2,118 research outputs found

    A Study Of Vantage Point Neighbourhood Search In The Bees Algorithm For Combinatorial Optimization Problems

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014Thesis (M.Sc. ) -- İstanbul Technical University, Institute of Science and Technology, 2014Bu tez çalışmasının temel amacı arıların kaynak arama davranışlarını modelleyen arı algoritmasının, kombinatoryal uzaylarda komşuluk arama fazına yeni bir yaklaşım geliştirilmesidir. Geliştirilen yaklaşım Gezgin Satıcı Problemine uygulanarak Gezgin Satıcı Problemi çözümünün en iyilenmesi amaçlanmıştır.This thesis focuses on nature-inspired optimisation algorithms, in particular, the Bees Algorithm that developed for combinatorial domains with new local search procedure and applied to Traveller Salesman Problem (TSP). An efficient and robust local neighborhood search algorithm is proposed for combinatorial domains to increase the efficiency of the Bees Algorithm.Yüksek LisansM.Sc

    Solving Travelling Salesman Problem by Using Optimization Algorithms

    Get PDF
    This paper presents the performances of different types of optimization techniques used in artificial intelligence (AI), these are Ant Colony Optimization (ACO), Improved Particle Swarm Optimization with a new operator (IPSO), Shuffled Frog Leaping Algorithms (SFLA) and modified shuffled frog leaping algorithm by using a crossover and mutation operators. They were used to solve the traveling salesman problem (TSP) which is one of the popular and classical route planning problems of research and it is considered  as one of the widely known of combinatorial optimization. Combinatorial optimization problems are usually simple to state but very difficult to solve. ACO, PSO, and SFLA are intelligent meta-heuristic optimization algorithms with strong ability to analyze the optimization problems and find the optimal solution. They were tested on benchmark problems from TSPLIB and the test results were compared with each other.Keywords: Ant colony optimization, shuffled frog leaping algorithms, travelling salesman problem, improved particle swarm optimizatio

    QoS routing in ad-hoc networks using GA and multi-objective optimization

    Get PDF
    Much work has been done on routing in Ad-hoc networks, but the proposed routing solutions only deal with the best effort data traffic. Connections with Quality of Service (QoS) requirements, such as voice channels with delay and bandwidth constraints, are not supported. The QoS routing has been receiving increasingly intensive attention, but searching for the shortest path with many metrics is an NP-complete problem. For this reason, approximated solutions and heuristic algorithms should be developed for multi-path constraints QoS routing. Also, the routing methods should be adaptive, flexible, and intelligent. In this paper, we use Genetic Algorithms (GAs) and multi-objective optimization for QoS routing in Ad-hoc Networks. In order to reduce the search space of GA, we implemented a search space reduction algorithm, which reduces the search space for GAMAN (GA-based routing algorithm for Mobile Ad-hoc Networks) to find a new route. We evaluate the performance of GAMAN by computer simulations and show that GAMAN has better behaviour than GLBR (Genetic Load Balancing Routing).Peer ReviewedPostprint (published version

    Decision of Multimodal Transportation Scheme Based on Swarm Intelligence

    Get PDF
    In this paper, some basic concepts of multimodal transportation and swarm intelligence were described and reviewed and analyzed related literatures of multimodal transportation scheme decision and swarm intelligence methods application areas. Then, this paper established a multimodal transportation scheme decision optimization mathematical model based on transportation costs, transportation time, and transportation risks, explained relevant parameters and the constraints of the model in detail, and used the weight coefficient to transform the multiobjective optimization problems into a single objective optimization transportation scheme decision problem. Then, this paper is proposed by combining particle swarm optimization algorithm and ant colony algorithm (PSACO) to solve the combinatorial optimization problem of multimodal transportation scheme decision for the first time; this algorithm effectively combines the advantages of particle swarm optimization algorithm and ant colony algorithm. The solution shows that the PSACO algorithm has two algorithms’ advantages and makes up their own problems; PSACO algorithm is better than ant colony algorithm in time efficiency and its accuracy is better than that of the particle swarm optimization algorithm, which is proved to be an effective heuristic algorithm to solve the problem about multimodal transportation scheme decision, and it can provide economical, reasonable, and safe transportation plan reference for the transportation decision makers

    A NOVEL DISCRETE RAT SWARM OPTIMIZATION ALGORITHM FOR THE QUADRATIC ASSIGNMENT PROBLEM

    Get PDF
    The quadratic assignment problem (QAP) is an NP-hard problem with a wide range of applications in many real-world applications. This study introduces a discrete rat swarm optimizer (DRSO)algorithm for the first time as a solution to the QAP and demonstrates its effectiveness in terms of solution quality and computational efficiency. To address the combinatorial nature of the QAP, a mapping strategy is introduced to convert real values into discrete values, and mathematical operators are redefined to make then suitable for combinatorial problems. Additionally, a solution quality improvement strategy based on local search heuristics such as 2-opt and 3-opt is proposed. Simulations with test instances from the QAPLIB test library validate the effectiveness of the DRSO algorithm, and statistical analysis using the Wilcoxon parametric test confirms its performance. Comparative analysis with other algorithms demonstrates the superior performance of DRSO in terms of solution quality, convergence speed, and deviation from the best-known values, making it a promising approach for solving the QAP

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon
    corecore