low level runtime

management of the software component of the FURl framework. The executive

is the first layer of processing overhead within the framework that must be char-

acterised. Because of its fundamental nature, however, the code of the executive

has been optimised to increase its efficiency. This is reflected in the number of

instructions that are used by the executive for basic system tasks such as making

the decision on which task should be the next to be scheduled.

Table 7.2 shows the main code costs incurred by the FURl executive. The

startup costs incurred when the FURl core first begins processing are 1775 move

instructions and the recurring cost each time the executive selects a new task to

run equates to 72 move instructions. As part of its setup process, the FURl core

populates its task list with two basic system tasks: the first is an "idle" task that

costs 130 instructions each time it is scheduled; and second is the FURl base

protocol task. Quantifying the costs associated with the base protocol is slightly

more complex than the previous components because of the nature of the protocol

itself. Each base protocol packet contains a mixture of code and data and each

time the protocol handler is scheduled to run, it checks the base protocol's packet

buffer for a new packet. If one is found, the code section within the packet is

executed.

The protocol handler itself has a packet processing overhead of 92 instructions.

The cost of executing the code section of each packet must be added to this to

determine the cost of communicating any new protocol handlers. The packet

buffer for the base protocol, as it was implemented for this thesis, is 1024 words

in length. A utility written to assist FURl clients executing on a standard PC

architecture generates base protocol packets that meet the processing conventions

of the base protocol handler. The packets generated are structured such that the

257

Code Section Description Instruction
Cost

System Entry Point First code sequence executed by the 14
FURl 	core 	on 	power-up. 	Per-
forms general housekeeping and trig-
gers loading of the kernel SLUs

Loading 	Kernel High speed transfer of kernel SLU bit- 1385
SLUS streams to host FPGA's configuration

RAM
Subroutine Initialise Housekeeping tasks associated with 2

preparing the subroutine call stack
Executive 	Initialisa- Harness code orchestrating the setup 18
tion of the Executive
Task-list Setup Preloading of the task list data struc- 222

ture 	to 	reduce 	recurring 	scheduler
overheads

Initial Task Loading Repeated calls to the add-task sub- 62
routine to populate the executive's
task list with the basic system tasks
(idle task and base protocol)

Add Task Actual cost of inserting a task into the 31
task list.

Remove Task Cost of ending a task's execution per- 48
manently by removing it from the task
list completely

Executive Main Loop Selects a task from the task list and 72
runs it. The only recurring cost in the
executive code after the setup phase
has passed. Every task switch has this
as an overhead.

Table 7.2: Breakdown of the instruction costs for the FURl Executive

258

Code Section I Description I Instruction Cost

Recurring Costs involved in managing the exchange 97
Packet 	Pro- and processing of the configuration packets
cessing and general buffer management
Static 	proto- Housekeeping performed at the end of the 62
col overhead configuration protocol
Code 	Buffer Cost of dynamically generating instruc- 94 x block-size
Generation tions that perform the transfer of config-

uration data. The exact cost for the code
buffer is the product of this figure and the
code block size.

Code 	Buffer Static cost incurred after each code block 100
Exit is executed
Executing Cost of executing the code block. The ex- block-size
Code Buffer act cost is scaled according to the chosen

block size.

Table 7.3: Breakdown of the instruction costs from the configuration protocol.

data payload is one third of the overall packet size' 2 . The remaining two thirds of

the packet contents, equivalent to 680 words (340 instructions), contain the code

executed each time the base protocol processes a packet. The setup costs of each

of the VC DES implementations below include the time taken to transmit and

process the base protocol packets that make the handler code resident within the

FURl core.

The last system component considered in this section is the configuration

protocol handler. To recall, the configuration protocol handler is responsible for

instantiating SLU bitstreams communicated over the FURl network environment.

Packets of configuration data arrive and the protocol handler uses the block-based

configuration subroutine from Chapter 6 to transport the bitstream data from

the packet payload to the host FPGA's configuration memory. A breakdown

of the costs associated with this protocol handler is given in Table 7.3. The

actual cost for loading a particular bitstream depends on the chosen block size,

12 We should recall that, for efficiency reasons, the base protocol buffer contains only a single
packet which is consumed and overwritten in its entirety. The packet size mentioned here is,
therefore, equivalent to the size of the base protocol buffer itself.

259

the number of configuration blocks within any given packet payload, and the

number of packets required to transmit the SLU's bitstream data. From our

earlier experiments in Chapter 6, we saw that the block loader's efficiency peaked

when size of the bitstream blocks being configured was approximately 128 words

long. An important thing to note from Table 7.3 is that generating the code

buffer for each block is an expensive operation due to the calculations required to

synthesise instructions. The number of blocks we process per packet depends on

the size of the packet payload. The working figure chosen for packet payload size

is 512 data words although, if we were exploring different ways to optimise the

loader protocol, adapting this figure dynamically to amortise protocol processing

costs would be the first optimisation.

Overall, the cost of loading a bitstream, taking into account some of the main

costs from Table 7.3, is:

pack et-pr ocessing = block-count x ((94 x block-size) + 100 + block-size)

loader -processing = (packet-count x (packet-processing + 97)) + 62

We can use these expressions to calculate the loading costs associated with

the DES SLUs used in the VC DES applications below. Table 7.4 contains the

instruction costs associated with loading each of the DES SLUs used in the three

VC DES implementations. We can consider briefly the loading times for some of

the SLUs in this Table, relative to some of the key FURl configurations of Table

7.1. The PBOX SLU, on a 33MHz basic FURl implementation as a loading

time of approximately 0.72 seconds. The parallel harness SLU on the much

faster, 1.2GHz single-cycle FURl implementation has a loading time of just over

1 second. Both of these timings are relatively slow as a result of the processing

overheads associated with the block loader and its code buffer. We shall return

in the later part of this section to consider enhancements that would reduce the

SLU loading costs and timings. Also, as mentioned above, we assume a packet

260

SLU Name Size (words) Transmitted
Packets

Loading Cost

EBOX 3844 8 3237662
PBOX 2352 5 1264922
KBOX 5316 11 6120770
Key Shift 1356 3 455522
Permuted Choice 3500 7 2478930
SBOX1-8 8086 16 12948990
Parallel Harness DES 86876 j 170 1.46E+9
Sequential Algorithmic DES 81060 1 159 1.28+9

Table 7.4: Configuration costs for the DES examples.

payload of 512 words and, in this instance, we assume the configuration protocol

handler has a communications buffer capable of holding in the order of 6 to 8

unprocessed packets.

7.4.3 VC DES Implementations

In this section we discuss details of three VC DES implementations with the aim of

deriving instruction costs for each implementation from which we will ultimately

make performance assessments. Where relevant, we will characterise three costs

for each of the implementations: an implementation setup cost; a maintainence

cost; and an active processing cost. The setup cost encapsulates the overheads

associated with transferring any protocol handlers and SLUs before application

processing begins and the maintainence cost characterises the instruction costs in-

curred by the application when it is scheduled, but has no outstanding application

processing to perform. The active processing cost captures the instruction costs

for each implementation when it is actively processing packets, implementing the

given VC DES model.

7.4.3.1 Sea of Accelerators VC DES Implementation

In this section, we will consider a basic implementation of sea of accelerators

style DES. The organisation of this implementation is shown in Figure 7.17. In

261

tFURI Owent 	 iii
FURl Executive 	I FURl Managed Logic

Figure 7.17: Basic Sea of Accelerators VC DES Implementation

detail, we are concerned with instantiating and interacting with only a single sea

of accelerators style SLU through a dedicated protocol handler.

In the setup phase, the FURl client uses the base and configuration protocols

to transmit both the protocol handler and the SLU to be managed. From that

point, the application protocol handler is then ready to process operand pack-

ets. The SLU we are managing for this basic implementation is the DES PBOX

SLU. We know from the previous discussion that this has an instruction budget

requirement of 1776496 instructions. Based on the assembly statistics of the code

implementation, the total size of the protocol handler is 161 instructions. This

fits within a single base protocol packet and so we can assert a base protocol

transmission cost of 432 instructions. A breakdown of the costs for the protocol

handler is given in Table 7.5.

Establishing the rnaintainence and active processing costs of the handler re-

quires a breakdown of the total handler cost into sections identified for protocol

overhead versus operand processing. Again, from statistics generated by the

FURl assembler from the protocol handler's code, the handler consumes 85 in-

structions when there are no operand packets to process. The active processing

cost of the implementation is 33 instructions per operand, but the cost of actually

processing each packet is relative to the operand payload of the packet and the

protocol overheads. From instruction costs generated by the FUR.1 assembler, we

can characterise the active cost of this implementation as:

262

Code Block Description Instruction
Cost

Protocol Instruction 	costs 	from 	managing 	the 85
Overhead packet buffer and integration of the han-

dler with the FURl Executive
Packet Over- Instruction 	budget 	required 	to 	process 43
head packet headers and prepare the protocol

handler for dealing with given input and
output packets

Operand Pro- Instruction budget for applying an operand 33
cessing to the SLU inputs and capturing its out-

put into the result packet. The packet se-
quence IDs that are used to allow the client
to relate result packets to operand packets
are preserved as part of the packet over-

_____________ head.

Table 7.5: Breakdown of costs for the sea of accelerators VC DES protocol han-
dler.

soades_active = (((33 x packet-payload) + 43) x packet-count) + 85

The exact figure chosen for the packet payload component of the above ex-

pression is generally application dependent but the figure used in this discussion

is 64 words. This is chosen to balance the protocol cost and operand processing

cost to give a packet processing overhead below 5% of the protocol handler's in-

struction budget. From our earlier discussions characterising the likely payloads

within a sea of accelerators application, we know that we cannot assume large

packet payloads: the PBOX SLU is likely to be shared with multiple applications

(one example of this would be, multiple encryption sessions within the network

stack of a host system) and preventing latency crosstalk between the FURl com-

munication streams advocates compact operand payloads. Actively processing a

packet requires each operand is presented to the SLU from the source packet's

payload section after which the corresponding result is captured from the SLU's

output and placed in the payload of a result packet. Given all these considera-

263

FURl Managed Logic

FURl Clierl 	 P,tSocoI
Parallel Hxmosx

io 	 Handler

FURl Executive 	 DES Parallel Harness Circuitry

Figure 7.18: Parallel Harness VC DES Implementation

tions, we can assert that the overall cost for processing each operand packet in

this implementation is 2155 instructions.

The PBOX SLIJ, as we have noted previously, is the most benevolent of the

DES SLUs for transporting operands to and capturing results from. We can ex-

plore, briefly, the cost differences that would occur if we were to interact with

a different DES SLU. If we replace the PBOX SLU with the EBOX SLU, for

example, we must now manage extra device state context to transport operands

to registers in the SLU interface that can no longer share device contexts. This

results in an increase in the operand processing budget of the order of 5 instruc-

tions. In this case, we must invest an extra 320 instructions to process the same

data packet used with the PBOX SLU.

7.4.3.2 Parallel Harness VC DES Implementation

The overall organisation of the parallel harness implementation of VC DES, shown

in Figure 7.18, shares some of the basic features of the sea of accelerators imple-

mentation. Again we have a single protocol handler interfacing to clients on the

FURl network that are transmitting operand packets for processing within the

parallel harness style DES SLU. The main difference in this implementation is

that we must manage the temporal aspect of the SLU's behaviour. The parallel

harness SLU used here is based on the pipelined DES circuitry shown struc-

turally in Figure 7.14. The algorithm is fully unrolled and pipelined with 6 stages

per round. The circuitry is not freely clocked it exploits the transport triggered

clocking mechanism described in Section 7.3.4.4. Each time we write to the SLU's

264

register that holds the last byte of plaintext entering the harness, it triggers a

clock pulse within the harness.

Effectively, the harness circuitry manages its own timing and has an input

interface comprising two 64 bit registers: one to hold the encryption key applied

to the plaintext block and the other to hold the plaintext block. The output

of the harness is the 64 bit ciphertext register. This output is not buffered and

an unread result will be lost if not read before the next harness clock cycle is

triggered. In total, sixteen 6-cycle DES rounds within the harness result in a

96 cycle latency within the harness. Before the protocol handler begins to read

any results from the harness, it must first issue 96 operands. After this point,

the handler may issue and capture operands until all packet payloads have been

exhausted. At this point, if no new packets arrive, the handler flushes the SLU

to capture the 96 results delayed by the circuit latency. The breakdown of the

instruction costs for this implementation is given in Table 7.6.

The encryption key is static for each operand packet and the first two words

of the packet payload specify the key for the plaintext operands contained in the

remainder of the payload. This forms part of the packet processing overhead and

remains essentially independent of the overall operand processing cost. Because

of the nature of the model and the resulting latency within the harness circuitry,

the packet payloads communicated to the implementation are large, on the scale

of 512 operands per packet. This guarantees, that we will not repeatedly incur a

penalty for flushing the harness, especially when we consider the likely availability

of multiple protocol packets.

The setup cost for this application is quite large although this mainly comes

from the costs associated with loading the harness SLU itself. We will address

this as a key performance issue in the Performance Projections section later in

this chapter. The protocol handler for VC DES is 210 instructions in length.

This fits within a single base protocol transmission packet and, like the sea of

265

Code Block Description Instruction
Cost

Protocol Instruction 	costs 	from 	managing 	the 98
Overhead packet buffer and integration of the han-

dler with the FURl Executive
Packet 	Over- Instruction 	budget 	required 	to 	process 60
head packet headers and prepare the protocol

handler for dealing with given input and
output packets and setup the harness SLU
with the encryption key from the packet
payload

Harness Write Transport of a single operand to the plain- 24
text input register of the harness.

Harness Read Transport of a single result from the ci- 24
phertext output register of the harness.

Harness Combined 	transport 	and 	capture 	of 52
Write-Read operand and result, respectively, 	to the

harness SLU. Includes a quantification of
a loop control overhead incurred at this
stage.

Harness Pop- Instruction cost to overcome the pipelining 2304
ulate, Harness latency of the harness SLU. This cost is
Depopulate incurred when we populate the harness and

again when we depopulate the harness.

Table 7.6: Breakdown of costs for the Parallel Harness VC DES protocol handler.

we

accelerators implementation above, our overall base protocol transmission costs

432 instructions. From our earlier table of loader costs, we can see that the

parallel harness DES SLU is extremely expensive at 1.36E+9 instructions.

The maintainence cost for the handler, at 98 instructions, is comparable to

the maintainence cost of the sea of accelerators handler. However, the cost is

generally less applicable here because we know from our earlier discussions that we

are less likely to share the array with multiple parallel harness SLUs. Conversely,

the maintainence cost for the sea of accelerators is important for exploring the

saturation point of the FURl core when multiple protocol harnesses reside within

the executive.

We have approached the active processing cost of this handler in the earlier

discussion on the latency characteristics of the harness SLU. There are three dis-

tinct phases the handler goes through when processing an operand packet. If this

is the first packet since the handler has been re-scheduled, the harness is popu-

lated with the first 96 operands from the first packet's payload at an instruction

cost of 2304. After this threshold has been met, we must iteratively apply and

capture operands and results until the packet payload has been exhausted. This

costs 52 instructions on each iteration, during which we are effectively processing

one operand completely. This iterative harness write-read continues until all of

the packet data has been consumed. The buffer in this implementation operates

circularly to circumvent pipeline stalls: new packets may arrive from the FURl

clients as packets are being processed and consumed". When the datastream it-

self stalls, the pipelined SLU is flushed by the handler to capture the outstanding

results from operands input 96 cycles earlier. Again, this comes at a total cost of

exactly 2304 instructions. From this, we can assert that the cost for processing

one 512 word packet is 26398 instructions, giving an average cost of approximately

"The shared memory synchronisation facilities of the detacher task facilitate this, but we do
not consider the detacher cost in these performance assessments since it is a specific feature of
the implementation within the test platform. Its resource requirements are normalised out of
these performance assessments.

267

51 instructions per operand. The general cost of this handler, if we prolong the

datastream, is:

active-cost = (2304 x 2) + ((datastream-length - 96) x 52) + static_overheads

We should note here that the first 96 operands processed do not pay the

overhead for loop control that iterated operands do' 4 . Effectively, this means

that the first 96 operands of this implementation have a better average processing

cost (48 instructions per operand) than iterated operands (52 instructions per

operand). This difference is entirely due to the unrolling of loops that would

have otherwise iterated through the population and depopulation of the harness

circuitry. If we pay the spatial costs and unroll the code of the whole payload

processing region of the harness then we would obtain, at best, an average raw

operand processing cost of 48 instructions.

7.4.3.3 Sequential Algorithmic VC DES Implementation

The organisation of the VC DES sequential algorithmic implementation is shown

in Figure 7.19. The primary difference between this implementation and the

two we have explored above is that the protocol handler is split into two com-

ponents: the first of these interfaces directly the FURl network packet buffers

and, by extension, the FURl clients; and the second implements an optimised

series of transports through 13 DES SLUs (EBOX, PBOX, KBOX, Key Shift,

Permuted Choice, the eight SBOX SLUs, and a wide XOR) instantiated for the

implementation.

The main focus of this implementation discussion falls on the costs associated

with the second handler component. The first component essentially performs

"We should clarify that the 2304 cost is applied twice because it is representing the initial
population of the harness SLU and the final depopulation of the harness when we have no
more operands to process. Each investment of 2304 actually covers half the cost of completely
processing an operand.

WIR

FURl Managed Logic

Fall

-- I 	 1-H
Soil 	I I II

r 	
_14 Netwotk 	

RooiWg.1j!_U

__ Ø-LLfl JiIiJ

-1If 11
FURl Executive 	 DES SLlJs

Figure 7.19: Sequential Algorithmic VC DES

very basic packet handling and has an overhead equivalent to the protocol and

packet processing overheads of the parallel harness handler. However, there are

no equivalent costs to operand processing since there are no direct circuit inter-

actions.

The sequence of 14 data transports performed in the soft routing handler to

implement a single DES round are specified in Figure 7.20. The instruction cost

associated with actually implementing this sequence is 48 instructions. Trans-

forming the operand into the completed DES ciphertext requires 16 such rounds

so we can declare the processing cost for each operand as 768 instructions. This

is the primary recurring cost for the model implementation and the overriding

processing cost since it applies to the processing of each operand. There were two

optimisations applied to reduce the amount of processing within the soft routing

code. First, a suitable floor planning for the SLU circuitry was devised to limit

the number of device context transitions required whenever a transport was being

made. For example, we may align the interfaces of SLUs so that they all begin

at the same row in the host array. This gives a degree of commonality to the

device state that must be applied to access each SLU's interface. The second op-

timisation involved packing multiple operands into a single data transport. This

allows us to target the SBOX SLUs and, rather than performing 8 individual

data transports, we make a single transport that affects all 8 SLUs because their

interfaces have been vertically aligned. If the operands are packed in the correct

269

R - EBOXin

EBOX 0ut - XORinl

key[27: 0] -4 KeyShift_in

KeyShif Lout -+ key[27 : 0]

key[55: 28] -+ KeyShifLin

KeyShif Lout -+ key[55 : 28]

key PermutedChoice.in

Perm'utedChoiceout -* XORin2

XORout -* SBOXESin

SBOXESout - PBOXin

PBOXout - XORinl

L -* XORin2

R —*L

XORout -* R

Figure 7.20: Data transport sequence applied in a single round of the Sequential
Algorithmic VC DES Implementation

bit positions within the word being transported, it will arrive at the correct SLU's

input.

In the wider context, the packet payloads that are relevant to the sequential

algorithmic implementation required some consideration. The separated architec-

ture of the protocol handler is designed to prevent the network processing side of

the implementation from being stalled by the relatively slow soft routing handler.

We discussed earlier how the communications characteristics of the sequential

algorithmic model resembled that of the parallel harness, but without the same

degree of complex timing requirements. Whilst these requirements drove us to

provide large packet payloads in the parallel harness, for the sequential algorith-

mic model we can return to more compact payloads. In this implementation,

we assert that the packet payload in each packet is in the order of 128 operands

and has a processing cost in the order of 100165 instructions. The buffers inter-

connecting the two protocol elements handle "bursty" datastream traffic. The

270

network buffers, on the other hand, do not need to be deep because the respon-

sive network handler consumes packets rapidly, populating the internal reservoir

of outstanding operands and depopulating the set of outstanding results. For this

implementation, network buffers of depth 5 would provide sufficient numbers of

operands to keep the soft routing handler active.

The setup costs for this implementation, like the costs we have seen in the Par-

allel Harness implementation, are high as a result of the amount of SLU loading

that occurs prior to operand processing. For this implementation, we configure

the FURl managed reconfigurable logic with the bitstream information for 13

DES SLUs. In total we require in order of 1.19 billion instructions, a compa-

rable figure to the parallel harness implementation and significantly high. The

increased size of the protocol handler code required for this model, means that we

now require the transmission of two base protocol packets at a cost of 864 instruc-

tions. Clearly, the base protocol costs are dwarfed by the configuration overheads

for the implementation's SLUs and the overall setup cost is best characterised

through the configuration costs of the SLUs.

Because of the relative simplicity of the protocol code surrounding the soft

routing core of the model implementation, the packet and protocol processing

overheads are not particularly interesting for this model. The above discussion

on operand processing costs gives a sufficient characterisation to carry into the

discussion and performance projections in the following section.

7.4.4 Performance Projections

Table 7.7 collates the salient features of the three VC DES implementations de-

scribed above. Our aim in this section is to take the analyses from the previous

sections and derive some application oriented performance assessments for differ-

ent configurations of the FURl core. We will relate these results to some of the key

implementations of the DES algorithm on other architectures and technologies.

271

Model Setup
cost

Maintainence
cost

Processing
cost (per operand)

Sea of Accelerators 2352992 85 33
Parallel Harness 2.72E+9 98 48-52

Sequential Algorithmic 2.38E+9 100-150 768

Table 7.7: Summary of the main instruction costs from the three VC DES imple-
mentations

Additionally, we will consider how the implementations can be enhanced to

project the performance of the FURl framework onto future generations of device

architecture. By retrospectively analysing the implementations we can identify

their main performance limiting features and explore how modifications to the

approach and environment would affect performance.

We will begin our performance assessment by deriving the number of operands

per second we can process for the sea of accelerators implementation. We are

assuming the protocol handler has packet buffers capable of holding 5 operand

and result packets respectively. In this situation, the protocol handler has a

workload of 10575 instructions to completely process the incoming packet buffer

before the executive schedules other tasks, incurring a 72 instruction switching

cost. We assume here that the FURl core is lightly loaded, essentially allowing

the protocol handler to be rescheduled immediately after it finishes processing

one buffer set. Based on the workload above, the instruction processing rates

from Table 7.1, and assuming that the model's setup phase has passed, Table 7.8

contains the sea of accelerator operand processing rates on a selection of FURl

core implementations.

Tables 7.9 and 7.10 give the processing performance of the parallel harness

and sequential algorithmic implementations respectively. The same approach

used for the sea of accelerators is applied to both models when generating these

tables, with the main difference in each instance being the seeding of the workload

to packet ratio. This ratio is tailored in each table to follow the packet payload

272

Core Packets/Sec I Operands/Sec it/sec
19 Cycle, 33MHz 822 52608 1.6

19 Cycle, 100MHz 2465 157760 4.8
19 Cycle, 1GHz 24885 1592640 48.6
8 Cycle, 33MHz 1951 124864 3.8
8 Cycle, 100MHz 5911 378304 11.5
8 Cycle, 1GHz 47282 3026408 92.3

2 Cycle, 100MHz 23641 1513204 46.2
2 Cycle, 400MHz 94563 6052032 184.6
2 Cycle, 1GHz 236407 15130048 461.7
1 Cycle, 1GHz 567376 36312064 1108.1

Table 7.8: Processing Performance of Sea of Accelerators VC DES

Core Packets/Sec I Operands/Sec Mbit/sec

19 Cycle, 33MHz 66 33792 1
19 Cycle, 100MHz 198 101376 3

19 Cycle, 1GHz 1994 1020928 31.1
8 Cycle, 33MHz 157 80384 2.4
8 Cycle, 100MHz 474 242688 7.4
8 Cycle, 1GHz 3789 1939968 59.2

2 Cycle, 100MHz 1895 970240 29.6
2 Cycle, 400MHz 7577 3879424 118.3
2 Cycle, 1GHz 18941 9697792 295.9
1 Cycle, 1GHz 45458 23274496 710.2

Table 7.9: Processing Performance of Parallel Harness VC DES

descriptions given earlier for each of the implementations. For the parallel harness

model, we consider the protocol handler processing a single packet with a 512 word

payload. To process this, the FURl core must process 26398 instructions. For the

sequential algorithmic model, we consider processing a single packet with a 128

operand payload and a workload requirement of 100165 instructions per packet.

7.4.4.1 Comparing the three VC model implementations

In this section we present some conclusions on how the three VC models relate

to each other based on the results we have presented. The first statement that

we can make is that, strictly in terms of per operand processing costs, the sea of

273

Core Packets/Sec I Operands/Sec Mbit/sec

19 Cycle, 33MHz 18 2304 0.07
19 Cycle, 100MHz 53 6784 0.2

19 Cycle, 1GHz 527 67456 2.05
8 Cycle, 33MHz 42 5376 0.16
8 Cycle, 100MHz 125 16000 0.48
8 Cycle, 1GHz 1000 128000 3.9

2 Cycle, 100MHz 500 64000 1.95
2 Cycle, 400MHz 2000 256000 7.81
2 Cycle, 1GHz 5000 640000 19.53
1 Cycle, 1GHz 12000 1536000 46.8

Table 7.10: Processing Performance of Sequential Algorithmic VC DES

accelerators was the most effective model, followed by the parallel harness and

then the sequential algorithmic model. This is a valid conclusion, even although

the ranking of the models is just what we would expect based on the level of

prescribed level of effort required to process operands.

Setup costs are very expensive in all three models relative to the actual pro-

cessing costs within the models. This is predominantly due to the inefficient

nature of the kernel of the configuration protocol that has been implemented.

However, this does not affect our overall ranking of the models in terms of their

effectiveness: the operand processing costs are more relevant over time as the cost

of loading SLUs is amortised over successive operands. We return to tackle the

poor loading performance in a later section, describing some specific performance

enhancements.

Beyond these basic conclusions, it is difficult to make further comparisons

between the three models that are not biased by the model's intrinsic suitability

for the particular application. We must acknowledge that the models have dif-

ferent aspects that will suit a given application to different degrees. In relation

to this, we can say that the sequential algorithmic implementation of DES has,

overall, very poor processing performance with respect to the other two model

implementations presented here. We should interpret this as signifying that the

274

many hundreds of data transports required to implement the soft routing harness

and process a single DES operand goes beyond what is sensible for a sequential

algorithmic VC application. Using same model to interconnect a few SLUs of

coarser granularity would provide more promising results for the model in terms

of performance.

7.4.4.2 Comparison to existing implementations

In this section, we attempt to compare the performance of existing DES imple-

mentations to those we have described in this chapter. Table 7.11 quotes the DES

performance statistics collated in [85].

Of the three model implementations, only the performance results of the par-

allel harness and sequential algorithmic implementations are directly comparable

to the performance figures quoted in Table 7.11. In the Sea of Accelerators im-

plementation we are only partially completing the DES algorithm. We must bear

this in mind, even although we can see that the raw performance details are higher

for this model than any of the others.

We can roughly extrapolate a performance estimate for a full DES imple-

mentation in the sea of accelerators style if we consider explicitly replacing the

single PBOX SLU with a sea of accelerators SLU that implemented the entire

DES algorithm. We differentiate this organisation from the parallel harness im-

plementation, based on the different timing models used in the SLUs. We treat

the timing of the parallel harness SLU explicitly whereas the sea of accelerators

SLU, in its pure form, is expected to be internally stateless and therefore have

no timing issues to manage. For an implementation of a full sea of accelerators

DES, the operand processing costs would increase slightly to reflect the increased

complexity of the SLU interface (from a 32 bit input to a 128 bit input, and

from a 32 bit output to a 64 bit output). The performance results we observed

for the earlier PBOX sea of accelerators implementation should map closely onto

the full DES implementation. There are two points we should note however: the

275

first is that the raised operand processing cost from the increased SLU interface

complexity means that the processing rate for the full sea of accelerators DES

has a lower bound equivalent to the performance from the earlier parallel harness

VC DES implementation; and, second, the setup costs associated with the sea

of accelerators would increase to be directly comparable with the parallel har -

ness and sequential algorithmic costs. We will still amortise the setup cost more

rapidly in the sea of accelerators full DES than in either of the other two models.

However, because the setup costs are now much more comparable, we can state

that the actual points at which the setup cost becomes negligible for each model

will reflect, proportionally, the operand processing costs of the three models.

For the two complete algorithm implementations, the performance as quoted

for these basic implementations lags behind what has been achieved in other

technologies and architectures. The parallel harness comes closest to gigabit

computational rates, with a throughput of over 700Mbit/sec on the fastest FURl

configuration. This is still slower than the contemporary implementations that

approach lOGbit/sec rates with lower clock frequencies. One point that we should

note about the higher performance implementations, however, is that they are

reflections on the core speed of the DES circuitry rather than performance results

taken from directly equivalent VC style implementations. The system interfaces

for these high performance circuits come in the form of dedicated communications

ports tied to actual device pins. None of the cases directly consider the VC style

of SLU interfacing that we have explored in our implementations.

7.4.4.3 Performance enhancements and projections

From the performance comparisons above, we have seen that a significant clock

speed and pipelined implementation of the FURl core is required before the per-

formance of the VC DES implementations approach existing circuit implementa-

tions. In this section we will propose some enhancements to the implementations

and consider modifications to the device architecture to better support our VC

276

Year Technology

Clock Rate
MHz

Throughput
Mbit/sec

Unrolling

1997 Xilinx 4000 7 26 none
1998 Xilinx 6000 23 57 none
1999 Xilinx 4000 43 172 none
2000 Xilinx S2 94 376 none
1998 Xilinx 4000 25 384 partial
1998 Virtex 101 404 none
1999 4 Altera 1OK100 20 1280 full
1999 Virtex 60 3656 full
2000 Virtex 105 6720 full
1999 Sandia ASIC 145 9280 full
2000 Virtex 168 10752 full

Table 7.11: Performance Ratings of existing DES implementations (source: Pat-
terson [85])

DES applications.

In the ideal situation, only one transport is required to interact with a register

in an SLU interface. In the current XC6200 implementation of the FURl core,

this is not the case and we must pay a penalty to set up the appropriate device

context within the architecture before being able to transport operands to or

from SLU interface registers. This is a very relevant constraint to the sequential

algorithmic implementation since almost half of the data transports within the

soft routing handler's core are handling device context rather than actual operand

transports. The first enhancement we suggest is the removal of device context

from the host FPGA architecture. By this, we mean that the architecture should

no longer require that we make the appropriate map, mask, and wildcard register

settings before we can interact with one of the SLU interfaces. Effectively we

want to remove state from the logic that controls the configuration memory of

the host architecture. If this was done", the operand processing cost associated

with a single round of DES in the sequential algorithmic model would fall from

48 to 14 instructions (the theoretical maximum in the situation where we do

"Chapter 8 discusses and characterises a future device architecture style that would support
single transport interactions between SLU interfaces.

277

not attempt to increase performance through parallelism in the raw transport

mechanism). The overall cost for operand processing for the complete algorithm

falls, correspondingly, from 768 to 224 instructions 16 . Similarly, removing the data

transports associated with device context management in the sea of accelerators

and parallel harness implementations reduces the core operand processing costs

from 33 and 52 instructions to 23 and 34 instructions respectively.

The high setup costs of the parallel harness and sequential algorithmic mod-

els can be tackled by enhancements to the FURl framework. For example, the

addition of indexed and indirect addressing support to the FURl core's mem-

ory interface SLU will allow us to increase the performance of the configuration

protocol. To recall, generating the contents of the code buffer used to transport

the actual raw bitstream data from the packet payload to configuration memory

is a significant cost incurred by the protocol handler. The best theoretical per-

formance we can hope to achieve for loading configurations was explored in the

SLU loading strategies section of Chapter 6. We know from that discussion that

precomputing the entire transport sequence required to load the SLU offline gave

almost an order of magnitude increase in loader performance. Following that ap-

proach for the SLU sizes we have used in this section is generally impractical from

the point of view of the spatial resource required to store the elaborated trans-

port sequence and the temporal cost of communicating it. Using indexed and

indirect addressing that is explicitly supported by the FURl framework allows us

to collapse the instruction costs per configuration word from 96 instructions to

a budget of approximately 20 instructions per word, avoiding the use of synthe-

sised code blocks completely. Based on this, we can say that the SLU loading

component of the setup cost for each of the models will scale to approximately

20-25% of its earlier cost.

"We acknowledge that this requires the underlying architecture to support variable bitwidth
transports, but argue this is an acceptable feature to have in a device architecture supporting
VC.

278

Core Sea of Sea of Parallel Parallel Sequential Sequential
Accel. Accel. Harness Harness Aig. Alg

Original Enhanced Original Enhanced Original Enhanced
Mbit/sec Mbit/sec Mbit/sec Mbit/sec Mbit/sec Mbit/sec

19 Cycle, 1.6 2.3 1.03 1.57 0.07 0.23
33MHz

19 Cycle, 4.8 6.9 3.09 4.7 0.2 0.69
100MHz
19 Cycle, 48.6 69.7 31.1 47.6 2.05 7.05

1GHz
8 Cycle, 3.8 5.4 2.45 3.73 0.16 0.55
33MHz
8 Cycle, 11.5 16.5 7.4 11.32 0.48 1.6
100MHz
8 Cycle, 92.3 132.4 59.2 90.5 3.9 13.39

1GHz
2 Cycle, 46.17 66.25 29.6 45.3 1.95 6.69
100MHz
2 Cycle, 184.6 264.9 118.3 181 7.81 26.7
400MHz
2 Cycle, 461.7 662.4 295.9 452.6 19.53 66.96

1GHz
Cycle, 1108 1590 710.2 1086.3 46.8 160.7

1GHz F
1

_______ ______ ______ L______

Table 7.12: Projected performance of the VC DES models after device enhance-
ments

Table 7.12 contains the performance projections of the three VC DES imple-

mentations, based on our removal of device context and the resulting projected

drop in operand processing costs.

7.5 Summary

This chapter has explored the implementation of the three VC models discussed in

Chapter 4 on the FURl core. We have seen that there is scope for many different

FURl network environments. We then considered how the form of protocol used

to communicate with FURl managed programmable logic can be influenced by

the communication characteristics of the VC model it supports and the network

279

environment it is used within. The chapter was then concluded with a discussion

of the proposed implementations of the DES in each of the three VC model styles.

FURl Managed

Programmable Logic

I______ 	
-j 	

SBOX1

- 	SBOX2 	i... .

— 	
} 0 EBOX 	 SBOX3 PBOX

SBOX4 jj 0

- 	SBOX5
- XOR

II Key
L

- 	SBOX6

PC 	
SBOX7 	0

SBOXB

FURl Executive

Programmed
Flexible Harness

Task

DES Harness Protocol Handler Task

Incoming Operand Packets 	 Outgoing Operand Packets

Figure 7.21: Sequential Algorithmic DES: This figure captures the processing
stages applied in the FUR.I environment to support Sequential Algorithmic DES.
The FURl executive section holds the two software components of the model.
The programmed flexible harness task consumes data packets at stage (b) and
produces result packets at stage (c) (the overall packet flow is indicated via the
solid black arrows). The DES harness protocol handler task decouples the pro-
cessing of packet operands from their reception and transmission over external
FURl network channels. In stage (a), the task is feeding packets arriving over
the FURl network into the flexible harness's processing queue and at stage (ci),
the task consumes the result packets from the flexible harness task and deals
with their transmission. The dashed red arrows are operand transports through
each DES SLU, invoked by the flexible harness as it transforms each operand
into a result. The programmed execution the flexible harness task ensures each
operand flows through the SLUs in the appropriate sequence to implement the
DES. For clarity, the diagram does not show the total, connected flow sequence
of the operands through every SLU. However, this sequence would be equivalent
to a flowchart style abstraction of the Flexible Harness Task's programmed code.

281

Chapter 8

Conclusions and Further Work

8.1 Overview of Thesis

Chapter 2 introduced the basic features and history of programmable logic de-

vices, and gave particular focus to dynamically reconfigurable FPGAs across two

generations of mainstream device architectures.

Chapter 3 discussed the form of mechanisms used to interface and interact with

FPGAs within reconfigurable computing systems. At that point we noted how dy -

namic reconfiguration has encouraged the gradual evolution of the programmable

logic device interface in mainstream architectures from their relatively simple,

serialised interface origins into more sophisticated parallel interfaces. From there

we noted that research device architectures have moved towards application fo-

cused, packet oriented, streaming device interfaces. With this backdrop we then

considered the concept of a flexible programmable logic device interface capa-

ble of adapting to the demands of one of the most compelling uses of dynamic

reconfiguration, virtual circuitry.

In Chapter 4, the concept of virtual circuitry was explored in much more detail

and we presented the two fundamental VC models. We then described the form

and function of an abstract architecture that would be capable of supporting both

fundamental VC models, and a third model of our devising.

Chapter 5 presented the design and implementation of an instance of the

previous chapter's abstract VC architecture. In particular, the chapter described

IM

the implementation of the Flexible URISC and gave a detailed discussion of its

significant design and implementation challenges and their novel solutions.

Chapter 6 looked at the design and runtime environment for the FURl core

and paid particular attention to different strategies for loading SLU bitstreams

onto the FURl core. The FURl executive was presented as a basic runtime,

operating environment and the base protocol used to interact with an operational

FURl core was described.

Chapter 7 opened up the discussion of FURl protocols and characterised their

form relative to the communication requirements of the different VC models and

the influence of different network architectures. The chapter closed with a dis-

cussion of the proposed implementations of the DES in each of the three VC

styles.

8.2 Contribution

8.2.1 Technical Contribution

The primary technical contribution of this thesis is the novel implementation of

the Flexible URISC. In particular, we gave a comprehensive description of the

technical requirements, implementation challenges, and corresponding solutions

that resulted in the implementation of the first microarchitecture that has an

intimate, self-modifying relationship with its host FPGA. Indeed, the technical

component in this thesis was first published in [32] and, at the time, was the first

detailed paper to tackle the technical challenges, requirements, and approaches

to implementing self-modifying circuitry on the only FPGA architecture capable

of actually supporting it, the Xilinx XC6200. Furthermore, the technical validity

of the approach pioneered in that paper and this thesis has been subsequently

reinforced through a small application case study [76] that adopted the same

techniques we have described in this thesis.

283

8.2.2 Conceptual Contribution

Beyond the interesting and novel technical contribution of the Flexible URISC it-

self, the second, conceptual contribution of this thesis comes from the description

of how the unique relationship the FURl core has with its host FPGA architec-

ture can be exploited to implement a flexible, adaptable programmable device

interface. In particular, this thesis has described how the implementation of the

FURl core and its accompanying runtime environment, the FURl executive, can

be used to implement a programmable logic interface that can be adapted to pro-

vide support to both of the fundamental models of virtual circuitry plus a third

VC model that was previously considered generally impractical.

8.3 Conclusions and Future Directions

8.3.1 Conclusions

There are two broad, immediate conclusions we can draw from the work pre-

sented in this thesis. The first is that an implementation of the abstract VC

architecture described in Chapter 4 is technically viable, but undertaking such

an implementation taxed all of the facilities of the most sophisticated partially

reconfigurable FPGA available when this work was carried out in 1996-2000 and

still presented many non-trivial technical challenges. The second conclusion we

can draw, however, is that overcoming those challenges did produce an imple-

mentation of the abstract VC architecture that would support all three of the VC

models we described in Chapter 4.

This thesis was written at a very interesting time for runtime reconfiguration

research. In 2000, the XC6200 still represents the pinnacle of mainstream, par-

tially reconfigurable device architectures in terms of the facilities it provided to

support runtime reconfiguration. As we have mentioned at various points in the

thesis, the XC6200 left commercial production in 1998 and its departure essen-

tially marks the end of an era of runtime reconfiguration research. Whilst some

of the subsequent mainstream FPGA architectures are partially reconfigurable to

a degree, they provide fewer facilities to support runtime reconfiguration and vir-

tual circuitry than the XC6200. The FPGA architectures of mainstream vendors

in 2000 have relatively poor support for partial runtime reconfiguration and lean

more towards supporting ASIC replacement and rapid system prototyping.

In the general sense, mainstream vendors and the runtime reconfiguration re-

search community are on divergent paths: device vendors are continually striving

to increase the static density of their devices whilst runtime reconfiguration re-

searchers are striving to find the mechanisms that will increase the functional

density of their devices through rapid runtime reconfiguration. With the de-

parture of the XC6200, the two most interesting device architectures supporting

partial reconfiguration, Colt and Piperench, have come from within the runtime

reconfiguration research community itself. The contributions of this thesis are

therefore particularly interesting at this point since they essentially constitute a

framework for exploring the effectiveness of a new style of programmable logic

device interface that is highly adaptive to the demands of different VC models.

The implementation of the FURl core, as presented in this thesis, has relied

heavily on the novel features of the XC6200 and an interesting question, therefore,

is what effect does the departure of the XC6200 have on potential future imple-

mentations of the FURl core? Theoretically, the core could be re-implemented

on other mainstream architectures such as the Virtex, provided the system level

design could be customised to allow the Virtex access to its own configuration

port. The greater challenge in this context would be bridging the gap between

the semantics of the Virtex's SelectMap interface and the memory oriented world

of the FURl core. The XC6200 implementation has the advantage here because

its underlying physical device interface has a natural mapping into the memory

oriented world of the FURl core.

To explore the implementation of FURl on the Virtex architecture further we

285

TnnnnnnpTnnflTnnTir

back

MW
j ton

by
RI)

Figure 8.1: FURl Virtex: remapping the configuration port

must overcome at least the two challenges identified above. The first of these, tak-

ing control of the device's configuration port, requires quite a different approach

to that taken for the XC6200 implementation. The XC6200 supports access to its

configuration port from within the device itself but the Virtex architecture does

not'. However, this does not mean that all is lost. Rather, we must resort to phys-

ically re-mapping the Virtex's own control port to user pins that the FUR.I core

within the device could use subsequently to drive it's host configuration interface.

This organisation is shown in Figure 8.1. Once we have achieved this, however,

the device pins driven by the FURl core respond in a comparable manner to the

cbuf components that we instantiated for the XC6200 FURl implementation.

Another important consideration builds on the column-based reconfigurability

of the Virtex architecture. In the XC6200, function units can he reconfigured in

isolation, independent of any other parts of the device. However, since we can

only reconfigure on a column by column basis in the Virtex, we are encouraged

An internally accessable configuration port is a listed feature of the Virtex II architecture,
although this version of the architecture is not yet available in 2000.

Mral

to make the geometric area occupied by the Virtex FURl core as lean as possible.

Increasing the spread of the core's circuitry over successive columns means we

must take greater care when reconfiguring those columns to ensure that the core

circuitry is not adversely affected by the configuration. By this rationale, we

should consider the placement of SLU 5 in Figure 8.1 as dangerous: we must take

care to preserve both the infrastructure (routing and CLB allocations) and the

context within any state elements of the column. Overall, this problem is similar

to the problems we discussed in Chapter 6 on overlaying SLUs with the XC6200

FURl's core circuitry. Here, however, we can see that the problem exists at a

much coarser granularity.

Just as we used the FastMap interface of the XC6200 to reconfigure the device

and interact with SLUs, we would also use the Virtex's SelectMap interface to

access SLU inputs and outputs. However, we must acknowledge that this task

is significantly more complex in the Virtex architecture. Rather than reading

just the bits of the register we require, we must read the entire configuration

sequence of a column and then extract the pertinent bits that reveal the register

state. Essentially, much of the processing that was done implicitly within the

XC6200 architecture must now be done explicitly by extensions to the FURl

core's memory interface. In particular, the layer of logic that we place between

the FURl core's memory buses and the SLUs must grow to allow us to transport

operands to and from the SLUs.

Besides this complication, however, there are some interesting advantages to

a FURI-Virtex implementation. Firstly, the Virtex architecture supports much

faster logic circuit implementations, far in excess of the clock speeds that can be

achieved on a XC6200 implementation. From this, FURl cores operating in the

scale of hundreds of megahertz are very achievable. Furthermore, a FURl Vir-

tex implementation can take advantage of architectural features that facilitate

interaction between circuits operating at different clock speeds. For example, the

287

architecture supports compact implementations of multi-ported memories that

operate in FIFO mode. As we alluded to in our discussions of the DES im-

plementation in Chapter 7, these embedded memory blocks are very effective

for bridging timing differences between clock domains. Other wide embedded

memories in the architecture allow us to support internal code regions within the

architecture without explicitly consuming cell resources. This is relevant since on-

chip memory blocks are much more effective at supporting instruction streams

for the high speed FURl cores we would expect to implement.

Although there are issues regarding the FURl Virtex's ability to interact with

SLUs, we cannot advocate the XC6200's memory interface implementation as

the ideal. One of the XC6200 implementation of the FURl core's strengths is

to interleave SLU configuration, communication and computation on the granu-

larity of single data transfers. This challenges a fundamental premise in many

implementations of VC - that relatively long periods of time must be dedicated

exclusively to SLU configuration. This has encouraged the view of the whole

bitstream as the granular unit of configuration. Additionally, the commonality of

closed, proprietary bitstream formats, encourages the designer of reconfigurable

systems to abstract away from the low level aspects of SLU loading and ignore

the fact that loading each individual datum from an SLU bitstream is a context

sensitive process.

We witnessed this, in the case of the XC6200, through the bitstream's depen-

dence on the correct map, mask, and wildcard register settings. The discussion on

SLU loading in Chapter 6 described how these features of the XC6200's FastMap

interface makes the FURl core's task more complex. Although the FURl core is

capable of interleaving data transfers at such fine granularities we cannot treat the

configuration bitstream as a sequence of individual, context-free data transfers.

The compromise between the two granularities, also discussed in Chapter 6, is

therefore to define the unit of configuration according to the structure within the

Ma

SLU bitstream itself. One observation, however, is that the compelling technique

of configuration compression [49] increases the influence of wildcarding within

a bitstream and, as a consequence, actually creates more context dependencies

between individual data transfers and the device state.

A prospective solution for future FPGA architectures that we would like to

suggest in this thesis involves moving away from interacting with SLUs based

on their geometric location within the array and towards support for a symbolic

mapping' to SLU ports. Such a "SymbolMap" interface would essentially bind a

symbolic reference to each input and output register of an SLU as it is instanti-

ated onto the array fabric. Any future references to the SLU interface are done

by reading and writing to symbolic names of the target SLU's interface registers.

We acknowledge this approach would involve paying a physical cost to add the

functionality to the array resource. Prospectively, we would be making parts of

the configuration memory of the host FPGA respond as slightly complex content

addressable memories. However, the elimination of a significant proportion of de-

vice control state handling from the FURl framework leaves it free to orchestrate

the flow of operands and configurations over the reconfigurable resource.

8.3.1.1 Supporting Variant Virtual Circuitry Models

Besides the three main VC models considered in this thesis, we can identify other

notable VC models, such as the Virtual Pipeline [69] in particular, that are inter-

esting to relate to the FURl framework. Virtual Pipelines are strategies applied

to the reconfiguration of regular pipelined and systolic style virtual circuits. The

aim of the strategies are to minimise the latency incurred when reconfiguring the

pipeline. This is achieved by overlapping the configuration of each pipelines stage

within ongoing computation within the unaltered stages. Rather than flushing

the entire pipeline of its data, reconfiguring it in its entirety, and re-filling it

with new operand data, the pipeline gradually "morphs" between full configura-

2 By symbolic, we mean a logical reference encoded as an integer.

WE

tions. Data from the original pipeline circuitry continues to flow through what

remains of that circuitry, ahead of the point of reconfiguration. Behind the point

of reconfiguration, the new pipeline structure has been established and begins to

immediately receive new operand data.

Fundamentally, this model is a close relative to the parallel harness VC model

we have discussed but with a degree of reconfigurability targeted at the SLUs

within the wired harness. FURl support for the parallel harness model was dis-

cussed Chapter 7. We can generalise that discussion and consider how we could

take advantage of the reconfigurability provided by FURl to support the vir-

tual pipelines. In [69], the Luk and Shirazi state that the cost of reconfiguring

a pipeline stage within the virtual pipeline should ideally be balanced with the

processing rate of the pipeline as a whole. The FURl core is in an ideal position

to effect this style of reconfiguration: its close coupling to the configuration port

of the virtual pipeline's host FPGA means that we can effect the reconfigurations

without incurring physical latencies in the system architecture. In FURl terms,

the act of morphing a single pipeline stage is equivalent to loading a new SLU

over an existing SLU in the parallel harness. As we mentioned previously in the

thesis, the three VC models that we gave particular emphasis too should not be

taken as the definitive set of models: the virtual pipeline is an example of the

fluidity of definition that exists between the different models as we trade off the

degrees of reconfigurability and degrees of SLU interaction.

From the discussion above, we can see how additional conceptual VC models

map to the FURl framework. Also, the discussion on the FURl Virtex implemen-

tation, demonstrates how the framework itself can map onto newer generations of

device architecture. Besides this, it is also interesting to address the relationship

between FURl and other platforms for virtual circuit models. The Piperench

architecture we described in Chapter2 is a particularly relevant here: essentially,

it is a hardware implementation of a one dimensional virtual pipeline. We saw in

290

Chapter 2 how Piperench's architecture is specifically designed for SLUs in the

form of pipeline stages. Further, the architecture's reconfiguration facilities ex-

plicitly support the reconfiguration of pipeline stages in the incremental manner

required by the virtual pipeline model: the device architecture can rapidly move

the configuration data used to implement one stage to a different part of the

reconfigurable fabric. In terms of raw performance, the Piperench architecture is

likely to exceed that of a basic FURl implementation of a virtual pipeline. Since

the performance difference is the result of tailoring the physical architecture of

the FPGA platform, this effectively constrains the device to the one virtual cir-

cuitry model. FURl is unlikely to compete in terms of raw performance for the

main enumerations of the virtual pipeline model that Piperench targets, but its

overall performance for a series of VC models will be higher. Furthermore, even

within the virtual pipeline model, there are potentially malignant cases that will

map better to a FURl implementation because they, for example, do not map

well to the reconfigurable stripes of Piperench.

8.3.1.2 Meeting the requirements for Virtual Circuits

In Chapter 4 we outlined some basic requirements for supporting virtual circuits.

We now consider how well these were met by the FURl framework. There are

three points that we will make regarding this. The first here is that the XC6264

implementation of the FURl core produced for this thesis meets the 10% resource

utilisation constraint.

Further to this, we can consider how well we can configure the host FPGA

using the FURl framework with respect to the earlier constraint on saturating

the host FPGA's configuration port. The basic, 33MHz FURl implementation

has a transport cycle time of 2.6is which is above our target rate of 40ns. The

requirement is met for a single-cycle 33MHz implementation of the core whose

corresponding transport cycle time is 30ns. Successive increases in clock speed

reduce the degree of pipelining required. For example, the 200MHz, 8 cycle core

291

has a transport cycle time of exactly 40ns.

Finally, we can note that driving SLU interfaces at the core circuitry speed

is a much more demanding requirement, that we cannot meet with the current

generation of device architectures. The interfaces that FPGAs provide to interact

with SLUs typically operate at much lower speeds than the circuitry itself. The

XC6200 is more benevolent than the Virtex architecture in this matter, but it

still lags behind the bandwidths that would be required to access, for example, a

66MHz pipelined DES SLU.

8.3.2 Future Directions

Chapter 7 proposed FURl implementations of the DES in the style of each of

the VC models with the aim of demonstrating that the FURl core can indeed

support all three VC models. The first extension to this work would be a full

implementation of each of the VC models with the aim of quantifying the rela-

tive effectiveness of different FURl protocols when they are used for particular

applications and communication traffic patterns.

The aim of this thesis was not to present a particularly high performance

implementation of the FURl core, its kernel circuitry, or its surrounding system.

However, the performance of the FURl core circuitry could be increased through

pipelining, but this must be carefully balanced against the number of memory

ports available within the system. There is also room to explore alternative

scheduling mechanisms within the FURl executive using supporting circuitry to

aid the decision process. At various points in the thesis we described potential

optimisation techniques that would be applied by a higher level FURl compiler.

Implementing such a compiler was beyond the scope of this thesis, but the FURl

core's membership of the transport triggered architecture class means future work

in this area has the potential to exploit existing TTA compiler technology [54].

The FURl core has the potential to become a testbed for an emerging design

292

methodology for runtime reconfiguration that is based on the notable philosophy

presented in [15]. Instead of attempting to extend traditional hardware-software

co-design into the reconfigurable domain, this paper advocates a control flow-data

flow co-design methodology where the system design is repeatedly partitioned

into control and dataflow components. Here, rather than making a single, initial

partition of the system into hardware and software components. In the control-

dataflow methodology described here, we allow components to be re-partitioned

into sub-components elements of control-flow or data-flow with each level of sys-

tem decomposition. This is different from the predominantly static system parti-

tioning undertaken once at the beginning of the hardware-software co-design pro-

cess. Furthermore, it creates a close interplay between control flow components

and data flow components within the system hierarchy and requires an efficient

and effective control flow-data flow interface. The FURl system described in this

thesis is relevant to this methodology because it comprises elements of control

flow, elements of data flow, and approaches the issues related to maintaining an

effective and tightly integrated control flow-data flow interface. An historical ar-

chitecture, the 1CL2900 with the Distributed Array Processor (DAP)[86], is also

notable here for its combination of tightly coupled processor and programmable

array core.

8.4 Conclusion

When Kean introduced the first partially reconfigurable FPGA in 1989, he con-

cluded his thesis with the following statement:

Configurable logic was an idea that arrived before its time: now that

its time has come it would be a pity to go on ignoring it.

In the decade between the introduction of the CAL architecture and the pre-

sentation of this thesis, configurable logic has been anything but ignored: in

293

2000, configurable logic is a multi-million dollar industry. FPGAs have become a

well established technology for ASIC replacement and rapid system prototyping,

but the most compelling use of partially reconfigurable FPGAs, runtime recon-

figuration, has remained the most elusive. The challenge in 2000 is to take the

experiences of the past decade and define the new form device architecture and,

particularly device interface, that will transport runtime reconfiguration from

being a delicate, niche technique into mainstream acceptance.

294

Appendix A

FURl Core Implementation
Details

A.1 Introduction

This appendix describes the status of the implementations of the components of

the FURl framework discussed in the main body of the thesis.

A.2 The FURl Core

The main core of the Flexible URISC, described in Chapter 5, has been fully

implemented on both the XC6216 and XC6264 versions of the XC6200. The final

implementation produced through this thesis used 860 XC6200 function units

which is approximately 20% of the available function units in a host XC6216 and

5% in a host XC6264. Figure A.1 shows the actual layout of the implemented

FURl core on a XC6264. Although the majority of the cells are not consumed

in the XC6216 implementation, it is difficult to utilise the unoccupied cells for

dynamically instantiating SLUs. The routing resources of the XC6216 are heavilly

utilised by the FURl SRAM address and data buses that traverse the array.

Any SLU that would be instantiated alongside the FURl core would have to be

carefully overlayed with the existing core routes. However, the XC6200's routing

resources become congested as the FURl SRAM signals approach the device lOBs.

Since these signals begin to consume the same low level routing resources that

295

Figure A.1: Placed and Routed Layout of the FURl core on a Xilinx XC6264

are predominantly targeted by FURl SLUs, it is difficult to dynamically overlay

the SLUs without affecting the underlying core cirtuitry.

A.3 The FURl Assembler

The FURl assembler is the central tool in the FURl design flow that we introduced

in Chapter 7. In this section we will give an expanded description of its operation.

As mentioned earlier, the FURl assembler is "macro" based. It accepts a stream

of instructions and instruction definitions (instruction macros) and translates the

instruction stream into a FURl executable.

A.3.1 Basic Assembly Constructs

The fundamental constructs the FURl assembler accepts in its input stream are

macro definitions, code blocks, data literal definitions, and assembler pragmas.

A.3.1.1 Macros

The assembler understands that the single fundamental instruction in the code

stream is the single-word move. This forms the root of a tree of instruction defini-

296

begin macro <macro_name> (<operand names>)

move <addr>, <addr>
instrA liti, op2, 1it2
.labell instrB opi
instrC opi, labell, lit3, 1it4
• end macro

Figure A.2: The basic format of a macro definition

tions and, as macros are introduced, the set of available instructions expands. A

macro definition takes the form given in Figure A.2. The first line of the definition

identifies the name of the instruction and the exact series of operators that are

required to satisfy the instantiation of that macro. The code section of the macro

can contain a mixture of basic move instructions and other higher level macro

instructions. In this way, more complex hierarchical instruction definitions can

be created from lower level sequences of instructions. The only restriction on this

hierarchical composition is that macro instructions referenced within the body of

the macro must have been declared earlier.

Instructions within the body of the macro can make reference to any globally

defined data literals, labels within the body of the macro itself, and any of the

macro's parameter operands. In addition to these, a special symbol "next" is

provided. When this symbol is referenced within the body of the macro it is re-

placed with the address of the instruction that will follow the instantiated macro.

This functionality is required specifically to support branching instructions where

it is necessary to jump either to the branch address or to the address of the in-

struction following the branch instruction itself. Labels on macro instructions

are treated specially during the code generation phase. Each time an instruction

macro is instantiated, versions of the instruction labels specific to that instantia-

tion are also synthesised and all internal references to the label are redirected to

the synthesised label.

297

A.3.1.2 Code Blocks

Code blocks are instruction sequences that will eventually be instantiated into

the memory image. Figure A.3 contains a code block from the source tree of the

FURl executive. Using the assembly pragmas discussed below, the assembler is

aware of which address in the memory image that a code block should be placed

at. The amount of space required per instruction can be calculated by referring

to the macro that will be used to implement that instruction. Instructions within

a code block can be prefixed with labels which are entered into a global symbol

table and can be referred to as operands in other instructions.

A.3.1.3 Data Literals

Data literals are supported by the assembler in two ways. Firstly, sections of

the memory image can be explicitly reserved for a literal using the . literal

directive. This places an entry for the literal in the symbol table and can also

be used to specify a particular location in the memory image for the literal to be

placed. In addition to this, the directive can also identify a default value for the

literal.

The second route for introducing data literals is through implicit references

within the operand lists of an instruction. In Chapter 5, we discussed how the

FURl architecture has no immediate addressing mode. The FURl assembler, as

implemented for this thesis, supports immediate addressing of operands within

the assembly source and, for each immediate operand, synthesises a new entry

in the symbol table, reserves a location in the memory image, and ultimately

populates that location with the correct (immediately addressed) data value. A

C-language style "address of" operator is implemented in a similar manner.

A.3.1.4 Assembly pragmas

Embedded within the source files parsed by the FURl assembler are a series of

directives. These pragmas influence different stages of the assembly process and

S..

begin code add-task

;; Which address can I put this task at?
.add-task add #Oxl, freeNodePtr, fnPtrAddr

move_da fnPtrAddr, freeNodeAddr
add #Oxl, freeNodeAddr, freeNodePRVAddr
add #0x2, freeNodeAddr, freeNodeNXTAddr

ASSERT the last node added is pointed to by the global
lastTasklnserted

move lastTasklnserted, prevNodeAddr
add #Oxl, prevNodeAddr, prevNodePRVAddr
add #0x2, prevNodeAddr, prevNodeNXlAddr

;; Store the exe addr in the EXE field of the free node
move_db newTaskAddr, freeNodeAddr

;; Store the addr of the prevNode in the PRV field...
move_db prevNodeAddr, freeNodePRVAddr

Store the NXT field from the prevNode as the NXT field
in this node

move-dab prevNodeNXTAddr, freeNodeNXTAddr

Modify the fields of the prevNode NXT field so it now
points to the new node...

move _db freeNodeAddr, prevNodeNXTAddr

I've consumed a cell in the freeTaskNodes, reduce the
stackpointer to compensate...

move_da freeNodePtr, freeNodePtr

;; point to the new node as the last one to be inserted
move freeNodeAddr, lastTasklnserted

end-add-task ret OxO
end

Figure A.3: A FURl Assembler Code Block

299

generally provide information about the size of the FURl memory image and the

locations at which code blocks and data segments should be placed. Evocations

of the pragmas in the assembly source are prefixed by the . pragma directive

followed by the name of the particular pragma being used. The effect of the three

supported pragmas is described below.

map-device This pragma is used to describe which address regions of the poten-

tial 32-bit address space are actually populated. During the code generation

phase, the assembler checks that each population of the memory image is

to a region that has actually been mapped to a memory device.

data-segment The data-segment pragma identifies a point in the memory image

where literals will be placed at if they do not have an explicit address

associated with them.

load-point The load-point pragma has a similar effect to the data-segment

pragma but influences where the elaborated code blocks will be placed in

the memory image.

A.3.2 Outline of the Assembly Process

There are three phases to the assembly process. In the first phase, the assembler

parses all of the source files and their dependancies. The result of this is the

creation of two internal datastructures: a macro list to hold the set of currently

available instruction definitions; and a code fragment list to track information

on which instructions and data literals are to be instantiated into the FURl

memory map of the output executable. During this initial parsing phase, there

are no strict requirements on the declaration of symbolic labels before they are

referenced. Forward references to labels and symbols within the assembly code is

a basic functionality that is supported.

The second phase of the assembly process is code generation. Here, each of

the instructions are elaborated down to a set of fundamental move instructions

and placed within an internal representation of the FURl memory image. Data

literal definitions are also inserted into the memory image at this stage. To

elaborate an instruction down to it's sequence of data transport moves involves

locating the correct instruction macro definition and then creating a new instance

of the macro's primitive instruction template. This is specialised to the particular

destination address that the instantiated instruction will have in memory and

the addresses of the data literals that were supplied as operands to the higher

level instruction. Before an instruction is presented for elaboration, it's symbolic

references (if there were any that could not be resolved when the instruction was

first parsed) are resolved. This allows all of the references to operands within

the macro's code template to be matched to the actual addresses of the data

literals in memory. Once a specialised instance of the macro's code template has

been created, it's instruction sequence (which is now a fully elaborated set of

primitive move instructions with no symbolic references remaining) is written to

the appropriate segments of the FURl memory image.

In the third assembly phase the memory image produced through code gen-

eration is dumped out in one of three main formats: a core dump of the entire

memory region; a command file for qPCltest; or a data stream file for use in

FURl protocols. Side products of this phase include symbolic debugging data

such as a symbol table dump and code footprint dump. Both of these files can

be used within qPCltest for interrogating the actual, executing memory image

of the FURl core.

A.3.3 Assembling FURl Protocol code

To assemble FURl protocol code, the assembler supports two main funcionalities:

the linking of symbolic information from previously-assembled code to the code

currently being assembled; and the conversion and output of the final, assembled

memory image as a stream of data words that can be transmitted as packets over

301

the FURl base protocol.

Linking to previously assembled code is necessary here as the code transmitted

over the FURl base protocol will require access to the services of, for example, the

FURl executive. Since these involve subroutine calls and access to pre-defined

literals, the protocol code is given access to the symbol table of the FURl executive

through the assimilation of the symbolic debugging information described above

into the symbol table when the protocol code is transmitted.

The generation of a dataword stream is different from the approach taken by

the qPCltest command script generator. Commands scripts make more assump-

tions about the physical, board RAM having a known state initially. Because of

the dynamic nature of the code's transmission, a datastream does not make any

assumptions about the board's RAM state.

302

Bibliography

Ieee international workshop on rapid system prototyping (rsp), IEEE Com-

puter Society.

Ieee symposium on field programmable custom computing machines (fccm),

IEEE Computer Society.

International workshop on field-programmable logic and applications (fpl),

Springer.

MPACF250 - MAP's CORE+ Reconfigurable System, Product Brief, April

Algotronix, Ltd., Cal102 datasheet, 1990.

R. Amerson, R. Carter, B. Culbertson, P. Kuekes, and G. Snider, Teramac-

configurable custom computing, Proceedings of IEEE Workshop on FPGAs

for Custom Computing Machines (Napa, CA) (D. A. Buell and K. L. Pocek,

eds.), April 1995, pp. 32-38.

J.M. Arnold, D.A. Beull, and E.G. Davis, Splash 2, Proceedings of the 4th

Annual ACM Symposium on Parallel Algorithms and Architectures, June

1992, pp. 316-324.

Atmel, Configurable Logic Data Book, Atmel Corporation, San Jose, CA,

1997.

Atmel Corporation, AtOk FPGAs with FreeRAMtm, 1999, Datasheet.

303

P. Bellows and B. L. Hutchings, JHDL - an HDL for reconfigurable sys-

tems, Proceedings of IEEE Workshop on FPGAs for Custom Computing

Machines (Napa, CA) (J. M. Arnold and K. L. Pocek, eds.), April 1998,

pp. 175-184.

R. Bittner and P. Athanas, Wormhole run-time reconfiguration,

ACM/SIGDA International Symposium on Field Programmable Gate Ar-

rays (Monterey, CA), February 1997, pp. 79-85.

G. Brebner, A Virtual Hardware Operating System for the Xilinx XC6200,

Proc. 6th International Workshop on Field-Programmable Logic and Appli-

cations, FPL'96 (Darmstadt, Germany) (R. W. Hartenstein and Manfred

Glesner, eds.), Springer-Verlag, September 1996, pp. 327-336.

, Automatic identification of swappable logic units in XC6200 cir-

cuitry, Field-Programmable Logic: Smart Applications, New Paradigms

and Compilers. 7th International Workshop on Field-Programmable Logic

and Applications, FPL '97 (London, United Kingdom) (W. Luk, P. Cheung,

and R. W. Hartenstein, eds.), Springer-Verlag, September 1997, pp. 173-

182.

, The Swappable Logic Unit: a Paradigm for Virtual Hardware, IEEE

Symposium on FPGAs for Custom Computing Machines (K. L. Pocek and

J. M. Arnold, eds.), IEEE Press, April 1997.

, Field-programmable Logic: 	Catalyst for New Computing

Paradigms, Field Programmamble Logic and Applications - From FPGAs

to Computing Paradigm (A. Keevallik R.W. Hartenstein, ed.), vol. 1482,

[16] G. Brebner and A. Donlin, Runtime Reconfigurable Routing, Parallel and

304

Distributed Processing (José Rolim, ed.), LNCS, vol. 1388, Springer-Verlag,

1998, pp. 25-30.

G. Brebner and J. Gray, Use of reconfigurability in variable-length code de-

tection at video rates, Field-Programmable Logic and Applications. 5th In-

ternational Workshop on Field-Programmable Logic and Applications (Ox-

ford, UK) (W. Moore and W. Luk, eds.), Springer-Verlag, September 1995,

pp. 429-438.

D. Burger and J. R. Goodman, Billion-transistor architectures, IEEE Com-

puter, vol. 30, IEEE Computer Society, Sep 1997, pp. 46-50.

J. Burns, A. Donlin, J. Hogg, S. Singh, and M de Wit, A dynamic re-

configuration run-time system, Proceedings of IEEE Workshop on FPGAs

for Custom Computing Machines (Napa, CA) (J. Arnold and K. L. Pocek,

eds.), April 1997.

S. Cadambi, J. Weener, S. C. Goldstein, H. Schmit, and D. E. Thomas,

Managing pipeline-reconfigurable FPGAs, ACM/SIGDA International Sym-

posium on Field Programmable Gate Arrays (Monterey, CA), February

1998, pp. 55-64.

S. Churcher, T. Kean, and B. Wilkie, The XC6200 FastMap TM processor

interface, Field-Programmable Logic and Applications : 5th International

Workshop (Oxford, United Kingdom) (W. Moore and W. Luk, eds.), LNCS,

vol. 975, Springer-Verlag, August/ September 1995, pp. 36-43.

D. A. Clark and B. L. Hutchings, Supporting FPGA microprocessors through

retargetable software tools, Proceedings of IEEE Workshop on FPGAs for

Custom Computing Machines (Napa, CA) (J. Arnold and K. L. Pocek,

eds.), April 1996, pp. 195-203.

305

H. Corporaal, A different approach to high performance computing, Pro-

ceedings of the International Conference on High Performance Computing,

1997.

, Microprocessor architectures from vliw to tta, John Wiley, 1998.

Actel Corporation, Introduction to the Actel FPGA architecture, Applica-

tion Note, April 1996.

, ProASICtm 500K Family, Product Datasheet, December 1999.

Altera Corporation, Altera FLEX1OK embedded programmable logic family,

June 1996, Product Datasheet, Version 2.

Xilinx Corporation, XAPP015: Using the XC1000 Readback Capability,

Application Note.

, XAPP122: The Express Configuration of SpartanXL FPGAs, Ap-

plication Note, November 1998.

Xilinx Development Corporation, Xc6200 development system, January

1998, Datasheet, Version 1.2.

A. DeHon, DPGA -coupled microprocessors: Commodity ICs for the early

21st century, Proceedings of IEEE Workshop on FPGAs for Custom Com-

puting Machines (Napa, CA) (D. A. Buell and K. L. Pocek, eds.), April

1994, pp. 31-39.

A. Donlin, Self Modifying Circuitry - A Platform for Tractable Virtual Cir-

cuitry, Field Programmamble Logic and Applications - From FPGAs to

Computing Paradigm, 8th International Workshop, FPL'98 (A. Keevallik

R.W. Hartenstein, ed.), vol. 1482, Springer-Verlag, 1998, pp. 199-208.

306

C. Ebeling, G. Borriello, S. A. Hauck, D. Song, and E. A. Walkup, TRIP-

TYCH: a new FPGA architecture, FPGAs. International Workshop on Field

Programmable Logic and Applications, September 1991, pp. 75-90.

H. Eggers, P. Lysaght, H. Dick, and G. McGregor, Fast reconfigurable cross-

bar switching in FPGAs, Field Programmable Logic: Smart Applications,

New Paradigms and compilers, 6th International Workshop, FPL'96 (R. W.

Hartenstein and M. Glesner, eds.), LNCS, vol. 1142, Springer-Verlag, 1996,

pp. 297-306.

G. Estrin, Organization of computer systems - the fixed plus variable struc-

ture computer, Proceedings of the Western Joint Computer Conference,

1960, pp. 33-40.

G. Estrin, B. Bussell, R. Turn, and J. Bibb, Parallel processing in a re-

structurable computer system, IEEE Transactions on Electronic Computers

(1963), 747-755.

A. Marshall et al., A reconfigurable arithmetic array for multimedia appli-

cations, FPGA'99, ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, ACM Press, February 1999, pp. 135-143.

E. Waingold et al, Baring it all to Software: Raw Machines, IEEE Com-

puter 30 (1997), no. 9, 86-93.

J. Faura, J. M. Moreno, M. A. Aguirre, P. van Doung, and J. M. In-

senser, Multicontext dynamic reconfiguration and real-time probing on a

novel mixed-signal programmable device with on-chip microprocessor, Field-

Programmable Logic and Applications : 7th International Workshop,

FPL'97 (W. Luk, P. Y. K. Cheung, and M. Glesner, eds.), LNCS, vol.

1304, Springer-Verlag, 1997.

307

P. W. Foulk, Data-folding in SRAM configurable FPGAs, IEEE Workshop

on FPGAs for Custom Computing Machines (Napa, CA) (Duncan A. Buell

and Kenneth L. Pocek, eds.), IEEE Computer Society Press, April 1993,

pp. 163-171.

P. C. French and R. W. Taylor, A self-reconfiguring processor, Proceedings

of IEEE Workshop on FPGAs for Custom Computing Machines (Napa,

CA) (D. A. Buell and K. L. Pocek, eds.), April 1993, pp. 50-59.

M. Gokhale, W. Holmes, A. Kosper, D. Kunze, D. Lopresti, S. Lucas,

R. Minnich, and P. Olsen, SPLASH: A reconfigurable linear logic array,

International Conference on Parallel Processing, 1990, pp. 1-526-1-532.

G. W. Griffin, The Ultimate Ultimate RISC, Computer Architecture News

(1988).

S. A. Guccione and D. Levi, XBI: A Java-based interface to FPGA hardware,

Configurable Computing: Technology and Applications, Proc. SPIE 3526

(Bellingham, WA) (John Schewel, ed.), SPIE - The International Society

for Optical Engineering, November 1998, pp. 97-102.

, Run-time parameterizable cores, Field-Programmable Logic and

Applications, 9th International Workshop, FPL'99 (Patrick Lysaght, James

Irvine, and Reiner W. Hartenstein, eds.), LNCS, vol. 1673, Springer-Verlag,

Berlin, August/ September 1999, pp. 215-222.

J. D. Hadley and B. L. Hutchings, Design methodologies for partially re-

configured systems, Proceedings of IEEE Workshop on FPGAs for Custom

Computing Machines (Napa, CA) (P. Athanas and K. L. Pocek, eds.), April

1995, pp. 78-84.

I. Hadié, S. Udani, and J. M. Smith, FPGA viruses, Field-Programmable

Logic and Applications, 9th International Workshop, FPL'99 (Patrick

ON

Lysaght, James Irvine, and Reiner W. Hartenstein, eds.), LNCS, vol. 1673,

Springer-Verlag, Berlin, August/ September 1999, pp. 291-300.

S. Hauck, Configuration Prefetch for Single Context Reconfigurable Copro-

cessors, FPGA'98, ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, ACM Press, 1998, pp. 65-74.

S. Hauck, X. Li, and E. Schwabe, Configuration compression for the Xilinx

XC6200 FPGA, IEEE Symposium on Field-programmable Custom Com-

puting Machines (J. M. Arnold and K. L. Pocek, eds.), IEEE Press, 1998.

S. Hauck and W. D. Wilson, Runlength compression techniques for FPGA

configurations, IEEE Symposium on FPGAs for Custom Computing Ma-

chines (Napa, CA) (Kenneth L. Pocek and Jeffrey Arnold, eds.), IEEE

Computer Society Press, April 1999, pp. 286-287.

D. Hawley, Advanced PLD architectures, FPGAs (Oxford, England)

(W. Moore and W. Luk, eds.), Abingdon EE and CS Books, September

1991, pp. 11-23.

J. Hogg, A Dynamic Hardware Generation Mechanism based on Partial

Evaluation, Designing Correct Circuits (M. Sheeran and S. Singh, eds.),

Springer Electronic Workshops in Computing, 1996.

S. H. Hollingdale, High speed computing; methods and applications, English

University Press, 1959.

J. Hoogerbrugge and H. Corporaal, Code generation for transport triggered

architectures, Code Generation for Embedded Processors (Gert Goossens

and Peter Marwedel, eds.), 1995, pp. 240-259.

P. James-Roxby and E. Cerro-Prada, A wildcarding mechanism for accel-

eration of partial configurations, Field-Programmable Logic and Applica-

309

tions, 9th International Workshop, FPL'99 (P. Lysaght, J. Irvine, and

R. W. Hartenstein, eds.), LNCS, vol. 1673, Springer-Verlag,. Berlin, Au-

gust/September 1999, pp. 444-449.

P. James-Roxby, E. Cerro-Prada, and S. Charlwood, A core-based design

method for reconfigurable computing applications, lEE Informatics Collo-

quium on Reconfigurable Systems, Institute of Electrical Engineers, March

1999, pp. 3/1 - 3/4.

D. W. Jones, The Ultimate RISC, Computer Architecture News 16 (1988),

no. 3, 48-55.

T. Kean, Configurable logic: A dynamically programmable cellular architec-

ture and its VLSI implementation, Ph.D. thesis, Department of Computer

Science, University of Edinburgh, 1989.

T. Kean and A. Duncan, A 800Mpixel/sec reconfigurable correlator on the

XC621 6, Field-Programmable Logic: Smart Applications, New Paradigms

and Compilers, 7th International Workshop, FPL '97 (London, United

Kingdom) (W. Luk, P. Cheung, and R. W. Hartenstein, eds.), Springer-

Verlag, September 1997, pp. 382-391.

R. Kress, A fast recortfigurable AL U for Xputers, Ph.D. thesis, Kaiser-

slautern University, 1996.

R. Laufer, R. Reed Taylor, and H. Schmit, PCI-PipeRench and the Swor-

dAPI: A system for stream-based reconfigurable computing, IEEE Sympo-

sium on FPGAs for Custom Computing Machines (Napa, CA) (Kenneth L.

Pocek and Jeffrey Arnold, eds.), IEEE Computer Society Press, April 1999,

pp. 200-208.

S. H. Lavington, Manchester Mark I and Atlas: A historical perspective,

Communications of the ACM 21 (1978), no. 1, 4-12.

310

M. Leeser, W.M. Meleis, M.M. Vai, and P. Zavracky, Rothko: a three-

dimensional FPGA architecture, its fabrication, and design tools, Field-

Programmable Logic: Smart Applications, New Paradigms and Compilers.

7th international Workshop on Field-Programmable Logic and Applica-

tions, FPL '97 (London, United Kingdom) (W. Luk, P. Cheung, and R. W.

Hartenstein, eds.), Springer-Verlag, September 1997, pp. 21-30.

D. Levi and S. A. Guccione, BoardScope: A debug toolfor reconfigurable sys-

tems, Configurable Computing: Technology and Applications, Proc. SPIE

3526 (Bellingham, WA) (John Schewel, ed.), SPIE - The International So-

ciety for Optical Engineering, November 1998, pp. 239-246.

Z. Li and S. Hauck, Don't care discovery for FPGA configuration compres-

sion, ACM/SIGDA International Symposium on Field Programmable Gate

Arrays (Monterey, CA) (S. Kaptanoglu and S. Trimberger, eds.), ACM

SIGDA, ACM Press, February 1999, pp. 91-98.

A. Lovelace, Sketch of the Analytical Engine invented by Charles Babbage,

by L. F. Menebrea of Turin, with notes on the memoir by the translator,

Taylor's Scientific Memoirs 3 (1843), no. 29, 666 - 731.

W. Luk, N. Shirazi, and P. Y.K. Cheung, Modelling and optimising run-

time reconfigurable systems, Proceedings of IEEE Workshop on FPGAs for

Custom Computing Machines (Napa, CA) (J. Arnold and K. L. Pocek,

eds.), April 1996, pp. 167-176.

, Compilation tools for run-time reconfigurable designs, Proceedings

of IEEE Workshop on FPGAs for Custom Computing Machines (Napa,

CA) (J. Arnold and K. L. Pocek, eds.), april 1997, pp. 56-65.

W. Luk, N. Shirazi, S. R. Guo, and P. Y. K. Cheung, Pipeline morphing

and virtual pipelines, Field-Programmable Logic and Applications, 7th In-

311

ternational Workshop, FPL'97 (W. Luk, P. Y. K. Cheung, and Manfred

Glesne, eds.), LNCS, vol. 1304, Springer-Verlag, Berlin, September 1997,

pp. 111-120.

P. Lysaght, Towards an expert system for a priori estimation of reconfigura-

tion latency in dymamically reconfigurable logic, Field-Programmable Logic

and Applications, 7th International Workshop, FPL'97 (W. Luk, P. Y. K.

Cheung, and M. Glesner, eds.), LNCS, vol. 1304, Springer-Verlag, 1997.

P. Lysaght and J. Dunlop, Dynamic reconfiguration of FPGAs, More

FPGAs: Proceedings of the 1993 International workshop on field-

programmable logic and applications (Oxford, England) (W. Moore and

W. Luk, eds.), September 1993, pp. 82-94.

P. Lysaght and J. Stockwood, A simulation tool for dynamically reconfig-

urable field programmable gate arrays, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 4 (1996), no. 3, 381-390.

K. K. Maitra, Cascaded switching networks of two-input flexible cells, IRE

Transactions on Electonic Computers 11 (1962), 136-143.

G. Martin, Design methodologies for system level IP, Proceedings of Design,

Automation, and Test in Europe (DATE), 1998, pp. 286-302.

G. McGregor and P. Lysaght, Extending dynamic circuit switching to

meet the challenges of new FPGA architectures, Field-Programmable Logic

and Applications, 7th International Workshop, FPL'97 (London, U.K.)

(W. Luk, P. Y. K. Cheung, and M. Glesner, eds.), LNCS, vol. 1304,

Springer-Verlag, September 1997, pp. 31-40.

, Self controlling dynamic reconfiguration, Field-Programmable

Logic and Applications, 9th International Workshop, FPL'99 (P. Lysaght,

312

J. Irvine, and R. W. Hartenstein, eds.), LNCS, vol. 1673, Springer-Verlag,

Berlin, August/September 1999, pp. 144-154.

N. McKay, T. Melham, K. W. Susanto, and S. Singh, Dynamic specialization

of XC600 FPGAs by partial evaluation, IEEE Symposium on FPGAs for

Custom Computing Machines (Napa, CA) (Kenneth L. Pocek and Jeffrey

Arnold, eds.), IEEE Computer Society Press, April 1998, pp. 308-309.

N. McKay and S. Singh, Debugging techniques for dynamically reconfig-

urable hardware, IEEE Symposium on FPGAs for Custom Computing Ma-

chines (Napa, CA) (Kenneth L. Pocek and Jeffrey Arnold, eds.), IEEE

Computer Society Press, April 1999, pp. 114-122.

0. Mencer, M. Morf, and M. J. Flynn, PAM-Blox: High performance FPGA

design for adaptive computing, IEEE Symposium on FPGAs for Custom

Computing Machines (Napa, CA) (Kenneth L. Pocek and Jeffrey Arnold,

eds.), IEEE Computer Society Press, April 1998, pp. 167-174.

G. J. Mime, Reconfigurable custom computing as a supercomputer replace-

ment, Proceedings of the 4th International Conference on High Performance

Computing (HiPC) (Bangalore, India), Dec 1997.

R. C. Minnick, Cutpoint cellular logic, IEEE Transactions on Electronic

Computers 13 (1964), no. 6, 685-698.

, A survey of microcellular research, 14 (1967), no. 2, 203-241.

K. Nagami, K. Oguri, Tsunemichi Shiozawa, Hideyuki Ito, and Ryusuke

Konishi, Plastic cell architecture: Towards reconfigurable computing for gen-

eral purpose, IEEE Symposium on FPGAs for Custom Computing Machines

(Napa, CA) (Kenneth L. Pocek and Jeffrey Arnold, eds.), IEEE Computer

Society Press, April 1998, pp. 68-77.

313

S. Nisbet and S. A. Guccione, The xc6200ds development system, Field-

Programmable Logic and Applications. 7th International Workshop (Lon-

don, U.K.) (W. Luk, P. Y. K. Cheung, and M. Glesner, eds.), Lecture Notes

in Computer Science, vol. 1304, Springer-Verlag, September 1997, pp. 61-

68.

C. Patterson, High Performance DES Encryption in Virtem FPGAs using

JBitstm , IEEE Symposium on FPGAs for Custom Computing Machines

(Napa, CA) (Kenneth L. Pocek and Jeffrey Arnold, eds.), IEEE Computer

Society Press, April 2000, pp. 113-121.

S. F. Reddaway, DAP - a distributed array processor, 1st Annual Sympo-

sium on Computer Architecture, IEEE, 1973, pp. 61-65.

D. Robinson and P. Lysaght, Modelling and synthesis of configuration con-

trollers for dynamically reconfigurable logic systems using the DCS CAD

framework, Field-Programmable Logic and Applications, 9th International

Workshop, FPL'99 (P. Lysaght, J. Irvine, and R. W. Hartenstein, eds.),

LNCS, vol. 1673, Springer-Verlag, Berlin, August/ September 1999, pp. 41-

50.

M. G. Saleeba, A self-reconfiguring computer system, Ph.D. thesis, Monash

University, 1998.

S. M. Scalera and J. M. Vázquez, The design and implementaiton of a

context switching fpga, IEEE Symposium on Field-Programmable Custom

Computing Machines (J. M. Arnold and K. L. Pocek, eds.), IEEE Press,

1998.

H. Schmit, Incremental reconfiguration for pipelined applications, IEEE

Symposium on FPGAs for Custom Computing Machines (Napa, CA) (K. L.

314

Pocek and J. Arnold, eds.), IEEE Computer Society Press, April 1997,

pp. 47-55.

B. Schneier, Applied cryptography: Protocols, algorithms, and source code

in C, John Wiley and Sons, 1994.

M. Shand, A Case Study of Algorithm Implementation in Reconfigurable

Hardware and Software, Field Programmable Logic and Applications, 7th

International Workshop, FPL'97, LNCS, vol. 1304, Springer-Verlag, 1997,

pp. 333-343.

M. Shand and J. Vuillemin, Fast implementations of RSA cryptography,

11th IEEE Symposium on COMPUTER ARITHMETIC, 1993.

N. Shirazi, W. Luk, and P. Y. K. Cheung, Run-time management of dynam-

ically reconfigurable designs, Field-Programmable Logic and Applications,

8th International Workshop, FPL'98. (R. W. Hartenstein and A. Keevallik,

eds.), vol. 1482, Springer-Verlag, Berlin, August/ September 1998, pp. 59-

68.

R. G. Shoup, Programmable cellular logic arrays, Ph.D. thesis, Carnegie-

Mellon University, Pittsburgh, Pennsylvania, March 1970.

R. P. S. Sidhu, A. Mei, and V. K. Prasanna, Genetic programming using self-

reconfigurable FPGAs, Field-Programmable Logic and Applications, 9th In-

ternational Workshop, FPL'99 (P. Lysaght, J. Irvine, and R. W. Harten-

stein, eds.), LNCS, vol. 1673, Springer-Verlag, Berlin, August/ September

1999, pp. 41-50.

, String matching on multicontext FPGAs using self-reconfiguration,

ACM/SIGDA International Symposium on Field Programmable Gate Ar-

rays (Monterey, CA) (S. Kaptanoglu and S. Trimberger, eds.), ACM

SIGDA, ACM Press, February 1999, pp. 217-226.

315

S. Singh and P. Bellec, Virtual hardware for graphics applications using

FPGAs, Proceedings of IEEE Workshop on FPGAs for Custom Computing

Machines (Napa, CA) (D. A. Buell and K. L. Pocek, eds.), April 1994,

S. Singh, J. Hogg, and D. McAuley, Expressing dynamic reconfiguration by

partial evaluation, Proceedings of IEEE Workshop on FPGAs for Custom

Computing Machines (Napa, CA) (J. Arnold and K. L. Pocek, eds.), April

1996, pp. 188-194.

D. L. Tennenhouse, Layered multiplexing considered harmful, H Rudin and

R Williamson editors, Protocols for High Speed Networks (1989), Elsevier

Science Publishers, IFIP.

S. Trimberger, D. Carberry, A. Johnson, and J. Wong, A time-multiplexed

FPGA, IEEE symposium on FPGAs for Custom Computing Machines,

IEEE Press, 1998, pp. 22-29.

Triscend Corporation, Triscend e5 configurable processor family, November

1998, Product Datasheet.

A. M. Turing, On computable numbers, with an application to the entschei-

dungsproblem, Proc. of the London Math. Society 2 (1936), 230-265.

R. Turner, R. Woods, S. Sezer, and J. Heron, A virtual hardware handler

for run-time reconfiguration systems, lEE Informatics Colloquium on Re-

configurable Systems, Institute of Electrical Engineers, March 1999, pp. 8/1

- 8/5.

M. Vasilko, DYNASTY: A temporal floorplanning based CAD framework

for dynamically reconfigurable logic systems, Field-Programmable Logic and

Applications, 9th International Workshop, FPL'99 (P. Lysaght, J. Irvine,

316

and R. W. Hartenstein, eds.), LNCS, vol. 1673, Springer-Verlag, Berlin,

August/ September 1999, pp. 124-133.

M. Vasilko and D. Cabanis, Improving simulation accuracy in design

methodologies for dynamically reconfigurable logic systems, Proceedings of

the IEEE Workshop on FPGAs for Custom Computing Machines (Napa,

CA) (K. L. Pocek and J. M. Arnold, eds.), IEEE Computer Society, IEEE,

April 1999, pp. 123-133.

J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard,

Programmable active memories: Reconfigurable systems come of age, IEEE

Transactions on VLSI Systems 4 (1996), no. 1, 56-69.

S. E. Wahistrom, Programmable logic arrays, Electronics 40 (1967), 90-95.

[109] Xilinx, The programmable logic data book, Xilinx Inc, San Jose CA, 1996.

317

