52 research outputs found

    Singular systems with time-varying delays

    Get PDF
    Preliminaries on time-delay singular systems -- Stability of time-delay singular systems -- State feedback controller for time-delay singular systems -- Static output feedback controller for time-delay singular systems with saturating actuators

    Stability analysis and controller design for switched time-delay systems

    Get PDF
    In this thesis, the stability analysis and control synthesis for uncertain switched time-delay systems are investigated. It is known that a wide variety of real-world systems are subject to uncertainty and also time-delay in their dynamics. These characteristics, if not taken into consideration in analysis and synthesis, can lead to important problems such as performance degradation or instability in a control system. On the other hand, the switching phenomenon often appears in numerous applications, where abrupt change is inevitable in the system model. Switching behavior in this type of systems can be triggered either by time, or by the state of the system. A theoretical framework to study various features of switched systems in the presence of uncertainty and time-delay (both neutral and retarded) would be of particular interest in important applications such as network control systems, power systems and communication networks. To address the problem of robust stability for the class of uncertain switched systems with unknown time-varying delay discussed above, sufficient conditions in the form of linear matrix inequalities (LMI) are derived. An adaptive switching control algorithm is then proposed for the stabilization of uncertain discrete time-delay systems subject to disturbance. It is assumed that the discrete time-delay system is highly uncertain, such that a single fixed controller cannot stabilize it effectively. Sufficient conditions are provided subsequently for the stability of switched time-delay systems with polytopic-type uncertainties. Moreover, an adaptive control scheme is provided to stabilize the uncertain neutral time-delay systems when the upper bounds on the system uncertainties are not available a priori . Simulations are provided throughout the thesis to support the theoretical result

    Advances in gain-scheduling and fault tolerant control techniques

    Get PDF
    This thesis presents some contributions to the state-of-the-art of the fields of gain-scheduling and fault tolerant control (FTC). In the area of gain-scheduling, the connections between the linear parameter varying (LPV) and Takagi-Sugeno (TS) paradigms are analyzed, showing that the methods for the automated generation of models by nonlinear embedding and by sector nonlinearity, developed for one class of systems, can be easily extended to deal with the other class. Then, two measures, based on the notions of overboundedness and region of attraction estimates, are proposed in order to compare different models and choose which one can be considered the best one. Later, the problem of designing state-feedback controllers for LPV systems has been considered, providing two main contributions. First, robust LPV controllers that can guarantee some desired performances when applied to uncertain LPV systems are designed, by using a double-layer polytopic description that takes into account both the variability due to the varying parameter vector and the uncertainty. Then, the idea of designing the controller in such a way that the required performances are scheduled by the varying parameters is explored, which provides an elegant way to vary online the behavior of the closed-loop system. In both cases, the problem reduces to finding a solution to a finite number of linear matrix inequalities (LMIs), which can be done efficiently using the available solvers. In the area of fault tolerant control, the thesis first shows that the aforementioned double-layer polytopic framework can be used for FTC, in such a way that different strategies (passive, active and hybrid) are obtained depending on the amount of available information. Later, an FTC strategy for LPV systems that involves a reconfigured reference model and virtual actuators is developed. It is shown that by including the saturations in the reference model equations, it is possible to design a model reference FTC system that automatically retunes the reference states whenever the system is affected by saturation nonlinearities. In this way, a graceful performance degradation in presence of actuator saturations is incorporated in an elegant way. Finally, the problem of FTC of unstable LPV systems subject to actuator saturations is considered. In this case, the design of the virtual actuator is performed in such a way that the convergence of the state trajectory to zero is assured despite the saturations and the appearance of faults. Also, it is shown that it is possible to obtain some guarantees about the tolerated delay between the fault occurrence and its isolation, and that the nominal controller can be designed so as to maximize the tolerated delay.Aquesta tesi presenta diverses contribucions a l'estat de l'art del control per planificació del guany i del control tolerant a fallades (FTC). Pel que fa al control per planificació del guany, s'analitzen les connexions entre els paradigmes dels sistemes lineals a paràmetres variants en el temps (LPV) i de Takagi-Sugeno (TS). Es demostra que els mètodes per a la generació automàtica de models mitjançant encastament no lineal i mitjançant no linealitat sectorial, desenvolupats per una classe de sistemes, es poden estendre fàcilment per fer-los servir amb l'altra classe. Es proposen dues mesures basades en les nocions de sobrefitació i d'estimació de la regió d'atracció, per tal de comparar diferents models i triar quin d'ells pot ser considerat el millor. Després, es considera el problema de dissenyar controladors per realimentació d'estat per a sistemes LPV, proporcionant dues contribucions principals. En primer lloc, fent servir una descripció amb doble capa politòpica que té en compte tant la variabilitat deguda al vector de paràmetres variants i la deguda a la incertesa, es dissenyen controladors LPV robustos que puguin garantir unes especificacions desitjades quan s'apliquen a sistemes LPV incerts. En segon lloc, s'explora la idea de dissenyar el controlador de tal manera que les especificacions requerides siguin programades pels paràmetres variants. Això proporciona una manera elegant de variar en línia el comportament del sistema en llaç tancat. En tots dos casos, el problema es redueix a trobar una solució d'un nombre finit de desigualtats matricials lineals (LMIs), que es poden resoldre fent servir algorismes numèrics disponibles i molt eficients. En l'àrea del control tolerant a fallades, primerament la tesi mostra que la descripció amb doble capa politòpica abans esmentada es pot utilitzar per fer FTC, de tal manera que, en funció de la quantitat d'informació disponible, s'obtenen diferents estratègies (passiva, activa i híbrida). Després, es desenvolupa una estratègia de FTC per a sistemes LPV que fa servir un model de referència reconfigurat combinat amb la tècnica d'actuadors virtuals. Es mostra que mitjançant la inclusió de les saturacions en les equacions del model de referència, és possible dissenyar un sistema de control tolerant a fallades que resintonitza automàticament els estats de referència cada vegada que el sistema es veu afectat per les no linealitats de la saturació en els actuadors. D'aquesta manera s'incorpora una degradació elegant de les especificacions en presència de saturacions d'actuadors. Finalment, es considera el problema de FTC per sistemes LPV inestables afectats per saturacions d'actuadors. En aquest cas, es porta a terme el disseny de l'actuador virtual de tal manera que la convergència a zero de la trajectòria d'estat està assegurada tot i les saturacions i l'aparició de fallades. A més, es mostra que és possible obtenir garanties sobre el retard tolerat entre l'aparició d'una fallada i el seu aïllament, i que el controlador nominal es pot dissenyar maximitzant el retard tolerat

    Stability analysis and control of discrete-time systems with delay

    Get PDF
    The research presented in this thesis considers the stability analysis and control of discrete-time systems with delay. The interest in this class of systems has been motivated traditionally by sampled-data systems in which a process is sampled periodically and then controlled via a computer. This setting leads to relatively cheap control solutions, but requires the discretization of signals which typically introduces time delays. Therefore, controller design for sampled-data systems is often based on a model consisting of a discrete-time system with delay. More recently the interest in discrete-time systems with delay has been motivated by networked control systems in which the connection between the process and the controller is made through a shared communication network. This communication network increases the flexibility of the control architecture but also introduces effects such as packet dropouts, uncertain time-varying delays and timing jitter. To take those effects into account, typically a discrete-time system with delay is formulated that represents the process together with the communication network, this model is then used for controller design While most researchers that work on sampled-data and networked control systems make use of discrete-time systems with delay as a modeling class, they merely use these models as a tool to analyse the properties of their original control problem. Unfortunately, a relatively small amount of research on discrete-time systems with delay addresses fundamental questions such as: What trade-off between computational complexity and conceptual generality or potential control performance is provided by the different stability analysis methods that underlie existing results? Are there other stability analysis methods possible that provide a better trade-off between these properties? In this thesis we try to address these and other related questions. Motivated by the fact that almost every system in practice is subject to constraints and Lyapunov theory is one of the few methods that can be easily adapted to deal with constraints, all results in this thesis are based on Lyapunov theory. In Chapter 2 we introduce delay difference inclusions (DDIs) as a modeling class for systems with delay and discuss their generality and advantages. Furthermore, the two standard stability analysis results for DDIs that make use of Lyapunov theory, i.e., the Krasovskii and Razumikhin approaches, are considered. The Krasovskii approach provides necessary and sufficient conditions for stability while the Razumikhin approach provides conditions that are relatively simple to verify but conservative. An important conclusion is that the Razumikhin approach makes use of conditions that involve the system state only while those corresponding to the Krasovskii approach involve trajectory segments. Therefore, only the Razumikhin approach yields information about DDI trajectories directly, such that the corresponding computations can be executed in the low-dimensional state space of the DDI dynamics. Hence, we focus on the Razumikhin approach in the remainder of the thesis. In Chapter 3 it is shown that by considering each delayed state as a subsystem, the behavior of a DDI can be described by an interconnected system. Thus, the Razumikhin approach is found to be an exact application of the small-gain theorem, which provides an explanation for the conservatism that is typically associated with this approach. Then, inspired by the relation of DDIs to interconnected systems, we propose a new Razumikhin-type stability analysis method that makes use of a stability analysis result for interconnected systems with dissipative subsystems. The proposed method is shown to provide a trade-off between the conceptual generality of the Krasovskii approach and the computationally convenience of the Razumikhin approach. Unfortunately, these novel Razumikhin-type stability analysis conditions still remain conservative. Therefore, in Chapter 4 we propose a relaxation of the Razumikhin approach that provides necessary and sufficient conditions for stability. Thus, we obtain a Razumikhin-type result that makes use of conditions that involve the system state only and are non-conservative. Interestingly, we prove that for positive linear systems these conditions equivalent to the standard Razumikhin approach and hence both are necessary and sufficient for stability. This establishes the dominance of the standard Razumikhin approach over the Krasovskii approach for positive linear discrete-time systems with delay. Next, in Chapter 5 the stability analysis of constrained DDIs is considered. To this end, we study the construction of invariant sets. In this context the Krasovskii approach leads to algorithms that are not computationally tractable while the Razumikhin approach is, due to its conservatism, not always able to provide a suitable invariant set. Based on the non-conservative Razumikhin-type conditions that were proposed in Chapter 4, a novel invariance notion is proposed. This notion, called the invariant family of sets, preserves the conceptual generality of the Krasovskii approach while, at the same time, it has a computational complexity comparable to the Razumikhin approach. The properties of invariant families of sets are analyzed and synthesis methods are presented. Then, in Chapter 6 the stabilization of constrained linear DDIs is considered. In particular, we propose two advanced control schemes that make use of online optimization. The first scheme is designed specifically to handle constraints in a non-conservative way and is based on the Razumikhin approach. The second control scheme reduces the computational complexity that is typically associated with the stabilization of constrained DDIs and is based on a set of necessary and sufficient Razumikhin-type conditions for stability. In Chapter 7 interconnected systems with delay are considered. In particular, the standard stability analysis results based on the Krasovskii as well as the Razumikhin approach are extended to interconnected systems with delay using small-gain arguments. This leads, among others, to the insight that delays on the channels that connect the various subsystems can not cause the instability of the overall interconnected system with delay if a small-gain condition holds. This result stands in sharp contrast with the typical destabilizing effect that time delays have. The aforementioned results are used to analyse the stability of a classical power systems example where the power plants are controlled only locally via a communication network, which gives rise to local delays in the power plants. A reflection on the work that has been presented in this thesis and a set of conclusions and recommendations for future work are presented in Chapter 8

    Networked control: taking into account sample period variations and actuators saturation

    Get PDF
    International audienceThis paper exposes a novel method to cope with the stabilization of networked control systems with asynchronous sampling and actuators saturations. The constructive stabilization criterion is expressed in terms of linear matrices inequalities using the continuous-time model of the systems. However the stability analysis of the closed-loop system is based on the discrete-time Lyapunov Theorem. An example shows that the conservatism of the conditions has been reduced with respect to the literature

    Stability analysis and stabilization of linear aperiodic sampled-data systems subject to input constraints

    Get PDF
    Motivados pelo crescente uso de controladores embarcados em diferentes aplicações, onde um protocolo de comunicação é responsável pela transmissão de dados entre algoritmos computacionais, atuadores e sensores, a análise e o controle de sistemas amostrados foram abordados em muitos trabalhos. Nesse contexto, a amostragem aperiódica pode ser vista como uma abstração matemática empregada para representar, na teoria, o efeito de imperfeições no canal de comunicação, como instabilidades, flutuações e, em alguns casos, perda de pacotes de dados. Além disso, devido a limitações físicas dos atuadores, restrições de entrada e, em particular, a saturação são onipresentes em problemas reais de controle. Essas restrições são fonte de comportamentos não-lineares e de degradação do desempenho. Em muitos casos, apenas a estabilidade local (ou regional) do sistema em malha fechada pode ser garantida na presença de restrições e não-linearidades de entrada, mesmo para plantas lineares. Este trabalho lida com sistemas lineares amostrados aperiodicamente em que a entrada de controle, sujeita a restrições (por exemplo, saturação), é calculada com base em uma realimentação de estados do sistema. Dois problemas principais são abordados. O primeiro consiste na análise de estabilidade da origem de tais sistemas com a determinação de estimativas da região de atração da origem (RAO). O segundo, por sua vez, corresponde ao projeto de controle, onde uma lei de controle de realimentação de estados é calculada para otimizar o tamanho de uma estimativa da RAO do sistema em malha fechada resultante. Os métodos propostos são baseados no uso de programação semidefinida ou linear e, portanto, podem ser facilmente aplicados na prática. Um dos métodos propostos considera uma realimentação de estados linear sujeita a saturação e funções de Lyapunov quadráticas, resultando em estimativas elipsoidais da RAO do sistema. Dois outros métodos lidam com a análise de estabilidade do sistema amostrado sujeito a saturação fornecendo estimativas poliedrais da RAO. Devido à sua flexibilidade, a adoção de poliedros em vez de elipsóides permite uma redução de conservadorismo, mas é muito exigente em termos de complexidade computacional. Motivada por esse fato, esta tese também propõe um método de projeto de controle baseado em uma estratégia alternativa, onde a complexidade dos poliedros é fixada a priori. Essa ideia resulta em um problema de otimização com restrições bilineares, onde uma lei de controle linear por partes estabilizadora de complexidade relativamente baixa é encontrada para o sistema amostrado. Os métodos mencionados acima consideram uma abordagem não-estocástica, onde limites inferior e superior são impostos para o intervalo de amostragem do sistema, o qual é desconhecido e variante no tempo. Como contribuição adicional, esta tese também considera uma abordagem estocástica. Um método de projeto de controle é proposto para a estabilização global no sentido quadrático médio do sistema amostrado, onde a lei de realimentação de estados linear é sujeita a não-linearidades que satisfazem a uma condição de setor e os intervalos de amostragem correspondem a variáveis aleatórias com a distribuição de Erlang. A possibilidade de perda de pacotes de dados também é explicitamente levada em consideração através da distribuição de Bernoulli. Além disso, o método proposto, que se baseia na teoria de processos de Markov determinísticos por partes, resulta em condições de estabilização não-conservadoras no caso linear sem restrições de entrada.Motivated by the growing use of embedded controllers in different applications, where a communication protocol is responsible for the transmission of data between computer algorithms, actuators and sensors, the analysis and control design for sampled-data control systems have been addressed in many works. In this context, aperiodic sampling can be seen as a modeling abstraction employed to represent, in a theoretical framework, the effect of imperfections on the communication channel such as sampling jitters, fluctuations and, in some cases, packet dropouts. Moreover, due to physical limitations of actuators, input constraints and, in particular, input saturation are ubiquitous in real control problems. These constraints are source of nonlinear behaviors and performance degradation. In many cases, only local (or regional) stability of the closed-loop system can be ensured in the presence of actuators constraints and nonlinearities, even for linear plants. This work deals with linear aperiodic sampled-data systems where the control input, subject to constraints (e.g. saturation), is computed based on a feedback of the system state. It focuses on two main problems. The first one regards the stability analysis of the origin of such systems, with the determination of estimates of the region of attraction of the origin (RAO). The second one, in turn, corresponds to the control design, where a state-feedback control law is computed in order to enlarge an estimate of the RAO of the resulting closed-loop system. The proposed methods are based on the use of semidefinite or linear programming and can therefore be easily applied in practice. One of the proposed methods considers a linear saturating feedback of the system state and quadratic Lyapunov functions, leading to ellipsoidal estimates of the RAO of the system. Two other methods deal with the stability analysis of the sampled-data system subject to input saturation providing polyhedral estimates of the RAO. Because of their flexibility, adopting polyhedrons instead of ellipsoids allows a reduction of conservatism, but is very demanding in terms of computational complexity. Motivated by this fact, this thesis also proposes a control design method based on an alternative strategy, where the complexity of the polytopes is fixed a priori. This idea results in an optimization problem with bilinear constraints, where a stabilizing piecewise linear control law of relatively low complexity is found for the sampled-data system. The aforementioned methods consider a non-stochastic framework, where lower and upper bounds are imposed for the unknown, time-varying sampling interval of the system. As an additional contribution, this thesis also considers a stochastic setting. A control design method is proposed for the global stabilization in the mean square sense of the sampled-data system, where the linear feedback control law is subject to sector bounded nonlinearities and the sampling intervals are assumed to be random variables with the Erlang distribution. The possibility of packet dropouts is also explicitly taken into account through the Bernoulli distribution. Moreover, the proposed approach, which is based onthe framework of Piecewise Deterministic Markov Processes, leads to non-conservative stabilization conditions in the unconstrained linear case.Motivé par l’utilisation croissante de contrôleurs embarqués dans différentes applications, où un protocole de communication est responsable par la transmission de données entre les algorithmes numériques, les actionneurs et les capteurs, l’analyse et la conception de contrôle pour les systèmes de contrôle échantillonnées ont été abordées dans de nombreux travaux. Dans ce contexte, l’échantillonnage apériodique peut être considéré comme une abstraction mathématique employée pour représenter, dans un cadre théorique, l’effet des imperfections sur le canal de communication telles que la gigue d’échantillonnage, les fluctuations et, dans certains cas, les pertes de paquets. De plus, en raison des limitations physiques des actionneurs, les contraintes d’entrée et, en particulier, la saturation des entrées sont omniprésentes dans les problèmes de contrôle réels. Ces contraintes sont une source de comportements non-linéaires et de dégradation de la performance. Dans de nombreux cas, seule la stabilité locale (ou régionale) du système en boucle fermée peut être assurée en présence de contraintes et de non-linéarités des actionneurs, même pour les systèmes linéaires. Ce travail traite des systèmes linéaires échantillonnées apériodiquement où l’entrée de commande, soumise à des contraintes (par exemple la saturation), est calculée sur la base d’un retour d’état du système. Il se concentre sur deux problèmes principaux. Le premier consiste en l’analyse de stabilité de l’origine de tels systèmes avec la détermination d’estimations de la région d’attraction de l’origine (RAO). Le deuxième, à son tour, correspond à la conception de la commande, où une loi de commande à retour d’état est calculée afin d’agrandir une estimation de la RAO du système en boucle fermée résultant. Les méthodes proposées sont basées sur la programmation semi-définie ou linéaire et peuvent donc être facilement appliquées dans la pratique. L’une des méthodes proposées considère un retour d’état linéaire soumis à la saturation et des fonctions de Lyapunov quadratiques, conduisant à des estimations ellipsoïdales de la RAO du système. Deux autres méthodes traitent de l’analyse de stabilité du système échantillonné soumis à la saturation des entrées fournissant des estimations polyédriques de la RAO. En raison de leur flexibilité, l’adoption de polyèdres au lieu d’ellipsoïdes permet une réduction du conservatisme mais est très exigeante en termes de complexité de calcul. Motivée par ce fait, cette thèse propose également une méthode de conception de contrôle basée sur une stratégie alternative, où la complexité des polyèdres est fixée a priori. Cette idée se traduit par un problème d’optimisation avec des contraintes bilinéaires, où une loi de commande linéaire par morceaux stabilisante de complexité relativement faible est trouvée pour le système échantillonné. Les méthodes mentionnées ci-dessus considèrent un cadre non stochastique, où des limites inférieure et supérieure sont imposées pour l’intervalle d’échantillonnage inconnu et variable dans le temps du système. Comme contribution supplémentaire, cette thèseconsidère également un cadre stochastique. Une méthode de conception de contrôle est proposée pour la stabilisation globale dans le sens quadratique moyen du système échantillonné, où la loi de contrôle linéaire de retour d’état est soumise à des non-linéarités délimitées par secteur et les intervalles d’échantillonnage sont supposés être des variables aléatoires avec la distribution d’Erlang. La possibilité de pertes de paquets est aussi explicitement prise en compte via la distribution de Bernoulli. De plus, l’approche proposée, qui est basée sur le cadre des processus de Markov déterministes par morceaux, conduit à des conditions de stabilisation non conservatrices dans le cas linéaire sans contraintes

    Controle de dinâmica de opinião como um problema de consenso de sistemas multi-agentes : uma abordagem LMI

    Get PDF
    Dissertação (mestrado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2022.Enquanto que um acordo em sistemas multi-agentes (MAS) pode ser assegurado impondo algumas propriedades de conectividade entre os agentes, o consenso resultante depende das condições iniciais e da topologia da rede. Nesse contexto, nosso principal objetivo nesta dissertação é influenciar o valor do consenso de sistemas multi-agentes em direção a um valor desejado. A estabilidade assintótica e a maximização do domínio de atração para o modelo bilinear representando a dinâmica de opinião na presença de limitação na amplitude e na energia da ação de controle para uma rede fixa e conectada está sendo investigada. Usando a teoria dos grafos algébricos e desigualdades matriciais lineares (LMI), fornecemos condições suficientes para garantir a convergência dos agentes em direção ao consenso desejado. Além disso, exemplos numéricos mostram a eficiência do método proposto.While reaching an agreement in multi-agent systems (MAS) can be ensured by enforcing some connectivity properties between agents, the resulted consensus depends on their initial conditions and the network topology. In this context, our main objective in this manuscript is to sway the consensus value of multi-agent systems towards a desired value. The asymptotic stability and maximization of the domain of attraction for the bilinear model representing the opinion dynamics in the presence of limited control action for a fixed and connected network is being investigated. By using algebraic graph theory and linear matrix inequality (LMI), we provide sufficient conditions guaranteeing the convergence of agents toward the desired consensus. Furthermore, examples are being driven to display the effectiveness of the proposed method

    Stability analysis of coupled ordinary differential systems with a string equation: application to a drilling mechanism

    Get PDF
    Cette thèse porte sur l'analyse de stabilité de couplage entre deux systèmes, l'un de dimension finie et l'autre infinie. Ce type de systèmes apparait en physique car il est intimement lié aux modèles de structures. L'analyse générique de tels systèmes est complexe à cause des natures très différentes de chacun des sous-systèmes. Ici, l'analyse est conduite en utilisant deux méthodologies. Tout d'abord, la séparation quadratique est utilisée pour traiter le côté fréquentiel de ce système couplé. L'autre méthode est basée sur la théorie de Lyapunov pour prouver la stabilité asymptotique de l'interconnexion. Tous ces résultats sont obtenus en utilisant la méthode de projection de l'état de dimension infinie sur une base polynomiale. Il est alors possible de prendre en compte le couplage entre les deux systèmes et ainsi d'obtenir des tests numériques fiables, rapides et peu conservatifs. De plus, une hiérarchie de conditions est établie dans le cas de Lyapunov. L'application au cas concret du forage pétrolier est proposée pour illustrer l'efficacité de la méthode et les nouvelles perspectives qu'elle offre. Par exemple, en utilisant la notion de stabilité pratique, nous avons montré qu'une tige de forage controlée à l'aide d'un PI est sujette à un cycle limite et qu'il est possible d'estimer son amplitude.This thesis is about the stability analysis of a coupled finite dimensional system and an infinite dimensional one. This kind of systems emerges in the physics since it is related to the modeling of structures for instance. The generic analysis of such systems is complex, mainly because of their different nature. Here, the analysis is conducted using different methodologies. First, the recent Quadratic Separation framework is used to deal with the frequency aspect of such systems. Then, a second result is derived using a Lyapunov-based argument. All the results are obtained considering the projections of the infinite dimensional state on a basis of polynomials. It is then possible to take into account the coupling between the two systems. That results in tractable and reliable numerical tests with a moderate conservatism. Moreover, a hierarchy on the stability conditions is shown in the Lyapunov case. The real application to a drilling mechanism is proposed to illustrate the efficiency of the method and it opens new perspectives. For instance, using the notion of practical stability, we show that a PI-controlled drillstring is subject to a limit cycle and that it is possible to estimate its amplitude

    A Data-Driven Frequency-Domain Approach for Robust Controller Design via Convex Optimization

    Get PDF
    The objective of this dissertation is to develop data-driven frequency-domain methods for designing robust controllers through the use of convex optimization algorithms. Many of today's industrial processes are becoming more complex, and modeling accurate physical models for these plants using first principles may be impossible. With the increased developments in the computing world, large amounts of measured data can be easily collected and stored for processing purposes. Data can also be collected and used in an on-line fashion. Thus it would be very sensible to make full use of this data for controller design, performance evaluation, and stability analysis. The design methods imposed in this work ensure that the dynamics of a system are captured in an experiment and avoids the problem of unmodeled dynamics associated with parametric models. The devised methods consider robust designs for both linear-time-invariant (LTI) single-input-single-output (SISO) systems and certain classes of nonlinear systems. In this dissertation, a data-driven approach using the frequency response function of a system is proposed for designing robust controllers with H∞ performance. Necessary and sufficient conditions are derived for obtaining H∞ performance while guaranteeing the closed-loop stability of a system. A convex optimization algorithm is implemented to obtain the controller parameters which ensure system robustness; the controller is robust with respect to the frequency-dependent uncertainties of the frequency response function. For a certain class of nonlinearities, the proposed method can be used to obtain a best-linear-approximation with an associated frequency dependent uncertainty to guarantee the stability and performance for the underlying linear system that is subject to nonlinear distortions. The concepts behind these design methods are then used to devise necessary and sufficient conditions for ensuring the closed-loop stability of systems with sector-bounded nonlinearities. The conditions are simple convex feasibility constraints which can be used to stabilize systems with multi-model uncertainty. Additionally, a method is proposed for obtaining H∞ performance for an approximate model (i.e., describing function) of a sector-bounded nonlinearity. This work also proposes several data-driven methods for designing robust fixed-structure controllers with H∞ performance. One method considers the solution to a non-convex problem, while another method convexifies the problem and implements an iterative algorithm to obtain the local solution (which can also consider H2 performance). The effectiveness of the proposed method(s) is illustrated by considering several case studies that require robust controllers for achieving the desired performance. The main applicative work in this dissertation is with respect to a power converter control system at the European Organization for Nuclear Research (CERN) (which is used to control the current in a magnet to produce the desired field in controlling particle trajectories in accelerators). The proposed design methods are implemented in order to satisfy the challenging performance specifications set by the application while guaranteeing the system stability and robustness using data-driven design strategies
    • …
    corecore