734 research outputs found

    Intelligent Condition Monitoring and Prognostic Methods with Applications to Dynamic Seals in the Oil & Gas Industry

    Get PDF
    The capital-intensive oil & gas industry invests billions of dollars in equipment annually and it is important to keep the equipment in top operating condition to help maintain efficient process operations and improve the rate of return by predicting failures before incidents. Digitalization has taken over the world with advances in sensor technology, wireless communication and computational capabilities, however oil & gas industry has not taken full advantage of this despite being technology centric. Dynamic seals are a vital part of reciprocating and rotary equipment such as compressor, pumps, engines, etc. and are considered most frequently failing component. Polymeric seals are increasingly complex and non-linear in behavior and have been the research of interest since 1950s. Most of the prognostic studies on seals are physics-based and requires direct estimation of different physical parameters to assess the degradation of seals, which are often difficult to obtain during operation. Another feasible approach to predict the failure is from performance related sensor data and is termed as data-driven prognostics. The offline phase of this approach is where the performance related data from the component of interest are acquired, pre-processed and artificial intelligence tools or statistical methods are used to model the degradation of a system. The developed models are then deployed online for a real-time condition monitoring. There is a lack of research on the data-driven based tools and methods for dynamic seal prognosis. The primary goal in this dissertation is to develop offline data-driven intelligent condition monitoring and prognostic methods for two types of dynamic seals used in the oil & gas industry, to avoid fatal breakdown of rotary and reciprocating equipment. Accordingly, the interest in this dissertation lies in developing models to effectively evaluate and classify the running condition of rotary seals; assess the progression of degradation from its incipient to failure and to estimate the remaining useful life (RUL) of reciprocating seals. First, a data-driven prognostic framework is developed to classify the running condition of rotary seals. An accelerated aging and testing procedure simulating rotary seal operation in oil field is developed to capture the behavior of seals through their cycle of operation until failure. The diagnostic capability of torque, leakage and vibration signal in differentiating the health states of rotary seals using experiments are compared. Since the key features that differentiate the health condition of rotary seals are unknown, an extensive feature extraction in time and frequency domain is carried out and a wrapper-based feature selection approach is used to select relevant features, with Multilayer Perceptron neural network utilized as classification technique. The proposed approach has shown that features extracted from torque and leakage lack a better discriminating power on its own, in classifying the running condition of seals throughout its service life. The classifier built using optimal set of features from torque and leakage collectively has resulted in a high classification accuracy when compared to random forest and logistic regression, even for the data collected at a different operating condition. Second, a data-driven approach to predict the degradation process of reciprocating seals based on friction force signal using a hybrid Particle Swarm Optimization - Support Vector Machine is presented. There is little to no knowledge on the feature that reflects the degradation of reciprocating seals and on the application of SVM in predicting the future running condition of polymeric components such as seals. Controlled run-to-failure experiments are designed and performed, and data collected from a dedicated experimental set-up is used to develop the proposed approach. A degradation feature with high monotonicity is used as an indicator of seal degradation. The pseudo nearest neighbor is used to determine the essential number of inputs for forecasting the future trend. The most challenging aspect of tuning parameters in SVM is framed in terms of an optimization problem aimed at minimizing the prediction error. The results indicate the effectiveness and better accuracy of the proposed approach when compared to GA-SVM and XGBoost. Finally, a deep neural network-based approach for estimating remaining useful life of reciprocating seals, using force and leakage signals is presented. Time domain and frequency domain statistical features are extracted from the measurements. An ideal prognostic feature should be well correlated with degradation time, monotonically increasing or decreasing and robust to outliers. The identified metrics namely: monotonicity, correlation and robustness are used to evaluate the goodness of extracted features. Each of the three metric carries a relative importance in the RUL estimation and a weighted linear combination of the metrics are used to rank and select the best set of prognostic features. The redundancy in the selected features is eliminated using Kelley-Gardner-Sutcliffe penalty function-based correlation-clustering algorithm to select a representative feature from each of the clusters. Finally, RUL estimation is modeled using a deep neural network model. Run-to-failure data collected from a reciprocating set-up was used to validate this approach and the findings show that the proposed approach can improve the accuracy of RUL prediction when compared to PSO-SVM and XGBoost regression. This research has important contribution and implications to rotary and reciprocating seal domain in utilizing sensors along with machine learning algorithms in assessing the health state and prognosis of seals without any direct measurements. This research has paved the way to move from a traditional fail-and-fix to predict-and-prevent approach in maintenance of seals. The findings of this research are foundational for developing an online degradation assessment platform which can remotely monitor the performance degradation of seals and provide action recommendations on maintenance decisions. This would be of great interest to customers and oil field operators to improve equipment utilization, control maintenance cost by enabling just-in-time maintenance and increase rate of return on equipment by predicting failures before incidents

    Self-adaptive step fruit fly algorithm optimized support vector regression model for dynamic response prediction of magnetorheological elastomer base isolator

    Full text link
    © 2016 Elsevier B.V. Parameter optimization of support vector regression (SVR) plays a challenging role in improving the generalization ability of machine learning. Fruit fly optimization algorithm (FFOA) is a recently developed swarm optimization algorithm for complicated multi-objective optimization problems and is also suitable for optimizing SVR parameters. In this work, parameter optimization in SVR using FFOA is investigated. In view of problems of premature and local optimum in FFOA, an improved FFOA algorithm based on self-adaptive step update strategy (SSFFOA) is presented to obtain the optimal SVR model. Moreover, the proposed method is utilized to characterize magnetorheological elastomer (MRE) base isolator, a typical hysteresis device. In this application, the obtained displacement, velocity and current level are used as SVR inputs while the output is the shear force response of the device. Experimental testing of the isolator with two types of excitations is applied for model performance evaluation. The results demonstrate that the proposed SSFFOA-optimized SVR (SSFFOA_SVR) has perfect generalization ability and more accurate prediction accuracy than other machine learning models, and it is a suitable and effective method to predict the dynamic behaviour of MRE isolator

    Chrome Layer Thickness Modelling in a Hard Chromium Plating Process Using a Hybrid PSO/ RBF–SVM–Based Model

    Get PDF
    The purpose of chromium plating is the creation of a hard and wear-resistant layer of chromium over a metallic surface. The principal feature of chromium plating is its endurance in the face of the wear and corrosion. This industrial process has a vast range of applications in many different areas. In the performance of this process, some difficulties can be found. Some of the most common are melt deposition, milky white chromium deposition, rough or sandy chromium deposition and lack of toughness of the layer or wear and lack of thickness of the layer deposited. This study builds a novel nonparametric method relied on the statistical machine learning that employs a hybrid support vector machines (SVMs) model for the hard chromium layer thickness forecast. The SVM hyperparameters optimization was made with the help of the Particle Swarm Optimizer (PSO). The outcomes indicate that PSO/SVM–based model together with radial basis function (RBF) kernel has permitted to foretell the thickness of the chromium layer created in this industrial process satisfactorily. Thus, two kinds of outcomes have been obtained: firstly, this model permits to determine the ranking of relevance of the seven independent input variables investigated in this industrial process. Finally, the high achievement and lack of complexity of the model indicate that the PSO/SVM method is very interesting compared to other conventional foretelling techniques, since a coefficient of determination of 0.9952 is acquired

    Study on Rail Profile Optimization Based on the Nonlinear Relationship between Profile and Wear Rate

    Get PDF
    This paper proposes a rail profile optimization method that takes account of wear rate within design cycle so as to minimize rail wear at the curve in heavy haul railway and extend the service life of rail. Taking rail wear rate as the object function, the vertical coordinate of rail profile at range optimization as independent variable, and the geometric characteristics and grinding depth of rail profile as constraint conditions, the support vector machine regression theory was used to fit the nonlinear relationship between rail profile and its wear rate. Then, the profile optimization model was built. Based on the optimization principle of genetic algorithm, the profile optimization model was solved to achieve the optimal rail profile. A multibody dynamics model was used to check the dynamic performance of carriage running on optimal rail profile. The result showed that the average relative error of support vector machine regression model remained less than 10% after a number of training processes. The dynamic performance of carriage running on optimized rail profile met the requirements on safety index and stability. The wear rate of optimized profile was lower than that of standard profile by 5.8%; the allowable carrying gross weight increased by 12.7%

    Data Challenges and Data Analytics Solutions for Power Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    A Data-driven Fault Isolation and Identification Scheme for Multiple In-Phase Faults in Satellite Control Moment Gyros

    Get PDF
    A satellite can only complete its mission successfully when all its subsystems, including the attitude control subsystem, are in healthy condition and work properly. Control moment gyroscope is a type of actuator used in the attitude control subsystems of satellites. Any fault in the control moment gyroscope can cause the satellite mission failure if it is not detected, isolated and resolved in-time. Fault isolation provides an opportunity to detect and isolate the occurring faults and, if accompanied by proactive remedial actions, can avoid failure and improve the satellite reliability. It is also necessary to know the fault severity for better maintenance planning and prioritize the corrective actions. This way, the more severe faults can be corrected first. In this work, an enhanced data-driven fault diagnosis scheme is introduced for fault isolation and identification of multiple in-phase faults of satellite control moment gyroscopes that is not addressed in the literature before with high accuracy. The proposed method is based on an optimized support vector machine and an optimized support vector regressor. The results yield fault predictions with up to 95.6% accuracy for isolation and 94.9% accuracy for identification, on average. In addition, a sensitivity analysis with regards to noise, missing values, and missing sensors is done where the results show that the proposed model is robust enough to be used in real applications

    Performance optimization of banana vibrating screens based on PSO-SVR under DEM simulations

    Get PDF
    This paper carried out the numerical simulation about the movement of non-spherical particles on banana vibrating screen using direct element method (DEM) considering the complexity of particle collision and avoiding obtaining motion information with difficulty. Experimental prototype of banana vibrating screen under variable parameters was manufactured to verify the feasibility of simulations. Because the complex non-linear mathematical model is the basis of optimization. Based on the simulation data this paper applied the least squares support vector machines (LS-SVM) to establish relationships between vibrating parameters of banana screen and screening performance. LS-SVM based on statistical theory can effectively solve the mapping problem of small sample. At same time, in order to improving the quality of modeling, the kernel parameters of SVM were optimized by particle swarm optimization (PSO). Considering multi-extremum, large-scale, and non-differentiable of this computational model, the artificial fish-swarm algorithm (AFSA) with strong robustness and global convergence was applied to vibration parameters optimization. Finally, the optimal vibration parameters were: vibration amplitude 2.4 mm, vibration frequency 21 Hz, vibration direction angle 40 degrees

    Multiple physical signals based residual life prediction model of slewing bearing

    Get PDF
    Critical failure of a slewing bearing used in large machines would entail high costs to an enterprise. Designing the condition monitoring system to diagnose the failure or predict the residual life of the slewing bearing is a practical and effective method to reduce unexpected stoppage or optimize the maintenances. Many literatures mentioned the life prediction of small typical rolling bearings based on the vibration signal. However slewing bearing is a large low-speed heavy-load bearing completely different from small bearing. Some researchers focused on the fault diagnosis of slewing bearing using non-traditional methods with vibration signals. And no published literatures mention the life prediction researches of slewing bearings based on the condition monitoring. Therefore, this paper presents a residual life model for slewing bearing based on multiple physical signals (torque, temperature and vibration). The correlation analysis and principal component analysis (PCA) based multiple sensitive features in time-domain were used to establish the performance recession indicators of temperature, torque and vibration, and these three indicators are input to the support vector regression (SVR) to construct the residual life model. The test results show that the PCA fusion combined correlation based features selection is an effective method of choosing the performance regression indicators, which is able to make full use of various features. The residual life prediction model based on temperature, torque and vibration signals can well reflect the performance recession trend and is suitable to predict the residual life of slewing bearing effectively

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis
    • …
    corecore