

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jul 07, 2018

Reconguration of Computation and Communication Resources in Multi-Core Real-Time
Embedded Systems

Pezzarossa, Luca

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pezzarossa, L. (2018). Reconguration of Computation and Communication Resources in Multi-Core Real-Time
Embedded Systems. DTU Compute. (DTU Compute PHD-2018, Vol. 469).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/159135798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/reconguration-of-computation-and-communication-resources-in-multicore-realtime-embedded-systems(59d98be1-8078-494e-bf12-47ba124df5a4).html

Reconfiguration of

Computation and Communication

Resources in Multi-Core

Real-Time Embedded Systems

Luca Pezzarossa

Kongens Lyngby 2018
PhD-2018-469

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, Building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk
PhD-2018-469

Abstract (English)

Reconfigurable computing allows application programmers to significantly in-
crease the speed of software algorithms by implementing computationally-
demanding tasks in hardware while maintaining a certain degree of flexibility.
This can be achieved by using FPGAs to implement hardware accelerators that
can be reconfigured when no longer needed, enabling the re-use of the resources
of the FPGAs to realise new functionalities. For multi-core platforms, reconfigu-
ration can be extended to the infrastructure supporting inter-core communication
and used to dynamically modify the characteristics of the communication chan-
nels between the tasks that are affected by the reconfiguration.

This thesis investigates the use of reconfiguration in the context of multi-core real-
time systems targeting embedded applications. We address the reconfiguration of
both the computation and the communication resources of a multi-core platform.
Our approach is to associate reconfiguration with operational mode changes
where the system, during normal operation, changes a subset of the executing
tasks to adapt its behaviour to new conditions. Reconfiguration is therefore used
during a mode change to modify the real-time guaranteed services provided by
the hardware platform to fit the requirements of the current mode.

The reconfiguration of the computation resources consists of altering the hard-
ware implementation of selected resources, such as accelerators, and it is achieved
by using the dynamic partial reconfiguration feature offered by FPGAs. With
regards to this, we also present a lightweight reconfiguration controller, named
RT-ICAP, specially developed to support time-predictable dynamic partial recon-
figuration. The reconfiguration of the communication resources consists of setting
up and tearing down the end-to-end channels offered by the communication fabric

ii

between the cores of the platform. To support this, we present a new network-on-
chip architecture, named Argo 2, that allows instantaneous and time-predictable
reconfiguration of the communication channels. Our reconfiguration-capable
architecture is prototyped using the existing time-predictable multi-processor
platform T-CREST. The thesis also presents low-level reconfiguration time
analysis for these architectures.

The evaluation of the proposed approach and the developed architectures is
carried out using synthetic benchmarks and hardware accelerators generated by
high-level synthesis tools. For the reconfiguration of computation resources, the
results show that the use of accelerators in combination with dynamic partial
reconfiguration leads to better utilisation of the FPGA resources and tighter
worst-case execution time bounds than a pure software solution. Moreover, the
results show that using a reconfigurable solution delivers a worst-case performance
comparable with that of a non-reconfigurable solution. For the reconfiguration
of communication resources, the results show that the worst-case reconfiguration
time ranges from hundreds to thousands of clock cycles, making our solution
considerably faster than other functionally equivalent networks-on-chips.

In addition to the evaluation based on synthetic benchmarks, we also present a
proof-of-concept case study based on a multi-core audio digital signal-processing
application that combines reconfiguration of both the computation and com-
munication resources. The case study shows that the presented approaches
for reconfiguration can be effectively used in a real-world application and can
lead to a reduction of the overall hardware size and better use of the platform
resources while maintaining comparable computation performance with respect
to a non-reconfigurable approach.

Resumé (Dansk)

Re-konfigurerbar hardware gør det muligt for applikationsudviklere at øge
hastigheden af softwarealgoritmer betydeligt ved at implementere beregningsmæs-
sigt krævende opgaver i hardware, samtidig med at der opretholdes en vis grad
af fleksibilitet. Dette kan opn̊as ved at bruge FPGA’er til at implementere accel-
eratorer, der kan re-konfigureres n̊ar de ikke længere er nødvendige, hvilket gør
det muligt at genbruge FPGA’ernes ressourcer til at realisere ny funktionalitet.
For multikerne platforme kan re-konfigurationen udvides til den infrastruktur der
understøtter kommunikation imellem kernerne, og bruges til dynamisk at ændre
karakteristika for kommunikationskanalerne mellem de opgaver der berøres af
re-konfigurationen.

Denne afhandling undersøger brugen af re-konfiguration i forbindelse med realtids
systemer med flere kerner rettet mod indlejrede applikationer. Vi undersøger re-
konfiguration af b̊ade beregnings- og kommunikationsressourcer p̊a en multikerne
platform. Vores tilgang er at bruge re-konfiguration sammen med ændring
af driftstilstanden, hvor systemet under normal drift ændrer en delmængde
af de eksekverende processer for at tilpasse sin funktion til nye forhold. Re-
konfiguration anvendes derfor i forbindelse med en tilstandsændring for at tilpasse
de realtidsgaranterede ydelser der leveres af hardwareplatformen til den aktuelle
tilstand.

Re-konfigurationen af beregningsressourcerne best̊ar i at ændre hardware im-
plementeringen af udvalgte ressourcer, s̊asom acceleratorer. Dette opn̊as ved
at bruge den delvise re-konfigurationsfunktion der tilbydes af FPGA’er. Til
udførelse af dette præsenterer vi en minimal konfigurationskontroller betegnet
RT-ICAP, der er specielt udviklet til at understøtte realtidsforudsigelig delvis

iv

re-konfiguration. Re-konfigurationen af kommunikationsressourcerne best̊ar i
at nedlægge og oprette kanal endepunkterne der tilbydes af kommunikation-
snettet mellem platformens kerner. For at understøtte dette præsenterer vi
en ny netværk-p̊a-chip arkitektur betegnet Argo 2, som tillader øjeblikkelig
og tidsforudsigelig re-konfiguration af kommunikationskanalerne. Vores re-
konfigurationsfunktionelle arkitektur er udviklet og testet p̊a den tidsforudsigelige
multikerne platform T-CREST. Afhandlingen præsenterer ogs̊a hardware nær
tidsanalyse af re-konfigurationerne for disse arkitekturer.

Evalueringen af den foresl̊aede tilgang og de udviklede arkitekturer udføres
ved hjælp af syntetiske benchmarks og hardware acceleratorer, der genereres af
højniveaus synteseværktøjer. For re-konfigurationen af beregningsressourcerne
viser resultaterne, at brugen af hardwareacceleratorer i kombination med delvis
re-konfigurering fører til bedre udnyttelse af FPGA-ressourcerne og mindre
udsving af tidsbegrænsningerne end en software-baseret løsning. Endvidere
viser resultaterne, at ved anvendelse af en re-konfigurerbar løsning opn̊as en
worst-case præstation tilsvarende en statisk løsning. For re-konfigurationen af
kommunikationsressourcer viser resultaterne, at den værste re-konfigurationstid
varierer fra hundrede til tusindvis af klokkecykler, hvilket gør vores løsning
betydeligt hurtigere end andre funktionelt tilsvarende netværk-p̊a-chips.

Udover evalueringen baseret p̊a syntetiske benchmarks præsenterer vi ogs̊a et
proof-of-concept casestudy baseret p̊a en multikerne applikation som behandler
digitale lydsignaler, der kombinerer re-konfigurering af b̊ade beregnings- og
kommunikationsressourcerne. Casestudy viser, at de præsenterede strategier til
re-konfiguration kan anvendes effektivt i en reel applikation og kan føre til en
reduktion af den samlede hardwarestørrelse, samtidig med at man opretholder
en beregningsydelse tilsvarende en statisk platform.

Preface

The work presented in this thesis was conducted at the Department of Applied
Mathematics and Computer Science at the Technical University of Denmark
(DTU Compute) in fulfilment of the requirements of the PhD program.

The work was supervised by Professor Jens Sparsø and co-supervised by Associate
Professor Martin Schoeberl. The thesis explores the use of reconfiguration of
computation and communication resources in multi-core real-time embedded
systems. The thesis is a monograph and consists of eight chapters.

The thesis does not contain any material that has been accepted for the award of
any other degree or diploma in my name, in any university or other institution
and, to the best of my knowledge, does not contain any material previously
published by another person, except where due reference is made in the thesis.

Kongens Lyngby, 15-March-2018

Luca Pezzarossa

vi

Acknowledgements

At first, I would like to thank my supervisor Professor Jens Sparsø and my
co-supervisor Associate Professor Martin Schoeberl for guiding, supporting, and
helping me throughout my PhD.

I would also like to thank all the members of the section for Embedded Systems
Engineering at the Technical University of Denmark. Especially the PhD col-
leagues and the MSc and BSc students with whom I collaborated or shared part
of the last three years: Evangelia, Rasmus, Wolfgang, Daniel, Andreas, Tórur,
Oktay, Eleftherios, and all the others.

Special thanks go to Ioannis, who shared with me times of enthusiasm and
discouragement, helped me every time I needed, and proofread this thesis.

Finally, I would like to thank my family, Mauro, Daniela and Marco who, even
though they are far away, have always supported me in everything.

viii

Contents

Abstract (English) i

Resumé (Dansk) iii

Preface v

Acknowledgements vii

List of Acronyms xiii

List of Publications xv

1 Introduction 1
1.1 Research Field and Motivation 1
1.2 Thesis Overview . 4
1.3 List of Contributions . 5
1.4 Source Access . 6
1.5 Thesis Structure and Outline . 6

2 Background 9
2.1 Reconfigurable Computing . 9

2.1.1 Overview . 10
2.1.2 Evolution and Technology 10
2.1.3 High-Level Synthesis . 12

2.2 Dynamic Partial Reconfiguration 13
2.2.1 Overview . 13
2.2.2 ICAP Interface . 14
2.2.3 Design Flow and Requirements 17

2.3 Real-Time Systems . 18

x Contents

2.3.1 Overview and Classification 19
2.3.2 Timing-Analysis . 20

2.4 The T-CREST Platform . 22
2.4.1 Overview . 22
2.4.2 Patmos Processor . 22
2.4.3 Support Tools . 24
2.4.4 Memory Access NoC . 25

2.5 Argo Message-Passing NoC . 26
2.5.1 Overview . 26
2.5.2 TDM-Schedule . 27
2.5.3 NoC Architecture . 28

3 Related Work 33
3.1 Reconfiguration of Computation Resources 33

3.1.1 Methods and Tools . 34
3.1.2 Reconfiguration Controllers 36

3.2 Reconfiguration of Communication Resources 38
3.2.1 NoCs Based on Flow Control 39
3.2.2 NoCs Based on TDM . 40

3.3 Other Related Topics . 42

4 Approach to Reconfiguration 45
4.1 Definition of Communication and Computation Resources 45
4.2 Reconfiguration at Mode Changes 46
4.3 Extraction of Guaranteed Service Requirements 48
4.4 Model of the Reconfiguration Process 50
4.5 Expected Outcomes and Evaluation Metrics 51

5 Reconfiguration of Computation Resources 55
5.1 A Multi-Core Platform Supporting DPR 55
5.2 RT-ICAP Controller Architecture 57
5.3 Bit-Stream Compression . 61
5.4 Tool Support . 63
5.5 Reconfiguration Time Analysis 64
5.6 Single-Core Application Example 66

6 Reconfiguration of Communication Resources 69
6.1 Overview . 69
6.2 Argo 2 NI Architecture . 70

6.2.1 Packet Format and Schedule Representation 70
6.2.2 Transmit Module . 72
6.2.3 Receive Module . 74
6.2.4 Remote Initialization . 75

6.3 Support for Reconfiguration . 76

Contents xi

6.3.1 Key Ideas and Observations 76
6.3.2 Reconfiguration Process 77

6.4 Reconfiguration Time Analysis 79

7 Evaluation and Discussion 81
7.1 Reconfiguration of Computation Resources 81

7.1.1 RT-ICAP Controller Characterization 82
7.1.2 Bit-Stream Compression and Reconfiguration Time 84
7.1.3 Synthetic Benchmarks Experiments 87

7.2 Reconfiguration of Communication Resources 97
7.2.1 Argo 2 Characterization 97
7.2.2 Synthetic Traffic Experiments 99

7.3 Audio DSP Application . 103
7.3.1 Overview . 103
7.3.2 Hardware Platform . 105
7.3.3 Effects and Modes of Operation 108
7.3.4 Observations and Results 110

8 Conclusion 117
8.1 Summary and Final Remarks . 117
8.2 Future Work . 119

Bibliography 123

xii Contents

List of Acronyms

ADC Analog-to-Digital Converter
ASIC Application-Specific Integrated Circuit
BCET Best Case Execution Time
BRAM Block RAM
CC Clock Cycle
CPU Central Processing Unit
D$ Data Cache
DAC Digital-to-Analog Converter
DMA Direct Memory Access
DPR Dynamic Partial Reconfiguration
DSP Digital Signal Processing
eFPGA embedded Field Programmable Gate Array
FF Flip-Flop
FIFO First In First Out
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
FSM Finite-State Machine
GS Guaranteed Service
HDL Hardware Description Language
HLS High-Level Synthesis
HPU Header Parsing Unit
HwA Hardware Accelerator
ICAP Internal Configuration Access Port
I2C Inter-Integrated Circuit
I2S Inter-Integrated circuit Sound
I/O Input/Output

xiv

IRQ Interrupt (ReQuest)
LUT Look-Up Table
M$ Method Cache
NI Network Interface
NoC Network-on-Chip
OCP Open Core Protocol
PL Packet Length
RAM Random-Access Memory
RISC Reduced Instruction Set Computer
RLE Run-Length Encoding
S$ Stack Cache
SDRAM Synchronous Dynamic RAM
SoC Systems-on-Chip
SPM Scratch-Pad Memory
T2N Time-to-Next
TDM Time-Division Multiplexing
TTA Time-Triggered Architecture
VC Virtual Circuit
WCET Worst-Case Execution Time
XML eXtensible Markup Language

List of Publications

Journal Publications

[J1] L. Pezzarossa, A. T. Kristensen, M. Schoeberl, and J. Sparsø. Using
Dynamic Partial Reconfiguration of FPGAs in Real-Time Systems.
Accepted for publication in Microprocessors and Microsystems: Embedded
Hardware Design, Elsevier, 2018.

[J2] M. Schoeberl, L. Pezzarossa, and J. Sparsø. A Multicore Processor for
Time-Critical Applications. In Journal of Design and Test, volume PP,
number 99, pages 1–1, IEEE, 2017.

[J3] R. B. Sørensen, L. Pezzarossa, M. Schoeberl, and J. Sparsø. A resource-
efficient network interface supporting low latency reconfiguration of virtual
circuits in time-division multiplexing networks-on-chip. In Journal of
Systems Architecture, volume 74, pages 1–13, Elsevier, 2017.

Conference Publications

[C1] L. Pezzarossa, A. T. Kristensen, M. Schoeberl, and J. Sparsø. Can Real-
Time Systems Benefit from Dynamic Partial Reconfiguration? In Proceed-
ings of the 3rd Nordic Circuits and Systems Conference (NorCAS). IEEE,
2017.

[C2] A. T. Kristensen, L. Pezzarossa, and J. Sparsø. High-Level Synthesis
for Reduction of WCET in Real-Time Systems. In Proceedings of the
3rd Nordic Circuits and Systems Conference (NorCAS). IEEE, 2017.

xvi

[C3] D. S. Ausin, L. Pezzarossa, and M. Schoeberl. Real-time audio processing
on the T-CREST multicore platform. In Proceedings of the 11 th Inter-
national Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC). IEEE, 2017.

[C4] L. Pezzarossa, M. Schoeberl, and J. Sparsø. A Controller for Dynamic
Partial Reconfiguration in FPGA-Based Real-Time Systems. In Proceedings
of the 20 th International Symposium on Real-Time Computing (ISORC).
IEEE, 2017.

[C5] R. B. Sørensen, L. Pezzarossa, M. Schoeberl, and J. Sparsø. An Area-
Efficient TDM NoC Supporting Reconfiguration for Mode Changes. In
Proceedings of the 10 th International Symposium on Networks-on-Chip
(NOCS). IEEE/ACM, 2016.

[C6] L. Pezzarossa, M. Schoeberl, and J. Sparsø. Reconfiguration in FPGA-
Based Multi-Core Platforms for Hard Real-Time Applications. In Proceed-
ings of the 11 th International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC). IEEE, 2016.

[C7] L. Pezzarossa, R. B. Sørensen, M. Schoeberl, and J. Sparsø. Interfacing
Hardware Accelerators to a Time-Division Multiplexing Network-on-Chip.
In Proceedings of the 1st Nordic Circuits and Systems Conference (NOR-
CAS). IEEE, 2015.

Other Works

[O1] L. Pezzarossa. Dynamic Reconfiguration in Multi-Core Hard Real-Time
Platforms. Abstract and poster presented at the 12 th International Summer
School on Advanced Computer Architecture and Compilation for High-
Performance and Embedded Systems (ACACES). HiPEAC, 2016.

[O2] L. Pezzarossa, M. Schoeberl, and J. Sparsø. Towards Utilizing Reconfig-
urable Shared Resources in Multi-Core Hard Real-Time Systems Non-
publishing article presented at the 9 th Junior Researcher Workshop on
Real-Time Computing (JRWRTC). 2015.

[O3] L. Pezzarossa. Dynamic Partial Reconfiguration in the T-CREST Multi-
core Platform. Abstract and poster presented at the 11 th International
Summer School on Advanced Computer Architecture and Compilation for
High-Performance and Embedded Systems (ACACES). HiPEAC, 2015.

Chapter 1

Introduction

This thesis explores the challenges and the potential benefits of reconfigurable
computing in the context of multi-core real-time systems targeting embedded
applications.

This chapter introduces the research work presented in this thesis. At first,
we describe the research fields to which this study relates to, and we present
the motivation and hypotheses of this work. This is followed by an overview
of the thesis content and by the list of contributions. Finally, we provide the
information regarding the access to the source code associated with this work
and present the structure and outline of the thesis.

1.1 Research Field and Motivation

In recent years, we have observed a transition from single-core towards multi-core
architectures, as well as an increased use of specialised hardware accelerators
optimised for specific tasks [1]. Moreover, packet switched networks-on-chip
(NoCs) are increasingly used in large multi-core chips to support communication
between the cores and between cores and shared memory, instead of standard
bus architectures [2, 3]. This shift was possible by evolution in chip fabrication

2 Introduction

technology and further driven by increasing market demand for high compu-
tational capabilities, higher levels of integration, and low power consumption.
Examples of commercially-available multi-core platforms targeting embedded
systems include LEON4 by Gaislerflex/ESA [4], MPPA-256 by Kalray [5], and
Epiphany by Adapteva [6, 7].

Even more recently, advancements in field programmable gate array (FPGA)
technology have enabled reconfigurable computing to become viable and be
used in end-products. The combination of FPGA technology and reconfigurable
computing empowers application developers to design and use their own hardware
accelerators to significantly increase the speed of software algorithms by utilising
reconfigurable hardware [8]. The major FPGA vendors are beginning to produce
hybrid systems-on-chip (SoC) combining a hard processor with a reconfigurable
fabric, such as the Xilinx Zynq SoC [9], the Microsemi SmartFusion2 SoC [10],
and the Intel Stratix 10, Arria V and 10, and Cyclone V SoC [11]. Other vendors
offer FPGA intellectual property cores to embed into an application-specific
integrated circuit (ASIC) design in order to increase the flexibility, differentiation,
and market lifespan of a chip. These intellectual property cores are known as
embedded-FPGA (eFPGA). Commercially-available solutions are provided by
Menta-eFPGA [12] and Achronix [13]. In addition, most currently available
FPGA devices allow portions of the chip to be reconfigured at run-time, while
the rest of the device continues to operate without interruption [14, 15, 16].
This feature, called dynamic partial reconfiguration (DPR), is an active area of
research for general-purpose reconfigurable computing.

The use of FPGAs, eFPGAs, and hybrid SoCs to enable a reconfiguration-oriented
approach in the design of computing systems can lead to an increase in flexibility,
performance, and more efficient utilisation of chip resources compared to a static
solution. From an economic point of view, the non-recurring engineering costs
of an ASIC implementation makes this technology prohibitively expensive for
those applications in which these costs cannot be amortised over a very large
production volume. Low volume professional or high-end real-time applications,
such as control systems, medical devices, and flight electronics belong in this
category. For these applications, reconfigurable computing in the form of FPGAs,
eFPGAs, and hybrid SoCs can mitigate the production costs.

This thesis combines the presented research fields and aims to explore the use of
reconfigurable computing in multi-core real-time systems. Real-time systems are
a class of computing systems characterised by strict constraints on the execution
time of tasks [17, 18]. Therefore, the temporal behaviour of a hardware platform
supporting real-time applications must be predictable and analysable. Specifically,
the possibility to calculate the worst-case execution time (WCET) of tasks is
of fundamental importance. Hence, the entire system must be designed taking
into account the specifications of time-predictability and time-analysability [19].

1.1 Research Field and Motivation 3

The real-time industry is typically rather conservative towards new architectures
and approaches since these systems are often used in safety-critical applications
where a failure to respond in time may lead to severe consequences. Nevertheless,
the use of multi-core architectures and reconfigurable computing in real-time
systems are active topics of research [20, 21].

In a multi-core platform which supports real-time applications, the requirement
for time-predictable behaviour goes beyond the individual processors. The
entire platform must offer guaranteed services in terms of computation resources
(e.g., processors and hardware accelerators) and communication resources (e.g.,
network-on-chip supporting communication among tasks mapped to different
cores). The T-CREST platform [21] is an example of an FPGA-based multi-core
platform targeting real-time systems. All components are designed with a focus
on time-predictability and WCET analysis aiming to reduce the complexity and
pessimism of the analysis. The platform consists of a number of processing
nodes [22] and two NoCs: a NoC, called Argo [23], that provides message-passing
to support inter-processor communication and a NoC that provides shared
memory access [24, 25]. T-CREST is used in this research as a prototyping
platform for the proposed solutions supporting reconfiguration in multi-core
real-time systems.

In general, reconfigurable computing is used to increase the performance of
a system by dynamically starting and stopping tasks executed on the dedi-
cated hardware resources implemented on a reconfigurable fabric [8]. However,
when taking into account multi-core platforms for real-time applications, the
reconfiguration can be extended to the infrastructure supporting inter-processor
communication. Reconfiguration may be used to dynamically set up, tear down,
and modify the communication channels between the tasks that are reconfigured.
As our research targets multi-core real-time systems, we explore reconfigurable
computing from both the computation and communication perspectives.

We hypothesise that the use of a hardware platform supporting reconfiguration
of both computation and communication resources can provide substantial
benefits by allowing run-time changes in the platform. More specifically, a
system that uses a reconfigurable approach can be more efficient, flexible, and
smaller in terms of hardware size compared to the equivalent static version,
while maintaining comparable computational performance. We also hypothesise
that the combination of hardware acceleration and reconfiguration can result
in both lower and tighter bounds on the WCET since, in general, hardware
has a simpler and more time-predictable behaviour than software executing on
a processor. These hypotheses are further detailed in the thesis into a set of
expected outcomes and evaluation metrics for our reconfiguration approach.

4 Introduction

1.2 Thesis Overview

This thesis investigates the use of run-time reconfiguration in the context of multi-
core real-time embedded systems. Such a run-time reconfiguration relates to both
communication resources and computation resources of a multi-core platform.
The main idea is to dynamically adapt the hardware platform to the actual needs
of the software applications running on it. The reconfiguration of computation
resources is achieved using the DPR feature of FPGAs for swapping between a
set of hardware accelerators. The reconfiguration of communication resources
is achieved by dynamically altering the bandwidth and latency guarantees of
the communication channels offered by the inter-processor message-passing NoC.
Since this research targets real-time systems, the time-predictability specification
must also apply to the reconfiguration techniques.

Our approach is to associate reconfiguration with operational mode changes
where the system, during normal operation, changes a subset of the executing
software tasks to adapt its behaviour to new environmental conditions. Since
different modes of a real-time application can have different requirements for
the guaranteed services offered by the platform, run-time reconfiguration is used
to modify the platform to meet the requirements of the current mode. This
may lead to a reduction of hardware cost compared to a static solution where
the hardware platform must meet the overall requirements of all the modes of
the application. Moreover, the possibility to move functionality into hardware
may increase the performance of the entire system in terms of speed and WCET
compared to a pure software solution.

In addition to exploring the reconfiguration from a real-time perspective, we
develop a hardware/software infrastructure to support the reconfiguration of the
computation and communication resources targeting the existing time-predictable
multi-processor platform T-CREST. For the reconfiguration of computation
resources in T-CREST, we develop a hardware controller and software tools
that enable time-predictable reconfiguration of the hardware accelerators using
the DPR feature offered by Xilinx FPGAs. For the reconfiguration of the
communication resources, we develop a new version of the T-CREST message
passing NoC allowing instantaneous reconfiguration between different sets of
virtual circuits without affecting those that persist across the reconfiguration.

The reconfiguration of the communication and computation resources are evalu-
ated and discussed both independently and in conjunction. The independent
evaluation of the reconfiguration of the computation resources is carried out using
synthetic benchmarks and hardware accelerators implemented using high-level
synthesis tools. Synthetic traffic benchmarks are also used for the independent
evaluation of the reconfiguration of the communication resources. Finally, a

1.3 List of Contributions 5

proof-of-concept case study that includes reconfiguration of both the computation
and communication resource features is carried out using an audio digital signal
processing (DSP) application.

1.3 List of Contributions

The main contributions of this thesis concern the proposed approach to reconfig-
uration and the hardware/software infrastructure we develop to support it. The
following list summarises the features of these contributions.

• We present an approach for using reconfigurable computing in real-time
multi-core embedded systems where the reconfiguration of computation
and communication resources is associated with operational mode changes.
This approach is analysed, especially focusing on the effects on the time
predictability of the system. Particular attention is given to the extraction
of the requirements for the guaranteed-services provided by the platform
and to the role of reconfiguration into ensuring that these requirements
are met for a multi-mode application.

• We explore and evaluate how to use the DPR feature of modern FPGAs
to support the computation aspects of a mode change by dynamically
reconfiguring the computation resources in the platform. More specifi-
cally, we present a hardware architecture of a lightweight time-predictable
reconfiguration controller, named RT-ICAP, and the associated software
tool that supports the controller. A reconfiguration time analysis for the
reconfiguration controller is also presented.

• We supplement the message-passing NoC of the T-CREST platform with
run-time reconfiguration, thereby supporting the reconfiguration of the
communication resources. More specifically, we develop a new NoC ar-
chitecture, named Argo 2, that supports instantaneous reconfiguration
of end-to-end communication channels. An analysis of the reconfigura-
tion effects on the time-predictability of the multi-core platform is also
presented.

• We provide an extensive evaluation of the use of reconfiguration in real-
time systems using synthetic benchmarks and a multi-core DSP audio
application, aiming to confirm the thesis hypotheses.

• We significantly extend the T-CREST project by supplementing the exist-
ing time-predictable multi-core platform with reconfiguration capabilities
for both hardware resources and the message-passing NoC.

6 Introduction

1.4 Source Access

The entire software and hardware infrastructure developed in relation to the
work presented in this thesis and the T-CREST multi-core platform are re-
leased under the terms of the simplified BSD open-source license. The full
T-CREST platform and the source code related to this thesis are available at
https:// github.com/ t-crest/ , which is a collection of git repositories. The hard-
ware source code related to the configuration of computation and communication
resources can be found in the reconfig and in the argo repositories, respectively.
The software source code can be found in the C folder of the patmos repository.
The hardware and software source code related to the audio DSP application case
study is available in the branch reconfig-audio of the patmos and aegean reposi-
tories. README files describing the file structure and the build instructions
are also included in the repositories.

1.5 Thesis Structure and Outline

The thesis begins by presenting general background and a review of related work.
Next, we present an overview of our reconfiguration approach followed by the
implementation details of the hardware and software infrastructure we developed
in relation to the proposed approach. Finally, we provide results and evaluate
the proposed approach and architecture. The discussion is integrated with the
evaluation. The following list of chapters provides a more detailed outline.

• Chapter 2 introduces the background for the topics related to the thesis,
including reconfigurable computing, the DPR feature of FPGAs, real-time
systems, the T-CREST multi-core platform, and the Argo message-passing
NoC.

• Chapter 3 reviews related work covering two research areas: reconfiguration
of computation resources and reconfiguration of communication resources.

• Chapter 4 presents our approach to reconfiguration by introducing a
clear definition of computation and communication resources as well as
the relationship between operational mode changes, guaranteed service
requirements, and reconfiguration.

• Chapter 5 presents the hardware and software infrastructure we developed
to support the reconfiguration of computation resources according to the
proposed approach. More specifically, it presents the RT-ICAP controller

https://github.com/t-crest/

1.5 Thesis Structure and Outline 7

and the associated software tool we developed to enable time-predictable
reconfiguration of the hardware accelerators using DPR.

• Chapter 6 describes the new version of the T-CREST message-passing NoC,
called Argo 2, that we developed to support the reconfiguration of com-
munication resources focusing on its reconfigurable features which allows
instantaneous reconfiguration between different sets of virtual circuits.

• Chapter 7 evaluates and discusses our proposed reconfiguration approach
through reviews of the developed infrastructure supporting DPR and the
Argo 2 NoC as well as a proof-of-concept audio DSP application that
combines the reconfiguration of both computation and communication
resources.

• Finally, Chapter 8 concludes the thesis by summarising the contributions
and the results, and by presenting future work.

8 Introduction

Chapter 2

Background

This chapter provides the background for the main topics related to the thesis,
including reconfigurable computing, the DPR feature of FPGAs, real-time sys-
tems, the T-CREST multi-core platform, and the Argo message-passing NoC.
The background on each of the topics is presented independently to one another
and aims to supply the reader with the knowledge needed from the perspective
of this work. For additional background information, references to academic
literature and technical reports are provided at the beginning of each section.

2.1 Reconfigurable Computing

The main focus of this work is reconfiguration. In this section, we provide
background related to reconfigurable computing and overview its evolution
and challenges. An extensive review of the state-of-the-art of reconfigurable
computing can be found in [8].

10 Background

2.1.1 Overview

Computing systems are typically implemented using two solutions. The first
consists of employing a general-purpose processor to run software that realises the
required functionality. This solution is very flexible since the same processor can
be reprogrammed to implement multiple functionalities. However, the sequential
nature of program execution, combined with the fact that the program must
be compiled into a limited set of general-purpose instructions, may limit the
efficiency and the performance. The second solution consists of using an ASIC
chip that realises the required functionality directly in hardware. This is more
efficient and has higher performance than the software-based solution since the
hardware can be designed to match the required functionality and to exploit
parallelism. However, ASICs lack flexibility, since the implemented functionality
cannot be changed. Moreover, the design process of an ASIC is complex and
time-consuming, and, thus, very expensive.

Reconfigurable computing is an approach that aims to combine the flexibility
of software with the high performance of hardware. This is achieved by using
reconfigurable fabrics, such as FPGAs, to implement computationally-demanding
tasks in hardware. The hardware can be reconfigured when it is no longer
needed allowing the re-use of resources of the reconfigurable fabric to realise new
functionalities. The key advantage over a software-based solution is the ability to
modify the hardware architecture to offer more complex, high-level instructions,
as far as implementing entire tasks in hardware. The main advantages over
an ASIC-based solution are the increased flexibility and the easier and less
time-demanding design process.

2.1.2 Evolution and Technology

Reconfigurable computing was first presented in 1960 in [26], where the author
proposed the concept of an architecture consisting of a fixed unit and a variable
unit. The fixed unit would offer a simple interface to a user and manage the
hardware implemented on the variable unit. The variable unit could be recon-
figured to implement the hardware that better fit the current user application.
This concept was not implemented and adopted in the 1960s due to limited
technology. The invention of FPGAs in the early 1980s [27] brought new interest
in reconfigurable computing from both academia and industry. Several pioneering
FPGA-based designs demonstrated the potential of FPGA-based reconfigurable
computing. For example, the SPLASH architecture [28] outperformed contem-
porary supercomputers on a DNA sequence matching problem by using a design
based on 16 FPGAs.

2.1 Reconfigurable Computing 11

Reconfigurable fabric - FPGA(s)

Hard
processor(s)

Static part

Memory

I/O

Accelerating
unit

Accelerating
unit

Accelerating
unit

Communication
infrastructure

Figure 2.1: A block diagram of a reconfigurable computing system where a
static (non-reconfigurable) processors-based architecture is com-
bined with accelerating units implemented in a reconfigurable
fabric. An infrastructure that extends in both the static part and
the reconfigurable fabric supports the communication between all
the system units.

Today, reconfigurable computing is mainly used to increase the speed of software
algorithms by using hardware accelerators implemented on FPGAs. As previously
mentioned, the common approach is to combine a processor-based computing
architecture with reconfigurable accelerators. Figure 2.1 shows a block diagram
of a possible computer architecture based on this approach. The system consists
of a static (non-reconfigurable) part and a reconfigurable fabric (i.e. one or more
FPGAs). The static part includes the processor-based computing system, which
may consist of one or more hard processors, memory, inputs/outputs (I/Os),
and possibly other peripherals. The reconfigurable fabric is used to implement
acceleration units that match the current needs of an application executing
on the system. A communication infrastructure supplies the communication
channels between the units of the system, and it extends through both the static
part and the reconfigurable fabric.

Hybrid SoCs available on the market are based on this architecture. Examples
include the Xilinx Zynq SoCs [9], the Microsemi SmartFusion2 SoC [10], and
the Intel Stratix 10, Arria V and 10, and Cyclone V SoCs [11]. These devices
contain a single- or multi-core ARM processor together with an FPGA. In
contrast, architectures incorporating one or more discrete FPGAs with one or
more discrete hard processors also exist. For example, Microsoft Azure servers
combine Intel FPGAs and processors to create a cloud that can be reconfigured to
optimise a diverse set of applications and functions [29, 30]. The reconfiguration
capabilities offered by the commercially-available FPGA and hybrid-SoC devices

12 Background

are further extended by the DPR feature, which enables the reconfiguration
of a portion of the FPGA, while the rest of the device continues to operate
without interruption [14, 15, 16]. This feature is extensively used in this work to
reconfigure computation resources. Thus, a detailed background related to DPR
is presented in Section 2.2.

In a reconfigurable system such as the one presented in Figure 2.1, a set of
tasks are executed by the hard processors, and another set of tasks are exe-
cuted on the dedicated hardware resources implemented on the reconfigurable
fabric. The communication between these two sets is supported by the com-
munication infrastructure. The idea of reconfiguration, which generally refers
to the reconfiguration of the computation resources, can also be applied to the
infrastructure that implements the communication among the tasks. In this case,
reconfiguration can be used to dynamically modify the characterising parame-
ters (e.g., bandwidth, latency, and transmission policies) of the communication
channels, leading to more efficient utilisation of the communication resources. In
Section 3.2, we review the related work regarding reconfiguration of NoC-based
communication infrastructures.

2.1.3 High-Level Synthesis

To accelerate algorithms on the reconfigurable fabric, application developers
must have access to hardware implementations of the desired functionalities.
The design of these accelerators can be performed manually or with the help of
automated tools, such as high-level synthesis (HLS) tools. HLS is an automated
design process that translates a software program into a functionally equivalent
hardware architecture expressed in a hardware description language (HDL).
Xilinx provides the Vivado HLS [31] tool, which can translate C and SystemC
code into a register-transfer level implementation in VHDL or Verilog. An
equivalent open-source tool developed in academia is LegUp [32]. A complete
survey of available HLS tools is provided in [33].

HLS tools take the source code as input along with a set of constraints and direc-
tives provided by the designer defining design specifications for clock frequency,
resources utilisation, and performance. First, the source code is analysed and the
basic operations to be mapped into the available hardware components are identi-
fied. Next, a control flow graph is constructed, and the operations are scheduled,
which means assigning the operations to control steps (i.e. to clock cycles).
During this process, the operations are assigned to the hardware components
aiming to exploit parallelism to the extent allowed by the user constraints on
the resource utilisation as well as by data dependencies. A finite-state machine
is then generated to orchestrate the execution of the operations according to the

2.2 Dynamic Partial Reconfiguration 13

identified schedule. In general, HLS-generated accelerators perform worse than
manually implemented ones [34]. However, the speed-up over a pure software
implementation is still acceptable taking into account the reduction in time and
effort for the development process. In our research, we use the Vivado HLS tools
to generate hardware accelerators from C benchmarks for evaluation purposes.

2.2 Dynamic Partial Reconfiguration

The reconfiguration approach presented in the thesis uses the DPR feature of
FPGAs to reconfigure the hardware resources dedicated to accelerating compu-
tational tasks. In this section, we provide the background information regarding
DPR for Xilinx FPGAs. Further background can be found in [14, 15].

2.2.1 Overview

DPR is a feature of modern FPGAs that allows for dynamic change of hardware
modules of an operating FPGA. After the initial configuration of the FPGA with
a full-bit-stream, partial bit-streams can be loaded to reconfigure the hardware
design implemented in selected regions without compromising the integrity
and the functionality of those parts of the device that are not affected by the
reconfiguration.

A system using DPR can be conceptually considered as divided into static and
dynamic parts. The static part is configured only once at boot-time with a
full bit-stream. The dynamic part, which may consist of several independent
reconfigurable regions, can be reconfigured multiple times during run-time with
different partial bit-files. Figure 2.2 shows an example of an FPGA divided
into static and dynamic parts. The dynamic part consists of two reconfigurable
regions (A and B). For each region, a partial bit-stream can be loaded from a set
to change the hardware implemented in the selected region without interfering
with the functionality of the hardware implemented in the static part or in
the other reconfigurable regions. For example, in Figure 2.2, the hardware
architecture implemented in the reconfigurable region A is modified by loading
one of the partial bit-streams A0, A1, ..., An.

In reconfigurable computing, DPR can be used to increase the flexibility in
the choices of algorithms available to an application. Moreover, it can lead to
a reduction of the size of the FPGA with a consequent reduction in cost and
power consumption, since it allows the re-use of FPGA resources to implement

14 Background

Static part

Partial
bit-streams

FPGA

Dynamic part
(two reconfigurable regions)

A0

A1

An

B1

Bm

A

B

B0

Figure 2.2: An example of an FPGA divided into a static part and a dynamic
part. The dynamic part consists the two reconfigurable regions
A and B. Partial bit-streams can be loaded to reconfigure these
regions.

different functionalities. Various approaches may be used when employing DPR
in a reconfigurable system. If the entire computing system is implemented
on the FPGA, then the static part of the FPGA is used to implement the
processing resources that need to run uninterrupted for the entire execution
time of an application, such as processors, on-chip communication fabric, and
on-chip memory. The dynamic part of the FPGA is shared between hardware
accelerators, specialised co-processors, I/O peripherals, etc. that are only needed
for a limited period. Alternatively, if the hardware architecture of a computing
system is a hybrid SoC or an ASIC equipped with an eFPGA, then the static
part of the FPGA is used to implement only the communication fabric between
the hard processor (or ASIC logic) and the dynamic part of the system. In this
work, we address the class where the entire computing system is implemented
on the FPGA.

2.2.2 ICAP Interface

From a functional point-of-view, an FPGA can be modelled as a two-layered
device, as shown in Figure 2.3. The top layer consists of the configurable logic
components and interconnections available to implement the user design. The
configuration bit-streams are stored in an SRAM configuration memory in the
bottom layer. Depending on the content of the configuration memory, the
logic functions implemented by the components and their interconnection are
modified to construct the desired digital circuit. In other words, the content
of the configuration memory defines the hardware design implemented in the

2.2 Dynamic Partial Reconfiguration 15

ICAP interface

CLK

CE

WRITE

I

BUSY

O

Configuration mem.

Implemented logic

01010101011
10111011010

01010110111

External interfaces
(e.g., JTAG,

Slave SelectMap)

Internal interfaces
(e.g., ICAP)

F
P
G

A
 c

h
ip

C
o
n
fig

u
ratio

n
 m

em
o
ryIm

p
le

m
en

te
d
 l
o
g
ic

8,16,32

8,16,32

Figure 2.3: An FPGA chip modelled as two layers: one is the configuration
memory, and the other is the configurable logic components and
interconnections. The external and internal interfaces allow the ac-
cess to the configuration memory. The ICAP interface is expanded
to show the internal signals.

FPGA. In Figure 2.3, the dashed arrow between the two FPGA layers shows
this dependency.

Technically, performing a partial reconfiguration consists of changing the content
of selected segments of the configuration memory, which corresponds to the
modification of the hardware design implemented in the respective regions of
logic. The smallest reconfigurable region is called base region, and it corresponds
to the smallest addressable segment, called frame, of the FPGA configuration
memory space. The size of a frame depends on the FPGA model. For example,
in the Xilinx Virtex-6 FPGA, a frame is equivalent to 320 6-input look-up tables
(LUTs) and 640 flip-flops (FFs) (80 slices), or 16 DSP elements, or 8 blocks of
RAM (BRAMs).

For Xilinx FPGAs, DPR can be performed by loading a partial bit-stream at
run-time through one of the FPGA configuration interfaces [35, 36], which can
be either off-chip or on-chip as shown in Figure 2.3. The off-chip interfaces are
accessible externally from the FPGA chip through dedicated pins. Commonly
available off-chip interfaces are JTAG and Slave SelectMAP. The on-chip in-
terfaces are accessible by the user logic implemented on the FPGA itself. In
this work, we use the on-chip internal configuration access port (ICAP) on-chip
interface. The ICAP is a hardware primitive that provides read/write access to
the FPGA configuration memory.

In Figure 2.3, the ICAP interface is expanded to show the internal signals. The
naming of some signals of the ICAP interface changes between FPGA families;
however, the functionality remains unchanged (Figure 2.3 uses Virtex-6 naming).

16 Background

Table 2.1: Bit-stream size and calculated reconfiguration time for three different
reconfigurable region sizes for a Xilinx Virtex-6 FPGA.

Reconf. Hardware resources Bit-stream Reconf.
region FF LUT DSP BRAM size (Byte) time
Base region 640 320 0 0 5 832 ∼ 16µs
Patmos proc. 20 480 10 240 64 32 611 712 ∼ 1.5 ms
Large region 102 720 51 360 256 140 3 074 112 ∼ 7.6 ms

The ICAP is synchronous and has separate read (O) and write (I) buses, which
can be configured to support data widths of 8, 16, or 32 bits. The ICAP is a
streaming interface and, for DPR purposes, it receives a partial bit-stream as
a continuous input stream through the write bus (I). As shown in Figure 2.3,
the address of the FPGA configuration memory and the control signals are
not directly available on the interface. All the control information needed to
manage the reconfiguration, such as commands and frame address, are encoded
into the bit-stream together with the data to be written to the configuration
memory. In addition, the ICAP provides information about the current state
of the ongoing reconfiguration and communicates when a region is successfully
reconfigured through the read bus (O). The ICAP interface and the timing
diagram for the signals enable (CE), read/write select (WRITE), and busy bit
(BUSY) are explained in [36, 35]. A reconfiguration controller is needed to
manage the bit-stream transfer through the ICAP. One of the contributions
of this work is the design of a time-predictable reconfiguration controller for
the ICAP as presented in Section 5.2. A review of some ICAP controllers from
industry and academic environments is presented in Section 3.1.

The time to perform a DPR depends on the amount of data to be transferred over
the ICAP as well as its speed. The ICAP for Virtex-5, -6, and 7-series FPGAs
has a maximum operation frequency of 100 MHz. Assuming the widest possible
interface (32 bits) and the fastest possible clock, a bit-stream can be written
at a maximum speed of 400 MB/s. To provide an idea of the reconfiguration
time for real applications, Table 2.1 reports calculated results for three different
sizes of the reconfigurable region assuming the maximum ICAP transfer speed of
400 MB/s. The values shown in Table 2.1 refer to the Xilinx Virtex-6 FPGA. We
expect to have similar reconfiguration times for other FPGA families. The first
row reports the results for a base region size, and the second row reports the
results for a Patmos processor [22], which is a medium-sized processor described
in Subsection 2.4.2. The last row reports the results for a large region equivalent
to one-third of the entire FPGA.

2.2 Dynamic Partial Reconfiguration 17

2.2.3 Design Flow and Requirements

The full bit-stream associated to the static part and the partial bit-streams
associated to the dynamic part of the architecture must be generated using the
Xilinx tools. For the 7-series FPGAs, the tool used is Xilinx Vivado, while for
older FPGAs the tools are Xilinx ISE and Xilinx PlanAhead. This introduces
some differences in the design flow between the 7-series FPGAs [14] and older
ones [15]. In the following, we provide a summary of the steps of the design flow,
which are common for all Xilinx FPGA families.

At first, the HDL description for the static part of the design and each HDL de-
scription targeting the reconfigurable regions must be synthesised independently.
The HDL descriptions targeting reconfigurable regions are called reconfigurable
modules. The synthesis generates a netlist for the static part and a set of netlists
for the reconfigurable modules. The synthesis also produces an estimation of
the resources needed to implement each reconfigurable module. The next step
is to define the number of reconfigurable regions and to assign the netlists of
the reconfigurable modules to each region. This is followed by the definition of
the size and the location of each region on the FPGA floor-plan. The resources
included in each region should be enough to implement the largest module
assigned to it. At this point, one reconfigurable module for every region must
be promoted to be part of the full bit-stream for the initial configuration (if
nothing should be implemented, then a blank reconfigurable module can be
used). The static part is then implemented (place and route) together with the
promoted reconfigurable region. Then, the rest of the reconfigurable module are
implemented respecting the routing of the signals on the border between the
previously implemented static part and the reconfigurable regions. Finally, the
static bit-stream and the partial bit-streams are generated. If needed, design
constraints for the static part and each reconfigurable module can be provided
in every step of the design flow. If the differences between two configurations
for the same reconfigurable region are minimal, then the Xilinx tools allow the
generation of a differential bit-stream that stores only the differences between a
previous configuration and the new one. In this work, we do not use differential
bit-streams. Possible extensions of this work using differential bit-streams are
presented as future work in Section 8.2.

The current FPGA technology and tools introduce some requirements and
limitations related to the use of DPR. During the design flow, specific checking
procedures are used to verify that the DPR requirements are respected. In the
following, we list the most relevant requirements and limitations for the work
presented in the thesis.

18 Background

• During reconfiguration, the interface between the static part and a reconfig-
urable region may take unknown values. This may affect the functionality
of the design implemented in the static part of the FPGA. Therefore,
a specially designed border interface is needed between the static and
dynamic parts of a design to decouple the affected reconfigurable region
from the rest of the design during reconfiguration. The border interface
belongs to the static part of the design and may consist of FFs with enable
or 2-to-1 multiplexers on all the signals toward the static part.

• A reconfigurable region must contain a super-set of all interface signals
used by the possible hardware modules assigned to the region. The un-
used output signals need to be forced to a constant value by the logic
implemented in the reconfigurable region.

• In a design that includes multiple reconfigurable regions in the dynamic
part of the system, only one region can be reconfigured at a time. Even if
most FPGAs that support DPR offer two ICAP interfaces, it is still not
possible to reconfigure more than one region at a time.

• The reconfigurable region must be rectangular-shaped. Moreover, it is
recommended that it is a multiple of the base region. This topological
constraint, combined with the fact that the base regions containing DSPs
and BRAMs are uniformly distributed in the FPGA chip layout, may lead
to an over-inclusion of resources into a reconfigurable area.

• From a system point-of-view, particular attention should be given to avoid
deadlocks. For example, if some transactions across a reconfigurable region
boundary take multiple cycles to complete, then performing DPR after a
transaction has started but before it has completed could cause the system
to experience deadlocks. The same could apply for some software polling a
register that no longer exists.

2.3 Real-Time Systems

This study explores reconfiguration in real-time systems. In the following, we
provide an overview of this class of systems, as well as background on timing-
analysis. Further background on real-time systems can be found in [17, 18]. An
extensive overview of the methods and a survey of timing-analysis tools can be
found in [19].

2.3 Real-Time Systems 19

2.3.1 Overview and Classification

Real-time systems are a class of computing systems characterised by strict
constraints on the execution time of tasks in addition to the correctness of
the produced result. This definition introduces a set of design specifications
on both the software and hardware aspects of a computing system. From a
software perspective, this translates to the application of a programming policy
that avoids unpredictable or non-analysable behaviours of software tasks (e.g.,
unbounded loops) and to the use of techniques that guarantee that deadlines are
met when multiple tasks share a common resource (e.g., scheduling protocols).
From a hardware perspective, the main specification is time predictability of
the hardware architecture of a platform targeting real-time applications, which
must be developed in a way that allows and simplifies the analysis of the time
behaviour of the system.

Real-time systems are commonly used for those applications where a failure
to respond in time may lead to undesirable consequences. Depending on the
severity of these consequences with respect to the ability to respond in time,
real-time systems can be classified into the following three categories:

• Hard real-time: Failure to respond in time is not permitted since it can
lead to catastrophic consequences, such as loss of life, severe injury, or
significant economic loss. Common hard real-time application examples
include flight, train, and automotive control systems, medical devices, and
industrial control systems.

• Firm real-time: Failure to respond in time is allowed within certain
limits. If a deadline is missed, then the produced result cannot be used but
does not cause excessive problems. A firm real-time application example
can be found in assembly and production lines where a sporadic production
error can be tolerated.

• Soft real-time: Failure to respond in time is allowed within certain limits.
If a deadline is missed, then the produced result can still be used. However,
this may lead to a degradation of the computing performance of the
system. Common soft real-time application examples are audio/video signal
processing, quality-of-service management in packet-switched networks,
and gaming engines.

In this study, we provide solutions that can satisfy the specification of predictabil-
ity of hard real-time systems. For this reason, the proposed solutions can also
find application in soft and firm real-time systems.

20 Background

Possible execution times
Time

BCET

D
is
tr

ib
u
ti
o
n
 o

f

e
x
e
c
u
ti
o
n
 t

im
e

WCET

Pessimism

WCET

upper

bound

Figure 2.4: Example of a distribution of execution times of a software task. The
minimum possible execution time is the BCET, and the maximum
is the WCET. The timing-analysis produces an upper bound for
the WCET.

2.3.2 Timing-Analysis

In the general case, a real-time application consists of a set of software tasks
delivering the required functionality. Typically, the execution time of a task shows
a variation that depends on the input data or different operating environments.
Figure 2.4 shows an example of a distribution of execution times for a task and
defines related terminology. The WCET of a software task is the maximum time
interval that a task may take to execute on a specific hardware platform. The
minimum interval is called best-case execution time (BCET).

In real-time systems, it is the WCET of the tasks that determines the system
performance and its ability to respond in time. For realistic applications, it is
impossible to determine the exact WCET of a task, since the space of execution
times is too large to be exhaustively explored. Timing-analysis is used to
calculate or estimate a safe upper bound of the WCET. The difference between
the calculated safe upper bound and the real WCET is called pessimism, as
shown in Figure 2.4. The pessimism should be as low as possible and small
enough to be acceptable to the system designer.

The WCET of software tasks is dependent on the code structure, data inputs,
and targeted hardware architecture. There are two classes of methods used
for timing-analysis: measurement-based methods and static methods. In the
measurement-based methods, the entire task code or a segment of it is executed
on the target hardware or on simulators for a predetermined set of inputs from
which the execution time is measured. If the set of inputs coincides with all
possible inputs or if the set of inputs that trigger the WCET is known, then this
method provides precise WCET results. In real cases, the level of complexity of
the tasks to be analysed does not allow for testing all possible inputs, or the set
of inputs that trigger the WCET is not known. In these cases, the measurement

2.3 Real-Time Systems 21

can be performed using a subset of all possible input. However, this can only
produce an estimate of the WCET and not a safe upper bound. This estimate,
usually compensated with a safety margin, can still be used for soft and firm
real-time applications.

For hard real-time applications, where only a safe upper bound for the WCET
is acceptable, static methods or a combination of measurement-based methods
and static methods should be used. Static methods do not rely on the execution
of code on the target hardware or simulators. Instead, static methods use an
abstract model of the hardware architecture and perform an analysis of the
entire task code or segments of it to estimate a safe upper bound for the WCET.
Static analysis tools work on source code or disassembled binary executables
to extract a control flow graph that models the structure of a program. The
control flow graph is then combined with annotations provided by the user (e.g.,
loop iterations bound and input values interval) and with low-level information
regarding the hardware architecture on which the task will execute. The resulting
control flow graph is therefore analysed aiming to find the longest path, which
corresponds to an upper bound on the WCET of a task running on a given
hardware platform. A commercial example of a timing-analysis tool is the aiT
WCET Analyzer by AbsInt [37, 38]. The tool statically computes tight bounds
for the WCET by directly analysing binary executables and taking cache and
pipeline behaviour into account.

The extraction of low-level hardware information needed for the static analysis
and the determination of tight WCET bounds can be very difficult or even
infeasible for general-purpose architectures designed with the goal of improving
the average-case performance. These architectures typically include advanced
features such as, complex instruction pipelines, out-of-order execution, branch
prediction, and caches, which can make timing-analysis very complex and, thus,
increase the pessimism. For this reason, special architectures targeting real-time
applications have been developed with special focus on time-predictability and
reduction of the WCET and timing-analysis complexity. Examples include
the CarCore processor in the multi-core platform developed by the MERASA
project [20], the family of processors based on the PRET approach [39, 40], and
the T-CREST multi-core platform [21]. The latter is used in this work as a
prototyping platform and is presented in Section 2.4.

A possible approach to implement dependable real-time systems is to use a time-
triggered architecture (TTA) [41]. This approach is based on the assumption that
all the component of a system (e.g., the processing cores of a multi-core platform)
share a common knowledge of time. Thus, tasks can be executed according
to a pre-defined schedule leading to a deterministic and analysable timing-
behaviour, especially for multi-core platforms. Using common knowledge of time
to synchronise task execution and a static time-division multiplexing (TDM)

22 Background

schedule to share in time resources between multiple users (e.g., a communication
channel or a hardware accelerator) can be considered as an application of the
time-triggered approach. The work presented in this thesis with regards to the
reconfiguration of computation resources relies on the TDM approach to provide
guarantees on the communication channels provided by the NoC.

2.4 The T-CREST Platform

The T-CREST multi-core platform is used as a target platform for the in-
frastructure we developed to support reconfiguration. In this section, we
provide background on the platform and the associated timing-analysis tools.
Further background can be found in [21], and technical background is available
in [42].

2.4.1 Overview

T-CREST is a multi-core platform specially developed to be used in real-time
applications [21]. All components of the platform are designed with a focus on
time-predictability and reducing the complexity and pessimism of the WCET
analysis. Figure 2.5 shows a block diagram of T-CREST consisting of a number
of processing nodes and two NoCs: one is used for traffic between cores and the
shared external memory, and the other is used for message-passing traffic between
the nodes. The message-passing NoC is supplemented with reconfigurable features
in this work, and it is described in detail in Section 2.5. T-CREST is supported
by a C compiler [43] and WCET analysis tools [37, 44], which are described in the
following subsections. In this work, we use T-CREST as a bare-metal platform.
Applications are run in the platform without the support of an operating system
and, instead, dedicated C libraries are used to interact with low-level primitives
offered by the hardware.

2.4.2 Patmos Processor

A processing node of T-CREST includes the time-predictable processor Pat-
mos [22]. Patmos is a dual-issue, in-order, reduced instruction set computer
(RISC) processor especially optimised for reducing the WCET and simplifying
its analysis. For example, the architecture of the pipeline is organised in a
way that avoids timing dependencies between instructions. Figure 2.6 shows a

2.4 The T-CREST Platform 23

T-CREST platform

Processing
node

Message-passing NoC

Memory access NoC

Processing
node

Processing
node

Memory controller

Memory

Processing
node

Figure 2.5: Block diagram of the T-CREST multi-core platform.

block diagram of a processing node consisting of the Patmos processor, three
different caches, and a local scratch-pad memory (SPM). The communication
protocol used by Patmos for memory and I/O devices is a subset of the Open
Core Protocol (OCP) [45, 42].

Patmos is equipped with specialised instruction and data caches. The method
cache (M$ in Figure 2.6) acts as an instructions cache, and it is characterised
by the property of always storing entire functions (in C) [46]. In this way, it
ensures that a cache miss can only happen on a function call or return. The
compiler splits large functions into smaller ones to fit within the method cache.
The stack cache (S$ in Figure 2.6) stores the data stack [47]. At function entry
and return, the compiler inserts additional instruction to guarantee that the
stack is valid. In this way, it ensures there are not stack cache misses during a
function execution. Finally, the data cache (D$ in Figure 2.6) stores the data
heap and the statically allocated data.

Patmos is also equipped with a local data SPMs. An SPM is a relatively small
private memory coupled to a processor characterised by a single clock cycle
access-time. The SPM can be used to store access-time sensitive data structures,
and it also acts as data buffer for the message-passing NoC, as is further described
in Subsection 2.5.3.

24 Background

Processing node

M$

Patmos processor

D$ SPM

Instructions Data

S$

To memory
access NoC

To message-
passing NoC

Figure 2.6: Block diagram of a T-CREST processing node and its interfaces
to the two NoCs. The node contains the Patmos processor, the
method (M$), data (D$), and stack (S$) caches, and the local data
SPM.

2.4.3 Support Tools

T-CREST includes an LLVM-based C compiler [43], which supports the instruction-
set of Patmos and the special features associated with cache management. More-
over, it preserves the information available during the compilation process that
can be valuable for an automated and precise timing analysis. This includes the
control-flow structure, as well as user-flow fact annotations provided by the user
(e.g., loop iterations bound). This information is used as input to the WCET
analysis tools. In addition, the compiler can use the results produced by the
WCET analysis tools as feedback, to further optimise compilation aiming to
reduce the worst-case performance.

T-CREST is supported by the WCET analysis tool aiT [37, 38] from AbsInt
and by the Portable LLVM-based Annotation and Timing-Analysis Integration
tool or, in short, platin [44]. In this work, we use the platin tool to compute the
WCET of a software task running on the Patmos processor. Therefore, in the
following, we provide a brief description of the WCET analysis performed by
platin. A detailed description can be found in [44].

The platin tool is a comprehensive framework for WCET-aware compilation and
WCET analysis. Analogously to the compiler, platin offers dedicated support

2.4 The T-CREST Platform 25

for the specific architecture of Patmos (e.g., the method caching) and it allows
the derivation of tight WCET bounds using static methods. This means that to
estimate the WCET, platin only examines the software structure without code
execution on real hardware. The tool works at both the bit-code level, which
is the intermediate representation in LLVM, and at the machine code level. It
uses the information generated and preserved during the compilation process
to determine a control-flow graph annotated with flow facts. The control-flow
graph, combined with low-level timing information of the processor architecture,
is therefore analysed for the longest paths, which correspond to a safe upper
bound of the WCET of the analysed code segment.

2.4.4 Memory Access NoC

For code and larger data structures, external memory is used. All processors are
connected by a NoC to a memory controller and then to the shared external main
memory. For this NoC and memory controller, two time-predictable solutions
exist: the Bluetree [24] memory NoC with the memory controller presented in [48]
and the memory NoC presented in [25] with the memory controller presented
in [49] supporting synchronous dynamic random-access memory (SDRAM). In
this work, we use the latter solution, which is briefly described in the following.

The memory access NoC is a many-to-one NoC with channels toward the memory
controller and a return path for read data. Each processing core is connected
to a network interface (NI) offering the same interface provided by the memory
controller. The arbitration policy of the NoC is TDM-based. The NI of each core
executes a common TDM schedule which reserves a time slot for each processing
node. When the time slot for the core arrives, and a memory transaction is
pending, the NI immediately acknowledges the transaction to the processing
node. The transaction freely flows down the network tree reaching the memory
controller. For read transactions, the read data is sent back to all the NIs, which
filter the data targeting other cores using transaction timing information.

The TDM-based approach, combined with a memory controller that guarantees
static latency for a memory transaction, allows for easy computation of the
worst-case memory timing for the processing nodes. The worst-case memory
timing includes the maximum waiting time for the time slot assigned to a specific
node, the static time needed for a memory transaction, the latency needed by
the data to travel back to the NI for read transactions, and, if needed, the time
needed by the SDRAM periodic refresh. The latter can be modelled as a periodic
additional time slot in the TDM-schedule.

26 Background

2.5 Argo Message-Passing NoC

The Argo NoC supports message-passing for inter-processor communication in
the T-CREST platform. Message-passing consists of moving data from the local
memory of a sender processor into the local memory of a recipient processor.
This is an efficient way to implement communication between the platform nodes
without using shared data structures stored in main memory. In this work, we
supplement the Argo NoC with reconfiguration capabilities. Therefore, in the
following, we provide an extensive background regarding its functionality and
architecture. Further background can be found in [23, 50].

2.5.1 Overview

Argo is a packet-switched and source-routed NoC that uses TDM to statically
allocate the network resources to provide VCs characterised by guaranteed
communication bandwidth and latency. The Argo NoC offers primitives for
moving a block of data from the local memory of a processing node into the
local memory of a remote node. This is implemented using direct memory
access (DMA) controllers. A dedicated DMA is assigned to the source-end of
every virtual circuit (VC) and manages the data transfer. In Argo, the DMA
controllers are integrated with the TDM mechanism in the NI [51], which is a
very efficient architecture, since it avoids resources for arbitration, buffering, and
flow control commonly found in most NoCs. Message-passing between tasks is
performed at a higher level in software using the primitives provided by the Argo
NoC [52].

The Argo NoC is composed of the packet-switched structure and the NIs. The
packet switched structure of the NoC consists of the routers and the links between
them. The NIs interface the packed-switched structure with the processing nodes
and manage the transmission and reception of packets to and from the packed-
switched structure.

Argo can support custom network topologies depending on how the routers
are connected in the packet-switched structure. Moreover, the packet-switched
structure is available in both globally-synchronous and asynchronous versions.
The latter supports a globally-asynchronous/locally-synchronous implementation
and uses asynchronous routers and mesochronously clocked NIs. This enables
different forms of relaxed synchrony across the entire platform without the use
of synchronisation FIFO queues, such as the ability to tolerate skew in both the
clock and the reset signal between NIs. More details can be found in [53, 54].

2.5 Argo Message-Passing NoC 27

RouteDestination address

015163132

Header flit

3334

32-bit payload data

32-bit payload dataPayload flit

Payload flit

ehv

ehv

ehv

Figure 2.7: Packet structure used in the Argo NoC consisting of a header flit
and two 32-bit payload flits.

In this work, we utilise the globally-synchronous version of the packet-switched
structure in a bi-torus topology.

2.5.2 TDM-Schedule

The NoC uses TDM-based static routing to share the resources of the packet-
switched structure between multiple VCs. The time is divided into periods of
constant length, which are subdivided into time slots and statically assigned to
VCs.

The scheduler is an offline software tool based on time-expanded graphs and
meta-heuristic methods [55]. It uses the bandwidth requirements for the VCs and
a description of the NoC topology to generate a schedule that avoids deadlocks,
collisions and ensures in-order arrival of packets. The generated schedule and
the related predefined routes are stored in the NIs. These inject packets into the
packet-switched structure in the time slots as indicated by the schedule. Static
scheduling is time predictable since the waiting time to access a time slot can be
bounded offline.

In Argo, a NoC packet carries a 64-bit payload. A packet is divided into three flits
of 35 bits, as shown in Figure 2.7. The flits are injected in the packet-switched
structure one after the other; thus, a time slot corresponds to three clock cycles.
The first flit is the header and contains the 16-bit destination address and the
16-bit route. The other two flits contain the 32-bit payloads. The destination
address specifies which location of the local memory of the recipient node the
data should be written to. Each flit also contains three control bits that specify
a valid flit (v), the header flit (h), and the last flit (e). These bits are used by
the packet-switched structure and the recipient NIs.

Figure 2.8 shows a 2-by-2 platform along with an example of a TDM schedule for
the NoC traffic from the processing node P0 towards the other nodes. The VCs
c1, c2, and c3 implement the communication channels between the processing

28 Background

P2

P1

P3

P0

N
I

R

N
I

R

N
I

R

N
I

R

TDM period (15 cycles)

c1 c2 c3

Time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

H P H HP P P P P

0 1 2

c1

H P P

TDM schedule for processing node P0

c1

c 2 c 3

Figure 2.8: An example of a TDM schedule for processing node P0 towards
the other nodes the platform. The route of the VCs c1, c2, and c3
are shown in the 2-by-2 section of the platform with a dotted line.

node P0 and nodes P1, P2, and P3, respectively. The route of these VCs through
the NoC is shown in Figure 2.8 with dotted lines. The schedule has a period of
15 clock cycles, and each of the VCs is assigned three clock cycles (a time slot),
one for the header and two for the payload flits. The NI of P0 injects packets to
the switched-structure only in the assigned time slots.

The maximum latency needed for sending a message consisting of multiple
packets has two contributions: the time interval needed to send the message
itself, which depends on the available VC bandwidth, and the maximum waiting
time for the first time slot assigned to a specific VC. The typical length of a TDM
schedule of Argo is 10-100 clock cycles [55], which is considerably shorter than
the execution time of the intercommunicating tasks running on the processing
nodes. Moreover, the data moved in a single NoC packet is in general smaller
than a typical message size. In other words, the scheduler does not schedule for
entire messages between tasks, but for small and frequent packets. Due to the
fine granularity of the schedule, the waiting time is negligible with respect to
the sending time of the entire message. This leads to efficient utilisation of the
allocated bandwidth for both periodic and aperiodic tasks.

2.5.3 NoC Architecture

Router

The router used in Argo is a pipelined crossbar that routes incoming packets
according to the routing information contained in the packet itself. As previously

2.5 Argo Message-Passing NoC 29

Crossbar

O
u
tp

u
t

p
o
rt

s

Link
Stage

Header Parsing Unit
Stage

Crossbar
Stage

HPUR

HPUR

HPUR

R

R

R

R

R

R

In
p
u
t

p
o
rt

s

Figure 2.9: A block diagram of the synchronous version of the router used in
Argo. The same router is also used in the new version of the NoC
presented in Chapter 6.

mentioned, Argo supports both synchronous and asynchronous implementations
of the router [56]. In this work, we use the synchronous version.

The implementation of the synchronous router is shown in Figure 2.9 and it
consists of three pipeline stages: link, header parsing unit (‘HPU’ in the figure),
and crossbar. The header parsing unit reads the header flit of an incoming packet
and, depending on the route field (see Figure 2.7), the packet is properly routed
to the output port in the crossbar stage. The control bits in each flit are used
by the router to identify the header flit and to keep the crossbar stable until the
last flit of a packet has traversed the router.

Network Interface

Figure 2.10 shows a block diagram of the NI and its connection with a processor
and with a router [51]. The NI accesses a dual-port SPM. The other port of
the SPM is connected to the processor, as shown in Figure 2.6. Moreover, the
processor is also directly connected to the NI through the configuration interface,
which is used for the initial NI configuration (i.e. loading the static schedule at
boot-time) and to set up the DMAs in order to manage the transfer of blocks of
data stored in the SPM. The SPM is mapped in the local address space of the
processor, which sees it as a regular data SPM.

30 Background

R

Flits out Flits in

A
d
d
ress

D
a
ta

To processor

DMA table

Word count Write ptr. Read ptr.Route

Network interface

A
d
d
ress

D
a
ta

M

Config. if.

TDM-slot
counter

Schedule
table

S S

To processor SPM

Data if.

WR

+1 +1-1

Figure 2.10: A block diagram of the NI used in the Argo NoC and its connec-
tion with a processing node (at the top) and with the switched-
structure (at the bottom).

As previously mentioned, the NI of Argo stores the schedule and integrates the
DMAs that manage the transfer of a block of data from the data SPM of a
processing node into the data SPM of a remote node. In the following, we explain
the functionality of the NI with reference to Figure 2.10. Each NI contains a
TDM slot counter that operates synchronously between all NIs and wraps around
at the end of the TDM period. The TDM slot counter indexes the schedule table,
which contains the schedule information with one entry per time slot. Every
entry specifies which DMA is enabled to send in each time slot according to the
schedule. Only one DMA controller can be active at any given time. Entries in
the schedule table can be marked as not valid if the NI is not allowed to send in
a certain time slot. A DMA is represented by an entry in the DMA table, which
holds the route that a packet should follow through the network, the word count,
the write pointer into the destination SPM, and the read pointer into the local
SPM. The enabled DMA controller reads the payload data of a packet from the
local SPM and assembles the outgoing packet containing the route, the write

2.5 Argo Message-Passing NoC 31

pointer, and the payload data. The three flits of a packet are then injected in the
packet-switched structure one after the other. The word counter is decremented,
and the write and read pointers are incremented every time a packet is sent.
When a packet is received by the NI, the payload is directly written into the
SPM at the destination address specified in the packet header.

A contribution of this work is the extension of the Argo NoC with run-time
reconfiguration capabilities. Specifically, we develop a new NI that enables to
instantaneously switch between different TDM schedules. The NoC architecture
using this new NI is named Argo 2, and it is described in Chapter 6.

32 Background

Chapter 3

Related Work

This chapter reviews related work in two main research areas: reconfiguration
of computation resources and reconfiguration of communication resources. For
the first research area, we present system and application level methods and
tools supporting the use of DPR, as well as a selection of hardware controllers
supporting DPR through the Xilinx ICAP interface. For the second research
area, we present a selection of NoCs, which are based on flow control or TDM
approaches, offer guaranteed service (GS) communication and support run-time
GS reconfiguration. In addition to the coverage of the two main research areas,
we also include works with regards to other topics that relate to this thesis,
such as task mapping and computation of NoC configurations and a real-time
platform supporting multiple use-cases and reconfiguration.

3.1 Reconfiguration of Computation Resources

This section is dedicated to related work regarding the reconfiguration of com-
putation resources. To our knowledge, the use of DPR in real-time systems
represents a relatively novel field of research and published works mainly address
reconfiguration from a general-purpose perspective. For this reason, in the follow-
ing, we discuss both works that address and introduce DPR in general-purpose
systems and works with a specific focus on real-time systems.

34 Related Work

3.1.1 Methods and Tools

Comprehensive surveys of the most relevant hardware aspects and an overview
of the state-of-the-art with regards to reconfigurable computing can be found
in [57] and [8]. These surveys explore the challenges involved in the design of
reconfigurable hardware, addressing both single-chip and multi-chip architectures.
In addition, particular focus is given to the problems regarding coupling between
static and reconfigurable hardware and to the characteristics of the software that
targets reconfigurable machines. This also includes compilation tools that map
high-level algorithms directly to the reconfigurable fabric.

In the academic literature, it is possible to identify several frameworks that
support run-time reconfiguration. These frameworks are complete top-to-bottom
solutions offering compile-time tools for scheduling, analysis, and simulation,
given a certain hardware and software characterisation of the system. In the
following, we present a selection of these frameworks.

In the PhD thesis presented in [58], the author studies the dynamic behaviour, the
run-time management strategies and the design methodologies of reconfigurable
architectures, also focusing on the use of DPR. The work proposes a simula-
tion framework for reconfigurable architectures that comprises an application
model and an architecture model. The generic application model captures the
behaviour of a software application using reconfiguration, and the architecture
model captures the behaviour of the hardware supporting reconfiguration. The
combination of these two models is used to describe the full dynamic behaviour
of the reconfigurable architectures and to enable simulation of this kind of sys-
tem. The main focus of this work is not on low-level time-predictability, but on
performance and modelling.

Another relevant framework is the one presented in [59], called ReCoBus-Builder.
The main idea is to use DPR to generate dynamically reconfigurable systems
providing one or more run-time reconfigurable areas and using a fixed bus
infrastructure or dedicated point-to-point links for the communication between
the reconfigurable resources and other parts of the system. The framework
addresses component-based reconfigurable architectures for general-purpose
systems. Therefore, strict timing constraints are not taken into account, and
performance is measured in terms of the average case speed-up.

The work presented in [60] proposes a software framework, called FRED, that
exploits hardware accelerators in combination with DPR in the development
of safety-critical real-time application on a hardware platform that includes a
processor and an FPGA. The authors present a model of the platform and of
the computational tasks where sections of the workload of tasks are acceler-

3.1 Reconfiguration of Computation Resources 35

ated using reconfigurable hardware. Using this model, the authors propose a
scheduling infrastructure supporting response-time analysis and verification of
the schedulability of a real-time task set under given constraints and assumptions.
In contrast to this modelling and scheduling work, our work is more focused on
providing efficient hardware/software solutions, low-level timing-analysis and
practical design experiments.

The work presented in [61, 62] proposes the RAMPSoC multi-processor SoC and
approach. RAMPSoC is a run-time adaptive multi-core system that uses DPR
to reconfigure at run-time the processors, the communication infrastructure,
the instruction set of the processors, and the hardware accelerators in order
to better meet performance, area, and power constraints. The RAMPSoC
approach also includes a software toolchain of custom and commercial tools that
provide support for the entire design flow including application partitioning,
profiling, and hardware and bit-stream generation. RAMPSoC is supported by
a dedicated real-time operating system, called CAP-OS [63], which manages the
task scheduling, the resource allocation and the reconfiguration process.

From a system-level perspective, the software/software and hardware/software
partitioning as well as the scheduling of tasks are the most relevant topic related
to reconfigurable architecture. The work presented in [64] provides an overview
of the hardware/software partitioning, scheduling, and placement issues. It
proposes an exact approach and a heuristic approach for hardware/software
partitioning in a system that uses DPR. The paper shows that taking into account
key factors, such as placement implications and configuration pre-fetching, leads
to a reduction of the tasks schedule length.

Another work presenting methodologies and tools for both software/software and
hardware/software partitioning is presented in [65]. In this work, the authors use
a custom library to generate the call graph for the application tasks (functions)
and perform the software/software partitioning taking into account the inter-
tasks communication requirements. In addition, a specific tool is used to profile
the code in order to identify computationally-intensive sections that can be
accelerated using reconfigurable hardware.

In [66], the authors present the PaRA-Sched automated design methodology for
task scheduling in reconfigurable systems. This methodology takes into account
DPR in the scheduling infrastructure to improve overall performance, attempting
to automatically mask reconfiguration time when possible. This allows rapid
exploration of the impact of the DPR use during early stages of the design
process.

As previously mentioned, the software applications using the reconfigurable
features presented in this thesis are executed bare-metal on the T-CREST

36 Related Work

platform. Specialised C libraries are therefore used to interact with these features.
Nevertheless, operating systems supporting reconfiguration are an active topic
of research. An example is the CAP-OS operating system [63] supporting the
RAMPSoC platform presented above.

Another example is the RECONOS operating system presented in [67], which
extends the multi-threading programming model to support hardware threads
also defining a standardised interface between them and the operating system.
RECONOS introduces the concept of delegate thread, which is a lightweight
software thread characterising and interfacing a reconfigurable hardware thread
implemented on an FPGA.

An earlier work on operating systems that also includes methods addressing
the topology of the reconfigurable area is presented in [68]. The work proposes
a heuristic algorithm for run-time scheduling of real-time tasks implemented
in hardware and reconfigured using DPR. The scheduling algorithm takes into
account topological constraints with regards to the placement of reconfigurable
modules. In other words, the task scheduling is executed both in time and in
space (e.g., applying policies to reduce the fragmentation of the reconfigurable
area). Solutions are provided considering both one degree of freedom in placing
hardware tasks in the configurable region (1-dimension model) and two degrees
of freedom (2-dimensions model).

3.1.2 Reconfiguration Controllers

The design of a hardware/software infrastructure to support time-predictable
reconfiguration of the computation resources is one of the contributions of this
thesis. This infrastructure is based on our time-predictable DPR controller
RT-ICAP, presented in Section 5.2. In the following, we present a selection of
DPR controllers from industry or developed in the academic environment. These
controllers are used for comparisons with our controller in Subsection 7.1.1.

The XPS HWICAP reconfiguration controller [69], provided by Xilinx, is an
IP core that provides the support for DPR using a set of software functions
offered in processor-specific libraries and it is designed to be connected to the
processor local bus [70]. The AXI HWICAP controller [71] by Xilinx delivers
the same functionality as the XPS HWICAP controller, but it can be interfaced
to the AXI4-Lite bus [72]. The associated software library allows an application
programmer to write and read configuration bit-streams, and it enables the
modification of single look-up tables and flip-flop properties.

3.1 Reconfiguration of Computation Resources 37

Other reconfiguration controllers managed by the software running on a processor
are presented in [73]. The work presents and investigates the performance of
three controller architectures, named MST HWICAP, DMA HWICAP, and
BRAM HWICAP, strongly inspired by the Xilinx XPS HWICAP controller, and
therefore very similar in terms of functionality.

The ZyCAP controller [74] is a custom controller for hybrid SoCs, such as the
Xilinx Zynq. The ZyCAP controller is connected to the hardcore processor
through the AXI4-Lite bus and to the system memory where the bit-streams
are stored through the AXI4 bus [72]. A DMA controller loads the bit-stream
during reconfiguration using the ICAP interface. Software drivers are associated
with the controller and allow the hard processor to manage the reconfiguration
process.

The work presented in [75] proposes an approach where the ICAP interface is
integrated into the datapath of a processor, enabling it to directly access the
FPGA configuration memory. A minimal finite-state machine (FSM) is used
to manage the low-level communication with the processor and to handle the
interfacing with the ICAP.

For all the controllers and solutions mentioned above, most of the functionality
is provided by software executing on a processor that reads from or writes to the
controller interface. These frequent accesses to the controller through the system
bus affect the reconfiguration speed and may increase the WCET pessimism, since
I/O functions may be difficult to analyse. Moreover, for the Xilinx controllers,
only the netlists are available, making the WCET analysis very complicated or
even impossible. In our solution, we aim to minimise the interaction between
the processor and the DPR controller to increase time-predictability.

Another class of controllers perform reconfiguration without the assistance of
a processor, somewhat similar to a DMA controller. The PRC controller [76],
provided by Xilinx, is an IP core designed to independently manage DPR in
reconfigurable designs targeting the Xilinx 7 series FPGAs. The controller is
interfaced to a processor through the AXI4-Lite bus [72]. When it receives a
software or hardware trigger, it can independently manage the reconfiguration
of multiple regions by reading bit-streams from a memory connected to the
AXI4-Lite bus and writing these into the ICAP interface. Also for this Xilinx
controller, only the netlist is available.

The DPRM controller presented in [77] and the ICAP-I controller presented in [78]
offer similar functionality for Xilinx Virtex-5 and Virtex-4 FPGAs, respectively.
The DPRM controller supports only bit-stream transfers from off-chip flash
memories into the FPGA configuration memory, while the ICAP-I controller also
supports the transfer of bit-streams stored in on-chip BRAMs. The authors use

38 Related Work

an FSM to transfer the partial bit-streams stored in on-chip BRAMs or off-chip
flash memories into the FPGA configuration memory. The architecture of these
two controllers and the BRAM HWICAP are the ones that most resemble the
architecture of our RT-ICAP controller.

The D2PR controller presented in [79] is an example of a minimal custom DPR
controller connected to the ICAP interface. The controller can be configured to
include circuitry for error detection and correction on the bit-streams, aiming
to improve safety and reliability of DPR. Our controller relies on the default
checksum-based bit-stream checking already supported by Xilinx FPGAs.

Some controllers offer fine-grain reconfiguration of individual LUTs, which can
be exploited to reduce the number of needed pre-computed bit-streams. The
controller still needs to write a bit-stream into the FPGA, but it only needs
to modify specific fields of the bit-stream to reconfigure the Boolean function
performed by a particular LUT. This approach is vendor-specific and device-
specific since the structure of the bit-stream varies depending on the FPGA
model. Moreover, the FPGA vendors do not release official information regarding
the structure of the bit-streams, and a certain level of uncertainty is always
included when this kind of approach is used. An example is a high-speed ICAP
controller, named AC ICAP, presented in [80]. It is entirely implemented in
hardware and supports the reading and writing of full bit-streams and the
modification of individual LUTs for Virtex-5 and Kintex-7 FPGAs. An earlier
work that implements the reconfiguration of LUTs is the ICAP controller for
Virtex-II FPGAs presented in [81].

3.2 Reconfiguration of Communication
Resources

This section reviews related work regarding the reconfiguration of the commu-
nication resources. In this thesis, we present a NoC that offers GS in terms of
bandwidth and latency for end-to-end communication flows and that supports
run-time reconfiguration of the provided GS. Therefore, in the following, we
present a selection of NoCs based on flow control or TDM that support GS
traffic and run-time reconfiguration.

3.2 Reconfiguration of Communication Resources 39

3.2.1 NoCs Based on Flow Control

One possible approach to provide GS connections is to use non-blocking routers
in combination with mechanisms that constrain packet injection rates (flow
control). This class of NoCs is reconfigured simply by changing at run-time the
parameters that regulate the packet injection rates to the new requirements.

The NoC used in the Kalray MPPA-256 processor uses flow regulation [82], output-
buffered routers with round-robin arbitration, and no flow control. Network
calculus [83] is used to calculate the injection rate parameters, such that buffer
overflows are avoided and GS requirements are fulfilled. Reconfiguration is
performed by modifying the routing tables and injection rate parameters in the
NIs.

The IDAMC NoC presented in [84] is a source-routed NoC that uses a combination
of credit-based flow control and virtual channel input buffers to provide GS by
implementing the back-suction scheme [85]. The idea is to properly manage the
priority of non-critical traffic to allow the critical traffic to meet the deadline in
term of latency.

Another example is the Mango NoC presented in [86], which also uses non-
blocking routers and flow regulation. Each end-to-end connection is allocated to
a unique buffer in the output port of every router in the path of the connection,
while links are shared between different virtual channels. The buffers are managed
using credit-based flow control between them. The bandwidth and latency of
the different connections are configured by setting priorities in the output port
arbiters of each router and by setting the injection rate at the source NI. Due
to its structure, the reconfiguration of the Mango NoC directly interacts with
the rate-control mechanism in the NIs, and the crossbars and the arbiters
in the routers. Moreover, since the crossbars and the arbiters in the routers
are configured using best-effort traffic, the time-predictability of performing a
reconfiguration may be affected.

To our knowledge, detailed descriptions on how reconfiguration is handled in
Kalray, Mango and IDAMC have not been published. However, we can assume
that during reconfiguration, the set up of a new connection must involve the
modification of flow regulation parameters and the tearing down an existing
connection must involve draining in-flight packets from the buffers in the end-to-
end connection path.

The work presented in [87] proposes the concept of using a centralised NoC
manager with the scope of searching and allocating the routes to support GS
traffic between two nodes. The NoC manager is implemented in hardware,

40 Related Work

and it bases its search functionality on the HAGAR approach [88] for graph
exploration. The core manager, which manages the execution of real-time tasks,
co-operates with the NoC manager and requires the allocation of the needed
communication channels. The GS channel search process is executed in a time
interval proportional to the length of the found path. In the worst case, the
search may not succeed leading to aborting the related real-time tasks and
compromising the predictability of the systems.

3.2.2 NoCs Based on TDM

An alternative to the flow-regulation approach is the use of VC switching
implemented using static scheduling and TDM. Major examples are the Æthereal
family of NoCs [89, 90] and the original Argo NoC [23, 50]. In this thesis, we
extend the latter with run-time reconfiguration capabilities, as presented in
Chapter 6. These TDM-based NoCs are configured by initialising schedule tables
and routing tables in the NIs and/or in the routers.

The original Æthereal NoC [91] supports both GS and best-effort traffic. The
scheduling and routing tables are stored in the NIs and in the routers. Reconfig-
uration is supported by changing the content of these tables using best-effort
packets. This approach is analogous to the Mango NoC one, where the time-
predictability of a reconfiguration is compromised since best-effort traffic is used.
The dAElite NoC [90], which focuses on multicast, overcomes this problem by
introducing a separate dedicated NoC with a tree topology for the distribution
of the schedule and routing information during run-time reconfiguration.

The aelite NoC [92, 89] only supports GS traffic and it is based on source routing.
Therefore, the routers are simple pipelined switches, and both schedule tables
and routing tables are in the NIs. For aelite, reconfiguration involves sending
messages across the NoC itself using GS connections from a reconfiguration
master to the schedule and routing tables that are required to change. These
GS connections are reserved for this purpose only.

It must be noted that for all the presented cases, reconfiguration is done in-
crementally. This implies that VCs that persist across the reconfiguration
cannot be re-mapped, which can lead to fragmentation and sub-optimal use
of resources. Moreover, if re-mapping of VCs is needed, the entire application
must be suspended during the reconfiguration. Our solution supports instan-
taneous reconfiguration, including re-mapping of the VCs that persist between
configurations.

3.2 Reconfiguration of Communication Resources 41

The NoC reconfiguration features of the Æthereal NoC are supported and
abstracted by the Æthereal Run-Time library [93]. This library offers a set of
function for controlling the reconfiguration process, also addressing the problem
of leaving the system in a state from which operation can continue after the
reconfiguration. The same principles presented in this work for the Æthereal
NoC can be applied to other NoCs supporting run-time reconfiguration.

The Nostrum [94] NoC supports GS and best-effort traffic. The GS traffic
is supported by loading information in a container that continuously loops
between the source and the destination node. Thus, a VC corresponds to a set of
predefined containers looping between two nodes. The TDM period is implicitly
related to the number of containers in a VC and to the length of the loop. The
Nostrum NoC allows some form of reconfiguration of the GS VCs. The route is
determined at design-time, and it cannot be changed during operation, but the
bandwidth can be varied at run-time by modifying the numbers of containers
used by a VC. To reduce bandwidth, containers can be removed from the loop. To
increase bandwidth, containers can be inserted to increase bandwidth. However,
the time interval needed to insert a container cannot be guaranteed since the
new container does not have guaranteed access to the network.

The TTNoC presented in [95] supports the transmission of periodic time-triggered
messages between nodes. The period and the phase of the messages are defined
and set at boot-time. The NoC supports run-time reconfiguration since the
schedule can be updated by the trusted network authority component of the NoC
to adapt the offered bandwidths. The update of the schedule must be performed
in several steps and following the correct order of disabling and enabling the
receiving and the transmitting nodes in order not to disturb the time slots not
affected by the reconfiguration.

A more recent TTNoC that supports time-triggered traffic is the one presented
in [96]. For this NoC, a detailed description of how the reconfiguration is
performed is not provided. However, we can assume that the reconfiguration
should be carried out by a trusted network authority component in a similar
way to the TTNoC presented above.

The original version of the Argo NoC [23, 50], already presented in Section 2.5,
has some functional similarity with the aelite NoC: it only supports GS traffic
and it also uses a TDM router with source routing. The original Argo NoC uses
an efficient NI [51] in which the DMA controllers are integrated with the TDM
scheduling, avoiding VC buffers and the credit-based flow control, which account
for most of the area of the NIs of the Æthereal, aelite, and dAElite NoCs. The
original Argo NoC does not support reconfiguration. A preliminary solution
for supplementing the Argo NoC with reconfiguration capabilities was studied
and implemented in the work presented in [97], where a dedicated asynchronous

42 Related Work

tree network is used to broadcast the new TDM schedule and the commands to
trigger the reconfiguration. Essentially, the extension of the Argo NoC presented
in this thesis implements the same functionality, but using the NoC itself for
schedule and commands distribution.

The scientific literature also includes more abstract/theoretical approaches to-
wards modelling reconfigurable NoCs. An example of this is the mathematical
framework developed in [98], where the authors develop a model for the dynamic
behaviour of reconfigurable NoCs and use it to formulate NoC reconfiguration
as a dynamic optimisation problem. In our work, we mainly focus on the NoC
hardware architecture and implementation and on the low-level functionality
and timing analysis.

3.3 Other Related Topics

This section collects the works with regards to other topics that relate to this
thesis, such as task mapping and computation of NoC configurations and a
real-time platform supporting multiple use-cases and reconfiguration.

Subsection 3.1.1 reviewed some related work addressing methodologies and tools
for software/software and hardware/software partitioning. Once an application
is partitioned in software and hardware tasks depending on the computation
workload and the other parameters driving the partitioning algorithms, the
mapping of this tasks to the processing nodes of the multi-core platform is
executed. The T-CREST platform is not supported by a tool for automatically
mapping tasks to the cores. However, solutions have been developed for specific
applications. For example, in the audio DSP application presented in paper
[C3] in our list of publications and used as case study in Section 7.3, a set of
multiple audio effects are mapped to the cores of the T-CREST platform by a
specialised software tool at compile-time. This tool receives in input the required
chain of effect and the WCET of each effect, and performs the mapping of the
effects to the cores aiming to maximise the utilisation of each processor without
exceeding the audio sampling period (multiple effects can be mapped to the
same processor). Then, the tool produces the GS communication requirements
for the inter-processors message-passing NoC.

The work presented in [99] proposes a mapping/resource management method for
NoC-based platforms containing reconfigurable processing elements implemented
on an FPGA. The algorithm receives as input the application specification (task
graph), the user requirements, and the current resource utilisation of the platform.
Then, it uses heuristics to map tasks to the best fitting processing element of

3.3 Other Related Topics 43

the platform. The mapping is executed at run-time, and task migration is also
supported.

Another work that describes a run-time mapping technique is presented in [100].
This work uses a minimisation algorithm to map at a set of tasks to a set
of processor aiming to reduce the total amount of energy consumption to the
minimum, without compromising the quality-of-service provided by the mapped
application.

The work presented in [101] extends the heuristic mapping algorithm presented
in [102] to be used for multiple use-cases. A use-case is defined as a set of
applications that run on the platform at the same time. Assuming that all the
use-cases use the same NoC configuration, the work proposes the construction
of a synthetic worst-case use-case from the provided use-cases on which the
mapping algorithms is applied. Thus, satisfying the requirements of the single
use-cases. The paper also explores the possibility of reconfiguring the NoC and
using voltage and frequency scaling during the switch between use-cases to adapt
the services provided by the NoC to the current use-case.

The work presented in [103] addresses the problem of mapping multiple use-cases
and generating NoC configurations without the use of a synthetic worst-case use-
case. The work proposes a heuristic method that takes into account the possible
use-cases and the transitions between them to generate NoC configurations. The
transition between these configurations is achieved by removing and adding
virtual communication channels by modifying the TDM schedule of the NoC
during a transition between use cases without disrupting the services provided by
the NoC. The possibility of partially modifying the guaranteed services provided
by the NoC by modifying the TDM schedule must be supported by the NoC
architecture.

A complete NoC-based multi-core platform supporting multiple use-cases real-
time applications and reconfiguration is CompSOC [104, 105]. The CompSOC
platform consists of a set of computing tiles interconnected with the one of the
reconfigurable NoCs Æthereal, dAElite, and aelite presented in the previous
subsection. A computing tile includes a processor, local memories, and DMA
controllers. CompSOC is supported by a tool-chain for the generation of the
hardware platform, including the NoC and the controller/arbiter for main memory.
In addition, tools for automatic mapping of cyclo-static data-flow applications
to the platform, DRAM power estimation, and WCET and ACET analysis for
real-time memories are also provided. Application based on other models of
computations, such as time-triggered, are also supported.

The CompSOC platform and design flow offer composability (complete absence of
any interference) and time-predictability. Composability is achieved by offering

44 Related Work

a virtual execution platform per application (or use-case), which is equivalent
to offer independent design, verification, and execution isolation. Due to the
isolation offered by the visualisation, different applications can be started and
stopped at run-time without affecting other ones, and different applications
can use different models of computation. Time-predictability is achieved by
ensuring that each virtual platform is characterised by well-defined timing
properties. TDM-based policies are widely used in the CompSOC platform
to obtain both composability and time-predictability (e.g., there is not cross-
application interference when the access to a certain resource is scheduled and
the worst-case access time is bounded).

In CompSOC, run-time reconfiguration is achieved by using software-
programmable hardware components (i.e. components that can be configured via
software such as the processors and the NoC) and by allocating enough resources
to support the addition of an application without affecting the ones already
running. In our approach for the reconfiguration of the communication resources,
we also use software-programmable hardware components since the extension
to the Argo NoC presented in this work allows the NoC to be reconfigured via
software. However, for the reconfiguration of computation resource, DPR is used
to reconfigure the resources that belong to a different use-case. This could lead
to a reduction of the hardware cost with respect to the CompSOC since not all
the resources (or a subset of them) need to be implemented simultaneously. For
the CompSOC platform, the problem of time-predictable reconfiguration of tasks
at run-time has been addresses also from a software perspective. For example,
the work presented in [106] proposes a software architecture that allows to man-
age multi-core partitions and offers composable and time-predictable dynamic
loading of applications. In contrast, our work mainly addresses the hardware
architecture supporting the reconfiguration, with only small contributions from
the software perspective.

Chapter 4

Approach to Reconfiguration

This chapter introduces our approach to reconfiguration of both computation
and communication resources. At first, we present our approach for supporting
reconfiguration in multi-core real-time systems. This is followed by an explanation
of how GS requirements can be extracted from applications with multiple modes
of operation and by a description of how the reconfiguration process can be
modelled at task-level. Finally, we list a set of expected outcomes and evaluation
metrics deriving from the use of reconfiguration according to the proposed
approach. The approach and the techniques presented in this chapter were in
part published in the papers [J1], [J3], and [C6] in our list of publications.

4.1 Definition of Communication and Computa-
tion Resources

Multi-core platforms can be modelled as a set of computing nodes (the cores)
and one or more communication fabrics connecting the nodes to each other, as
well as to main memory. In the scope of this thesis, we refer to the hardware
infrastructure that implements the computing nodes as computation resources
and to the hardware infrastructure that implements the communication fabric
as communication resources. More specifically, a computation resource can

46 Approach to Reconfiguration

be defined as a hardware infrastructure that provides computation primitives
used for execution of tasks. Similarly, a communication resource can be defined
as a hardware infrastructure that provides communication primitives used to
exchange data between tasks or between a task and main memory. Examples of
computation resources are processors, co-processors, and hardware accelerators.
Examples of communication resources are NoCs and buses.

As previously mentioned, in real-time systems, the WCET of the software tasks
of an application determines its ability to respond in time. Therefore, a platform
that supports real-time applications must provide GS for both computation
and communication resources. This translate into design specifications for the
functionalities offered by the hardware infrastructure. For example, computation
resources must provide guarantees on the execution time of the operations
performed by the hardware (e.g., an upper bound to the WCET of a task
running on a hardware accelerator). Communication resources must provide
guarantees on the latency and the bandwidth of end-to-end communication
channels. In the case of the Argo NoC, these are the VCs.

In this thesis, we extend a multi-core platform targeting real-time systems with
run-time reconfiguration capabilities. Therefore, also the reconfiguration process
itself, which can be considered as a hardware primitive offered by the platform,
must be performed in a time-predictable manner. In other words, a platform
that supports reconfiguration to be used as part of an application must provide
GS reconfiguration capabilities. This is equivalent to guaranteeing that the time
interval needed to perform a reconfiguration has a static upper bound.

4.2 Reconfiguration at Mode Changes

Real-time applications often have multiple modes of operations (sometimes
referred to as use-cases) [107]. In a multi-core platform, a mode of operation is
defined as a set of tasks running on a set of processors and communicating across
a set of channels provided by the communication fabric. A mode change is defined
as a change in the subset of the executing tasks during normal operation of the
system or in response to an external event [108, p.340]. A mode change happening
during normal operation of the system is triggered at a well-defined moment
in the application execution, while a mode change occurring in response to an
external event is triggered to adapt the system behaviour to new environment
conditions.

A simplified, but very clear, example of mode changes can be found in the control
system of an aeroplane going through three phases: take-off, cruise, and landing.

4.2 Reconfiguration at Mode Changes 47

Each phase has a well-defined set of tasks to manage the aeroplane functionality.
These sets of tasks constitute the modes of operation. Normal operation mode
changes happen in the transitions between take-off and cruise and between cruise
and landing. A mode change in response to an external event can happen, for
instance, if an alarm requires the execution of a set of tasks to manage the
specific situation that triggered the alarm.

Since each mode of operation consists of as a set of communicating tasks running
on a set of processors, different modes may have different GS requirements
for computation and communication resources. A single configuration of the
hardware platform may be unable to support the requirements of a given real-
time application or, in the general case, the hardware platform would include
resources used only for a limited period of time during the execution of a specific
mode. Therefore, the proposed approach is to associate reconfiguration to a
mode change. More specifically, we suggest exploiting run-time reconfiguration
during a mode change to adapt the GS provided by the hardware platform to
the requirements of the current mode running on it.

We address the reconfiguration of the computation and the communication
resources with two different architectural approaches presented in two dedicated
thesis chapters, as described in the following:

• Reconfiguration of computation resources: This consists of the mod-
ification of the hardware architecture of selected computation resources,
such as hardware accelerators, and it is supported using the DPR feature
of FPGAs. The main idea is to share the dynamic region of the FPGA be-
tween the accelerators that belong to different modes of operation and thus
not simultaneously used. The hardware/software infrastructure developed
to support this is presented in Chapter 5.

• Reconfiguration of communication resources: This consists of set-
ting up, tearing down, and modifying the bandwidth and latency of the end-
to-end channels provided by the communication fabric. This is supported
by extending the message-passing NoC Argo with run-time reconfiguration
capabilities. The architecture developed to support this is presented in
Chapter 6.

For both types of reconfiguration, the presented approaches and architectures
provide GS reconfiguration capabilities, and they are prototyped and evaluated
using the T-CREST multi-core platform.

48 Approach to Reconfiguration

4.3 Extraction of Guaranteed Service Require-
ments

According to the proposed approach, each mode of operation is characterised by
a set of GS requirements for the computation and the communication resources.
In the following, we present how the GS requirements can be extracted from
a multi-mode application when mapped to a multi-core platform. Figure 4.1
presents the logical steps needed by this process.

Figure 4.1(a) models a real-time application characterised by multiple modes as
an oriented graph where the vertices represent the modes of operation Mi, i ∈ N
and the edges represent the possible transitions between the modes. Each mode
consists of a set of communicating tasks, and it is also modelled as an oriented
graph in Figure 4.1(b). Here, the vertices represent the computational tasks
τi, i ∈ N and the edges represent the communication channels ci, i ∈ N between
them.

It should be noted that there are three types of tasks τi:

• Tasks that are purely implemented in software and need to be mapped to
a processor (indicated with the subscript ‘ sw’).

• Tasks that can completely be implemented in hardware and need to be
mapped to a dedicated hardware accelerator or to a reconfigurable region
able to implement the accelerator (indicated with the subscript ‘ hw’).

• Tasks that are implemented in software, but require the use of an accelerator
to execute sections of the code. These tasks need to be mapped to a
processor equipped with the required accelerator or with a reconfigurable
region where the required accelerator can be implemented (indicated with
the subscript ‘ hy’, standing for ‘hybrid’).

The tasks τi shown in Figure 4.1(b) are mapped to the nodes of the multi-core
platform as shown in Figure 4.1(c). For this graph, the vertices represent the
platform nodes, and the edges represent the communication channels between
each pair of nodes. Some nodes are processors Pi, i ∈ N, some are hardware accel-
erators (or reconfigurable regions) HWi, i ∈ N, and some are processors equipped
with dedicated hardware accelerators (or reconfigurable regions) Pi hy, i ∈ N.
The tasks are mapped to the node type matching the resources requirements of
each task. Further details and discussion regarding the implementation of these
three types of nodes are provided in Section 5.1.

4.3 Extraction of Guaranteed Service Requirements 49

Mode transition
graph

(a)

(c)

(d)

Core communication
graph

Task graph

(b)

Each mode consists of a set
of communicating tasks

c2

c7c6

c5

c1

c4 c8

c3

M1

M2 M3

Task are assigned to:
- processors (Pi)
- processors with accelerators (Pi_hy)
- accelerators (HWi)

c1c4

c6+c7

P0

c3c8

GS requirements
are extracted

GS for communication resources
(NoC channels requirements)

GS for computation resources
(Required accelerators)

GS requirements

τ4_hw

τ5_hy

τ2_sw τ3_hy

τ6_sw

τ1_sw

τ1_sw

τ2_sw

τ3_hy

τ5_hy

τ6_sw

τ4_hw

P2_hy P1_hy

HW0

Configuration for mode M1

Figure 4.1: Steps needed for the extraction of the GS requirements for mode
M1 of a multi-mode example application. The steps need to be
repeated for each mode of operation.

The graph shown in Figure 4.1(c) defines the computation resource requirements
for the platform nodes and the communication resource requirements for the
communication fabric connecting the nodes, as shown in Figure 4.1(d). The steps
shown in the figure for the mode M1 need to be repeated for all the other modes
of the platform. In this way, it is possible to obtain the GS requirements for
all the modes of operation for both computation and communication resources.
These sets of requirements are called configurations. Reconfiguration is used
to switch platform configuration during a mode change. The mapping process
and the generation of the configurations are currently performed manually
in the T-CREST platform. In the following chapters, we assume that the

50 Approach to Reconfiguration

communication resources requirements for each mode are provided as input to
the tools we have developed to support reconfiguration.

4.4 Model of the Reconfiguration Process

From a task-level point of view, the reconfiguration process can be modelled as
a task representing the operations that the processor in charge of the reconfigu-
ration must execute during a mode change. These include interacting with the
hardware to trigger the reconfiguration, stopping the tasks belonging to the old
mode, and starting the tasks belonging to the new mode. The mode transition
graph presented in Figure 4.1(a) can be extended to include the reconfiguration
process. The modified graph is shown in Figure 4.2 where reconfiguration modes
RM ij , i, j ∈ N have been added in the transitions between the modes. A recon-
figuration mode can be considered as an independent mode of operation where
the task that models the reconfiguration process is executed together with the
tasks that persist through a mode change.

To clarify this concept, we provide a small example related to the mode transition
graph shown in Figure 4.2. Figure 4.3 shows a time diagram of the execution of
the tasks during a mode change between the modes M1 and M2. M1 consists of
the tasks τ1 and τ2, while M2 consists of the tasks τ1 and τ3. The reconfiguration
process is modelled by the task τrec 12. Tasks τ1, τ2, and τ3 run on the processor
P1, while task τrec 12 runs on processor P0. We assume that τ2 and τ3 need
different computation resources to be implemented and different communication
GS provided by the inter-processor NoC. We also assume that the periodic
execution of τ1 cannot be suspended during the mode change.

In the time diagram of Figure 4.3, we can observe that during the reconfiguration
mode RM12, task τ1 continues to run, and task τrec 12, which handles the
reconfiguration process, is executed by the processor P0. The value Crec 12 is the
WCET of the task τrec 12. In general, the WCET Crec nm of the task τrec nm

for a reconfiguration mode RMnm, n,m ∈ N is the time needed to perform a
reconfiguration from a system point of view. An upper bound of the WCET
Crec nm can be computed at compile time for every possible mode change using
WCET analysis tools and by performing the low-level timing analysis on the
hardware/software infrastructure we have developed to support time-predictable
reconfiguration

Task scheduling policies and schedulability analysis are beyond the scope of this
work. However, modelling the reconfiguration process as a task belonging to a
reconfiguration mode enables an application programmer to apply scheduling

4.5 Expected Outcomes and Evaluation Metrics 51

M1

M3 M2

RM31

RM13 RM21

RM12

RM32

RM23

Figure 4.2: Mode transition graph of the multi-mode application presented in
Figure 4.1(a) extended with reconfiguration modes RM ij , i, j ∈ N
to model the reconfiguration process.

τ1

τ2

τ3

t t+T’

M1 M2RM12

τrec_12

t+T’+Crec_12 t+T’+Crec_12+T’’

P1

P0
Time

Figure 4.3: Time diagram example of the reconfiguration process using recon-
figuration modes. The tasks τ1, τ2, and τ3 execute on the processor
P1. The reconfiguration is performed by the task τrec 12 executed
on processor P0. The figure shows the transition between modes
M1 and M2 through the reconfiguration mode RM12.

policies and to perform schedulability analysis at a system-level in an independent
manner for each mode of operation.

4.5 Expected Outcomes and Evaluation Metrics

In the introduction, we stated the general hypotheses underlying this work.
In the following, we detail these hypotheses into a set of expected outcomes,

52 Approach to Reconfiguration

deriving from the use of reconfiguration according to the proposed approach.
This also defines a set of metrics used for the evaluation presented in Chapter 7,
where the trade-offs between outcomes are assessed and discussed.

With regards to the reconfiguration of computation resources, and taking into
account our approach of using DPR to implement hardware accelerators only
when they are needed, we expect the following outcomes:

• Reduction of the hardware size: Implementing different functionalities
that are needed only for a limited period of time in the dynamic region
of the FPGA reduces the overall hardware size when compared to a fully
static solution. This enables a more extensive use of accelerators and
possible reduction of costs.

• Simplification of the WCET analysis: Moving the functionality per-
formed by a software task into hardware may lead to a simplification of
the WCET analysis. In general, the timing-analysis of hardware used to
implement software-equivalent tasks is often easier to perform than analysis
of a pure software solution. For example, timing-analysis of the instruction
cache may not be needed when using accelerators.

• Reduction of the WCET pessimism: An interesting consequence of
the simplification of the WCET analysis when using accelerators to perform
selected tasks, is the possibility to reduce WCET analysis pessimism. A
properly designed accelerator may have a very limited and predictable
variance on the task execution time.

• Speed-up from HW accelerator use: In general, executing a computa-
tionally intensive task in hardware delivers a speed-up in the task execution
time, leading to an increase of the overall system performance. This can
apply for both the average-case execution time for general-purpose systems
and the WCET for real-time systems.

• Use of specialised accelerators: DPR allows for the use of more efficient
accelerators that are specialised in the execution of small specific tasks
instead of generic accelerators that cover a more broad set of tasks. For
example, a generic accelerator is a matrix multiplier that can take in input
matrices of any size up to 32×32. Specialized accelerators are designed to
perform the same operation, but only with a predefined matrix size (e.g.,
4×4, 16×16, 32×32).

• Increase of the design complexity: The hardware architecture of a
system that includes the DPR feature is more complex. For example, the
use of a dedicated configuration controller is required, and some interface
logic may be needed to isolate the reconfigurable region from the rest of

4.5 Expected Outcomes and Evaluation Metrics 53

the system during reconfiguration. We mitigate this negative outcome by
using our lightweight configuration controller RT-ICAP, characterised by a
minimal hardware cost overhead and easy usability.

• Increase of the memory requirements: The partial bit-streams as-
sociated to each configuration must be stored in memory. Therefore, we
expect an increase in the memory resources utilisation when using DPR.
This memory increase goes against the hardware size reduction obtained
by sharing the reconfigurable region between multiple accelerators. In
our approach, we mitigate this negative outcome by applying compression
techniques to the stored partial bit-streams.

With regards to the reconfiguration of communication resources, and taking into
account the use of a statically scheduled TDM-based NoC as a communication
fabric, such as the Argo NoC, we expect the following outcomes:

• Increase of the flexibility: The possibility of setting up and tearing
down virtual channels at run-time increases the flexibility of the NoC. This
is particularly relevant when taking into account that statically scheduled
TDM-based NoCs, such as Argo, are usually only configurable at boot-time.

• Increase of the bandwidth and reduction of the latency of VCs:
In a TDM-based NoC, the length of the TDM schedule grows with the
number of VCs. Having the possibility of setting up and tearing down VCs
or modifying their bandwidth depending on the current mode of operation
allows the use of the minimum possible schedule period that satisfies the
current mode requirements. Reducing the TDM period translates into
higher bandwidth and lower latency with respect to a schedule that satisfies
the requirements of all the modes.

• Increase of the hardware cost: The hardware architecture of the NI
supporting reconfiguration is indeed more complicated and more costly in
terms of hardware resources with respect to the NI without the reconfigu-
ration feature. Moreover, since multiple schedules need to be stored, the
memory resource requirements are also expected to increase.

54 Approach to Reconfiguration

Chapter 5
Reconfiguration of

Computation Resources

This chapter presents the hardware/software infrastructure we developed to
support reconfiguration of computation resources in real-time systems using
the DPR feature of FPGAs. At first, we give an overview of the multi-core
platform supporting DPR, and we present the architecture and functionality of
our time predictable DPR controller, called RT-ICAP. This is followed by the
description of the technique used to compress the bit-streams and of the software
tool associated with the controller. Finally, we perform the reconfiguration time
analysis, and we present a single-core application example, which is also used for
part of the evaluation. The architectures and the techniques presented in this
chapter were in part published in the papers [J1], [C1], [C4], and [C6] in our list
of publications.

5.1 A Multi-Core Platform Supporting DPR

In this work, we envision to provide a multi-core platform with DPR support.
Since we target platforms that may support a multitude of applications, one of
the main challenges is defining how the reconfigurable regions are distributed
in the platform and how they are accessed by the cores. In our approach, we

56 Reconfiguration of Computation Resources

P0

(reconf. master)
P1 P2

Dedicated
reconfig.
region

Dedicated
reconfig.
regionRT-ICAP

controller

Shared
reconfig.
region

PN

Dedicated
reconfig.
region

Memory controller

Memory

Memory access NoC

Message-passing NoC

ICAP

FPGA configuration memory

Figure 5.1: Block diagram of an example of a multi-core platform supporting
DPR according to our approach. The reconfiguration master P0
can reconfigure the hardware implemented in the dedicated recon-
figurable regions of the processors P1, ..., PN and in the shared
region by modifying the content of the FPGA reconfiguration
memory.

consider two types of reconfigurable regions: dedicated to a single processor
and shared by multiple processors. Figure 5.1 shows the block diagram of an
example of a multi-core platform supporting DPR based on this approach. The
platform consists of N processors (P0, P1, ..., PN) connected by a message-
passing network-on-chip for fast communication between cores and by a memory
access NoC. This architecture matches the one of the T-CREST platform.

In Figure 5.1, the processors P1, ..., PN are equipped with dedicated reconfig-
urable regions. This type of region can be used to accelerate the execution of
sections of software tasks running on that specific processor. In other words,
the visibility of the functionalities provided by the hardware implemented in

5.2 RT-ICAP Controller Architecture 57

these regions is limited to a single processor. In the general case, only a subset
of processors may be equipped with a dedicated reconfigurable region.

The figure also shows one shared reconfigurable region connected to the message-
passing NoC. In the general case, the shared regions can be interfaced to the
multi-core platform with other communication fabrics. The shared regions are
meant to implement hardware accelerators that offer functionalities that are
not related to a specific processor. For example, it can be used to implement
entire computational tasks in hardware, specific I/O communication protocols,
or accelerators that can be shared between multiple processors. With regards to
this, we developed a specific interface and integration technique for the T-CREST
platform, as presented in paper [C7] in our list of publications. This interface
enables the integration of stateless hardware accelerators using the Argo NoC
and exploits its TDM properties to allow the accelerator to be shared between a
set of processors in an interleaved fashion, without any form of reservation.

The reconfiguration process must be handled by a controller interfacing the
FPGA configuration memory with the logic implemented on the FPGA itself.
Even if multiple independent reconfigurable regions may coexist, one of the
limitations of the current FPGA technology is that it allows the reconfiguration
of only one region at a time. Therefore, our approach is to have a single
processor of the multi-core platform, called reconfiguration master, interfacing
the reconfiguration controller and managing the reconfiguration during a mode
change. When the master processor starts a reconfiguration, the controller
loads a partial bit-stream, pre-stored in a dedicated memory, into the FPGA
configuration memory in a predictable time interval. In Figure 5.1, processor P0
has the role of reconfiguration master, and it is connected to the ICAP interface
through an ICAP controller. Therefore, P0 is the only processor that can modify
the content of the FPGA configuration memory. By writing a partial bit-stream
into this memory, the hardware implemented in the reconfigurable regions of the
platform is dynamically modified. The dashed arrows in the figure indicate the
dependency.

5.2 RT-ICAP Controller Architecture

Most of the available reconfiguration controllers described in Section 3.1 offer
a range of functionalities that are not strictly required by our approach to
support reconfiguration of computation resources, where DPR is used to switch
hardware accelerators during an operational mode change. Examples of these
functions are the read-back, which is typically used for FPGA scrubbing for
error mitigation [109], or the LUT-based reconfiguration for fine-grain DPR.

58 Reconfiguration of Computation Resources

These additional functionalities increase the complexity of the reconfiguration
controller and of the low-level reconfiguration timing-analysis. Moreover, for
some of the controllers, the detailed hardware and software architecture is not
public, making it impossible to perform a precise and reliable timing-analysis.

Our RT-ICAP controller is a lightweight open-source hardware component specif-
ically designed to support DPR for mode changes in a time-predictable manner.
The controller is developed and prototyped targeting the T-CREST platform;
however, it can be easily used by other platforms where a small hardware footprint
and time-predictable reconfiguration are strong requirements. The controller
supports DPR in the Virtex-5, -6, and the 7-series FPGAs from Xilinx using the
ICAP configuration interface described in Section 2.2.2. The RT-ICAP controller
is designed to assist processor-initiated DPR of computation resources, such as
hardware accelerators, in the same way as a DMA controller assists in moving
data. The controller uses run-length encoding (RLE) compression to minimise
the size of bit-streams, and it does not support read-back. This lightweight
and simple design makes DPR and its timing analysis straightforward and easy.
Moreover, it results in a small hardware implementation. In the following, we
provide a description of the controller architecture and functionality.

Figure 5.2 shows a block diagram of the RT-ICAP controller. The controller is
connected to the reconfiguration master processor through an OCP interface [45,
42], to a local SPM, and to the ICAP of the FPGA. In our architecture, the
SPM is used to store the partial bit-streams and also acts as a local general
purpose memory for the processor. In comparison to a data cache, the access
time for an SPM is guaranteed to be a single cycle. The fact that the SPM is not
strictly dedicated only to store bit-streams is one more aspect that distinguishes
our RT-ICAP controller from the ones discussed in Section 3.1.

The processor controls and manages the functionality of the controller through
the OCP interface, where it can access a set of 32-bit registers (mapped in the
address space of the processor). A control FSM manages the ICAP interface,
the registers, and all the functionalities of the controller. Table 5.1 describes the
purpose of all the registers. The status register can be read by the processor
to monitor the status of the controller and the reconfiguration. The control
register can be written by the processor to manage the controller operations.
Table 5.1 presents the list of the register and their description. The possible
status register values control register commands reported in the table in a textual
form correspond to values associated to specific fields of the register as defined
in the C library associated with the controller. The role of the registers in the
controller operations is explained in the following.

The RT-ICAP controller can operate in two different modes depending on where
the partial bit-stream used in the reconfiguration is stored. If the bit-stream is

5.2 RT-ICAP Controller Architecture 59

Table 5.1: List of registers of the RT-ICAP controller and their description.

Register Description
status This register holds the status of the controller. Read-only.

Possible status values are:
- READY: The controller is ready, waiting for the next

command (post-reset status).
- READY AND DONE: The configuration was successfully

completed. The controller is ready, waiting for the next
command.

- READY AND FAIL: The configuration has failed or was
aborted. The controller is ready, waiting for the next
command.

- WAIT BUSY ICAP: The configuration process is
waiting for the ICAP interface to be free in order to start.

- WRITE IN PROGRESS: The reconfiguration process is
in progress. The controller is writing the bit-file into the
ICAP interface.

- WAIT END: The reconfiguration process is in progress
and the entire bit-stream has been written. The controller
is waiting for the ICAP interface to confirm successful
or failed reconfiguration.

- ABORT IN PROGRESS: An abort command has been
received. The controller is waiting for the ICAP interface
to confirm the abort.

control This register receives the command to execute. Write-only.
Possible commands:

- START SPM STREAM: Start the reconfiguration process
in SPM-stream mode.

- START CPU STREAM: Start the reconfiguration process
in CPU-stream mode.

- ABORT: Abort the current reconfiguration process.
- SW RESET: Software reset of the controller.

bs length This register contains the length, in bytes, of the bit-stream to
be used in the reconfiguration. Write-only.

bs addr This register contains the address, in bytes, that points at the
beginning of the bit-streams stored in the SPM to be used for
the reconfiguration. Write-only.

stream in In CPU-mode, this register received the bit-stream data to be
written through the ICAP interface in CPU-stream mode.
Write-only.

60 Reconfiguration of Computation Resources

SPM

RT-ICAP
controller

Processor (reconfiguration master)

status

Registers

control

bs_length

bs_addr

stream_in

Control FSM

OCP
interface

r/w

FPGA configuration memory

ICAP

FPGA logic

FPGA config.

r/w

Figure 5.2: A block diagram of the RT-ICAP reconfiguration controller and
its interfaces.

stored in the local SPM, the controller autonomously fetches the bit-streams
from the SPM and writes it to the reconfiguration memory through the ICAP.
We refer to this mode as SPM-stream. If the bit-stream is not stored in the
local SPM, it can be copied from an external memory directly into the RT-ICAP
controller by the reconfiguration master processor. We refer to this mode as
CPU-stream.

When the controller operates in SPM-stream mode, the bit-stream to be used
must be already stored in the SPM when the reconfiguration is triggered. To
start a reconfiguration, the reconfiguration master configures the bs addr register
with the SPM address that points at the beginning of the bit-stream and the
bs length register with the length (in bytes) of the bit-stream. By writing the
START SPM STREAM command into the control register, the processor starts
the transfer from the SPM to the ICAP. The status register reports the controller
status, including the end of the reconfiguration process. In SPM-stream mode,
the controller can achieve the maximum transfer speed of the ICAP (400 MB/s);
however, it is not always possible to fit the partial bit-stream associated to
all the modes of operation in the SPM. If a reconfiguration is scheduled to
happen at a particular point in time, the processor can pre-fetch the bit-stream
from an external memory into the SPM. This will minimise the reconfiguration

5.3 Bit-Stream Compression 61

time during a mode change. In summary, the SPM-stream mode is particularly
suitable for small bit-streams associated with reconfigurable regions that require
a fast reconfiguration.

When the controller operates in CPU-stream mode, the bit-stream is received
from the reconfiguration master processor as a sequence of writes. The processor
is tasked with the copying of the bit-stream from an external memory to the
RT-ICAP controller, which forwards it to the ICAP and manages its interface. In
order to start a reconfiguration, the processor must first configure the bs length
register and write the START CPU STREAM command into the control register.
Then, the bit-stream is written into the stream in register of the controller by
the reconfiguration master one data element at a time. This operating mode
is slower SPM-stream mode, and the bottleneck is typically determined by the
bandwidth to the memory from where the processor reads the bit-stream. The
CPU-stream mode should be used when it is not possible to store the partial
bit-stream associated to all the modes of operation in the SPM and is not possible
to perform bit-stream pre-fetching, such as in case of an unexpected mode change
triggered by an aperiodic event.

5.3 Bit-Stream Compression

The size of the SPM is a limiting factor when the controller is operating in SPM-
stream mode since it limits the number of bit-streams that can be locally stored
and, thus, being able to be loaded at the maximum speed offered by the ICAP.
To reduce this limitation, we use lossless compression techniques to reduce the
size of the partial bit-streams and, therefore, the memory needed for bit-stream
storage. The application of the most common compression techniques (e.g. RLE,
Huffman, Arithmetic, Lempel-Ziv, etc.) on Xilinx bit-streams is a well-known
topic, and it is explored in the work presented in [110], [111], and [112]. Advanced
techniques, such as Lempel-Ziv, are very efficient in terms of compression ratio.
However, this comes at the expenses of complex de-compression algorithms
that in most cases are performed in software, potentially compromising the
time-predictability of the reconfiguration or increasing the complexity of the
timing-analysis.

For our implementation, we have selected an RLE compression technique for the
bit-streams. The size of the data element used by the compression technique
(referred as ‘character’ in the following) is the same as the input bus used by
ICAP interface (8, 16, or 32 bits). The main idea used in the RLE compression is
to store sequences of repeated characters (called ‘data-run’) as a single character
combined with a character occurrence count. The compressed data-run is

62 Reconfiguration of Computation Resources

… b c c c b a a a a a b b b b b b c e a … Uncompressed sequence:

… b c c c b e 5 a e 6 b c e e a … Compressed sequence:

Run of ‘c’ not long
enough to be compressed

Compressed runs
of ‘a’ and ‘b’

Double escape ‘e’

Simple uncompressed characters

Escape sequences (escape and run length or double escape)

Compressed data-runs

Legend:

Figure 5.3: An example of the RLE compression technique applied to an
arbitrary sequence of characters. In this example, the escape
character is ‘e’.

identified by an escape character. When a data-run gets compressed, it appears
as an escape value to signal the beginning of a compressed sequence, followed
by the count and the data itself. Therefore, only data-runs longer than three
elements are compressed. Single escape values in the uncompressed original
bit-stream are represented in the compressed ones as replicated escape character
in order to distinguish it from a compressed data-run. Figure 5.3 shows an
example of RLE compression on a sequence of characters. In this example,
the escape character is ‘e’. In the general case, the escape character should be
selected as the character with less single, double, or triple occurrences in the
bit-stream.

The bit-streams are compressed by the software tool associated with the RT-ICAP
controller (presented in the following section), and it is decompressed in hardware
by the controller. Implementing the RLE decompression in hardware instead
of a software task executed by the reconfiguration master contributes to the
reduction of the complexity of the WCET analysis. In addition, the hardware
overhead needed for decompression is minimal due to the simplicity of the RLE
compression.

The tools provided by Xilinx offer a native bit-stream compression functionality
based on writing identical configuration frames once, instead of writing each
frame individually. A frame is the smallest addressable segment of the FPGA
configuration memory space, and its size is in the order of KB, depending on the
FPGA model. If more than one frame has identical data, the frame is loaded into
the configuration logic and written to multiple address locations of the FPGA

5.4 Tool Support 63

Listing 5.1: XML file structure used for configuring the convbitstream tool.

<?xml version ="1.0" encoding ="utf -8"?>

<bitfiles >
<description >Bit - streams to be processed .</ description >

<parameters datasize =["8","16","32"] compression =["true"," false
"] bitswapped =["true"," false "]/>

<bitfile id="bit - stream_id " file =["path/bit - stream_name .bin"/>
...
<bitfile id="bit - stream_id " file =["path/bit - stream_name .bin"/>

</bitfiles >

configuration memory in parallel. In this case, the decompression is executed by
the FPGA logic that manages the reconfiguration (not accessible by the user).

The use of the Xilinx native compression not only reduces the size of the bit-
stream but also increases the reconfiguration speed since multiple frames can be
written in parallel. Our RLE technique can be used stand-alone or in addition
to the frame-based compression offered by the Xilinx tools. Since the granularity
of the RLE compression (character) is considerably smaller than the one of
the Xilinx native compression (frame), the combination of both techniques
leads to high compression ratios and introduces a trade-off between compression
ratio and reconfiguration time. This trade-off is discussed and evaluated in
Subsection 7.1.2.

5.4 Tool Support

The RT-ICAP controller is supported by a software tool, named convbitstream.
The convbitstream tool compresses the partial bit-streams produced by the Xilinx
tools and converts them into the format used by our controller. Most importantly,
it performs the low-level timing-analysis to compute, for each compressed bit-
stream, the time needed by the controller to perform the reconfiguration. The
reconfiguration time is computed for both the SPM-stream and CPU-stream
mode, and it can be used during the WCET analysis of a software application
that uses the DPR feature.

The convbitstream tool is implemented in C and receives as input an exten-
sible markup language (XML) file specifying the parameters that control the

64 Reconfiguration of Computation Resources

compression and format conversion, as well as a path to a directory containing
the bit-streams files to be processed. Listing 5.1 shows the structure of the
XML file used for configuring the convbitstream tool. The parameters datasize,
compression, and bitswapped in the XML file indicate the size of the ICAP
interface and whether the compression and bit-swapping (i.e. reordering of data
bits according to Xilinx specifications [36, 35]) should be enabled. In Listing 5.1,
these parameters are followed by the list of the bit-streams to be processed. For
each bit-stream provided as input, the tool produces the converted bit-stream
in two formats: as a binary file to be used if the bit-streams are stored in an
external memory, and as an array declaration in a C file to be used to embed
the bit-streams into a C program. The name of the C array is the bit-stream id
parameter passed in the XML file, as shown in Listing 5.1. The length of
each C array is also produced in the output file. This information is needed
by the C library supporting the RT-ICAP controller to properly initialise the
reconfiguration process.

5.5 Reconfiguration Time Analysis

The most relevant feature of the RT-ICAP controller is the ability to perform
time-predictable DPR. For each bit-stream, the reconfiguration time Trec dpr is
computed by the convbitstream tool. The reconfiguration time Trec dpr is from
the moment in time when the master processor starts the reconfiguration until
the partial bit-stream is entirely written into the configuration memory of the
FPGA.

The reconfiguration time, in clock cycles, is computed using Equation 5.1. It
consists of the sum of three contributions: the number of cycles needed to invoke
(initialise and finalise) a reconfiguration, the number of cycles needed to transfer
the compressed bit-streams into the RT-ICAP controller, and the number of
additional cycles required to expand compressed data-runs and write these into
the reconfigurable area of the FPGA.

Trec dpr = Tclk{noh + nif (ns + 2ne + nr) +
nr∑

i=1
(Ri len − 1)} (5.1)

The following list explains in details the contributions to Equation 5.1:

• noh is the overhead required by the RT-ICAP controller for starting and
finishing a reconfiguration.

5.5 Reconfiguration Time Analysis 65

• nif is the number of cycles to write a character into the RT-ICAP controller;
for SPM-stream mode this is 1 cycle, and for CPU-stream mode it is 2
clock cycles (the latency of an OCP-transaction [42]). In the processor and
the RT-ICAP controller are in different clock domains, nif should include
the latency of the clock domain crossing.

• The term (ns + 2ne + nr) is the length of the compressed bit-stream; ns is
the number of simple (uncompressed) symbols, ne is the number of escape
sequences (each comprising a pair of symbols), and nr is the number of
the repeated symbols in compressed data-runs. In the example shown in
Figure 5.3, these symbols are respectively marked in yellow, red, and blue.

• The third contribution is the number of additional clock cycles required
for writing repeating characters into the reconfigurable area of the FPGA.
Here, Ri len is the number of times a compressed character repeats in the
i-th data-run.

The parameters noh and nif characterize the RT-ICAP controller and ns, ne,
nr, and Ri len characterize the bit-streams.

In SPM-stream mode, a symbol of uncompressed data can be written into the
RT-ICAP controller and further into the reconfigurable area of the FPGA in
every clock cycle. When the RT-ICAP controller expands a compressed run of
symbols, the interface towards the SPM stalls while the controller writes the
expanded sequence of symbols into the ICAP. When the controller operates
in CPU-stream mode, the bit-stream is loaded from an external memory. The
time needed for this is independent of the RT-ICAP controller and needs to be
analysed separately taking into account the behaviour of the communication
fabric and the memory controller providing access to the memory.

The equation presented above is derived by applying low-level analysis on the
architecture of the RT-ICAP controller. An application programmer needs to
add the software overhead of setting up the controller to trigger a reconfiguration.
When pre-fetching is used or when the controller operates in CPU-stream mode,
the transfer time of the bit-stream from an external memory should also be
included. In T-CREST, the WCET analysis tools platin [44] and aiT [37] can be
used to perform this analysis. The software overhead along with the reconfigura-
tion time, which is calculated by the convbitstream tool, correspond to the WCET
of the task τrec nm that performs the reconfiguration during a reconfiguration
mode, as explained in the task-level model presented in Section 4.4.

66 Reconfiguration of Computation Resources

5.6 Single-Core Application Example

In the following, we present an application example of the presented RT-ICAP
controller in combination with a single Patmos processor (introduced in Subsec-
tion 2.4.2). The example aims to show a possible hardware architecture where a
reconfigurable region is used to implement hardware accelerators dedicated to the
processor. Figure 5.4 shows a block diagram of the hardware architecture, which
consists of the Patmos processor and a set of I/O devices connected through an
OCP bus [45]. The I/O devices include the RT-ICAP controller, a dedicated
accelerator controller (‘HwA-controller’ in the figure), a hardware accelerator
(‘HwA’ in the figure), and several SPMs.

The reconfiguration is managed by our RT-ICAP controller, which can modify
the content of the FPGA configuration memory through the ICAP interface.
By writing a partial bit-stream stored in the bit-stream SPM into the FPGA
configuration memory, the content of the reconfigurable region is dynamically
modified. The dashed arrow in Figure 5.4 shows this dependency.

An SPM (‘HwA-SPM’ in Figure 5.4) is used for data exchange between the
hardware accelerator and the Patmos processor. The HwA-SPM is divided into
a certain number of banks mapped to the address space of the processor as a
single and continuous address space. However, the banks can be accessed in
parallel by the accelerator in order to increase the memory bandwidth towards it.
Note that the HwA-SPM is not the local SPM of Patmos, which is used by the
processor to store easily accessible data and instructions. Both the accelerator
and the HwA-SPM reside in the reconfigurable region since the number of used
memory banks may vary depending on the currently implemented accelerator.
Therefore, the HwA-SPM needs to be reconfigured together with the hardware
accelerator. The dedicated HwA-controller manages the accelerator and reports
its current status to the processor.

Assuming that the bit-streams are available in the bit-stream SPM, the RT-ICAP
controller can operate in SPM-stream mode. If the bit-streams are not available
in the bit-stream SPM, the controller can operate in CPU-stream mode and
the processor directly loads the bit-streams into the ICAP without using the
bit-stream SPM. Alternatively, the processor can perform pre-fetching to transfer
them into the bit-stream SPM before performing reconfiguration.

The operational flow to use the accelerator after a reconfiguration has been
triggered by a mode change is as follows:

1. Patmos moves the data to be processed into the HwA-SPM.

5.6 Single-Core Application Example 67

ICAP

Local SPM

HwA
controller

HwA
SPM

RT-ICAP
controller

Bit-stream
SPM

HwA

O
C
P
 b

u
s

Reconfigurable region

F
P
G

A
 co

n
fig

u
ratio

n
 m

em
o
ry

Patmos
processor

Figure 5.4: A block diagram of an example single-core architecture that in-
cludes a reconfigurable region used to implement hardware accel-
erators. The same architecture is used in the evaluation of the
reconfiguration capabilities of the RT-ICAP controller presented
in Subsection 7.1.3

2. Patmos activates the accelerator by interacting with the HwA controller.
When the accelerator is running, the processor is free to execute other
operations.

3. When the accelerator has finished, Patmos can read the processed data
from the HwA-SPM. Note that the HwA-SPM is not only dedicated
to the accelerator, but it can also store temporary data until the next
reconfiguration.

This architecture is used for the evaluation of the reconfiguration capabilities of
the RT-ICAP controller presented in Subsection 7.1.3. For the evaluation, we
use benchmarks from the TACLe suite [113] and hardware accelerators generated
using the Xilinx Vivado HLS [31] tool.

68 Reconfiguration of Computation Resources

Chapter 6

Reconfiguration of
Communication Resources

This chapter describes the new version of the message-passing NoC Argo 2 that
we developed to support the reconfiguration of communication resources. At
first, we give an overview on how we approach the NoC reconfiguration and
on the differences between the new Argo 2 and the original Argo NoCs. This
is followed by a description of the Argo 2 NI and a detailed presentation on
how reconfiguration is supported. Finally, we provide the reconfiguration time
analysis. The architectures and the techniques presented in this chapter were in
part published in the papers [J3] and [C5] in our list of publications.

6.1 Overview

The original Argo NoC presented in Section 2.5 and in [23, 50] supports message-
passing between the processing nodes of a multi-core platform. Argo offers a set
of VCs characterised by guaranteed bandwidth and latency. TDM-based static
routing is used to share the resources of the packet-switched structure between
the VCs. The NIs inject packets into the packet-switched structure according to
the TDM schedule. The packets are routed to the destination node according to

70 Reconfiguration of Communication Resources

the route included in the packet header. Therefore, it is the TDM schedule that
guarantees the bandwidth and latency of the VCs provided by the NoC.

To support reconfiguration, we have implemented a new version of the Argo
NI which allows switching between a set of static TDM schedules generated at
compile-time. Switching TDM schedule at run-time corresponds to changing or
modifying the characteristics of the set of VCs offered by the NoC. A unique
feature of the new NI is the possibility to switch instantaneously between sets of
VCs without affecting the VCs that persist across the reconfiguration. Moreover,
to comply with the time-predictability specification, the NI ensures that the
switch between two schedules is executed in a bounded time interval. The NoC
that uses the new version of the NI supporting reconfiguration is called Argo 2.
The Argo 2 NI is a new design based on the original Argo NI presented in
Subsection 2.5.3.

In addition to supporting reconfiguration, the Argo 2 NI also implements ad-
ditional functionalities with respect to the original Argo NI. This includes the
use of variable-length packets to reduce the header overhead, a more compact
representation of the TDM schedule, the support of interrupt packets, as well as
the possibility to configure and initialise the NI of a remote node using the NoC
itself.

6.2 Argo 2 NI Architecture

Before discussing how reconfiguration is supported, we present the architecture
and the basic operation of the Argo 2 NI. At first, we describe the packet format
and the schedule representation. Then, we present the NI architecture, we explain
how packets are sent and received, and we describe the remote initialisation
feature.

6.2.1 Packet Format and Schedule Representation

The Argo 2 NI supports three types of packets: data packets, interrupt packets,
and configuration packets. Figure 6.1 shows the general format of the packet.
The packet consists of a 35-bit header flit followed by n 35-bit payload flits. For
interrupts and configuration packets n = 1 and for data packets n ∈ [1, 15]. The
variable-length for data packets allows to reduce the overhead of the header for
those VCs that require high bandwidth. The header contains three fields: the
packet type, the destination address specifying the location where the data must

6.2 Argo 2 NI Architecture 71

RouteDest. address

015163132

Header flit

3334

2nd 32-bit payload data

1st 32-bit payload dataPayload flit

Payload flit

ehv

ehv

ehv
.

nth 32-bit payload dataPayload flit ehv

2930

Type

.

.
.
.
.

Figure 6.1: Packet structure used in the Argo 2 NoC consisting of an header
flit and n 32-bit payload flits. For data packets n ∈ [1, 15] and for
interrupts and configuration packets n = 1.

be written in the SPM of the receiving node, and the route that the packet
should follow through the NoC. The position of the route field and the three
control bits specifying a valid flit (v), the header flit (h), and the last flit (e)
remain unchanged with respect to the original Argo since the packet-switched
structure of the NoC is the same.

Data packets are used to transfer data from the SPM of a processing node to the
SPM of a remote node, as in the original Argo. In Argo 2, the sender node can
notify the receiver when a data transfer is complete. This is achieved by marking
the last packet of a data transfer to generate an interrupt at the destination core.
We refer to this as local interrupt, since it is generated and processed in the in
the receiving node.

Interrupt packets are used to generate an interrupt in the receiving processing
node and they carry one 32-bit word payload to be used as interrupt identifier.
This feature may be needed to support multi-core operating systems and to
manage the tasks executed in remote nodes (e.g., terminating a task during a
mode change). We refer to this as remote interrupt since it is directly triggered
by a remote node.

The configuration packets are used to write configuration data into the tables of
the NI of a remote node. This packet type plays a fundamental role in how the
reconfiguration is implemented and further description is provided later. The
configuration packets are used to trigger a reconfiguration, to distribute a new
schedule, or to initialise a remote NI.

In the original Argo NoC, the size of a TMD time slot is fixed (3 clock cycles)
and correspond to the packet length. The slot counter is incremented for each
time slot and it indexes directly into the schedule table. The entries in the
schedule table that correspond to a time slot in which the NI is not allowed to

72 Reconfiguration of Communication Resources

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2

TDM period (18 cycles)

H P H HP P P P P P

T2N=6 T2N=5 T2N=4

PL=3 PL=2 PL=2

H P P P

c1 c2 c3

Time

c1

Figure 6.2: An example of the TDM schedule representation used in Argo 2
for the three VCs c1, c2, and c3. ‘PL’ stands for packet length.
‘T2N’ stands for time-to-next.

send are marked as not valid. This straightforward approach leads to a relatively
simple hardware implementation, but it cannot support variable packet length
and it may waste entries of the schedule table represent the unused slot entries.
To overcome this, in the Argo 2 NI, we represent the schedule in a different
format, where the entries of the schedule table correspond to packets instead of
time slots. Each entry uses two fields specifying the number of payload words
of the packet (packet length or ‘PL’) and the clock cycles until the header of
the next packet (time-to-next or ‘T2N’). Figure 6.2 shows an example of the
TDM schedule representation used in Argo 2 for the three VCs c1, c2, and c3.
The packet associated to c1 has a 3 words payload, the ones associated to c2
and c3 have 2 words payload. For each packet, the fields PL and T2N indicate
the packet length and the distance between packet headers. If the schedule
contains entries marked as not valid, the representation used in Argo 2 leads to
a reduction of the number of entries in the schedule table. For the example in
the figure, the TDM period is 18 clock cycles and the schedule requires 3 entries
in the schedule table, one for each packet. For comparison, the original Argo
would require 6 entries in the schedule table to represent a schedule of 18 clock
cycles (i.e. 6 TDM slots of 3 clock cycles each).

6.2.2 Transmit Module

The transmit module of the Argo 2 NI is shown in the left side of Figure 6.3 and
it consists of the TDM controller, the schedule table, the DMA table, the packet
manager, and the reconfiguration controller. The reconfiguration controller
manages the reconfiguration and it is described in detail in Section 6.3. In the
following, we explain the functionality of the transmitting module, with reference
to Figure 6.3.

The Argo 2 NI contains several tables where pointers in one table index into
the next. Each NI is equipped with a TDM controller, which contains a TDM

6.2 Argo 2 NI Architecture 73

T
ra

n
sm

it
m

o
d
u
le

R
ec

ei
ve

m
o
d
u
le

T
o

p
ro

ce
ss

o
r

S
P
M

S
ch

ed
u
le

 t
ab

le
T

2N
R
o
u
te

D
M

A
 i
d
x.

S

D
M

A
 t

ab
le

A
ct

iv
e

W
o
rd

 c
n
t.

W
ri
te

 p
tr

.
R
ea

d
 p

tr
.

S

T
D

M
 c

o
n
tr

ol
le

r

S
S F
IF

O
 L

o
ca

l
F
IF

O
 R

em
o
te

R

F
lit

s
o
u
t

F
lit

s
in

M

R
ec

ei
ve

 u
n
it

P
ac

ke
t

m
an

ag
er

C
o
n
fi
g
u
ra

ti
o
n

b
u
s

S
S

A
rb

it
er

M

M

C
o
n
fi
g
.
if
.

Address

Data

M

Address

Data

IR
Q

 u
n
it

P
kt

.
le

n
.

M

Loc. IRQ

Rmt. IRQ

N
et

w
o
rk

 i
n
te

rf
ac

e

C
o
n
fi
g
.
ta

b
le

H
ig

h
 p

tr
.
L
o
w

 p
tr

.

S

R
ec

o
n
fi
g
u
ra

ti
o
n

co
n
tr

o
lle

r

T
o
 p

ro
ce

ss
o
r

IR
Q

 i
f.

T
o
 p

ro
ce

ss
o
r
IR

Q

P
kt

.
ty

p
e

T
D

M
 c

o
u
n
te

r

F
ig

ur
e

6.
3:

A
bl

oc
k

di
ag

ra
m

of
th

e
A

rg
o

2
N

I
an

d
its

co
nn

ec
tio

n
w

ith
a

pr
oc

es
sin

g
no

de
at

th
e

to
p

an
d

w
ith

th
e

sw
itc

he
d-

st
ru

ct
ur

e
at

th
e

bo
tt

om
.

T
he

co
nn

ec
tio

n
to

a
pr

oc
es

sin
g

no
de

m
at

ch
es

th
e

on
e

sh
ow

n
in

Fi
g-

ur
e

2.
6.

T
he

N
I

is
di

vi
de

d
in

to
tw

o
m

od
ul

es
:

th
e

tr
an

sm
it

m
od

ul
e

is
on

th
e

le
ft

an
d

m
an

ag
es

th
e

tr
an

sm
iss

io
n

of
pa

ck
et

s
an

d
th

e
re

ce
iv

e
m

od
ul

e
is

on
th

e
rig

ht
an

d
ha

nd
le

s
th

e
re

ce
pt

io
n

of
in

co
m

in
g

pa
ck

et
s.

So
ur

ce
:

pa
pe

r
[J

3]
in

ou
r

lis
t

of
pu

bl
ic

at
io

ns
.

74 Reconfiguration of Communication Resources

counter. The TDM counter is incremented every clock cycle to keep track of
time progression and it wraps around at the end of a TDM period. The TDM
controller uses the TDM counter in combination with the time-to-next field in
the schedule table to generate a pointer for the schedule table. The schedule
table contains the schedule, one entry per packet. Therefore, the pointer is
incremented only when a new packet should be sent. The schedule table can
hold entries belonging to multiple schedules used for reconfiguration. The TDM
controller uses the information provided by the reconfiguration controller (high
and low pointers) to generate a pointer for the schedule table. This pointer is in
the range of entries belonging to the currently active schedule.

An entry in the schedule table contains the route of the packet that the NI has
to send, the packet length, and the index into the DMA table specifying which
DMA entry is enabled to send. Each entry in the DMA table represents a VC.
The packet manager assembles and sends out packets using information from
the schedule table and the DMA table. The header of an outgoing packet is
assembled using the packet type and the write address fields from the enabled
entry in the DMA table, and the route field from the active entry in the schedule
table. The payload words following the header are read from the SPM. The
packet length field from the schedule table determines the maximum number of
payload flits that can follow the header flit. Analogously to the original Argo NI,
the data to be sent is read word-by-word from the SPM using the read address
field from the enabled entry in the DMA table. During transmission, the packet
manager updates the read address, the write address, and the word count fields
in the DMA table. The active field in the DMA table is set by the processor
that initialises the transfer. The field indicates if the DMA has data pending
for sending and it is cleared by packet manager when the last packet of a DMA
transfer is sent. The processor can poll this field to know when a transfer is
completed.

In contrast with the original Argo, the Argo 2 NI places the route field into the
schedule table instead of the DMA table. This allows routing multiple packets
belonging to the same VC along different paths. The scheduler [55] ensures
in-order arrival of the packets belonging to the same multi-path VC. This is
achieved by generating schedules where all the possible paths that belong to a
VC have the same number of hops through the NoC.

6.2.3 Receive Module

The receive module of the Argo 2 NI is shown on the right side of Figure 6.3 and
it consists of the receive unit and the interrupt (IRQ) unit. Depending on the
packet type, the incoming packets are processed differently by the receive unit.

6.2 Argo 2 NI Architecture 75

Data packets carry the target address as part of the header and the data payload
is written directly into the SPM as soon as it is received. The receive unit
increments the target address for each write into the SPM. If the data packet is
the last of a DMA transfer and it is marked to generate an interrupt, the local
interrupt signal is asserted. The target address of the last word, which serves as
interrupt identifier, is written into the IRQ FIFO for local interrupts in the IRQ
unit. The interrupt signal is de-asserted when the lRQ FIFO is emptied by the
processor.

For configuration packets, the data payload is written into one of the NI tables
in the transmit module through the internal configuration bus. The data stored
in these tables are mapped into a private address space of the NI and the address
of the configuration packet header points into this address space.

For interrupt packets, the data payload is written into the SPM and the target
address is written into the IRQ FIFO for remote interrupts in the IRQ unit as
identifier. The remote interrupt signal remains asserted until the IRQ FIFO is
emptied by the processor.

The transmit and receive modules of the NI share one port to the SPM. To
support concurrent 32-bit reads and writes, the SPM is equipped with a double
width read/write port (64 bits). An arbiter manages the interface and offers the
needed buffering. Similarly to the original Argo, there is no need for buffers or
flow control in the NI, or for extra DMA controllers in the processor to copy the
received data out of the NI, since the payload of incoming packets is written
directly to its target address in the processor SPM. This leads to an efficient and
small hardware implementation of the receive module.

6.2.4 Remote Initialization

In the original Argo, each NI is initialised at boot-time by the processor to
which it is directly connected. This works well if all the platform nodes are
processors since they are able to read the initialisation data (i.e. TDM schedule
information) from shared memory and load them into the NI tables. However, if
a processing node is a hardware accelerator, it might not be able to perform the
initialisation. In our approach for reconfiguration of computation resources, we
envision to implement accelerators in the shared reconfigurable region connected
to the message-passing NoC, as explained in Section 5.1. Therefore, we have
supplemented the Argo 2 NI with the capability of being remotely initialised
using configuration packets.

76 Reconfiguration of Communication Resources

The remote initialisation is performed using configuration packets to write into
the TDM controller, the schedule table, and the reconfiguration controller of a
remote NI since these tables are mapped into a private address space for each NI.
After having initialised its own NI, the master processor can send configuration
packets to the remote NI to load the TDM schedule information needed to
operate. When all the tables in the remote NIs are set, the master processor can
enable the rest of the NIs to operate and start to inject packets in the NoC.

6.3 Support for Reconfiguration

This section describes how we support reconfiguration in the Argo 2 NoC. At first,
we present the ideas and observations underlying our reconfiguration approach.
Then, we introduce the reconfiguration process, also discussing possible ways in
which reconfiguration can be used.

6.3.1 Key Ideas and Observations

In the Argo 2 NoC, reconfiguration consists of switching TDM schedule at
run-time. This corresponds to modifying the set or the characteristics of the
VCs offered by the NoC to match the GS requirements of the current mode.
In our approach to reconfiguration, we use the NoC itself for the transmission
of reconfiguration commands and new schedules. This implies that the VCs
dedicated for reconfiguration purposes must be set up alongside the VCs that
are used for transmission of regular data.

Similarly to the reconfiguration of the computation resources, the reconfiguration
of the NoC is managed by one processor of the multi-core platform, which has
the role of reconfiguration master. This processor triggers the reconfiguration
process by sending commands to all the NIs of the platform and, if needed,
distributes the new schedules to all the NIs. For this reason, a VC dedicated to
reconfiguration must be allocated from the master to each of the other cores in
the platform. The impact of this addition on the TDM schedule period is around
10 % on average, as evaluated in paper [J3] in our list of publications. Another
approach for allocating the VCs dedicated to reconfiguration could involve the
use of channel trees [114]. This approach multiplexes multiple VCs in a single
TDM slot by using an additional level of scheduling. The VCs dedicated to
reconfiguration could be multiplexed, leading to a reduction of the impact on
the TDM schedule. This would come at the cost of increasing the hardware
complexity to support the additional scheduling.

6.3 Support for Reconfiguration 77

Reconfiguring a NoC at run-time requires accessing and modifying the state of
the NoC, and typically flushing the VCs that are torn down and initialising the
ones that are set up between configurations. The Argo 2 NoC NI is characterised
by some properties that simplify significantly the reconfiguration process. At
first, the routers are characterised by the absence of buffers, flow control, or
arbitration. This translates into the property of not preserving any state when
switching between VCs. Therefore, the reconfiguration process does not involve
the routers, but only the NIs. In addition, Argo 2 does not use VC buffers in
the NIs and credit-based flow control among these buffers. Therefore, these do
not need to be flushed and credits counters do not need to be initialised when
new connections are set up. Finally, the scheduler maps VCs to time slots in the
TDM schedule in a way where the network can be considered as conceptually
empty at the end of each TDM period. This property is explained in detail later
and it allows instantaneous switching from one TDM schedule to another in a
way that is completely transparent to VCs that persist across the reconfiguration.
These VCs can even be re-mapped to different time slots and different routes.

6.3.2 Reconfiguration Process

The reconfiguration controller handles the reconfiguration process in hardware
and it is connected to the receive unit through the internal configuration bus,
as shown in Figure 6.3. Therefore, it can receive write transaction triggering a
reconfiguration from a remote node through incoming configuration packets. As
previously mentioned, the schedule table may hold several different schedules,
each spanning a range of entries. Each range is represented by a couple of
pointers (i.e. high pointer and low pointer) stored in the configuration table
of the reconfiguration controller. Only one range can be active at a time. In
principle, a reconfiguration simply requires that the TDM counter is set to the
start entry of the new schedule when the TDM counter itself reaches the end of
the previous schedule.

All the NIs are equipped with a small counter (2 bits) incremented every TDM
period and used to identify the TDM period in which all the NIs should syn-
chronously switch to the new schedule. A master processor invokes a reconfig-
uration by sending a configuration packet to the reconfiguration controller of
all the slave NIs, announcing that they must switch to the new schedule. This
packet contains two parameters: the index of the configuration table entry in
the reconfiguration controller that holds the high and low pointers for the new
schedule and a number that identify the TDM period in which the switch to the
new schedule must happen.

78 Reconfiguration of Communication Resources

i+1i i+2

Sending

Receiving

Master issues
reconfiguration

command

Wait

Master NI sends
reconfiguration
packets to all

Time

TDM period

Time

NIs receive
reconfiguration

packets

New TDM-schedule
is applied

i+3

NIs reacts on
reconfig. commands

Figure 6.4: Time diagram showing the reconfiguration process of the Argo 2
NoC.

Figure 6.4 shows a time diagram of the reconfiguration process. In the figure,
the reconfiguration master issues the reconfiguration command in TDM period i.
Thus, the NI of the master transmits configuration packets announcing a recon-
figuration to all the other NIs in period i+ 1. The reconfiguration packets sent
during a TDM period i+ 1 arrive in a time window that is phase-shifted by 6
clock cycles. This shift corresponds to the pipeline depth in a shortest possible
path between two NIs. To minimise the period of a TDM schedule and avoid
wasting bandwidth, the scheduler allows an equivalent phase-shift at the end of
the TDM period. This means that the flushing of the NoC at the end of a TDM
period and the filling at the beginning of the next TDM period is overlapped
and that any injected packet at the beginning of a new period cannot cause
collisions in the NoC. Due to this shift, a reconfiguration issued by the master
in TDM period i can only take effect in TDM period i+ 3. In addition to the
phase-shift of 6 clock cycles, the receiving NIs need 2 additional clock cycles to
react to the reconfiguration command. This implies that the period of a TDM
schedule must be longer than the 6 + 2 clock cycles. If the schedule is shorter, it
can be unrolled two or more times to reach the required minimum length.

The reconfiguration process implemented in the Argo 2 NoC can be used to
support reconfiguration in three ways, as described in the following.

• If the schedule table has sufficient capacity to store all possible configu-
rations, these can be loaded into the NIs at boot-time. In this case, a
master only needs to send reconfiguration requests to the NIs. This is the
preferred method since it has the lowest reconfiguration latency.

6.4 Reconfiguration Time Analysis 79

• If the schedule table can only store two configurations at a time, it possible
to first transmit the new schedule and then send a reconfiguration request.
This is possible since all the NI tables that contain configuration data can
be remotely written using configuration packets. The transmission of a new
schedule does not affect the functionality of the NoC and it is completely
transparent to the receiving nodes.

• If the schedule table can only store a subset of all possible configurations,
a hybrid of the above two methods is also possible. In this case, the mode
graph can be divided into partitions and all the schedules required by the
modes of a partition are loaded into the schedule table. In this way, the
reconfiguration master can rapidly switch between the schedules of one
partition, but switching between partitions requires the transmission of
the new schedules.

6.4 Reconfiguration Time Analysis

Argo 2 supports time-predictable reconfiguration by ensuring that the reconfigu-
ration process is executed in a bounded interval of time. The switch between
two schedules happens instantaneously and it is transparent from an applica-
tion point-of-view. However, there is a latency between the moment when the
reconfiguration master issues a reconfiguration and the moment when the new
schedule is applied. In the following, we present the low-level timing-analysis for
both the case where the new schedule is already stored in the schedule table of
the NIs and for the case where the new schedule needs to be transmitted to all
NIs before reconfiguration.

For the first case, the worst-case reconfiguration time Trec noc can be calculated
with Equation 6.1, where, Pcurr is the TDM period length of the current schedule.
From Figure 6.4, we can observe that the Trec noc depends only on the currently
executing schedule and it is, in the worst-case, three times its period.

Trec noc = 3 · Pcurr (6.1)

If the new schedule is not stored in the schedule table, the worst-case transmission
time Tsend sched needed by the reconfiguration master to transfer the schedule
has to be added to the worst-case reconfiguration time Trec noc. The size of a
TDM schedule is different in each NI due to the Argo 2 schedule representation.
Therefore, Tsend sched is the maximum of the individual worst-case transmission
times for each NI, due to the interleaved way for transmitting the schedule through

80 Reconfiguration of Communication Resources

the NoC. The transmission time Tsend sched depends on the characteristics of
the VCs reserved for the configuration packets in the current schedule and on
the size of the new schedule, and it can be calculated with Equation 6.2.

Tsend sched = max
i ∈ N

(
Li

curr +
⌈
Si

new − 1
Bi

curr

⌉
· Lcurr + Li

chan

)
(6.2)

In Equation 6.2, i represents the i-th NI from the set of N nodes in the platform,
Li

curr is the worst-case waiting time for a time slot to NI i, Si
new is the number

of words of the new schedule to be sent to NI i, Bi
curr is the bandwidth of the

current schedule towards NI i, Lcurr is the TDM period of the current schedule,
and Li

chan is the NoC latency to NI i. Overall, Equation 6.2 is the sum of three
contributions: the first is the waiting time for a time slot, the second contribution
is the time needed to send the entire schedule, and the last is the time for the
last packet injected in the NoC to reach the destination node.

The equations presented above are obtained by performing low-level analysis on
the architecture of the Argo-2 NoC. Therefore, an application programmer needs
to add the software overhead of setting up DMA transfers for all of the NIs and
triggering a reconfiguration request to the low-level worst-case reconfiguration
time produced with Equation 6.1 and 6.2. With reference to the task-level model
presented in Section 4.4, the overall worst-case time interval including the software
overhead and the low-level worst-case reconfiguration time correspond to the
WCET of the task τrec that performs the reconfiguration during a reconfiguration
mode. In T-CREST, the WCET analysis tools platin [44] and aiT [37] can be
used to perform this analysis.

Chapter 7

Evaluation and Discussion

This chapter evaluates and discusses the developed architectures and the proposed
reconfiguration approach. The chapter is divided into three sections. The
first and the second sections are respectively dedicated to the evaluation of
the reconfiguration of computation and communication resources. The last
section presents an evaluation of the reconfiguration of both computation and
communication resources carried out using a multi-core audio DSP application
as a case study.

7.1 Reconfiguration of Computation Resources

This section presents the evaluation of the developed hardware/software in-
frastructure and the reconfiguration proposed approach with regards to the
computation resources. At first, we evaluate the developed RT-ICAP controller
in terms of hardware cost, operating frequency, and reconfiguration speed. This
is followed by the evaluation of the bit-stream compression technique and the
reconfiguration time. Finally, we evaluate our reconfiguration approach using
synthetic benchmarks and HLS-generated hardware accelerators. The results
presented in this section were in part published and obtained in collaboration
with the co-authors of the papers [J1], [C1], and [C4] in our list of publications.

82 Evaluation and Discussion

7.1.1 RT-ICAP Controller Characterization

This subsection evaluates the hardware cost and performance of our RT-ICAP
controller against some of the controllers presented as related work in Section 3.1.
Table 7.1 presents the hardware size, the maximum operating frequency, and the
reconfiguration speed results for our controller and the other controllers listed in
the first column of the table. For these controllers, the results presented in the
table are retrieved from the respective publications.

For each controller, Table 7.1 reports the target FPGA used to produce the
results. All the results regarding our architecture are produced using Xilinx
Vivado (v16.4) when targeting the Xilinx Kintex-7 FPGA (model XC7K325T-
2FFG900C) and using Xilinx ISE and PlanAhead (v14.7) when targeting the
Xilinx Virtex-6 FPGA (model XC6VLX240T-1FFG1156). All the synthesis
properties are set to their defaults. The data size used for the ICAP interface
is 32 bits. Table 7.1 also shows the hardware size of the controllers in terms of
FFs, LUTs, and BRAMs. The hardware results for 7-series, Virtex-6, and -5
FPGAs can be quantitatively compared since all these FPGAs use 6-input LUTs.
Virtex-4 FPGAs use 4-input LUTs; therefore, the LUT results are reported only
for qualitative comparison. The BRAM used to store the bit-streams needed
to produce the hardware results of Table 7.1 is not taken into account for any
controller, except for the BRAM HWICAP (marked with the superscript ‘3’).

From the hardware results, we can observe that our controller is comparable
in size to the controllers DPRM [77], D2PR [79] (synchronous version without
error check), and ICAP-I [78]. However, it must be taken into account that
these controllers offer only simple transfer of bit-stream from a memory to
the ICAP. Our controller offers more functionalities, such as support of two
operating modes, bit-stream decompression, and a status/control register-based
interface. Our controller is considerably smaller than the other controllers listed
in Table 7.1 since it does not implement any functionality not strictly needed by
our reconfiguration approach, such as bit-stream read-back.

The sixth column of Table 7.1 presents the maximum operating frequency of
our controller and the other designs. In practical applications, the controller
typically runs at the same frequency as the ICAP interface (maximum 100 MHz).
From the results, we can observe that all the controllers are able to meet this
constraint, except for the ICAP-I controller.

The last column of Table 7.1 shows the bit-stream transfer speed computed as a
ratio between the bit-stream size and the reconfiguration time. The operating
frequency is assumed to be 100 MHz for all the controllers, except for the ICAP-I
(90 MHz). The reconfiguration speed is computed assuming that the bit-stream

7.1 Reconfiguration of Computation Resources 83

T
ab

le
7.

1:
H

ar
dw

ar
e

re
so

ur
ce

s,
m

ax
im

um
cl

oc
k

fr
eq

ue
nc

y,
an

d
re

co
nfi

gu
ra

tio
n

sp
ee

d
re

su
lts

fo
r

ou
r

RT
-I

C
A

P
co

nt
ro

lle
r

an
d

co
m

pa
ris

on
w

ith
re

la
te

d
pu

bl
ish

ed
de

sig
ns

pr
es

en
te

d
as

re
la

te
d

w
or

k
in

C
ha

pt
er

3.

C
on

tr
ol

le
r

Ta
rg

et
FP

G
A

H
ar

dw
ar

e
re

so
ur

ce
s

f m
a

x

(M
H

z)
R

ec
on

.s
pe

ed
(M

B
/s

)
FF

LU
T

B
R

A
M

RT
-I

C
A

P
K

in
te

x-
7

10
1

24
5

0
>

30
0

38
2.

2
PR

C
[7

6]
K

in
te

x-
7

12
70

10
75

0
>

10
0

n/
a

Zy
C

A
P

[7
4]

Zy
nq

-7
00

0
80

6
62

0
0

>
10

0
38

2
RT

-I
C

A
P

V
irt

ex
-6

88
19

0
0

32
3

38
2.

2
D

PR
M

[7
7]

V
irt

ex
-6

77
10

9
0

37
9

6.
61

D
2 P

R
[7

9]
2

V
irt

ex
-6

11
2

24
9

0
>

10
0

40
0

X
PS

H
W

IC
A

P
[6

9,
80

]
V

irt
ex

-5
74

5
74

1
3

>
10

0
1.

32

A
C

IC
A

P
[8

0]
V

irt
ex

-5
16

67
11

61
7

>
10

0
38

1.
0

IC
A

P-
I

[7
8]

V
irt

ex
-4

30
3

17
7

0
90

18
0.

0
D

M
A

H
W

IC
A

P
[7

3]
V

irt
ex

-4
42

77
97

7
0

12
1

82
.1

1

M
ST

H
W

IC
A

P
[7

3]
V

irt
ex

-4
10

83
91

8
2

20
0

23
4.

5
B

R
A

M
H

W
IC

A
P

[7
3]

V
irt

ex
-4

96
3

46
9

32
3

12
1

33
2.

1

1
U

si
ng

off
-c

hi
p

m
em

or
y.

2
Sy

nc
hr

on
ou

s
ve

rs
io

n
-

no
er

ro
r

ch
ec

k.
3

In
cl

ud
es

bi
t-

st
re

am
s

st
or

ag
e.

84 Evaluation and Discussion

is stored in an on-chip memory. For some controllers, the reconfiguration speed
with the bit-streams stored in an on-chip memory is not available. In these cases,
we report the reconfiguration speed for a bit-stream stored in an off-chip flash
memory (marked with the superscript ‘1’) for qualitative comparison.

For our controller, the table shows the speed for the SPM-stream mode calculated
as the average of the reconfiguration speed of 6 different RLE-compressed sample
bit-streams of size between 13.1 KB and 129.7 KB. From the results, we can
observe that the reconfiguration speed of our controller is comparable or faster
than the other controllers. The only exception is the D2PR [79] controller
(synchronous version, no error check), which is faster and matches the maximum
transfer speed of the ICAP interface. Our controller is slower than this due to
the presence of escape sequences in the bit-stream to decompress. If compression
is not used, our controller can match the maximum speed of the ICAP interface.

7.1.2 Bit-Stream Compression and Reconfiguration Time

This subsection evaluates the compression capability of the convbitstream tool
associated with the RT-ICAP controller and presents the trade-off between
compression and reconfiguration time.

Table 7.2 reports the compression ratios obtained by applying different compres-
sion techniques on bit-streams characterised by different values of utilisation of
the reconfigurable region. The compression ratio is defined as the size of the
uncompressed bit-stream divided the by the size of the compressed one. The util-
isation is defined as the percentage of the reconfigurable region, in term of slices,
used by the hardware accelerator implemented in it. To produce these results, we
use a reconfigurable region of 880 slices (equivalent to 7040 FF, 3520 LUTs and
16 DSPs) for all the experiments. Accelerators of different size are implemented
in the reconfigurable region to produce the bit-stream with the desired utilisation
value. The uncompressed bit-stream size, which depends only on the size of the
reconfigurable region, is 184.8 KB.

To obtain the utilisation value of 91 %, a double-precision floating-point unit
containing a multiplier and an adder is implemented in the reconfigurable region.
This floating-point unit is generated with FloPoCo [115] and has a size of 805
slices (equivalent to 2406 FFs, 2524 LUTs, 12 DSPs). A double-precision floating-
point adder of size 485 slices (equivalent to 1665 FFs, 1499 LUTs) is used to
produce utilisation of 55 %. Leaving the reconfigurable region without any
hardware implementation produces a blank bit-stream with utilisation of 0 %.
The first two columns of Table 7.2 specify the accelerator used to generate the
bit-stream and the corresponding reconfigurable region utilisation value.

7.1 Reconfiguration of Computation Resources 85

T
ab

le
7.

2:
C

om
pr

es
sio

n
ra

tio
s

us
in

g
ou

r
R

LE
co

m
pr

es
sio

n,
th

e
X

ili
nx

co
m

pr
es

sio
n

on
ly

,a
nd

ou
r

R
LE

co
m

pr
es

sio
n

on
to

p
of

th
e

X
ili

nx
on

e
fo

r
th

re
e

bi
t-

st
re

am
s

w
ith

di
ffe

re
nt

ut
ili

za
tio

n
ra

tio
s.

T
he

re
co

nfi
gu

ra
bl

e
re

gi
on

siz
e

is
88

0
sli

ce
s

an
d

th
e

un
co

m
pr

es
se

d
bi

t-
st

re
am

siz
e

is
18

4.
8K

B
.

B
it-

st
re

am
R

ec
on

.r
eg

io
n

ut
ili

za
tio

n
C

om
pr

es
sio

n
ra

tio
R

LE
+

X
ili

nx
siz

e
(K

B
)

Id
ea

l
R

LE
X

ili
nx

.
R

LE
+

X
ili

nx
M

ul
t.

&
A

dd
.

91
%

4.
1

1.
4

1.
3

1.
4

13
2.

5
A

dd
er

55
%

6.
4

2.
0

1.
4

1.
9

95
.1

B
la

nk
0%

38
.9

14
.1

2.
2

8.
7

21
.2

T
ab

le
7.

3:
C

om
pu

te
d

an
d

m
ea

su
re

d
re

co
nfi

gu
ra

tio
n

tim
e,

ex
pr

es
se

d
in

cl
oc

k
cy

cl
es

(C
C

),
fo

r
th

e
un

co
m

pr
es

se
d

an
d

co
m

pr
es

se
d

sa
m

pl
e

bi
t-

st
re

am
s

(S
P

M
-

st
re

am
op

er
at

in
g

m
od

e)
.

B
it-

st
re

am
C

om
pu

te
d

(C
C

)
M

ea
su

re
d

(C
C

)
U

nc
om

pr
.

R
LE

X
ili

nx
R

LE
+

X
ili

nx
R

LE
+

X
ili

nx
M

ul
t.

&
A

dd
.

47
31

1
48

74
5

37
38

4
38

99
4

38
99

9
A

dd
er

47
31

1
49

48
0

33
78

2
36

10
5

36
10

9
B

la
nk

47
31

1
48

65
5

21
17

5
22

52
7

22
52

9

86 Evaluation and Discussion

For each bit-stream, Table 7.2 shows the ideal compression ratio and the ratios
obtained by our RLE compression applied on a bit-stream, by the Xilinx tools
compression only, and by our RLE compression applied on a bit-stream already
compressed by the Xilinx tools. For the latter, the last column of the table also
reports the compressed bit-stream size. The ideal compression ratio specifies
a theoretical upper bound, and it is derived from the 32-bit-based information
entropy of the entire bit-stream. All the compression ratios are calculated with
reference to the size of the uncompressed bit-stream.

From the results, we can observe that the RLE compression introduces a sig-
nificant reduction of the bit-stream size and that it performs better than the
native compression offered by the Xilinx tools. Moreover, it can further decrease
the size of the bit-stream already compressed by the Xilinx tools. This can be
explained considering that the compression offered by the Xilinx tools is frame
based (it does not repeat frames with the same content), while the granularity of
our compression is considerably smaller than a frame (32-bit in this experiment).
However, our RLE compression applied on a bit-stream already compressed by
the Xilinx tools is not as good as the pure RLE compression, since the Xilinx
compression reduces the amount of data-runs to be compressed by the RLE
algorithm.

Table 7.3 shows the reconfiguration time for the uncompressed bit-streams and
for the bit-streams compressed for the same techniques listed in Table 7.2. The
reconfiguration time, expressed in clock cycles, is computed by the convbitstream
tool for the RT-ICAP controller operating in SPM-stream mode.

For the bit-streams compressed with both the RLE and the Xilinx native com-
pression, the last column of Table 7.3 reports the measured reconfiguration time.
With this measurement, we aim to verify our computed WCET of the recon-
figuration time. The measurement is executed using the RT-ICAP controller
connected to a Patmos processor [22] and implemented on the Xilinx Virtex-6
FPGA. The time interval is measured by the software running on the processor.
Since the end of the reconfiguration process is determined by polling the status
register of the RT-ICAP controller in a loop, a small measurement overhead is
observed. This overhead is in the order of few clock cycles and, when executing
the WCET analysis of a task that uses reconfiguration, it is taken into account by
the analysis tool which models the access to I/O devices. The results show that
the computed reconfiguration time is correct. By removing the measurement
overhead, it is possible to notice that there is no overestimation of the total
reconfiguration time.

The most interesting observation can be made taking into account the results of
both Table 7.2 and 7.3. Considering the reconfiguration time, we can notice that
a bit-stream compressed with both the RLE and the Xilinx native compression

7.1 Reconfiguration of Computation Resources 87

has a considerably shorter reconfiguration time (about 50 % on average) than
the one compressed with RLE only. This is due to the fact that the Xilinx de-
compression logic writes identical configuration frames concurrently to multiple
addresses of the configuration memory of the FPGA. This shows a trade-off
between compression ratio and reconfiguration time, where the pure RLE com-
pression leads to the highest compression ratio and slower reconfiguration and
the Xilinx native compression leads to the lowest compression ratio and faster
reconfiguration. We consider the combination of the RLE and the Xilinx native
compressions as the best compromise between a high compression ratio and
a low reconfiguration time. The above observations on the trade-off between
compression and reconfiguration time are particularly valid for our RT-ICAP
controller, where we aim to reduce the hardware size of the controller as much
as possible. In general, it could be possible to run the controller with a faster
clock than the one of the ICAP interface and to use clock domain crossing and
FIFOs between the controller and the ICAP. In this case, it would be possible to
utilise the ICAP interface at the maximum available speed, at the cost of larger
and more complex hardware implementation.

7.1.3 Synthetic Benchmarks Experiments

This subsection evaluates our configuration approach by investigating the poten-
tial benefits of using DPR to implement hardware accelerators in real-time sys-
tems using synthetic benchmarks. Each benchmark can be considered as a mode
of operation characterised by different computation resources GS requirements.
In the following, we compare a static approach, in which non-reconfigurable accel-
erators are used to implement software tasks, against a reconfigurable approach,
in which DPR is used to switch between accelerators belonging to different modes.
Therefore, we analyse the trade-offs between hardware-resource utilisation and
the computational performance loss due to the reconfiguration time overhead of
DPR, aiming to determine whether the use of DPR can be advantageous over
a static approach. For one of the test cases, we also investigate whether using
DPR to switch between multiple specialised accelerators can provide a lower
WCET bound with respect to the use of a more general one.

Experimental Setup and Benchmarks

The evaluation is carried out using the single-core architecture presented in
Section 5.6 and shown in Figure 5.4. All the hardware results, are produced using
Xilinx Vivado (v16.4) targeting the Xilinx Artix-7 FPGA (model XC7A100T-
1CSG324C). The platin WCET analysis tool presented in Subsection 2.4.3 is used

88 Evaluation and Discussion

to perform the WCET analysis of the accelerated tasks and the reconfiguration
process. The size of the reconfigurable region is 1500 slices, which is equivalent
to 6000 LUTs, 12000 FFs, 30 BRAMs, and 40 DSP elements.

The hardware accelerators used for the evaluation are based on code from
four benchmarks of the TACLe suite, which is a collection of open-source C
programs for timing analysis and real-time related research [113]. For the selected
benchmarks, the computationally intensive part of the program (the algorithm
itself) is manually identified and moved into hardware. The accelerators are
generated using Xilinx Vivado HLS [31], which transforms C code from the
TACLe benchmarks into VHDL. The benchmark is then modified to interact
with the accelerator in order to perform the section of the program that was
moved into hardware. With reference to Figure 5.4, the accelerator uses the
ap ctrl hs interface protocol to communicate with the HwA-ctrl, as defined in [31,
p. 89].

The benchmarks have been chosen to be representative of accelerators working
on large data sets, small data sets, and data streams. The data type used in
all the benchmarks is single-precision floating-point. The functionality of each
benchmark and the associated hardware accelerator are described in the following
list.

• Matrix multiplication: This benchmark executes the multiplication
of two square matrices. For this benchmark, we have generated three
different specialized accelerators for matrices of size 4×4, 16×16, and
32×32. Moreover, we have generated a generic accelerator for matrix
multiplication which can take any given matrix of size up to 32×32. The
latter is used to compare the use of specialised accelerators combined with
DPR against the use of a generic static accelerator.

• Matrix inversion: This benchmark computes the inversion operation
on a square matrix. Similarly to the matrix multiplication, we have also
generated accelerators for matrices of size 4×4, 16×16, and 32×32.

• 2D FIR filter: This benchmark performs a bi-dimensional finite impulse
response (FIR) filtering on a matrix of size M×N using a 3×3 coefficient
mask. This kind of filtering is commonly used for smoothing or sharpening
bi-dimensional data sets. More specifically, the benchmark computes the
cross-correlation between a 3×3 area surrounding each value of the input
matrix and the coefficient mask. Zero-padding is performed at the matrix
edges. For this benchmark, we have generated an accelerator for a matrix
of size 3×3, corresponding to the minimum input matrix size.

• Filterbank: This benchmark implements a bank of with FIR filters for
multi-rate signal processing. The input signal is passed through eight

7.1 Reconfiguration of Computation Resources 89

independent FIR filters. The filtered signals are then down-sampled and
up-sampled again. The up-sampled signals are passed through a second
set of FIR filters and, finally, the outputs are summed together. Normally,
some data processing is performed between the down-sampling and the
up-sampling. In our benchmark, we do not perform any processing. For
this benchmark, we have generated an accelerator where the input data
and the two sets of filter coefficients are passed as arguments.

Reconfiguration Overhead Results

The first set of results aims to characterise the overhead of reconfiguration
over the total WCET of the benchmarks. Three factors contribute to the
WCET of a benchmark: Csw, Chwa, and Trec dpr. The first contribution Csw is
the WCET of the software section of the benchmark. This value is produced
by the platin timing-analysis tool. Csw also includes the WCET of the data
transfer to and from the HwA-SPM and the WCET needed for the setup of the
hardware accelerator. The second contribution Chwa is the time needed by the
accelerator to perform the computation. This result depends on the hardware
architecture of the accelerator, and it is produced by the Vivado HLS tool. The
third contribution Trec dpr is the reconfiguration time needed to perform DPR.
This time interval is computed by our convbitstream tool using Equation 5.1, as
presented in Section 5.5. Table 7.4 presents the values of these three contributions
for all the benchmarks considered in this work, expressed in clock cycles.

The total WCET of a benchmark that uses DPR is denoted Ctot dpr, and it
can be calculated using Equation 7.1, where N is the number of computations
executed by the accelerator after a reconfiguration.

Ctot dpr = Trec dpr +N (Csw + Chwa) (7.1)

The reconfiguration time Trec dpr is an overhead that cannot be avoided. This
means that using reconfiguration always reduces the performances of the systems.
However, its weight depends on the number of times N that the accelerator is
used. To quantify the effect of this overhead, the last column of Table 7.4 (N95 %)
shows the number of times the accelerator needs to be used in order to reach a
performance that is 95 % of that of a static solution. We can observe that, for
the accelerators that perform computationally intensive tasks such as Filterbank
and Matrix multiplication and Matrix inversion operating on 32×32 matrices,
the value of N95 % is very low. Low values of N95 % show that the reconfigurable
solution may be beneficial even if only a small number of computations are

90 Evaluation and Discussion

Table 7.4: Contributions to the WCET in clock-cycles and the number of times
(N95 %) the accelerator has to be used to reach a performance that
is 95 % of the one of a system that uses a static accelerator.

Benchmark Software
(Csw)

Hardware
(Chwa)

Reconfig.
(Trec dpr) N95 %

Matrix mult.
- 4×4 3 203 42 133 436 781
- 16×16 30 345 1 107 130 786 79
- 32×32 114 816 8 351 133 823 21

Matrix inv.
- 4×4 2 307 793 130 772 802
- 16×16 21 363 12 168 131 885 75
- 32×32 78 859 55 223 130 071 18

2D FIR filter 3 174 137 132 098 758
Filterbank 46 450 216 264 132 152 10

5 6 7 8 9 10 11 12 13 14 15 16 17 18

10.84 12.73 14.55 16.29 17.96 19.56 21.10 22.59 24.02 25.40 26.73 28.01 29.25 30.45

54.60 59.07 62.73 65.80 68.40 70.63 72.57 74.27 75.77 77.10 78.30 79.37 80.35 81.23

82.15 84.67 86.56 88.04 89.23 90.20 91.01 91.70 92.29 92.80 93.25 93.64 93.99 94.31

10.60 12.45 14.23 15.94 17.58 19.16 20.68 22.15 23.56 24.92 26.23 27.50 28.72 29.91

55.97 60.40 64.03 67.04 69.59 71.77 73.66 75.31 76.77 78.07 79.23 80.27 81.21 82.07

83.75 86.08 87.83 89.19 90.27 91.16 91.90 92.52 93.06 93.52 93.93 94.28 94.60 94.89

11.14 13.07 14.93 16.70 18.41 20.04 21.61 23.12 24.58 25.98 27.32 28.62 29.88 31.09

90.86 92.26 93.30 94.08 94.71 95.21 95.63 95.98 96.27 96.53 96.76 96.95 97.13 97.28

0

10

20

30

40

50

60

70

80

90

100

1 20

M. mult. 4x4

M. mult. 16x16

M. mult. 32x32

M. inv. 32x32

M. inv. 4x4

M. inv. 16x16

Filterbank

2D FIR filter

N10 155

Relative performance - DPR vs. static (%)

Figure 7.1: Plot showing the performance when using DPR relative to the
performance when using static accelerators for values of N ∈ [1, 20],
calculated as the ratio (Ctot dpr − Trec dpr)/Ctot dpr.

7.1 Reconfiguration of Computation Resources 91

required in a certain mode since the performance reduction is compensated for
by lower hardware cost. This will be discussed in detail in the next subsection.

Figure 7.1 provides additional insight into the relation between reconfiguration
overhead and the number of times, N , that the hardware accelerator is used.
The figure shows the performance when using DPR, relative to the one of a static
solution, for values of N ∈ [1, 20]. The relative performance is calculated as the
ratio (Ctot dpr − Trec dpr)/Ctot dpr. In the figure, we can observe how results for
benchmarks characterised by similar computation complexity tend to cluster
together. In the top of the plot, we can find the curves related to Filterbank
and the benchmarks operating on 32×32 matrices. Right below, in the second
group, we can find the curves related to the benchmarks operating on 16×16
matrices. For these two groups, the solution using DPR becomes comparable to
the static approach, in terms of computational performance, even for low values
of N . Finally, the curves related to the 2D FIR filter and to the benchmarks
operating on 4×4 matrices are located in the lower part of the plot, showing
that it is unlikely that a real application can benefit from using DPR unless a
very large amount of computations are performed between reconfigurations.

Hardware Cost

One of the advantages of using DPR for the reconfiguration of computation
resources is the possibility to reduce the overall hardware size of the system.
This can be achieved by sharing the reconfigurable region between the hardware
resources that are only utilised for a limited amount of time (e.g., only during
a specific mode of operation). Table 7.5 shows the hardware cost results in
terms of LUTs, FFs, BRAMs, and DSP elements for the main components of the
hardware platform (shown in Figure 5.4) and for all the hardware accelerators
used for this set of experiments.

Considering a hypothetical application where the functionality of each benchmark
is a mode of operation, we can observe that the minimum size of the reconfigurable
region should be enough to contain the largest hardware requirements across all
the hardware accelerators. In our case, this corresponds to 5 126 LUTs, 7 411 FFs
and 3 BRAMs to fit the Filterbank accelerator, and 20 DSP elements to fit the
Matrix multiplication and Matrix inversion accelerators. The last two rows of the
table report the total hardware cost of the static and the reconfigurable solutions.
The total cost for a static solution includes the processor, the HwA-controller,
the accelerators operating on 32×32 matrices (these are able to operate also on
smaller matrices), the Filterbank accelerator, and the 2D FIR filter accelerator.
The total cost for a solution that uses DPR includes the processor, the HwA-
controller, the RT-ICAP controller, the bit-stream SPM, and the largest resource

92 Evaluation and Discussion

Table 7.5: Hardware cost results for the hardware platform and all the acceler-
ators used in the experiments.

Entity LUT FF BRAM DSP
Patmos 4 931 3 602 8.5 4
HwA controller 7 4 0 0
RT-ICAP controller1 289 105 0 0
Bit-stream SPM1 72 7 64 0
Matrix mult.

- 4×41 1 270 1 138 0 20
- 16×161 1 979 2 523 0 20
- 32×32 2 763 4 048 0 20

Matrix inv.
- 4×41 2 051 2 017 0.5 5
- 16×161 3 425 3 725 0.5 20
- 32×32 4 080 4 636 0.5 20

2D FIR filter 1 816 1 987 0 10
Filterbank 5 126 7 411 3 10
Generic matrix mult.1, 2 2 912 4 037 0 5
Total cost static 18 723 21 688 12 64
Total cost DPR 10 425 11 129 75.5 24

1 Not included for the total hardware cost for the static solution.
2 Results used for the specialised vs. generic accelerator evaluation.

requirements across the accelerators. Using the total cost for a static solution as
a baseline, the reconfigurable solution leads to the saving of around 44 % of LUTs,
49 % of FFs and 62 % of DSP elements. However, since the RT-ICAP controller
works in SPM-stream mode, the utilisation of BRAMs is considerably higher in
the reconfigurable solution. If these memory resources are needed by the system,
the CPU-stream mode or pre-fetching can be used to eliminate or reduce the
BRAM consumption. Taking into account the hardware cost results and the
performance results previously presented, we can conclude that in our case, for a
value of N sufficiently high, DPR leads to a more efficient use of FPGA resources
and delivers comparable computational performance with respect to a static
solution.

7.1 Reconfiguration of Computation Resources 93

Table 7.6: Size, reconfigurable region utilisation, and compression ratio of the
bit-streams for all the benchmark. The compression ratio accounts
for the RLE compression performed by the convbitstream tool.

Benchmark Bit-stream
size (KB)

Rec. region
utilization

Compression
ratio

Matrix mult.
- 4×4 209.3 35 % 2.3
- 16×16 274.3 62 % 1.7
- 32×32 328.1 83 % 1.5

Matrix inv.
- 4×4 217.9 49 % 2.2
- 16×16 336.1 86 % 1.4
- 32×32 354.5 94 % 1.3

2D FIR filter 233.8 49 % 2.1
Filterbank 369.8 100 % 1.3

Bit-Stream Size and Compression Ratio

As previously explained, we apply compression in the bit-streams in order to
maximise the number of bit-streams that can be stored locally in the SPM. Ta-
ble 7.6 reports the size, the reconfigurable region utilisation, and the compression
ratio of the partial bit-streams for all the benchmarks. The bit-stream size shown
in the table refers to the bit-stream compressed with our RLE compression.
The utilisation is the percentage of the reconfigurable region, in term of slices,
used by the hardware accelerator implemented in it. The compression ratio is
defined as the size of the uncompressed bit-stream divided the by the size of the
compressed one.

From the results, we can observe that the RLE compression produces bit-streams
ranging from 1.3 to 2.3 times smaller than the original size, with an average
compression ratio of 1.7. This leads to a memory saving of 1.5 MB over a total
size of 3.7 MB needed for storing all uncompressed bit-streams. As expected,
the compression delivers a higher ratio for those accelerators that have lower
utilisation of the reconfigurable region, since these bit-streams contain long runs
of zeros for the unused logic.

94 Evaluation and Discussion

Comparison with Software

In this set of experiments, we evaluate the speed-up in terms of WCET between
the solution that uses hardware accelerators in combination with DPR and a
pure software solution. As previously explained, using a reconfigurable solution
instead of a static one introduces an overhead that decreases with the number of
computations N executed by the accelerator after a reconfiguration. For this
set of experiments, we evaluate the speed-up assuming N = N95% (reported in
the last column of Table 7.4). Table 7.7 presents the WCET and the speed-up
results for all the benchmarks. All WCETs listed in the table are normalised
with respect to N , in order to show the WCET of a single execution.

The Patmos processor is not equipped with a floating-point unit. Therefore,
to execute floating-point operations, it utilises equivalent software functions
from the LLVM project [43, 116]. Comparing a solution that uses floating-point
accelerators against software running on a processor that is not equipped with
a floating-point unit can produce biased results, since the speed-up does not
characterise the ability of the accelerator to exploit parallelism, but mainly the
speed-up related to faster floating-point operations. To have a fairer comparison,
in addition to the results where the floating-point operations are executed in
software, we also present results for the software benchmarks that use 32-bit
integer data instead of single-precision floating-point, since these operations are
supported in hardware by the processor. For the pure software solution, the data
to be processed is placed in the local SPM as it is done in the accelerator-based
solution. This avoids data cache misses to be accounted into the WCET.

The first column of the table reports the WCET of the reconfigurable solution
Ctot dpr computed using Equation 7.1 and the values presented in Table 7.4.
The second and third columns present the WCET of the pure software solution
obtained with the WCET analysis tool platin for floating-point Csw fp and
integer data types Csw int, respectively. Finally, the last two columns show the
speed-up calculated as the ratio between the WCET of the solution that uses
accelerators in combination with DPR and a pure software solution.

From the results, we can observe that the speed-up results for the software
using the floating-point data type are very high. As previously mentioned, this
can be explained by the fact that Patmos is not equipped with a floating-point
unit. The speed-up results for the software using the integer data type are more
realistic and give a concrete grasp of the value that can be obtained by using
reconfigurable accelerators, which deliver speed-ups for the WCET ranging from
1.2 to 4.1. In one case, for the 4×4 Matrix multiplication, the speed-up is less
than 1. This means that the reconfigurable accelerator solution performs worse
than the software one. This can be explained by the fact that the execution time

7.1 Reconfiguration of Computation Resources 95

T
ab

le
7.

7:
W

C
E

T
an

d
re

la
tiv

e
sp

ee
d-

up
fo

r
th

e
so

lu
tio

n
th

at
us

es
ac

ce
le

ra
to

rs
in

co
m

bi
na

tio
n

w
ith

D
PR

an
d

pu
re

so
ftw

ar
e

so
lu

tio
ns

us
in

g
flo

at
in

g-
po

in
t

an
d

in
te

ge
r

da
ta

ty
pe

s.

B
en

ch
m

ar
k

H
w

A
+

D
PR

(C
to

t
d

p
r
)

So
ftw

ar
e

(fl
oa

t.)
(C

s
w

f
p
)

So
ftw

ar
e

(in
t.)

(C
s
w

in
t
)

Sp
ee

d-
up

(fl
oa

t.)
Sp

ee
d-

up
(in

t.)
M

at
rix

m
ul

t.
-4
×

4
34

16
20

84
51

17
25

61
.0

0.
5

-1
6×

16
33

10
8

13
07

27
87

71
49

3
39

4.
9

2.
2

-3
2×

32
12

95
40

10
43

01
20

4
53

05
34

80
5.

2
4.

1
M

at
rix

in
v.

-4
×

4
32

63
28

00
84

48
89

4
85

.8
15

.0
-1

6×
16

35
28

9
14

60
71

72
49

71
90

41
3.

9
15

.1
-3

2×
32

14
13

08
11

36
17

92
4

21
69

67
0

80
4.

0
15

.4
2D

FI
R

fil
te

r
34

85
47

14
60

41
55

13
5.

3
1.

2
Fi

lte
rb

an
k

27
59

29
86

41
06

38
3

15
27

92
71

31
31

.6
55

.4

96 Evaluation and Discussion

Table 7.8: WCET results for general and specialized accelerators, reconfigura-
tion time for the specialized accelerators, and the minimum number
of operations N100 % for which using DPR becomes advantageous in
terms of performance. The results are in clock cycles.

4×4 16×16 32×32
Generic HwA 8 028 49 438 152 933
Specialized HwA 3 245 31 452 123 167
Reconfig. time 133 436 130 786 133 823
N100 % 28 8 5

of the benchmark is dominated by data transfer and the acceleration provided
by using hardware is not enough to compensate for the reconfiguration overhead.
In contrast, the execution time of the Filterbank benchmark is dominated by
computation with little data transfer, leading to a speed-up of one order of
magnitude higher than the other benchmarks.

Specialised vs. Generic Accelerator Trade-off

In this last set of results, we aim to determine what benefits can be derived
from the use of specialised hardware accelerators combined with DPR instead
of a generic one. As previously mentioned, for Matrix multiplication we have
generated specialized accelerators for matrix sizes of 4×4, 16×16, 32×32, and
a generic accelerator that can take in input matrices of any size up to 32×32.
The specialised accelerators execute the multiplication of a specific matrix size
faster than the generic one. The idea is to investigate the trade-offs between
using DPR to switch between the use of multiple specialised accelerators and
the use of a static generic accelerator. The trade-offs are measured in terms
of WCET and hardware utilisation. Table 7.8 shows the WCETs, in clock
cycles, for both the specialised accelerators and the generic one for the Matrix
multiplication benchmark for the three different matrix sizes. The table also
shows the reconfiguration time for the specialised accelerators.

In contrast to the experiment evaluating the reconfiguration overhead, where
the solution using reconfiguration is always slower than the static one, in this
experiment the solution using reconfiguration can be faster since the specialised
accelerators are faster than the generic ones. After a certain amount of computa-
tions, the overhead introduced by the reconfiguration time will be compensated
for by the speed difference between the specialised and the generic accelerators.
The value N100 %, shown in the last row of Table 7.8, is the threshold value

7.2 Reconfiguration of Communication Resources 97

of N (number of times the accelerator is used) for which the generic and the
specialised accelerators, including reconfiguration, are equivalent in performance.
For values of N > N100 %, the use of the specialised accelerator combined with
reconfiguration outperforms the general accelerator.

In terms of hardware cost, it is possible to observe from Table 7.5 that the
minimum size of the reconfigurable region should be enough to contain the
specialised 32×32 Matrix multiplication accelerator. This size is smaller than
the resources needed to implement the generic accelerator (third to last row of
Table 7.5).

7.2 Reconfiguration of Communication
Resources

This section presents the evaluation of the architecture and of the proposed
reconfiguration approach with regards to the reconfiguration of communication
resources. At first, the Argo 2 NoC architecture is evaluated in terms of hardware
cost and maximum operating frequency. Then, the reconfiguration technique of
Argo 2 is evaluated in terms of schedule size and worst-case performance, using
synthetic traffic. The results presented in this section were in part published
and obtained in collaboration with the co-authors of the papers [J3] and [C5] in
our list of publications.

7.2.1 Argo 2 Characterization

This subsection evaluates the hardware cost and the maximum operating fre-
quency of the Argo 2 FPGA implementation compared with the original Argo
NoC and with some of the NoCs presented as related work in Section 3.2. The
results are produced using Xilinx ISE Design Suite (version 14.7) targeting the
Xilinx Virtex-6 FPGA (model XC6VLX240T-1FFG1156). All the synthesis
properties are set to their defaults, with the only exception of the synthesis
optimisation goal, which is set to area or speed.

Table 7.9 presents the hardware cost in terms of LUTs, FFs, and BRAMs for
one 5-ported router and one NI. The NI used to produce the results is equipped
with 256-entries schedule table and 64-entries DMA table. These tables are
implemented using BRAMs. We consider these sizes reasonable for a large
platform (≥ 16 nodes). The table reports two set results, optimised for area or
speed, for both the Argo 2 and the original Argo NoCs.

98 Evaluation and Discussion

Table 7.9: Hardware cost and maximum operating frequency of the Argo 2
and the original Argo NoC architectures, for one 5-port router and
one NI. The NI is equipped with 256-entries schedule table and
64-entries DMA table.

Optimized for area Optimized for speed
Argo Argo 2 Argo Argo 2

LUT 926 1 071 1 155 1 358
FF 897 908 923 931
BRAM 4 4 4 4
fmax (MHz) 155 166 167 179

From the results in Table 7.9, we can observe that our extension of the original
Argo with the hardware needed to support reconfiguration, variable length
packets, and interrupt and configuration packets only adds a small amount of
hardware resources overhead. The Argo 2 NoC is around 16 % larger in terms of
LUTs and 1 % larger in terms of FFs. With regards to the maximum operating
frequency, Argo 2 is around 7 % faster than the original Argo.

Table 7.10 shows the comparison of the Argo 2 NoC to the aelite, dAElite [90],
and IDAMC [84] NoCs. The aelite and dAElite [90] NoCs are TDM-based. The
IDAMC [84] NoC uses a classic router designed with VC buffers and flow control.
The table shows the results of the four architectures for one NI and one 3-ported
router. The table also reports the number of schedule table and DMA table
entries per node used in the experiment (2 entries are the minimum for the DMA
table in Argo 2). The results related to the aelite and dAElite NoCs we compare
against are available for a 2-by-2 platform with mesh topology, from which we
derived the hardware consumption of one 3-ported router and one NI. For a fair
comparison, we forced the synthesis tool to use FFs to implement memory in
the Argo 2 NI.

From the results in Table 7.10, we can observe that the Argo 2 NoC implementa-
tion is overall smaller than the other NoCs. Moreover, the results show that the
numbers for the IDAMC NoC are much higher than that of the aelite, dAElite,
and Argo 2 NoCs. This can be explained considering that using VC buffers and
flow control mechanisms is more complex than a TDM-based approach. With
regards to the maximum operating frequency, the Argo 2 implementation is
comparable to aelite and dAElite for a 3-port router. The operating frequency
results for the IDAMC NoC are not available for comparison. Finally, we can
observe that the Argo 2 5-port router implementation optimised for area (results

7.2 Reconfiguration of Communication Resources 99

Table 7.10: Hardware resources utilization and maximum operating frequency
of the Argo 2 architecture and three similar designs for one 3-port
router and one NI.

Optimized for area Optimized for speed
aelite dAElite Argo 2 aelite dAElite Argo 2 IDAMC

Sch. tab. entries 8 8 8 8 8 8 –
DMA entries 1 1 2 1 1 2 8
LUT 1 916 2 506 1 185 2 351 3 117 1 342 9 160
FF 3 861 3 081 1 021 3 960 3 243 1 047 5 462
BRAM 0 0 0 0 0 0 7
fmax (MHz) 119 122 125 200 201 204 n/a

in Table 7.9) is around 33 % faster than the 3-port one. This is due to the use of
FFs to implement memory, instead of BRAMs.

7.2.2 Synthetic Traffic Experiments

This section evaluates the Argo 2 NoC in terms of schedule size, worst-case
reconfiguration time, and worst-case schedule transmission time. For the experi-
ments, we use synthetic communication traffic patterns derived from the MCSL
benchmark suite [117] and an All-to-all schedule. The target platform size is
4-by-4 with a bi-torus topology.

Schedule Size

In the following, we evaluate the schedule size for all the benchmarks. Table 7.11
shows the minimum and the maximum number of bytes needed to store the
schedule in the schedule table of one node in the platform. Moreover, it reports
the minimum and maximum number of VCs of one node in the platform. The
sum of the maximum schedule table sizes of all the benchmarks is 696 bytes
for one node. Therefore, this value represents the minimum schedule table size
that is required to store all the schedules at the same time. We believe that
in most cases, a schedule table size of 1 KB is sufficient to store the schedules
associated with all the modes of an application, avoiding the need to transmit a
new schedule from the reconfiguration master to all the other cores through the
NoC.

100 Evaluation and Discussion

Table 7.11: Minimum and maximum number of bytes needed to store the
schedule in the schedule table, and minimum and maximum number
of VCs for one node in the platform.

Benchmark
Sched. table Number
size (Byte) of VCs
min max min max

FFT-1024 52 108 13 27
Fpppp 56 108 13 26
RS-dec 24 76 4 18
RS-enc 20 68 1 16
H264-720p 20 72 1 16
Robot 32 84 1 15
Sparse 8 60 1 15
All-to-all 60 120 15 30

Table 7.12 shows the number of schedule table entries for the original Argo NoC
and the Argo 2 NoC, and the reduction in the number of entries delivered by
the compact schedule representation used in Argo 2. In the original Argo NoC,
the number of entries is the same in all the nodes, while for the Argo 2 NoC
the size varies between nodes. Therefore, for the Argo 2 NoC, the Table 7.12
reports the average number of entries. From the results, we can observe that
the average reduction in the number of schedule table entries of each node due
to the schedule format adopted in Argo 2 is 58 %. This does not imply that
the memory requirements for the schedule table are smaller for the Agro 2 NoC,
but only that there are fewer entries in the table. If the implementation targets
FPGAs, where the data width of the BRAMs used to implement the schedule
table is fixed (typically 18 bits), having fewer entries may also reduce the overall
BRAM requirements. To a certain extent, this may mitigate the impact on the
memory requirements of having to store multiple schedules at the same time in
the NIs to perform an instantaneous reconfiguration.

Worst-Case Reconfiguration Time

The worst-case reconfiguration time Trec noc in the case where the new schedule
is already stored in the schedule table of the NIs depends only on the currently
executing schedule, and it is three times its period, as explained in Section 6.4.
Equation 6.1 (presented in Section 6.4) can be used to calculate the worst-case
reconfiguration time. Table 7.13 reports the TDM schedule period Pcurr and

7.2 Reconfiguration of Communication Resources 101

Table 7.12: The number of schedule table entries in each core of the original
Argo NoC and the average number of entries in the Argo 2 NoC.

Benchmark Original Argo Argo 2 Reduction
(entries) (entries) (%)

FFT-1024 21 15 28.6
Fpppp 40 16 60.0
RS-dec 30 8 73.3
RS-enc 28 6 78.6
H264-720p 30 7 76.7
Robot 57 10 82.5
Sparse 9 4 55.6
All-to-all 18 16 11.1

Table 7.13: TDM schedule period Pcurr and worst-case reconfiguration time
Trec noc, starting from each benchmark as the current schedule.

Current schedule Pcurr Trec noc

FFT-1024 74 222
Fpppp 95 285
RS-dec 77 231
RS-enc 73 219
H264-720p 78 234
Robot 127 381
Sparse 30 90
All-to-all 75 225

the worst-case reconfiguration time Trec noc, starting from each benchmark as
the current schedule.

From the results, we can observe that in Argo 2 it is possible to switch the
complete schedule in a time interval between 90 and 381 clock cycles. In Æthereal
and dAElite, the reconfiguration mechanism involves tearing down and setting
up VCs individually, which requires respectively 246 clock cycles for Æthereal
and 60 clock cycles for dAElite [90]. For comparison, we consider the case
where the NoC performs a reconfiguration from benchmark RS-dec to benchmark
RS-enc. RS-dec has a maximum of 18 outgoing VCs and RS-enc a maximum of
16 outgoing VCs per node. We also assume that two-thirds of the VCs stay the
same between the two configurations, resulting 6 VCs to be torn down and 4
VCs to be set up. On dAElite this would require (6 + 4) · 60 = 600 clock cycles.
In Argo 2 this reconfiguration from RS-dec to RS-enc needs 231 clock cycles.

102 Evaluation and Discussion

Table 7.14: Worst-case schedule transmission time Tsend sched between the
schedules of all the benchmarks.

Current
schedule

New schedule
FF

T-
10

24
Fp

pp
p

RS
-d

ec

RS
-en

c

H26
4-

72
0p

Ro
bo

t

Sp
ar

se

All-
to

-a
ll

FFT-1024 – 2 010 1 418 1 270 1 341 1 560 1 122 2 229
Fpppp 2 577 – 1 814 1 624 1 716 2 004 579 2 862
RS-dec 2 091 2 088 – 1 318 1 398 1 626 1 164 2 316
RS-enc 1 983 1 980 1 396 – 1 326 1 548 1 104 2 196
H264-720p 2 115 2 112 1 494 1 338 – 1 644 1 176 2 355
Robot 3 435 3 438 2 422 2 174 2 292 – 1 914 3 822
Sparse 822 549 579 519 546 639 – 912
All-to-all 2 034 2 037 1 431 1 281 1 365 1 587 1 137 –

We can conclude that, in the case where two modes differ by more than few VCs,
Argo 2 is characterised by a shorted reconfiguration time than Æthereal and by
a comparable or shorter reconfiguration time than dAElite.

Worst-Case Schedule Transmission Time

In the case where the new schedule is not stored in the schedule table, Equation 6.2
(presented in Section 6.4) can be used to calculate the worst-case transmission
time Tsend sched needed by the reconfiguration master to transfer a schedule to
all the NIs. The worst-case transmission time depends on the characteristics of
the current schedule and on the size of the new schedule. Table 7.14 reports
the worst-case transmission time Tsend sched between the schedules of all the
benchmarks. The first column shows the currently active schedule. The rest of
the columns report the Tsend sched needed to transmit the new schedule indicated
as column heading.

From the results in Table 7.14, we can observe that Tsend sched ranges between
519 and 3822 clock cycles. Overall, the Sparse benchmark has the lowest values of
Tsend sched, due to the fact that it is characterised with the shorted TDM period
and, therefore, the highest bandwidth between the reconfiguration master and all
the other nodes. When the schedule needs to be transmitted, the reconfiguration
time of the Argo 2 NoC is still comparable with the one of the Æthereal and
dAElite NoCs. For example, the maximum Tsend sched of 3822 clock cycles is for

7.3 Audio DSP Application 103

the switch from Robot to All-to-all, which corresponds to the reconfiguration of
255 VCs. In the same time interval, the Æthereal and dAElite NoCs can set up
16 and 64 VCs, respectively.

7.3 Audio DSP Application

This section presents an evaluation for both the reconfiguration of computation
and communication resources carried out using a real-time audio DSP application.
At first, we give an overview of the goals of this case study, and we present the
overall functionality of the audio DSP application. Then, we present the hardware
platform on which the application executes. This is followed by an explanation of
the audio effects implemented in software and the ones implemented in hardware.
Finally, we present and discuss the result in terms of reconfiguration time and
hardware cost.

7.3.1 Overview

This case study aims to shows that the presented approaches for reconfiguration
of both computation and communication resources can be effectively used in
real-world embedded applications. Moreover, it further evaluates the presented
architectures and techniques. To do this, we have supplemented a real-time DSP
audio application with the reconfiguration feature. The application was first
developed for the T-CREST multi-core platform and presented in the paper [C3]
in our list of publications.

The DSP audio application functionality is based on a homogeneous synchronous
data-flow model of computation [118]. In this model of computation, a digital
signal is processed by a statically ordered sequence of actors. When an actor
receives enough input tokens, it starts the computation to produce output tokens.
In our case, the tokens are stereo samples of an audio signal, and the actors are
audio effects running on processors or implemented in hardware. In other words,
the DSP audio application consists of a sequence of audio effects applied to a
continuous stream of data.

The individual effects, indicated with FXi, can be modelled as a processing
task equipped with an input buffer and an output buffer. Therefore, the audio
application can be modelled as a chain of communicating task where the effect
FXi+1 depends on the data produced by the effect FXi. The first effect of the
processing chain receives in input the audio samples from an analog-to-digital

104 Evaluation and Discussion

converter (ADC) buffer and the last effect produces samples in output for the
digital-to-analog converter (DAC) buffer. For simplicity, in this case-study, we
use audio effects operating on a single sample. The execution steps performed
by an effect are:

1. The effect receives the sample in the input buffer from the previous effect
in the system (or from the ADC buffer if it is the first effect).

2. The sample is processed according to the DSP algorithm that the current
effect implements. When processing is complete, the produced sample is
stored in the output buffer.

3. The effect sends the data from its output buffer to the input buffer of the
next effect in the system (or to the DAC buffer if it is the last effect).

The effects can be mapped to different cores of the platform, and multiple
subsequent effects can be mapped to the same core. When effects are mapped to
the same core, the output buffer of effect i coincides with the input buffer of effect
i+ 1, and it is stored in the local SPM of the core itself. The communication
between effects mapped to different cores is achieved using the VCs offered by
the message-passing NoC Argo 2. In this case, the output buffer of effect i is
stored in the local SPM of the sending core, the input buffer of effect i+ 1 is
stored in the local SPM of the receiving core, and the transfer between the two
buffers is managed by the DMAs in the NIs of the Argo 2 NoC.

Figure 7.2 shows an example of a set of four effects mapped to three cores and
the respective communication channels. Effect FX0 is mapped to P0, effects FX1
and FX2 are mapped to P1, and effect FX3 is mapped to P2. The communication
channel C12 is a same-core channel, while the rest are NoC channels. The ADC
and DAC buffers are large buffers located respectively in the input and the
output of the processing chain. In our hardware platform, these are connected
to processor P0, as explained later. Once pre-filled with a predetermined amount
of samples, these buffers can compensate for temporary interruptions of the data
stream in the processing chains, such as in case of a cache miss.

The system uses a flow control communication paradigm to exchange data. The
execution of each effect is triggered by a new sample in the input buffer and data
is sent from the output buffer to the next effect as soon as it is available. The flow
control communication mechanism provides the system with elasticity since the
samples may be located in different elements of the platform at different times,
depending on the execution time of the single effects. However, the number of
samples in the effect chain is constant at any moment in time, and it corresponds
to the latency of the system.

7.3 Audio DSP Application 105

P0

ADC buffer

DAC buffer

FX0 FX1

FX2FX3

Audio in

Audio out

P1

P2

C01

C12

C23

C20

Figure 7.2: An example of a set of four effects FX0, FX1, FX2, and FX3
mapped to three processors P1, P2, and P3. The communication
channels between the effects are also shown.

The mapping of effects to the platform cores is executed at compile-time by
a tool that, depending on the desired chain of effects, the sampling period,
and the WCET of each effect, allocates the effects aiming to maximise the
utilisation of the processing resources. After allocation, the tool provides the GS
communication requirement between the nodes, which can be used as input to
the TDM scheduler of the Argo 2 NoC.

The original DSP application does not support NoC reconfiguration and audio
effects implemented in hardware. For this case study, we have modified the
application and the hardware platform on which it is running to include multiple
modes of operation, NoC reconfiguration, and to support reconfigurable hardware
implementations of audio effects.

7.3.2 Hardware Platform

The original DSP application was developed targeting the Terasic DE2-115
development board, which is equipped with an Intel FPGA. Since we target
Xilinx FPGAs, we have ported the application and the hardware platform to the
Digilent Genesys 2 development board, which is equipped with a Xilinx Kintex-7
FPGA (XC7K325T-2FFG900C). All the results related to this case study are
related to this FPGA model and are produced using Xilinx Vivado (v16.4). In
addition to porting the hardware platform to the Genesys 2 board, we have also
included a reconfigurable region where hardware effects are implemented and
reconfigured during a mode change. We also added the RT-ICAP controller, the

106 Evaluation and Discussion

bit-stream SPM, and additional infrastructure needed to preserve the continuity
of the audio data stream during reconfiguration.

Figure 7.3 shows a block diagram of the hardware platform used for this case
study. The T-CREST multi-core platform is shown at the right end of the figure,
and it consists of four Patmos processors, the message-passing Argo 2 NoC,
and the memory access NoC. The latter provides access to the off-chip memory
through a memory controller. Processor P0 has the role of reconfiguration
master for both computation and communication resources. Therefore, the
hardware infrastructure needed to support time predictable DPR, consisting of
the RT-ICAP controller and the bit-stream SPM, is connected to this processor,
as shown in the top-left end of Figure 7.3. Processor P0 is also the master core
for the DSP audio application. Therefore, it is connected to the ADC and DAC
buffers for receiving the input samples and sending the output processed sample.

The Genesys 2 board includes an Analog Devices ADAU1761 audio codec
chip [119]. This chip executes the analog-to-digital and digital-to-analog con-
version of the audio signal and also offers additional functionalities such as
volume control, mute, etc. The ADAU1761 audio codec provides and receives
audio samples through a dedicated serial interface that uses the inter-integrated
circuit sound (I2S) protocol, as shown in Figure 7.3. A serialiser/deserialiser
block is used to interface the ADAU1761 with our system, which uses a parallel
representation of the samples (i.e. data and a valid bit). The ADAU1761 audio
codec needs to be initialised and controlled through an interface based on the
inter-integrated circuit (I2C) protocol. This is managed by processor P0 through
a dedicated Audio controller block, as shown in the figure.

The hardware platform includes a reconfigurable region for hosting the effect
implemented in hardware. For this case study, the reconfigurable region is
connected to the input audio stream, as shown in Figure 7.3. This means that
the effect implemented in hardware can only be the first one of the processing
chain. We consider this sufficient for a proof-of-concept application. In the
general case, reconfigurable regions hosting effects implemented in hardware
could be placed anywhere in the processing chain. We placed the bypass buffer
Bypass 0 parallel to the reconfigurable region. This buffer has the same latency
as the hardware effect implemented in the reconfigurable region, and it provides
an alternative path for the samples during DPR. The multiplexer MUX 0
selects from the Bypass 0 output and from the reconfigurable region output.
Moreover, MUX 0 also decouples the reconfigurable region during DPR. A similar
approach is implemented by the bypass buffer Bypass 1 and the multiplexer
MUX 1 for the processing executed in software on the multi-core platform during
NoC reconfiguration. Processor P0, which manages the reconfiguration process,
controls these multiplexers through the Audio controller block. Even if the
reconfiguration process is extremely fast compared to the sampling frequency,

7.3 Audio DSP Application 107

OCP bus

Memory controller

Off-chip memory

Memory access NoC

(P
0)

Message-passing Argo 2 NoC

F
P
G

A

(P
1)

(P
2)

(P
3)

P
at

m
os

p
ro

ce
ss

or

P
at

m
os

pr
oc

es
so

r

P
at

m
os

pr
oc

es
so

r

P
at

m
os

pr
oc

es
so

r
A

ud
io

co
nt

ro
lle

r

R
T

-I
C
A

P
co

nt
ro

lle
r

B
it
-s

tr
ea

m
S
P
M

ADAU1761 audio codec

Serialiser/Deserialiser

M
U

X
_
1

MUX_0
R
ec

on
fi
g.

 r
eg

io
n

H
W

ef
fe

ct

B
yp

as
s_

0

Bypass_1

A
D

C
 b

u
ff
er

D
A

C
 b

u
ff
er

I2S I2C

S
el

_
0

S
el

_
1 S
el

_
0/

S
el

_
1

Audio in A
u
d
io

 o
u
t

A
n
al

og
au

d
io

IC
A

P

in
te

rf
ac

e

F
ig

ur
e

7.
3:

A
bl

oc
k

di
ag

ra
m

of
th

e
ha

rd
w

ar
e

pl
at

fo
rm

us
ed

fo
r

th
e

au
di

o
D

SP
ap

pl
ic

at
io

n
ca

se
st

ud
y.

108 Evaluation and Discussion

the temporary interruption in the sample stream would result in an audible
‘click’ in the processed audio. Using bypass buffers prevents these interruptions,
making the reconfiguration process imperceptible in the processed audio.

The operating frequency of the hardware platform is 100 MHz. The sampling
frequency used by the ADAU1761 audio codec is 48 KHz and each sample consists
of two 16-bit words (signed integer): one for the right channel and one for the
left channel. Once having received a sample in input, each effect must be able to
produce a sample in output and send it to the next actor in an interval of time
that is shorter than the sampling period (i.e. 2083 clock cycles in our case). In
Subsection 7.3.4, we show that the WCET of each effect implemented in software
is less than the sampling period.

7.3.3 Effects and Modes of Operation

For this case study, we use six audio effects implemented in software and four
effects implemented in hardware. The following list provides a brief description of
the effects implemented in software, which were already available in the original
DSP application. Further details on the DSP algorithms used in the effects can
be found in [120].

• DRY: It just copies the input signal to the output with no processing
performed. Useful for test and debugging purposes.

• WAHWAH: It is a band-pass filter applied on the original signal, where
the central frequency of the filter is modulated.

• OVERDRIVE: It is a modulation effect that applies wave-shaping to
enhance the character of the signal by adding some harmonic content to it.

• DELAY: It sums the original signal with a set of delayed attenuated
replicas; thus, generating an echo.

• CHORUS: It is a set of second order comb filters, which generates a
‘choir’ effect.

• TREMOLO: It modulates the amplitude of the original signal, generating
a ‘vibration’ effect.

The effects implemented in hardware are FIR filters. The coefficients and the
hardware implementation of the filters are generated with MATLAB [121]. The
order of all the filters is 50 and the latency is 9 samples, which corresponds to

7.3 Audio DSP Application 109

the pipeline depth of the hardware implementation. The following list provides
a brief description of the effects implemented in hardware:

• PASS: It copies the input signal to the output introducing a latency of 9
samples to match the other filters.

• LOW-PASS: It is a low-pass filter characterised by a cutting frequency
of 700 Hz.

• HIGH-PASS: It is a high-pass filter characterised by a cutting frequency
of 3500 Hz.

• BAND-PASS: It is a band-pass filter characterised by a low cutting
frequency of 500 Hz and a high cutting frequency of 3400 Hz. The human
voice belongs to this range of frequencies.

The DSP application we developed for this case study has 16 modes of operation.
Each mode of operation is characterised by a specific chain of software effects
running on the multi-core platform and by one of the hardware effects imple-
mented in the reconfigurable region. We indicate the modes with Mij , i, j ∈ [0, 3].
The index i specifies which hardware effect is implemented in the reconfigurable
region in the current mode according to Table 7.15. The index j specifies which
chain of software effects is running on the multi-core platform in the current mode
according to Table 7.16. By combining the information of Table 7.15 and 7.16, it
is possible to identify the complete chain of effects for each of the 16 modes. For
example, mode M13 consists of LOW-PASS, CHORUS, and TREMOLO. Mode
M00 does not execute any DSP processing on the audio signal (PASS, DRY,
DRY).

Table 7.16 specifies, in parenthesis, to which processor of the multi-core platform
each effect is mapped. The last column of the table shows the VCs that the NoC
must offer in each mode. The message-passing library requires two VCs between
each couple of communication processors: a forward VC for sending the data
and a return VC for acknowledgement and synchronisation [52]. The required
GS bandwidth offered by the NoC must be sufficient to move samples between
cores at a rate of at least 1 sample every 2083 clock cycles (48 KHz sampling
frequency with 100 MHz operating frequency). It should be noted that no effects
are mapped to processor P0 since this core has the role of reconfiguration master
for both computation and communication resources. However, NoC channels
for the audio stream are needed to and from this processor, since P0 is also the
audio master processor connected to the ADC and DAC buffers (see Figure 7.3).

110 Evaluation and Discussion

Table 7.15: Hardware effect implemented in the reconfigurable region for each
mode of operation.

Mode Hardware effect
in reconf. region

M0x PASS
M1x LOW-PASS
M2x HIGH-PASS
M3x BAND-PASS

Table 7.16: Chain of software effects and sets of VCs that the NoC must offer in
each mode of operation. The processor of the multi-core platform
in which each effect is mapped is reported in parenthesis.

Mode Chain of software effects Required VCs
Mx0 DRY (P1) → DRY (P1) P0 ↔ P1, P1 ↔ P0
Mx1 WAHWAH (P1) P0 ↔ P1, P1 ↔ P0
Mx2 OVERDRIVE (P1) → DELAY (P2) P0 ↔ P1, P1 ↔ P2, P2 ↔ P0
Mx3 CHORUS (P1) → TREMOLO (P2) P0 ↔ P1, P1 ↔ P2, P2 ↔ P0

7.3.4 Observations and Results

As previously mentioned, the main goal of this case study is to show that the
presented approach to reconfiguration can be successfully used in real-world
applications. In the following, we present some observations on the implications of
using reconfiguration in the DSP application and we provide and discuss results in
terms of reconfiguration time for both computation and communication resources
and hardware cost.

The first observation regards the techniques we have used to maintain the number
of samples that are in the entire effects chain constant during reconfiguration.
During a mode change that requires changing the effect implemented in hardware,
the master processor performs the following operations:

1. It diverts the audio stream through the Bypass 0 buffer.

2. It triggers the RT-ICAP controller to perform DPR of the hardware effect.

3. It waits for the hardware effect to fill with samples.

4. Finally, it diverts back the audio stream from the reconfigurable region

7.3 Audio DSP Application 111

A mode change that requires changing the effects implemented in software is
more challenging. In this case, the master processor performs the following
operations:

1. It diverts the audio stream through the Bypass 1 buffer.

2. It flushes the samples in the software effects chain.

3. It stops the tasks related to the old mode.

4. If needed, it performs a NoC reconfiguration.

5. It starts the tasks related to the new mode.

6. It pre-fills the software effects chain with a predetermined amount of
samples.

7. Finally, it diverts back the audio stream from the DAC buffer.

In our case, the Bypass 0 buffer holds 9 samples, which is the latency of the
hardware effect implemented in the reconfigurable region. The Bypass 1 buffer
holds 64 samples, which is the amount of samples pre-filled in the chain of effects
implemented in software (including the ADC and DAC buffers). The flushing is
performed by stopping samples to enter the ADC buffer, while the pre-filling is
performed by stopping samples from exiting the DAC buffer.

Table 7.17 shows the reconfiguration time for the hardware effects. In order
to give a real grasp of this time interval, the table reports the results in clock
cycles, milliseconds, and audio sampling periods. The reconfiguration time
shown in the table only refers to the DPR. An additional 9 sampling periods
(equivalent to 18 747 CC or 18.7µs) needed by the hardware effect to fill with
samples before MUX 0 can be switched, should be added to the reconfiguration
time. From this set of results, we can observe that the DPR takes at most
4.3 ms to switch between different hardware effects, making our approach to
reconfiguration of computation resources a concrete and viable solution for the
DSP audio application, especially taking into account the saving in the hardware
cost as presented in the following.

From Table 7.16, we can observe that only two NoC schedules are needed by the
DSP application. The first schedule (Schedule 01) serves the modes Mx0 and
Mx1, while the second schedule (Schedule 23) serves the modes Mx2 and Mx3.
Table 7.18 reports the total number of VCs, the schedule period length, and the
NoC worst-case reconfiguration time needed to switch the schedule (starting from
the current schedule). The latter is equivalent to three times the schedule period

112 Evaluation and Discussion

Table 7.17: Reconfiguration time needed to perform DPR for the hardware
effects (SPM-stream mode).

Hardware effect
Reconfiguration time

(CC) (ms) (samples)
PASS 205 414 2.1 99
LOW-PASS 381 647 3.8 183
HIGH-PASS 433 148 4.3 208
BAND-PASS 359 786 3.6 173

Table 7.18: Total amount of VCs, schedule period length, and worst-case recon-
figuration time for the two schedules used by the DSP application.

TDM schedule Number TDM period Rec. time
of VCs (CC) (CC)

Schedule 01 4 15 45
Schedule 23 6 18 54

when all the schedules are already stored in the NIs. In addition to the VCs
required by the DSP application, three additional VCs are added from processor
P0 to the other processors for sending configuration packets. From the results,
we can observe that the NoC reconfiguration time is negligible compared with
the sampling period. However, during a mode change that requires changing the
effects implemented in software, the effect chain needs to be flushed and then
re-filled. Since our chain of effects is pre-filled with 64 samples, a time interval
of 128 sampling periods (equivalent to 266 624 CC or 2.7 ms) must be added to
the NoC reconfiguration time presented in Table 7.18. For our DSP application
running on a 2-by-2 platform and characterised by VCs bandwidth requirements
in the order of few words per sampling period, an All-to-all schedule would be
able to provide similar performances without the need to reconfigure the NoC.
Nevertheless, the case study hints that the Argo 2 NoC reconfiguration is usable
and viable since it can be performed in a very short amount of time.

Table 7.19 presents the WCET bounds produced by the platin timing-analysis
tool and the experimental execution time measurements, in clock cycles, for all
the software effects used in the case study, as presented in the paper [C3] in our
list of publications. The WCET bounds and the measured execution times refer
to the time interval required to process a single sample from the moment when
the processing starts until the processed sample is placed in the output buffer.

7.3 Audio DSP Application 113

Table 7.19: WCET bounds produced by the platin timing-analysis tool and
experimental execution time measurements in clock cycles for all
the software effects used in the case study for both cold and warm
cache situations.

Software effect
Cold cache Warm cache

WCET Measured WCET Measured
WAHWAH 6 292 4 192 846 336
OVERDRIVE 1 874 1 518 113 84
DELAY 3 646 1 749 808 504
CHORUS 5 127 1 369 1 029 336
TREMOLO 2 167 207 331 84

The results in Table 7.19 are provided for both cold and warm cache situations.
We can observe that the WCET and the execution time for cold cache are
always larger than the ones for warm cache due to the stalls caused by main
memory access. Moreover, as expected, the measured execution times are always
smaller than the WCET values. Also, we can notice that all the warm cache
WCETs are lower than the sampling period of 2083 clock cycles, while cold cache
WCETs exceed the sampling period. Cold cache situations only happen after a
reconfiguration. In this cases, the audio stream is diverted through the Bypass 1
buffer and diverted back when the software effect chain (including the ADC and
DAC buffers) is pre-filled with samples. In general, these buffers can compensate
for temporary interruptions of the audio stream, such as in an occasional case of
cache miss.

A similar audio application is used as case study in [122]. In this work, the
application consists of a producer (ADC) a consumer (DAC) and an intermediate
stage (the audio effect) communicating through the Æthereal NoC [91]. The
authors use the formal model presented in the same work to verify the end-to-end
temporal behaviour of their audio application. Our application relies on the
assumption that the WCET of each software effect, together with the time
interval of the receiving and sending operations, is faster than the sampling
period. This assumption, in combination with the fact that all the audio effects
have an input and an output buffer of a single sample, ensures the correct
functionality of the system. As previously mentioned, the total latency of our
audio DSP application corresponds to the constant amount of samples that are
stored in the effect chain at any moment in time.

Finally, Table 7.20 presents the hardware cost for the platform used in this case
study. The rows of the table are divided into groups. The first group reports
results for the entire T-CREST platform and the memory controller. The first

114 Evaluation and Discussion

Table 7.20: Hardware cost for the hardware platform used in the audio DSP
application case study.

Entity LUT FF BRAM DSP
Multi-core platform 27 900 23 857 53 16
Memory controller 6 894 5 797 0 0
Audio controller 111 102 0 0
Audio buffer 118 67 1 0
Bypasses and MUXs 108 2 477 0 0
RT-ICAP controller1 294 171 0 0
Bit-stream SPM1 110 55 256 0
PASS effect 288 0 0 0
LOW-PASS effect 3 910 3 664 0 102
HIGH-PASS effect 2 002 3 730 0 126
BAND-PASS effect 3 902 3 656 0 102
Total cost static 45 223 43 350 54 346
Total cost DPR 39 445 36 256 310 142

1 Not included for the total hardware cost for the static solution.

row includes the Patmos processors, the two NoCs, and OCP bus infrastructure.
The second group and the third group report the hardware cost for all the
components related to the audio stream and the infrastructure supporting DPR,
respectively. The fourth group presents the results for the hardware effects. Only
one effect at a time is implemented in the reconfigurable region. Therefore, this
should be large enough to accommodate 3 910 LUTs required by the LOW-PASS
effect and 3 730 FFs and 126 DSP blocks required by the HIGH-PASS effect.
Finally, the last two rows report the total hardware cost of the platform that uses
DPR and of a static solution where all the hardware effects are implemented at
the same time. The total for the static solution does not include those resources
required due to reconfiguration (marked with the superscript ‘1’ in the table).

Using the total cost for the static solution as a baseline, we can observe that
the use of DPR leads to the savings of around 13 % of LUTs, 16 % of FFs and
59 % of DSP blocks. However, the reconfigurable solution uses considerably more
BRAMs due to the bit-stream SPM. This amount of memory is only needed if
the RT-ICAP controller operates in SPM-stream mode. In our case, the entire
design not including the bit-stream SPM consumes a very limited amount of
BRAMs. Therefore, we opted for using the available BRAMs to implement the
bit-stream SPM and benefit from the maximum reconfiguration speed offered
by the RT-ICAP controller in SPM-stream mode. If the controller operates in

7.3 Audio DSP Application 115

CPU-stream mode, the bit-stream SPM would not be needed. However, this
would lead to a slower reconfiguration process and require the master processor
to perform the bit-stream transfer from an external memory.

116 Evaluation and Discussion

Chapter 8

Conclusion

This chapter concludes the thesis by summarising the contributions of this work
and discusses future work.

8.1 Summary and Final Remarks

In this thesis, we explored the use of run-time reconfiguration in the context
of multi-core real-time embedded systems addressing both computation and
communication resources.

At first, we presented an approach for using reconfigurable computing in real-time
multi-core systems where the reconfiguration of computation and communication
resources is associated with operational mode changes. Reconfiguration is
used to adapt the hardware platform to meet the functional and temporal GS
requirements of the current mode of operation. The main goal is to minimise
the hardware cost by only implementing what is needed by the current mode of
operation rather than what is required by all possible modes. With regards to
this, we presented how the GS requirements can be extracted from a multi-mode
application, and we suggested modelling the reconfiguration process as a task
characterised by a certain WCET and belonging to a reconfiguration mode.
This allows the application of system-level scheduling policies and schedulability

118 Conclusion

analysis in an independent manner for each mode of operation and for each
reconfiguration mode.

For the reconfiguration of the computation resources, we used the DPR fea-
ture of FPGAs to switch between different hardware accelerators. To support
this, we developed the time-predictable RT-ICAP controller and the associated
convbitstream tool for bit-stream compression and reconfiguration time analysis.
The evaluation has shown that the hardware size of our RT-ICAP controller is
comparable to or smaller than other available controllers developed in industry
and academia. The evaluation has also shown that the RLE-based compression
introduces a significant compression ratio of the partial bit-streams, ranging from
1.3 to 2.2 for the set of sample bit-streams used in the experiments. Moreover,
our compression can further reduce the size of bit-streams that are already
compressed with the Xilinx native compression.

The idea of using DPR for reconfiguring hardware accelerators during a mode-
change was evaluated using synthetic benchmarks from the TACLe suite and
accelerators generated with the Xilinx HLS tool. The results have shown that
using DPR leads to a reduction of the hardware cost in comparison with a static
solution that implements all the needed accelerators at the same time. From the
selected benchmarks, we also concluded that for computationally-intensive tasks,
the reconfiguration time overhead does not significantly affect the worst-case
performance. In comparison with a pure software solution, the results have
shown that using accelerators in combination with DPR leads to speed-ups, in
terms of WCET, ranging from 1.2 to 4.1. For two cases, the speed-ups were 0.5
and 55.4; we considered these as special cases. Overall, we can conclude that our
approach for reconfiguration of computation resources: (1) leads to a reduction
of the hardware cost maintaining computation performance that is comparable
to a static approach and (2) can offer WCET speed-up over a pure software
solution.

For the communication resources, we developed the new NI used in the Argo 2
NoC, which allows instantaneous switching between a set of TDM schedules. The
evaluation has shown that the Argo 2 NoC architecture is less than half of the
size of other NoCs offering similar reconfiguration capabilities and only slightly
larger than the original Argo NoC. The performance evaluation of the Argo 2
NoC was carried out using communication traffic patterns derived from the
MCSL benchmark suite and an All-to-all schedule. In terms of reconfiguration
time, the results have shown that the worst-case reconfiguration time of Argo 2
is comparable to the functionally-similar NoCs and considerably shorter if the
new schedule is already loaded into the schedule table. Finally, we mention that
the reconfiguration of the Argo 2 NoC is completely transparent for the VCs
that persist across a reconfiguration and VCs can even be re-mapped to different

8.2 Future Work 119

slots or to follow different paths through the NoC without disruption in the
end-to-end communication flow.

The thesis also presents low-level reconfiguration time analysis for the developed
architectures supporting reconfiguration. These architectures were prototyped
targeting the existing time-predictable multi-processor platform T-CREST, which
was supplemented with reconfiguration capabilities by this work.

The reconfiguration of both the computation and communication resources was
used in a final case study based on a multi-core DSP application implementing a
selection of audio effects. We modified the DSP application and the hardware
platform to support run-time reconfiguration of effects implemented both in
hardware and software. The case study, characterised by 16 modes of operation,
has shown that the presented approaches for reconfiguration can be effectively
used in a real-world multi-mode application. Compared to a static approach,
the use of our techniques delivered a reduction of the overall hardware size
and a better utilisation of the platform resources while maintaining comparable
computation performance.

8.2 Future Work

In the following, we present possible extensions to the work presented in this
thesis with regards to task mapping and scheduling, energy consumption, and
use of differential bit-streams for DPR.

Task Mapping and Scheduling

Task-level methodologies, such as task mapping and scheduling, represents an
important aspect of research on real-time systems. The focus of this thesis
was mainly on hardware architectures and low-level timing-analysis. Further
investigation could be conducted in relation to the proposed approach where
reconfiguration is associated to mode changes.

A possible extension would include exploring possibilities and developing spe-
cialised tools for mapping of tasks to the cores of a multi-core platform. Currently,
this process is carried out manually or with the use of simple tools specialised
in the mapping of a specific application, such as in the case of the audio DSP
application. A dedicated tool would execute the mapping of tasks taking into
account the reconfiguration capabilities of both computation and communication

120 Conclusion

resources. A possible approach would aim to minimise the number of reconfigu-
rations of hardware resources per mode change, as well as the total number of
bits-stream needed by the application. For the NoC reconfiguration, the mapping
should aim to reduce the TDM schedule length, possibly leading to a reduction
of the schedule size and of the reconfiguration time.

With regards to task scheduling, we proposed a model where the reconfiguration
process is modelled as a task in a reconfiguration mode, as explained in Section 4.4.
An alternative approach to be investigated would include the reconfiguration
process into the normal execution of task aiming to mask the reconfiguration time
or the pre-fetching of bit-streams from main memory into the reconfiguration
SPM.

Energy Consumption

Using hardware accelerators to implement computing tasks instead of software
may lead to a reduction of the total energy required to perform a certain task
due to the use of specialised and efficient hardware. Further investigation of
this aspect can be conducted with regards to the reconfiguration of computation
resources.

Employing DPR to switch between different accelerators may enable saving
energy needed to execute a task, but it also introduces an energy consumption
overhead for the reconfiguration process. It would be interesting to quantify the
trade-off between the energy needed to execute a task purely in software and
the energy required to execute the task on reconfigurable hardware taking into
account the overhead of the reconfiguration process. We would expect results
similar to the ones related to the reconfiguration time overhead, where the use
of DPR becomes beneficial only when the accelerator is used for a number of
times greater than a certain threshold.

In addition, the use of DPR to perform blanking of an unused reconfigurable
region in order to save energy could also be analysed. Blanking consists of
writing a bit-stream that implements no active hardware in the reconfigurable
region. This could be used as an alternative to clock gating to reduce energy
consumption by cancelling the hardware architecture of certain areas of the
FPGA when not used for an extended period of time.

8.2 Future Work 121

Use of Differential Bit-Streams

In Subsection 2.2.3, we briefly presented the possibility offered by the Xilinx tools
to generate differential partial bit-streams for a reconfigurable region. Differential
bit-streams only store the differences between a previous configuration and
the new one. If the differences between two configurations are minimal, a
differential bit-stream has a considerably smaller size than one that contains the
full configuration information for a reconfigurable region (complete bit-stream).

A possible extension of the work presented in this thesis could be to use differential
bit-streams aiming to reduce the memory needed to store the configurations. If
the mode transition graph of a multi-mode application is not fully connected and
it is possible to identify modes that can be reached by one or by a sufficiently
small subset of other modes, differential bit-stream can be associated to the
transitions to these modes. In this case, a differential bit-stream is associated to
each transition to one of these modes, in contrast to having only one complete
bit-stream associated to the mode itself. A reduction in memory utilisation is
achieved if the total size of all the differential bit-streams for a mode is smaller
than the size of the complete bit-stream. The convbitstream tool could be
extended to receive in input the mode transition graph and the information
regarding the size of all the partial bit-streams (differential and complete) to
make a decision, for each mode, whether the use of differential bit-streams is
convenient.

122 Conclusion

Bibliography

[1] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-chip
(MPSoC) technology,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 10, pp. 1701–1713, 2008.

[2] W. Dally, “Route packets, not wires: On-chip interconnection networks,”
in Proc. Design Automation Conference. ACM, 2001, pp. 684–689.

[3] L. Benini and G. D. Micheli, “Networks on chips: A new SoC paradigm,”
IEEE Computer, vol. 35, no. 1, pp. 70–78, 2002.

[4] J. Andersson, J. Gaisler, and R. Weigand, “Next generation multi-purpose
microprocessor,” European Space Agency, Esa Sp. (Special Publication),
vol. 682 SP, pp. 83–86, 2010.

[5] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo,
J. Reybert, and T. Strudel, “A distributed run-time environment for
the Kalray MPPA-256 integrated manycore processor,” Elsevier Procedia
Computer Science, vol. 18, pp. 1654–1663, 2013.

[6] A. Varghese, B. Edwards, G. Mitra, and A. P. Rendell, “Programming the
Adapteva Epiphany 64-core network-on-chip coprocessor,” International
Journal of High Performance Computing Applications, vol. 31, no. 4, pp.
285–302, 2015.

[7] A. Olofsson, T. Nordström, and Z. ul Abdin, “Kickstarting high-
performance energy-efficient manycore architectures with Epiphany,” in
Proc. Asilomar Conference on Signals, Systems and Computers. IEEE,
2014, pp. 1719–1726.

124 Bibliography

[8] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable computing architec-
tures,” Proceedings of the IEEE, vol. 103, no. 3, pp. 332–354, 2015.

[9] XILINX, “DS190: Zynq-7000 All-programmable SoC data sheet: Overview
(v1.11),” Tech. Rep., 2017, online (last accessed: March 2018).

[10] Microsemi, “PB0115: Product brief - SmartFusion2 SoC FPGA,” Tech.
Rep., 2017, online (last accessed: March 2018).

[11] Intel SoC FPGA Website, “Webpage: https:// www.altera.com/ products/
soc/ overview.html,” (last accessed: March 2018).

[12] Menta-eFPGA Website, “Webpage: http:// www.menta-efpga.com/ ,” (last
accessed: March 2018).

[13] Achronix Website, “Webpage: https:// www.achronix.com/ ,” (last accessed:
March 2018).

[14] XILINX, “UG909: Vivado design suite user guide - Partial reconfiguration
(v2017.1),” Tech. Rep., 2017, online (last accessed: March 2018).

[15] ——, “UG702: Partial reconfiguration user guide (v14.5),” Tech. Rep.,
2013, online (last accessed: March 2018).

[16] ALTERA Corporation, “QII51026: Design planning for partial reconfigu-
ration,” Tech. Rep., 2013, online (last accessed: March 2018).

[17] K. Shin and P. Ramanathan, “Real-time computing - A new discipline of
computer-science and engineering,” Proceedings of the IEEE, vol. 82, no. 1,
pp. 6–24, 1994.

[18] G. C. Buttazzo, Hard real-time computing systems. Kluwer Academic
Publishers, 1997.

[19] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström, “The worst-case execution-
time problem - Overview of methods and survey of tools,” ACM Transac-
tions on Embedded Computing Systems, vol. 7, no. 3, pp. 1–53, 2008.

[20] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quiñones, M. Gerdes, M. Paolieri, and J. Wolf, “MERASA: Multi-core
execution of hard real-time applications supporting analysability,” IEEE
Micro, vol. 30, no. 5, pp. 66–75, 2010.

[21] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Gar-
side, K. Goossens, S. Goossens, S. Hansen, R. Heckmann, S. Hepp, B. Hu-
ber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Puffitsch,

https://www.altera.com/products/soc/overview.html
https://www.altera.com/products/soc/overview.html
http://www.menta-efpga.com/
https://www.achronix.com/

Bibliography 125

P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Tocchi, “T-CREST:
Time-predictable multi-core architecture for embedded systems,” Elsevier
Journal of Systems Architecture, vol. 61, no. 9, pp. 449–471, 2015.

[22] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst,
S. Karlsson, and T. Thorn, “Towards a time-predictable dual-issue micro-
processor: The Patmos approach,” in Proc. Workshop on Bringing Theory
to Practice: Predictability and Performance in Embedded Systems, 2011,
pp. 11–20.

[23] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. Müller, K. Goossens, and
J. Sparsø, “Argo: A real-time network-on-chip architecture with an efficient
gals implementation,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 2, pp. 479–492, 2016.

[24] J. Garside and N. C. Audsley, “Investigating shared memory tree prefetch-
ing within multimedia NoC architectures,” in Proc. Memory Architecture
and Organisation Workshop, 2013, pp. 1–7.

[25] M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsø, “A time-
predictable memory network-on-chip,” in Proc. International Workshop on
Worst-Case Execution Time Analysis, 2014, pp. 53–62.

[26] G. Estrin, “Organization of computer systems,” in Proc. Western Joint
IRE/AIEE/ACM Computer Conference. ACM, 1960, pp. 33–40.

[27] W. S. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja, J. E. Mahoney,
L. T. Ngo, and S. L. Sze, “A user programmable reconfigurable logic array,”
in Proc. Custom Integrated Circuits Conference. IEEE, 1986, pp. 233–235.

[28] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweely, and
D. Lopresti, “Building and using a highly parallel programmable logic
array,” IEEE Computer, vol. 24, no. 1, pp. 81–89, 1991.

[29] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A reconfigurable
fabric for accelerating large-scale datacenter services,” in Proc. Interna-
tional Symposium on Computer Architecture. ACM/IEEE, 2014, pp.
13–24.

[30] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-
man, S. Heil, M. Humphrey, P. Kaur, J. Y. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A cloud-scale acceleration architecture,” in Proc. International
Symposium on Microarchitecture. ACM/IEEE, 2016, pp. 1–13.

126 Bibliography

[31] XILINX, “UG902: Vivado design suite user guide - High-level synthesis
(v2017.1),” Tech. Rep., 2017, online (last accessed: March 2018).

[32] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “Legup: High-level synthesis for FPGA-
based processor/accelerator systems,” in Proc. International Symposium
on Field Programmable Gate Arrays. ACM, 2011, pp. 33–36.

[33] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey
and evaluation of FPGA high-level synthesis tools,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 10,
pp. 1591–1604, 2016.

[34] O. Arcas-Abella, G. Ndu, N. Sonmez, M. Ghasempour, A. Armejach,
J. Navaridas, W. Song, J. Mawer, A. Cristal, and M. Lujan, “An empirical
evaluation of high-level synthesis languages and tools for database accel-
eration,” in Proc. International Conference on Field Programmable Logic
and Applications. IEEE, 2014, pp. 1–8.

[35] XILINX, “UG470: 7-Series FPGA configuration - User guide (v1.12),”
Tech. Rep., 2017, online (last accessed: March 2018).

[36] ——, “UG360: Virtex-6 FPGA configuration - User guide (v3.9),” Tech.
Rep., 2015, online (last accessed: March 2018).

[37] R. Heckmann and C. Ferdinand, “Worst-case execution time prediction
by static program analysis,” AbsInt Angewandte Informatik GmbH, Tech.
Rep., online (last accessed: March 2018).

[38] AbsInt aiT WCET Analyzers Website, “Webpage: https:// www.absint.
com/ ait/ ,” (last accessed: March 2018).

[39] S. A. Edwards and E. A. Lee, “The case for the precision timed (PRET)
machine,” in Proc. Conference on Design Automation. ACM, 2007, pp.
264–265.

[40] S. A. Edwards, S. Kim, E. A. Lee, I. Liu, H. D. Patel, and M. Schoeberl,
“A disruptive computer design idea: Architectures with repeatable timing,”
in Proc. International Conference on Computer Design. IEEE, 2009.

[41] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[42] M. Schoeberl, F. Brandner, S. Hepp, W. Puffitsch, and D. Prokesch,
“Patmos reference handbook,” Technical University of Denmark, Tech.
Rep., 2014.

https://www.absint.com/ait/
https://www.absint.com/ait/

Bibliography 127

[43] P. Puschner, R. Kirner, B. Huber, and D. Prokesch, “Compiling for time
predictability,” Springer Computer Safety, Reliability, and Security: Lec-
ture Notes in Computer Science, vol. 7613, pp. 382–391, 2012.

[44] S. Hepp, B. Huber, J. Knoop, D. Prokesch, and P. P. Puschner, “The
platin tool kit - The T-CREST approach for compiler and WCET inte-
gration,” in Proc. Kolloquium Programmiersprachen und Grundlagen der
Programmierung, 2015, pp. 1–16.

[45] OCP official website, “Webpage: http:// www.accellera.org/ downloads/
standards/ ocp/ ,” (last accessed: March 2018).

[46] P. Degasperi, S. Hepp, W. Puffitsch, and M. Schoeberl, “A method cache
for Patmos,” in Proc. Symposium on Object/Component/Service-oriented
Real-time Distributed Computing. IEEE, 2014, pp. 100–108.

[47] S. Abbaspour, F. Brandner, and M. Schoeberl, “A time-predictable stack
cache,” in Proc. Workshop on Software Technologies for Embedded and
Ubiquitous Systems. IEEE, 2013, pp. 1–8.

[48] M. D. Gomony, B. Akesson, and K. Goossens, “Architecture and optimal
configuration of a real-time multi-channel memory controller,” in Proc.
Design, Automation Test in Europe Conference and Exhibition. IEEE,
2013, pp. 1307–1312.

[49] E. Lakis and M. Schoeberl, “An SDRAM controller for real-time systems,”
in Proc. Workshop on Software Technologies for Embedded and Ubiquitous
Systems. IEEE, 2013, pp. 1–8.

[50] E. Kasapaki, “An asynchronous time-division-multiplexed network-on-chip
for real-time systems,” PhD Thesis, PhD-2015-361, Department of Applied
Mathematics and Computer Science, Technical University of Denmark,
2015.

[51] J. Sparsø, E. Kasapaki, and M. Schoeberl, “An area-efficient network
interface for a TDM-based network-on-chip,” in Proc. Design, Automation
and Test in Europe Conference and Exhibition. IEEE, 2013, pp. 1044–1047.

[52] R. B. Sørensen, W. Puffitsch, M. Schoeberl, and J. Sparsø, “Message
passing on a time-predictable multicore processor,” in Proc. Symposium
on Real-time Distributed Computing. IEEE, 2015, pp. 51–59.

[53] E. Kasapaki and J. Sparsø, “Argo: A time-elastic time-division-multiplexed
NoC using asynchronous routers,” in Proc. International Symposium on
Asynchronous Circuits and Systems. IEEE Computer Society Press, 2014,
pp. 45–52.

http://www.accellera.org/downloads/standards/ocp/
http://www.accellera.org/downloads/standards/ocp/

128 Bibliography

[54] ——, “The Argo NoC: Combining TDM and GALS,” in Proc. European
Conference on Circuit Theory and Design. IEEE, 2015, pp. 1–4.

[55] R. B. Sørensen, J. Sparsø, M. R. Pedersen, and J. Højgaard, “A meta-
heuristic scheduler for time division multiplexed networks-on-chip,” in Proc.
Workshop on Software Technologies for Future Embedded and Ubiquitous
Systems. IEEE/IFIP, 2014, pp. 309–316.

[56] E. Kasapaki, J. Sparsø, R. B. Sørensen, and K. Goossens, “Router designs
for an asynchronous time-division-multiplexed network-on-chip,” in Proc.
Euromicro Conference on Digital System Design. IEEE, 2013, pp. 319–326.

[57] K. Compton and S. Hauck, “Reconfigurable computing: A survey of systems
and software,” ACM Computing Surveys, vol. 34, no. 2, pp. 171–210, 2002.

[58] K. Wu, “Reconfigurable architectures: From physical implementation to
dynamic behavoir modelling,” PhD Thesis, IMM-PhD-2007-180, Depart-
ment of Informatics and Mathematic Modelling, Technical University of
Denmark, 2007.

[59] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder - A novel tool and
technique to build statically and dynamically reconfigurable systems for
FPGAs,” in Proc. International Conference on Field Programmable Logic
and Applications. IEEE, 2008, pp. 119–124.

[60] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo,
“A framework for supporting real-time applications on dynamic reconfig-
urable FPGAs,” in Proc. Real-Time Systems Symposium. IEEE, 2016,
pp. 1–12.

[61] D. Göhringer and J. Becker, “High performance reconfigurable multi-
processor-based computing on FPGAs,” in Proc. International Symposium
on Parallel Distributed Processing, Workshops and PhD Forum. IEEE,
2010, pp. 1–4.

[62] D. Göhringer, M. Hübner, V. Schatz, and J. Becker, “Runtime adap-
tive multi-processor system-on-chip: RAMPSoC,” in Proc. International
Symposium on Parallel and Distributed Processing. IEEE, 2008, pp. 1–7.

[63] D. Göhringer, M. Hübner, E. N. Zeutebouo, and J. Becker, “CAP-OS:
Operating system for runtime scheduling, task mapping and resource
management on reconfigurable multiprocessor architectures,” in Proc. In-
ternational Symposium on Parallel Distributed Processing, Workshops and
PhD Forum. IEEE, 2010, pp. 1–8.

[64] S. Banerjee, E. Bozorgzadeh, and N. D. Dutt, “Integrating physical con-
straints in HW-SW partitioning for architectures with partial dynamic re-
configuration,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 14, no. 11, pp. 1189–1202, 2006.

Bibliography 129

[65] D. Göhringer, M. Hübner, M. Benz, and J. Becker, “A design methodology
for application partitioning and architecture development of reconfigurable
multiprocessor systems-on-chip,” in Proc. International Symposium on
Field-Programmable Custom Computing Machines. IEEE, 2010, pp. 259–
262.

[66] R. Cattaneo, R. Bellini, G. Durelli, C. Pilato, M. D. Santambrogio, and
D. Sciuto, “PaRA-Sched: A reconfiguration-aware scheduler for reconfig-
urable architectures,” in Proc. Parallel Distributed Processing Symposium
Workshops. IEEE, 2014, pp. 243–250.

[67] A. Agne, M. Happe, A. Keller, E. Lübbers, B. Plattner, M. Platzner, and
C. Plessl, “ReconOS: An operating system approach for reconfigurable
computing,” IEEE Micro, vol. 34, no. 1, pp. 60–71, 2014.

[68] C. Steiger, H. Walder, and M. Platzner, “Operating systems for reconfig-
urable embedded platforms: online scheduling of real-time tasks,” IEEE
Transactions on Computers, vol. 53, no. 11, pp. 1393–1407, 2004.

[69] XILINX, “DS586: LogiCORE IP XPS HWICAP product specifications
(v5.01a),” Tech. Rep., 2011, online (last accessed: March 2018).

[70] ——, “DS586: Processor Local Bus (v4.6),” Tech. Rep., 2019, online (last
accessed: March 2018).

[71] ——, “PG134: AXI HWICAP LogiCORE IP product guide (v3.0),” Tech.
Rep., 2015, online (last accessed: March 2018).

[72] ——, “UG761: AXI reference guide (v13.1),” Tech. Rep., 2011, online (last
accessed: March 2018).

[73] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time partial reconfiguration
speed investigation and architectural design space exploration,” in Proc.
International Conference on Field Programmable Logic and Applications.
IEEE Computer Society, 2009, pp. 498–502.

[74] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration
management on the Xilinx Zynq,” IEEE Embedded Systems Letters, vol. 6,
no. 3, pp. 41–44, 2014.

[75] M. Hübner, D. Göhringer, J. Noguera, and J. Becker, “Fast dynamic
and partial reconfiguration data path with low hardware overhead on
Xilinx FPGAs,” in Proc. International Symposium on Parallel Distributed
Processing, Workshops and PhD Forum. IEEE, 2010, pp. 1–8.

[76] XILINX, “PG139: LogiCORE IP PRC product guide (v1.0),” Tech. Rep.,
2015, online (last accessed: March 2018).

130 Bibliography

[77] J. Tarrillo, F. A. Escobar, F. L. Kastensmidt, and C. Valderrama, “Dynamic
partial reconfiguration manager,” in Proc. Latin American Symposium on
Circuits and Systems. IEEE, 2014, pp. 1–4.

[78] V. Lai and O. Diessel, “ICAP-I: A reusable interface for the internal
reconfiguration of Xilinx FPGAs,” in Proc. International Conference on
Field-programmable Technology. IEEE Computer Society, 2009, pp. 357–
360.

[79] S. D. Carlo, P. Prinetto, P. Trotta, and J. Andersson, “A portable open-
source controller for safe dynamic partial reconfiguration on Xilinx FPGAs,”
in Proc. International Conference on Field Programmable Logic and Appli-
cations. IEEE, 2015, pp. 1–4.

[80] L. A. Cardona and C. Ferrer, “AC-ICAP: A flexible high speed ICAP
controller,” International Journal of Reconfigurable Computing, vol. 2015,
pp. 1–15, 2015.

[81] C. Schuck, B. Haetzer, and J. Becker, “An interface for a decentralized 2D
reconfiguration on Xilinx Virtex-FPGAs for organic computing,” Interna-
tional Journal of Reconfigurable Computing, vol. 2009, pp. 1–11, 2009.

[82] B. Dupont de Dinechin, Y. Durand, D. van Amstel, and A. Ghiti, “Guaran-
teed services of the NoC of a manycore processor,” in Proc. International
Workshop on Network on Chip Architectures. ACM, 2014, pp. 11–16.

[83] R. L. Cruz, “A calculus for network delay. Part I: Network elements in
isolation,” IEEE Transactions on Information Theory, vol. 37, no. 1, pp.
114–131, 1991.

[84] B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic, “IDAMC:
A many-core platform with run-time monitoring for mixed-criticality,” in
Proc. International Symposium on High-Assurance Systems Engineering.
IEEE, 2012, pp. 24–31.

[85] J. Diemer and R. Ernst, “Back suction: Service guarantees for latency-
sensitive on-chip networks,” in Proc. International Symposium on Networks-
on-Chip. ACM/IEEE, 2010, pp. 155–162.

[86] T. Bjerregaard and J. Sparsø, “A router architecture for connection-oriented
service guarantees in the MANGO clockless network-on-chip,” in Proc.
Design, Automation and Test in Europe Conference and Exhibition. IEEE,
2005, pp. 1226–1231.

[87] M. Winter and G. P. Fettweis, “Guaranteed service virtual channel alloca-
tion in NoCs for run-time task scheduling,” in Proc. Design, Automation
Test in Europe Conference and Exhibition. IEEE, 2011, pp. 1–6.

Bibliography 131

[88] ——, “A network-on-chip channel allocator for run-time task scheduling
in multi-processor system-on-chips,” in Proc. Euromicro Conference on
Digital System Design Architectures, Methods and Tools. IEEE, 2008, pp.
133–140.

[89] K. Goossens and A. Hansson, “The AEthereal network on chip after ten
years: Goals, evolution, lessons, and future,” in Proc. Design Automation
Conference. ACM/IEEE, 2010, pp. 306 –311.

[90] R. A. Stefan, A. Molnos, and K. Goossens, “dAElite: A TDM NoC
Supporting QoS, multicast, and fast connection set-up,” IEEE Transactions
on Computers, vol. 63, no. 3, pp. 583–594, 2014.

[91] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal network on
chip: concepts, architectures, and implementations,” IEEE Design Test of
Computers, vol. 22, no. 5, pp. 414–421, 2005.

[92] A. Hansson, M. Subburaman, and K. Goossens, “aelite: A flit-synchronous
network on chip with composable and predictable services,” in Proc. Design,
Automation Test in Europe Conference and Exhibition. IEEE, 2009, pp.
250–255.

[93] A. Hansson and K. Goossens, “Trade-offs in the configuration of a network
on chip for multiple use-cases,” in Proc. International Symposium on
Networks-on-Chip. IEEE, 2007, pp. 233–242.

[94] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed bandwidth
using looped containers in temporally disjoint networks within the nostrum
network on chip,” in Proc. Design, Automation Test in Europe Conference
and Exhibition, vol. 2. IEEE, 2004, pp. 890–895.

[95] M. Schoeberl, “A time-triggered network-on-chip,” in Proc. International
Conference on Field Programmable Logic and Applications. IEEE, 2007,
pp. 377–382.

[96] C. Paukovits and H. Kopetz, “Concepts of switching in the time-triggered
network-on-chip,” in Proc. International Conference on Embedded and
Real-Time Computing Systems and Applications. IEEE, 2008, pp. 120–
129.

[97] I. Kotleas, “Mode changes in network-on-chip based multiprocessor plat-
forms,” Master’s thesis, Department of Applied Mathematics and Computer
Science, Technical University of Denmark, 2014.

[98] Y. Xue and P. Bogdan, “Improving NoC performance under spatio-temporal
variability by runtime reconfiguration: a general mathematical framework,”
in Proc. International Symposium on Networks-on-Chip. IEEE, 2016, pp.
1–8.

132 Bibliography

[99] V. Nollet, T. Marescaux, P. Avasare, D. Verkest, and J. Y. Mignolet,
“Centralized run-time resource management in a network-on-chip containing
reconfigurable hardware tiles,” in Design, Automation and Test in Europe.
IEEE, 2005, pp. 234–239.

[100] L. T. Smit, G. J. M. Smit, J. L. Hurink, H. Broersma, D. Paulusma, and
P. T. Wolkotte, “Run-time mapping of applications to a heterogeneous
reconfigurable tiled system on chip architecture,” in Proc. International
Conference on Field- Programmable Technology. IEEE, 2004, pp. 421–424.

[101] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. D. Micheli,
“Mapping and configuration methods for multi-use-case networks on chips,”
in Proc. Asia and South Pacific Conference on Design Automation. IEEE,
2006, pp. 1–6.

[102] A. Hansson, A. Radulescu, and K. Goossens, “A unified approach to
constrained mapping and routing on network-on-chip architectures,” in
International Conference on Hardware/Software Codesign and System
Synthesis. IEEE/ACM/IFIP, 2005, pp. 75–80.

[103] A. Hansson, M. Coenen, and K. Goossens, “Undisrupted quality-of-service
during reconfiguration of multiple applications in networks on chip,” in Proc.
Design, Automation Test in Europe Conference and Exhibition. IEEE,
2007, pp. 1–6.

[104] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “CoMPSoC: A
template for composable and predictable multi-processor system on chips,”
ACM Transactions on Design Automation of Electronic Systems, vol. 14,
no. 1, pp. 1–24, 2009.

[105] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony, S. Goossens,
M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. B. Nejad, A. Nelson, and
S. Sinha, “Virtual execution platforms for mixed-time-criticality systems:
The CompSOC architecture and design flow,” ACM SIGBED, vol. 10,
no. 3, pp. 23–34, 2013.

[106] S. Sinha, M. Koedam, G. Breaban, A. Nelson, A. B. Nejad, M. Geilen,
and K. Goossens, “Composable and predictable dynamic loading for time-
critical partitioned systems on multiprocessor architectures,” Elsevier
Microprocessors and Microsystems, vol. 39, no. 8, pp. 1087 – 1107, 2015.

[107] J. Real and A. Crespo, “Mode change protocols for real-time systems: A
survey and a new proposal,” Springer Real-Time Systems, vol. 26, no. 2,
pp. 161–197, 2004.

[108] A. Burns and A. Wellings, Real-Time Systems and Programming Languages:
Ada 95, Real-Time Java and Real-Time POSIX. Addison-Wesley, 2001.

Bibliography 133

[109] C. Carmichael, M. Caffrey, and A. Salazar, “XAPP216: Correcting single-
event upsets through Virtex partial configuration (Xilinx Corporation -
v1.0),” Tech. Rep., 2000, online (last accessed: March 2018).

[110] S. Hauck and W. D. Wilson, “Runlength compression techniques for
FPGA configurations,” in Proc. Symposium on Field-programmable Custom
Computing Machines. IEEE Computer Society, 1999, pp. 286–287.

[111] Z. Li and S. Hauck, “Configuration compression for Virtex FPGAs,” in
Proc. Symposium on Field-programmable Custom Computing Machines.
IEEE, 2001, pp. 147–159.

[112] D. Koch, C. Beckhoff, and J. Teich, “Hardware decompression techniques
for FPGA-based embedded systems,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 2, no. 2, pp. 1–23, 2009.

[113] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Waegemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in Proc. International Workshop on Worst-Case Execution
Time Analysis. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016,
pp. 1–10.

[114] A. Hansson, M. Coenen, and K. Goossens, “Channel trees: Reducing
latency by sharing time slots in time-multiplexed networks on chip,” in
Proc. International Conference on Hardware/Software Codesign and System
Synthesis. IEEE/ACM/IFIP, 2007, pp. 149–154.

[115] F. De Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design and Test of Computers, vol. 28, no. 4, pp.
18–27, 2011.

[116] C. Lattner and V. Adve, “The LLVM instruction set and compilation
strategy,” Computer Science Department, University of Illinois at Urbana-
Champaign, Tech. Rep. UIUCDCS-R-2002-2292, 2002.

[117] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, and Z. Wang,
“A NoC traffic suite based on real applications,” in Proc. Computer Society
Annual Symposium on VLSI. IEEE, 2011, pp. 66–71.

[118] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings
of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[119] Analog Devices, “ADAU1761 datasheet (Rev. C),” Tech. Rep., 2019, online
(last accessed: March 2018).

[120] U. Zöler, DAFX: Digital Audio Effects, 2nd edition. John Wiley & Sons,
2011.

134 Bibliography

[121] MATLAB: Basic FIR fiter/HDL coder Website, “Webpage: https:// se.
mathworks.com/ help/ hdlfilter/ basic-fir-filter.html,” (last accessed: March
2018).

[122] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij, “En-
abling application-level performance guarantees in network-based systems
on chip by applying dataflow analysis,” IET Computers Digital Techniques,
vol. 3, no. 5, pp. 398–412, 2009.

https://se.mathworks.com/help/hdlfilter/basic-fir-filter.html
https://se.mathworks.com/help/hdlfilter/basic-fir-filter.html

	Abstract (English)
	Resumé (Dansk)
	Preface
	Acknowledgements
	Contents
	List of Acronyms
	List of Publications
	1 Introduction
	1.1 Research Field and Motivation
	1.2 Thesis Overview
	1.3 List of Contributions
	1.4 Source Access
	1.5 Thesis Structure and Outline

	2 Background
	2.1 Reconfigurable Computing
	2.1.1 Overview
	2.1.2 Evolution and Technology
	2.1.3 High-Level Synthesis

	2.2 Dynamic Partial Reconfiguration
	2.2.1 Overview
	2.2.2 ICAP Interface
	2.2.3 Design Flow and Requirements

	2.3 Real-Time Systems
	2.3.1 Overview and Classification
	2.3.2 Timing-Analysis

	2.4 The T-CREST Platform
	2.4.1 Overview
	2.4.2 Patmos Processor
	2.4.3 Support Tools
	2.4.4 Memory Access NoC

	2.5 Argo Message-Passing NoC
	2.5.1 Overview
	2.5.2 TDM-Schedule
	2.5.3 NoC Architecture

	3 Related Work
	3.1 Reconfiguration of Computation Resources
	3.1.1 Methods and Tools
	3.1.2 Reconfiguration Controllers

	3.2 Reconfiguration of Communication Resources
	3.2.1 NoCs Based on Flow Control
	3.2.2 NoCs Based on TDM

	3.3 Other Related Topics

	4 Approach to Reconfiguration
	4.1 Definition of Communication and Computation Resources
	4.2 Reconfiguration at Mode Changes
	4.3 Extraction of Guaranteed Service Requirements
	4.4 Model of the Reconfiguration Process
	4.5 Expected Outcomes and Evaluation Metrics

	5 Reconfiguration of Computation Resources
	5.1 A Multi-Core Platform Supporting DPR
	5.2 RT-ICAP Controller Architecture
	5.3 Bit-Stream Compression
	5.4 Tool Support
	5.5 Reconfiguration Time Analysis
	5.6 Single-Core Application Example

	6 Reconfiguration of Communication Resources
	6.1 Overview
	6.2 Argo 2 NI Architecture
	6.2.1 Packet Format and Schedule Representation
	6.2.2 Transmit Module
	6.2.3 Receive Module
	6.2.4 Remote Initialization

	6.3 Support for Reconfiguration
	6.3.1 Key Ideas and Observations
	6.3.2 Reconfiguration Process

	6.4 Reconfiguration Time Analysis

	7 Evaluation and Discussion
	7.1 Reconfiguration of Computation Resources
	7.1.1 RT-ICAP Controller Characterization
	7.1.2 Bit-Stream Compression and Reconfiguration Time
	7.1.3 Synthetic Benchmarks Experiments

	7.2 Reconfiguration of Communication Resources
	7.2.1 Argo 2 Characterization
	7.2.2 Synthetic Traffic Experiments

	7.3 Audio DSP Application
	7.3.1 Overview
	7.3.2 Hardware Platform
	7.3.3 Effects and Modes of Operation
	7.3.4 Observations and Results

	8 Conclusion
	8.1 Summary and Final Remarks
	8.2 Future Work

	Bibliography

