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ABSTRACT

Design Space Exploration of Accelerators for
Warehouse Scale Computing

Andrea Lottarini

With Moore’s law grinding to a halt, accelerators are one of the ways that new silicon

can improve performance, and they are already a key component in modern datacenters.

Accelerators are integrated circuits that implement parts of an application with the objective

of higher energy efficiency compared to execution on a standard general purpose CPU. Many

accelerators can target any particular workload, generally with a wide range of performance,

and costs such as area or power. Exploring these design choices, called Design Space

Exploration (DSE), is a crucial step in trying to find the most efficient accelerator design,

the one that produces the largest reduction of the total cost of ownership.

This work aims to improve this design space exploration phase for accelerators and

to avoid pitfalls in the process. This dissertation supports the thesis that early design

choices – including the level of specialization – are critical for accelerator development and

therefore require benchmarks reflective of production workloads. We present three studies

that support this thesis. First, we show how to benchmark datacenter applications by

creating a benchmark for large video sharing infrastructures. Then, we present two studies

focused on accelerators for analytical query processing. The first is an analysis on the

impact of Network on Chip specialization while the second analyses the impact of the level

of specialization.

The first part of this dissertation introduces vbench: a video transcoding benchmark

tailored to the growing video-as-a-service market. Video transcoding is not accurately

represented in current computer architecture benchmarks such as SPEC or PARSEC. De-

spite posing a big computational burden for cloud video providers, such as YouTube and

Facebook, it is not included in cloud benchmarks such as CloudSuite. Using vbench, we



found that the microarchitectural profile of video transcoding is highly dependent on the

input video, that SIMD extensions provide limited benefits, and that commercial hardware

transcoders impose tradeoffs that are not ideal for cloud video providers. Our benchmark

should spur architectural innovations for this critical workload. This work shows how to

benchmark a real world warehouse scale application and the possible pitfalls in case of a

mischaracterization.

When considering accelerators for the different, but no less important, application of

analytical query processing, design space exploration plays a critical role. We analyzed the

Q100, a class of accelerators for this application domain, using TPC-H as the reference

benchmark. We found that the hardware computational blocks have to be tailored to the

requirements of the application, but also the Network on Chip (NoC) can be specialized.

We developed an algorithm capable of producing more effective Q100 designs by tailoring

the NoC to the communication requirements of the system. Our algorithm is capable

of producing designs that are Pareto optimal compared to standard NoC topologies. This

shows how NoC specialization is highly effective for accelerators and it should be an integral

part of design space exploration for large accelerators’ designs.

The third part of this dissertation analyzes the impact of the level of specialization,

e.g. using an ASIC or Coarse Grain Reconfigurable Architecture (CGRA) implementation,

on an accelerator performance. We developed a CGRA architecture capable of executing

SQL query plans. We compare this architecture against Q100, an ASIC that targets the

same class of workloads. Despite being less specialized, this programmable architecture

shows comparable performance to the Q100 given an area and power budget. Resource

usage explains this counterintuitive result, since a well programmed, homogeneous array

of resources is able to more effectively harness silicon for the workload at hand. This sug-

gests that a balanced accelerator research portfolio must include alternative programmable

architectures – and their software stacks.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Datacenters have been growing constantly in the last decade and are now estimated to

consume more than 3% of the global electricity supply with a carbon footprint comparable

to the airline industry [Bawden, 2016]. This growth has been fueled by the rise of Big Data

and the increased adoption of mobile and IoT devices. These devices are connected to the

web and constantly produce data. All this data is stored in datacenters that are expanding in

order to keep up with this growing demand. This data deluge is also continuously processed

by an ever growing set of applications, from simple ones such as webmail to computationally

demanding machine learning pipelines [McAfee and Brynjolfsson, 2012].

At the same time, there has been a historical shift in the computer architecture field with

the end of Dennard Scaling [Dennard et al., 1974; Bohr, 2007] and the slowdown of Moore’s

law [Moore, 2006; Simonite, 2016]. Compared to the past, it has become increasingly

difficult to pack more transistors in a given area budget, and – even more troubling –

it is not possible to have all of them switching at once. As technology scaling slowly

advances, a larger fraction of a chip will have to be idle, creating what has been called dark

silicon [Venkatesh et al., 2010; Taylor, 2012; Esmaeilzadeh et al., 2011].

This continuous growth of computational demand in the datacenter, coupled with the

end of predictable single core performance improvements between CPU generations, is forc-

ing computer architects to find new solutions to enable more energy efficient computation.

Accelerators, i.e. integrated circuits that are specialized for a given application or applica-

tion domain, are one of these possible solutions. Accelerators are more energy efficient than
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CHAPTER 1. INTRODUCTION

general purpose CPUs and often provide significant performance improvements. Accelera-

tors also have the benefit of harnessing dark silicon that would have to be left idle or under-

utilized. Therefore, it is not surprising that accelerators have recently found their way into

the datacenter [Jouppi et al., 2017; Caulfield et al., 2016; Putnam, 2017; Fowers et al., 2018;

Firestone et al., 2018].

Accelerators implement key computational blocks for an application directly in hard-

ware, thus offering high energy efficiency. Accelerators’ designs tend to share common

approaches to achieve high energy efficiency: they exploit the application parallelism by

spatially mapping computation into separate hardware modules, reduce the overhead of the

memory hierarchy by relying instead on explicitly managed buffers (scratchpads) and point

to point communication, reduce the overhead of programmability (fetch and decode) by

employing coarse grain instructions that operate on large amounts of data.

An unbounded number of accelerators can be created for an application as any circuit

that correctly implements it is a valid design. All these designs will differ in terms of

performance, i.e. latency and throughput, and cost, i.e. area and power consumed. Design

Space Exploration is the phase of an accelerator development where different possible designs

are evaluated with the objective of finding the best performing one at a given area and

power budget. While there are no established methodologies to follow, generally Design

Space Exploration goes though a set of phases:

• Benchmarking : The application to be accelerated is analyzed with the objective of

creating a benchmark to guide subsequent phases. Representative inputs and applica-

tion parameters are identified in this stage. Computational bottlenecks and memory

requirements of different functions are also determined.

• Architectural : The most computationally demanding functions indentified during the

benchmarking phase are turned into hardware modules and the architecture of the

accelerator is defined. Choices that are made at this step include the mapping from

functions to hardware modules, the number of modules to include of each type and

the connections between them.

• Microarchitectural : The implementation of each hardware module is defined. As an

2
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example of a microarchitectural design choice, a module that has the lowest through-

put might be pipelined in order to increase performance of the whole design.

• Implementation: The final accelerator implementation is created. Operations per-

formed at this step include place and route, clock and power gating, voltage/frequency

scaling.

Of course the actual development of an accelerator might cycle through these phases multiple

times as the implementation is refined. This dissertation will focus on the Benchmarking

and Architectural phases of Design Space Exploration.

Towards the goal of more effective Design Space Exploration, this dissertation supports

the thesis that early design choices – including the level of specialization – are critical for

accelerator development and therefore require benchmarks reflective of production workloads.

In this dissertation, we are going to present a case study on profiling the computational

requirements of YouTube. This profiling study highlights the diversity of computational

requirements that arise when applications have to operate at the warehouse scale1. Failing

to capture all this complexity will negatively affect the following design space exploration

phase by mischaracterizing the predicted impact of different accelerator designs.

Next, we will focus on another application: analytical query processing. This is a good

candidate for acceleration as it is a slow evolving application that is at the cornerstone of

data mining pipelines. Similarly to video transcoding, we again observe a high variability

of the workload depending on the inputs. The computational requirements change with

respect to the input queries or input tables. Even within a single query, the computation

generally transitions between multiple phases, i.e. filtering, joining, and aggregation, each

with different computational requirements.

We will present two studies that highlight how these application properties can be used

during design space exploration of an accelerator to derive more desirable designs. Our first

study shows how it is possible to specialize the internal communication between functional

modules of an accelerator by tailoring connections to the application data dependencies. In

1In this dissertation we will use the term warehouse scale to denote any application running in a datacenter

on user generated inputs

3
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particular, we notice that some relational operator pairs are more likely than others to have

a data dependency. Therefore, we developed an algorithm that can exploit these imbalances

to produce an application specific Network-on-Chip (NoC) for the Q100, an analytical query

accelerator previously proposed by our group [Wu et al., 2014]. This study shows how NoC

specialization can be effective at exploiting patterns in the communication in the same way

that accelerators exploit computational patterns of an application.

In our second study, we focus on another aspect of accelerator design: its ideal level

of specialization. Our study shows how it is possible to overspecialize an accelerator. For

this work, we used again the Q100 as a baseline and compared it against a Coarse Grain

Reconfigurable Architecture that we designed. This latter architecture has significant qual-

itative benefits compared to the Q100: it has an homogeneous architecture that simplifies

its implementation and it has the added benefit of programmability. Despite the increased

programmability, we find that it shows comparable performance at a given area or power

budget. Our analysis explains this counterintuitive result and shows how the more spe-

cialized architecture has, on average, a larger fraction of its compute resources idle and a

higher cost of communication.

1.1 Summary of Contributions

1.1.1 Benchmarking of Warehouse Scale Applications

A critical aspect of the development of accelerators is benchmarking the application to be

accelerated on relevant use cases, and with inputs that are reflective of production scenarios.

To this end, we performed a study to characterize the video-as-a-service workload [Lottarini

et al., 2018] and released a publicly available benchmark called vbench. Unlike prior video

processing benchmarks, vbench’s videos are algorithmically selected to represent a large

commercial corpus of millions of videos. Reflecting the complex infrastructure that pro-

cesses and hosts these videos, vbench includes carefully constructed metrics and reporting

rules that reveal nuanced tradeoffs between speed, visual quality, and compression. More-

over, vbench can be upgraded to reflect changes in video content and emergence of new

applications (e.g., cloud gaming or virtual reality). vbench is not just a collection of videos

4



CHAPTER 1. INTRODUCTION

and programs, but a methodology to extract new benchmarks from future video sharing

infrastructures.

We demonstrate the importance of video selection with a micro architectural study of

cache, branch, and SIMD behavior. vbench reveals trends from the commercial corpus that

are not visible and sometimes even reversed in other video corpuses. Our experiments with

GPUs under vbench’s scoring scenarios reveal that context is critical: GPUs are well suited

for live-streaming, while for video-on-demand, they shift costs from compute to storage

and network. Counterintuitively, they are not viable for popular videos, for which highly

compressed, high quality copies are required. We find that popular videos are well-served by

the current trajectory of software encoding. This dependency between results and context,

i.e. transcoding scenario and input video, that we uncover in our work shows the importance

of rigorous benchmarks that reflect production scenarios.

We hope that vbench will stimulate a virtuous cycle by encouraging optimization and

ensuring fair comparisons of different solutions for this growing market.

1.1.2 Design Space Exploration of Networks on Chip for Accelerators

Our second study shows how performing design space exploration of communication re-

sources can be as effective as optimizing computational ones. We performed a design space

exploration of the compute [Wu et al., 2014], and communication [Lottarini et al., 2017]

part of an accelerator for analytic query processing. In our ASPLOS 2014 paper [Wu et

al., 2014], we presented the Q100, a class of domain-specific database processors that can

efficiently handle analytical query processing workloads. This architecture uses coarse grain

instructions that operate on streams of data. Each instruction corresponds to a relational

algebra operator and has an associated ASIC module – called tile in Q100 terminology – that

can execute the operation quickly and energy efficiently. During query execution, relational

algebra operators in a query plan are mapped at runtime to Q100 tiles. An instance of a

Q100 accelerator can have replicated tiles of any given type in order to exploit parallelism in

the query plan. The tiles stream data to each other over an on-chip interconnection network

and different query plans can be implemented by changing the routing functions between

tiles. The Network on Chip (NoC) effectively constitutes the brain of a Q100 device.
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The original Q100 paper [Wu et al., 2014] focused mostly on a holistic analysis of the

entire system. It showed how the choice of tile mix is critical to derive an efficient accel-

erator design given the workload specification (TPC-H [Boncz et al., 2014]). In further

work [Lottarini et al., 2017] we optimized the interconnection network as it greatly influ-

ences both area and performance of the system. We have shown that various interconnect

topologies can trade a factor of 2.5× in performance for 3.3× area. Moreover, standard

topologies (e.g., ring or mesh) are not optimal. Significant prior work on network topology

specialization augments generic topologies with additional dedicated links. Instead, we pre-

sented a network specialization algorithm that first builds a specialized network and then

introduces a generic network as a fallback. We find our algorithm produces networks that

are 1.24× slower than the highest-performance generic topology considered (a fat tree),

and 18% smaller than the least expensive (a double ring). Moreover, our method produces

topologies that outperform those produced by other methods [Ogras and Marculescu, 2006]

by 1.21× while being 25% smaller.

1.1.3 Tradeoffs Between Levels of Specialization for Accelerators

Datacenters already deploy accelerators targeting the most resource hungry applications,

such as Deep Neural Network (DNN) training and inference. These applications are in

most cases dominated by a few computational kernels – matrix multiply and activation

functions – which are computed repeatedly in this order. This regularity simplifies the

design of accelerators for this class of workloads. On the other hand, accelerator design

is more complex for irregular applications, i.e. applications that do not have a single

dominant computational kernel, have significant control flow divergence and complex data

dependencies between computational kernels. For this class of applications, we have found

that specialization might not necessarily correlate with higher performance and/or energy

efficiency. We are going to examine analytical query processing and compare the Q100

class of accelerators to a homogeneous Coarse Grain Reconfigurable Architecture. This

architecture is composed of a mesh of processing elements. Each processing element has

equal computational capabilities and can be programmed to execute any relational algebra

operator supported by the different Q100 tiles. Despite the increased programmability
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of the new architecture, we find that it shows comparable performance at a given area

or power budget. Our analysis shows how the more specialized accelerator can be less

efficient than a programmable non Von-Neumann architecture. Resource usage explains

this counter-intuitive result, as a well-programmed homogeneous array of resources is able

to more effectively adapt to the time varying computational requirements of analytical

queries. On the other hand, the Q100 is composed by a fixed mix of tiles, of which only

a small fraction are active on average. Furthermore, since each processing element in the

programmable architecture has equal computational abilities, data tends to flow between

neighbors reducing the cost of communication. When considered together, the higher silicon

utilization and lower cost of communication, explain how the programmable architecture

can outperform the Q100.

These results suggests that a balanced accelerator research portfolio must include alter-

native programmable architectures, and their software stacks.

1.2 Dissertation Outline

Chapter 2 includes the motivation of our work and other possible alternative approaches.

Section 2.1 contains a study on the performance trends of commercial CPUs over time,

explaining how the slowdown in the performance increase of modern CPUs is due to the

end of Dennard scaling. This slowdown motivated industrial and academic research on

accelerators – the focus of this dissertation – of which we present a survey in Section 2.2.

Chapter 3 presents vbench the first benchmark for large video sharing infrastructures

that we developed in collaboration with YouTube. Some background information about

video transcoding, including the metrics that we used for our benchmark scoring functions,

is presented in Section 3.1. Section 3.4 presents the actual benchmark and the methodology

used to synthesize it from YouTube production transcoding pipelines. Finally Section 3.5

and Section 3.6 present insights gained by using vbench.

Chapter 4 presents our work on application specific Network-On-Chip for accelerators.

First, the Q100 class of accelerators for analytical query processing is presented in Sec-

tion 4.1. Then, our algorithmic approach to derive application specific NoCs is presented

7
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in Section 4.3 and results of its application to the Q100 is presented in Section 4.5.

Chapter 5 presents our work on the specialization tradeoffs for the acceleration of ir-

regular applications. We use the Q100 as our baseline and the reader can refer back to

Section 4.1 for background information on this architecture. We analyze the drawbacks of

the Q100 architecture in Section 5.1 and then introduce the programmable homogeneous

architecture that we use as a comparison point in Section 5.2. The results of this com-

parison – including an analysis of the two architectures salient differences – are shown in

Section 5.5.

Finally, Chapter 6 summarizes the contributions of this dissertation and proposes se-

lected future work.
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Chapter 2

Background

Gordon Moore predicted in 1975 that the amount of transistors that could fit in a given area

would double every two years [Moore, 2006]. His prediction was correct until recently [Si-

monite, 2016] and this exponential growth fueled the digital revolution of the 20th Century.

Moore’s law is now slowing, resulting in increasing time between the commercial release of

newer chips at smaller technology nodes.

More importantly, the last decade saw the end of Dennard scaling [Dennard et al., 1974]

and general purpose processors hit the so called “Power wall”. Current CPU designs have a

significant fraction of their area underutilized or idle in order to keep dissipated power at bay.

This limitation severely stunted performance growth of general purpose CPUs (Figure 2.1)

with single core performance plateauing after more than 40 years of exponential growth.

Accelerators are a promising way to contend with the end of Dennard scaling and the

slowdown of Moore’s law. In this chapter, we are going to introduce the reasons behind

the end of Dennard scaling that motivated the development of accelerators (Section 2.1).

Then, a survey of deployed and proposed accelerators is presented in Section 2.2. Two

classes of accelerators that are particularly relevant in this dissertation are presented here

in greater detail: accelerators targeting query processing (Section 2.2.1) as well as Coarse

Grain Reconfigurable Architectures (Section 2.2.2).
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Figure 2.1: Single core performance has been growing exponentially in the last 40 years

(notice the logarithmic y axis). This growth started plateauing in the last decade due to

the slowdown of Moore’s law and the end of Dennard scaling. Data from [Hennessy and

Patterson, 2017]

2.1 The End of Dennard Scaling

Robert N. Dennard observed in the 1970s that it should be possible to linearly scale all

figures of merit of a transistor, i.e. voltage and capacitance, with respect to its size [Dennard

et al., 1974]. His observation proved to be true for decades. Thanks to improved fabrication

processes, circuits could pack not only more, but also faster transistors in the same area

(hence at the same materials’ cost) while keeping a constant power density. Over time, the

same computation became cheaper and cheaper to perform.

However, the last decade saw the end of Dennard scaling [Borkar and Chien, 2011;

Bohr, 2007]. While the size of transistors keeps shrinking (albeit at a slower pace than

in previous years), the voltage at which they operate cannot. More precisely, Dennard’s

prediction was based on the assumption that it would always be possible to scale down the

threshold voltage of a MOSFET proportionally to its reduction in size. This is no longer

true as transistors have reached feature sizes of a few atoms and subthreshold leakage has

a significant enough effect that it prevents lowering threshold voltage any further [Bohr,

2007].

This implies that the power consumed by a circuit operating at full frequency has become

too large for practical cooling solutions. Effectively, this constitutes a limit (the so called
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“Power Wall”) on the increase of circuits performance. Large portions of a chip have to

be powered down at any time in order to keep power dissipation low enough for practical

cooling solutions.

Dynamic power consumed in a transistor is a function of the switching activity (α),

capacitance (C), frequency (F), and voltage (V), that the chip is operating at:

P = α× C × F × V 2

The switching activity α corresponds to the probability of the given transistor to switch at

each clock cycle. Notice that the power has a quadratic relationship with the voltage. Let’s

assume that it is possible to reduce the minimum feature size by a factor S. Table Table 2.1

provides a quick comparison of the implications of technology scaling in the past and in our

current, post Dennard scaling regime.

Scenario Dennard Scaling Post Dennard

Regime Scaling Regime

Voltage 1/S 1

Capacitance 1/S 1/S

Maximum Frequency S S

Transistors in fixed area budget S2 S2

Power consumed at full speed 1 S2

Fraction of chip switching at full speed 1 1/S2

Table 2.1: Comparison of scaling for circuits in the Dennard scaling (past) and post Dennard

scaling regime (now). Notice how the power dissipated can grow quadratically in the post

Dennard scaling regime.

If we analyze the performance of commercial CPUs in the last two decades we can clearly

observe the implications of the end of Dennard scaling. Figure 2.2 shows that around 2005

we reached the limit of power that could be reasonably dissipated on a socket. Notice also

that CPU architects slowly increased the power dissipation of commercial CPUs even in the

Dennard scaling era in search for higher single core performance.
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Figure 2.2: Around 2005 CPU design hit the “Power Wall” as the limit of power that could

be dissipated on a single socket was reached. As a consequence, the frequency of CPUs also

plateaued around that time. The increasing number of transistors available are now spent

on simpler and more energy efficient CPU cores. Data from [Danowitz et al., 2012]

With power dissipation imposing a limit on CPU design, operating frequency increases

had to stop to reduce power consumption. As a stopgap measure, CPU architects reverted

back to simpler CPU designs. While these provide lower single core performance, they are

more energy efficient and multiple instances can be packed in a single socket creating the

Chip Multiprocessors (CMPs) that are ubiquitous today.

CMPs have clear limitations that were soon documented by the computer architecture

community [Taylor, 2012; Esmaeilzadeh et al., 2011]. The most important one is Ahmdal’s

law. Not all workloads can be sped up by operating in parallel on multiple CPUs since the

portion of an application that has to run sequentially will always limit the possible speedups

attainable.
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Accelerators are a longer term solution to this problem. Accelerators implement algo-

rithms in hardware in order to attain high energy efficiency and will be the focus of this

dissertation. We present a survey of proposed and deployed accelerators in the next section.

2.2 Accelerators

It should be clear from the previous section that in our post Dennard scaling regime,

high energy efficiency has become key. In order to understand how accelerators achieve

high energy efficiency, we have to first analyze software running on general purpose CPUs.

Only a small fraction of the power dissipated on a general purpose CPU goes towards

performing the operations needed by the algorithm [Horowitz, 2014]. The large majority

of power goes towards supporting programmability and data movement. As an example,

consider that the energy spent to perform a 32bit integer add on a modern CPU is 0.1pJ.

That is only a small fraction of the 70pJ that are necessary, on average, to execute an

instruction. Most of this power goes towards fetching instructions (25pJ), accessing the

register file (6pJ), decoding, control, etc. Speculation in modern out of order CPUs also

adds to the power budget, sometimes without providing any performance benefit (consider

a mispeculated branch). Finally, energy spent performing operations pales in comparison

to the energy necessary to fetch data from DRAM, which can be orders of magnitude

greater. These sources of inefficiency in CPUs have been widely studied [Hameed et al., 2010;

Horowitz, 2014]; this high energy cost per instruction comes from many years of CPU

development that aimed solely at obtaining high single core performance.

In contrast, we can define accelerators as any architecture that tries instead to minimize

any energy spent in operations that are not strictly necessary to perform the computation.

Accelerators generally have very limited programmability, hence any penalty associated in

a CPU to fetching and decoding instructions is almost completely eliminated in most accel-

erator designs. Accelerators do not rely on a memory hierarchy, but instead use explicitly

managed memories, called scratchpads, to maximize the number of operations performed on

each byte that is fetched. This amortizes the high cost of data movement and avoids over-

heads of general cache hierarchies such as conflict misses. Furthermore, accelerators usually
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do not employ any form of speculation that could result in unnecessary computation being

performed. Finally, accelerators usually exploit the inherent parallelism of applications by

replicating computational blocks and therefore increase performance compared to a soft-

ware implementation. Since accelerators tend to also have more predictable running times

than software, this additional performance manifests itself as both increased throughput

and reduced latency.

Accelerators have already been deployed in datacenters. Currently, both Google [Jouppi

et al., 2017; Dean et al., 2018] and Microsoft [Fowers et al., 2018] deploy accelerators in

their datacenters to accelerate machine learning workloads. These accelerators are currently

replacing GPUs as the main computational substrate for machine learning. FPGAs are also

used in Microsoft’s datacenters to offload software defined networking tasks [Firestone et

al., 2018].

In academia, accelerators have been proposed for the most disparate domains, in-

cluding genome sequencing [Fujiki et al., 2018], graph analytics [Ham et al., 2016], key-

value stores [Lim et al., 2013], and, of course, machine learning [Reagen et al., 2016;

Chen et al., 2016b]. While most of these works target an entire application or an application

domain, there have been proposals for accelerating functions that are common across ap-

plications such as memory allocation [Kanev et al., 2017] or garbage collection [Maas et al.,

2018]. These cross application overheads take a big toll on datacenter applications. Recent

work on profiling applications running in Google datacenter [Kanev et al., 2015] found that

almost 30% of the clock cycles are spent in similar operations that the authors named as

the “datacenter tax”.

Chapter 4 and Chapter 5 will focus on accelerators for analytical query processing. We

present proposals in more detail for this domain in Section 2.2.1. Chapter 5 also compares

a standard accelerator design against a Coarse Grain Reconfigurable Array. We present

these architectures in Section 2.2.2.

2.2.1 Specialized Hardware for Analytical Query Processing

Analytic query processing is a good candidate for acceleration since it is a stable workload,

it is widely used, and operates on structured data.
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Furthermore, analytical query processing benefits from having a standard language

(SQL), intermediate representation for the computation (relational algebra) and a bench-

mark (TPC-H) that is an industry standard [Boncz et al., 2014].

Kung et al. first suggested using systolic arrays1 to accelerate database workloads [Kung

and Lehman, 1980] in 1980. However, high performance improvement of CPUs year after

year made the development of ASICs for this kind of computation unappealing [Boral and

DeWitt, 1983].

The end of Dennard scaling spurred the more recent interest in this topic. Key com-

putational kernels such as partitioning [Wu et al., 2013], nested loop joins [Teubner and

Mueller, 2011; Cao et al., 2017], and hash-joins [Kocberber et al., 2013] have been evaluated

for acceleration as ASICs with high expected benefits. The Q100 that will be the focus of

our later analysis in Chapter 4 aims instead to accelerate full analytical queries. A similar

architecture to the Q100 has also been proposed for FPGAs [Chung et al., 2013] targeting

the LINQ query language. Other notable approaches for the use of specialized hardware

in analytic query processing include modifications to the storage subsystem to increase the

DBMS performance [Jun et al., 2015] as well as near storage compute [Woods et al., 2014].

Industry too has examined database acceleration. Oracle, for example, proposed a many

core architecture [Agrawal et al., 2017]. It differs from our design as its cores have a standard

Von-Neumann architecture and data is received from a DMA engine rather than passed in

a dataflow manner from one PE to the other. Baidu recently showed results from an FPGA

database accelerator that closely resembles the Q100 [Ouyang et al., 2016].

2.2.2 Coarse Grain Reconfigurable Architectures

Course Grain Reconfigurable Architectures/Arrays (CGRAs) have been an active area of

research in computer architecture since the early 1990s. Interest in these architectures tends

to wax and wane over time, but they remain a compelling design point to explore despite

lack of widespread commercial adoption [Sutton et al., 1998; Mirsky and DeHon, 1996;

Goldstein et al., 2000; Taylor et al., 2002; Sankaralingam et al., 2003; Swanson et al., 2007;

1Systolic arrays are a predecessor of Coarse Grain Reconfigurable Architectures which will be the focus

of the next section
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Govindaraju et al., 2012; Yu et al., 2008; Bohnenstiehl et al., 2017; Parashar et al., 2013;

Prabhakar et al., 2017; Nowatzki et al., 2017; Repetti et al., 2017]. While the term CGRA

can encompass a large selection of different architectural proposals, these architectures have

a couple of defining characteristics: a large number of relatively simple CPUs – often called

processing elements (PEs) – that operate at the word level, and communicate over a mesh

network (Figure 2.3).

FU
Config 

Registers
Register

File

To Neighbors 

From 
Neighbors 

Register
File

Figure 2.3: Architecture of a generic CGRA.

CGRAs constitute a middle ground between GPUs and FPGAs. Their architecture

is more efficient than GPUs in the presence of control flow divergence and, by operating

at the word level, CGRAs also avoid the cost of bit level programmability that FPGAs

offer, but is often time unnecessary in warehouse scale applications [Taylor, 2012; Kuon and

Rose, 2006; Falsafi et al., 2017]. As an example, recent work has shown how CGRAs can

outperform SIMD architectures as well as an FPGA implementation for computer vision

algorithms [Vasilyev et al., 2016].

CGRA architectures differ from one another mainly in their means of scheduling opera-

tions on the various PEs. Some architectures rely on all operations and data movement being

scheduled globally on a cycle-by-cycle basis [Sutton et al., 1998; Mirsky and DeHon, 1996;

Goldstein et al., 2000]. Others map circuit-switched dataflow networks onto an array of PEs

with local control consisting only of if-then-else predication [Sankaralingam et al., 2003;

Swanson et al., 2007; Govindaraju et al., 2012]. Finally, some designs give PEs complete
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local autonomy to execute sequential routines covering their designated portion of a spatial

program [Taylor et al., 2002; Yu et al., 2008; Bohnenstiehl et al., 2017; Parashar et al.,

2013].

Stream-dataflow [Nowatzki et al., 2017] and Triggered Instructions [Parashar et al.,

2013] are the closest proposals to the homogeneous architecture we propose in Section 5.2.

Stream-dataflow operates explicitly on memory streams fed into and read from the recon-

figurable fabric by external stream readers and stream writers [Nowatzki et al., 2017]. Our

homogeneous PEs use triggered-instruction-like operand-availability as a criteria for instruc-

tion scheduling [Parashar et al., 2013] and can thus tolerate arbitrary data latencies. The

tags that are added to each data channel perform a similar function to our independent

control plane. Neither of these architectures is optimized for database applications in the

same way as our design.
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Chapter 3

Benchmarking Video Transcoding

at Scale

Video sharing represents a growing fraction of internet traffic. For example, in the Novem-

ber 2016 Facebook earnings presentation, Mark Zuckerberg described Facebook’s evolution

into a “video first” company [facebook, 2016]. The 2016 Sandvine Global Internet Phe-

nomena report [Sandvine Intelligent Broadband Networks, 2016] places audio and video

at 71% of evening traffic in North America and projects that figure will grow to 80% by

2020. Video processing plays a pivotal role in virtual and augmented reality (Oculus Rift,

HoloLens), video surveillance (Nest), cloud gaming (GeForce Now, PlayStation Now), and

other emerging applications.

To keep up with growing usage, video on demand providers such as Netflix, YouTube,

and Facebook maintain large video serving infrastructures. All these services perform a

large number of transcoding operations [Xin et al., 2005], i.e., decoding a compressed video

into raw frames and re-encoding it in a new compressed format. Each uploaded video is

transcoded at least once before it is sent to viewers. This ensures that videos that are

malformed are not distributed. Even more importantly, each upload must be converted to

a range of resolutions, formats, and bitrates to suit varied viewer capabilities, i.e., screen

resolution, codecs supported, and available network bandwidth. In every transcoding op-

eration, there is a trade-off between compressed video size, fidelity to the original video,
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Figure 3.1: Many hours of video are uploaded to YouTube every minute [Insights, 2015]. The

uploads are growing more rapidly than CPU performance (as measured on SPECRate2006),

which creates a growing burden on video sharing infrastructures.

and transcoding time. For example, reducing video size may reduce visual quality, but

encourages smooth playback, thus potentially improving the overall quality of experience.

Within a transcode operation, the decoding step, which converts a compressed video

stream into a sequence of frames to be displayed, is deterministic and relatively fast. In

contrast, the encoding step has to make many decisions that can not be exhaustively ex-

plored, so encoders perform a heuristic search over this decision space. Increasing the space

searched, also known as the effort level, increases the likelihood of finding a better transcode,

i.e., a compressed video with less distortion, or lower bitrate. The reader can find a more

detailed explanation of transcoding workloads in Section 3.1.

Transcoding is ripe for optimization. As Figure 3.1 depicts, demand is outstripping CPU

performance, and within Google, the cycles spent transcoding have grown by 10x in the last

two years. Research is needed in order to advance areas like hardware video transcoding,

evaluation of new video codecs, and related technologies. However, there is no well-defined

way to compare transcoding solutions. In the video processing community, encoders are

evaluated in terms of visual quality and bitrate. Large scale studies [Cock et al., 2016] show
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increases in compression rate without hurting video quality. Computation time, however,

is not typically measured and thus also increases: as new codecs introduce new knobs and

parameters, the search space grows. Our case study in Section 3.6.2 demonstrates this

effect. In the architecture community, two widely used benchmark suites, SPEC [Henning,

2006] and PARSEC [Bienia, 2011], include some video encoding use cases. However, the

video content and settings are not representative of a video sharing infrastructure.

To establish some common ground, we developed vbench, a video transcoding bench-

mark that reflects the transcode demands of a video sharing service such as YouTube.

YouTube receives videos in thousands of combinations of resolution, framerate, and com-

plexity (entropy). vbench uses clustering techniques to select 15 videos of 5 seconds each.

This is a small enough number to allow detailed RTL or microarchitecture simulations, but

wide enough to cover a significant cross section of the corpus of millions of videos. vbench

also establishes a set of reference transcode operations against which other transcoder pro-

posals can be compared. These operations are comparable with operations that are per-

formed at providers like YouTube. This ensures a consistent and appropriate baseline.

Finally, vbench includes five comparison metrics derived from real-world transcoding sce-

narios. These metrics guide meaningful improvements by enforcing constraints associated

with video transcoding at scale.

We demonstrate the value of vbench with four use cases. First, we show how vbench

choice of videos highlights microarchitectural trends and then derive qualitative conclusions

from this performance study. Second, we quantify the limits of SIMD vectorization for

transcoding: consistent with other studies [Hameed et al., 2010], we find that SIMD in-

structions can provide limited improvements. Next, we evaluate current GPU support for

video transcoding, finding non-intuitive tradeoffs in their behavior. While GPUs are a clear

win for live transcoding tasks, they sacrifice compression and quality for video archival.

Lastly, we find that while GPUs today cannot meet the strict quality and compression tar-

gets for popular videos, newer and more complex software encoders can. Collectively, these

studies demonstrate the relevance of our benchmark and the importance of having a curated

set of videos, meaningful baselines, and encoding scenarios to evaluate new transcoding so-

lutions. Moreover, by showing the possible pitfalls of using non-curated video sets and the
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significant differences in computational requirements for different production transcoding

pipelines, our results presented here support our thesis that design space exploration re-

quires benchmarks reflective of production workloads. In the remainder of this chapter we

are going to introduce the video transcoding workload (Section 3.1) as well as the video shar-

ing infrastructures that employ many video transcoding pipelines that will be the subject of

our analysis (Section 3.2). Related work in video benchmarking is presented in Section 3.3.

Section 3.4 describes vbench and the methodology we used to construct it. Section 3.5 and

Section 3.6 present the main insights we gained using vbench. Finally Section 3.7 concludes

the chapter by summarizing the contributions of this work and how they support our thesis.

3.1 Video Transcoding Background

This section provides some background on video transcoding techniques, how they are

evaluated, and the video sharing infrastructures where they play a crucial role.

To understand the importance of transcoding, consider that a raw Full-HD frame (1920×

1080 pixels) is roughly 3MB. Streaming uncompressed video at 30 frames/second would

require 90 MB/s, or 700 Mb/s, exceeding the capabilities of most home broadband instal-

lations.

Since streaming raw video is not practical, it must always be compressed. A video

transcoder is a device or program that decodes a compressed input video into a raw, un-

compressed format and then re-encodes it in a new compressed format. It is equivalent to a

decoder and encoder chained together. While video decoding simply follows the interpreta-

tion rules for the bitstream of the video format, video encoding has a number of degrees of

freedom to decide how the raw video should be compressed. Video encoding formats, like

H.264/AVC [Wiegand et al., 2003], H.265/HEVC [Sullivan et al., 2012], or VP9 [Mukherjee

et al., 2013], are usually referred to as codecs.

3.1.1 Video Transcoding

Video encoders exploit properties of human perception as well as spatial and temporal

redundancy in the video content. Humans perceive changes in luminosity more than changes
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in color, therefore video processing is performed on the YUV color space, rather than in

RGB. YUV separates luminosity signal (luma) from color information (chroma) allowing

encoders to dedicate more bits for the luma plane than the chroma plane (a process called

chroma subsampling). They also rely on the fact that blocks of pixels in a frame are usually

similar to other blocks of pixels in previous (and future) frames. Encoders take advantage

of this similarity by expressing part of a frame as a function of blocks in other reference

frames.

Video encoders generally adhere to the following template: First, video frames are de-

composed in square blocks of pixels called macroblocks. For each macroblock, the encoder

searches temporally neighboring frames for similar macroblocks (motion estimation). This

initial motion estimation is usually the most computationally onerous step [Hameed et al.,

2010]. Once a suitable reference block is found, the encoder computes the difference (the

residual block) and stores only the relative location (the motion vector). Residual blocks are

then encoded like a regular image [Rabbani and Jones, 1991]: A discrete cosine transform

(DCT) is used to convert blocks of pixels to the 2D spatial frequency domain. Then the

matrix of coefficients is quantized, i.e. divided point-wise by another matrix (the quantiza-

tion matrix) to introduce zeroes1. Quantization zeroes out the high frequency components

(quick pixel transitions) which are less noticeable to the viewer. Quantization is the only

lossy part of the process. The more zeroes introduced this way, the more effective the fi-

nal compression step, in which each frame is losslessly compressed via a sequence of run

length encoding and entropy encoding. Examples for the latter are e.g. Context Adap-

tive Binary Arithmetic Coding (CABAC) or Context Adaptive Variable Length Coding

(CAVLC) [Marpe et al., 2003].

To allow playback from arbitrary points in the video stream, and to allow recovery after

a transmission error, index frames (I-frames, also called keyframes) have to be inserted at

regular intervals. I-frames do not contain motion vectors, therefore it is possible to decode

these independently of other frames.

New codecs introduce new compression tools and algorithms, like the H.264 deblocking

filter, which removes artifacts that can appear at the boundaries between macroblocks.

1Potentially the entire residual block can be discarded if equal to zero after quantization.
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Denoising is another optional operation that can be applied to increase video compressability

by reducing high frequency components [Kokaram et al., 2012].

3.1.2 Encoding Effort

Video encoding requires the user to specify a target quality. If the user specifies a constant

rate factor (CRF), the encoder will try to sustain the same quality level for all video frames,

using as many bits as necessary. Alternatively, to make the video size predictable, the user

can specify a target bitrate (bits per second); The encoder will try to fit the video in the

allocated space, but may sacrifice quality to do so.

When encoding to a target bitrate, 2-pass encoding can optimize the allocation of bits

to the more complex parts of the video. On the first pass, the encoder records how complex

each frame is and uses that information in the second pass to budget fewer bits for simple

frames, and more for complex frames.

The Rate Distortion Optimizer (RDO) decides how to gracefully degrade visual quality

in order to meet the target bitrate. A sample RDO decision would be the post-DCT

quantization strength. More complex decisions include how to decompose the frames into

macroblocks or whether to perform sub-pixel motion estimation.

The difficulty of the RDO’s job is input dependent. Videos with static images, such

as slideshows or animations, are easily compressed since motion vectors describe most of

the frames with precision. On the other hand, videos with high motion and frequent scene

changes will require more time for motion search, and other optimizations to fit the frames

in the allowed bitrate.

It is possible to specify an encoder effort level that affects the RDO decisions. RDO

decisions at each stage of encoding entail difficult-to-predict tradeoffs between quality and

bitrate. As a consequence, the whole encoding process resembles a heuristic search. Per-

forming more computation, i.e. covering more combinations in the encoding space, ensures

that better transcodes are found. The effort level restricts the parameters (motion search

range, number of reference frames, etc.) used in search for a better encoding. Higher effort

will achieve higher quality at the same bitrate, at the expense of longer encoding time.
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3.1.3 Transcoding Metrics

Video transcoding must be evaluated in three dimensions: visual quality, video size, and

transcoding speed.

Visual quality is measured by comparing the original uncompressed frames with the same

frames in the encoded version. Peak signal-to-noise ratio (PSNR) captures the ratio between

the maximum error per pixel and the actual error per pixel, so larger values indicate higher

quality. Given an initial raw frame F and its transcoded version T, both of m × n pixels,

PSNR is obtained by computing the mean square error (MSE):

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(F (i, j)− T (i, j))2

The MSE is then compared against the maximum pixel value of the frame, typically 255

for standard 8 bit pixels.

PSNR = 10 log10

( 255√
MSE

)
This process can be repeated for all planes, luma (Y) and chroma (Cb,Cr) of all frames

and averaged to compute the average YCbCr PSNR. We use average YCbCr PSNR in the

remainder of the paper as a measure for transcoding quality.

There are several alternative “perceptual quality” metrics such as Structural Similarity

(SSIM [Wang et al., 2004]), and those recently proposed by Netflix [Li et al., 2016] and

Google [Chen et al., 2016a]. These metrics try to capture the specifics of human visual per-

ception into an analytic method. They all assume that the original video is uncompressed.

However, YouTube uploads generally arrive already encoded and thus potentially distorted.

Furthermore, there is no consensus in the video processing community as to which one of

these metrics works best. Therefore, we rely on the “objective” PSNR for the rest of this

work.

Video size is usually measured by bitrate, the number of bits per second of video. While ac-

tual video file size depends on the length of the video, bitrate is a video-length-normalized

metric. Decreasing the bitrate of a video stream decreases the likelihood of re-buffering
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Figure 3.2: Video transcoding is usually compared on video quality vs. video bitrate, but

that leaves out a critical third dimension: the transcoding speed.

events, i.e. video data packets not delivered on time for playback. To compare videos at

different resolutions, we report bitrate normalized by the number of pixels in each frame

(bits per pixel per second).

Transcoding speed, like bitrate, is normalized against the length of the video, and the

resolution of each frame. We multiply the number of frames transcoded in a second by the

number of pixels in a frame and report the number of pixels transcoded per second.

3.1.4 Evaluating a Transcoder

Since video quality is clearly related to the bitrate made available to the video encoder, the

video community compares video transcoders using PSNR curves that plot video quality

as a function of the video bitrate. Figure 3.2 (left) shows PSNR curves for three different

software encoders on one HD video2.

The curves show that libvpx-vp9 achieves slightly better quality than libx265, and both

achieve substantial improvements over libx264 for all target bitrates. That would indicate

that libvpx-vp9 is a superior transcoder, since it can always provide better quality at the

same video size, or smaller videos at the same quality.

However, when transcoding speed is factored in Figure 3.2 (right), we observe that the

advantage of libvpx-vp9 over libx265 corresponds to a decrease in transcoding speed, and

that both of them require 3-4x more computation than libx264. It is no longer obvious

2The first 1000 frames of Big Buck Bunny [Blender Foundation, 2002], used in SPEC 2017.
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which one is the best encoder.

The answer depends on the use case. For large video sharing infrastructures a fast

transcode is needed when streaming a live event, so it is necessary to trade bitrate and/or

quality to ensure that streaming is fluid. Conversely, when a video is expected to be played

many times, it is worth using an advanced encoder, since the cost of producing a smaller

video at equivalent perceptual quality is amortized, and the bitrate savings are multiplied,

across the many playbacks. A video sharing infrastructure (Section 3.2) is designed to

efficiently manage all these decisions.

3.2 Video Sharing Service Architecture

A video streaming service such as Netflix, YouTube, or Facebook allows users to view,

rate, upload, and comment on videos. They serve media to a wide variety of devices, from

web browsers to mobile applications, with media content ranging from movies, television

programs, music videos, video games, and documentaries, to animations, slideshows, and

screen capture tutorials.

These services incur three primary costs: storage, network, and compute. The storage

cost is proportional to the size of the corpus of videos stored in a central repository, includ-

ing duplicates in various resolutions and formats, as well as replication across a Content

Distribution Network (CDN) for faster service [Buyya et al., 2008; Rafetseder et al., 2011].

The network cost is determined by the egress traffic from the central repository and/or

CDN to users and, to a lesser extent, by the ingress traffic of new uploads. The compute

cost is incurred each time a video is transcoded.

To optimize these costs, video streaming services make multiple video transcoding passes

on each video, as illustrated in Figure 3.3. Videos are uploaded in a wide variety of combi-

nations of codec, container, color space, resolution, frame rate, etc. [Engineering and Blog,

2016]. To apply a uniform process, all originals are first transcoded to an universal format

that functions as an intermediate representation for the system.

From there, videos are transcoded to a wide variety of formats and resolutions to suit

the capabilities of the network and the different client platforms. Depending on whether
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Figure 3.3: Video transcoding passes in a video sharing infrastructure. Higher effort is

invested in popular videos watched many times.

the video is being forwarded directly to clients, i.e. live streaming, or transcoded offline and

stored to be viewed later, i.e. video on demand or VOD, this encoding can be single pass

for low latency, or two pass for higher quality and smaller size. Newly uploaded videos must

be available for playback as soon as possible, especially for live streaming, so the latency of

these transcoding steps must be bounded.

Video popularity follows a power law distribution with exponential cutoff [Cha et al.,

2009]: most of the watch time concentrates in a few popular videos, while there is a long

tail of rarely watched videos. It would be wasteful to invest much compute effort on the

long tail, but when a video is observed to be popular, services will spend the extra com-

pute. Those videos are transcoded a second time at higher effort levels to produce high

quality compressed replicas that optimize user experience, storage and network costs. The

extra compute time is amortized across many playbacks of the video, while the savings are

multiplied across playbacks.

3.3 Related Work

While benchmark suites have been developed for various classes of datacenter workloads,

such as personal assistants [Hauswald et al., 2015], web applications [Zhu et al., 2015], big

data analytics [Wang et al., 2014] as well as datacenter workloads at large [Ferdman et al.,

2012], there is no suite specifically targeting video transcoding. When transcoding does

appear in a benchmark, the videos are not necessarily representative, and sometimes the
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specific operations to be performed are not specified at all.

Several popular CPU benchmarks contain some video transcoding workload. For ex-

ample, SPEC 2006 [Henning, 2006] includes the H.264 reference encoder with two low-

resolution videos. SPEC 2017 uses the libx264 encoder and two segments of a HD video.

PARSEC [Bienia, 2011] includes a pthread parallelized version of the libx264 encoder and

one input video. Since video transcoding microarchitectural profile is highly dependent on

the type of inputs, these are clearly not enough input sequences to provide good coverage.

Netflix released a dataset of 9 videos from an internal suite of 34 video clips from popular

TV and movies from their catalog. This curated data set has been used in a study proposing

a perceptual quality metric, as opposed to signal fidelity metrics like PSNR [Li et al., 2016].

These sequences are collected using a qualitative metric (“a wide range of high level fea-

tures: animation, indoor/outdoor, camera motion, · · · ”) while videos in vbench are selected

according to their entropy, a quantitative metric which we formally define in Section 3.1.

The Alliance for Open Media is using Derf’s HD video collection from Xiph.org [Xiph.org,

2016] for the development of the AV1 codec [Foundation, 2017]. The Derf collection con-

tains 41 videos from 480p to 4K resolution but the rationale for inclusion is not clear. Both

Xiph and Netflix workloads are not intended for performance benchmarking and there is

no indication on how to use them.

HD-VideoBench [Alvarez et al., 2007] is a notable previous attempt at benchmarking

video transcoding that however lacks the diversity in both input sequences (only 4 videos

obtained from the MPEG-Test Sequences archive) and scenarios (single pass constant qual-

ity encode only) that characterize a video sharing infrastructure. All their video sequences

are included in the Xiph.org collection.

Prior architectural work in video transcoding does not use rigorously selected videos [Ma-

gaki et al., 2016; Hameed et al., 2010; Qadeer et al., 2013], or compares against unoptimized

encoders [Henning, 2006; Hameed et al., 2010] that underperform compared to state of the

art software solutions. As a consequence, it is difficult to translate their insights for video

sharing infrastructures, since the implications on the quality of user experience, storage, and

network costs can not be predicted from the reported results. As an example, Fouladi et

al. recently implemented a system [Fouladi et al., 2017] to perform low latency transcodes
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using AWS Lambda. Their evaluation was performed using two movies from the Blender

Foundation [Blender Foundation, 2002] (Sintel and Tears of Steel) and no rationale for this

choice is stated. Zhang et al. investigate how to reduce video decoding energy consumption

in mobile devices [Zhang et al., 2017]. A mix of video sequences is used for the evaluation

with no explicit rationale for inclusions. vbench would be more representative of the content

that mobile devices receive from video sharing infrastructures.

There has been recent work documenting how large video sharing infrastructures oper-

ate [Huang et al., 2017] or optimize for popular videos [Tang et al., 2017]. Results obtained

using vbench should also apply to these systems.

Magaki et al. explore the possibility of introducing ASICs into the datacenter to process

large scale workloads with a lower Total Cost of Ownership (TCO) [Magaki et al., 2016].

Their analysis names video transcoding as a possible candidate. However, before building

an ASIC, a performance analysis of the workload to accelerate is paramount.

Overall, we find that the state of the art is not conducive to controlled comparisons

between transcoding solutions. This lack of data and common benchmarks hampers inno-

vation in this critical area.

3.4 vbench: a Video Transcoding Benchmark

In this section, we describe vbench, our video transcoding benchmark consisting of input

videos (Section 3.4.1), scoring functions (Section 3.4.2), and reporting rules (Section 3.4.3).

All of the videos, reference data, and scripts are publicly available on the vbench website

http://vbench.net.

3.4.1 Video Selection

The input videos must achieve a complex trade-off between representativeness and coverage.

They must be representative so that the results match what is observed on a production

system, but provide coverage to expose trends and not ignore corner cases that may become

increasingly important in the future. Moreover, the number of videos must be constrained

to facilitate adoption: while real machines can easily transcode many videos, that is not
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feasible for microarchitectural or RTL simulation.

Video Feature Selection

From the many features describing a video, we determined three to have the greatest impact

on transcoding:

• resolution, because higher resolution frames will require a higher bitrate to encode,

and will also require more time to encode,

• framerate, because high framerate videos (> 30 frames/s) will require a higher bitrate

to encode, and

• entropy, because videos with high motion, or frequent scene transitions will require a

higher bitrate to encode and higher effort (for motion search and other tools), or will

incur quality losses.

While resolution and framerate are simple to understand and measure, entropy requires

some explanation. Throughout the paper, we use bits/pixel/second when encoded using

libx264 at visually lossless quality (Constant Rate Factor CRF 18) as a measure for video

entropy3. As described in Section 3.1.2, when an encoder is asked to generate a fixed target

quality, it will use as many bits as needed to do so, and thus the number of bits used by

the encoder in this setting reflects the inherent entropy of the video content.

From these three characteristics, we define a video category as the set of videos that

have the same resolution, measured in Kpixels/frame (width×height
1000 , rounded to integer),

framerate (frames per second, rounded to integer), and entropy (bits per pixel per second

when encoded using libx264 at constant quality – constant rate factor 18 – rounded to one

decimal place).

Selecting Video Categories

From logs of all the video transcoding operations at YouTube from January to June 2017,

we accumulate the total transcoding time spent on each video category. This yields over

3libx264 Constant Rate Factor (CRF) goes from 0 to 51. CRF 0 is lossless compression, CRF 23 is the

default value, and CRF 18 is generally considered visually lossless [project, 2017].
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3500 video categories with significant weights (40+ resolutions and 200+ entropy values).

We use k-means clustering to select a small set of categories – particular triplets (resolu-

tion, framerate, entropy) – from that 3-dimensional space. Prior to clustering, we linearize

resolution using the base two logarithm. This ensures that the large distance between stan-

dard resolutions does not bias the clustering algorithm. We also use the base two logarithm

of the entropy to quantify the relative difference between videos: videos of entropy 1 and 2

bit/pixel/s are much more different than videos of entropy 20 and 21 bit/pixel/s. Lastly,

we normalize all dimensions to a [-1, +1] range. We then apply weighted k-means cluster-

ing to find a pre-defined number of centroids, with weights determined by the time spent

transcoding for each category of videos. Since each centroid covers multiple categories, we

select the category with the highest weight in the cluster – i.e., the mode – as the cluster

representative.

This process achieves both representativeness, since we select the mode as cluster rep-

resentative, and coverage, since all videos must be associated with a cluster.

Selecting actual videos

The k-means clustering defines a reduced set of ideal video categories. We then select a

random video from the YouTube corpus belonging to each selected category. To ensure our

benchmark is redistributable, we restrict the selection pool to videos that were uploaded

with a Creative Commons Attribution 3.0 (CC BY) license [CreativeCommons.org, 2007].

Finally, we split the full-length original videos into non-overlapping 5-second chunks,

and select the chunk with the bitrate that best matches the average bitrate of the video.

We limit videos to 5 seconds since it has been observed to be the optimal duration for

subjective video quality assessment [Mercer Moss et al., 2016]. We verify that removing the

creative commons restriction creates no significant difference in our results or insights. The

videos that compose vbench are summarized in Table 3.2.

Coverage

Our process ensures that the chosen videos are representative, with each sequence covering

a significant fraction of the entire corpus. However, not all categories can be covered. We
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Figure 3.4: Black dots are a uniform sample of videos in the various resolutions and com-

plexities uploaded to YouTube. Colored dots show how public video sets cover only a

fraction of the space.

therefore compare our benchmark with an internal YouTube coverage set that collects 11

uniformly distributed entropy samples from the combination of the top six resolutions and

the top eight framerates. These 36 resolution and framerate combinations account for more

than 95% of the YouTube uploads. Figure 3.4 shows one black dot for each video in this

set, and overlays the different public video sets – plus our own, vbench – on top to evaluate

coverage.

Note that the entropy range is four orders of magnitude wide, from still images and

slideshows (entropy < 1) to high motion videos with frequent scene transitions (entropy >

10). In contrast, the Netflix and Xiph datasets focus only on high entropy videos (entropy ≥

1) as they are intended for visual analysis. Furthermore, the Netflix dataset contains a single

resolution (1080p). As we show in Section 3.5.1, the lack of low entropy videos introduces

significant bias in the results using this video set. SPEC’06 and the latest SPEC’17 contain

only two video sequences. This is clearly not enough for a video benchmark. Moreover, the

resolution of SPEC’06 videos is not representative (too small). This is improved in SPEC’17,

however the two videos used in this case have almost identical entropy (Figure 3.4) as they

are obtained from the same animation. vbench achieves better coverage in both resolution

and entropy than all of these other alternatives, and has fewer and shorter videos than

Xiph.org to facilitate adoption.
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3.4.2 Transcoding Scenarios

To capture the nuances of the various video processing pipelines outlined in Section 3.2,

vbench distinguishes five scoring scenarios. Each scenario reflects the constraints and prior-

ities of its corresponding real-world scenario: (1) uploading a new video, (2) live streaming,

(3) archiving for video on demand, (4) optimizing popular videos, and (5) optimizing the

hardware platform.

For each scenario we provide reference measurements, namely speed (in Mpixel/sec),

bitrate (in bits/pixel/sec), and quality (in dB), all normalized to video resolution and du-

ration to allow comparison across videos. The measurements for each of these scenarios are

taken using ffmpeg with libx264 on a Intel Core i7-6700K CPU @ 4.00GHz with 4 cores and

8 threads. Each of these reference transcoding operations is a measuring stick, grounded in

real-world video sharing infrastructure, with which to compare transcoding solutions. All

ffmpeg parameters used are reported in the vbench website (http://vbench.net).

The Upload reference is single pass with a constant quality target, allowing the encoder

to use as many bits as needed to maintain the quality of the original. The Live reference

is single pass, low latency, with a fixed bitrate target; the encoder effort is lower for higher

resolution videos to ensure that the latency constraints are met. The VOD reference is the

average case and is the same as the Platform reference: two-pass encoding with a fixed

bitrate target. Finally, the Popular reference is high-effort two-pass encoding. The reference

measurements are scientifically essential. They ensure that vbench results reported by

different groups are directly comparable, and that the baseline is meaningful.

Users of the benchmark will try to improve on the reference transcoding operations

provided. vbench uses ratios (speedups) between a new system and a reference transcode

to indicate improvement. Values greater than 1 indicate the new solution is better in that

dimension.

S =
Speednew
Speedref

B =
Bitrateref
Bitratenew

Q =
Qualitynew
Qualityref

Since video transcoding entails a trade-off between speed, size, and quality, it is unlikely
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Figure 3.5: Different transcoding scenarios impose different tradeoffs. Therefore, a transcod-

ing solution should be evaluated differently for each scenario. The ideal transcoder (zero

time, infinite compression, no distortion) corresponds to the origin of the plot.

that a new solution will Pareto dominate the reference transcodes on all three dimensions.

However, a new solution has only to be evaluated for the scenario in which it is going

to be deployed. Figure 3.5 depicts graphically how different scenarios included in vbench

prioritize one metric over another. As an example, Live streaming has to prioritize speed

over bitrate or visual quality. Each vbench scenario has an associated scoring function where

one dimension is eliminated via a strict Quality of Service constraint, leaving ratios for the

remaining two dimensions. These constraints are reflective of the particular priorities of the

transcoding scenario targeted. It is then possible to condense each video down to a score

by multiplying the two ratios, similar to an energy-delay product [Gonzalez and Horowitz,

1996]. These scores, summarized in Table 3.1, are easy to compare yet reflective of nuanced

real-world constraints and trade-offs.

The Upload transcoding pass requires speed and quality: the video should be available

for further processing as soon as possible, while not degrading the quality of the uploaded

original. On the other hand, bitrate can be almost arbitrarily large because it is only a

temporary file. We therefore require the bitrate be no larger than 5x the reference (B > 0.2)

when reporting Upload scores of S ×Q.

Live streaming must happen in real time, so transcode must not lag behind the pixels
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Scenario Constraint Score

Upload when B > 0.2 S ×Q

Live when Snew ≥ outputMpixel/s B ×Q

VOD when Q ≥ 1 or Qnew ≥ 50dB S ×B

Popular when B,Q ≥ 1,S ≥ 0.1 B ×Q

Platform when B,Q = 1 S

Table 3.1: vbench scoring functions and constraints.

per second of the output video. The Live score is then B ×Q.

In the VOD scenario, one cannot degrade quality compared to the reference, as this would

have negative effects on user experience. However, provided quality is maintained (Q ≥ 1)

or the transcode is visually lossless (Qnew ≥ 50dB) one can report a VOD score of S ×B.

High-effort optimizations for Popular videos should always produce smaller videos of

higher quality. Improvements on visual quality and reduction in network bandwidth will

improve user experience, while extra compute cost of re-transcoding popular content will

be amortized across many playbacks of these popular videos. In this case, we report bitrate

and quality: B × Q (if B ≥ 1 and Q ≥ 1). While speed is not critical in this scenario, it

should still be bounded to a 10x slowdown (S ≥ 0.1).

The final vbench score captures the case where the encoding algorithm and settings

are constant and only the Platform changes. Innovations evaluated in this scenario are

the same as SPEC benchmarks: compilers (icc vs gcc), architecture (x86 vs PPC), and

microarchitecture (cache size, branch prediction, etc.). The scoring function assumes that

bitrate and quality will be unaffected, and thus the two platforms can be compared by

reporting S (if B = 1 and Q = 1).

3.4.3 Reporting Results

For each scenario, a complete run of the benchmark requires a transcode operation for each

input video sequence that is compared against the reference. Each transcode operation

results in three values – speed, bitrate, and quality – reported individually. For each video,
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if the constraints specific to the scenario are satisfied, scoring metrics described in the

previous section can be computed. Given the diversity of the videos, results should not be

aggregated into averages as significant information would be lost. Each video reflects some

segment of the video sharing workload, so that providers, who know the specifics of their

corpus and service costs can weigh the information accordingly, similar to what is done

today for SPEC.

We demonstrate how benchmark results should be reported in the next section.

3.5 Bridging the Performance Gap for VOD

In this section we analyze the performance of different video transcoding solutions on the VOD

scenario, looking for opportunities to improve performance, and understanding the tradeoffs

that they represent. Throughout the section, we will use the coverage corpus described in

Figure 3.4 as a golden reference, comparing the trends, correlations, and insights obtained

with it to those of vbench.

3.5.1 CPU Performance

First, we examine how video transcoding exercises the CPU microarchitecture. We found

that the microarchitectural profile of video transcoding is very sensitive to the input video,

which reinforces the need of a validated benchmark. Furthermore, its performance on

general purpose CPUs is better than the typical datacenter workload, e.g. websearch, with

respect to retiring rate, frontend stalls and bad speculation stalls [Kanev et al., 2015].

Figure 3.6 shows how L1 instruction cache misses, branch mispredictions, and last level

cache misses correlate with video entropy4. Each plot shows two sets of data: black dots

for the coverage corpus and colored dots for the various benchmark suites.

Our results show that transcoding of complex videos incurs more icache misses, and

more branch mispredictions per kilo instructions. As videos become more complex, the

4Measurements for Figures 5 to 7 are reported on a Google corporate machine different from the vbench

reference: a Xeon E5-1650v3 with 32 GB of DDR4. This was necessary to not distribute user data that was

not Creative Commons.
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Figure 3.6: These plots overlay the videos from the different benchmarks (colored dots)

on the coverage set (black dots). In both the coverage set and vbench, videos with higher

entropy have worse frontend behavior, and reduced last level cache miss rates. The lack of

low-entropy videos in the Xiph.org and Netflix datasets leads to different microarchitecture

performance trends: lower branch misprediction for high entropy videos, no correlation

between video entropy and LLC misses. Logarithmic interpolation ( y = a ∗ log(x) + b ) is

used to obtain trends.

encoder needs to use more advanced compression tools in order to meet the bitrate constraint

without degrading quality. This requires exercising more code, which leads to worse frontend

performance. At the same time, complex videos incur a lower LLC miss rate. The memory

footprint of a video depends only on its resolution, not on video entropy. Transcoding more

complex videos will execute more instructions on the same data, leading to higher temporal

reuse, hence the lower cache miss rate. In all cases, the trend observed using the vbench

video suite matches the trend exposed by the much larger coverage corpus.

Figure 3.6 also reveals how the choice of the video set can lead to different microarchitec-

ture trends. Since these trends are most visible if low entropy videos are present, the high
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Figure 3.8: Time breakdown for H.264

transcoding across different SIMD instruc-

tion sets. The fraction of time spent in

scalar code remains constant and becomes

increasingly dominant. New vectorization

extension only provide limited benefits.

entropy of the videos in Netflix and Xiph.org biases results. The Xiph.org set shows the

opposite trend on icache misses, while the Netflix set shows no correlation between icache

MPKI and video entropy. A similar error appears on LLC misses, where the Xiph.org set

shows no correlation between them and video entropy.

Figure 3.7 translates these microarchitecture event counters to performance using the

Top-Down methodology [Yasin, 2014]. For all video sets, we show boxplots (minimum,

maximum, first and third quartiles, and median values) for the % of time spent on frontend

(FE), bad speculation (BAD), waiting for memory (BE/Mem), waiting for the backend

(BE/Core), or retiring instructions (RET).

Our results show that for all sets 15% of the time is spent on frontend stalls, 10% on bad

speculation, 15% of the time is spent waiting for memory (decreasing for higher entropy

videos, lower LLC misses), with the remaining 60% spent retiring instructions or waiting

for functional units. Except for maximum and minimum values, the results observed with

vbench closely match those obtained with the coverage corpus.
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Figure 3.9: Fraction of time spent in scalar (non-vector) and AVX2 (long vectors) instruc-

tions as a function of video entropy. Over half the executed code is not suitable for SIMD

acceleration, and less than 20% of the code would benefit from longer vectors. The high

entropy videos in Netflix and Xiph show slightly higher ratios of scalar code.

3.5.2 SIMD Analysis

The high fraction of time retiring instructions or waiting for backend resources indicates

an opportunity for performance improvement by increasing the number of functional units

and their data width. Exploiting data-level parallelism with wider SIMD functional units

does both at the same time.

Media processing was a major reason for the introduction of SIMD in consumer proces-

sors in the 1990s. Indeed, video transcoding is amenable to SIMD acceleration because most

of its kernels (DCT, quantization, motion estimation, etc.) are performed on blocks of ad-

jacent pixels. However, not all the video transcoding process can be vectorized. Figure 3.9

shows the fraction of scalar instructions, and of AVX2 vector instructions as a function of

video entropy.

Scalar code represents close to 60% of the instructions on all videos, regardless of their

entropy. Focusing only on videos with entropy greater than 1, we observe a slight increase in

the scalar fraction as entropy increases and a corresponding reduction of AVX2 instructions.

Non-vectorizable functions include all the decision making logic, e.g. the frame reference

search for motion estimation which averages 9% of the time, or functions that are strictly

sequential and control dominated, e.g. entropy encoding which averages 10% of the time.

Figure 3.8 shows the fraction of the execution time in the different instruction sets
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as we progressively enable newer SIMD extensions in libx264. Our results show that the

scalar fraction has been stable since the introduction of SSE2. New ISA extensions have

accelerated the already vectorized fraction of time, but have not increased code coverage.

Moreover the performance improvement from SSE2 – an ISA introduced more than fifteen

years ago – is only 15%.

Furthermore, our results show that AVX2, which doubles vector width to 256 bits with

respect to AVX, only partially replaces it and represents only 15% of the runtime. The

remaining vectorized code does not benefit from 256-bit wide SIMD registers due to the

width of macroblocks being smaller than the AVX2 vector length. Amdahl’s Law limits the

potential impact of a 2x wider SIMD extension to less than 10%, even if we assume that

time spent in AVX2 instructions scales perfectly with vector size.

We conclude that performance of video transcoding on CPUs is limited by the scalar

fraction of the code not suitable for data-level parallelism. To achieve significant speedups,

processors could be enhanced with special functional units targeting increased code cov-

erage [Qadeer et al., 2013; Hameed et al., 2010], and 2-dimensional SIMD extensions that

exploit data-level parallelism across the entire macroblock [Corbal et al., 1999]. Otherwise,

we must resort to full implementations of video transcoding in hardware.

Notice that suites other than vbench, since they contain only high entropy videos, have

a slightly larger fraction of time spent in scalar code, and a lower fraction in AVX2 code

than what we observe in the coverage corpus. In both Xiph and Netflix sets, only 11% of

the time is spent in AVX2 code compared to 14% and 15% for vbench and the coverage set,

respectively. This predicts an even lower benefit from vectorization.

3.5.3 Hardware Accelerators

Contrary to SIMD extensions, end-to-end video transcode solutions are not limited by

Amdahl’s Law because they cover the entire algorithm, including the control flow and

bitstream manipulation. In addition, they can exploit functional level partitioning and

parallelism across different stages of the algorithm.

Our results show that hardware encoders provide significant improvements in terms of

speed at the cost of increased bitrate. Hardware transcoders need to be selective about
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Figure 3.10: NVIDIA NVENC and Intel QSV results on the VOD (left), and Live (right)

scenarios. The shaded areas indicate gains. While GPU adoption for VOD entails tradeoffs

(speedups offset by losses in compression) it is an unqualified win for Live transcoding.

which compression tools to implement, in order to limit area and power. For example,

enabling sub-pixel precision in motion search or increasing the motion search range will

greatly increase the area of an implementation while providing only marginal compression

improvements.

Table 3.3 reports the speed (S) ratios, bitrate (B) ratios, and VOD scores for two GPUs:

the Intel QuickSync Video (QSV) [Corp., 2017] featured in the Intel core i7-6700K CPU,

the NVIDIA NVENC [Wilhelmsen et al., 2014] found in the GTX 1060 GPU. This data is

also depicted in Figure 3.10. To obtain these results we used the highest effort settings on

both GPUs and varied the target bitrate using a bisection algorithm until results satisfy the

quality constraints by a small margin. The results show that the QSV scores are generally

higher than the NVENC scores; this is mostly due to the higher speed ratios since bitrate

ratios are comparable in the two platforms. Unfortunately, we cannot offer much deeper

explanation for the difference as the GPUs do not allow software to inspect intermediate

results, effectively creating a black box.

Both GPUs show higher speed improvements for higher resolution videos, since they

better amortize the data transfer overheads, and enable higher parallelism across the mac-

roblocks. They also show higher speedups for more complex videos, since they perform

all the operations in parallel, while the software needs to run for a longer time to apply
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the more complex encoding tools: Having a curated video set is important here. Using

Xiph or Netflix dataset – both containing only high resolution, high entropy videos – would

overestimate the benefits of GPU transcoding.

Both GPUs show significant speed benefits that compensate the losses in video bitrate.

Their higher speed would allow a significant downsizing of the transcoding fleet at a video

sharing infrastructure. However, they need to compensate with an increase in storage

and network costs. The precise balance between compute costs, storage, and network will

depend on the specifics of the service, reinforcing the need to report metrics separately in

addition to the score.

Given the speedups achieved by these hardware implementations, future hardware video

transcoders might implement more advanced encoding tools to trade slower speed for higher

video quality at lower bitrate, enabling service providers to tune them to their specific use

cases.

3.6 Live and Popular Analysis

That was the VOD scenario. We now evaluate how GPUs perform on the Live and Popular

scenarios. Both are key use cases in services like YouTube and Facebook.

3.6.1 Live Streaming

While speed is important for VOD, it is critical for the Live scenario. GPUs here shine

as low latency transcoding is their intended application, while software encoders have to

significantly decrease effort levels in order to meet the real-time speed constraint. In fact, to

meet the real time constraint our reference transcodes have an effort level that is inversely

proportional to the resolution of the input video. This explains the positive GPU Live

results seen in Table 3.4. When real time speed is required, software encoders degrade the

transcode quality much more than hardware.

There are a number of configurations for these GPUs that would have met the Live

scenario constraints. For this experiment, we chose to maintain reference quality, which

creates an interesting comparison with VOD. Contrary to what we have observed in the

43



CHAPTER 3. BENCHMARKING VIDEO TRANSCODING AT SCALE

VOD scenario, using GPUs in this case generally incurs no tradeoffs. Our results show

that hardware encoders achieve the same quality as our reference while also reducing the

transcode bitrate. The only exceptions being low entropy videos, for which the GPUs

struggle to degrade quality and bitrate gracefully. Had the benchmark not included low

entropy videos and different scenarios, such insights would not be visible.
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Figure 3.11: NVIDIA NVENC and Intel QSV results

on the Popular scenario. Newer encoders such as

Libvpx-VP9 and x265 can produce better transcodes

in most cases when compared to our Popular reference,

albeit at a higher computational cost.

Even on the Live scenario,

where hardware encoders do not

incur sacrifices in bitrate and qual-

ity, we find that hardware encoders

exceed real-time and thus are po-

tentially faster than they need to

be. As with VOD this again raises

the possibility that the excess

speedups seen on GPUs might be

better spent finding higher quality

transcodes.

3.6.2 Popular Videos

The Popular scenario deals with

very high effort transcoding for

videos that receive the most play-

backs. As we saw in the VOD sce-

nario, the hardware video transcoders require additional bitrate to match the quality of the

reference transcodes in the VOD scenario. Given that the reference quality of the Popular

scenario is higher than VOD, it was impossible for either of the GPUs to produce a single

valid transcode for this scenario. GPUs are valuable in the VOD and Live scenarios be-

cause of their speed. However, speed is the least valuable metric in the Popular scenario.

Software encoders are the best option today for optimizing bitrate and quality on highly

popular videos, where the effort will be amortized across many playbacks.

Table 3.5 shows the benchmark scores for the recent libx265 and libvpx-vp9 encoders
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when transcoding Popular videos. This data is also depicted in Figure 3.11. For both, we

selected a fixed effort level such that all videos can be encoded within the speed constraint5.

Our results confirm what was seen earlier in Figure 3.2: both libx265 and libvpx-vp9 en-

coders are superior to the reference libx264 when transcoding speed is not considered. Both

encoders are capable of significantly reducing bitrate for most videos at no quality loss,

especially for HD and higher resolutions. Notice that the reference transcode operations

in this scenario use the highest quality setting in libx264. This reflects how newer codecs

(H.265, VP9) and relative encoders keep improving video compression, a trend that is ex-

pected to continue with the release of the AV1 codec by the end of the year [Foundation,

2017].

3.7 Conclusions

We have described vbench, a video transcoding benchmark that has an algorithmically cu-

rated set of representative videos, metrics, and reporting guidelines that reflect complex

real world tradeoffs between quality, compression, and speed. vbench’s quantitatively se-

lected dataset improves on existing video collections assembled based on qualitative visual

properties. With the same methodology we can update vbench videos over time to reflect

changes in upload trends. The reference transcoding operations reflect those of large video

sharing infrastructures and are thus a useful baseline. The metrics guide improvement over

this baseline in meaningful directions.

Our studies of video transcoding reveal a microarchitectural sensitivity to inherent video

entropy. There are limits on the benefits of vectorization for this workload while the viabil-

ity of hardware support for transcoding depends strongly on the context; current GPUs are

well suited for live streaming yet unable to meet the quality and compression demands of

popular videos. Each video and scenario combination is unique and highlights an important

part of the video sharing infrastructure workload. If the benchmark did not capture all this

variability incorrect conclusions could have been made in the process of designing an accel-

5cpu-used 0 for libvpx-vp9 and -preset veryslow for libx265. A empty score indicates that either the

bitrate or quality constraints are not met (highlighted in red)
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erator for this workload. Therefore, the insights gained from developing and using vbench

confirm part of our thesis that Design Space Exploration requires benchmarks reflective of

production workloads.

We expect this benchmark and the insights it will produce will promote much needed

innovation in video transcoding, a key warehouse scale workload that is at the core of all

video sharing infrastructures.
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Chapter 4

Design Space Exploration of

Accelerators for Analytical Query

Processing

Data mining is the process of generating new insights from data. In the contemporary age

of Big Data [McAfee and Brynjolfsson, 2012], the performance and energy efficiency of these

workloads has become critical since they are the main driver in creating value out of user

data. However, they have to perform efficiently in order to be viable and keep up with data

growth.

Analytical query processing is a mature and critical data mining workload, and it is

also often used as an intermediate step for more complex data mining pipelines, e.g. as a

preprocessing step before training a machine learning model. It is therefore not surprising

that there have been multiple academic proposals to augment Database Management Sys-

tems (DBMS) with specialized hardware [Woods et al., 2014; Chung et al., 2013; Jun et al.,

2015], as well as recent industrial designs that implement such solutions [Ouyang et al., 2016;

Agrawal et al., 2017]. In this chapter, we are going to focus on an accelerator architecture

proposed by our group, the Q100 [Wu et al., 2014; Wu et al., 2015]. We will analyze how

design space exploration affects this class of accelerators for analytical query processing.

The Q100 contains a heterogeneous set of fixed-function processing elements; tiles in
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Q100 terminology. Each tile implements a relational operator such as a join or filter.

These processing elements operate on streams of data corresponding to columns of the

database. The Q100 architecture can readily exploit both pipeline parallelism (performing

different operations on the elements of a column), and data parallelism (performing the

same operation on multiple columns). This allows the Q100 to process queries faster, using

far less power than a general purpose system running a software DBMS.

We are going to show how design space exploration has a great effect on performance.

First we will show how the mix of hardware modules that compose the final accelerator

design has to be tailored to the workload. This analysis, together with an introduction of

the Q100 is presented in Section 4.1. The less intuitive result that we present in greater

detail is how it is possible to tailor the internal Network on Chip (NoC) of an accelerator

to significantly increase performance given an area budget. To this end, we developed an

interconnect synthesis algorithm that is able to produce specialized topologies.

We compare out method with two other NoC synthesis algorithms found in the liter-

ature [Koibuchi et al., 2012; Ogras and Marculescu, 2006]. Our algorithm improves over

these other state of the art approaches by being more resource conscious. As others do,

we expose a parameter than can be tuned—effectively the degree of specialization—that

allows a designer to produce networks that fall between general-purpose and fully special-

ized. However, unlike the state of the art, we introduce dedicated, low-contention links for

the most important communication pairs and connect the remainder of the ports through a

generic topology. In Section 4.3, we present our algorithm and prove it generates deadlock-

free networks. Our experiments show that we produce networks which are faster and smaller

than competing algorithms. We put more of the high-volume communication on dedicated

links while reducing the size of the standard interconnect that serves the less-important

traffic.

In Section 4.5, we use our algorithm to generate a custom interconnect for a Q100

instance. This interconnect allows the device to execute the TPC-H benchmark only 1.24×

slower than a fat tree topology while consuming only 82% of the area of a double ring.

Compared with NoCs produced by competing algorithms [Ogras and Marculescu, 2006;

Koibuchi et al., 2012], our algorithm reduces NoC area by 25% while increasing system
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Readers

DRAM

Writers

NoC

9 types of operator modules.
(Here, shape indicates function.)

Figure 4.1: The Q100 [Wu et al., 2014] is a spatial architecture for the acceleration of

relational analytic queries. It contains a mix of compute modules, specialized units that

perform relational algebra operations. An instance of a Q100 accelerator can have replicated

compute modules to exploit parallelism in the query. The modules stream data via an on-

chip network that offers all-to-all connectivity.

performance by 1.21×.

In this chapter, we assume that the reader is familiar with basic Database concepts [Ra-

makrishnan and Gehrke, 2003]. To represent the workload, we use the industry standard

TPC-H benchmark [Boncz et al., 2014].

4.1 The Q100 Analytical Query Processing Accelerator

The Q100 [Wu et al., 2014; Wu et al., 2015] is a spatial architecture that accelerates

relational analytic queries. It achieves speedups over a CPU by turning software oper-

ations into hardware ones, processing multiple columns at a time, and pipelining oper-

ations across fields in a column. We describe here the key properties of the architec-

ture and its toolchain. This architecture is fully detailed in our papers [Wu et al., 2014;

Wu et al., 2015] which also include a comparison against a software DBMS system.

4.1.1 Architecture

The accelerator contains a heterogeneous collection of hardware modules, called tiles in

Q100 terminology. In all, there are 9 types of Q100 tile and each implements a partic-
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SELECT EmployeeID, 
FirstName, LastName, 
HireDate, City 
FROM Employees
WHERE City = 'London'

Plan Order Schedule

SQL Query Q100 Plan Plan Order Q100 Program
(for device with one of each module)

Figure 4.2: Our toolchain is able to automatically compile SQL queries into query plans

that can execute on the Q100. As a first step for execution, operations are re-ordered with

the objective of producing better schedules that group operations with similar latency. This

reordering must still satisfy producer-consumer relationships between instructions. Finally,

operations are mapped to a physical module in the device. Since a generic query plan might

call for more resources than available in the hardware, the scheduler divides the execution

into sequential steps. The mapping process is aware of the NoC topology and tries to

minimize the number of hops needed to route all data flows.

ular relational algebra operator. Those types are Boolgen, Colfilter, Case, ALU, Joiner,

Aggregator, Sorter, Shifter, and Merger. The minimal Q100 has one of each tile, but the de-

sirable designs will have multiple instances of each (Figure 4.1). The modules communicate

directly between producer and consumer via an on-chip network which streams columns

of data record by record. This network provides all-to-all connectivity amongst processing

elements, but as we will see later in this chapter, it can be tailored to exploit the communica-

tion patterns of the workload. In the Q100, only dedicated Reader and Writer modules can

speak to memory. To the other modules, Readers and Writers are standard data producers

and consumers respectively.

4.1.2 Query Planning

As in any database system, SQL queries must be compiled to a query plan prior to execution.

For this, we cannot simply use a standard DBMS plan as it is liable to include operations

not supported by the Q100.

A Q100 query plan is a directed acyclic graph in which each node indicates an opera-

tion supported by the Q100 hardware, and edges indicate producer-consumer dependencies

between them. Because a plan may require more operators than an accelerator has avail-
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able, the subsequent scheduling step will divide the execution of the plan into a series of

sequential steps.

We have developed an automated SQL compiler that generates Q100 query plans (Fig-

ure 4.2). This compiler works around limitations of the Q100, e.g. every Join must be a

Sort-Merge Join to be implemented in a streaming fashion. For the same reason, synchro-

nized subqueries, i.e. nested queries that use values from the outer query, are implemented

joining the parent and nested query results. Standard database optimizations such as re-

ordering of joins still apply in this flow.

4.1.3 Scheduling

Query plans are next divided into a series of temporal steps for execution. This schedule

must respect the order of operations indicated in the plan, i.e. a producer of a column

must execute before or in parallel to a column’s consumer. Moreover, none of the steps can

exceed the available resources of the target Q100 instance. If the target contains five sorter

modules, the scheduler can not schedule six sorts in one step. If an instruction in the plan

operates on more input columns than the device supports, the scheduler will automatically

split it into multiple instructions. Lastly, the scheduler maps each operation to a specific

physical module for execution.

Like most DBMS query planning logic, this scheduler must execute in real time; schedul-

ing the next time step while the Q100 device is operating on the current one. This is neces-

sary to produce accurate estimates of column sizes that in turn affect scheduling decisions.

Exhaustive approaches [Nowatzki et al., 2013] are thus not viable. Instead the scheduler

uses a greedy “Longest-Job-First” heuristic which performs on average within 5% of the

best schedule obtained via a Montecarlo method1 for the TPC-H benchmark. When map-

ping instructions to modules, the scheduler selects the module that requires the fewest hops

to route all of the input data streams.

1In this method we evaluate roughly 100000 schedules and pick the best one.
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4.1.4 Design Space Exploration of Compute Resources

The mix of tiles that are instantiated in a Q100 device are a clear target for design space

exploration. In order to test the effects of the tile mix on the performance of the system

we evaluated more than 2000 different designs with different tiles combinations2. In order

to connect the various tiles in each design we use two standard NoC topologies: a ring

and a mesh. The results of this analysis are shown in Figure 4.3. We can clearly see the

great impact that tile mix has on performance. This shows how design space exploration

can exploit application properties, in this case the frequency of the different computational

kernel in input queries, to significantly improve performance.

4.2 Motivation for Interconnect Specialization

The correlation between tile mix and performance that we presented in the previous section

is fairly intuitive. Performing design space exploration on the tile mix allows us to pick

2Performance values are obtained using our in house simulator while the design area is computed com-

bining the area of each tile when synthesized using TSMC 65nm standard libraries
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(TPC-H on the Q100)

designs that are pareto optimal in terms of compute resources. In order to “extract” ad-

ditional performance out of these designs we focus our attention to the NoC. Qualitatively

it should be clear that the NoC is the brain behind the Q100 (Section 4.1.1) as it allows

different queries to be executed by implementing the producer consumer relations between

tiles. More importantly though, the NoC greatly affects the performance and cost of a Q100

device. Figure 4.4 shows how a large fraction of the area of a Q100 device is occupied by

the NoC. Moreover, by changing the NoC topology it is possible to trade performance per

area. A simple NoC like a double ring will impose a performance loss but at the same time

reduce the area footprint of a Q100 device when compared to a larger mesh NoC.

Ideally, we would want the system to perform as if a full crossbar were present while

devoting minimal area to the NoC. The fat tree and the double ring are good examples

of high performance and economical NoC topologies, respectively. Moreover, under a fixed

area budget, a small, performant NoC creates room for more processing tiles and potentially

increased performance.

We picked one of the pareto optimal designs for further inspection. Again, we focused

our attention on the application properties – producer consumer relationships between tiles

in this case – and try to exploit these when designing its NoC. We found that relatively

few edges carry the vast majority of data in our application, which motivates our approach
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to custom network design. Figure 4.5—our results from profiling the TPC-H query plans

execution on the Q100—illustrates this. These patterns arise from the workload, as many

tiles communicate preferentially with other tiles to implement the computation expressed

by query plans. In particular, data is only ever sent over 196 of the 896 possible edges

(i.e., 28 output ports times 32 inputs).

Hoping existing algorithms could exploit such patterns, we first tried applying two NoC

synthesis algorithms found in the literature [Koibuchi et al., 2012; Ogras and Marculescu,

2006] to the Q100 system. Since these methods are strictly additive to the base NoC

topology, their solutions will be strictly larger than the base topology, and also slower

due to the increased degree of the routers in the resulting NoC. We developed a network

synthesis algorithm that remedies this.

4.3 Network Synthesis Algorithm

Our algorithm operates in two phases: it begins by building a partial, specialized network

by considering a user-specified number of high-traffic edges and building custom, point-to-

point links and routers to carry their load. After doing this, it connects all remaining edges

through a generic “fallback” network. We describe this below; Figure 4.6 shows pseudocode.

4.3.1 Specialization

The algorithm starts with an empty network consisting only of ports that must be connected

and, like prior NoC synthesis algorithms, a communication graph. Each node in the graph

represents a type of port (e.g., the output of a filter tile or the input to the sorter tile).3 Each

directed, weighted edge indicates the relative amount or importance of the communication

between the source and destination nodes. We will use the term edge to denote an abstract

connection in the communication graph while a link will indicate a physical connection in

a NoC.

3Because we target systems that allow multiple instances of each type of tile, a node in our communication

graph represents a set of interchangeable physical ports, i.e., the same kind of port on identical tiles. This

represents a slight extension over prior network synthesis algorithms that assume edges in the communication

graph to have a one to one correspondence to NoC ports.
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# Synthesize a partially specialized network

# endpoints List of ports in the NoC, each with a type

# edges Priority queue of communication graph edges

# to specialize Number of edges to specialize

# fallback Ring, mesh, torus, or fat tree

specialize(endpoints, edges, to specialize, fallback):

noc = NoC(endpoints) # Create a network of just endpoints

r = noc.create router() # Add fallback router

while edges is not empty:

src type, dest type, load = edges.pop() # Get busiest edge

# Locate the least loaded endpoints

src = lightest(endpoints, outgoing, src type)

dest = lightest(endpoints, incoming, dest type)

# Count how many tiles exist for both source and destination

src count = |{e : e ∈ endpoints, e.type = src type}|
dest count = |{e : e ∈ endpoints, e.type = dest type}|
if to specialize > 0: # Create specialized link

min count = min(src count, dest count)

noc.add link(src, dest, load/min count) # May add router

# Put the edge back after adjusting its load

edges.push(src type, dest type, load − load/min count)

to specialize = to specialize − 1

else: # Create unspecialized link to the fallback router

noc.add link(src, r, load)

noc.add link(r, dest, load)

# Replace the fallback router with a fallback network

r.transform to network(fallback)

return noc

# Return the lightest loaded endpoint of a particular type

# endpoints List of ports in the NoC, each with a type

# direction Incoming or outgoing

# type Endpoint type to consider

lightest(endpoints, direction, type):

# Consider only endpoints of a certain type

weights = {e.direction.weight : e ∈ endpoints, e.type = type}
return the endpoint ∈ weights with minimum weight

Figure 4.6: Our algorithm for NoC synthesis.
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During specialization (i.e., while to specialize > 0 in Figure 4.6), we select the highest-

traffic edge from the communication graph and introduces a link in the physical network

to serve it. Since a Q100 device may have multiple physical replicas of a tile to exploit

parallelism between operations on different columns, we select the least heavily loaded

instances (as determined by lightest in Figure 4.6) of both the source and destination port.

It then annotates the new physical link with an expected load, which is the total load on the

communication edge, divided by the minimum number of instances of producer or consumer

ports. If the least-loaded source or destination already has an outgoing or incoming link

(respectively), this step may require introducing a router to share the port. Once a physical

link is introduced, the algorithm deducts this expected load on the newly added physical

link from the communication graph’s edge.

Figure 4.7 illustrates this process for a simple example. The top row depicts the commu-

nication graph in which each node is labeled with a port type and count. In this example,

there are two type-A ports, two type-B’s, and a single C. The edges indicate data flowing

from one type of port to another with a weight indicating the edge’s importance. In this

example, communication between A-type and B-type ports is the most important, followed

by that from A to C and C to B. The bottom row of Figure 4.7 depicts the physical network

under construction. Here, each physical port is represented explicitly (e.g., A1 and A2 are

the two type-A ports), routers are introduced (the black circles), and each edge represents

a physical point-to-point link with an associated expected load.

Each step from left to right in Figure 4.7 illustrates a single specialization step. In

step 1, the physical link between A1 and B1 is marked with a load of 50 because the edge

from A to B has a weight (load) of 100 and there are two instances of A and B in the target

architecture. Had there been three instances of both port B and A, the physical link would

have an expected load of 33.

In step 2 of Figure 4.7 we see the algorithm choosing the least loaded port when deciding

which physical instance of a port should serve an edge. There the algorithm connects A2

and B2 because they are unused; A1 and B1 already have an expected load of 50. If either

the source or destination port already has an incident link, we introduce a router to serve

both logical communication streams, as shown in step 3 of Figure 4.7.
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Figure 4.7: Our algorithm performing four specialization steps on a system with two A

processing elements, two B’s, and one C. The top graphs depict the communication pat-

terns as observed in simulation; the bottom graphs depict the structure of the synthesized

network. In step 1, our algorithm selects the highest-weight edge (A → B) and adds the

point-to-point connection A1 → B1 with load 50 because there are two A’s and two B’s

sharing the load of 100. In step 2, A→ B has been reduced to 50 but remains the highest

so A2 → B2 is added. C → B is highest in step 3, but B2 already has a connection so a

router is added with a link from C1. Finally, A→ C is selected and another router is added

connecting A1 to C1, although would also have been possible to add another link from the

existing router to C1.

The algorithm proceeds greedily for the desired number of specialization steps, at each

one selects and removes the highest-weight edge from the graph. While a larger number of

specialization steps produces a more customized network, more specialization is not always

better because it can produce more irregular networks that are either too large, too slow, or

both. By exposing the degree of specialization (the to specialize parameter in Figure 4.6)

we can quickly generate many networks with differing degrees of specialization, allowing the

designer to evaluate and select the best option.

4.3.2 Generalization

After specialization, the remaining unconnected ports are connected to each other and the

network by a standard “fallback” interconnect. In Figure 4.6, our algorithm first introduces
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to specialize = 0 to specialize = 1 to specialize = 4 to specialize = 5

Figure 4.8: Networks produced by our algorithm employing a ring fallback for a certain

system with 8 ports. More specialization steps produces a more customized network and a

smaller ring.

the fallback router, which serves as a placeholder for the generic network and to which all

edges that were not specialized during the specialization phase are connected. Once every

edge has been added to the network, the fallback router is replaced with a standard network:

we currently support ring, mesh, torus, and fat tree topologies, although others would be

possible.

Figure 4.8 depicts the output of our algorithm using a ring fallback after 0, 1, 4, and 5

specialization steps. As more specialized links are introduced, the smaller the fallback

network becomes.

4.3.3 Proof of Deadlock Freedom

Our algorithm generates networks that are free from deadlock or livelock. We show this by

relying on the argument of Dally and Seitz [Dally and Seitz, 1987]: there is an ordering of

channels in the generated network such that every path will traverse channels in descending

order.

We rely on the fallback network already having this property. Known deadlock-free

routing algorithms exist for each type of fallback network we currently support. For exam-

ple, a mesh can be made free of deadlocks by using dimension ordered routing or the turn

model [Glass and Ni, 1992]. As a result, we can safely treat traffic that crosses our fallback

network as going through a deadlock-free black box; we can treat it as a single edge in the

ordering argument.
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The generated part of the network use minimal destination based routing with no adap-

tivity. Specifically, data follows exactly two kinds of routes. For paths considered during the

specialization phase of our algorithm, our network sends data through at most two routers:

one connected to the source tile and one connected to the destination tile. For all other

paths, data enters at most one router, then traverses the fallback network, then traverses

at most one router to reach its destination. Once data emerges from the fallback network,

it never reenters.

Our algorithm enforces this property by construction. During the specialization phase,

each time a new link is added, the source router’s routing table is updated to steer data sent

to the destination through the newly added link. For every other path, the relevant routers

are instructed to send data to the fallback network instead. Furthermore, these paths do

not interfere with each other and the routing tables remain fixed throughout the system’s

execution. Thus, every path traverses each of the following links, in order, no more than

once:

source → specialized router → fallback router →

path within the fallback network → fallback router →

specialized router → destination

This is the total order on link types that Dally and Seitz’s argument demands; our

generated networks are deadlock-free.

4.4 Experimental Methodology

We evaluate interconnect topologies using a Q100 with 18 tiles and 16 input and output

ports to memory.4 Because a tile may have multiple inputs or outputs, the network will

have 66 input ports and 76 output ports. The slight skew is due to the fact that the tiles in

the Q100 design tend to have more inputs (network outputs) than outputs (network inputs).

Each link is 32 bits wide.

To evaluate a network, we consider its performance relative to its size. We use CON-

NECT [Papamichael and Hoe, 2012] to produce FPGA-optimized, synthesizable RTL from

4Three Aggregator, two Boolgen, one Sorter, five Colfilter, two ALU, two Joiner, one Merger, two Case
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a network description. We then synthesize the RTL using Quartus (targeting a mid-range

Altera Stratix 5SGXEA7N1F45 FPGA) to obtain the network size and maximum clock fre-

quency. In order to minimize the NoC area we fix the buffer count to the minimum amount

allowed by the tool (4 entries), use Input Queued routers, and turn off all pipelining options.

To calculate the overall performance of a network, we simulate TPC-H on our cycle-level

Q100 simulator using the network in question. This produces a total cycle count for the

workload which, multiplied by the clock period from Quartus, produces the total runtime.

We then limit the frequency of the overall design to the frequency of the slowest tile in our

implementation: the merger tile which operates at a frequency of 145MHz.

In all fallback networks we use minimal destination-based routing. The only exceptions

are the fat trees which require dynamically changing routing tables to ensure non-blocking

communication [Dally and Towles, 2003]. CONNECT does not support dynamic routing,

so while the dynamic policy is accounted for in our simulation, the area and frequencies

derived from CONNECT correspond to simpler static routers and thus should be considered

lower bounds on fat tree area and upper bounds on fat tree frequency. This does not impact

our final conclusions as the data show that even with these allowances, the fat trees are the

largest interconnects.

To gather the communication graph, we simulate 19 (out of 22) TPC-H queries and

register the amount of data flowing across between each combination of of tiles’ ports; the

three queries that are left out contain operators that are not supported by our current

compiler infrastructure. TPC-H is the standard benchmark for analytic query processing

workloads [Boncz et al., 2014]. We run the queries on a database with a scaling factor of 1,

meaning the whole database is 1GB.

For scheduling query plans to the finite resources of the Q100 device we employ a

greedy “longest job first” heuristic that schedules the longer latency operations first on the

processing element which would require the smallest number of network’s hops for all its

input operands. We found that, on average, this simple greedy heuristic produces schedules

that are only 5% slower than the best schedule out of 10000 random valid schedules.
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Figure 4.10: Design space exploration

of semi-specialized NoC topologies. We

compare our algorithm with Ogras et

al. [Ogras and Marculescu, 2006], Koibuchi

et al. [Koibuchi et al., 2012], and four

generic topologies. We find that our ap-

proach to network specialization is the

most effective, producing designs that ap-

proach the performance of a fat tree and

have a smaller resource-cost than a sim-

ple double ring, which are indicated by the

dashed lines in the plot.

4.5 Experimental Results

In this section, we compare with two other network specialization algorithms developed by

Ogras et al. [Ogras and Marculescu, 2006] and Koibuchi et al. [Koibuchi et al., 2012]. The

idea behind both methods is to start with a standard network topology to which dedicated

links are added for important connections. Ogras, at each step, exhaustively consider all

possible pairs of non-adjacent nodes and greedily select the one which reduces a cost function

the most. The cost function they use is the free packet delay of each communication – a

metric proportional to the hop count – weighted by the amount of traffic it carries. Koibuchi

et al. instead produce a fixed number or randomly augmented graphs – they found 100
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to be a reasonable number – from which they select the one with the smallest diameter.

Although the original paper by Ogras et al. only considered a mesh base topology, we apply

their method to specialize a ring and torus as well. Like us, both these strategies seek to

balance the benefits of specialized and generic network topologies. However, whereas their

specialization is strictly additive to the generic network starting point, we start with no

network, introduce dedicated links, and lastly fill in with a generic network.

For all algorithms, we sweep the degree of specialization from no specialization (i.e., the

base network topology) to fully specialized. Figure 4.10 plots the performance and area

trade-off of the resulting networks for different degrees of specialization. It is clear that the

most desirable networks are bidirectional rings that are slightly specialized. This is con-

sistent with the observed patterns of communication for the Q100 accelerator (Figure 4.5)

where a small set of edges carry most of the traffic. Koibuchi et al. also observe how ring

topologies provide the most benefits with their approach. However, the networks produced

by our synthesis algorithm outperform both standard topologies and the specialized topolo-

gies produced by the other algorithms. Figure 4.10 shows how all points in the Pareto

frontier, other than the fat tree, are NoCs produced by our algorithm.

To develop our intuition as to why our method outperforms the others, in Figure 4.9

we analyze the impact of growing specialization on all figures of merit: completion time,

clock cycles, frequency, and area. In these plots x links specialized for Ogras and Koibuchi’s

method means x dedicated links added, and for us x specialization steps. Note that Ogras

does not specialize beyond 40 links due to the method’s constraint that each router can have

no more than one long-distance link.5 We plot the data for the strongest base topology, the

ring, as well as the fat tree which was the least congested at all times6.

Starting with no specialization, Figure 4.9 shows that a ring topology will have the

smallest area, but performs poorly. As we increase specialization, the number of clock cycles

5We experimented with relaxing this constraint to create a fairer comparison to our method. However,

this did not improve performance and since this was not part of the original algorithm, we do not report

results for it.

6We do not apply Ogras or Koibuchi’s method starting from a fat tree since it is already non-blocking

and therefore will not benefit from extra links.
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tends to drop, but the frequency does too as the specialization breaks the regularity of the

network. For the same reason the area of the ring will increase. Therefore, performance

will not necessarily increase with specialization. This is exactly what limits the other

techniques we are comparing against. Networks produced by Koibuchi or Ogras’ method

might outperform ours when considering raw clock cycle count and a given specialization

target. However, they are much larger and can only operate at slower frequencies with

respect to our more resource conscious NoCs. It is also clear that using information about

the traffic patterns helps ours and Ogras’ method produce networks that are better than

what the random approach can achieve. Finally, notice how a dense fallback network like a

fat tree “slims down” as we remove incoming and outgoing connections. However, because

the specialized network is now less versatile, congestion slowly increases as well. For all

methods frequency drops rapidly after 60 links are specialized, emphasizing the importance

of regularity in the NoC structure.

4.6 Related Work

Networks-on-Chip, or NoCs, are a de facto standard for System-on-Chip integration [Dally

and Towles, 2001; Benini and De Micheli, 2002]. Application-specific network synthesis

techniques have been widely investigated to improve and automate the design of networks

for SoCs. The typical approach considers a fixed communication graph with clearly defined

endpoints.

We compare against the two recent network specialization techniques of Koibuchi et

al. [Koibuchi et al., 2012] and Ogras et al. [Ogras and Marculescu, 2006]. Both approaches

start with a standard NoC topology then augment it with additional links to bypass con-

gestion. The criteria for when a new link is introduced differ between the two methods.

Koibuchi et al. produce a new NoC by adding random links in different ways then picking

the resulting NoC that shows minimum diameter. This approach is meant to reduce con-

gestion by reducing the amount of hops for all paths regardless of the amount of traffic they

carry. In contrast, Ogras et al. use traffic traces to decide which link to add.

By contrast, we begin with an empty network, build links for a user-specified number
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of high-traffic paths, and finally connect all remaining paths with a network of standard

topology. In Section 4.5 we compare the quality of the network our algorithm produces

with both Koibuchi and Ogras’s method, and find that our approach exploits specialization

in a more resource-conscious way.

Notice that neither our method, nor the other two methods we compare against [Koibuchi

et al., 2012; Ogras and Marculescu, 2006] consider communication timing [Ho and Pinkston,

2003].

A fully generative approach to interconnection synthesis never uses a standard topology.

With such techniques, since the space of possible solutions is much larger than for additive

techniques, additional constraints are necessary for these methods to find a solution in a

reasonable time. Murali et al. [Murali et al., 2006] provide an algorithm that hierarchically

partitions the communication graph. Pinto et al. [Pinto et al., 2002] propose an algorithm

relying on weighted unate covering solvers to generate a NoC. Srinivasan et al. introduce

an approach that specifies the synthesis problem as an ILP formulation [Srinivasan et al.,

2006]. All these methods use floorplanning and frequency constraints to reduce the space

of admissible solutions. In our case we operate at a higher level of abstraction, with no

restrictions on the placement of the NoC endpoints. Therefore, these generative methods

can not be readily applied.

Lastly, there are techniques to map computation into a standard topology such as a

mesh or a torus (e.g. NETCHIP [Bertozzi et al., 2005]). These solutions are orthogonal

to our work and could be applied to further improve performance of the standard fallback

networks we utilize.

4.7 Summary and Conclusions

The Q100 is a promising class of accelerators that target analytical query processing, a

ubiquitous and mature application. We have shown how Domain Space Exploration –

both of computation and communication resources – has a great impact on performance

for this class of accelerators. First, we presented how it is possible to tailor the mix of

computational resources to the relative frequency of relational algebra operators in the
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input queries in order to improve performance. Then, we presented an algorithm that

allows us to tailor the NoC to the communication patterns between hardware modules that

compose the accelerator.

The algorithm we presented allows rapid network design space exploration by sweeping

the number of specialized links. It finds networks that perform better per unit area than

standard topologies and custom networks obtained by other algorithms for NoC synthesis.

In particular, our algorithm found networks that improve application performance by 1.21×

and reduce area by 25% relative to state-of-the-art network synthesis techniques.

Our work shows the importance of optimizing the interconnect of an accelerator by

exploiting the pattern of communication between the accelerator hardware blocks.
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Chapter 5

Levels of Specialization for

Accelerators

In the previous chapter, we have shown how it is possible to exploit application properties

to drive design space exploration of accelerators. While the approaches we presented are

very effective at increasing performance given an area budget, they do suffer from some

qualitative limitations.

First of all, applications tend to change over time. As an example consider the constant

development of new video codecs that we discussed in Section 3.6. It is important that

accelerators do not slow down software development by imposing constraints on what can

be accelerated. After an accelerator has been optimized for a certain computation and

fabricated as an ASIC, it won’t be able to adapt to changing computational demands.

Moreover, applications running on different datacenters might have different compu-

tational requirements. This would lead to different implementations of the same domain

specific accelerator depending on the type of computation and inputs that the different

cloud providers observe in production.

Finally, the techniques presented in the previous section – especially the interconnect

synthesis – greatly increase the heterogeneity of the system. This affects physical implemen-

tation, e.g. more complex place and route, as well as verification of each different accelerator

configuration.
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In this chapter, we are going to evaluate an alternative homogeneous Coarse Grain

Reconfigurable Architecture (CGRA) for acceleration of analytical query processing. We

compare and contrast the Q100 class of accelerators with our alternative design, that we will

refer to as the homogeneous design. Despite the latter being preferable given the increased

programmability, we found that the performance of the two architectures is comparable.

We explain this counterintuitive result showing that the heterogeneity in Q100 has ad-

verse effects. While each hardware module is individually efficient relative to a software im-

plementation, low usage of each component causes performance loss. Root causes include

a mismatch between the available modules and the resources needed by different query

plans or congestion of the NoC that routes data between modules. In contrast, in the ho-

mogeneous system, each Processing Element (or PE) has equal computational capabilities,

reducing mismatches between available and required resources at runtime. For the same

reason, communication generally happens between neighbors making a resource conscious

circuit switched network a viable alternative to the packet switched network of the Q100.

The increased usage in the homogeneous design recoups the power and area overheads of

the homogeneous PE relative to the Q100 modules. We find that both designs perform

comparably given an area/power budget, with the homogeneous design outperforming the

Q100 when this budget is small.

For this study, we have extended the SQL compiler for the Q100 with a new backend

targeting the homogeneous design. The benefits of a full software infrastructure are twofold:

1) it demonstrates that developing software support for these custom architectures is feasi-

ble, and 2) it establishes a controlled comparison between the two architectures, minimally

influenced by software differences. The compiler for the two differs only as strictly nec-

essary in the backend. The frontend – importantly including the query planner – is the

same. Since we are mostly interested in the inefficiencies of specialization, we do not mea-

sure the benefits of programmability, for example how a homogeneous architecture could

support additional operations and increase application coverage. We limit our analysis to

the operations supported by the Q100 on both architectures.

Software complexity increases in the homogeneous case due to the increased degrees of

freedom when scheduling operations. We implemented a greedy scheduler to demonstrate
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a viable solution, but highlight a big performance gap that more sophisticated heuristics

could reduce. This would make the homogeneous designs performance far superior than

that of the Q100.

While previous work has contended with the relationship between programmability and

efficiency [Hameed et al., 2010; Nowatzki et al., 2016; Qadeer et al., 2013], it has always

presented the programmable designs as having a cost relative to the specialized ones. To the

best of our knowledge this is the first in depth analysis of accelerators for a computational

domain that highlights pure performance degradation due to “excessive” specialization.

5.1 Motivation to De-Specialize

We have identified a number of ways in which the Q100 does not operate with high efficiency.

Despite careful tuning of Q100 modules, utilization is low. While the Q100 design

compares favorably to software implementations, we find that the runtime utilization of the

Q100 modules is low. Figure 5.1 shows the average amount of Q100 tile area idle for each

TPC-H query. Since a Q100 design can be configured with arbitrary tile mixes we show here

a set of pareto-optimal designs, hence the error bars. The reason for this low utilization

can be found in variability between SQL queries. Table 5.1 further classifies the root causes

of low utilization. Tiles may not be needed in a given time step, they could process less

data than others and thus have to wait, they may be slowed by congestion in NoC links, or

finally, an instruction might require fewer inputs than the hardware tile provides, leaving a

fraction of the tile idle.
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Idle tiles occur when the query does not need some of the

available tiles. This results from variation between queries

or phases of a query. For example, analytical queries tend

to filter inputs at the start and aggregate at the end, leaving

aggregators idle at the start and filters idle at the end.

Input mismatch happens when an operator processes fewer

inputs than are provisioned in the Q100 tile. For example,

a Q100 sorter that can process up to six inputs is over-

provisioned for sorting two. Roughly one third of that tile

will actually be in use. This happens in Q22, which operates

on a small number of columns from each table.

R R R R

When a link in the interconnection is oversubscribed, there

is interconnect congestion, and all tiles involved in the

congested flows are slowed down. Since each time step fin-

ishes when the last tile completes, this network congestion

can easily ripple out and degrade performance. Interconnect

congestion tends to occur when there are many active tiles.

Note in Figure 5.2 that congestion is highest when idle tiles

are lowest.

Load imbalance arises when instructions with different run-

ning times or duty cycles are scheduled in the same time step.

Consider, for example, a highly selective filter that feeds some

consumer. The consumer will sit mostly idle awaiting the oc-

casional token that passes through the filter.

Table 5.1: Four root causes of low computational resource utilization in the Q100. In the

cartoons, darker shading indicates higher utilization, while arrow thickness indicates data

volumes.
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Figure 5.1: A large fraction of the Q100 area is idle when executing TPC-H queries.
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Figure 5.2: Area-Time product lost to different causes in the Q100.

In Figure 5.2 we can see all these factors at play on the various queries that compose

TPC-H. Each query will exhibit a different mix of inefficiencies as it exercises the Q100

system in a different way. The big error bars are due to different Q100 tile mix and NoC

combinations reacting in a different way to the same set of operations executed.

While clock and power gating can recoup most of the power associated with unused

area, it still represents a costly resource that is not contributing to performance.

Despite careful tuning of the Q100 interconnect, it is expensive. Because the

Q100 design assumes all-to-all communication amongst operator modules, a large fraction
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of the area goes to the interconnect that supports this communication (30-50% for most

reasonable tile mixes). As shown in Table 5.1, links can become oversubscribed and there-

fore slowdown the entire computation. Interconnection specialization techniques that are

presented in Chapter 4 can reduce interconnect size and/or conflicts. For this study we rely

only on standard topologies for two reasons. First, these specialization techniques insert

long bypass links which might affect place and route significantly. Since we are evaluating

a large number of designs, placing and routing each one would be prohibitive. Second,

these techniques tie a given Q100 implementation to a specific benchmark. Changes in

the workload might call for a different NoC, hence a different ASIC tapeout with all the

costs associated. These limitations are the main motivation for the development of the

homogeneous design that we described at the beginning of this Chapter.

Some SQL operators are not supported on the Q100. Queries may require op-

erators that are not supported by the Q100, most notably regular expression matching

and non-equi-joins, such as hash joins. More generally, operations that result in random

memory accesses are not supported because operator modules can access memory only via

the Reader and Writer modules. Using the CPU as a fallback for such operations lowers

efficiency, as intermediate data spills to and from memory on transfers between CPU and

accelerator. The modules are restricted in other ways as well. For example, the Aggregator

supports just four basic aggregation functions, SUM, COUNT, MIN, and MAX. Ultimately

these specialization choices eat away at Amdahl’s coverage and limit overall speedup.

There is an opportunity with common computational patterns Despite these

drawbacks, the Q100 modules also suggest an opportunity. When implemented in hardware,

relational algebra operators share similar datapaths. For example, aggregators contain an

adder that is also shared with the ALU, the compare and swap logic on a sort module

is similar to the one in a merge. This suggests that a compound module configurable to

perform all operations might be a viable design strategy. This is the approach we take with

the homogeneous system described in the next section.
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5.2 Homogeneous Architecture

We have developed a homogeneous spatial, programmable dataflow architecture, designed

to address the limitations of the Q100 listed above. While the basic processing element

could easily be extended to support more operations, this design does not do so, as the

coverage gains relative to Q100 are not readily quantified. Instead, we will weigh the merits

of each architecture on precisely the same workload.

The homogeneous system, depicted in Figure 5.3 is composed by a grid of small pro-

grammable processing elements (or PEs). Each PE is connected to four neighbors via

latency insensitive channels. Data can flow horizontally in either direction, but vertically it

travels only top to bottom, creating a systolic-array-like system. A row of Reader elements

sit at the top of the array, and a row of Writer elements at the bottom. These units behave

much like their Q100 counterparts and are responsible for reading and writing memory.

Streams of data are read from the top, percolate through, and are received at the bottom

by Writers which store the results – sometimes final, sometimes intermediate – back to

memory.

The detail on the right side of Figure 5.3 shows the microarchitecture of each PE.

Data tokens arrive from either the North, East or West and are routed to the compute

core. Data streams are 32 bits wide, the same as the Q100. The 8-bit control streams run

parallel to the data streams and operate independently. These carry metadata and control

information, e.g. boolean conditions evaluated by one module on a given column that have

to be transmitted to another processing element to filter a second column.

The compute core of a PE can consume up to two data and control tokens per cycle

and produce up to two output data tokens and two output control tokens. The compute

core is configurable, executing essentially one instruction continuously until the device is

re-programmed. In total, there are 43 instructions in the homogeneous ISA. These comprise

standard arithmetic instructions, e.g. addition, subtraction, multiplication, as well as more

complex ones that target database workloads, e.g., a merge of two input streams conditional

on an input control stream. Like the Q100, the homogeneous system supports only integer

operations and assumes that either the query can be executed with fixed point precision or

the CPU will have to step in.
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Figure 5.3: Homogeneous system architec-

ture. Each processing element operates in-

dependently. Within each PE compute and

communications modules are also indepen-

dent. The memory subsystem is equivalent

to the one used in the Q100.
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Figure 5.4: Compilation for our homoge-

neous design re-uses the Q100 frontend (Fig-

ure 4.2). After an ordering is found for

the Q100 instructions each one is compiled

into a graph of micro-ops. These are then

mapped – over multiple time steps – to the

processing elements in the system.

Each output port of a PE can be connected via a configurable interconnect to the input

port of another PE. The destination PE need not be a neighbor, provided the interconnect

is able to route the flow without conflicts with other communications. Multicast to multiple

PEs is possible and is supported in the routers which duplicate packets and transmit them

to multiple outputs at once. The routing logic in each PE is separate from the compute

core so that a PE can route tokens while computing. The network uses circuit switched

flow control, and any tokens received on a particular network input are forwarded to the

configured outputs until the design is reconfigured.

This design addresses the concerns listed in Section 5.1 as follows:

1. Since PEs have equal computational capabilities they can all be employed for any

operation. Relational algebra operators in a query plan can be mapped to any, or a

combination of PEs. Furthermore, only the necessary number of PEs will be used for

each operation while a Q100 module might be provisioned for a fixed number of input

columns.

2. Since each PE is equivalent instructions will be scheduled over neighboring PEs. This
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allows us to reduce power consumption of the interconnection network. Furthermore,

it allows us to use more area/power efficient circuit switched routers compared to

the packet switched routers used by the Q100 (5.9X area overhead and 3.8X power

overhead on average).

3. PEs can be extended with more operations and therefore cover a larger fraction of

a query plan compared to the Q100. While not quantified in this study, this would

avoid pipeline breaks and consequent roundtrips between the CPU, memory, and the

accelerator.

5.3 Homogeneous Compilation Backend

To ensure a controlled comparison between the Q100 and the homogeneous design, we re-use

the front end of the Q100 compiler for both systems. The homogeneous backend, depicted

in Figure 5.4 picks up from the point where the Q100 query plan has been sorted according

to the Longest Job First heuristic (Section 4.1.3). Each operator that appears in a Q100

query plan is translated into a graph of instructions for the homogeneous PEs that we will

call micro-ops. Instructions will continue to mean Q100 operations. Similarly to the Q100

instruction these micro-ops have producer-consumer relations. The number of micro-ops

generated per Q100 instruction depends both on the instruction type and the number of

its input/outputs. For example, a Join instruction will translate to as many micro-ops as

it has input columns.

Mapping micro-ops to an homogeneous device is more challenging than mapping Q100

instructions to a Q100 device, as any PE in the homogeneous device can execute any micro-

op. There are a large number of possible mappings for each instruction and each one might

affect the mapping of subsequent instructions that operate on the same data.

We generate a set of mappings from micro-ops to PEs using simulated annealing, i.e.

repeatedly applying random permutations to the best known solution (Algorithm 1). A

mapping is invalid if data dependencies cannot be routed. For simplicity, the backend

requires that all micro-ops in an instruction be scheduled at the same time.

This process is repeated for each Q100 instruction – in the ordering provided by the
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Q100 scheduler – until there are no more PEs or instructions available. The lack of available

instructions does not automatically mean that the execution is terminated. Due to the

producer - consumer relations in a query plan only a subset of instructions are eligible for

scheduling at any given time.

As a cost function for each evaluated mapping, we count the number of routing rules

that must be added. Minimizing this metric reduces both router utilization and path length.

It will prefer mappings where producer and consumer micro-ops are close together as long

paths will require adding more routing rules.

Given the large space of possible mappings, of which many are nonsensical (e.g. mapping

two connected micro-ops to opposite corners of the homogeneous mesh), we kickstart the

process by using predetermined “shapes” for each Q100 instruction. These shapes are

mapped rigidly (if possible) to the device in the first map method. Later the best mapping

has one or more of its instruction swapped with a random adjacent location in the tweak map

method. This pass, similar to a peep-hole optimization, could cause the introduction of

empty spaces in the mesh or exchange the location of two micro-ops, possibly facilitating

routing and reducing cost. After a predetermined number of mappings are evaluated, the

least expensive valid mapping is selected and the PEs used marked as such.

Lastly, the homogeneous scheduler must test for deadlock, which can occur if there are

reconvergent paths in the layout. Deadlock is avoided if there are more buffer slots in

the shortest branch of the reconvergent path than there are hops in the longest branch.

This condition must be tested after each instruction is scheduled, and if the test fails the

instruction must be de-scheduled. In practice we find this happens rarely so it should not

affect performance in a noticeable way.

We recognize that by considering only one instruction at a time, this algorithm may find

only a local minima. It could be beneficial to change the order in which instructions are

scheduled or use more complex heuristics rather than random choice to create possible map-

pings. While we do not evaluate more complex solutions, we will quantify in Section 5.5.1

how much performance is left on the table due to sub-optimal mapping.
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Algorithm 1 Homogeneous Micro-op Mapping

1: procedure Map(inst, device)

2: inst graph← inst to graph(inst)

3: best map← null

4: best cost← Inf

5: for i← 1,max tries do

6: map← null

7: if i = 1 then

8: map← first map(inst graph, device)

9: else

10: map← tweak map(best map, device)

11: end if

12: if map = null then

13: break

14: else

15: tries← tries+ 1

16: cost← compute cost(map, device)

17: if cost < best cost then

18: best map← map

19: best cost← cost

20: end if

21: end if

22: end for

23: return best map

24: end procedure
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5.4 Methodology

We developed an RTL implementation of the Q100 modules and the homogeneous PE.

For the Q100 NoC, we use an open-source router implementation [Becker, 2018] while for

the homogeneous NoC we implemented a circuit switched network router. NoCs for the

Q100 are packet switched and use reverse credit flow 1 while the NoC for the homogeneous

design uses a single circuit switched plane each for its data and control networks. While

the different NoCs may at first appear to complicate the comparison, our objective is to

pick the best network for each architecture. Because the two designs are so different, a

single network design is liable to be a bad choice for one or the other. The Q100 assumes

all-to-all connectivity between tiles. Since NoC congestion is already a significant source

of inefficiency in the Q100, a circuit switched network such as the one in the homogeneous

design would only exacerbate it. With a circuit switched network only a few circuits could

be established before all of the physical links are occupied, thus preventing utilization of the

available tiles. Similarly, a packet switched NoC is unnecessary for the homogeneous design

as there is less chance of link contention since communication tends to happens between

endpoints that are spatially close.

We synthesized netlists for each module and PE using Synopsys Design Compiler (2013.12-

SP1) and TSMC 65 nm general-purpose CMOS standard cells. For both designs, we ran

at maximum frequency using nominal Vdd with the low threshold voltage version of the

libraries. We use clock gating for both systems and therefore only consider static power

consumption for idle processing elements, tiles, or routers during a time step. Since a signif-

icant fraction of the area could be idle depending on the input query, one could argue that

both systems would benefit from power gating on a module by module basis. This would

result in a non trivial area and power overhead due to the small size of most Q100 modules

and the homogeneous PE. Due to the small impact of static power at our operating point

(less than 10% of total power), and the aforementioned issues, we decided not to use power

gating in either system.

1Reverse credit flow and additional buffer slots are used in the Q100 to avoid application deadlock when

different modules share a link.
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For each hardware module, we extracted gate-level activity factors. The resulting fully

annotated netlist-level VCD was used as a dynamic activity input into for the Synop-

sys PrimeTime (2013.12-SP1) fine-grain power and timing modeling software. We report

pre-extraction results, but use a uniform wire-load model of 2 fF for all local nets. We

characterize each module in isolation and then later combine them to compute the total

static and dynamic power. In each temporal instructions we use the computed static power

for the inactive modules and the dynamic power for the active ones.

All performance numbers are obtained using an in house cycle-level simulator. The

scheduler described in the previous sections is embedded in the simulator infrastructure and

governs the execution of each query plan. For all homogeneous experiments the mapping

algorithm described in Section 5.2 attempts at most 100 diverse mappings. Mapping of

instructions is complex in the homogeneous system due to the many degrees of freedom

when mapping an instruction to a set of PEs. Since our algorithm is not exhaustive we

also consider an “ideal” homogeneous mapper. The ideal mapper only takes into account

the number of available processing elements and does not evaluate the routing necessary to

satisfy each micro-op producer consumer relationship. This effectively sets an upper limit

on the performance of a mapping algorithm for our homogeneous device 2. While we could

have performed a more thorough HW/SW codesign between the number of physical planes

and the complexity of the mapping algorithm in the homogeneous architecture we feel this

is outside the scope of this dissertation. Even with this rudimentary software support

homogeneous performance is comparable to the Q100 and therefore proves our point.

All our tests are performed on TPC-H, the most widely used benchmark for query

processing analytic workloads [Boncz et al., 2014], both in academia and industry. We

used scaling factor 0.01 (a 10MB database) to have manageable simulation times. Our

infrastructure supports 19 out of 22 queries, and we do not account for time spent in

unsupported operations since we are interested in evaluating each accelerator’s merits.

2This upper bound is equivalent to assuming to have as many circuit switched interconnection planes as

necessary to ensure maximum throughput. Notice that micro-ops are arranged in a partial order, similarly

to instruction in a Q100 query plan. Therefore they are agnostic to the latency in communication between

them.
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Figure 5.5: On a per operator basis there is a penalty associated with using a homogeneous

PE instead of the Q100 module. Q100 modules are sorted from smallest on the left to

largest on the right.

For all systems under consideration we assume the same memory subsystem. Columns

are stored in memory and are streamed by a configurable number of Reader and Writer

modules. These are capable to produce/consume a data token per clock cycle. For a Q100

system the number of input/output streams can be configured independently of the number

of compute modules. On the other hand, for a homogeneous system Readers are attached

to the top row of processing elements, one for each PE. Similarly, Writers are attached to

the bottom row of PEs. Since all systems under consideration are configurable we assume

that they will be paired with a powerful enough memory subsystem to drive them. Since it

is always possible to scale down the size of either accelerators, and therefore their memory

requirements, we assume that a balanced system can always be achieved. Therefore, the

memory subsystem performance is not a variable accounted in this study.

5.5 Comparison of Q100 with Homogeneous Design

In this section we want to understand which accelerator design has better performance given

an area/power budget and why. Figure 5.5 shows how, taken singularly, each Q100 module

is significantly cheaper than a homogeneous PE. This is of course an intuitive result since

each homogeneous processing element can be programmed to perform any tile operation.
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Figure 5.6: Performance/Area comparison

of homogeneous and Q100 implementations
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Figure 5.7: Performance/Power comparison

of homogeneous and Q100 implementations.

Furthermore, the Q100 maximum operating frequency is higher (1100MHz) than that of

the homogeneous design (950MHz).

However, when looking at the system holistically, performance is similar. The homo-

geneous design can recoup performance thanks to increased utilization and more efficient

communication.

Since Q100 performance is highly tied to the selection of hardware modules, we evaluated

more than 4000 Q100 configurations and focus on the Pareto optimal points for further

evaluation. For the homogeneous design we sweep mesh size from 10x10 to 48x48 PEs. For

both designs we set an upper limit of 120mm2 and 10W of power. We believe these values

to be reasonable ranges for an accelerator targeting the datacenter especially considering

that this power budget excludes clock tree and parasitics (since we do not perform place and

route), and the memory subsystem (which is identical in the two designs). Furthermore, our

upper limit of 120mm2 for the die is fairly large, and close to that of a two core Intel Xeon

3050 processor at 65nm. While our analysis only considers a single accelerator die, other

techniques that have already been presented [Magaki et al., 2016] could be used to derive

an ideal arrangement of different accelerator dies into a board and then combine these into

a final system that further reduces Total Cost of Ownership (TCO).

From Figure 5.6 we can see that the homogeneous is comparable to Q100 Pareto optimal

designs in terms of performance given an area budget. Furthermore, it outperforms the Q100

when that area budget is small. The advantage at low area is understandable since a Q100
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In all cases using the ideal scheduler will cause the homogeneous system’s performance to

surpass that of the Q100.

device will have to contain at least one of each tiles (plus the NoC to connect these) while a

homogeneous design can shrink to a small size more gracefully as each PE is interchangeable.

In Figure 5.8 we can see a more detailed comparison on a query by query basis between

different homogeneous design and Pareto optimal Q100s. Benefits depend on the query

being considered.

Similar results are obtained when power is considered as a cost metric (Figure 5.7).

Again homogeneous provides comparable results across the board and significant improve-

ments for a small power budget.

In our analysis we want to understand where does the Q100 falls short. How can the

homogeneous design perform just as well even though the PEs that comprise it are larger

than the average Q100 module? How does the homogeneous system not incur in the same

pitfalls?

Lower Cost of Communication In Figure 5.9 we can see that is possible to cluster

all Q100 designs depending on whether they are using a ring, mesh, or torus interconnect.

Devices that include a ring tend to be smaller but incur penalties in terms of running time.
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Figure 5.10: Homogeneous designs consume

a smaller fraction of their power in the NoC.

While it is possible to construct a Q100 device in a wide range of NoC/Tile area ratios,

designs on the Pareto frontier have a significant fraction of their area occupied by the NoC.

In particular, almost all Pareto designs will invest a larger fraction of their area in the NoC

than a homogeneous system. Remember that for homogeneous design this ratio is fixed

since a single router is associated to each processing element.

In Figure 5.10 we can see that this reduction in NoC area in homogeneous also corre-

sponds to a lower ratio of power spent in this component. Since the NoC can be considered

as performing no “actual” work we can look at Figure 5.9 and Figure 5.10 and conclude

that this is a factor in favor of homogeneous. This is not surprising if we consider that Q100

routers are more expensive and tend to support longer distance communication links.

Higher Utilization The homogeneous design is able to use a larger fraction of its area at

any given time. Figure 5.11 shows that utilization is on average higher on a homogeneous

device than on Q100. This result would be clear if we think back at the reasons behind low

utilization in the Q100 (Section 5.1). The homogeneous design does not suffer from three

out of four inefficiencies that affect the Q100 (depicted in Table 5.1). Since connections are

all circuit switched no cycles can be lost due to the NoC, rather instruction might have to

be scheduled in different temporal instruction if a valid routing is not found. Similarly, only
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Figure 5.11: Unused Area-Time by both devices under exam. We can see that homogeneous

makes a better use of the available resources.

routing restricts scheduling of instructions on homogeneous while on the Q100 an instruction

can only be scheduled on its specific tile. There is no mismatch between an instruction

number of inputs and its hardware implementation since instruction are compiled at runtime

onto a set of PEs. Imbalance between instruction complexity affect homogeneous the same

as this is a function of the workload rather than the architecture.

In conclusion, the homogeneous design is more efficient both in terms of area and power

consumption, as its programmability and regularity makes the architecture adaptable to

the workload.

5.5.1 Instruction Mapping in the Homogeneous Architecture

Our results highlight how the mapping algorithm is a critical component of the homogeneous

system. If an ideal mapping of micro-ops to PE was attainable at every time step, utilization

would be even higher, and performance of the system would greatly surpass that of Q100.

Figure 5.12 shows the speedup attainable by the ideal mapping algorithm over our prob-

abilistic algorithm. There is significant variability depending on the size of the homogeneous

device considered with larger system benefiting more from the increased utilization. While

our scheduler is sub-optimal what we think is interesting is that there is a large performance

gap that could be covered with software techniques rather than hardware. This is unlike

the Q100 where limitations stem from the architecture of the system.
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Figure 5.12: Comparison of our probabilistic algorithm with an ideal scheduler. Significant

performance improvements could be obtained by better software scheduling.

5.6 Related work

The tension between programmability and efficiency is a longstanding subject of study in the

architecture community. Hameed et al.’s seminal paper analyzed the benefits of increasing

specialization [Hameed et al., 2010]. As their title suggests they analyze the inefficiencies

of software running on general purpose CPUs, whereas we analyze the inefficiencies that

can arise in specialized hardware. Subsequent work by the same group highlighted how

it is possible to create an architecture for convolution workloads that approximates the

performance of a fully specialized hardware design [Qadeer et al., 2013]. Nowatzki et al.

performed a study re-targeting proposed accelerators to a custom accelerator substrate they

designed [Nowatzki et al., 2016]. This work shows a significant cost (4x area and power) to

pay for programmability and they do not analyze the sources of inefficiencies in the baseline

accelerator as we do for the Q100.

A common thread in all of these studies is the notion that programmability has a

cost; creating a programmable architecture for a workload will incur in a hopefully modest

penalty compared to an ASIC implementation. To the best of our knowledge we are the

first to highlight a raw performance detriment due to “excessive” specialization. While the

approach taken in the Q100 architecture is perfectly valid – the original paper [Wu et al.,

2014] shows significant improvements over software DBMSs – the orchestration of all the

accelerator blocks coupled with the irregular nature of the application cause a detriment in
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performance.

There have been successful deployments of ASICs in the datacenter targeting Machine

Learning inference [Jouppi et al., 2017] or training [Dean et al., 2018]. These are ideal

workloads for acceleration due to the high compute per byte and their regular control

flow regular structure. On the other hand, it has been shown that no single workload

dominates in a datacenter and a long tail of datacenter workloads exist [Kanev et al.,

2015]. Among these workloads high compute per byte is the exception rather than the

norm. These might include application with high control flow divergence and that are

memory latency bound such as information retrieval or memory throughput bound such as

the OLAP workloads that we analyzed here. Therefore, we believe these application might

perform more efficiently on a programmable non Von Neumann architecture such as the

homogeneous design we presented here. Notice also how video transcoding at datacenter

scale, which we presented in Chapter 3, also seems to have enough variability that current

hardware accelerators cut corners and impose quality/performance tradeoffs.

5.7 Conclusions

To the best of our knowledge, this is the first work to highlight the dangers of over-

specialization and analyze in details its causes on a complete system. In our analysis we

found that the Q100 [Wu et al., 2014] can be outperformed by a homogeneous programmable

architecture. While the latter underperforms compared to the Q100 on any relational al-

gebra operator in isolation, it is superior when considering entire queries. We blame the

root cause of this counter-intuitive result on the Q100 excessive specialization that hinders

its ability to adapt to an irregular workload such as analytical query processing. Our re-

sults suggests that there exists a tipping point where an application has sufficient variety in

computational kernels and dependencies between them that a programmable architecture

becomes preferable purely on a performance perspective.

This work supports our thesis by showing how application “regularity” can dictate the

ideal level of specialization for an accelerator targeting such application. Counterintuitively,

pushing specialization as much as possible does not necessarily provide the best results. We
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believe the results presented here motivate further research on the development of other

non Von-Neumann architectures and their software stack.
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Chapter 6

Conclusions

As more accelerators are deployed in datacenters to contend with the end of Dennard

scaling, it is critical that their performance is optimized for the workload at hand. In this

dissertation, we have shown the effectiveness of Design Space Exploration in deriving good

accelerator designs given an area/power budget. Furthermore, this dissertation presents a

thorough analysis on how to derive a benchmark to guide design space exploration for a

production datacenter workload.

6.1 Summary of Contributions

The study presented in Chapter 3 highlights how video transcoding is a critical datacen-

ter workload whose computational needs are outpacing performance growth of commercial

general purpose CPUs (Figure 3.1). While vectorization can improve performance, it is

not a long term solution (Section 3.5.2). Alternative solutions, including accelerators, are

necessary to keep up with the growth of video uploads.

More importantly though, this study highlights how user facing cloud applications tend

to have a large variety of use cases as well as input characteristics. This variety has to be

captured in the benchmarks that will subsequently be used for design space exploration of

accelerator solutions. The production use cases that we replicated in vbench – the Popular,

Upload, Live, and VOD scenarios – all have different requirements. Therefore, accelerator

solutions targeting this workload are unlikely to be applicable to all scenarios. Consider
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the GPU solutions that we have evaluated in Section 3.5.3. While a potential solution for

the Live scenario1, GPUs are not applicable to the Popular scenario, and impose tradeoffs

for the VOD scenario. As another example consider the microarchitectural analysis that we

performed in Section 3.5.1. This study shows the correlation between input videos and

the microarchitectural profile of video transcoding. Correctly capturing the diversity of

input video sequences becomes paramount in order to avoid incorrect assumptions about

the workload that would sway optimization efforts.

The study in Chapter 4 shows how Design Space Exploration can significantly improve

the performance of the Q100 class of accelerators given an area/power budget. In Sec-

tion 4.1.4, we show how the number of tiles of each type in a Q100 instance can be tailored

to the computational requirements of the SQL queries being executed. More interestingly

though, we also show how it is possible to tailor the communication resources to the com-

munication patterns between hardware modules of the accelerator. To this end, we present

an algorithm that is able to automatically generate NoC topologies that are application-

specific given a communication graph. We use this algorithm to derive an optimized NoC

– more performant for a given area budget – for an instance of the Q100 accelerator. This

study highlights how specializing communication in accelerators can be as important as spe-

cializing its computational blocks. Furthermore, we provide an algorithm that is domain

agnostic and therefore could be applied to other accelerator designs. This study shows

how application properties drive Design Space Exploration: tile mix as a function of input

queries’ operations, and NoC topology as a function of communication patterns.

Finally, Chapter 5 examines a critical aspect of accelerator design, their ideal level of

specialization. Increased programmability is always desirable as it generally allows an accel-

erator to cover more computation, and decreases the likelihood of obsolescence. Intuitively,

programmability comes at a cost and most of recent work on domain specific architectures

presents programmability as contrary to performance. However, we show that when the

application being accelerated has dependencies between its computational kernels that are

a function of its inputs, programmability provides a performance benefit. For analytical

1Applicability of a solution is not only a function of their performance but also of their TCO that we did

not compute.
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query processing, the frequency of relational algebra operators and their data dependencies

is a function of the input query being executed. In a highly specialized design – one that is

not able to adapt to the variability of the computation – this leads to inefficiencies includ-

ing low silicon utilization and a high cost of communication between hardware modules.

In contrast, a programmable architecture can more easily adapt to varying computational

demands and therefore outperform the more specialized design. We believe that these con-

clusions should extend to other application and therefore motivate the development of other

non Von Neumann architectures, together with the software tools necessary to efficiently

map applications unto them.

6.2 Future Work

This dissertation provides three contributions towards more effective design space explo-

ration of accelerators for datacenters. However, there is much more work to do in order to

significantly increase the energy efficiency of future datacenter systems.

Mapping the Datacenter Despite wide interest in the computer architecture commu-

nity for machine learning workloads, there are many other datacenter applications that

should receive commensurate interest. Previous work has shown how there is a long tail of

applications in the datacenter that constitute a large fraction of all computation [Kanev et

al., 2015]. All these applications are poorly documented, in particular when we consider

how datacenter applications can be sensitive to the variability of user inputs (Chapter 3).

To the best of our knowledge, video transcoding [Lottarini et al., 2018] and websearch [Ay-

ers et al., 2018] are the only workloads that received such attention. More benchmarks

are necessary to fully engage the academic community and create common open source

solutions. Solutions that hopefully could be applied across different cloud providers.

New Programmable Accelerator Architectures GPUs, FPGAs, and ML ASICs are

now deployed in datacenters and can be considered success stories. However, we believe

that to tackle the long tail of datacenter applications other solutions are necessary. Purely

from a TCO perspective, ASICs – especially when targeting the latest, most expensive
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technology node – might not be the best solution [Magaki et al., 2016; Khazraee et al.,

2017]. On the other hand, FPGAs leave some performance on the table [Falsafi et al., 2017;

Kuon and Rose, 2006; Vasilyev et al., 2016].

We believe CGRAs constitute an interesting middle ground. Research efforts until now

have been too scattered though. They should converge on few promising hardware proto-

types as well as tacking what we believe is the hardest problem in this space: compilation

to CGRAs.

Software Support for Accelerators Compiling to CGRAs is harder than normal soft-

ware compilation. Compiler optimizations for software mostly deal with re-ordering in-

structions. On top of this time allocation of instructions, compilers for CGRAs have also to

consider allocation in space. We encountered this problem when mapping Q100 workloads

to our proposed CGRA architecture (Section 5.3). While previous work has tried to tackle

compilation for CGRA architectures [Smith et al., 2006] we still need definitive solutions in

this space.

We believe that leveraging the recent popularity of Domain Specific Languages might

simplify this task. Limiting the compilation to a domain specific language, together with

selecting a good intermediate representation for the domain [Brain, 2017] – one which suc-

cessfully abstracts away differences between accelerator implementations – will significantly

reduce the compiler complexity and increase the quality of results.

Support Heterogeneity in the Datacenter All these heterogeneous computing re-

sources that are now (or will be) deployed in datacenters have to be managed. Applications

will generally prefer to be scheduled on their accelerator of choice, but when that is not

possible, fallback to other architectures should be seamless and application performance

should degrade gracefully. Efficient scheduling and virtualization of accelerator resources

is necessary in order to achieve this goal [Gupta et al., 2011]. Furthermore, when work

is scheduled to an accelerator, we have to understand how this accelerator should be con-

trolled. In case this control comes from a host CPU, how can we ensure that accelerators’

performance does not degrade when such host CPU utilization is high [Zhu et al., 2019]?
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General Purpose Computing is still Relevant Efficiency in general purpose comput-

ing is still going to be critical, despite of the rise of accelerators. At least for the near future,

we should expect the latest version of an application to target general purpose CPUs first.

We have observed this phenomenon in the Popular scenario of vbench (Section 3.6.2). On

the other hard, accelerators will relieve general purpose CPUs of the most compute heavy

tasks. This could open up interesting research directions for developing datacenter specific

general purpose CPUs. One possibility is to tackle what previous work has called the “dat-

acenter tax” [Kanev et al., 2015] by reducing the overhead of recurrent computation, e.g.

memory allocation [Kanev et al., 2017]. Another interesting direction is to use machine

learning not only as an application but also to drive computer architecture design [Hashemi

et al., 2018].

There is no doubt that the computing landscape is going to become more and more

heterogeneous in the near future. This opens up many exciting avenues for research as

new systems will have to be developed to cope with the end of Dennard scaling and the

slowdown of Moore’s law. Similarly to what we presented in this dissertation, thorough

benchmarking of applications at the warehouse scale, and the subsequent development of

new architectures or accelerators will become a key component in increasing energy efficiency

for the datacenter.
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