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ABSTRACT 

 

A satellite can only complete its mission successfully when all its subsystems, in-

cluding the attitude control subsystem, are in healthy condition and work properly. 

Control moment gyroscope is a type of actuator used in the attitude control subsys-

tems of satellites. Any fault in the control moment gyroscope can cause the satellite 

mission failure if it is not detected, isolated and resolved in-time. Fault isolation 

provides an opportunity to detect and isolate the occurring faults and, if accompa-

nied by proactive remedial actions, can avoid failure and improve the satellite relia-

bility. It is also necessary to know the fault severity for better maintenance planning 

and prioritize the corrective actions. This way, the more severe faults can be cor-

rected first. 

In this work, an enhanced data-driven fault diagnosis scheme is introduced for fault 

isolation and identification of multiple in-phase faults of satellite control moment 

gyroscopes that is not addressed in the literature before with high accuracy. The 

proposed method is based on an optimized support vector machine and an optimized 

support vector regressor. The results yield fault predictions with up to 95.6% accu-

racy for isolation and 94.9% accuracy for identification, on average. In addition, a 

sensitivity analysis with regards to noise, missing values, and missing sensors is 

done where the results show that the proposed model is robust enough to be used in 

real applications. 
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1 CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Satellites are essential assets for space exploration and data collection. Their fault-free op-

eration is critical, which relies on the health of their subsystems and components. One of 

the major systems of any satellite is the attitude control subsystem (ACS) that uses different 

actuators such as reaction wheels, momentum wheels, control moment gyros (CMGs), 

among others. If the ACS fails, the satellite cannot complete its mission. Hence, if a fault 

occurs in any part of the CMGs, it may lead to a failure if unattended. Establishing and 

running an asset health management platform can help prevent failure and improving sat-

ellite reliability. 

An asset health management platform has two major elements: Fault isolation and fault 

severity identification. Fault isolation determines the required corrective actions, while 

fault severity identification helps optimize maintenance planning through prioritizing 

maintenance actions. Hence, fault isolation and identification of CMG are promising meth-

ods for preventing failures that can affect the satellite’s reliability. 

There are different fault isolation approaches, including the model-based and data-driven 

categories [1–3]. The application of different data-driven methods in fault isolation is a 

trend these days. Specifically, different machine learning methods, such as support vector 

machines (SVM), neural networks, and gradient boosting machines, along with different 

deep learning methods, are widely used for this application [2,4]. These methods are used 

to establish a fault isolation scheme by classifying given data to distinguish between dif-

ferent possible faults.  

Fault severity identification can include different tasks such as fault degradation estimation 

and fault severity classification, and different methods can be used for data-driven fault 

severity assessment, including classification and regression analysis [5]. 

1.2 Literature Review 

Several research pieces are done on the fault diagnosis of a satellite’s ACS using a SVM, 

out of other data-driven approaches [6–9]. The SVM is a supervised learning method with 
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reasonable flexibility and can adapt to any application. As each fault scenario can be con-

sidered as a class, the SVM can be used for fault diagnosis. In [6], a multi-classifier model 

is formed based on the combination of the Dempster-Shafer theory and SVM, while non-

linear principal component analysis (NPCA) is adopted for reducing the feature size. In 

[8], SVM and neural networks are used to build a model for the satellite power supply 

system’s health monitoring. In [7],  the combination of random forest, partial least square, 

SVM, and Naïve Bayes, is used to form a framework for detecting and isolating faults. In 

[9], Telemetry data is used as input to extract the features. Then, PCA is used for feature 

reduction, followed by an optimized SVM model using the particle swarm optimization 

(PSO) method adopted for FDI. 

Neural networks and deep learning methods are also employed for satellite ACS FDI [10–

13]. Prony analysis is used for feature extraction, and a feed-forward neural network is 

developed for anomaly classification [10]. A model is established to find the characteristics 

that express the faults using a deep neural network. Next, the fault-to-noise ratio and char-

acteristics differences are amplified using a sliding window. The proposed method is then 

used for fault identification of a satellite ACS [12]. A feed-forward wavelet-based neural 

network is adopted to form an adaptive observer for fault detection. Adopting a feed-for-

ward wavelet-based neural network with single hidden layer, the proposed method can be 

applied to non-linear systems [13].  

Various other machine learning approaches such as minimum error minimax probability 

machine [14], gradient boosting machines [15], and kernel principal component analysis 

[16] are used for fault detection and isolation in aerospace applications.  

Different methods can be used for data-driven fault severity assessment, including classi-

fication and regression analysis [5]. In [17], a combination of ensemble empirical mode 

decomposition (EEMD) and correlation analysis is used for data pre-processing. Multi-

domain features are extracted, and an optimized support vector regression model is adopted 

to identify fault sizes of an aviation pump. In [18], a combination of variational mode de-

composition (VMD) for feature extraction and long short-term memory (LSTM) neural 

network for regression analysis is adopted for predicting the severity of faults in rolling 

element bearings. SVM and artificial neural network (ANN) are used to develop models to 

classify multi-severity faults in rolling element bearings [19]. Multiple regression models 
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are used to study the relationships between the test points, condition indicators and fault 

severities in [20]. The optimal condition indicators are selected for identifying the fault 

severity for rolling element bearings. In [21], time series segmentation is used to determine 

the fault severity for each input data instance. An SVM model is developed for fault-sever-

ity classification and used for point machine sliding-chair health assessment. A deep con-

volutional neural network pre-trained by a stacked convolutional autoencoder is developed 

in [22]. The developed model is then used to automatically extract the features for a helical 

gearbox’s fault severity assessment. In [23], different machine learning algorithms, includ-

ing random forest and gradient boosting machines, are used for severity identification of 

the satellite CMGs through regression analysis. 

While several research pieces exist on ACS fault isolation, most focus on systems that only 

have one active fault. The proposed models cannot handle cases with multiple in-phase 

faults, while these cases are likely to occur during a real-life satellite operation. When there 

is more than one fault present simultaneously, the cross-effect of each other’s faults makes 

the isolation more challenging. The only works that have evaluated the multiple in-phase 

faults [17]  reported a maximum accuracy of 66.6% for fault isolation and 79.9% for fault 

identification. These scores are not sufficient for use in real applications. Thus, there is a 

need for a specific approach to handle this problem while achieving a reasonable accuracy 

for both tasks. In this work, a new data-driven scheme is developed for fault isolation and 

identification that can handle multiple in-phase faults in satellite CMGs to address the 

above-mentioned shortcomings in the literature.  

1.3 Contributions of This Work 

Contributions of this work are listed and described below: 

[CONTRIBUTION 1] New feature set is found that best adapts the problem while having 

the minimum possible size. Using appropriate features is one of the most critical steps of 

any data-driven approach. This project aims at covering multiple in-phase faults. Based on 

the assessments done, using common feature sets such as time series statistical measures 

is not the right approach and does not provide satisfactory results. There was a need to find 

or develop some new features that could meaningfully represent the system with multiple 

in-phase faults for effective fault diagnosis.   
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[CONTRIBUTION 2] The best machine learning method or strategy is found to overcome 

the inherent complexity of the problem under study. This will be a properly engineered and 

structured learning platform that best suits the defined problem and could achieve accepta-

ble accuracy. 

[CONTRIBUTION 3] The best-reported accuracies for a similar problem are 66.6% for 

fault isolation and 79.9% for fault identification [17]. This work has improved these scores 

to 95.9% and 94.9%, respectively. 

1.4 Problem Definition 

Any non-linear dynamical system can, in general, be modelled in state-space as: 

𝛺: {

𝑋𝑘+1 = 𝑓(𝑋𝑘 , 𝑢𝑘, 𝜃𝑘, 𝜔𝑘
𝑋)

𝜃𝑘+1 =  𝜃𝑘 + 𝜔𝑘
𝜃

𝑦𝑘 = 𝑔(𝑋𝑘 , 𝜃𝑘) +  𝑣𝑘

  (1) 

where 𝑋𝑘 ∈  ℝ𝑛 is the state vector, 𝑢𝑘 ∈  ℝ𝑚 is the control input, 𝜃𝑘 ∈  ℝ𝑙 is the system 

parameter, 𝑦𝑘 ∈  ℝ𝑚 is the measurement, 𝜔𝑘
𝑋, 𝜔𝑘

𝜃 ∈  ℝ𝑛 are the additive process noise for 

states and parameters, respectively. 𝑣𝑘 ∈  ℝ𝑚 is the additive measurement noise, 𝑘 is the 

time step and finally, the process and measurement models are represented by 𝑓(∙) and 𝑔(∙

), respectively, which are non-linear functions. 

Assuming that any change in the physical parameters of the satellite is accompanied by a 

change in one of the parameters of the system [25], a fault isolation problem can be ex-

pressed as: 

𝜃𝑘 =  𝜃0 +  𝛼𝑘  (2) 

where 𝜃0  ∈  ℝ𝐿  is a vector demonstrating the nominal parameter values, 𝛼𝑘  ∈  ℝ𝐿 is a 

vector representing the parameter values in the presence of fault, and 𝐿 is the number of 

possible scenarios for faults that can be considered for the satellite. Eq. (2) is a demonstra-

tion of a multi-parameter model and can be split into 𝐿 single parameter models as [25]: 

𝛺𝑖: {𝜃𝑘
𝑖 =  𝜃0

𝑖 +  𝛼𝑘
𝑖        𝑖 = 1, . . . , 𝐿  (3) 
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Eq. (3) is an expression of a classification problem with L classes for which a data-driven 

approach can be used to find a solution for.  

The data-driven algorithm first aims to classify the current system state while the number 

of classes is 𝐿. This classification problem is solved when a fault is detected by each single-

parameter fault model defined in Eq. (3), where the 𝑖th model has system parameter 𝜃𝑘
𝑖  

and fault severity 𝛼𝑘
𝑖 . Then, another data-driven algorithm is employed to identify the fault 

severity, 𝛼𝑘
𝑖  , through regression analysis. It is clear that using Eq. (2), one would be able 

to  extract the severity of the fault by rearranging the terms in Eq. (2) as: 

𝛼𝑘 = 𝜃𝑘 − 𝜃0  (4) 

Hence, the problem of fault isolation for a given non-linear system in Eq. (1) with fault 

formulation in Eqs. (2) and (3) can be formally expressed. 

The assumptions made in this work are: 

1. The induced faults are in-phase. Each data instance has assigned fault inception and 

duration times, which are the same for all of the CMG units that are faulty. 

2. The assigned fault severity for each instance is from 0 to 1 to cover all of the pos-

sible fault severities. 

3. All of the state measurements are available. 

4. There is no source of noise nor missing values in the raw input data. 

This work aims to design and develop a data-driven fault isolation and identification 

scheme that can use the system outputs and predicts the presence of any possible fault, 

isolate the fault location, and identify the fault severity under the assumptions mentioned 

above. 

1.5 Outline 

The subsequent chapters of this thesis are structured as follows: 

In Chapter 2, theoretical backgrounds are explored and includes explanations about the 

techniques and methods used in this thesis. In Chapter3, the proposed fault isolation and 

identification scheme is introduced and described. In Chapter 4, a case study is presented 
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to assess the proposed scheme’s performance. Results are presented and discussed in Chap-

ter 5 and Chapter 6 concludes the thesis with final remarks and recommendations for future 

work.  
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2 CHAPTER 2 

THEORETICAL BACKGROUND 

In this chapter, some theoretical backgrounds are provided that are necessary to support 

the proposed scheme for fault isolation and identification. 

2.1 Feature Engineering 

One of the major steps in any data-driven approach is feature engineering. Feature engi-

neering covers a vast list of actions that includes extraction, selection and reduction of 

features from the pre-processed raw data [26]. Without meaningful and right chosen fea-

tures, it will be unlikely to achieve reasonable results in machine learning applications. 

This is because the machine learning models see the data through the provided features, 

and it will not work well when the features cannot appropriately represent the data and the 

desired hidden pattern in it.  There is a wide range of methods available for use in feature 

engineering. The best ones can be chosen based on the characteristics of the problem and 

the data at hand. Another issue in data-driven approaches is time complexity, which de-

pends on the machine learning algorithms and the feature set size. Dealing with large fea-

ture sets is time-consuming. 

Moreover, large feature sets may lead to less accurate results as the irrelevant portions of 

the features can mislead the machine learning algorithm. Different methods are proposed 

for feature selection and reduction to reduce the time complexity and provide the most 

relevant and meaningful features. In this section, some of the methods that are used in this 

work are introduced and discussed. 

2.1.1 Feature Extraction based on the Multi-domain Analysis 

One of the most holistic and comprehensive approaches for obtaining features from time-

series data is multi-domain feature extraction [27,28]. In which features are extracted in 

time, frequency and time-frequency domains. Each of these domains represents the data 

from a different point of view. So, collecting them together helps to get a comprehensive 

insight into the data while dealing with only one unique feature set.  

Time-domain features are mainly statistical features directly obtained from time series. 

Table 2.1 shows some of the time domain features used in this work. 
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Table 2.1 - Features calculated from time domain and time-frequency domain 

Statistical Features 

Root mean square 

Standard deviation 

Variance 

Mean 

Peak to peak 

 

Energy 

Root sum of squares 

Kurtosis 

Crest factor 

Skewness 

Peak 

Median 

Sum 

3rd moment 

4th moment 

5th moment 

For obtaining frequency domain features, one should perform Fast Fourier Transform 

(FFT) on the data and then calculate the desired features, which are statistical representa-

tives of the data in the frequency domain. Table 2.2 shows some of the frequency domain 

features used in this work [28]. In this table, 𝑧(𝑚) is the FFT spectrum of the given time 

series, 𝑀 is the number of spectrum lines in FFT spectrum, and 𝑓𝑚 is the frequency value 

corresponding to the 𝑚𝑡ℎ spectrum line. 

Table 2.2 - Features calculated from the frequency domain 

𝐹𝐹1 =  
∑ 𝑧(𝑚)𝑀

𝑚=1

𝑀
 

𝐹𝐹2 =  
∑ [𝑧(𝑚) − 𝐹𝐹1]2𝑀

𝑚=1

𝑀 − 1
 

𝐹𝐹3 =  
∑ [𝑧(𝑚) − 𝐹𝐹1]3𝑀

𝑚=1

𝑀 − 1
 

𝐹𝐹4 =  
∑ [𝑧(𝑚) − 𝐹𝐹1]4𝑀

𝑚=1

𝑀(𝐹𝐹2)2
 

𝐹𝐹5 =  
∑ (𝑓𝑘𝑧(𝑚))𝑀

𝑚=1

∑ 𝑧(𝑚)𝑀
𝑚=1

 

𝐹𝐹6 =  √
∑ [(𝑓𝑚 − 𝐹𝐹5)2𝑧(𝑚)]𝑀

𝑚=1

𝑀
 

𝐹𝐹7 =  √
∑ [𝑓𝑚

2𝑧(𝑚)]𝑀
𝑚=1

∑ 𝑧(𝑚)𝑀
𝑚=1

 

𝐹𝐹8 =  √
∑ [𝑓𝑚

4𝑧(𝑚)]𝑀
𝑚=1

∑ [𝑓𝑚
2𝑧(𝑚)]𝑀

𝑚=1

 

𝐹𝐹9 =  
∑ (𝑓𝑚

2𝑧(𝑚))𝑀
𝑚=1

√[∑ (𝑓𝑚
4𝑧(𝑚))𝑀

𝑚=1 ][∑ 𝑧(𝑚)𝑀
𝑚=1 ]

 

𝐹𝐹10 =
𝐹𝐹6

𝐹𝐹5

 

𝐹𝐹11 =  
∑ [(𝑓𝑚 − 𝐹𝐹5)3𝑧(𝑚)]𝑀

𝑚=1

𝑀(𝐹𝐹
6
)

3
 

𝐹𝐹12 =  
∑ [(𝑓𝑚 − 𝐹𝐹5)4𝑧(𝑚)]𝑀

𝑚=1

𝑀(𝐹𝐹
6
)

4
 

𝐹𝐹13 =
∑ [√|𝑓𝑚 − 𝐹𝐹5|𝑧(𝑚)]𝑀

𝑚=1

𝑀√𝐹𝐹6

 

 

Time-frequency analysis methods such as variational mode decomposition (VMD) [28–

30] or wavelet packet transform (WPT) [31,32] should be performed on the data, followed 

by some statistical calculations for extracting features in the time-frequency domain. One 

of the unique advantages of time-frequency analysis is looking for small transient events 

that can easily be lost in time or frequency domain analysis. Table 2.1 shows the time-
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frequency domain features used in this work. These features are calculated from the WPT 

coefficients of the raw data. 

2.1.2 Feature Extraction based on the Correlation Analysis 

Wherever multiple parameters interact with each other or are affected by each other, there 

is room for correlation analysis. For example, for a satellite ACS with four CMGs, there 

are complicated interactions between the system outputs, which are satellite attitude pa-

rameters resulting from multiple faults in the CMGs. In this case, correlation analysis can 

be used to discover these interactions and provide insights for diagnosing the faults that 

have resulted in them. In this work, correlation analysis is considered a method for analyz-

ing data and extracting features. Some of the approaches that can be used for correlation 

analysis in this ground are correlation analysis [33], multi-correlation analysis [34], and 

cross-correlation analysis [35–38].  

Different methods are used for the correlation analysis to discover the relations between 

each pair of data [33]. The Pearson correlation coefficient is calculated between each pair 

of the residual data using [39]: 

𝜌𝑖𝑗 =  
𝐶𝑂𝑉𝑖𝑗

√𝑉𝐴𝑅𝑖𝑖𝑉𝐴𝑅𝑗𝑗

 (5) 

where 𝐶𝑂𝑉𝑖𝑗 is the covariance of 𝑟𝑖 and 𝑟𝑗 , and 𝑟 stands for the residual calculated using 

Eq. (21). 𝐶𝑂𝑉𝑖𝑗 can be calculated using [39]: 

𝐶𝑂𝑉𝑖𝑗 =  
∑(𝑟𝑖 −  𝑟𝑖) (𝑟𝑗 − 𝑟𝑗)

𝑁
 (6) 

In which, 𝑟𝑖 and 𝑟𝑗 are the mean values for 𝑟𝑖 and 𝑟𝑗, respectively, and 𝑁 is the number of 

instances. 𝑉𝐴𝑅𝑖𝑖 and 𝑉𝐴𝑅𝑗𝑗 are the variance of 𝑟𝑖 and 𝑟𝑗, respectively. Variacne can be cal-

culated using [39]: 

𝑉𝐴𝑅𝑖𝑖 =  
∑(𝑟𝑖 −  𝑟𝑖)2

𝑁
 (7) 

The Spearman rank correlation coefficient is calculated using [39]: 
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𝜌𝑟𝑎𝑛𝑘 =  1 −
6 ∑ 𝑑𝑘

2

𝒏3 − 𝒏
 (8) 

where 𝒏 is the number of observations (i.e., length of the residual time series) and 𝑑𝑘 is the 

difference between the ranks of the residuals 𝑟𝑖𝑘
 and 𝑟𝑗𝑘

. The Kendall rank correlation co-

efficient is calculated using [39]: 

𝜏 =  
2(𝑃 − 𝑄)

𝒏(𝒏 − 1)
 (9) 

where 𝑃 is the number of concordant pairs and 𝑄 is the number of discordant pairs. A pair 

of observations, for example (𝑟𝑖1
, 𝑟𝑗1

) and (𝑟𝑖2
, 𝑟𝑗2

), is concordant if the point that has a 

higher 𝑟𝑖𝑖𝑛𝑑𝑒𝑥
 also has a higher 𝑟𝑗𝑖𝑛𝑑𝑒𝑥

 and vice versa. Therefore, the two datapoints 

(𝑟𝑖1
, 𝑟𝑗1

) and (𝑟𝑖2
, 𝑟𝑗2

) are concordant if and only if:  

𝑠𝑖𝑔𝑛(𝑟𝑖2
−  𝑟𝑖1

) = 𝑠𝑖𝑔𝑛 (𝑟𝑗2
−  𝑟𝑗1

) (10) 

And are discordant if and only if: 

𝑠𝑖𝑔𝑛(𝑟𝑖2
−  𝑟𝑖1

) = − 𝑠𝑖𝑔𝑛(𝑟𝑗2
−  𝑟𝑗1

) (11) 

Multi correlation analysis is the same as correlation coefficient calculation, except for it is 

calculated for each set of three residuals and represents the correlation between the three 

parameters. It can be calculated using [34]: 

𝑅𝑖𝑗𝑘 =  √𝜌𝑖𝑗
2 + 𝜌𝑗𝑘

2 + 𝜌𝑖𝑘
2 − 2𝜌𝑖𝑗𝜌𝑗𝑘𝜌𝑖𝑘 (12) 

in which 𝜌 is the correlation coefficient as shown in Eq. (5). 

Cross-correlation analysis and feature extraction are done based on the method used in 

[38], and the details are not repeated here. Correlation analysis can also be used for select-

ing the desired features from a feature pool that is the subject of the next section.  



 

11 

 

2.1.3 Feature Reduction based on the Principal Component Analysis 

Principal component analysis (PCA) is a common method for reducing the number of fea-

tures while capturing the desired amount of its variance. It extracts orthogonal vectors in 

sets, known as loading vectors and then calculates the amount of variance known to or-

thogonal vectors [40].  

2.1.4 Feature Selection based on the Importance of the Features 

Feature extraction methods usually result in a big pool of features that are not necessarily 

useful for the problem at hand. So, it is wise to use some methods for finding the most 

relevant and meaningful features from this pool. One of the approaches that can be used is 

based on calculating an importance index for each feature and finally choosing the desired 

number of features with the higher importance index. Implementing this approach, also 

known as the wrapper model, needs to build a classifier and run it sequentially with differ-

ent features. This can be done, for example, by starting with only one feature and run the 

classifier. Then add another feature and rerun it and continue this until all of the features 

are used. This will be a forward selection approach. Finally, each feature will have an im-

portance index based on whether it has improved or reduced the model performance. An-

other approach is to start with all of the features and run the model. Then remove one 

feature and rerun the model and continue this until no features remain. This is known as 

the backward selection or elimination approach. Assigning the importance index is done 

based on the negative or positive effect of each feature on the model performance.  

2.2 Machine Learning 

Machine learning methods are used for classification and regression analysis. In this chap-

ter, some of the methods used in this work are introduced briefly. 

2.2.1 Support Vector Machines 

Support vector machine (SVM) is a machine learning method based on statistical learning 

theory. It maps the input data into a high dimensional space called the feature space. Then 

it finds an optimal hyperplane to separate the two classes while maximizing generalization. 

The hyperplane is selected to maximize the margin between the plane and the nearest data 

points of the two classes called the support vectors.  
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Figure 2.1 - Classification by support vector machines 

Given the dataset {𝜒𝑗 , 𝜇𝑗}
𝑗=1

𝑚
 with 𝑚 instances and 𝜇𝑖 ∈ {−1, 1}, a hyperplane 𝒇(𝜒) = 0 is 

expected to be found to separate the given datasets into two classes, and the hyperplane is 

shown as: 

𝒇(𝜒) =  𝑤𝑇𝜒 +  𝑏 =  ∑ 𝑤𝑇𝜒𝑖

𝑚

𝑗=1

+ 𝑏 = 0 (13) 

where the hyperplane is determined by 𝑤 and 𝑏. In order to divide the instances into the 

positive class and the negative class, the determined hyperplane is subject to: 

 𝜇𝑗𝒇(𝜒𝑗) =  𝜇𝑗(𝑤𝑇𝜒𝑗 + 𝑏)  ≥ 1,       𝑗 = 1,2, … , 𝑚  (14) 

Support vectors 𝐻1 and 𝐻2 can satisfy the condition given in Eq. (14) as shown in Fig-

ure 2.1. The linear SVM is expected to place a hyperplane 𝐻∗ between the positive and 

negative datasets, which is orientated by maximizing the margin 𝛾 =  
2

‖𝑤‖
. Therefore, the 

optimization objective of the linear SVM is shown as follows [2]: 

𝑚𝑖𝑛
𝑤,𝑏

1

2
‖𝑤‖2       𝑠. 𝑡.   𝜇𝑗(𝑤𝑇𝜒𝑗 + 𝑏)  ≥ 1,       𝑗 = 1,2, … , 𝑚  (15) 
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2.2.2 Support Vector Regressor 

SVM can also be used as a regression analysis method, maintaining all the main features 

that are the algorithm characteristics. The support vector regressor (SVR) is established on 

the same principles as the SVM for classification, with a little modification. As the output 

is a real number, it is difficult to predict the information at hand, which has infinite possi-

bilities. For regression analysis, a margin of tolerance, 휀, is set in approximation to the 

SVM, which would have already requested from the problem. Suppose that the given da-

taset is {𝜒𝑗 , 𝜇𝑗}
𝑗=1

𝑚
 with 𝑚 instances, the regression analysis aims at finding a function 

𝒈(𝜒)  that has the maximum deviation of 휀 from the targets 𝜇𝑗 for all of the training in-

stances, and at the same time is as flat as possible [41]. This problem can be written as a 

convex optimization problem: 

𝑚𝑖𝑛
𝑤,𝑏

1

2
‖𝑤‖2  

 𝑠. 𝑡.   𝜇𝑗 − (𝑤𝑇𝜒𝑗 + 𝑏)  ≤ 휀   𝑎𝑛𝑑  (𝑤𝑇𝜒𝑗 + 𝑏) − 𝜇𝑗  ≤ 휀,    𝑗 = 1,2, … , 𝑚 

(16) 

Eq. (16) is based on the assumption that such a function 𝒈(𝜒) actually exists that approxi-

mates all pairs (𝜒𝑗 , 𝜇𝑗) with 휀 precision, or in simple terms, it is possible to solve the con-

vex optimization problem. This optimization problem is also illustrated in Figure 2.2. 

 

Figure 2.2 - Regression analysis by support vector regressors 
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2.2.3 Artificial Neural Networks 

Artificial neural networks (ANN) imitate the human brain activities in information pro-

cessing and is a promising approach for building machine learning models. ANN has dif-

ferent implementations, including the backpropagation neural network (BPNN). The 

BPNN is a multilayer perceptron, which comprises the forward propagation and the back-

propagation. In the forward propagation, as shown in Figure 2.3, the multi-hidden layers 

process the input samples, and finally, the output layer maps them into the target class.  

 

Figure 2.3 - Architecture of BPNN with two hidden layers 

Given the training dataset {𝜒𝑗 , 𝜇𝑗}
𝑗=1

𝑚
 in which 𝑚 is the number of samples, 𝜒𝑗  ∈  ℝ𝑑 is 

the feature set with 𝑑 features, and 𝜇𝑗 ∈ ℝ𝑙 is the label set with 𝑙 classes, the output of the 

ℎ𝑡ℎ hidden layer is demonstrated as [2]: 

(𝜒𝑗
ℎ) 𝑝 =  𝜎ℎ ( ∑ 𝑤𝑝

ℎ

𝑛ℎ−1

𝑗=1

. 𝜒𝑗
ℎ−1 + 𝑏𝑝

ℎ) ,         𝑝 = 1,2, … , 𝑛ℎ,     ℎ = 1,2, … , 𝐻  (17) 

where (𝜒𝑗
ℎ) 𝑝  is the output of the 𝑝𝑡ℎ neuron in the ℎ𝑡ℎ hidden layer, and 𝜒𝑗

0 = 𝜒𝑗, 𝑛ℎ is the 

number of neurons in the ℎ𝑡ℎ hidden layer, 𝜎ℎ
  expresses the ℎ𝑡ℎ hidden layer activation 

function, 𝑛ℎ−1 is the number of neurons in the (ℎ − 1)𝑡ℎ hidden layer, 𝑤𝑘
ℎ is the weights 
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between the neurons in the previous layer and the 𝑝𝑡ℎ neuron in the ℎ𝑡ℎ hidden layer, and 

𝑏𝑝
ℎ

 is the bias of the ℎ𝑡ℎ hidden layer. The predicted output of BPNN is [2]: 

(�̂�𝑗)𝑜 =  𝜎𝑜𝑢𝑡 (∑ 𝑤𝑜
𝑜𝑢𝑡

𝑛𝐻

𝑗=1

. 𝜒𝑗
𝐻 + 𝑏𝑜

𝑜𝑢𝑡) ,         𝑜 = 1,2, … , 𝑙  (18) 

where (�̂�𝑗) 𝑜 is the predicted output of the 𝑜𝑡ℎ  neuron in the output layer, 𝜎𝑜𝑢𝑡  demon-

strates the output layer activation function, 𝑤𝑜
𝑜𝑢𝑡 and 𝑏𝑜

𝑜𝑢𝑡 are the output layer weights and 

bias, respectively. When given a certain training sample (𝜒𝑗 , 𝜇𝑗), the objective of the 

BPNN optimization process is to minimize the error between the predicted and the target 

output. This can be expressed as [2]: 

 𝑚𝑖𝑛
𝑤,𝑏

𝐸𝑗 =  
1

2
∑ [(𝜇𝑗)

𝑜
− (�̂�𝑗)𝑜]

2
𝑙

𝑜=1

 (19) 

For solving this optimization problem, the training parameters 𝑤 and 𝑏 are updated by the 

gradient descent as follows [2]: 

𝑤 ⟵ 𝑤 − 𝜂.
𝜕𝐸𝑗

𝜕𝑤
,       𝑏 ⟵ 𝑏 − 𝜂.

𝜕𝐸𝑗

𝜕𝑏
         (20) 

where 𝜂 expresses the learning rate. The error gradient propagates backward from the out-

put layer to the input layer, and the training parameters are updated layer by layer. 

 

2.3 Algorithm Complexity  

Table 2.3 shows the time complexity analysis for the machine learning models used in this 

work. In this table, 𝑛 is the number of training samples, 𝑝 is the feature numbers, 𝑛𝑠𝑣 , 

demonstrates support vector numbers, 𝑛𝑡𝑟𝑒𝑒𝑠 is number of trees, 𝑑 is the maximum depth 

of trees, 𝑛𝑒𝑝𝑜𝑐ℎ is the number of epoches, and 𝑛𝑙𝑖
 is the number of neurons of layer 𝑖. 
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Table 2.3 - Time complexity for different methods 

Algorithm Training Phase Prediction Phase 

Neural Network 
𝑂(𝑛𝑝𝑛𝑒𝑝𝑜𝑐ℎ(𝑛𝑙1

𝑛𝑙2
+ 𝑛𝑙2

𝑛𝑙3

+ 𝑛𝑙3
𝑛𝑙4

+ ⋯ )) 

𝑂(𝑝𝑛𝑙1
(𝑛𝑙1

𝑛𝑙2
+ 𝑛𝑙2

𝑛𝑙3

+ 𝑛𝑙3
𝑛𝑙4

+ ⋯ )) 

Support Vector 

Machine (Kernel) 
𝑂(𝑛3) 𝑂(𝑛𝑠𝑣𝑝) 

Gradient Boost-

ing Machine 
𝑂(𝑛𝑑𝑛𝑡𝑟𝑒𝑒𝑠𝑙𝑜𝑔𝑛) 𝑂(𝑝𝑛𝑡𝑟𝑒𝑒𝑠) 

Random Forest 𝑂(n𝑝𝑛𝑡𝑟𝑒𝑒𝑠𝑙𝑜𝑔𝑛) 𝑂(𝑝𝑛𝑡𝑟𝑒𝑒𝑠) 

Complexity analysis of neural networks is not straightforward. References [42,43] have 

some details about this. The SVM algorithms include  solving the constrained quadratic 

equation that is equivalent to the calculation of the inversion of an 𝑛 size square matrix, 

which has the complexity of 𝑂(𝑛3). In [44], a comprehensive time complexity analysis is 

done for different steps of implementing an SVM classifier. The time complexity of train-

ing with a gradient boosting machine is 𝑂(𝑛𝑑𝑛𝑡𝑟𝑒𝑒𝑠𝑙𝑜𝑔𝑛) and prediction for a new sample 

takes 𝑂(𝑝𝑛𝑡𝑟𝑒𝑒𝑠) [45]. Assuming trees are free to grow to maximum height 𝑂(𝑙𝑜𝑔𝑛), 

training time complexity for random forest is 𝑂(n𝑝𝑛𝑡𝑟𝑒𝑒𝑠𝑙𝑜𝑔𝑛), and prediction of a new 

sample takes 𝑂(𝑝𝑛𝑡𝑟𝑒𝑒𝑠) [46]. 
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3 CHAPTER 3 

METHODOLOGY 

In this chapter, the proposed scheme for fault isolation is introduced and described. 

3.1 The Proposed Scheme Outline 

A data-driven fault diagnosis platform is introduced that is comprised of an optimized ma-

chine learning model for isolating and identifying multiple in-phase faults of the satellite 

CMG. The features are calculated using the CMG data, and then feature reduction is made 

through the principal component analysis. The chosen features are fed to the machine learn-

ing models as inputs for the training and testing steps. For improving the performance, the 

machine learning models are tuned by finding the optimal values of their parameters. At 

the last step, the optimized machine learning models can be used to isolate and identify the 

faults of the CMG. Figure 3.1 shows the flow diagram of the proposed fault diagnosis 

scheme, and its elements are described in sections 3.2 to 3.6. 

 

Figure 3.1 - The proposed fault isolation and identification platform outline 
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3.2 Acquiring the Data  

The raw data is acquired from a satellite telemetry system or a satellite mathematical 

model. In this study, a high-fidelity satellite model with four CMG units is used to generate 

the required data described in Chapter 4. The raw data comprises satellite attitude quater-

nions, angular speeds and the CMGs’ gimbal angles. The data is stored in a time-series 

format, with each set representing one of the fault scenarios shown in Table 3.1. There is a 

total of 16 scenarios. Scenario 0 represents the system without any fault. Scenarios 1 to 15 

represent the system with 1, 2, 3 or 4 faulty units. 

Table 3.1 - Different scenarios for faults in the CMG assembly 

Scenario No. 
Faulty 

CMG(s) 

Scenario 

No. 
Faulty CMG(s) 

0 — 8 2, 3 

1 1 9 2, 4 

2 2 10 3, 4 

3 3 11 1, 2, 3 

4 4 12 1, 2, 4 

5 1, 2 13 1, 3, 4 

6 1, 3 14 2, 3, 4 

7 1, 4 15 1, 2, 3, 4 

 

3.3 Data Preprocessing 

The raw data is used to calculate the residuals. Residuals represent the difference between 

the system outputs in a nominal and faulty condition. The residuals can be calculated using: 

𝑟𝑘
𝑞

=  𝜃𝑘
𝑞

−  𝜃𝑘
0        𝑞 = 0, . . . , 15 (21) 

where, 𝜃𝑞 represents the system parameters for faulty state 𝑞, 𝑞 depicts the desired fault 

scenario, 𝜃0, is the system parameters for a healthy state, and 𝑘 is the measurement time 

step. The features are extracted from the residual time-series. Feature selection/reduction 

methods are used to reduce the number of the extracted features while looking for the most 
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representative features. There are various methods for feature extraction/reduction/selec-

tion that are described in Chapter 2. The chosen feature set is then split into train and test 

subsets fed into the machine learning model. 

3.4 Machine Learning Model Selection 

Two different machine learning models are developed to be used for the classification of 

data and then for regression analysis. There are a variety of methods suitable for machine 

learning that are described in Chapter 2. Fault scenarios are used as labels, and as each 

instance of the input feature sets belongs to a specific fault scenario, the developed classi-

fication machine learning model aims to predict the true label for every instance of the 

input feature set and the developed regression machine learning model is used to predict 

the fault severity. Both are achieved by training the models with the available feature sets 

with known labels and fault severity and testing and tuning the model.  

3.5 Training, Testing, and Tuning the Models 

The train portion of the feature sets is used to train the machine learning models. The mod-

els are then tested by the test portion of the feature sets, and finally, the optimum values 

for the models’ hyperparameters are obtained through an optimization process to avoid 

over- or under-fitting. 

3.6 Predicting Outcomes 

The optimized classification machine learning model can predict the fault scenario label, 

and the optimized regression machine learning model can predict the fault severity for 

every new and unseen instance of the data. A case study is presented in the next chapter to 

evaluate the performance of the proposed scheme. 
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4 CHAPTER 4 

CASE STUDY: A SATELLITE WITH FOUR CMGS 

4.1 Introduction 

In this chapter, a satellite with four CMGs is used to evaluate the performance of the pro-

posed fault diagnosis scheme. Figure 4.1 shows the CMGs assembly in a pyramid config-

uration. A high-fidelity satellite mathematical model and simulator [47] is used in this 

work. The simulation setup is shown in Figure 4.2. The components of this simulator are 

described in sections 4.2 to 4.4. 

 

(a) 

 

(b) 

Figure 4.1 - CMG assembly in pyramid configuration (a) isometric (b) top views 

 

Figure 4.2 - Satellite simulation setup 

4.2 Satellite Dynamics and Kinematics 

Dynamics and kinematics for the satellite are used to calculate the required outputs from 

the input control torque. The dynamics equation of a satellite with reaction wheels onboard 

can be expressed as [47]: 
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�̇�𝐵𝐼
𝐵 + 𝜔𝐵𝐼

𝐵 × 𝐻𝐵𝐼
𝐵 =  𝜏𝑒  (22) 

where 𝜔𝐵𝐼
𝐵  is the satellite’s  angular speed relative to the inertial frame demonstrated in the 

body frame,  𝜏𝑒 ∈  ℝ3×1 is the external force, and 𝐻𝐵𝐼
𝐵  is the total angular momentum of 

the satellite. 𝐻𝐵𝐼
𝐵  can be expressed as: 

𝐻𝐵𝐼
𝐵 = 𝐽𝜔𝐵𝐼

𝐵 + ℎ  (23) 

where 𝐽 expressed as 𝐽 =  𝐽𝑠 − 𝐴𝐽𝑤𝐴𝑇 in which 𝐽𝑠  ∈  ℝ3×3 is the satellite’s  inertia mo-

ment including the CMGs. 𝐽𝑤 ∈  ℝ4×4 = 𝑑𝑖𝑎𝑔([𝐽𝑤1, 𝐽𝑤2, 𝐽𝑤3, 𝐽𝑤4]) denotes the inertia mo-

ment of the CMGs in the axial direction. The torques provided by the CMGs are trans-

formed into the axes of the satellite body by 𝐴, the transformation matrix. Substituting Eq. 

(23) into (22), and expressing ℎ for CMG results in: 

𝐽�̇�𝐵𝐼
𝐵 =  − 𝜔𝐵𝐼

𝐵 × (𝐽𝑠𝜔𝐵𝐼
𝐵 +  ℎ𝐶𝑀𝐺) − ℎ̇𝐶𝑀𝐺  +  𝜏𝑒  (24) 

where ℎ𝐶𝑀𝐺 is the CMGs’ moment, and ℎ̇𝐶𝑀𝐺 is its derivative. The kinematic equations of 

the satellite can be expressed as: 

[
𝑞�̇�

�̇�4
] =  

1

2
 [

𝑞4𝐼 + 𝑞𝑣
×

−𝑞𝑣
𝑇 ] 𝜔𝐵𝐿

𝐵   (25) 

where �̅� = [�̅� sin (
Φ

2
) , cos (

Φ

2
)]

𝑇
= [

𝑞𝑣

𝑞4
] is the unit quaternion, Φ expresses the principal 

angle, �̅� =  [𝑒1, 𝑒2, 𝑒3]𝑇 is the principal axis that conforms with the ‘Euler's theorem 

(𝑒1
2 + 𝑒2

2 + 𝑒3
2 = 1)’, 𝑞4 ∈ ℝ and 𝑞𝑣 ∈ ℝ3×1 =  [𝑞1, 𝑞2, 𝑞3]𝑇  denotes the Euler parame-

ters expressing the satellite body frame orientation with regard to the orbital frame where 

𝑞𝑣
4𝑞𝑣 +  𝑞4 = 1. 𝐼 ∈ ℝ3×3  is the unity matrix and 𝑞𝑣

× is the skew-symmetric matrix repre-

sentation of the quaternion vector. 

4.3 Controller and Steering Logic 

The desired attitude of 𝑞𝑑 ∈ ℝ4×1  and 𝜔𝑑 ∈ ℝ3×1  are attained by a non-linear sliding 

mode controller in a simplified version [47]. the error terms for the quaternion tracking are 

expressed as: 
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𝑞𝑒 =  𝑞𝑑4𝑞𝑣 − 𝑞4𝑞𝑑𝑣 + 𝑞𝑣
×𝑞𝑑𝑣  

𝑞𝑒4 =  𝑞𝑑4𝑞4 + 𝑞𝑑𝑣
𝑇 𝑞𝑣  

(26) 

where 𝑞𝑒
𝑇𝑞𝑒 + 𝑞4𝑒

2 = 1. The rotating matrix, 𝐶𝑒 = 𝐶(𝑞𝑒, 𝑞4𝑒) is obtained using: 

𝐶𝑒 = (𝑞4𝑒
2 − 𝑞𝑒

𝑇𝑞𝑒)𝐼 + 2𝑞𝑒𝑞𝑒
𝑇 − 2𝑞4𝑒𝑞𝑒

×  (27) 

The relative angular speed 𝜔𝑒 ∈ ℝ3×1 is expressed as:  

𝜔𝑒 = 𝜔𝐵𝐿
𝐵 − 𝐶𝑒𝜔𝑑   (28) 

Considering the error definitions shown in Eq. (26) and (28), the sliding manifold can be 

obtained from: 

𝜎 = 𝜔𝑒 + 𝜆𝑠𝑔𝑛(𝑞4𝑒)𝑞𝑒  (29) 

where 𝜆 > 0 expresses the gain for the sliding manifold and 𝑠𝑔𝑛(𝑞4𝑒) represents the sign 

function for 𝑞4𝑒.  Finally, the control command that is fed to the system can be expressed 

as: 

𝑢𝑟 =  −𝑝0𝜎  (30) 

where 𝑝0 is a positive constant. In this work, all the parameters for the controller are set as 

[47], 𝜆 = 1 with regards to the values shown in [47], and 𝑝0 = 0.1 based on the simulation 

outcomes. 

As the CMGs have gimballing action, an extra component is needed for the controller that 

is known as the steering logic. The steering logic is responsible for converting the required 

torque from the controller to the required gimbal angle rates to generate that torque by the 

CMGs. The CMG angular momentum is, in general, a function of CMG gimbal angles, 

𝛿 = (𝛿1, … , 𝛿𝑛), and flywheels angular speed, 𝛺 = (𝛺1, … , 𝛺𝑛) given by: 

𝐻𝐶𝑀𝐺 = 𝐻(𝛿, 𝛺)  (31) 
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where 𝑛 is the number of CMGs. One of the CMG steering logic approaches is to use the 

differential relationship between gimbal angles and the CMG momentum vector. For such 

a method, the derivation of ℎ is obtained as: 

ℎ̇𝐶𝑀𝐺 =  𝐴𝐶𝑀𝐺�̇�  (32) 

where 𝐴𝐶𝑀𝐺 = 𝐴𝐶𝑀𝐺(𝛿) ∈ ℝ3×𝑛 as the Jacobin matrix is 

𝐴𝐶𝑀𝐺 =
𝜕ℎ

𝜕𝛿
=  [

𝜕ℎ𝑖

𝜕𝛿𝑖
]  (33) 

The gimbal rate can be calculated using Eq. (31). At first, ℎ𝐶𝑀𝐺 can be calculated based on 

the CMGs’ configuration. For the pyramid configuration [47]:  

ℎ𝐶𝑀𝐺 =  ∑ ℎ𝑖

4

𝑖=1

(𝛿𝑖 , 𝛺𝑖)

=  [

−𝑐𝛽𝑠𝛿1

𝑐𝛿1

𝑐𝛽𝑠𝛿1

−𝑐𝛿2

−𝑐𝛽𝑠𝛿2

𝑐𝛽𝑠𝛿2

𝑐𝛽𝑠𝛿3

−𝑐𝛿3

𝑐𝛽𝑠𝛿3

𝑐𝛿4

𝑐𝛽𝑠𝛿4

𝑐𝛽𝑠𝛿4

]

× [ℎ01
(𝛺1)ℎ02

(𝛺2)ℎ03
(𝛺3)ℎ04

(𝛺4)]
𝑇

 

(34) 

where ℎ𝑖 is the angular momentum of each CMG expressed in the reference frame of the 

satellite. 𝛿𝑖 are the gimbal angles, 𝛺𝑖 are the flywheel angular speed, and ℎ0𝑖 is the mo-

mentum magnitude for the 𝑖th CMG. The derivative of the CMG angular momentum ver-

sus time can be calculated as: 

ℎ̇𝐶𝑀𝐺 =  ∑ ℎ̇𝑖

4

𝑖=1

(𝛿𝑖 , 𝛺𝑖) = [ℎ01
(𝛺1)ℎ02

(𝛺2)ℎ03
(𝛺3)ℎ04

(𝛺4)]𝐴𝐶𝑀𝐺�̇� (35) 

where 𝛿 is the gimbal angle vector and: 

𝐴𝐶𝑀𝐺 =  [

−𝑐𝛽𝑠𝛿1

𝑐𝛿1

𝑐𝛽𝑠𝛿1

−𝑐𝛿2

−𝑐𝛽𝑠𝛿2

𝑐𝛽𝑠𝛿2

𝑐𝛽𝑠𝛿3

−𝑐𝛿3

𝑐𝛽𝑠𝛿3

𝑐𝛿4

𝑐𝛽𝑠𝛿4

𝑐𝛽𝑠𝛿4

] (36) 

For a given control torque 𝜏𝑐, the torque command of the CMG, ℎ,̇   is selected as: 



 

24 

 

ℎ̇𝐶𝑀𝐺 = 𝑢 =  −𝜏𝑐 − 𝜔𝐵𝐼
𝐵 × ℎ𝐶𝑀𝐺  (37) 

And the gimbal rate command �̇�, given ℎ0 =  ℎ01
 =  ℎ02

 =  ℎ03
 =  ℎ04

 is calculated as 

[47]: 

�̇� = (
1

ℎ0
) 𝐴𝐶𝑀𝐺

+ ℎ̇𝐶𝑀𝐺  (38) 

where 𝐴𝐶𝑀𝐺
+ =  𝐴𝐶𝑀𝐺

𝑇 (𝐴𝐶𝑀𝐺𝐴𝐶𝑀𝐺
𝑇 )−1, is the pseudoinverse steering logic and most CMG 

steering logics determine the gimbal rate commands with variations of it. 

4.4 Actuators 

As the critical components of any satellite’s ACS, the actuators provide the torque required 

for controlling the satellite attitude. In this model, four CMGs are used as actuators. CMG 

is a reaction wheel capable of changing its angular momentum direction by gimballing the 

spinning rotor. The CMGs receive the gimbal rate command as input to provide the re-

quired control torque for the satellite. 

4.5 Raw Data 

The simulator, which its components are described in sections 4.2 to 4.4, is used to generate 

the raw data. The first step is to define the required parameters for the desired fault scenar-

ios that are shown in Table 3.1. These input parameters are shown in Table 4.1. 
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Table 4.1 - Required Inputs for the Satellite Simulator 

Index Description Range Unit 

1 Fault Scenario 0-15 integer 

2 𝑓1 fault parameter 0-1 float 

3 𝑓2 fault parameter 0-1 float 

4 𝑓3, fault parameter 0-1 float 

5 𝑓4 fault parameter 0-1 float 

6 fault inception 0-200 second 

7 fault duration 0-50 second 

Then, the parameters are fed to the satellite with CMGs in-board simulator. For the case 

study in this work, a CMG assembly with four CMGs is used. Each CMG unit can have 

effectiveness between 0 and 1 for a completely failed and a completely healthy CMG, re-

spectively. As there are four CMG units in this work, four fault effectiveness are chosen 

randomly for each data instance. Each fault effectiveness is assigned to one of the CMG 

units and is multiplied by its output torque. The net output torque of the four CMG units is 

then fed into the satellite, and it is assumed that the faults injected into the CMG units can 

be detected and isolated by analyzing the satellite output parameters as raw data. So, the 

required data are extracted as time-series from the output of the satellite simulator for dif-

ferent fault scenarios shown in Table 3.1, and they include the satellite attitude parameters, 

quaternion, 𝑞1− 𝑞4, and angular speed,  𝜔1 − 𝜔3, along with CMGs gimbal angle, 𝛿1 − 𝛿4. 

The raw data were extracted from the simulator’s outputs by running it, 40,000 times for 

each fault scenario. As there are 16 scenarios, in total, there were 640,000 data sets, each 

of them stored in a comma-delimited value (CSV) file. As the data related to  𝑞4 are not 

independent of 𝑞1,  𝑞2,  𝑞3, they were discarded in this work. Each time series has a time 

length of 200 seconds. There is a nominal and a faulty value for each parameter. A total of 

22 columns and 2,000 rows were stored in each CSV file. As the simulation time step is 

0.1 seconds and has 200 seconds length, 2,000 rows were generated. The number of col-

umns is calculated as 11 × 2 = 22 for two sets of 11 parameters; one set expresses the 

healthy, and the other expresses the faulty situation.  
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(a) 

 

(b) 

 

(c) 

Figure 4.3 - Sample raw data, (a) the satellite quaternions (b) the satellite angular speed 

(c) the CMGs gimbal angle  
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Figure 4.3 shows a sample of the raw data used in this work. The raw data are used to 

calculate the residuals and then do the feature engineering, including feature extraction and 

selection/reduction. 

4.6 Feature Engineering 

The residuals are the difference between the system's raw data in a healthy and faulty con-

dition. Residuals are calculated for each instance of the raw data related to each fault sce-

nario using Eq. (21). Figure 4.4 to Figure 4.6 show samples of the residual data used in this 

work. As these figures depict, the residuals have different behaviour during the fault period 

and this confirms their suitability to be used for fault detection and isolation. 

 

(a) 

 

(b) 

Figure 4.4 - Sample residual data for the satellite quaternions, (a) the whole simulation 

period (b) zoomed around the fault period 
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(a) 

 

(b) 

Figure 4.5 - Sample residual data for the satellite angular speed, (a) the whole simulation 

period (b) zoomed around the fault period 
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(a) 

 

(b) 

Figure 4.6 - Sample residual data for the CMGs gimbal angle, (a) the whole simulation 

period (b) zoomed around the fault period 

The residuals are used to extract the features. To find a feature set that best represents the 

desired fault scenarios, different methods are used for feature extraction in this work de-

scribed in sections 2.1.1 and 2.1.2. They include wavelet packet transform (WPT) [32], 

multi-domain analysis [28], correlation analysis [48], cross-correlation analysis [38], and 

multi correlation analysis [34]. The WPT and multi-domain analysis features are used to 

discover almost any pattern that can be present in time series data. This includes variations 

in the shape of the data, amplitude changes over a short period, and changes in data fre-

quency. These two methods are considered as univariate analyses as they extract the fea-

tures from each time series individually and do not consider any possible relation between 
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any two sets of the time series. So, as there is more than one fault simultaneously active in 

the CMG units in this study, the residuals calculated from the satellite attitude parameters 

can have complicated relations with each other. For example, they can be correlated with 

each other differently for each possible scenario. So, there is a need to use multi-variable 

analysis techniques to handle this issue. Based on this assumption, correlation, cross-cor-

relation and multi correlation analysis are also chosen for feature extraction in this study. 

Different methods are used for the correlation analysis to discover the different aspects of 

the relations between each pair of data [33]. In this work, the Pearson correlation coeffi-

cient, the Spearman rank correlation coefficient, and the Kendall rank correlation coeffi-

cient are used. These coefficients are introduced and described in section 2.1.2.  

Feature reduction/selection aims at finding the most representative features to improve the 

model performance while reducing its time complexity. Different feature reduction/selec-

tion methods have been used in the literature [2] and described in sections 2.1.4 and 2.1.3. 

In this work, PCA [40], recursive feature elimination [49], and feature importance method 

[50] are used for this purpose. The chosen features are used for training and testing the 

machine learning models.  

4.7 Machine Learning Models 

Various machine learning approaches have been used for classification and regression anal-

ysis purposes in the literature [2] [5]. In this work, SVM [28], neural networks [12], random 

forest [51], and gradient boosting machines [52,53] are used for classification and support 

vector regressor (SVR) is used for regression analysis. The model with the best perfor-

mance will then be selected for moving forward with. 

In addition to the models mentioned above, different classification approaches, including 

multi-label classification, multi-step classification, and ensemble learning, are used in this 

work to improve the performance of the proposed scheme. The rationale for using the 

multi-label approach is that the fault scenarios include cases with more than one active 

fault, and the faulty units’ number can be used as labels instead of the scenario number. 

For example, for scenario number 11, Table 3.1, it is possible to use the array [1, 2, 3] as 

the label instead of merely using 11. The multi-label method is implemented using a scikit-

learn package called LabelPowerset [50]. This package transforms a multi-label problem 

into a multi-class problem with 1 multi-class classifier trained on all unique combinations 
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of labels. The method maps each combination to a unique combination id number and con-

ducts multi-class classification using the classifier as a multi-class classifier and combina-

tion ids as classes [50]. Multi-step classification is implemented by dividing the problem 

into finding the number of active faults and then using different classifiers for cases be-

longing to a different number of faults. Figure 4.7 shows the proposed method for multi-

step classification. In step 1, the label set is [1, 2, 3], which are the possible number of 

active faults. In step 2, three classifiers are trained. Each classifier only deals with the cases 

with the same number of active faults. 

In the next chapter, the proposed fault diagnosis scheme is applied to a case study to eval-

uate its performance. 

 

Figure 4.7 - The proposed method for multi-step classification  
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5 CHAPTER 5 

RESULTS AND DISCUSSION 

In this chapter, the proposed fault diagnosis scheme is used on the satellite with four CMGs 

to find the optimum choices for each step’s method and evaluate the performance of the 

optimized scheme. The proposed scheme was run using a PC comprised of an Intel® 

Core™ i7-4790 CPU with a processing power of 3.6 GHz, 8 MB cache and 8 GB of RAM. 

The evaluation includes using different feature extraction methods, feature reduction/se-

lection and machine learning to find the optimum method for each step. It also includes 

evaluating the performance of the optimized scheme for the test data and performing the 

sensitivity analysis to ensure that it is suitable for real applications.  

5.1 Fault Isolation Results 

In this section, the fault isolation results are presented. 

5.1.1 Feature Extraction 

By discarding 𝑞4, as explained in section 4.5, 10 satellite attitude parameters are chosen to 

extract the features. Feature extraction is done using different methods to find the best 

suitable one. Table 5.1 shows the performance of the proposed scheme when different 

methods are used for feature extraction, in which the score are the averaged values obtained 

through a 5-folds cross validation analysis. 

Table 5.1 - Comparison of different feature extraction methods using cross validation 

Feature Extraction Method Score (%) 

Wavelet Packet Transform 63.5 

Multi-Domain Analysis 70.2 

Correlation Analysis 86.2 

Cross-Correlation Analysis 75.6 

Multi Correlation Analysis 85.4 

The results show that the correlation analysis features provide the best performance for the 

proposed method among the other feature extraction methods. This set of features is chosen 

to be used in the next step, which is feature reduction/selection. 
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5.1.2 Feature Reduction/Selection 

Table 5.2 shows the results for applying the proposed scheme with different feature reduc-

tion/selection methods. 

Table 5.2 - Comparison of different feature reduction/selection methods 

Feature Reduction/Selection Method 

Input Output 

No of 

features 

Score 

(%) 

No of 

features 

Score 

(%) 

PCA 45 92.9 25 92.2 

Recursive Feature Elimination 45 92.9 25 91.5 

Feature Importance 45 92.9 25 91.6 

The results depict that the PCA provides the highest score after feature reduction. So, the 

PCA is selected for feature reduction. The reduction aims to keep the features that represent 

99% of all features variance. Figure 5.1 shows the features explained variance. As this 

figure depicts, the features reach 99% of the variance with 25 out of 45 components. 

 

Figure 5.1 - Features Explained Variance 

5.1.3 Comparing the Performance of Different Machine Learning Methods 

Table 5.3 shows the results of using different machine learning methods. As the results 

show, the SVM model has the best performance than the neural networks, the gradient 

boosting machines, and the random forest.   
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Table 5.3 - Comparison of machine learning models 

Model Score (%) 

SVM 92.2 

Neural Networks 87.1 

Gradient Boosting Machines 86.5 

Random Forest 85.3 

Table 5.4 shows the results of applying different classification approaches. The SVM 

method is used as the classification algorithm in both the multi-label and the multi-step 

approaches. As this table shows, neither of these two approaches has a better performance 

than the traditional machine learning methods, shown in Table 5.4. 

Table 5.4 - Comparison of different classification approaches 

Approach Score (%) 

Multi-Label Classification 82.1 

Multi-Step Classification 77.1 

Based on the results shown in Table 5.3 and Table 5.4, the SVM is selected as a machine 

learning model, and the complementary results are presented in sections 5.1.4 to 5.1.6. 

5.1.4 Validation/Learning Curves for the SVM Model 

The optimum values and choices for the SVM model hyper-parameters are found using the 

grid search. Table 5.5 shows the search domain and the optimum value/choice for each 

hyper-parameter from the grid search. The coefficient 𝐶 is the penalty factor that is used 

for the regularization of the model. This parameter makes a balance between the training 

accuracy and simplicity of the model. A small 𝐶 makes the decision surface smooth, while 

a large 𝐶 aims at classifying all of the training samples accurately [50]. The gamma coef-

ficient applicable for ''poly'', ''rbf'', and ''sigmoid'' kernels, where rbf is an abbreviation for 

“radial basis function”. Gamma takes over the effect that each training example has on the 

model. By increasing gamma, only the closer samples are being affected [50]. The degree 
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is only applicable for the polynomial kernel, and as ''rbf'' is selected as kernel through the 

grid search for this study, the degree does not apply here. 

 

Table 5.5 - The SVM optimization grid search 

Pa-

rame-

ter 

Search Domain 
Opti-

mum 

C 0.1, 1, 10, 100, 1000, 5000, 10000, 20000, 30000, 100000 100000 

gamma 1, 0.1, 0.01, 0.001, 0.0001 0.1 

Kernel linear, rbf, polynomial rbf 

Degree 2, 3, 4, 5, 6 — 

 

Figure 5.2 shows the SVM model's validation curve for gamma and C. These figures con-

firm that the parameters' selected values are optimum. 

  

(a) (b) 

Figure 5.2 - SVM validation curves (a) score vs. gamma (b) score vs. C 

Figure 5.3 shows the learning curve for the SVM model. In this figure, the model training 

score and testing score, calculated by the cross-validation method, are shown versus the 

number of training samples. By increasing the number of samples, the training score has 

decreased while the testing score is increasing until a specific point, 350’000 training sam-

ples, and then enters a plateau region. Based on this, it seems that having 640’000 total 

samples is enough when the ratio of train/test split is chosen as 0.7/0.3. 
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Figure 5.3 - The learning curve for the SVM model 

The model was evaluated with the test data using five-fold cross-validation. Table 5.6 lists 

the results. It can be observed from Table 5.6 that the chosen model achieves a high score 

in every fold while the standard deviation is low. This means that no over-fitting has oc-

curred, and the scores are very close to each other for different folds. 

Table 5.6 - The results for five-folds cross-validation 

Scores (%) Mean (%) 

Standard 

Deviation 

(%) 

95.6, 95.7, 95.6, 95.5, 95.4 95.6 0.1 

 

5.1.5 Confusion Matrix for the SVM Model 

The confusion matrix is obtained for the test data to evaluate the model performance with 

more details per each scenario and is demonstrated in Table 5.7. The number of instances 

tested per class is used for normalizing the results. 
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Table 5.7 - The case study confusion matrix 

E
x
p
ec

te
d
 

0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 1 0 0 96 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 

10 0 0 0 0 1 0 0 0 0 0 95 0 0 0 0 0 

11 0 0 0 0 0 1 1 0 1 0 0 94 0 0 0 0 

12 0 0 0 0 0 0 0 2 0 2 0 0 91 1 0 2 

13 0 0 0 0 0 0 0 3 0 0 3 0 1 87 0 2 

14 0 0 0 0 0 0 0 0 0 3 2 0 0 0 90 2 

15 0 0 0 0 0 0 0 0 0 0 0 1 7 5 6 77 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

  Predicted 

The values in the diagonal depict the percentage of the instances predicted correctly. The 

first scenario that is related to all healthy units has 100 percent accuracy. The next four 

scenarios are related to the cases with only one faulty unit and have 99 percent accuracy. 

However, as the number of faulty units increases, the model performance degrades for the 

next scenarios. For the scenarios with only one faulty unit, the accuracy is, on average, 

99%. In the cases that have two concurrently faulty units, the average accuracy reduces to 

97.8%. This pattern continues with an average accuracy of 91.4% and 77%, with three and 

four faulty units, respectively. Therefore, the model performance degrades as more faults 

are present simultaneously. This behaviour can be explained due to the overlap that the 

cases with more than 1 active faults have with the other cases which have the same faulty 
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CMG units.  For example, scenario 13 has three active faults in CMG unit numbers 1, 3, 

and 4, as shown in .Figure 4.1 This scenario has overlap with scenarios number 7, 10, and 

15 in which the faulty units are (1, 4), (3, 4), and (1, 2, 3, 4), respectively. As Table 5.7 

depicts, for scenario 13, the mentioned scenarios have the largest percentage of mispre-

dicted labels, same as for other scenarios. 

5.1.6 Sensitivity Analysis of the SVM Model 

In this section, a comprehensive sensitivity analysis for the proposed model is presented. 

The model's sensitivity is evaluated for noise, missing sensors (due to sensor failure), and 

missing measurements (due to sensor fault) to ensure the model's robustness. 

5.1.6.1. Number of Scenarios 

A total of 16 different scenarios are considered in this study, as shown in Table 3.1. Ta-

ble 5.8 shows the results for subsets of all 16 scenarios, including one active fault, two 

active faults, three active faults, four active faults and a combination of these. As the results 

show, the model has 100% accuracy for the scenarios where there is only one active fault. 

The accuracy drops gradually as the number of simultaneous faults increases to four. 

Table 5.8 - Model’s sensitivity to the number of active faults 

Scenarios 1 to 4 1 to 10 1 to 14 1 to 15 

Maximum Number of Active Faults 1 2 3 4 

Score (%) 100 98.4 95.5 93.2 

5.1.6.1 The Effect of Noise 

Noise has been added to the raw data with different signal-to-noise ratio (SNR) levels to 

study the effect of noisy raw data on the model performance. The added noise in this study 

is Gaussian with a zero mean.  Table 5.9 shows the results for different levels of SNR. The 

results show that the model performance degrades as the SNR decreases. It should be noted 

that the model maintains a reasonable score when the SNR is above 50dB, which is the 

case in most practical applications. 
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Table 5.9 - Model’s sensitivity to noise 

SNR (dB) No Noise 60 50 40 30 20 10 

Score (%) 86 78 70 56 37 22 13 

 

5.1.6.2 Missing Sensors 

The satellite attitude parameters and the CMGs gimbal angles, used as raw data in this 

work, represent sensor readings from the satellite. In practical applications, there may be 

situations where some of these sensors malfunction or fail. In this section, a study is done 

on the cases where one or more sensors have failed, and the data is not available from these 

sensors. As the feature set is different for each case of available sensors, the machine learn-

ing model should be trained and tested separately for each case, and hence, there will be 

multiple developed models to be used for each case [54]. Another approach for dealing 

with a reduced number of measurements is transfer learning which is addressed in [55]. In 

this work, the SVM model is trained and tested for each of the possible missing sensor 

scenarios. Table 5.10 shows the results for different possible failed sensor combinations. 

As the results show in Table 5.10, the model accuracy degrades when one or more sensors 

fail. However, in cases where 6 or more out of 10 sensors are properly functioning, the 

model performance is reasonable for real applications.  
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Table 5.10 - Model’s sensitivity to missing sensors 

Functioning Sensors Score (%) 

𝑞1, 𝑞2, 𝑞3, 𝜔1, 𝜔2, 𝜔3, 𝛿1, 𝛿2, 𝛿3, 𝛿4 86.4 

 𝑞1, 𝑞2, 𝑞3, 𝜔1, 𝜔2, 𝜔3, 𝛿1, 𝛿2, 𝛿3 85.4 

𝑞1, 𝑞2, 𝑞3, 𝜔1, 𝜔3, 𝛿1, 𝛿2, 𝛿3, 𝛿4 85.8 

 𝑞2, 𝑞3, 𝜔1, 𝜔2, 𝜔3, 𝛿1, 𝛿2, 𝛿3, 𝛿4 86.0 

 𝑞1, 𝑞2, 𝜔1, 𝜔3, 𝛿1, 𝛿2, 𝛿3, 𝛿4 85.1 

 𝑞2, 𝑞3, 𝜔1, 𝜔2, 𝜔3, 𝛿1, 𝛿3, 𝛿4 86.0 

𝜔1, 𝜔2, 𝜔3, 𝛿1, 𝛿2, 𝛿3, 𝛿4 84.5 

 𝑞1, 𝑞2, 𝑞3, 𝛿1, 𝛿2, 𝛿3 84.6 

 𝑞1, 𝑞2, 𝑞3, 𝜔1, 𝜔2, 𝜔3 83.4 

𝜔1, 𝜔2, 𝜔3, 𝛿1, 𝛿2, 𝛿3 81.7 

 𝑞1, 𝑞2, 𝜔1, 𝜔2, 𝛿1, 𝛿2 79.3 

𝛿1, 𝛿2, 𝛿3, 𝛿4 73.7 

 𝑞1, 𝑞2, 𝑞3 55.7 

𝜔1, 𝜔2, 𝜔3 61.8 

𝑞1, 𝜔1, 𝛿1  41.3 

 

5.1.6.3 Missing Values 

It is common for sensory data to contain missing values due to faults in communication 

channels or sensor components. In this section, an analysis is done to evaluate the model 

performance for missing data. The original raw data used in this study does not have any 

missing values. Hence, missing values are added to the original dataset (generated through 

simulations) manually at different percentages to conduct this analysis. There are different 

methods available for imputing the missing values in sensory data [56]. In this work, the 

linear interpolation imputes the missing values before moving forward for calculating the 

residuals and extracting the features.  Table 5.11 shows the results for possible missing 

data percentages. The model score drops as the percentage of the missing values increases. 

However, the model score is still reasonable for 10% or less missing values.  
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Table 5.11 - Model’s sensitivity to missing values 

Missing values (%) 0 1 3 5 7 10 20 35 50 

Score (%) 86.4 79.6 75.2 73.4 70.8 69.3 64.3 55.8 47.8 

 

5.2 Fault Identification Results 

In this section, the fault Identification results are presented. Fault identification is done 

using an optimized SVR model. The correlation analysis is used for feature extraction, as 

is described in section 2.1.2. As shown in Table 5.12, the best score is obtained using all 

of the different correlation coefficients. 

Table 5.12 - The SVR Model Performance for Different Feature Sets 

Feature set Score (%) 

Pearson, Spearman, and Kendall Coefficients 94.9 

Pearson Coefficients 89.4 

The most representative features are selected using the principal component analysis for 

the SVR model. Figure 5.4 demonstrates how the feature space captures the data variance 

after reduction for the whole feature set. It shows that 60 features out of the total of 135 

can capture 0.99 of the data variance. At this step, the chosen features were provided for 

use in the proposed scheme for regression analysis. 

 

Figure 5.4 - Features explained variance for the SVR model 
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The parameters search domain and the final optimum choices for each model are shown in 

Table 5.13.  

Table 5.13 - The SVR optimization grid search 

Parameter Search Domain Optimum 

C 0.1, 1, 10, 100, 1000, 5000, 10000, 20000, 30000, 100000 10 

gamma 1, 0.1, 0.01, 0.001, 0.0001 0.1 

Kernel linear, rbf, polynomial rbf 

Degree 2, 3, 4, 5, 6 — 

 Figure 5.5 and Figure 5.6 show the SVR model’s validation curve for gamma and C, re-

spectively. These figures depict that the selected parameter values are optimum as the max-

imum score has occurred at the points selected as optimum values. 

 

Figure 5.5 - Validation curve of the SVR model for gamma 

 

Figure 5.6 - Validation curve of the SVR model for C 
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The SVR models were tested for all inputs using a cross-validation approach with five 

folds. The results are shown in Table 5.14. The model has a high score in each fold with a 

low standard deviation based on the results. This implies that over-fitting had not occurred. 

Table 5.14 - The regression analysis results for five-folds cross-validation 

Variable Scores (%) Mean (%) 
Standard  

Deviation (%) 

𝑓1 94.9, 93.0, 96.1, 92.6, 88.3  93.0 3.0 

𝑓2 94.6, 91.9, 94.9, 93.8, 87.6 92.6 3.0 

𝑓3 94.5, 91.8, 95.4, 94.5, 89.7 93.2 2.4 

𝑓4 96.2, 95.2, 96.0, 97.0, 95.2 95.9 0.7 

The regression accuracy of the proposed SVR model is measured against the test set. Ta-

ble 5.15 shows the mean squared error (MSE) of the regression analysis for each fault 

parameter, which is very low for all fault parameters. 

Table 5.15 - MSE of regression analysis results 

Variable Mean error 

𝑓1 0.0059 

𝑓2 0.0066 

𝑓3 0.0060 

𝑓4 0.0034 

The results are also shown in Figure 5.7 to Figure 5.10. Each of these figures is devoted to 

each one out of 4 CMG units. The score expresses the performance of the model to predict 

the value for the fault parameter. These figures can be used to evaluate the model perfor-

mance for each CMG unit and each fault scenario in detail. The scenarios in which the 

CMG unit is healthy are not shown in these figures. For example, in scenario 2, CMG unit 

2 is healthy. So, no value for scenario 2 is reported in Figure 5.7, which is devoted to CMG 

unit 1 fault parameter or 𝑓1. Fault scenarios are shown in Table 3.1 and fault parameters 

are described in section 4.5. Figure 5.7 to Figure 5.10 also include the results from [23] for 
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comparison. As these figures depict, this work has improved the scores considerably, es-

pecially for the scenarios with 2 and more active faults. This is achieved mainly by using 

more representative features.  

 

Figure 5.7 - The SVR model score versus fault scenarios for 𝒇𝟏 

 

Figure 5.8 - The SVR model score versus fault scenarios for 𝒇𝟐 

 

Figure 5.9 - The SVR model score versus fault scenarios for 𝒇𝟑 
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Figure 5.10 - The SVR model score versus fault scenarios for 𝒇𝟒 

As the results show, the score is high for all fault parameters and scenarios while it de-

creases as the number of active faults increases. The lowest score belongs to scenario 15, 

which includes 4 active faults, i.e. when all of the CMG units are faulty. This behaviour 

can be attributed to the overlap the faults have with each other for cases where more than 

one fault is simultaneously present. For example, for scenario 15, there are 4 faults active 

at the same time. The overlap between these faults makes it challenging to predict the cor-

rect values for each fault parameter.   
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6 CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 

6.1 Conclusions 

In this work, a data-driven fault diagnosis scheme is established for isolating and identify-

ing multiple in-phase CMG faults onboard a 3-axis stabilized satellite. Different meth-

ods/approaches are used for extracting the features, feature reduction/selection, and ma-

chine learning to find the optimum method/approach for moving forward with the proposed 

scheme. The optimized fault diagnosis scheme is then evaluated through a case study. This 

includes evaluating the models’ performance using the test data and performing a compre-

hensive sensitivity analysis. The results show that the proposed scheme can isolate and 

identify the faulty CMG units for different possible fault scenarios with a reasonable score. 

The sensitivity analysis results show that the proposed scheme is robust enough to be used 

in real applications, including noisy data, missing values, and missing sensors. Overall, this 

work proves the possibility of implementing a data-driven FDI scheme for isolating and 

identifying multiple in-phase faults in CMGs onboard satellites.  

6.2 Future Works 

Improving the models’ performance by doing more research on feature engineering (e.g. 

investigating new and advanced signal processing techniques) and machine learning meth-

ods can be one of the possible paths for future works. Then, applying the proposed scheme 

to the real data from the satellite telemetry system can be considered a reasonable extension 

of this work. For doing this, there may be a need to use some new methods such as transfer 

learning [57,58]. Further research can also be conducted to evaluate the performance of the 

proposed diagnostic scheme on the other types of satellite ACS, including reaction wheels 

and momentum wheels. In addition, future studies can also focus on fault prognosis and 

remaining useful life estimation (RUL).  
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