
IAIT Conference Proceedings
The 9th International Conference on Advances in Information Technology
Volume 2017

Conference Paper

Solving Travelling Salesman Problem by Using
Optimization Algorithms
Suhair Saud, Halife Kodaz, and İsmail Babaoğlu
Dept. of Computer Engineering, Faculty of Engineering, Selcuk University, Konya, Turkey

Abstract
This paper presents the performances of different types of optimization techniques
used in artificial intelligence (AI), these are Ant Colony Optimization (ACO), Improved
Particle Swarm Optimization with a new operator (IPSO), Shuffled Frog Leaping
Algorithms (SFLA) and modified shuffled frog leaping algorithm by using a crossover
andmutation operators. Theywere used to solve the traveling salesman problem (TSP)
which is one of the popular and classical route planning problems of research and it is
considered as one of the widely known of combinatorial optimization. Combinatorial
optimization problems are usually simple to state but very difficult to solve. ACO, PSO,
and SFLA are intelligent meta-heuristic optimization algorithms with strong ability to
analyze the optimization problems and find the optimal solution. They were tested on
benchmark problems from TSPLIB and the test results were compared with each other.

Keywords: Ant colony optimization, shuffled frog leaping algorithms, travelling
salesman problem, improved particle swarm optimization

1. Introduction

The Travelling Salesman Problem, briefly TSP is a description of a large class of prob-
lems known as combinatorial optimization problems. The concept of the problem is as
follows: A salesman has a number of cities to visit with a distance or time between two
cities, he wants to take the shortest possible route from all these cities so that he does
not pass from the same city twice and eventually return to where he left off [1]. TSP
is usually simple to explain but very hard to solve, if the number of cities is small, the
answer can be easily found by looking at all possible routes and choosing the shorter
route, but with the increasing the number of cities, this method will become inefficient
and the complexity of solving the problem also increases [2].

Computational techniques stimulated by natural phenomenonwere of great interest
in the recent years. The natural phenomenon of insects or large animals is studied to
develop different computing techniques in last few decades [2]. Various combinatorial
optimization problems such as Traveling Salesman Problem (TSP), Job-shop Scheduling

How to cite this article: Suhair Saud, Halife Kodaz, and İsmail Babaoğlu, (2017), “Solving Travelling Salesman Problem by Using Optimization
Algorithms” in The 9th International Conference on Advances in Information Technology, KnE Life Sciences, pages 17–??. DOI 10.18502/kss.v3i1.1394 Page 17

Corresponding Author:

Halife Kodaz

hkodaz@selcuk.edu.tr

Received: 14 November 2017

Accepted: 25 December 2017

Published: 8 January 2018

Publishing services provided by

Knowledge E

Suhair Saud et al. This article

is distributed under the terms of

the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Selection and Peer-review

under the responsibility of the

IAIT Conference Committee.

http://www.knowledgee.com
mailto:hkodaz@selcuk.edu.tr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

IAIT Conference Proceedings

Problem (JSP), and Vehicle Routing Problem (VRP) were also approached by various
modern heuristic methods, like ACO, IPSO and SFLA [3].

In this paper we give an overview of somemeta-heuristic (ACO, PSO, IPSO and SFLA)
algorithms to get the shortest route for the TSP. These algorithms are introduced in
Section 2. Section 3 gives the experimental results of ACO, PSO, modified PSO, SFLA
and modified SFLA for TSP under the MATLAB tool. Consequently, in Section 4, we
conclude the paper with a summarization of results by emphasizing on the importance
of this study.

2. Materials and Methods

2.1. Ant Colony Optimization (ACO)

ACO is a probabilistic technique related to artificial intelligence technology and used
for designing meta-heuristic algorithms to solve combinatorial optimization problems,
the first algorithm called Ant System (AS), it was first introduced and applied to TSP
by [4]. Dorigo, first used ant colony algorithms based on mathematical models of
ant colony’s behaviors on the TSP problem and achieved positive results. ACO is a
technique inspired by the way of ant colony that is secreted by pheromone to find the
shortest path between food sources and nests. In addition, ant colony algorithms have
been used by other researchers to solve different optimization problems [2].

The process of the ACO to solve TSP is briefly explained in the following:

Tour Construction: Initially, the artificial ants are distributed to n cities randomly
and determines the ant’s positions on different cities with initial value 𝜏𝑖𝑗(0), at each
construction step, ant k applies a probabilistic decision rule. In particular, the probability
rule helps ants which states in city i to decide to visit the next neighboring city j, as
given in (1) [5] as follows:

𝑝𝑘𝑖𝑗 (𝑡) =
⎧⎪
⎪
⎨
⎪
⎪⎩

[𝜏𝑖𝑗 (𝑡)]∝[𝜇𝑖𝑗 (𝑡)]𝛽

∑𝑘 [𝜏𝑖𝑘 (𝑡)]
∝[𝜇𝑖𝑘 (𝑡)]𝛽

if 𝑗 ∈ 𝐽𝑘 (𝑖)

0 otherwise

(1)

otherwise

Where 𝑝𝑘𝑖𝑗 (𝑡) is the probability of the ant passing from node i to node j, 𝜏𝑖𝑗 (𝑡) is the
pheromone value between nodes i and j, 𝜇𝑖𝑗(t) is the heuristic factor between nodes i
and j at t moment, 𝜇𝑖𝑗= 1/𝑑𝑖 𝑗 , 𝑑𝑖 𝑗 is the distance between nodes i and j and ∝, and 𝛽
are two adjustable positive parameters that control the relative weights of the edge
pheromone trails and of the heuristic visibility.

DOI 10.18502/kss.v3i1.1394 Page 18

IAIT Conference Proceedings

After n iterations of this process, every ant completes a tour, a feasible solution
of TSP represented by the route of ants which visited all nodes are appeared as a
sequence including all serial numbers of cities [4]. At every iteration, all ants should be
estimated by means of the objective function. Then, two high-quality ants are chosen
for the pheromone deposition on their edges: the first is the best ant in the current
iteration, and the second is the global best ant found so far. The pheromone updating
is calculated by (2) [5] as follows:

𝜏𝑖𝑗 (𝑡 + 1) = (1 − 𝑝) ⋅ 𝜏𝑖𝑗 (𝑡) +
𝑚

∑
𝑘=1

Δ 𝜏𝑘𝑖𝑗(𝑡 + 1) (2)

Where Δ 𝜏𝑘𝑖𝑗(t+1) is calculated by (3),

Δ 𝜏𝑘𝑖𝑗 (𝑡 + 1) =
⎧⎪
⎨
⎪⎩

1/𝐿𝑘 (𝑡 + 1) if ant k travels on edge(𝑖, 𝑗)

0 otherwise
(3)

Where 𝜏𝑖𝑗(t) is the accumulated pheromone level at iteration counter, Δ 𝜏𝑘𝑖𝑗 is the
increase of trail level on edge (i, j) caused by ant k, 𝐿𝑘(𝑡 + 1) is the total length of the
ant’s tours, and (1 − 𝑝) is the pheromone decay parameter, (𝑝) ∈ (0, 1) , it illustrates
the pheromone trail evaporation when the ant selects a city and decides to move.
Computing of the optimal path is completed by the algorithm iterates in a certain
number of iterations, after the pheromone trail updating process and k ants have
travelled through all the cities, the next iteration is (𝑡 + 1) will update the distances
between cities as illustrated by result later.

2.2. Shuffled Frog Leaping Algorithm (SFLA)

Shuffled Frog Leaping Algorithm (SFLA) is one of the evolutionary algorithms, it has
proposed firstly by Eusuff, Lansey, and Pasha [6]. It was designed as a real coded
population based on meta-heuristic optimization method for combinatorial optimiza-
tion to achieve an informed heuristic searching a heuristic function (any mathematical
function) to seek for the location that has the maximum amount of available food
to solve a combinatorial optimization problem. It is based on an evolution of memes
carried out by responsive individuals and global exchange of information among the
population. Although this algorithm is easy, it has high performance [6]. SFLA is a
method that simulates the memetic evolution of a group of frogs leaping in a swamp.
The SLFA framework is illustrated in details as follows [6].

DOI 10.18502/kss.v3i1.1394 Page 19

IAIT Conference Proceedings

2.3. Cycle Crossover and Order Crossover with inversion mutation
shuffled frog leaping algorithm (CX-OX-IMSFLA)

This algorithm combines the advantages of genetic-based memetic algorithm (MA)
and PSO.This algorithm has few parameters, prompt formation, great capability in
global search and easy realization. The SFLA was proved to solve discrete as well as
continuous optimization problems but when the SFLA is used to solve the discrete
problems, the leaping step needs to be modified and some disadvantages are also
appeared in the original algorithm, such as non-uniform initial population, slow con-
vergent rate, limitations in local searching ability and adaptive ability, and premature
convergence [7]. For this reason, SFLA ismodified and applied to solve TSP as discussed
below:

Proposedmethod considers a feasible travel path as a frog and displays an improved
shuffled frog leaping algorithm (SFLA) for solving TSP. To improve the quality of the
position of the worst frog, the CXIM operator is applied. CXIM operator synthetically
takes advantages of the features of the cycle crossover (CX) and the inversion muta-
tion (IM) during the local search method. To measure the performance of the modified
SFLA, CXIM operator is employed in proposed algorithm to solve symmetric TSP and
compared with Basic SFLA.

2.3.1. Modified SFLA for TSP

Basic SFLA losses the exploring ability of divergent field and sometimes trapped within
a local optima, also the TSP has its own traits, to make a balance between the conver-
gent and divergent property, based on the description of the weaknesses of the basic
SFLA which stated above. A modified SFLA to solve TSP is presented, which includes
the genetic crossover and mutation property of divergent category.

Themodified shuffled frog leaping algorithm by using Cycle Crossoverwith Inversion
Mutation (CXIM) and Order Crossover with Inversion Mutation (OXIM) are discussed in
this section in full details.

2.3.2. Expression of the Frog and Strategy for Initial Population

TSP is popularization of the sorting problemwhich sorts a set of given cities. A possible
solution of TSP explains a possible travel path that is normally represented as a series

DOI 10.18502/kss.v3i1.1394 Page 20

IAIT Conference Proceedings

of characters, each character represents a real city, so the frogs stand for the travel
routed here.

The initial population is created randomly to achieve enough diversification, frog i
can be represented as 𝑃𝑖 = 𝑃𝑖1, 𝑃𝑖2, 𝑃𝑖3,…𝑃𝑖𝐷, where D is the quantity of total cities, the
decision variable 𝑃𝑖𝑗 (𝑖 = 1, 2, ⋯ , 𝐹) , (𝑗 = 1, 2, ⋯ , 𝐷) is the number corresponding
to a real city, then, calculate the fitness (performance) for each frog. Here, the perfor-
mance function of a frog can be noted as the mutual of the route length corresponding
to this frog [8].

2.3.3. Partition

Arrange the frogs in ascending order based upon their fitness, the P Frogs of a sorted
population is divided into m subsets (memeplexes) each subset contains n frogs such
that 𝑃 = 𝑚 × 𝑛. Put the first frog into the first memeplex, the second frog into
the second memeplex, the m𝑡ℎ frog into the m𝑡ℎ memeplex, and the (m+1)𝑡ℎ frog
back into the first memeplex. All the frogs of a population are placed into m different
memeplexes, the various memeplexes describe different cultures of the designated
frogs [8]. Then 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑤𝑜𝑟𝑠𝑡, are determined individually at each subset.

2.3.4. Improvement Strategy for the Worst Frog (Local Search)

In the local search, each frog should pass through D different cities, but the new frog
will come out as real number and maybe contain repetition, so this research first, uses
cycle crossover and inversion mutation, second, two point crossover and inversion
mutation operators to generate a new frog as integer number to solve TSP which is an
integer programming problem.

2.3.5. Path representation

There are many different procedures to represent the path to optimize TSP, such as
binary representation and path representation. In this research, in order to represent
a tour of TSP, path representation is used. As mentioned above, a tour is represented
as a list of n cities [9]. To solve the combination of TSP with the path representation,
crossover and mutation operators are defined:

DOI 10.18502/kss.v3i1.1394 Page 21

IAIT Conference Proceedings

Figure 1: An example of CX method.

2.3.6. Cycle Crossover

There are many types of crossovers, in this research Cycle Crossover (CX) is used to
improve the position of worst frog, CX is in common use when processing the strings
with integer coding. It was proposed by [10]. It attempts to create an offspring from the
parents, each element comes from one parent together with its position, it involves
three main steps [11]:

1. Make a cycle of elements from best local frog 𝑃𝑏𝑒𝑠𝑡as follows:
a. From 𝑃𝑏𝑒𝑠𝑡, start with the first element.

b. Look at the element at the same position in 𝑃𝑤𝑜𝑟𝑠𝑡.
c. Go to the position with the same element in 𝑃𝑏𝑒𝑠𝑡.
d. Add this element to the cycle.

e. Repeat step (b) through (d) until reaching the first element of 𝑃𝑏𝑒𝑠𝑡.
2. Put the elements of the cycle in the blank string on the positions that they are in

the 𝑃𝑏𝑒𝑠𝑡
3. Take next cycle from 𝑃𝑤𝑜𝑟𝑠𝑡.
An example of the CX method is shown in Fig. 1.

So after creating a new frog with CX operator, another frog with mutation operator
can be obtained. In this research inversion mutation (IM) operator is used.

2.3.7. Inversion Mutation

The inversion mutation was proposed by [12]. The purpose of mutation is to preserve
the genetic diversity of frogs in order to prevent the algorithms from being trapped in a
local optima and preventing the population of frogs from becoming too similar to each
other. The inversion mutation performs inversion of the substring (route) between two
selected cities randomly, removed it from the tour and inserts it randomly in a selected

DOI 10.18502/kss.v3i1.1394 Page 22

IAIT Conference Proceedings

Figure 2: An example of IM operator for mutate the CX method.

position. This means that the sub tour is inserted in reversed order. Figure (2) illustrates
the inversion mutation concept [9, 13].

Finally according to their performance (fitness), the best frog can be picked up as
appropriate result.

The steps of IM operator are specified as follows:

1. In the new frog, identify the substring randomly.

2. Create another frog that is same as the new frog but the substring is inversed.

2.3.8. Order Crossover

This operator was first achieved by Davis in 1985 [14]. The OX utilizes a property of
path representation with important cities ordering [9]. This method constructs a new
position by two cut points that are randomly chosen from parents. Here to produce the
offspring, the cities between the cut points are exchanged by the cities in the second
parent [15].

OX involves three main steps [11]:

1. Choose an arbitrary sub-tour from the 𝑃 𝑏𝑒𝑠𝑡.

2. Copy this sub-tour to the blank string but sub-tour’s position is the same as that
in the 𝑃𝑏𝑒𝑠𝑡to generate a new frog.

3. Copy the rest of the cities from 𝑃𝑤𝑜𝑟𝑠𝑡 to the blank string, this excluding the cities
that were taken at the sub-tour.

- Choosing the cities that follow the sub-tour end,

- Insert them in their order from worst frog vector,

- Once the end of the new frog position vector reached, fill it with the rest of the
cities that are at the worst frog vector.

An example of the OX is shown in Fig. 3.

DOI 10.18502/kss.v3i1.1394 Page 23

IAIT Conference Proceedings

Figure 3: An example of OX method.

Figure 4: An example of IM operator for mutate OX method.

2.3.9. Inversion Mutation

Another new frog positions with inversion mutation (IM) operator can be obtained
to prevent the algorithms from being trapped in a local optima and preventing the
population of frogs from being too similar to each other [9]. This will give appropriate
result.

The steps of IM operator are specified as follows:

1. In the new frog position, select the sub-tour that inherits from the best frog 𝑃𝑏𝑒𝑠𝑡.
2. Create another frog that is same as the new frog but the sub-tour has been

inversed.

The inversion mutation concept is illustrated in Figure (4).

2.4. Particle Swarm Optimization (PSO)

Particle swarm optimization has appeared as a powerful optimization developed by
Kennedy and Eberhart in 1995 [16, 17], They influenced by the work of Heppner and
Grenard, which included the analogy of corn quests in the 1990 [18]. PSO inspired by
the social behavior of bird flocking and fish schooling. Birds, fish and animal flocks;
impressive production, their movement is synchronized and they move without colli-
sion. Birds fly and they maintain in a certain distance between neighbors [19].

DOI 10.18502/kss.v3i1.1394 Page 24

IAIT Conference Proceedings

The basic PSO algorithm has several phases including Initialization, Evolutionary
phases, Velocity Updating and Position Updating. These phases are described in details
as follows:

1. Assign the random position and velocity values to the vectors for the population
of

size D.

2. Calculate the fitness function for each particle.

3. Identify the best fitness (least objective) among the neighbors of the whole
swarm and keep it as a G𝑏𝑒𝑠𝑡.

4. Determine the objective fitness of each particle that it has ever possessed and
set it as a P𝑏𝑒𝑠𝑡.

5. Update the position and velocity information for each particle at each time step
according to (4) as follows:

𝑉 𝑘+1
𝑖 = 𝑤.𝑣𝑘𝑖 + 𝑐1𝑟1 (𝑃𝑖𝑏𝑒𝑠𝑡 − 𝑥𝑘𝑖) + 𝑐2𝑟2 (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑘𝑖)

𝑋𝑘+1
𝑖 = 𝑋𝑘

𝑖 + 𝑉 𝑘+1
𝑖

(4)

6. The current fitness value is compared with its own best value (P𝑏𝑒𝑠𝑡). If the current
fitness value is better than P𝑏𝑒𝑠𝑡, it will be replaced with current objective value and
position vector respectively.

7. 𝐺𝑏𝑒𝑠𝑡 are updated, that is, if the current best fitness of the whole swarm is fitter
than 𝐺𝑏𝑒𝑠𝑡, then it will be replaced with current best objective and it’s corresponding
position vector respectively.

8. Repeat steps 2 – 7.

9. If stopping criterion is reached or if the number of iterations has reached it’s
maximum, the loop is terminated. If not, go back to step 5

10. Loop end.

2.5. Improved Particle Swarm Optimization (IPSO)

As mentioned above, PSO algorithm is a nature-inspired technique originally designed
as a simulation of a simplified social system. PSO is an evolutionary computation tech-
nique developed successfully in recent years and can be used to continuous and dis-
crete optimization problems to find optimal solutions through local and global models.

The method described above is suitable for problems of continuous value but it can’t
be used directly to problems of discrete value such as TSP. In [20], they redefined the

DOI 10.18502/kss.v3i1.1394 Page 25

IAIT Conference Proceedings

basic PSO algorithm by suggesting new concepts inspired by the ‘Swap operator’ and
‘Swap sequence’, therefore in this paper, the TSP tried to be solved by PSO in another
way.

The suggested algorithm is one of the most important algorithm that has the auto-
matic equilibrium ability between global and local searching capabilities and achieves
better convergence with increase the probabilities of finding a minimum solution of
TSP. In the initial phase of the algorithm, it starts with generating the population of
particles randomly to compose the particle swarm. For a D-dimensional search space,
the position of the 𝑖𝑡ℎparticle is represented as 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, … 𝑋𝑖𝐷), i.e in proposed
method the process of particle formation occurs on the traveling salesman strategy
as follows: each particle is represented as a series of nodes such as 1, 2, 3, 4 and 5,
this series means salesman visits node 1 then node 2 then node 3 then node 4 then
node 5 and go back node 1. The arrangement of node visiting done by PSO can be
obtained by calculating a distance of nodes sequence which is sorted out to obtain the
least distance [21]. For each particle, the cost of TSP mentioned above is calculated
by objective function. Each particle preserves a memory of its previous best position
𝑃𝑏𝑒𝑠𝑡= (𝑃𝑖1, 𝑃𝑖2, … 𝑃𝑖𝐷) and the best one among all the particles in whole population
is represented as 𝑃𝑔𝑏𝑒𝑠𝑡= (𝑃𝑔1, 𝑃𝑔2, … 𝑃𝑔𝐷).Also the position of 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑔𝑏𝑒𝑠𝑡 must be
kept. Then the iteration starts and increased until it reaches the maximum value. At
each iteration, the fitness of each particle is calculated and compared it’s value with
the fitness of current 𝑃𝑏𝑒𝑠𝑡. If 𝐹(𝑋𝑖) is less than 𝐹(𝑃 𝑏𝑒𝑠𝑡), then update the cost function
and position, as well as for 𝑃𝑔𝑏𝑒𝑠𝑡. Later four different hybrid approaches have to be
done to find the shortest path, these are:

- By 𝑃𝑏𝑒𝑠𝑡 : The position of each particle is shuffled by assigning two integer param-
eters (pointer1) and (pointer2) to select randomly two cities from the 𝑃𝑏𝑒𝑠𝑡 vector to
get l sub-vector. The new 𝑃𝑏𝑒𝑠𝑡 contains an arrangement of cities in the same manner
with shuffling the new sub-vector starting with pointer1 and ending with pointer2.This
step should ensure that cities aren’t repeated.

- By 𝑃𝑔𝑏𝑒𝑠𝑡 : By two integer parameters (pointer1) and (pointer2), a sub-vector
extracted from 𝑃𝑔𝑏𝑒𝑠𝑡 randomly starting with (pointer1) and ended with (pointer2)
and then it can be inserted at the end of the main vector. This step should ensure that
cities aren’t repeated.

- By employing shuffling process by 𝑃𝑔𝑏𝑒𝑠𝑡, information can be swapped between
two particles to have the ability to fly to the new search area.

DOI 10.18502/kss.v3i1.1394 Page 26

IAIT Conference Proceedings

Figure 5: Before and after the PSM.

- Improving thewhole position of population: After shuffling process, applymutation
operator, in general, there are different types of mutations operators used in evolu-
tion strategy, in our proposed algorithm pair-wise swap mutation (PSM) or exchange
mutation (EM) were used [22-24].

PSM operator invented by Banzhaf in 1990. The concept of this operator is to selects
two cities randomly from the tour and swapped them [24]. Sometimes, this technique
is also called interchange mutation, or exchange mutation or random swap. For exam-
ple, consider the tour represented by [25]:

In this case, the location of city 3 and city 7 will be swapped as in Fig. 5.

After that, at each generation, the distance is calculated and updated if the new cost
function is less than the previous one.

The city which yields the shortest distance is selected, the process continues for
many generations until the tour is completed.

3. Experimental Results and Discussion

Following the above mentioned algorithms, all the simulations were completed on
a Windows XP 32-bit operating system with a 1.70 GHz processor and 4.00 GB RAM
memory, all the algorithms were developed with the help of MATLAB 6.5 tool. All the
mentioned heuristics algorithms above were tested on well-known datasets from the
TSPLIB that is found at [26]. Our approach was tested on paths of sizes n = (30, 51, 52,
70, 76, 100), where n is the cities number. These cities were chosen from small dataset
to large dataset to enable us of making comparisons related to scientific literature. For
ant colony, the chosen parameters are α= 1, β= 2, rho (pheromone evaporation rate)=
0.1 and the maximum number of iterations was set to 1000. However, if the algorithm
doesn’t give updated result specially when the tour contains large amount of cities, the
number of ants may be increased and taking last updated result as starting one. Ants
number can be (m = 100, 500, 1000). It can be seen easily that the optimized result is
changed when number of ants increased above 100.

For particle swarm optimization algorithm, the basic version gave us an approximate
solution to the problem but it wasn’t an optimal solution because TSP have the discrete

DOI 10.18502/kss.v3i1.1394 Page 27

IAIT Conference Proceedings

feature reverse PSO algorithm that solved continues optimization problem. For this
reason, we tried tomodify basic PSO to evaluate the optimal solution. For basic PSO, set
the number of particles (birds) equal to the number of cities.Increasing or decreasing
the number of birds doesn’t affect the result.

Choosing the algorithm parameters as follows, w (inertia weight) = 0.7, c1 (cognitive
parameter) = 1.8, 𝑐1 (social parameter)= 4-𝑐2, 𝑐1 + 𝑐2 must equal to 4, maximum number
of iterations equal to 1000 and defining the maximum and minimum position value in
order to limit the velocity value.

For improved PSO, the parameters involved in IPSO include the maximum number
of iterations to be 1000 and it may be increased according to the cities tour size.
The population number equal to number of city, 𝑐1 and 𝑐2 randomly selected and
must be generated as discrete uniform random numbers. In SFLA, for each N-city TSP
problem, the parameters are set as follows: there are 10 memeplexes (m), n is the
number of frogs within each memeplex, so the number of population (P) is m*n,
each memeplex will be divided into submemplexes and q represents the number
of frogs in a submemeplex. All results were obtained by running the program over
1000 independent runs. Table 1 shows the comparison test results between proposed
algorithms. According to equation (5) given below, error values were calculated to
show the efficiency of the algorithms used. In table 1, the bold results in mean values
represent the best performance among others, the best result were obtained by using
IPSO on TSP instances Oliver30, St70, Eil76 and KroA100, about Eil51 and Berlin52 the
results were reasonable.

Error = Best Value-Optimal Value
Optimal Value

(5)

T 1: The comparison of ACO, PSO, IPSO, SFLA, OXIMSFLA and CXIMSFLA with each other.

Problem Oliver30 Optimal: 423 Eil51Optimal: 426 Berlin 52Optimal: 7542 St70Optimal: 675 Eil76Optimal: 538 KroA100Optimal: 21282

Method Best Mean Error Best Mean Error Best Mean Error Best Mean Error Best Mean Error Best Mean Error

ACO 426 525 0.007 443 516 0.040 7549 9385 0.001 707 888 0.047 573 659 0.065 22388 28655 0.052

PSO 763 892 0.804 908 1313 1.131 17296 22206 1.293 2009 3411 1.976 1662 1975 2.089 113174 191394 4.318

IPSO 424 441 0.002 464 543 0.089 7816 8723 0.036 755 871 0.119 584 641 0.086 24596 28385 0.156

SFLA 741 1357 0.752 1169 1703 1.168 19865 30598 1.634 2615 3759 2.874 1904 2580 2.539 128520 175413 5.039

OXIMSFLA 434 517 0.026 534 593 0.254 8362 9987 0.109 892 1004 0.321 733 819 0.362 37212 41371 0.749

CXIMSFLA 556 699 0.314 671 812 0.575 12266 15109 0.626 1355 1734 1.007 1072 1326 0.993 58069 78451 1.729

Following the above mentioned success tests of the application, the running time
consumed by algorithm is presented for the data sets in different sizes. Oliver30 as a
small size data group, Eil51, Berlin52 as a medium data group, these groups converges

DOI 10.18502/kss.v3i1.1394 Page 28

IAIT Conference Proceedings

quickly and requires less computational time due to their small complexity while St70
and KroA100 as a large data group, it requires more computational time due to it’s
complexity. Table 2 shows that the average running time of the applications of each
data set.It can be seen that time is increased when increasing the size of the tour.

T 2: Running times for ACO, PSO, IPSO, SFLA, OXIMSFLA and CXIMSFLA implementation.

Problem Time (Second)

ACO PSO IPSO SFLA OXIMSFLA CXIMSFLA

Oliver30 19 9 104 442 1338 706

Eil51 194 9 259 1136 16241 5147

Berlin52 276 15 469 1150 21907 5732

St70 1678 28 1058 1859 68119 17638

Eil76 2035 28 3036 1771 99104 28007

KroA100 4516 45 9426 3042 197264 52365

4. Conclusions

This paper presents the performance of different types of optimization techniques
used in artificial intelligence (AI) by making a comparison of six evolutionary-based
search methods. These are ACO, PSO, IPSO, SFLA, OX-IMSFLA and CX-IMSFLA which
using a crossover and mutation operator.

OX-IMSFLA and CX-IMSFLA are a new trial that get the approximate solution by
using SFLA, these methods achieved near-optimal result in symmetric small-sized TSP
instances such as Oliver30, Eil51, and Berlin52, but in big-sized TSP instances such as
St70, Eil76 and KroA100, large execution time was consumed.

These algorithms were used to solve TSP which is one of the popular and classical
route planning problems of research and is accounted as one of the widely known of
combinational optimization. Matlab program were written to implement each algo-
rithm to solve our problem.

Finally, from this paper, it can be concluded that for NP-hard optimization problems
and complicated search problems, meta-heuristic methods are very good choices for
solving these problems. This conclusion based on solution quality and run time com-
parison.The comparison is meaningful and done between meta-heuristics methods.
Algorithms were tested on benchmark problems for TSPLIB and the test results were
compared with each other.

DOI 10.18502/kss.v3i1.1394 Page 29

IAIT Conference Proceedings

Acknowledgement

We like to express our sincere thanks to Scientific Research Project of Selçuk University.

References

[1] F. Greco, ”Travelling Salesman Problem, I-Tech,” ed: Croatia, 2008.

[2] H. Dikmen, H. Dikmen, A. Elbir, Z. Ekşi, and F. Çelik, ”Gezgin Satici Probleminin
Karinca Kolonisi ve Genetik Algoritmalarla Eniyilemesi ve Karsilastirilmasi,” Journal
of Natural & Applied Sciences, vol. 18, 2014.

[3] X. Yan, C. Zhang, W. Luo, W. Li, W. Chen, and H. Liu, ”Solve traveling salesman
problem using particle swarm optimization algorithm,” International Journal of
Computer Science, vol. 9, pp. 264-271, 2012.

[4] M. Dorigo, V. Maniezzo, and A. Colorni, ”The ant system: Optimization by a colony
of cooperative agents,” 1996.

[5] Z. C. S. S. Hlaing and M. A. Khine, ”Solving traveling salesman problem by using
improved ant colony optimization algorithm,” International Journal of Information
and Education Technology, vol. 1, p. 404, 2011.

[6] M. Eusuff, K. Lansey, and F. Pasha, ”Shuffled frog-leaping algorithm: a memetic
meta-heuristic for discrete optimization,” Engineering optimization, vol. 38, pp. 129-
154, 2006.

[7] X.-h. Luo, Y. Yang, and X. Li, ”Solving TSP with shuffled frog-leaping algorithm,”
in Intelligent Systems Design and Applications, 2008. ISDA’08. Eighth International
Conference on, 2008, pp. 228-232.

[8] M. Wang and W. Di, ”A modified shuffled frog leaping algorithm for the traveling
salesman problem,” in Natural Computation (ICNC), 2010 Sixth International
Conference on, 2010, pp. 3701-3705.

[9] P. Larranaga, C. M. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic, ”Genetic
algorithms for the travelling salesman problem: A review of representations and
operators,” Artificial Intelligence Review, vol. 13, pp. 129-170, 1999.

[10] I. Oliver, D. Smith, and J. R. Holland, ”Study of permutation crossover operators
on the traveling salesman problem,” in Genetic algorithms and their applications:
proceedings of the second International Conference on Genetic Algorithms: July 28-
31, 1987 at the Massachusetts Institute of Technology, Cambridge, MA, 1987.

[11] A. Umbarkar and P. Sheth, ”Crossover Operators In Genetic Algorithms: A Review,”
ICTACT journal on soft computing, vol. 6, 2015.

DOI 10.18502/kss.v3i1.1394 Page 30

IAIT Conference Proceedings

[12] D. B. Fogel and J. W. Atmar, ”Comparing genetic operators with Gaussian mutations
in simulated evolutionary processes using linear systems,” Biological Cybernetics,
vol. 63, pp. 111-114, 1990.

[13] H. H. Chieng, ”A genetic simplified swarm algorithm for optimizing n-cities open
loop travelling salesman problem,” Universiti Tun Hussein Onn Malaysia, 2016.

[14] L. Davis, ”Job shop scheduling with genetic algorithms,” in Proceedings of an
international conference on genetic algorithms and their applications, 1985.

[15] N. Kumar and R. K. Karambir, ”A comparative analysis of pmx, cx and ox crossover
operators for solving traveling salesman problem,” International journal of Latest
Research in science and technology, vol. 1, 2012.

[16] F. Huilian, ”Discrete particle swarm optimization for TSP based on neighborhood,”
Journal of Computational Information Systems, vol. 6, pp. 3407-3414, 2010.

[17] R. Eberhart and J. Kennedy, ”A new optimizer using particle swarm theory,” in Micro
Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International
Symposium on, 1995, pp. 39-43.

[18] F. Heppner and U. Grenander, ”A stochastic nonlinear model for coordinated bird
flocks,” The ubiquity of chaos, pp. 233-238, 1990.

[19] I. Yaman, ”Portf�y optimizasyonunda değiştirilmiş parçac𝚤k sürü optimizasyonu
yaklaş𝚤m𝚤,” Master, Statistics Department, Hacettepe University, 2014.

[20] K.-P. Wang, L. Huang, C.-G. Zhou, and W. Pang, ”Particle swarm optimization
for traveling salesman problem,” in Machine Learning and Cybernetics, 2003
International Conference on, 2003, pp. 1583-1585.

[21] K. Premalatha and A. Natarajan, ”Hybrid PSO and GA for global maximization,” Int.
J. Open Problems Compt. Math, vol. 2, pp. 597-608, 2009.

[22] D. Tang, S. Dong, X. Cai, and J. Zhao, ”A two-stage quantum-behaved particle swarm
optimization with skipping search rule and weight to solve continuous optimization
problem,” Neural Computing and Applications, vol. 27, pp. 2429-2440, 2016.

[23] C. Ratanavilisagul and A. Kruatrachue, ”Amodified particle swarm optimizationwith
mutation and reposition,” Int J Innov Comput Inform Control, vol. 10, pp. 2127-2142,
2014.

[24] W. Banzhaf, ”The “molecular” traveling salesman,” Biological Cybernetics, vol. 64,
pp. 7-14, 1990.

[25] H. H. Chieng and N. Wahid, ”A Performance Comparison of Genetic Algorithm’s
Mutation Operators in n-Cities Open Loop Travelling Salesman Problem,” in Recent
Advances on Soft Computing and Data Mining, ed: Springer, 2014, pp. 89-97.

DOI 10.18502/kss.v3i1.1394 Page 31

IAIT Conference Proceedings

[26] G. Reinelt, ”TSPLIB http://www.iwr.uni-heidelberg.de/groups/comopt/software,”
TSPLIB95, 1995.

DOI 10.18502/kss.v3i1.1394 Page 32

	Introduction
	Materials and Methods
	Ant Colony Optimization (ACO)
	Shuffled Frog Leaping Algorithm (SFLA)
	Cycle Crossover and Order Crossover with inversion mutation shuffled frog leaping algorithm (CX-OX-IMSFLA)
	Modified SFLA for TSP
	Expression of the Frog and Strategy for Initial Population
	Partition
	Improvement Strategy for the Worst Frog (Local Search)
	Path representation
	Cycle Crossover
	Inversion Mutation
	Order Crossover
	Inversion Mutation

	Particle Swarm Optimization (PSO)
	Improved Particle Swarm Optimization (IPSO)

	Experimental Results and Discussion
	Conclusions
	Acknowledgement
	References

