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This paper proposes a rail profile optimization method that takes account of wear rate within design cycle so as to minimize rail
wear at the curve in heavy haul railway and extend the service life of rail. Taking rail wear rate as the object function, the vertical
coordinate of rail profile at range optimization as independent variable, and the geometric characteristics and grinding depth of rail
profile as constraint conditions, the support vector machine regression theory was used to fit the nonlinear relationship between rail
profile and its wear rate. Then, the profile optimization model was built. Based on the optimization principle of genetic algorithm,
the profile optimization model was solved to achieve the optimal rail profile. A multibody dynamics model was used to check
the dynamic performance of carriage running on optimal rail profile. The result showed that the average relative error of support
vector machine regression model remained less than 10% after a number of training processes. The dynamic performance of carriage
running on optimized rail profile met the requirements on safety index and stability. The wear rate of optimized profile was lower

than that of standard profile by 5.8%; the allowable carrying gross weight increased by 12.7%.

1. Introduction

Increasing the travel speed of carriage and the axle load
constitutes the two key development orientations of heavy
haul railway, which are considered the primary cause of rail
wear aggravation. The increase in rail wear rate results in
the reduction of renewal rail interval and the increase in the
transport cost on heavy haul railway, especially at its curved
sections. According to statistics, curved sections account for
about one-third of total mileage of railways in China [1], and
lots of small-radius curved sections are untimely changed
due to serious rail side wear, which causes the increase in
maintenance costs and impairs train working safety. With rail
profile as its object of study, this paper proposes rationally
optimized design of rail profile so as to minimize rail wear
loss during the travel of carriage, thus being of important
engineering significance for heavy haul railway transport.

Scholars at home and abroad extensively studied rail pro-
file optimization design. Rolling circle radius difference, as
one of the key parameters describing the contact between
wheelset and rail, determines dynamic characteristics and
affects the curve negotiating performance of train. Many
scholars optimized wheel-rail profile by using rolling radius
difference as object function. Magel and Kalousek (2002)
[2] proposed the profile optimization design scheme based
on the rolling circle radius difference between left and
right wheels through wheel-rail contact mechanics analysis.
Shevtsov (2008) [3] analyzed the relationship between rail
profile and wear index and fatigue index, mitigate rolling
contact fatigue by shifting the contact point from rolling
contact fatigue area to the rail top, and defined the criteria
for selection of wheelset rolling circle radius difference (RRD)
as “no wheel-rail contact point in rolling contact fatigue
area.” Appropriate RRD curves were selected in this way for
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optimization of rail profile. Jia and Si (2014) [4] and Zhai et al.
(2014) [5] determined the rational wheel-diameter difference
and improved the curve negotiating performance through
the analysis of rail wear characteristics at small-radius curved
sections of the Shuo-Huang Railway, and a rail grinding target
profile was designed to reduce wheel-rail contact stress and
mitigate rolling contact fatigue.

High rail of small-radius curved section suffers from
serious wear and fatigue damage. Many scholars carried out
rail profile optimization directly with wear or fatigue damage
as object function. In consideration of the large number of
curved sections along light rail and the high wheel-rail
maintenance costs, Brandau et al. (2002) [6] performed asym-
metric profile optimization design of rail head at curved
section and changed the rail profile of specific curved section,
having thereby greatly reduced wheel-rail wear loss without
impairing the operation of carriages at other sections. Choi
etal. (2013) [7] proposed an asymmetric profile optimization
design method with rail wear index as object function and
wheel-rail dynamic response characteristics as the constraint
condition, which helped to minimize the serious rail wear at
curved sections of urban rail transit. Xiao (2011) [8] proposed
a multiobjective rail profile optimization scheme designed
principally to reduce fatigue and wear at curved section based
on the relationship between wheel-rail contact mechanics
and wheel-rail geometry. Dollevoet (2010) [9] believed that
asymmetric rail profile should be the most effective way to
eliminate rail contact fatigue. He discovered by dint of non-
Hertz contact theory that the shear stress of rail shoulder
where rail contact fatigue crack appears was relatively high.
He designed a new profile based on rail contact fatigue crack
initiation mechanism so as to minimize the shearing stress
that was produced by rail shoulder out of wheel-rail contact,
thereby alleviating rolling contact fatigue crack of rail. Cui
et al. (2011) [10] performed profile optimization design so
as to improve the conformal degree of wheel-rail contact
and reduce the normal clearance of wheel-rail contact and
sought numerical solution of mathematical model for profile
optimization through sequential quadratic programming.
Persson et al. (2010) [11] optimized the profile of curved rail
through genetic algorithm based on wheel-rail dynamics and
numerical simulation theory. Switch plays an important role
in railway operation. The change in rail profile at switch
area brings about intense wheel-rail dynamic response, poor
safety, and frequent rail wear and damage. Palsson (2013)
[12] proposed the rail profile solution seeking based on
NSGA-II genetic algorithm with contact stress and contact
spot energy dissipation as object function so as to minimize
dynamic response and rail wear and damage at switch
area.

Since wheel-rail contact geometry has an immediate
impact on wheel-rail damage, the optimization of wheel-
rail contact relationship could effectively alleviate wheel-rail
damage. Shen and Zhong (2014) [13] proposed a contact angle
curve inverse estimation method for wheel-rail profile design.
This method determines the relationship between profile
contour and contact angle value through integral, reversely
obtains target profile by correcting the contact angle curve,
and brings about a new wheel-rail profile through repeated
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correction. Jahed et al. (2008) [14] performed optimization
design of wheel profile using mathematical method with
wheel-rail contact parameter as object variable. Gerlici and
Lack (2011) [15] optimized wheel and rail profiles through
arc radius profile change-based repeated iteration based on
the analysis of expected shape of wheel/rail contact geometry.
Wang et al. (2016) [16] established wheel-rail contact point
distribution object function using contact geometry theory
with the discrete point of rail profile as variable and opti-
mized the design of new rail profile through single-objective
nonlinear optimization algorithm so as to minimize rail
wear.

Wheel-rail profile optimization is a complex engineering
optimization design issue. It is a favorable way to optimize
rail profile through the combination of theory and practice.
Zhou et al. (2010) [17] studied the preventive grinding of rail,
probed into the locations and characteristics of rail damage,
and proposed a preventive grinding optimization design
scheme for rail based on empirical design method in con-
sideration of the cyclic grinding quantity of rail grinder.
Zakharov et al. (2008) [18] summarized the principle of and
hands-on experience in wheel-rail selection for Russian rail-
ways and introduced a wheel-rail profile evaluation and opti-
mization method established based on rational and practical
method. Modern railroad car system is normally designed
with embedded track and channel rail. Bergeman (2015) [19]
designed asymmetric profile of channel rail based on current
rail manufacturing capacity, which has been extensively used
for urban rail transit system.

According to above-noted research findings, rail profile
is considered invariable and free from the impact of wear-
induced change in rail profile during wheel-rail contact in
respect of rail profile optimization. The rail optimization
result is usually the current simulation comparison result for
demonstrating new wheel-rail profile matching effect without
considering the fact that rail profile is subjected to wear all
the time during operation, that the rail profile changes all the
time due to wear, and that the worn wheel-rail profile contact
relationship changes therewith. From this point of view, the
current wheel-rail contact relationship in optimum state is
not in the same position to assure the optimal matching
effect after the operation of train for a period of time. Hence,
this paper proposes a rail profile optimization method that
takes account of wear rate within design cycle. The maximum
wear depth, that is, 1mm, was taken as design cycle. This
method updates rail profile through wear loss calculation
based on random irregularity on rail with optimized profile as
the initial profile, subjects the updated rail profile to another
dynamics simulation, calculates the wear loss of updated
rail profile, and then works out the wear rate. Since the
final profile is immediately associated with initial design
profile and the contact geometry state during the operation
of train, the paper established the nonlinear relationship
between wear rate and rail profile geometric parameter within
design cycle through nonlinear fitting, built the optimiza-
tion model, sought to solve the model with optimization
algorithm, and sought an optimized rail profile with the
minimum wear rate. The optimization process is shown in
Figure 1.
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FIGURE I: Flowchart of rail profile optimal design.

2. Mathematical Model for
Rail Profile Optimization

This paper studied the regular pattern of rail wear at small-
radius curved section of heavy haul railway and established
a numerical model for profile optimization with the high
rail profile at curve radius of 600 m along a chosen heavy
haul railway. Assuming that the coordinate of rail head cross-
sectional point is (x;, y;) and the object function is wear rate
F(x, y), then the rail profile could be expressed as spline
interpolation function f(x, y) of rail head coordinate point.
The mathematical model between rail wear rate and profile is
nonlinear mapping relationship ¢; let

¢: f(xy) — F(xy). 6))

Subject the mathematical model to optimal solution to get the
rail profile with the minimum wear rate.

2.1. Determination of Independent Variable. According to
research findings, premature renewal rail is necessary for
CHN 75kg/m rails in general use for heavy haul railways
in China due to side wear when the carrying gross weight
reaches approx. 350 Mt (2013) [20]. Figure 2 [4] shows the
wear evolution of high rail profile at curved section of a heavy
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FIGURE 2: Diagram of rail head optimization range (unit: mm).

haul railway with curved section radius of 600 m designed
with standard CHN 75 kg/m rails.

As shown in Figure 2, the seriously worn points of high
rail are principally located between rail center line and
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TABLE 1: Value range of rail profile optimization point (unit: mm).

Vertical

coordinate Yo N Y2 Y3 Y4 Ys Ve Y7 Vs Yo Yo Ju Y12 Y13

Horizontal = _,, 0 5 10 15 20 239 26 28 30 kY) 34 35 36

coordinate

Vertical

coordinate  —0.096 0.000 -0.025 -0.096 -0.352 -0.925 -1599 -2175 -3.047 -4.309 -6.109 -8.822 -10.945 —16.000

max. value

Vertical

coordinate  —0.096 -3.000 -3.025 -3.096 -3.352 -3.925 -4.599 -5175 -6.047 -7309 -9.109 -11.822 -13.945 —16.000

min. value

gauge side. Hence, the points within rail profile optimization
interval correspond to horizontal coordinate —10~36 mm.
12 discrete points are chosen within optimization interval
as optimization points. In view of the fact that rail wear
principally changes the vertical coordinate of rail profile
point, the independent variable in mathematical model for
rail profile optimization should bey = (y,, ,,..., ylz)T.

2.2. Determination of Dependent Variable. Rail wear is a
process of accumulation during operation of carriages. The
wear loss variation mechanism of different rail profiles is not
constant within overall interval for different segments of a
time interval. Since the grinding for rail profile optimization
is performed within a certain cycle, the rail wear loss shall
be changed at determination of object variable so as to avoid
local optimum. Expressing the service efficiency of rail as
rail wear rate within section is a better way to reflect the
wear accumulation process. Take T as the time interval of
design cycle, and divide T into » intervals, m; is the rail wear
within the ith interval, M; represents the number of carriages
passing within the ith interval, and then the wear rate could
be expressed as

- Yo M

A @)
i=1 i

Take the unit length of rail at maximum wear depth as the
object of study, and the accumulative wear loss would be

n

Ym =[S (51 v5s- .

i=1

) =St (M35 h)] L )

where the rail length [ is equal to 1, that is, the unit length.
So and Sy, respectively, represent the area between initial rail
profile and horizontal coordinate axis and the area between
rail profile and horizontal coordinate axis after time 7.

The number of carriages which allowed passing through
rail profile within the maximum wear depth could be ob-
tained through dynamics simulation. The object variable is
obtained with (2) and (3).

2.3. Determination of Constraint Condition. According to
wheel-rail contact relationship and the pertinent literature
(2009) [21], the determination of rail profile must meet con-
vex curve condition; that is to say, the slope of segment

between consecutive points decreases with the increase of
horizontal coordinate. The following constraints shall be
imposed for vertical coordinate of the 12 optimization points:

Yi—Vier i1~ Yim
Xi = X1 Xipp — X

>0

(i=1,...,12). (4)

Since rail profile is optimized based on original standard
profile, the optimized profile is below the original profile,
while the optimization of rail profile shall meet the require-
ments on max. grinding depth (3mm in this paper); that
is,

<y <b (i=
(i=

where g; and b, are the lower and upper limits at point i.

The curve consisting of optimization points must be
smooth and gentle and comply with geometry requirements
for rail under practical conditions. To sum up, the coordinates
and value range of optimization point in rail profile optimiza-
tion model are as shown in Table 1.

The mathematical model established for rail profile opti-
mization based on analysis of each element of single-object

(5)

0<Ay <3 1,...

optimization model is as follows:
: Yiam;
min 7 (y, Yoo V12) = m
st. a; <y <b
0<Ay; <3 ©
(i=1,...,12)
D(y1> 5> 912) < 1d],

where D(y;) is the dynamics index function of corresponding
rail profile and [d] represents the limit of index correspond-
ing to normal operation of carriage.

3. PSO-SVM Regression Fitting Rail Wear
Rate Model

There is a complex nonlinear relationship between rail wear
rate and rail profile. The dependent variable and independent
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variable are subjected to nonlinear regression through given
sample data based on principle of statistics. A mathematical
model with generalization capability is attained through
sample training for machine learning. Machine learning is
designed to handle any complex nonlinear relationship. It
converts input and output data by seeking the “black box”
of hidden layer, but the complex model obtained through
training cannot be expressed with an explicit relation. This
paper identifies the nonlinear relationship between rail wear
rate and rail profile in this way.

3.1. The Sample of Rail Wear Rate. The sample for data fitting
(the wear rate of different rail profiles) can be obtained by field
measurements and multibody dynamics simulations. Due to
the number of rail wear observations, they are unable to
meet the sampling requirements. Therefore, this paper used
a multibody dynamics simulation to obtain the rail wear
rate.

The main purpose of sampling is to analyze the selected
samples and to deduce the characteristics of all the samples.
In order to obtain more comprehensive rail wear rate data,
this paper takes a sampling method to obtain the samples
needed for data fitting. According to the characteristics of
rail wear and grinding maintenance, the rail profiles were
sampled. As the wear of the rail profile is a continuous change,
in order to make the sample profile representation and unifor-
mity and other characteristics, the D-optimal experimental
design sample was selected. According to the composition
of the curve to be smooth and smooth by the optimization
points of rail profile and the geometrical requirements of
the rails in the actual railway condition, the D-optimal
experimental design was used to sample 101 sets of rail
profiles.

Based on the vehicle-track coupling dynamics model and
the Archard wear model, the wear of the sample rail profiles
was simulated and the wear rate of the rail profiles was
obtained.

The railway wagon model adopted a 30t axle load open
wagon. The model assumed that the wheel set, bolsters, side
frame, and car body were rigid, regardless of elastic deforma-
tion, which was ignored. The mass distribution of bogie and
car body was symmetrical. According to related literature, the
bogie of a 30t axle load wagon can be selected according to
[22]. The wheel set had six degrees of freedom, respectively,
representing longitudinal, lateral, vertical, yaw, roll, and pitch
modes. The vehicles were equipped with new wheels (with the
Chinese LM wheel profile). The friction coeflicient between
the wheel and rail was 0.3.

The track model was assembled on a 600m radius
curve with 1435mm gauge. The track structure included
a CHN 75kg/m rail, Type III sleeper, Type II elastic fas-
tener, and ballast bed with a thickness of 0.3 m. The track
model was simplified into a massless viscoelastic force with
vertical and lateral stiffness and damping. The running
railway cars were under irregularity from the track. The
Chinese heavy haul railway was similar to the five class
track spectrum of the United States [23]. Thus, we selected
this spectrum as the random irregularity to conduct simula-
tion.

3.2. SVM Nonlinear Regression. Support vector machine, also
known as SVM, is a learning method where computer is used
for statistical analysis of data. The rationale of SVM is that the
sample relationship identified through summarization and
generalization of given sample point data is generalized. The
basic means of SVM regression analysis for rail wear rate
model is linearization that converts the nonlinear problem
between profile and wear rate into the combination of linear
problems in higher dimensional space.

In consideration of the rationale of SVM, assuming that
Y = (Vs ¥pr---» ¥1,)" is input sample vector and r is the
corresponding output value, then

r=f(@y)+v (7)

where v is the offset parameter to be determined.
The nonlinear basis function {goj(y)};‘zo is introduced to

express the nonlinearity therebetween, and then (7) could be
converted to

r= iwj%- (y)=w'o(y). 8)

j=0

Seek the optimal regression surface analysis rationale
based on SVM, define two nonnegative slack variables (i.e.,
& and 7), constant penalty factor C, and insensitive error
parameter ¢, and realize the conversion into a quadratic
convex programming problem through regression of sample
data

. 1 L
min = i’ +CY (& + ;)
i=0

st. ri—(w-y)-b<e+§ )
(Ww-y)+b-r<e+n
(i=1,2...,m).

Use the Lagrange multiplier method and introduce oper-

ators o; and «;; then the optimal solution to the rail profile
optimization problem in higher dimensional space is

fy)=(w-y)+b
= X

support vector

(o — o)) K (y,y;) + b, (10)

where K(y, y;) = (¢(y) - ().

Where SVM is used for regression of the nonlinear model
of rail wear rate and profile, the sample data set is normally
divided into two parts, that is, training sample and test
sample. Training set is used for SVM training and learning
stage, when the computer performs summarization and
generalization based on input values and output values in
training sample to attain the statistical model of sample
data. Test set normally plays no role in the fitting process of
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model but is used to verify the prediction accuracy of SVM
nonlinear regression upon completion of model training.

3.3. SVM Regression Parameter Optimized with PSO. Accord-
ing to (9) and (10), penalty factor C and kernel function radius
g significantly affect the regression prediction accuracy of
model during SVM-based model training. Under normal
conditions, C is monotonously negatively correlated with
fitting error within a certain range [24]. Where the same value
is chosen, prediction error nonmonotonically decreases with
the increase of penalty factor, but the increase of its value
may result in overfitting. Where g value is small, the kernel
function curve changes slowly, in which case overfitting
may arise during model fitting and affect the prediction;
underfitting may arise when g value is small. Hence, particle
swarm optimization (PSO for short) is used for optimization
and to identify appropriate C and g values during regression
of rail profile optimization model.

Mean square deviation is taken as the fitness function
of model when SVM parameters C and g are optimized
with particle swarm optimization. The obtained relationship
between best particle mean square deviation and the number
of iterations is shown in Figure 3.

As shown in Figures 3 and 4, swarm mean square devia-
tion gradually decreases with the increase in the number of
iterations within a certain range. When the number of
particle iterations is less than 200, the swarm mean square
deviation curve changes significantly. When the number
of iterations reaches 300, the training swarm mean square
deviation curve gets into a convergence state and converges at
0.013. The best particle mean square deviation curve sub-
stantially tends to be stable after 50 iterations, and the
convergence value is 0.012 795. The corresponding optimized
kernel function radius g = 0.006 8, and the penalty factor C
=101.866 4.

3.4. Rail Wear Rate Model Analysis. After the optimal kernel
function radius g and penalty factor C are obtained through
particle swarm optimization, K cross validation is used to
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subject a certain part of the 101 selected groups of rail profile
wear data to random sampling of rail profile. The rail samples
taken are divided into training set and test set. Training set is
used for modeling during regression, while test set is used to
determine the regression accuracy of model. The stability of
built model is analyzed and compared through a number of
cross combinations. In this paper, 20 groups of data constitute
the test set for model; whole others constitute the training set
for the regression of rail profile optimization model. Figures 5
and 6 show the prediction result of test sample by PSO-SVM,
and Table 2 shows the prediction data of test set by PSO-SVM
rail profile optimization model.

As shown in Figures 5 and 6, the predicted value of test
sample is extremely close to its actual value, and the variation
tendency of predicted value substantially keeps up with that
of actual value. According to the prediction data in Table 2,
the overall relative error of prediction for test sample is
less than 20%. The prediction errors for Groups 40 and 22
are beyond 10%, while the prediction errors for all other 18
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TaBLE 2: Prediction value and simulation value of rail profile test sample (unit: mm?/t).

Sample number

Test set number

Actual value/(1 x 107)

Predicted value/(1 x 107°)

Relative error of prediction

1 68 2.284 80 2.356 34 0.031
2 40 2.442 84 2.902 20 0.188
3 8 8.671 44 8.675 86 0.001
4 75 2.284 27 2.167 98 0.051
5 55 2.175 62 2.079 62 0.044
6 81 1.849 64 1.941 25 0.050
7 88 2.33226 2.370 25 0.016
8 Standard profile 1.82116 1.930 89 0.060
9 72 2.39257 2.44149 0.020
10 41 242671 2.336 16 0.037
11 28 2.113 32 2.17155 0.028
12 74 2.199 49 215417 0.021
13 6 1.910 62 2.018 01 0.056
14 54 2.032 37 2.073 41 0.020
15 35 2.256 79 2.25193 0.002
16 79 6.349 41 6.401 07 0.008
17 52 2.466 93 2.387 55 0.032
18 12 1.963 65 210011 0.069
19 22 2.32547 2.048 68 0.119
20 44 2.58189 2.554 69 0.011
Mean error of prediction 0.043
20 T T T T T T T wheel and rail and other wheel-rail system factors, and is
5 closely associated with ambient environment and subsequent
et maintenance and grinding. Upon the establishment of rail
2 10f * wear rate model, the optimal solution shall be found for
3 rail wear rate model so as to identify the rail profile with
b x % * % minimum wear loss at curved section within design cycle
Z ol % % ¥ 3 with the purpose of reducing rail wear at curved section and
£ % X% * extending the service life of rail as stated in this paper.
; X * « With the vertical coordinate of point at rail profile as
§ ol i the independent variable and the wear rate as the dependent
2 variable, this paper identifies the randomness, complexity,
iff multiple constraints, and so forth of nonlinear rail profile
N I optimization model for curved section by subjecting both

0 2 4 6 8 10 12 14 16 18 20
Rail profile test set numbe

FIGURE 6: Rail test sample prediction wear rate error.

groups of samples are around 5%. The mean relative error of
prediction for the 20 groups of test samples is 4.3%, which
means that PSO-SVM regression model for rail wear rate has
excellent prediction performance.

4. Numerical Solution to Rail Profile
Optimization Model

Rail profile optimization involves a number of factors. Rail
wear is associated with its material, the acting force between

variables to fitting through PSO-SVM. Genetic algorithm is
used to seek numerical solution of this model based on above-
noted features of the model.

4.1. Parameter Setup of Genetic Algorithm. The following
issues shall be taken into account when using genetic algo-
rithm to seek to solve rail profile optimization model.

(1) Swarm and Swarm Size. The independent variable y in rail
profile optimization model represents gene, so the individual
rail profile could be expressed as y; = (13> Vair - - - yu)i)T,
where the aggregate of rail profile y; represents the swarm
stated in this paper. Generally, the size of swarm is directly
proportional to the all-sidedness of genetic algorithm solu-
tion, but larger size of swarm may consume longer time of
iterative computation. The swarm size is defined as 200 based
on requirement of this paper.
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(2) Selection Operator. According to the “survival of the
fittest” principle in genetic algorithm, the operators with
more favorable fitness values are more likely to be chosen;
otherwise, the individuals will be knocked out. Genetic oper-
ators in common use include proportional selection, the best
individual preservation strategy, and deterministic sampling
[25], and this paper takes proportional selection as selection
operator.

(3) Crossover Operator p.. Where genetic algorithm is con-
cerned, “crossover” means genetic recombination; that is to
say, two individuals exchange gene with each other in a
certain way to generate a new individual. This paper performs
two-point crossover for chromosome in the following proce-
dure.

Assume that y; = (¥}, 95, ¥a,.» Vi Y1) and y, =
(Y4 ¥, ¥2, ... y2, v5)Ts if gene exchanges locations 7, = 3
and r, = 11, the chromosome after two-point crossover

' 1.1 2 2 18T ! 2 2
sl:ould ble Y12:T()’1’y2’y3""’yn’J’lz) andy, = (y1,5
Y3seo Vi Via) -

(4) Mutation Operator p,,. Mutation offers the genes omit-
ted during computation, enables the global search of rail
profile, and helps to avoid precocity. Single-point mutation
is employed in rail wear profile optimization model. The
operating procedure is as follows.

For chromosome y = (1.1,1.5,2.2,2.3,...,13)", the mu-
tation position is 2, and theny’ = (1.1,1.8,2.2,2.3,...,13)"
is obtained after random mutation.

The process of seeking optimal rail profile through genetic
algorithm is shown in Figure 7.

4.2. Rail Profile Optimization Result. Figure 8 shows the
optimized profile Opt that meets constraint condition and is
computed by seeking to solve PSO-SVM rail profile optimiza-
tion model through genetic algorithm.

Figure 9 shows the variation of vertical coordinates of the
optimized profile and standard profile. Thus it can be seen
that the vertical coordinate difference at optimization point
increases with the increase of horizontal coordinate. When
the horizontal coordinate of optimization point is (-10, 20),
the vertical coordinate changes slowly (normally no more
than 0.5mm) at points in front and behind this point; when
the optimization point is (20, 36), its vertical coordinate
changes significantly, and the vertical coordinate difference
increases with the increase of horizontal coordinate before
and after optimization. The rail profile changes significantly
when horizontal coordinate is located between 20 mm and
36 mm, and the maximum depth of Opt and standard profile
optimization point variation is 1.900 4 mm. This is principally
because the overall linearity of rail head exhibits a convex
curve. Since the most frequent rail wear at curved section is
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FIGURE 9: Local comparison of optimization interval (unit: mm).

side wear, the optimization depth at rail side shall be greater
than at top face in order to reduce the contact between rail
side and wheel flange and concentrate the wheel-rail contact
at top of rail head to the greatest extent so as to minimize rail
wear.

5. Analysis of Performance of
Optimized Rail Profile

5.1. Wear Analysis. Genetic algorithm solution seeking and
simulation calculation show that the optimized rail profile
offers lower wear rate and improves the allowable gross rail
load on axle as compared with standard profile under the
same conditions within an established wear cycle, having
reached the research objective of this paper.

—10 +

—40 +

Vertical coordinate of rail profile (mm)
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FIGURE 10: Profiles before and after wear of the optimized profile.
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FIGURE 11: Accumulation of the optimized profile wear.

In view of the progressive accumulation of rail wear, 1l mm
of the profile wear depth was taken as rail wear analysis cycle;
that is to say, the termination condition for simulation of rail
profile wear was that the maximum wear depth reached 1 mm.
In this range, the variation of the optimized profile wear
determined through rail wear model simulation calculation,
shown in Figure 10. Opt-0 is the optimized rail profile, and
Opt-10 is the rail profile when wear depth reaches 1mm.
Figure 10 shows the accumulative variation of rail optimized
profile wear depth.

It is observed from Figures 10 and 11 that most wear of
high rail before and after optimization is located at horizontal
coordinate 10-30 mm. Wear simulation calculation showed
that the allowable number of passes at the optimized profile
Opt is 707,605 vehicles, while the allowable gross load is
84.913 Mt, 12.7% up as compared with standard profile. The
wear rate simulation value of the optimized profile Opt is
1.715 62 x 10> mm*/t, 5.8% down as compared with standard
profile.

The wear rate of the optimized profile Opt predicted by
genetic algorithm (PSO-SVM Regression) is 1.617 02 x
107> mm?/t. Simulations comparison analysis showed that
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TABLE 3: Maximum values of dynamics index of train in the case of optimized profile.

. Wheelset 1 Wheelset 2 Wheelset 3 Wheelset 4
Safety index Standard values
1L 1R 2L 2R 3L 3R 4L 4R
Derailment coefficient 0.524 6 0.519 6 0.4015 0.403 3 0.564 8 0.3750 0.337 2 0.4720 0.8
Wheel-rail lateral force/kN  93.169 59.631 60.741 68.655 70.991 41.896 42.635 52.804 180
Wheel load reduction rate 0.637 0.541 0.489 0.58 0.8

m-s2)

Lateral vibration acceleration (
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(a) Lateral acceleration curve
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—

Vertical vibration acceleration (m~s‘2)
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(b) Vertical acceleration curve

FIGURE 12: Vibration acceleration curve in the case of optimized profile.

the relative error between rail wear prediction value and
simulation value is 6%. To sum up, the result of optimization
of rail profile with mathematical model of rail wear presented
in this paper is consistent with optimization objective.

5.2. Dynamic Performance Check for Optimized Profile. Car-
riage safety and stability constitute the prior condition for
all maintenance and repair of rails. Dynamics analysis was
performed on the motion state of a freight train with 30t
axle load passing through a curved section of 600 m in radius
at 72km/h. The safety and stability indicators like dynamic
derailment coefficient, wheel-rail lateral force, wheel load
reduction rate, and vibration acceleration of a train passing
through a curved section were calculated with optimized pro-
file as object of study under the same simulation conditions.
Table 3 shows the maximum values of safety index for each
wheelset in the case of optimized profile.

The body vibration acceleration curve of a train along the
established route in the case of optimized profile is shown in
Figure 12.

The calculation values in Table 3 show that, according to
the provisions of Dynamic Performance Test Appraisal Meth-
od and Evaluation Criteria for Rolling Stock (TB/T2360-
1993) on above-noted indicators [26, 27], the train complies
with safety index during operation on optimized profile.
According to the provisions of GB 5599-85 on vibration accel-
eration of freight trains that the vertical vibration acceleration
shall not be greater than 0.7g (6.86 m/s?, g is the gravitational
acceleration) while the lateral acceleration shall not be greater

than 0.5g (4.90 m/s?), Figure 12 shows that the stability index
of train traveling on optimized profile is satisfactory.

6. Conclusion

This paper established a mathematical model for rail profile
optimization with purpose of reducing rail wear rate. Dur-
ing the mathematical modeling, the wear characteristics of
curved portion of rail were taken into consideration while the
12 discrete points selected in optimization interval were used
for spline interpolation to indirectly express the geometric
profile of rail. To simplify the modeling process, unit-length
rail was taken as the subject investigated, while the rail
wear volume was translated into wear area, which could be
calculated through the difference between profiles before and
after wear. In such a manner, the independent variable and
dependent variable of mathematical model were, respectively,
numeralized. The following conclusion was reached:

(1) Support vector machine was used for regression
fitting of rail wear model based on sample rail pro-
file simulation data. To improve the generalization
capability of regression model and reduce the model
prediction error, particle swarm optimization was
proposed to optimize the kernel function radius g
and penalty coeflicient C in support vector machine
regression. Rail wear rate model was built after sample
training with PSO-SVM. The prediction of test set
identified that the average relative error of test sam-
ples in this paper was 4.3%. After a number of training
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processes on the model, the average relative error of
test set was kept below 10%.

(2) Genetic algorithm was used to solve rail profile
optimal model to get the optimal rail profile based on
optimality principle. According to simulation calcula-
tion, the wear rate of optimized profile Opt decreased
by 5.8%, while the allowable gross load increased by
12.7% as compared with standard profile.

(3) The analysis of train operation safety and stability
on the optimized rail profile Opt performed with
derailment coeflicient, wheel-rail lateral force, wheel
load reduction rate, and vibration acceleration as
indicators showed that the optimized rail profile Opt
met normal travel conditions of train.

In consideration of all characteristics mentioned above,
this mathematical model is available to optimize the design
of curved portion profile of rail.

This paper takes into account the profile variation during
service of rail and leaves out of consideration the diversity of
wheel profile and the wear-induced change in wheel profile,
which constitute the shortcoming of this study. To make up
for such shortcoming, it is advisable to carry out in-depth
research using the techniques similar to that stated in this
paper, so as to obtain optimized rail profile with wheel-rail
wear within the interval taken into account, thereby getting
closer to practical situation.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by National Natural Science
Foundation of China (no. 51208318 and no. 51208319),
Hebei Provincial Natural Science Foundation of China (no.
E2015210099 and no. E2016210131), and Key Project of Hebei
Educational Committee of China (no. ZD2015037 and no.
7D2014084).

References

[1] X. Chen, Research on the Influence of Curve Parameter on Rail
Wear for Heavy Haul Railway, Shi jia zhuang Tie Dao University,
Shi jia zhuang, China, 2015.

[2] E. E. Magel and ]. Kalousek, “The application of contact
mechanics to rail profile design and rail grinding,” Wear, vol.
253, no. 1-2, pp. 308-316, 2002.

[3] 1. Y. Shevtsov, Wheel/Rail Interface Optimization, Delft Univer-
sity of Technology, Delft, Netherlands, 2008.

[4] . Jia and D. Si, “Target profile of rail grinding for small radius
curve of Shuohuang Railway,” China Railway Science, vol. 35, no.
4, pp. 15-21, 2014.

[5] W. Zhai, J. Gao, P. Liu, and K. Wang, “Reducing rail side wear
on heavy-haul railway curves based on wheel-rail dynamic
interaction,” Vehicle System Dynamics, vol. 52, no. 1, pp. 440-
454, 2014.

1

[6] J. Brandau, G. Vof3, and G. Poll, “Wear reduction in light
rail systems through asymmetrical railhead profiles,” Tribology
Series, vol. 40, pp. 305-316, 2002.

[7] H.Y.Choi,D.H. Lee, C. Y. Song, and J. Lee, “Optimization of rail
profile to reduce wear on curved track,” International Journal of
Precision Engineering and Manufacturing, vol. 14, no. 4, pp. 619-
625, 2013.

[8] J.Xiao, The Theory and Test Research on Rail Asymmetric Grind-
ing for the Passenger and Freight Railway, Southwest Jiaotong
University, Chengdu, China, 2011.

[9] R.P.B.J. Dollevoet, Design of An Anti Head Check Profile Based
on Stress Relief, Enschede, Netherlands, University of Twente,
2010.

[10] D. B. Cuj, L. Li, X. S. Jin, and L.-J. Zhou, “Study on rail goal
profile by grinding,” Engineering Mechanics, vol. 28, no. 4, pp.
178-184, 2011.

[11] I. Persson, R. Nilsson, U. Bik, M. Lundgren, and S. Iwnicki, “Use
of a genetic algorithm to improve the rail profile on Stockholm
underground,” Vehicle System Dynamics, vol. 48, supplement 1,
pp. 89-104, 2010.

[12] B. A. Palsson, “Design optimisation of switch rails in railway
turnouts,” Vehicle System Dynamics, vol. 51, no. 10, pp. 1619-1639,
2013.

[13] G. Shen and X. Zhong, “Implementations of newly developed
wheel and rail profile design methods,” Journal of Traffic and
Transportation Engineering, vol. 1, no. 3, pp. 221-227, 2014.

[14] H. Jahed, B. Farshi, M. A. Eshraghi, and A. Nasr, “A numerical
optimization technique for design of wheel profiles,” Wear, vol.
264, no. 1-2, pp. 1-10, 2008.

[15] J. Gerlici and T. Lack, “Railway wheel and rail head profiles
development based on the geometric characteristics shapes;”
Wear, vol. 271, no. 1-2, pp. 246-258, 2011.

[16] P. Wang, G. Liang, X. Tao et al., “Study on the numerical opti-
mization of rail profiles for heavy haul railways,” in Journal of
Rail and Rapid Transit, 2016.

(17] L. Zhou, J. Liu, D. Cui, and et al., “Profile study of preventive
rail grinding in high-speed railway based on trains running
performance,” Railway Locomotive & Car, vol. 30, no. 5, pp. 34—
39, 2010.

[18] S. Zakharov, I. Goryacheva, V. Bogdanov et al., “Problems with
wheel and rail profiles selection and optimization,” Wear, vol.
265, no. 9-10, pp. 1266-1272, 2008.

[19] G. V. Bergeman, “Development of a new progressive rolling
technology of profile of neckless grooved tram rail,” Metallur-
gical and Mining Industry, vol. 7, no. 1, pp. 95-101, 2015.

[20] X. Meng, “Experimental study on wear—reducing measures of
small radius curve rail in heavy haul railway;” China Railway,
vol. 5, pp. 37-41, 2013.

[21] Z. Chen, Optimization Design and Improvement Analysis of Rail
Profile Based on Vehicle Dynamics for Curve Wear at Heavy Haul
Railway, Southwest Jiaotong University, Chengdu, China, 2009.

[22] E Qi, Research on Key Technology of 30t Axle-Load Bogie
[Master’s, thesis], Southwest Jiaotong University, PRC, 2009.

[23] Y. Gengand Y. Hu, “On simulating track spectrum of rail vehicle
dynamics,” Research on City Orbit Traffic, vol. 7, pp. 20-23, 2010.

[24] J. Tian and M. Gao, Artificial Neural Network Algorithm Re-
search and Application, Beijing Institute of Technology Press,
Beijing, China, 2006.

[25] Q. Xiao, “Realization of several commonly used selection oper-
ators in genetic algorithm,” Computer and Digital Engineering,
vol. 33, no. 9, pp. 140-142, 2005.



12

[26] Z. Ren, Vehicle System Dynamics, China Railway Publishing
House, Beijing, China, 2007.

[27] Ministry of Railway of the People’s Republic of China, Testing
method and evaluation standard for dynamic performance of

railway locomotives (TB/T2360-1993), China Railway Publish-
ing House, Beijing, China, 1993.

Mathematical Problems in Engineering



Advances in
Op ranons Research

Advances in

DeC|5|on SC|ences

Journal of

Ap ||ed Mathemancs

Algebra

Journal of
bability and Statistics

The Scientific
Wo‘rld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of

Mathematics

Journal of

clﬂhMbhemahcs

in Engmeermg

Mathematical Problems

Journal of

tion Spaces

Abstract and
Applied Analysis

International Journal of

Stochastic Analysis

International Journal of
D|fferent|a| Equations

Discrete Dynamics in
ure and Society

Optimization




