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RESUME

Les systémes singuliers avec retard ont été utilisés pour représenter plusieurs sys-
témes pratiques comme les avions, les procédés chimique, etc. Par conséquent, plus
d’attention a été consacré & I’étude du comportement de la solution, analyse et la
commande de cette classe de systémes. Cependant, la pluspart des travaux reportés
dans la littérature traitent le cas de retards constants. L’objectif de cette recherche
est de s’attaquer a P’analyse et & la synthése des systémes continus singuliers avec
retards variants dans le temps.

Pour le comportement de la solution, I’existence et 1'unicité de la solution de cette
classe de systémes ont été discutés. Le probléme de la compatibilité des conditions
initiales est aussi discuté.

Pour le probléeme de stabilité, des conditions suffisantes dépendantes du retard sont
developpées. Ensuite, des conditions assurants une stabilité exponentielle et faisant
intervenir des bornes (inférieure et supérieure) du retard sont aussi développées. De
plus, une estimation du taux de convergence des états est présentée. Ce résultat
est aussi généralisé au cas de plusieurs retards variants dans le temps. Aussi,
une expression des variables algébriques en fonction des conditions initiales et des
variables rapides est donnée.

Pour la synthése, un contréleur par retour d’état est considéré. La commande 5%,
avec un controleur par retour d’état est aussi considérée. Ensuite, la commande
par retour de sortie est considérée pour les systémes singuliers avec saturation des
controleurs et retard sur les entrées.

Les résultats proposés sur l’analyse et la synthése sont basés sur 'aproche de
Lyapunov-Krasoviskii, les inégalités matricielles linéaires et bilinéaires, et la théorie
des graphes. L’outil SEDUMI est utilisé pour la résolution des problémes d’optimisation
convexe, tandis que 'outil PENBMI est utilisé pour la résolution des inégalités ma~
tricielles bilinéaires. L’outil YALMIP est utilisé dans les deux cas comme interface.
Des exemples numériques sont présentés pour montrer ’efficacité des résultats pro-

posés.
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ABSTRACT

Time-delay singular systems have been used to represent many practical systems,
including aircraft, chemical processes, lossless transmission lines, etc. Therefore,
more attention has been paid to study the solution behavior, analysis and control
of this class of systems. However, most of the results presented in the literature
tackled the case of constant time delays. The objective of this research is to deal
with the analysis and synthesis of the continuous-time singular systems with time-
varying delays.

For the solution behavior, existence and uniqueness of solution for this class of
systems are discussed. Impulsive behavior of its solutions is also discussed and
conditions for smooth solutions are presented. The problem of compatible initial
conditions is also presented.

For the stability problem, delay-dependent stability conditions for this class of sys-
tems are developed. Then, delay-range-dependent exponential stability conditions
are also developed. Moreover, an estimate of the convergence rate of the state is
presented. This result is generalized to the case of multiple time-varying delays.
Also, an explicit expression of the algebraic variables in term of the initial condition
and the fast variables is given.

For the synthesis problem, state feedback stabilizing controller is considered. %,
state feedback controller is also considered. Then, static output feedback controller
is considered for the time-delay singular system with saturating controllers and
input delays.

The proposed results on analysis and synthesis are based on Lyapunov-Krasovskii
approach, linear and bilinear matrix inequality techniques and graph theory. The
free solver SEDUMI is used to solve the convex optimization problems while PENBMI
is used to solve the BMI problems. YALMIP is used as an interface in both cases.
Some numerical examples are presented to show the effectiveness of the proposed

results.
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CONDENSE EN FRANCAIS

Introduction

Au cours des derniéres décennies, la théorie des systémes utilisant le concept du
variable d’état a été largement étudiée et elle est maintenant bien développée. Un
systéme représenté par un model d’état est décrit par un ensemble d’équations dif-
férentielles ordinaires (ODEs). Toutefois, dans plusieurs systémes physiques comme
les procédés chimiques, les systémes de circuits et les systémes économiques, les
variables d’état peuvent étre liées aussi algébriquement, résultant en une classe
plus générale de systémes, appelés systémes singuliers. Ainsi, un systéme singulier
est décrit par un ensemble d’équations différentielles et d’équations algébriques,
qui traduisent les contraintes dynamiques et statiques décrivant le systéme réel.
Pour cette classe de systémes, il existe dans la littérature plusieurs résultats sur la

solution, ’analyse et le contréle de ces type de systemes.

Les retards peuvent étre une des principales causes d’instabilité et sont rencontrés
dans plusieurs systémes physiques comme les procédés chimiques, les réacteurs
nucléaires et le transport des lignes. Les systémes avec retard représente une classe
des systémes de dimenstion infinie qui a été largement étudiée et plusieurs résultats

ont été publiés dans la littérature.

Les systémes singuliers avec retard ont été utilisés pour représenter plusieurs sys-
témes pratiques comme les avions, les procédés chimique, etc (Kumar and Daou-
tidis, 1999; Brayton, 1968; Halanay and Rasvan, 1997; Niculescu and Rasvan,
2000). Mathématiquement, les systémes singuliers avec retards sont équations dif-
férentielles avec retard couplée avec équations aux différences. L’étude de ces sys-
teémes est plus compliquée que celle de systémes avec retard ou systémes singuliers.
L’existence et I'unicité de la solution d’un systeéme singulier avec retard ne sont pas

toujours garanties et le systéme peut aussi incorporer des effets impulsifs qui sont
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en général indésirables. .

L’objectif de cette recherche est de s’attaquer a l'analyse et & la synthése des

systémes continus singuliers avec retards variants dans le temps.
Motivation

Les points suivants ont motivé les travaux dans ce mémoire.

e Les systémes singuliers avec retard ont été utilisés pour représenter plusieurs
systémes pratiques. Ils peuvent &tre utilisés pour décrire les pertes des
lignes de transmission (Brayton, 1968), le régime transitoire des turbines
hydrauliques (Halanay and Rasvan, 1997), le régime transitoires de pression
de vapeur dans la production combinée de chaleur et d’électricité (Halanay
and Rasvan, 1997) et les systémes en génie chimique (Kumar and Daoutidis,

1999).

e De plus en plus d’attention est accordée & I'importance théorique des sys-
temes singuliers avec retard. Par exemple, récemment, (Fridman and Shaked,
2002b) il a intoduit une approche qui transforme les systemes avec retard et
les systémes neutres en systémes singuliers. Cette approche a été utilisée
pour développer plusieurs résultats pour ces deux types de systémes, voir par

exemple (Haurani, 2003).

e Dans la littérature, la plupart des résultats dépendants du retard traitent le
cas des retards constants et peu de chercheurs comme (Yue et al., 2005; Yue

and Lam, 2005; Yue and Han, 2005a) ont abordé le cas de retards variables.

e Un nouveau concept a été récemment étudié, on les retards sont supposés
varier dans un intervalle et qui est plus approprié pour des systémes pratiques
(He et al., 2007a). A notre connaissance, des conditions assurant la stabilité
et faisant intervenir des bornes (inférieure et supérieure) du retard n’ont pas

encore été développées pour les systémes singuliers avec retard (cas continu).



e Le probléme de stabilisation pour les systémes singuliers avec retard en présence

de saturations du contrdleur n’a pas été encore totalement résolu.

e L’existence de trés peu d’articles qui permettent de résoudre le probleme de

la commande par retour de sortie pour les systémes singuliers avec retard.

Meéthodologie

Les résultats proposés pour l’analyse et la synthése sont basés sur l’approche
de Lyapunov-Krasoviskii, les inégalités matricielles linéaires (LMI) et bilinéaires
(BMI), et la théorie des graphes. L’outil SEDUMI est utilisé pour la résolution des
problémes d’optimisation convexe, tandis que 'outil PENBMI est utilisé pour la
résolution des inégalités matricielles bilinéaires. L’outil YALMIP est utilisé dans

les deux cas comme interface.
Préliminaires sur les systémes singuliers avec retard variable

Un systéme singulier linéaire avec retards variables (cas continu), invariant dans le

temps est régi par les équations suivantes:

Ei(t) = Az(t)+ Agz(t —d(t))
z(t) = ¢(t), te[-d,0]

ol z(t) € R™ désigne le vecteur d’état, la matrice £ € R™*" peut étre singulier, et
nous supposons que rank(E) = r < n, les matrices A et A, sont réelles, constantes
et de dimensions compatibles, ¢(t) € C¥ est un vecteur de dimension compatible et
a valeur fonction continue, d(t) est le délai qui est supposé pour étre une fonction

continue limitée et d est un constant positif.

Les systemes singuliers avec retard peuvent étre considérée sous deux angles dif-
férents; un qu’ils sont des équations différentielles algébriques (DAEs) (c’est-a~dire
les systémes singulier) dont la formulation implique des termes retardés, 1'autre

qu'ils sont équations différentielles avec retard (DDEs) (c’est-d~dire systémes de
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type retard) soumis & des contraintes. La discussion des systemes singuliers avec
retard hérite plusieurs des idées et de la terminologie des deux les systemes singulier
et systémes de type retard. Toutefois, le comportement de solutions de cette classe
de systémes correspond en quelque sorte & ce que ’on peut attendre d’un systémes
singulier et dans un certain sens, a ce que 'on peut attendre d’un systémes de type

retard.

Voici quelques caractéristiques des systémes singuliers avec retard:

e L’existence et I'unicité de la solution & un systéme singulier avec retard ne sont
pas toujours garanties. Ainsi, la notion de la régularité doit étre présentée.
Dong, il est important de développer des conditions qui garantissent que le

systéeme donné est non seulement stable, mais aussi régulier.

e La réponse d’un systéme singulier avec retard peut avoir des impulsions ainsi
que les dérivés de ces impulsions. Ainsi, la notion de non-impulsif doit étre
présentée. Donc, il est important de développer des conditions qui garan-
tissent que le systéme donné est régulier, non-impulsif et stable (c’est-a-dire

admissible).

e Méme si un systéme singulier avec retard est non-impulsif, il peut aussi avoir
des discontinuities fini en raison de la condition initiale qui risque d’étre
incompatible. De plus, ces sauts peuvent se propager dans la solution en
raison de 'existence de termes retardés. Donc, la notion de conditions initiales

compatibles doit étre présentée.

Stabilité des systeme singuliers avec retards variants

Le probléeme de stabilité est un des problémes les plus importants de la théorie de
controle. Comme mentionné auparavant, la plupart des résultats dans la littérature
traitent le cas des retards constants et un nombre réduits d’article ont abordé le

cas de retards variables. Entre autre le probléme de stabilité pour ces systémes
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singuliers n’a pas été complétement adressé. Dans cette mémoire, nous avons étudié

la stabilité des systémes singuliers avec retards variants simples et multiples.

Pour le probléme de stabilité, des conditions suffisantes dépendantes du retard sont
developpées. Ensuite, des conditions assurants une stabilité exponentielle et faisant
intervenir des bornes (inférieure et supérieure) du retard sont aussi développées. De
plus, une estimation du taux de convergence des états est présentée. Ce resultat
est aussi généralisé au cas de plusieurs retards variants dans le temps. Aussi,
une expression des variables algébriques en fonction des conditions initiales et des

variables rapides est donnée.

D’abord, des conditions suffisantes dépendantes du retard pour les systémes sin-
guliers avec retard variant sont developpées tel que le systéme est régulier, non-
impulsif et stable. Ce résultat peut utilisé pour généraliser beaucoup de résultats
apparaissent dans la littérature pour les systémes singuliers avec retards constants
au cas de retards variants. Ensuite, des conditions assurants une stabilité expo-
nentielle et faisant intervenir des bornes (inférieure et supérieure) du retard sont
aussi développées. De plus, une estimation du taux de convergence des états est
présentée. Ce resultat est aussi généralisé au cas de plusieurs retards variants dans
le temps. Ces résultats sont basés surtout sur I’approche de Lyapunov-Krasovskii
et quelques résultats algébriques. Aussi, la théorie des graphes est employé pour le

cas de plusieurs retards variants dans le temps.

Commande par retour d’état pour systéme singuliers avec retards vari-

ants

Considérez le systéme singuliers linéaire avec retards suivant:

Ez(t) = Az(t)+ Agz(t —d(t)) + Bu(t) + Bow(t)
z(t) = Cz(t) + Buow(t)
z(t) = o), te[~d,0]
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ou u(t) € R™ désigne le vecteur de commande, w(t) € RP représente la perturbation
externe a énergie finie, 2(t) € R° désigne le vecteur de sortie contrdlé, les matrices
C, B, B, et B, sont réelles, constantes et de dimensions compatibles et les autres

variables comme défini auparavant.

Le contréleur utilisé est donné par 1’expression suivante:

u(t) = Kz(t), K € Rmxm

En appliquant ce contréleur au systéme, nous obtenons le systéme en boucle fermé

comme suit:

Ei(t) = (A+BE)z(t)+ Agw(t—d(t)) + Buiw(t) = Agw(t)+ Agw(t—d(t)) + Buw(?)

Tout d’abord, w(t) est supposé étre nulle et des conditions en forme de LMI sont
fournies pour le design du contréleur par retour d’état. Maintenant, si w(t) n’est

as égal a zéro, on s’attaque au probléme de la commande %,.
pas €g ) q

L’idée de la commande 7%, est de concevoir un controller qui stabilisent le systéeme
et rejett aussi les perturbations externes. Deux méthodes sont d’habitude utilisées
pour s’attaquer au probléme de la commande 5%, pour les systémes: la méthode de

fonction de transfert (domaine de fréquence) et la méthode de domaine de temps.

Dans la méthode de fonction de transfert, un contréleur stabilisant est congu de
maniere & ce que le gain de la fonction de transfert en boucle fermée entre la per-
turbation w et la sortie contrélée z est le moins possible, c’est-a-dire, I'effet de
la perturbation sur la sortie contrdlée est minimisé. Pourtant, pour les systémes
singuliers avec retards, aucune fonction de transfert n’est définie pour les retards
variants. Ainsi, la méthode de domaine de temps est utilisée pour s’attaquer au
probléme de la commande &, et les conditions de LMI sont fournies afin de ré-

soudre le probléme de commande.
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Commande par retour de sortie pour les systémes singuliers avec retard

variant

Considérez le systéme singuliers linéaire avec retard suivant;

Ei(t) = Az(t)+ Agz(t — d(t)) + Bsat(u(t))

y(t) = Cx(t)
z(t) = ¢(t), te[~d,0]

ol y(t) € R? désigne le vecteur de sortie mesurée, sat(u(t)) = [sat(uy(t)), ..., sat(um(t))]
avec sat(u;(t)) = sign(u;(¢)) min(|u;(¢)| , ;) et les autres variables comme défini au-
paravant. L’introduction de la saturation (nonlinéarities) est motivée par le fait
que c’est impossible pour les actionneurs de conduire le signal avec une amplitude

illimitée.
Le contréleur employé des cette partie est donné par ’expression suivante:
u(t) = Ky(t), K € R™4

En appliquant ce controleur au systéme, nous obtenons le systéme en boucle fermée
comme suit:

Ei(t) = Ax(t) + Aqz(t — d(t)) + Bsat(KCx(t))

En raison de 'existence du terme de saturation, généralement, le systéme ne peut
pas étre stabilisé globalement et notre probléme est considéré comme un probléme
local de stabilisation. Donc, un ensemble de conditions initiales et augmentations
de contréleur devraient étre donnés tel que le systéme en boucle fermée est régulier,

non-impulsif et stable.

Il est commun de se rapprocher de la région d’attraction par les ensembles construits
de Lyapunov fonctionnel. Dans cette mémoire, ’approche de Lyapunov utilisée

pour l'analyse de stabilité est adopté pour se rapprocher de la région d’attraction.
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Le systéme non linéaire est transformé a un systéme de polyhédres linéaires en util-
isant des inclusions différentielles (Molchanov and Pyatnitskiy, 1989; Tarbouriech
and Gomes da Silva, 2000). Un algorithme LMI itératif est adopté pour résoudre
les gains de contréleur. L’algorithme proposé est employé pour élargir I’ensemble

des conditions initiales le plus possible.

Le probléme est étendu au cas o1 le retard apparait dans le contréle. Des conditions
de BMI doivent étre résolues afin d’obtenir les gains de controleur et I’ensemble des

conditions initiales.
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Travail futur

Les résultats de ce mémoire peuvent étre étendus pour les cas suivants:

s PID.
La méthode la plus populaire utilisée dans I'industrie est aujourd’hui le con-
troleur PID. De plus, beaucoup de processus chimiques peuvent étre modelé
comme des systémes singuliers avec retard. Donc, le design de contréleur de
PID pour les systémes singuliers avec retard est un probléme intéressant de

s’attaquer.

e Commandabilité et observabilité.
La commandabilité et I'observabilité sont des propriétés importantes des la
théorie moderne et elles jouent un réle crucial dans beaucoup de problémes
de contréle. A notre connaissance, aucun travail n’a été annoncé dans la
littérature sur la commandabilité ou 1'observabilité de systémes singuliers

avec retard.

e Systémes singuliers nonlinéaires avec retard.
Mathématiquement, un systéme singulier non linéaire avec retard est régi par

les équations suivantes:

&(t) = F(t, z(t), =(t — d(t)), y (1), y(t — d(t)), u(t))

0= Gt z(t), z(t — d(t), y(t), y(t — d(t)), u(t))

La stabilité asymptotic de cette classe de systémes est étudiée dans (Pepe,
2005; Pepe et al., 2006; Pepe and Verriest, 2003). Des extension sont & faire

dans cette direction.

e Systemes singuliers stochastiques avec retard.
Une classe de systémes stochastiques déterministes par morceaux a été utilisée
pour modéliser beaucoup de systémes pratiques, ol des bris aléatoires et

des réparations pourraient se produire. Il y a seulement peu de papiers des
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systémes singuliers stochastiques avec retard (Boukas et al., 2005a; Boukas
et al., 2005b). Des extension sont aussi & faire sur cette classe de systémes.
Les résultats dans (Boukas, 2008) peuvent étre étendus au cas ol le systéme

a des retards variants dans le temps.
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INTRODUCTION

In the past decades, standard state-space theory has been extensively studied and
the theory is now well developed. A standard state-space system is described
by a set of ordinary differential equations (ODEs). However, in many physical
systems such as chemical processes, circuit systems and economic systems, the
state variables may be related algebraically, resulting in a more general class of
systems, called singular systems (Lewis, 1986; Dai, 1989). Thus, a singular system
model is described by a set of coupled differential and algebraic equations, which
include information on the static as well as dynamic constraints of a real plant.
For this class of systems, there are many results in the literature on the solution,
analysis and control, and for more details, we refer the reader to (Xu and Lam,
2006; Dai, 1989; Wang et al., 2006; Lewis, 1986; Cobb, 1984) and the references

therein.

Delays are one of the most important causes of instability and are encountered in
many physical systems such as chemical processes, rolling mills, nuclear reactors,
long transmission lines, and microwave oscillators (Boukas and Liu, 2002; Haurani,
2003; Niculescu, 2001; Gu et al., 2003). Time-delay systems (called also hereditary
or with memory, deviating arguments, after-effects, post actions, dead-time, or
time-lag) represent a class of infinite-dimensional systems that has been extensively
studied and many results have been published in the literature. We refer the reader
to (Boukas and Liu, 2002; Richard, 2003; Haurani, 2003; Niculescu, 2001; Gu et

al., 2003) and references therein for an extensive treatment of this class of systems.

Time-delay singular systems, which have both delay and algebraic constraints, may
in fact be systems of advanced type (Fridman, 2002; Baker et al., 2002). Time-delay
singular systems often appear in various engineering systems, including aircraft
stabilization, chemical engineering systems, lossless transmission lines, etc, (see

(Brayton, 1968; Halanay and Rasvan, 1997; Niculescu and Rasvan, 2000; Niculescu,



2001; Pepe and Verriest, 2003; Kumar and Daoutidis, 1999) and the references
therein). It is worth noting that this class of systems are also referred to in the
literature as delay differential-algebraic equations, implicit systems with delay or

descriptor systems with delay.

Mathematically, time-delay singular systems are delay differential equations cou-
pled with difference equations. The study of such systems is much more complicated
than that for standard state-space time-delay systems or singular systems. The ex-
istence and uniqueness of a solution to a given time-delay singular system is not

always guaranteed and the system can also have undesired impulsive behavior.

It is worth mentioning that throughout this thesis, only continuous-time singular

time-delay systems will be discussed.

0.1 Literature Review

The class of continuous-time time-delay singular systems represents an important
class of systems that has attracted a lot of researchers from control and mathematics
communities. Both delay-independent and delay-dependent stability conditions for
singular time-delay systems have been derived using the time domain method, see
(Xu et al., 2002; Fridman, 2002; Zhu et al., 2007; Feng et al., 2002; Yue et al.,
2005) and references therein. However, most of the delay-dependent results in the
literature tackle only the case of constant time delay where two approaches were
used to prove the stability of the system. The first approach consists of decomposing
the system into fast and slow subsystems and the stability of the fast subsystem
is proved using some Lyapunov functional. Then, the fast variables is expressed
explicitly by an iterative equation in terms of the slow variables (Xu et al., 2002).
The stability of the fast variables can be guaranteed if the eigenvalues of some
matrix are inside a unit circle. The second approach introduced by (Fridman, 2002)

and it consists of constructing a Lyapunov-Krasovskii functional that corresponds



directly to the descriptor form of the system. However, this approach is based on
the assumption of the stability of a certain operator. This assumption is shown
to be satisfied if the eigenvalues of some matrix expression are inside a unit circle.
Indeed, in the case of a single delay, it can be shown easily that this condition is
equivalent to the one used in (Xu et al., 2002) to prove the stability of the fast
variables. The extension of these approaches to time-varying delays has not been
addressed yet. In (Yue et al., 2005), where time-varying delays are considered,
the response of the fast variables has been bounded by an exponential term using
a different approach. Using this approach, it is not possible to give an estimate
of the convergence rate of the states of the system. Also, the bounding approach
of the derivative of the Lyapunov functional is conservative due to the ignorance
of some useful terms (see (He et al., 2004) for a discussion on different bounding

approaches).

Recently, a free-weighting matrices method is proposed in (He et al., 2004), (Wu
et al., 2004) and (Xu and Lam, 2005) to study the delay-dependent stability for
time-delay systems with constant and time-varying delays, in which the bounding
techniques on some cross product terms are not involved. The new method has been
shown to be more effective in reducing conservatism entailed in previous results,
especially for uncertain systems. In 2007, Zhu et al. adopted this technique for

time-delay singular systems (Zhu et al., 2007).

Formally speaking, these conditions provide only the asymptotic stability of time-
delay singular systems. In (Sun, 2003), the global exponential stability for a class
of singular systems with multiple constant time delays is investigated and an esti-
mate of the convergence rate of such systems is presented. One may ask if there
exists a possibility to use the LMI approach for deriving exponential estimates for
solutions of time-delay singular systems. In (Yue et al., 2005), exponential stability
conditions in terms of LMIs are given but no estimate of the convergence rate is

presented.



The state feedback stabilization problem has also attracted a lot of researchers and
many results appear in the literature (Boukas, 2007, Zhou and Lam, 2003; Xu et
al., 2002; Feng et al., 2002; Gao et al., 2005; Li and Xing, 2005; Yang et al., 2007;
Yue and Lam, 2005; Yue et al., 2003; Fridman and Shaked, 2002a; Feng et al.,
2005; Yue and Han, 2005a). These results are based on the stability conditions and
consequently, most of them treat the constant time delay case. In (Yue and Lam,
2005; Yue and Han, 2005a), the stabilization problem is tackled for systems with
time-varying delay and the results are based on the approach of (Yue et al., 2005).
Note that the results in (Feng et al., 2002; Gao et al., 2005; Yang et al., 2007; Yue
and Lam, 2005) tackle the state feedback guaranteed cost stabilization problem,
while the results in (Boukas, 2007; Yue et al., 2003; Fridman and Shaked, 2002a;
Feng et al., 2005; Yue and Han, 2005a) tackle the %, state feedback stabilization

problem.

The problem of stabilizing linear systems with saturating controls has been widely
studied because of its practical interest (Bernstein and Michel, 1995). Control satu-
ration constraint comes from the impossibility of actuators to drive signal with un-
limited amplitude or energy to the plants. However, only few works have dealt with
stability analysis and the stabilization of singular linear systems in the presence of
actuator saturation, see for example (Lan and Huang, 2003). It is established in
(Lan and Huang, 2003) that a singular linear system with actuator saturation is
semi-globally asymptotically stabilizable by linear state feedback if its reduced sys-
tem under actuator saturation is semi-globally asymptotically stabilizable by linear

feedback.

The static output feedback problem is probably the most important challenging
question in control engineering. In contrast to the linear systems, there are only
few papers solving the static output feedback problems for singular systems, see
(Kuo and Fang, 2003; Castelan and Silva, 2002). In (Kuo and Fang, 2003), the
authors introduce an equality constraint in order to get a linear matrix inequality

(LMI) sufficient conditions for admissibility of closed-loop systems. However, this



equality constraint introduces conservatism. This approach has been generalized
by (Boukas, 2004) to time-delay singular systems. In (Castelan and Silva, 2002),
singular systems is assumed to have some characteristics in advance: regularity and
absence of direct action of control inputs on the algebraic variables, which is not

always the case.

Regarding the numerical methods, some work has been done to solve a general de-
lay differential-algebraic equation (DDAE), where the class of time-delay singular
systems appears as a special case (Baker and Paul, 2006; Pepe, 2005; Baker et
al., 2002; Shampine and Gahinet, 2006; Zhu and Petzold, 1997; Pepe and Verriest,
2003; Ascher and Petzold, 1995). However, there are numerous difficulties that can
arise when solving a general DDAE. For example, it is well known that DDAEs
may have one or more solution components that have jump discontinuities. These
discontinuities can appear even if the initial function is continuous. It is also well
known that these jump discontinuities propagate in the solution. This propagation
is due to the existence of delayed solution terms. The problem of the propagation of
discontinuities in DDAEs is still not adequately dealt with by existing DDAE strate-
gies. Discontinuity tracking is generally complex and computationally expensive.
It is worth noting that some approaches are based on transforming the problem of
solving DDAEs to the one of solving delay differential equations (DDEs), neutral
delay differential equations (NDDEs) or even singularly perturbed delay differential
equations (SPDDEs). However, such a transformation is not always possible. We
can say that numerical methods for DDAEs have received little attention in the
literature and there still have much to learn about how to solve them numerically.
For more information on numerical methods for DDAEs, we refer the reader to the

references mentioned above and the ones therein.

0.2 Motivation

The following points motivate our work in this thesis.



Time-delay singular systems find their way into the representation of many
real applications. Time-delay singular systems can be used to describe lossless
transmission lines (Brayton, 1968), transients of a hydraulic turbines under
waterhammer conditions (Halanay and Rasvan, 1997), transients of extracted
steam pressure in the combined generation of heat and electricity (Halanay
and Rasvan, 1997), chemical engineering systems (Kumar and Daoutidis,

1999), etc.

More and more attention is paid to the theoretical importance of time-delay
singular systems. For example, recently, (Fridman and Shaked, 2002b) intro-
duces a descriptor (singular) model transformation for retarded and neutral
type systems. This transformation has been used to develop many results
in the context of time-delay and neutral systems, see for example (Haurani,

2003).

Most of the delay-dependent results in the literature tackle only the case of
constant time delay and few researchers have tackled the time-varying case.
There is still some work that has to be done for singular systems with time-

varying delays.

Delay-range-dependent concept was recently studied, where the delays are
considered to vary in a range and thereby more applicable in practice (He
et al., 2007a). To the best of the author knowledge, delay-range-dependent

stability problem for time-delay singular systems has not been addressed yet.

The stabilization problem for time-delay singular systems in the presence of

actuator saturation has not been fully addressed yet.

The existence of very few papers solving the static output feedback problem

for time-delay singular systems.



0.3 Contribution of This Thesis and Methodology

The contributions of this thesis are summarized as follows:

e Delay-range-dependent exponential stability conditions for time-delay singu-
lar systems with single delay are established and an estimate of the conver-
gence rate of the state is presented. Free weighting matrices are used in order

to reduce the conservativeness of the conditions.

e Delay-range-dependent exponential stability conditions for singular systems
with multiple time-varying delays are established and an estimate of the con-
vergence rate of the state is presented. It has been shown also that this rate

depends on the minimum bounds of the delays.

¢ An explicit expression of the algebraic variables is given, which can be seen
as a generalization of the expression presented in (Xu et al., 2002). This
implies that many of the existing results for singular systems with constant

time delays can be extended easily to the systems with time-varying delays.

e An iterative linear matrix inequality (ILMI) algorithm is used to design a
stabilizing static output feedback controller for time-delay singular systems

in the presence of actuator saturation.

e Delay-dependent conditions are proposed to design a stabilizing static output
feedback controller for time-delay singular systems in the presence of actuator

saturation and input delay.

The work throughout the thesis takes place in time-domain and is based on Lyapunov-
Krasovskii approach. In Chapter 2, some graph theory terminology has been used.
The results are mainly presented in the LMI setting. Some of the results are pre-
sented in the bilinear matrix inequality (BMI) setting. The free solver SEDUMI

is used to solve the convex optimization problems while PENBMI is used to solve



the BMI problems. YALMIP is used as an interface in both cases. For a brief
introduction on SEDUMI and PENBMI, we refer the reader to (Lofberg, 2004)

and references therein.

0.4 Preview of Chapters

The summary of each chapter of this thesis is given below.

Chapter 1 gives some preliminary results on the class of singular time-delay sys-
tems. The solution behavior of singular systems, time-delay systems and time-delay
singular systems is discussed. Conditions for existence and uniqueness of solution
of time-delay singular systems are given. Sources of impulses in the solution of
time-delay singular systems are investigated and conditions to avoid such impulses
are also presented. A numerical example is given to illustrate the results presented
in the chapter. Finally, some physical examples that can be described by the class

of time-delay singular systems are presented.

Chapter 2 discusses the stability of time-delay singular systems. First, delay-
dependent conditions that guarantee the asymptotic stability of singular systems
with time-varying delays are given. Then, delay-range-dependent exponential sta~
bility conditions for time-delay singular systems with single delay are established
and an estimate of the convergence rate of the state are presented. The latter result
is extended to the case of multiple time-delays. Some numerical examples are given

to show the effectiveness of the proposed results.

Chapter 3 deals with the state feedback stabilization of time-delay singular systems.
Two results are presented in this chapter. First, delay-dependent conditions that
can be used to design a stabilizing state feedback controller are presented. Then,
the conditions are extended to allow the stabilizing controller to satisfy some 72,
performance level as well. Some numerical examples are given to show the effec-

tiveness of the proposed results.



Chapter 4 deals with the static output feedback controller design of time-delay
singular systems with saturating actuators. First, an iterative LMI algorithm is
proposed to solve for the controller gain. Then, the system is extended to include
input delays and BMI conditions are given to solve for the controller gains. Some

numerical examples are given to show the effectiveness of the proposed results.
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CHAPTER 1

PRELIMINARIES ON TIME-DELAY SINGULAR SYSTEMS

In this chapter, some preliminary results and definitions for time-delay singular sys-
tems are presented. First, the mathematical model of time-delay singular systems
is given. Then, the solution behavior of singular systems, standard time-delay sys-
tems and singular time-delay systems are discussed. The existence and uniqueness
of solutions, impulsive behavior and compatible initial conditions for time-delay
singular systems are also discussed. A numerical example to illustrate some of
the features of time-delay singular systems is presented. Then, lossless propaga-
tion models and chemical processes are presented as classes of systems that can be

described by time-delay singular systems. Finally, a conclusion is given.

1.1  System Description

The state space system description of time-delay singular systems is given by:

Ei(t) = Az(t) + Aqz(t — d(t)) @
x(t) = p(t),~d <t <0 |

where z(f) € R™ is the state, the matrix £ € R™ " may be singular, and we assume
that rank(FE) = r < n, A and A; are known real constant matrices, ¢(t) € C? is

a compatible vector valued continuous function (see Section 1.4.1) and d(t) is the

time delay and that is assumed to satisfy the following;

0<dit)<d

d(t) <p <

—
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with d and p are given scalars.

Time-delay singular systems may be viewed from two different perspectives; one
that they are differential algebraic equations (DAEs) (i.e. singular systems) whose
formulation involves delayed solution terms, the other that they are delay differ-
ential equations (DDEs) (i.e. time-delay systems) subject to constraints. The
discussion of time-delay singular systems inherits many of the ideas and much of
the terminology of both singular systems and standard time-delay systems, which
makes it necessary at this point to have an overview on the solution behavior of

these major classes of systems.

1.2 Solution Behavior of Singular Systems

The unforced state space description of standard singular systems is given by:

Ei(t) = Az(t) (1.2)

System (1.1) becomes a standard singular system if Ay = 0. For this class of
systems, there are many results in the literature on the solution, analysis and
control, and for more details, we refer the reader to (Xu and Lam, 2006; Dai,
1989; Wang et al., 2006; Lewis, 1986; Cobb, 1984) and the references therein. The

following features in singular systems are not usually found in state-space systems:

e The transfer function of a singular system may not be strictly proper (see

Section 2.6 in (Dai, 1989)).

e For an arbitrary finite initial condition, the time response of a singular system
may exhibit impulsive or non-causal behavior along with the derivatives of

these impulses (see Section 1.4 in (Dai, 1989)).

e A singular system usually contains three kinds of modes: finite dynamic

modes, infinite dynamic modes and nondynamic modes; the undesired im-
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pulsive behavior in a singular system can be generated by infinite dynamic

modes (see Section 3.2 in (Dai, 1989)).

e Even if a singular system is impulse-free, it can still have initial finite discon-

tinuities due to inconsistent initial conditions.

The existence and uniqueness of a solution to a given singular system are not
always guaranteed and the system can also have undesired impulsive behavior.
Therefore, the definitions of regularity and non-impulsiveness (in the continuous
case) or causality (in the discrete case) have to be introduced. For a good discussion

on this subject, we refer the reader to (Dai, 1989).

Definition 1.2.1. (Dai, 1989) The pair (E, A) is said to be regular if the charac-

teristic polynomial, det(sE — A) is not identically zero.

The regularity of the pair (E, A) ensures the existence and uniqueness of solution.
The existence of impulsive solutions is usually studied in terms of the Weierstrass
canonical form and the index of the system which are defined as follows: if the pair
(E, A) is regular, then there exist two nonsingular matrices M; and N; such that
(Dai, 1989):

1

0
M,EN; = , MiAN, =
0 J

(1.3)

SE
o

and the singular system corresponding to the new variable y = col{y;,y,} = N, "'z

has the following canonical form:

n(t) = Aunt), (1.4a)

J9(t) = walt) (1.4b)

where ny + ne =n, J € R™*™ and A € R"*™ are in Jordan form. The matrix J

is nilpotent of index v, i.e., J* =0, J*~! # 0. The index of the singular system is
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the index of nilpotency v of J. Solving (1.4) (see Section 1.4 in (Dai, 1989)):

vi(t) = ety (0),

hat) = = 38007,
k=0

where d(t) is the Dirac delta-function and superscript k& denotes the & distribu-
tional derivative. If » > 1, the Dirac delta-function will appear in the solution and

the system will admit impulsive solutions.

Remark 1.2.1. The systems that we are considering here are unforced systems.
It has been shown that these systems can exhibit impulses at t = 0 due to the
appearance of Dirac delta-function. Moreover, for a forced system, if v > 1, smooth
inputs can generate impulses at all instances of the solution (see Section 1.4 in (Daj,
1989) for more details). This is why for stability analysis we seek the pair (E, A)

to be impulse-free, i.e., system of index one.

From the above discussion, one can deduce the following lemma.

Lemma 1.2.1. (Xu and Lam, 2006) Suppose that the pair (E, A) is regular, and

two nonsingular matrices My and N are found such that (1.8) holds, then we have:

(a) The pair (E, A) is impulse-free if and only if J = 0.
(b) The pair (E, A) is stable if and only if eig(A) < 0.
(c) The pair (£, A) is admissible if and only if J = 0 and eig(A4) < 0.

When the regularity of the pair (F, A) is not known, it is always possible to choose

two nonsingular matrices M, and N, such that

Ay Ay
. MyAN, = (1.5)

00 As Ay

MyEN, =
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The decomposition can be obtained via a singular value decomposition on E and
followed by scaling of the bases. The singular system corresponding to the new

variable y = col{y;, 42} = Ny "'z has the following form:

71(t) = A1y (t) + Agya(2),
0 = Ay (t) + Aaa(t)

Then, we have the following lemma.

Lemma 1.2.2. (Xu and Lam, 2006) The pair (E, A) is impulse-free if and only if

Ay is nonsingular.

Remark 1.2.2. Both Lemmas 1.2.1 and 1.2.2 present equivalent conditions on the
impulse-freeness of the pair (E, A). Note that both conditions involve the decompo-
sition of the matrices of the original singular system; that is, we have to find the
two nonsingular matrices My and Ny, and My and No, which is sometimes numer-
ically unreliable, especially in the case when the order of the system is relatively
large. In view of that, all the conditions throughout the thesis will be in terms of

LMIs and BMIs, which involve no decomposition of the system matrices.

As mentioned before, even if a singular system is impulse-free, it can still have
initial finite discontinuities due to inconsistent initial conditions. To illustrate this
feature of this class of systems, consider the singular system with the following

matrices:

10 -05 1
0 0 05 -1

which is equivalent to

&1 ()

0= —0.5.’L‘1(t) — xz(t)

I

—0.5z,(t) + za(t)
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The algebraic constraint at £ = 0 is £2(0) = —0.5z,(0). Thus, any initial condition
that does not satisfy this constraint at t = 0 will result in an initial jump discon-
tinuity. As it will be discussed later, this jump may propagate in the solution if

there exist delayed terms in the system.

1.3 Solution Behavior of Standard Time-Delay Systems

The state space description of time-delay systems with single delay is given by:

B(t) = Az(t) + Agz(t — d(t))
z(t) = ¢(t),-d<t<0

System (1.1) becomes a standard time-delay system if the matrix E is an invert-
ible matrix. Time-delay systems represents a class of infinite-dimensional systems
largely used to describe propagation and transport phenomena or population dy-
namics and many results has been published in the literature, see (Richard, 2003)

for a good survey on time-delay systems.

It is well known that the solutions of time-delay systems may have discontinuous
derivatives. Ome of the most significant features of this class of systems is the
propagation of such discontinuities in the solution. The propagation of jumps in
derivatives of the solution of time-delay systems is by now well-explored (Neves and
Feldstein, 1976; Willé and Baker, 1992) and is summarized in (Bellen and Zennaro,
2003).

To illustrate this feature by a simple example, consider the standard time-delay

system with the following matrices:
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with d(t) = 1, which is equivalent to

B(t) = za(t—1) (1.6a)

By(t) = wot) —za(t — 1) (1.6b)

Consider the following initial condition ¢(¢) = [3, 5], ¢t € [-1, 0]. Then at ¢ =07,
¢(t) implies #1(07) = #2(07) = 0, but at ¢ = 0%, the relations in (1.6) implies
#1(0%) = 5 and #,(0%) = 2, which means a jump in the first derivative at ¢ = 0.

Now, the second derivative can be represented by:

E1(t) = d2(t — 1)

which means that the jump will propagate to the second derivative at ¢ = 1 since

£1(1) = 22(0)
a(1) = 22(1) — 22(0)

and so on with higher derivatives at coming time instances. Thus, the disconti-
nuities are propagating between different times (see Figure 1.1). More precisely,
for a general delay function, if there is a jump at ¢, this jump will propagate to
tk+1 = tg + d(lg+1), i.e. when the argument of a delayed term crosses a previous
jump. This feature for time-delay systems results in jump discontinuities in the
algebraic variables in time-delay singular systems, as it will be seen in the next

section.

1.4 Solution Behavior of Time-Delay Singular Systems

Time-delay singular systems are delay differential equations coupled with difference

equations. The existence and uniqueness of a solution to a given time-delay singular
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Figure 1.1 Solution behavior of time-delay system (1.6)

system are not always guaranteed and the system can also have undesired impulsive
behavior. The behavior of solutions of this class of systems corresponds in some
sense to what we might expect from a singular system and in some sense, to what
we might expect from a time-delay system. The following are some features of

time-delay singular systems:

e The existence and uniqueness of a solution to a given singular time-delay

system are not always guaranteed.

e The time response of a time-delay singular system may exhibit undesired

impulsive or non-causal behavior along with the derivatives of these impulses.

e Even if a time-delay singular system is impulse-free, it can still have finite
discontinuities due to incompatible initial condition. Moreover, these jumps

may propagate in the solution due to the existence of delayed terms.
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For time-delay singular systems, the interaction of algebraic constraints with de-
layed solution terms gives rise to behavior that is not seen with either singular
systems or time-delay systems. As has been pointed out in (Fridman, 2002; Baker
et al., 2002), time-delay singular systems merit a separate investigation in their

own right and can be considered as systems of advanced type.

Assume that the pair (E, A) in (1.1) is regular. Then, for M; and N; as in (1.3)
and y = Ny 'z, the time-delay singular system (1.1) has the following canonical

form:
J1(t) = Ay (t) + Cuya(t — d(t)) + Caya(t — d(t))

J2(t) = y2(t) + Cayn(t — d(t)) + Caya(t — d(2))

(1.7)

where

Ci Gy
C; Cy

M1 A4N, =

The index of time-delay singular (1.1) is defined as the index of the corresponding
singular system without delay (1.2). By continuously taking derivatives with re-
spect to t on both sides of the second equation in (1.7), and left multiplying both

sides by matrix .J, we obtain the following equations:

Jia(t) = y2(t) + Cayr(t — d(¢)) + Caya(t — d(2))
T2y (t) = Jia(t) + JOsn(t — d(t)) + JCaga(t — d(2))

Ty (8) = I 0 (0) + T O (= d(0) + I Oy (¢ - d(1)
where yék) stands for the k" derivative of y;(¢). From the addition of these equations

and the fact that J* = 0, we have the following expression for ys(t):

v-—-2 v—1

Ua(t) = = D 85 (t) JFHyp(07) = Y I [c3y§’°>(t —d(t)) + CayiP(t — d(t))] .

k=0 k=0
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Therefore, as in the case without delay, system (1.7) admits impulsive solutions for

v>1

yi(t) = %y, (0) + /Ot =5 [Cyyr (s — d(s)) + Caga(s — d(s))] ,

ya(t) = — }i SR () JE+ya(07) — }i J* [Cay e — d(t)) + Caf 2~ d(1))]
k=0 k=0

Remark 1.4.1. Noting the above equations, if v > 1, the appearance of the Dirac
delta-function will admit impulsive solutions. Also, any jump in higher derivatives
of the states will propagate to a jump in the states themselves. This is why for
stability analysis we seek the pair (E, A) to be impulse-free, i.e., system of index

one.
Definition 1.4.1. System (1.1) is said to be regular and impulse-free if the pair

(E, A) is regular and impulse-free.

If system (1.1) is regular and impulse-free, then it can be written in the form of

(1.7) with J = 0 (see Lemma 1.2.1):

G1(t) = Ay (t) + Crya(t — d(8)) + Caya(t — d(2))
Y2(t) = —Cayu(t — d(?)) + Caya(t — d(t)).

(1.8)

whose unique solution can be easily seen to exist since knowing the past, one
can always obtain a unique y;(¢) and y2(t). Moreover, J is equal to 0, i.e. no
impulsive terms. However, as indicated previously, even if a time-delay singular
system is impulse-free, it can still have finite discontinuities due to incompatible
initial condition. If the initial condition does not satisfy the second equation of

(1.8) at ¢ = 0, the system will have jump discontinuities.
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To illustrate this feature, let us consider a singular time-delay system with the

following matrices:

10 —-05 0 -1 0.1
A ) Ag =

with d(¢) = 0.6 + 0.1sin(¢), which is equivalent to

.'Ill(t) = —0.5.’111(t) - .'Ill(t — d(t)) + 0.1.’112(t - d(t))
0 = zy(t) + 21(t — d(2)) (1.9)

From (1.9), z2(0) = —z1(¢t — 0.6) should be satisfied and any initial condition that
does not satisfy it will result in an initial jump. Figure 1.2 shows the simulation
results of the system with initial condition ¢(¢) = [—1, —2]. The discontinuity due

to this incompatible initial condition can be seen easily. It has been mentioned that

x1
C X2

Magnitude

0 1 2 3 4 5 6
times[s])

Figure 1.2 Inconsistent initial condition

unlike standard singular systems, discontinuities in time-delay singular systems can
propagate between different times due to the existence of delayed solution terms.

To illustrate this point, consider a time-delay singular system with the following
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maftrices:

10 -1 0 -1 0.1
00 0 1 0.5 05

with d(t) = 0.6, which is equivalent to

21(t) = —z1(t) — 21 (¢t — 0.6) + 0.1z4(t — 0.6) (110)
0 = 25(t) + 0.5z, (t — 0.6) + 0.5z2(¢ — 0.6)

Consider the following initial condition ¢(¢) = [1, —1]. Using (1.10), #,(0%) = -2.1
and 22(07) = 0. Then at t = 0, #,(07) # #,(0") and z2(0™) # x2(0"), which means
the appearance of jumps in #;(f) and z,(f) at ¢ = 0. Consequently, this jumps will

propagate to the time instance £ = 0.6 since

£1(0.6) = —21(0.6) — 21(0) + 0.125(0)
0 = z5(0.6) + 0.5z1(0) + 0.524(0)

and so on with instances equal to multiples of 0.6. Thus, the jumps are propagating
by the delayed terms whenever their arguments crosses a previous jump. Figure 1.3
shows the simulation results. The discontinuities throughout the state response can
be seen easily, this feature is not found in neither singular systems nor time-delay
systems. As discussed in (Shampine and Gahinet, 2006), the jumps can occur only
in the algebraic variables or in the derivatives of the differential variables, i.e., the

differential variables are always continuous.

1.4.1 Compatible Initial conditions

In this section, we present the compatible initial conditions such that the solution of
the impulse-free time-delay singular systems is defined and continuous on [—d, o).

It has been shown in the previous section that when the algebraic constraints
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Figure 1.3 Inconsistent initial condition

are not satisfied at ¢ = 0, the system will experience jump discontinuities in its
solution. Thus, any initial condition that satisfies the algebraic constraints at
t = 0 is considered as compatible initial condition. However, for the general form
of (1.1), the algebraic constraints are implicit in the system model and, generally,
they don’t appear explicitly. Thus, the compatible initial conditions will be given
explicitly to certain forms of the matrices £ and A and a method will be presented
to get the compatible initial conditions for the general form of E and A. In this

section, the pair (£, A) is assumed to be regular and impulse-free.

Suppose that the matrices £ and A are in the following form:

T 0 A0 C, C
E= , A= , Ag=| V2 (1.11)
00 0 1 Cy Cy

Then, system (1.1) can be rewritten in the following form:

§1(t) = Ay (t) + Coyn(t — d(t)) + Cogn(t — d(1))
y2(t) = —Cayn (t — d(t)) + Caya(t — d(t)).

(1.12)



23

Note that any regular and impulse-free system can be written in this form (see

Lemma 1.2.1). Consider the following initial conditions:

n(t) = (), y2(t) = ¢2(1), t € [~d,0]. (1.13)

Substituting initial condition ¢(f) = col(¢:(t),¢2(t)) into the second functional

equation of (1.12) we have
0 = ¢2(0) + C3¢1(—d(0)) + Cygp2(—d(0)) (1.14)
It has been discussed that the initial conditions should satisfy the algebraic con-

straints in order to prevent initial jumps, therefore, we have the following lemma.

Lemma 1.4.1. For any continuous ¢(t) = col(¢1(t), #2(t)) that satisfies (1.14),
there exists a unique function y(t) defined and continuous on [—d, o) that satisfies

system (1.12) on [0, 00).

Proof. The proof is similar to (Fridman, 2002) for the case of constant time-delay.

O

Suppose now a different form of the pair (E, A) where the matrices have the fol-

lowing form:

I 0 A A Cr Cy
E = , A — , Ad = (115)
00 Az Ay Cs Cy4

where A4 is nonsingular. This system can be rewritten as:

#1(t) = Arzi(t) + Asza(t) + Crz1(t — d(t)) + Coza(t — d(2))

(1.16)

Note that any regular and impulse-free system can be written in this form (see
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Lemma 1.2.2). Consider the following initial conditions:

z1(t) = ¢u (1), (1) = (1), t € [~d,0]. (1.17)

Substituting initial condition ¢(t) = col(¢(t), $2(t)) into the second functional

equation of (1.16) we have

0 = A31(0) + A4g2(0) + C31(—d(0)) + Cagpa(—d(0)) (1.18)

And we have the following lemma. for this form of time-delay singular systems.

Lemma 1.4.2. For any continuous ¢(t) = col(¢1(t), #2(t)) that satisfies (1.18),
there exists a unigue function z(t) defined and continuous on [—d, o) that satisfies

system (1.16) on [0, 00).

Proof. The proof is similar to (Fridman, 2002) for the case of constant time-delay.

O

For other forms of matrices £ and A other than (1.11) and (1.15), the compatible
initial conditions are the corresponding initial conditions to either (1.14) or (1.18)
under the appropriate transformation. This will be demonstrated through the

following example.

1.4.2 Numerical Example

Consider system (1.1) with the following matrices:

-1 4 3 -30 —13 —22 05 02 0
E=]2 -1 —6|, A= =123 =30 —-23 |, Aa=1| -1 01 0
3 -8 -9 -2 7 34 05 0 -1

with d(t) = ]0.3sin(0.2¢t) + 0.1].
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1. Regularity.

det(sE — A)
[[s 00 30 —13 —22
—det| |0 s 0| -]| —123 —30 —23
(000 2 7 34

5+ 30 13 22
= det 123 s+30 23

2 -7 =34
13 22 s+30 22 s+ 30 13
=2 +7 — 34
s+30 23 123 23 123 s+30

= —345% + 27465 — 30797 # 0

Therefore, by Definition 1.2.1, the system is regular.

2. Impulse-free.
To check if the system is impulse-free, matrices M and NN should be found
such that the decomposition in (1.5) holds. As mentioned before, the decom-
position can be obtained via a singular value decomposition on E and fol-
lowed by scaling of the bases. Using Matlab, the function [U,S,V]=svd(E)
is used to obtain the singular value decomposition of the matrix E. This
function produces a diagonal matrix S and unitary matrices U and V such

that E = USV". The singular value decomposition is:

U, S, V] =svd(E)

—0.3395 —0.4031 0.8498
U= 0.3925 —0.8818 —0.2615
0.8548  0.2448  0.4576
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[ 144862 0 0
S = 0 33393 0
0 0 0

0.2547 —0.1875 —0.9487
V=1 -05929 -0.8053 0
—0.7640 0.5625 —0.3162

Scale the first column of U by 14.4862 and the second column by 3.3393, then

the matrices M and N are:

—0.0234 0.0271 0.0590
M=U" =] -01207 —0.2641 0.0733
0.8498 —0.2615 0.4576

0.2547 —0.1875 —0.9487
N=V"T=| -05929 -0.8053 0
—0.7640 0.5625 —0.3162

To verify the previous results,

100
MEN=|[010

000

Also,

MAN = | —53486 —8.4857 —37.6588 | =

—2.0938 1.6597 2.0062 l
—0.7325 0.5393 —6.3671

Ay Ay

Az Ay

and Ay = —6.3671 is nonsingular. Therefore, from Lemma 1.2.2 the system
is impulse-free.

3. Compatible initial conditions.
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The compatible initial conditions are the corresponding initial conditions to

(1.18) under the transformation M and N. Note that

0.0439 —0.0299 0.0275
MAGN = | 0.1472 —=0.0456 —0.2048
0.4974 —0.5448 —0.7235

Thus, the compatible initial conditions are the corresponding initial condi-

tions to:

0 =[—0.7325 0.5393] $,(0) — 6.36716,(0)
+1[0.4974 — 0.5448) $,(—0.1) — 0.7235¢,(—0.1) (1.19)

where ¢(t) = N~1¢(t). Therefore,

[~ 5u(t)
B(t) = ?EZ = | ¢12(t)
- $a(t)

0.2547 —0.5929 —0.7640 ou(t)
= | —0.1875 —0.8053 0.5625 d12(t)
—0.9487 0 —0.3162 $2(t)

0.2547¢11(t) — 0.5929¢15(£) — 0.7640¢(t)
= | —0.1875¢1;(t) — 0.8053¢15(t) + 0.56256 (%)
] —0.9487¢1; (t) — 0.3162¢5(t)

Substituting this into (1.19), after some algebraic manipulations, we get the

following condition for compatible initial conditions:

0= [5.7528 0] ¢1(0) + 2.87626¢,(0)
+[0.9152 0.1438] ¢ (~0.1) — 0.4577¢hp(—0.1) (1.20)
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The response of this system with the following compatible initial condition:

0.3867 + 0.0255 cos(40t) — 0.0562 sin(30t)
P(t) = | —1.9911 — 0.0593 cos(40t) — 0.2416 sin(30t) (1.21)
—0.9438 — 0.0764 cos(40t) + 0.1687 sin(30t)

and d(t) = |0.3sin(0.2¢) + 0.1} is shown in Figure 1.4.

Magnitude

0 0.2 0.4 0.6 08 1 1.2 14 1.6
times|s]

Figure 1.4 Solution behavior of z1, zo and zs with d(t) = |0.3sin(0.2¢) + 0.1] and
¢(t) defined in (1.21).

4. Incompatible initial conditions.

The response of the system with the following incompatible initial condition:

-1.2677
¢(t) =] 1.0176 (1.22)
—-2.5214

and d(t) = |0.3sin(0.2¢) + 0.1| is shown in Figure 1.5. Note the jump discon-

tinuities due to incompatible initial condition.
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Figure 1.5 Solution behavior of z;, zo and z3 with d(t) = |0.3sin(0.2t) 4+ 0.1] and
¢(t) defined in (1.22).

1.5 Neutral Systems Viewed as Time-Delay Singular Systems

Consider the following classical form of linear functional differential equation of

neutral type:

d

= [@2(t) = Das()(t = d(1))] = Azs(t) + Bas(t — d(t))

then denoting: z1(t) = z2(t) — Dza(t)(t — d(t)), we obtain the system (see Section
3.3.4 in (Niculescu, 2001)):

#1(t) = Az (t) + (B + AD)zs(t — d(t))

which is a time-delay singular system. This means that the results appear in this
thesis can be applied to neutral systems as well. Note that the converse is not
true, i.e., the general time-delay singular system cannot be always transformed to

neutral system. However, such a transformation exists under certain conditions.
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1.6 Examples of Time-Delay Singular Systems

Time-delay singular systems find their way into the representation of many real
applications. In what follows, two systems that can be described by time-delay

singular systems will be presented.

1.6.1 Lossless Propagation Models

Lossless propagation is associated to transmission lines without losses or to lossless
steam, water or gas pipes (Niculescu and Rasvan, 2000). Some dynamics with
respect to this topics are the transients of a hydraulic turbines under waterhammer
conditions (Halanay and Rasvan, 1997), the transients of extracted steam pressure
in the combined generation of heat and electricity (Halanay and Rasvan, 1997), the
dynamics of electrical and computer networks containing lossless transmission line

(Brayton, 1968), etc.

The mathematical model describing the lossless propagation consists of hyperbolic
partial differential equations. By using a well-known result about the wave equa-
tion, the partial differential equations are replaced by difference equations (Bray-
ton, 1968). These difference equations are combined with the ordinary differential
equations describing the remainder of the system yielding a system of difference-

differential equations.

It has been shown in (Halanay and Rasvan, 1997) that the transients of extracted
steam pressure in the combined generation of heat and electricity can be described

by the following system:

£y = Az (t) + Bim(t — h) + Bana(t — d(t))
m(t) = Ciz1(t) + Dimp(t — d(t))
m2(t) = Caz1(t) + Do (t — d(t))
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where z,(t) € R™, m(t) € R™ and no(t) € R™ are the state variables, A, Bj,
By, C1, Cy, Dy and D, are real constant matrices and d(t) is a positive continuous

bounded function.

This system can be rewritten in the following form:

Ei(t) = Az(t)+ Agz(t —d(t))

where
z1(t) I,, 0 0
z(t)= | m@) |, E=]0 00
m2(t) 0 0 0
[ A 0 0 0 By B
Z: Cl I[n2 0 , Zdz 0 0 D1
(G 0 -y 0 Dy 0

For more details on lossless propagation models, we refer the reader to (Niculescu

and Rasvan, 2000; Halanay and Rasvan, 1997) and the references therein.

1.6.2 Chemical Processes

Chemical processes are typically modeled by coupled differential and algebraic
equations (DAEs). The differential equations arise from dynamic conservation
equations, while the algebraic equations commonly arise from thermodynamic equi-
librium relations, empirical correlations, pseudo-steady-state assumptions, closure

conditions, and so on (Kumar and Daoutidis, 1999).

From the other side, delays often appear in chemical processes such as transporta-
tion delays caused by finiteness of time of heat transport along different elements of

the circulation contours, warming up time of a reactor and so on (Haurani, 2003).
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When both delays and algebraic constraints arise in a chemical process, it can be

modeled as time-delay singular system.

A broad class of chemical processes modeled by time-delay singular systems consists
of multiphase systems where the individual phases are in thermodynamic equilib-
rium. In what follows we will consider a vapor-liquid reaction system in a con-
tinuous stirred-tank reactor (CSTR), with the two phases in physical equilibrium

(Kumar and Daoutidis, 1995).

Figure 1.6 Two-phase reactor

Consider the two-phase (liquid- and vapor-phase) reactor shown in Figure 1.6. Re-
actants A and B are fed to the CSTR as pure vapor and liquid streams, respectively,
at molar flow rates F4p, and Fpp, while the two outlet streams from the liquid and
vapor phases have molar flow rates Fr and Fy, respectively. It is assumed that the
individual phases are well-mixed and they are in physical equilibrium at pressure
p and temperature 7', that is, the chemical reaction is slow compared to the mass
transfer across the interface. The molar specific heat capacity c¢,, density p, and

latent heat of vaporization AH" are also assumed to be constant and equal for all
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the species. Reactant A diffuses into the liquid phase, where a reaction of the form:

A+B—-C

takes place. Product C then diffuses out into the vapor phase (product phase).
Reactant B is assumed to be nonvolatile, that is, only the reactant A and the
product C are present in the vapor phase while all the three species are present in

the liquid phase.

The dynamic conservation equations for this process consist of the total mole bal-
ances in the liquid and vapor phases, the mole balance for the species A in the
vapor phase, the mole balances for species A and B in the liquid phase, and the

total enthalpy balance.

In addition to these differential equations, the model consists of algebraic relations
which include phase-equilibrium relations for the species A and C' present in both
phases, and the ideal gas law for the vapor phase. Moreover, transportation delay
along different elements of the circulation contour appears in the system as well.
Also, assume that a disturbance is introduced when the reactor is fed by the reac-
tant A. Under some assumptions (see (Kumar and Daoutidis, 1995)), the dynamics

of the system is governed by the following equations:

Pure differential equations

dN,
pm = Fao+w(t) — Na+ N¢g — Fy
dya  (Fao+w(t))(1—ya) 1—ya ya
— = - Ny — —=—N¢
dt N, Ny Ny
dN
"‘JtizFBO—FL_RC“i‘NA—‘NC
dIA__ FBOCL‘A—{—Rc(l—:L‘A) 1l—x4 TA
7 N, +—, Nat e
d Fgo(l — — Re(1 —
Irp — Bo( $B) c( -TB) _ @NA_{_ _C_U_@_NC

dt Ny Ny N,
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Delay differential equations

dT FAo—i-(,d(t) FBo RC AHR
& LAt )y B (T -
i~ N, e Dt gy T = T+ g (T - =)
AHY 1
+ + t—d(t
(NL + Nv)cp (NL + Nv)ch( ( ))

Algebraic constraints

0=—z4P} +pya

0=—(1-zs—zB)F+p(l—ya)

0 = —N,RT + p2Ze=ti

P

In the above equations, N, is the vapor-phase molar holdup, y4 is the mole fraction
of species A in vapor phase, Ny is the liquid-phase molar holdup, 4 and zg are
the mole fractions of the reactants A and B in the liquid phase, N4 is the molar
rate of transfer of reactant A from the vapor of the liquid phase, N, is the molar
rate of transfer of product C' from the liquid to the vapor phase, () is the heat
input to the reactor, and d(¢) is the transportation delay. A detailed description
of the process parameters and variables is given in (Kumar and Daoutidis, 1995)

along with their nominal steady-state values.

It is desired to control the composition of the vapor phase y4 and temperature T,
using the vapor stream outlet flow rate Fy and the heat input () as the manipulated
inputs. Define now the differential variables z;, i = 1,...6, the algebraic variables
zi, = T7,8,9, the controlled outputs z;, ¢ = 1,2 and the manipulated inputs wu;,

t = 1,2 as given below:

Ty = Ny; Ty = Ya; T3 = Ni; T4 = Ty
Ts = Tp; ze =T; T7 = Na; T8 = N;
Tg = p; 21 = Ya; 2y =T} uy = Fy;

U2=Q.
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Linearizing the delay differential, the differential and the algebraic equations around
the nominal steady-state values, the two-phase reactor system can be modeled by

the following system:

Ei(t) = Az(t)+ Biu(t) + Bau(t — d(t)) + Boiw(t)
C2) = Cu(t) + Buaw(t)

where z(t) € R is the state, u(t) € R? is the control input, z(t) € R3 is the

Ig O
controlled output, £ = | ° , A, By, By, B,1, B.s and C, are known real
0 0

constant matrices, and d(¢) is the time-delay that is assumed to be a positive

continuous bounded function.

The models of the presented examples (lossless propagation models and the two

phase reactor) belong to the following general form of time-delay singular systems:

= Az(t) + Agz(t — di(£)) + Bru(t) + Bau(t — da(t)) + Buw(?)
= Cz(t) + Dyu(t)

= Ca(t) + Buw(t)

= $(t), te[-d,0]

where z(t) € R™ is the state, u(t) € R™ is the control input, y(¢) € R? is the
measurement, z(t) € R® is the controlled output, the matrix £ € R"*™ may be
singular, and we assume that rank(E) = r < n, A, A4, B, By, Bu1, Bus, Cy, Dy
and C, are known real constant matrices, ¢(t) € C? is a compatible vector valued
continuous function and d; () and dy(¢) are the time-delays that are assumed to be

positive continuous functions that are bounded by d.

In the following chapters, we will deal with the analysis and synthesis of this class

of systems.
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1.7 Conclusion

In this chapter, some preliminary results and definitions for time-delay singular
systems have been presented. The solution behavior of singular systems and the
impulsive behavior of its solution are studied. It has been shown that the jump
discontinuities propagate via the algebraic constraints, and consequently, they prop-
agate between different states. Also, the solution behavior of time-delay systems
and the propagation of jump discontinuities in the higher derivatives of the solution
vector are studied. Due to the existence of delayed terms, these jump discontinu-
ities propagate between different time instances as well. For time-delay singular
systems, where both constraints and delayed terms exists, jumps propagate be-
tween different time instances and different state components. This behavior is
inherited from both singular systems and time-delay systems. Some definitions are
presented to insure the existence and uniqueness of solutions and the absence of
any impulsive behavior. Incompatible initial conditions can give rise to impulses
as well and the notion of compatible initial conditions has been discussed. Some
physical examples that can be modeled by the class of time-delay singular systems

are presented to motivate the work in this thesis.
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CHAPTER 2

STABILITY OF TIME-DELAY SINGULAR SYSTEMS

Stability problem is one of the most important problems in control theory. As men-
tioned in the introduction, most of the results in the literature deal with singular
systems with constant delays, and the stability problem for singular systems with
time varying delays has not been fully addressed. This chapter is devoted to study

the stability of singular systems with time-varying delays.

In this chapter, first, delay-dependent stability conditions for singular systems with
time-varying delay are derived. Then, delay-range-dependent exponential stability
conditions for singular systems with time-varying delay are derived. The latter
results are also extended for the case of multiple time-varying delays. The results
of this chapter are mainly based on the Lyapunov-Krasovskii approach and some
algebraic results. Also, a graph theoretic analysis is employed for the case of
multiple time-varying delays. It should be noted that the free-weighting matrices
method will be used in order to have less conservative results. All the results will

be in the LMI setting.

2.1 Problem Statement and Preliminaries

Consider the linear time-delay singular system:

Ei(t) = Az(t) + Agz(t — d(2)) (2.1)

z(t) = ¢(t),-d <t <0

where z(t) € R™ is the state, the matrix £ € R™*" may be singular, and we assume

that rank(E) = r < n, A and A, are known real constant matrices, ¢(t) € CV is a
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compatible vector valued continuous function and d(t) is the time delay and that

is assumed to satisfy:

with d and p are given scalars.

The following definitions and lemmas will be used in the rest of this chapter:

Definition 2.1.1. i System (2.1) is said to be reqular and impulse-free if the

pair (E, A) is reqular and impulse-free.

1. The singular delay system is said to be stable if, for any € > 0 there exists a
scalar 6(€) > 0 such that, for any compatible initial conditions ¢(t) satisfy-
ing @], < 8(€), the solution x(t) to the time-delay singular system satisfies
lz(t)|| < € and a scalar § > 0 can be chosen such that ||@||, < &, implies

z— 0 ast— oc.
iii. System (2.1) is said to be admissible if it is regular, impulse-free and stable.

iv. System (2.1) is said to be exponentially stable if there exist c > 0 and v > 0
such that, for any compatible initial conditions ¢(t), the solution z(t) to the

time-delay singular system satisfies

Izl < ve™"|¢l

v. System (2.1) is said to be exponentially admissible if it is reqular, impulse-free

and exponentially stable.

Lemma 2.1.1. (Xu and Lam, 2006) Consider the function ¢ : Rt — R. If ¢ is
bounded on [0, 00); that is, there ezists a scalar a > 0 such that ||¢(t)|| < « for all

t € [0,00), then @ is uniformly continuous on [0, 00).
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Lemma 2.1.2 (Barbalat’s Lemma). Consider the function ¢ : Rt — R. If ¢ is

uniformly continuous and fot ©o(s)ds < oo, then

lim (t) = 0.

t—00

2.2 Delay-Dependent Stability Conditions for Singular Systems with

Time-Varying Delay

In this section, delay-dependent stability conditions for system (2.1) are developed

and the following theorem gives such result.

Theorem 2.2.1. Let d > 0 and p < 1 be given scalars. System (2.1) is admissible

if there exist matrices P, T1, T, @ > 0, Z > 0 and free matrices N;,1=1,2,3 such

that:
My Ty Mg N |
* H22 H23 ENQ
<0
* * H33 dN3
* * x —dZ
E'P = PTE>0
E'T) = TWE>0
where:

O =Q+TA+ ATy + ME+ (ME)T
My = T1Ag + (NLE)T — M\ E

iy =P" —T1 + (N:E)T + ATT

Iy = —(1 — )@ — NoE — (NL,E)T

My = —(N:E)" + AJ T
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My =dZ — Ty — Ty

Proof. First, we will show that the system is regular and impulse-free. For this

purpose, choose two nonsingular matrices R and L such that

_ I, 0 _ Ay A
E =REL = , A=RAL=| "1 ", (2.6)
0 0 Ay Ap
Now, let
_ Am A _ Tu T
Ag=RAL=|" " "™\ p=rTTL=|"" " @7
Adgr Adx Ty Ty
_ Naw N _
Ni=L'NR =] " 7| g=LTQL= Ou Qu | (2.8)
Ni?l Ni22 Q?l Q22

From (2.5)-(2.7), we conclude that T2 = 0 and T1; > 0.
Also, from (2.3), we get II;; < 0 which gives YA+ ATT] + M\E + (M, E)" < 0.
Based on (2.6)-(2.8), pre- and post-multiply this inequality by L' and L, respec-

tively, we have
+ ATTl + NE + (NlE)T < 0. (29)

Noting that

— N 0
N.E 111
Nin 0

Eq. (2.9) gives

* *

<0 that implies in turn that  AJ,Thy + ThrAgy < 0.
* A;FQTQQ + Tz—;AQQ

Therefore Ay is nonsingular, which implies in turn that system (2.1) is regular and
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impulse-free (Lemma 1.2.2). Next, we show the stability of system (2.1). Since
system (2.1) is regular and impulse-free, there exist two other matrices R and L
such that (Lemma 1.2.1)

_ L. 0 - A O

E=REL = A= RAL = (2.10)

00 0 I,

Define A4, Th, N;, Q in a similar manner as (2.7)-(2.8), Ty, = R™'T) L and Z =
R~TZR™'. Using (2.3) and Schur complement, we get

IM;; I
SRR

* H22

Substitute (2.10) into the previous inequality, pre- and post-multiply by diag{L", LT}

and diag{L, L}, respectively, and using Schur complement, we have

Too + Tog + Qoz Toh Ao
A;22T22 —(1 - H)Q22

Pre- and post-multiplying this by [—Al, I] and its transpose, and noting that
() > 0 and p > 0 (since if p < 0, the first condition in (2.2) will be violated), we

get
AfpyQazAgzy — Qon < 0 which implies p(Adg) < 1. (2.11)
-1 <1 (t) -
Let {(t) = L™'z(t) = " , where (;(t) € R™ and {3(t) € R*". Then, system
C2(t

(2.1) becomes equivalent to the following one:

G(t) = ArGi(t) + Aar it = d(t)) + Anaa(t — d(2)), (2.12)
0= <2(t) + Ad21<1 (t — d(t)) + Ad22<2(t — d(t)) (213)
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Now, choose the Lyapunov functional as follows:

V(t) =T () ETPL(t) + /t_td@ s)Q¢(s)ds + / /+€ s)) T ZE((s)dsdd

Then, the time-derivative of V(¢) along the solution of (2.12) and (2.13) is given

V(t) = 2CT())PTEC() + ¢ ()QC() = (1= d(1))¢" (t — d(2))Q@s¢(t — d(2))

+d(EL() ZEC() ~ [ _(E(s))T ZE{(s)ds (2.14)
Note that

2 [(T(t)Nl T — d(t) N, + c’T(t)N3] x
[EC(t) — B¢(t—d(t) — / t Eg‘(s)ds] =0 (2.15)
t—d(t)
2[CTOT +TOTT | B - At) - At —de)] =0 (216)

X X2 Xu

and for a semipositive-definite matrix X = * Xy Xa3 |, the following

* * X33
holds:

B Wxn(0) - [ td(t) 7T () Xn(t)ds > 0 (217)

, T
where n(t) = [(T(t) ¢ (t—d(t) (T(t)] . Then, adding the terms on the left of
(2.15) and (2.16) to V(t) allows us to express it as

t

VO <0’ @0 - [ 65w s

t—d(t)
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where

&(t,s) = [0 () CT(9)]

[ M +dXyy Mo +dXie I +dXis
* oo + dXos TIog + dXos
* * I3 + d X33

X1 X2 X3 M
*  Xop Xoz N
* * X33 N3

[1]

* * * A

H11 = Q + T1A + ATTIT + NIE + (NlE)T

My = T1Aq+ (N,E)T — N E
M3=P" —T,+(NsE)" + ATTy
My = —(1 — pu)Q — NyE — (,E)T
My = ~(N3E)T + A] Ty
My =dZ ~Th, — Ty

_ AT

Ny Ny

Ifweselect X = | N, | Z7' | N, | , this ensures that X > 0and ¥ > 0. In this
N3 N
case if 2 < 0, which is equivalent to (2.3) by Schur complement and basic algebraic
manipulations, then V() < 0. Thus, (2.3) implies
MIG@N? = V(0) < G (OEPG(E) - V(0)
1
<VE) - V(0) < / U (s)ds
0

t t
S—MAHGMWkS—MAHQ@W@<O

where A\; = A\yin(EP) > 0 and Ay = —Amaz(E) > 0. Taking this into account, we
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can deduce
t
MG + o / 16 (8)]12ds < V(0).
4]
Therefore,
lGOP <5V wmd [la@Pes YO e

Thus ||¢i(¢)|| is bounded. In order to prove the exponential stability of the fast
subsystem, the relation in (2.13) should be used. For constant time delay, an
explicit equation of ((t) is found by an iterative method (Xu et al., 2002). It can
be seen that (»(t) depends on {3(t — 7), where 7 is the constant delay, and {(t — 1)
depends on {3(t — 27), and so on. In the case of time-varying delay, such a direct
relation cannot be found. Thus, some new variables will be defined in order to

model the dependency of {>(t) on past instances. Now, define

ti =11 — d(ti_l), 1= 1,2, Ce

tg=t

It can be seen that the value of ((t) at t = ¢, depends on the value of {(t) at
t =t;—1. From (2.13), we get

G(t) = —Awi(i(t — d(t) — Adz2la(t — d(t))
= —Agni(t1) — Agele(t) (2.19)

Now, (2(t1) can be computed from (2.13) as follows

Ga(t1) = 2t — d(?))
= —AanGi(t —d(t) —d(t — d(?))) — Aae(a(t — d(t) — d(t — d(2)))
= —AaCi(tr — d(t1)) — AgeCa(ts — d(t1))
= —AanC1(t2) — Aaza(a(t)
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Substituting this in (2.19), we get

Go(t) = —AanGi(t1) — Aaoe[—Aa1li(te) — Aaaa(t2)]
= —AgaiCi(t1) — Apa—AgCi(t2) — Agoe[—Aa1l1(ts) — Agoala(ls)]]

and so on.

Note that ¢; < t;_1, therefore, there exists a positive finite integer k() such that
(see Figure 2.1)

k()1

G(t) = (—Adm)k(t)@(tk(t)) - Z (_Ad22)iAd21C1(tz‘+1) (2.20)

=0

and tyy) € [—d,0]. Considering this and the fact that ||{;(¢)| is bounded, then,
1¢2(t)]| is bounded too. Hence, it follows from (2.12) that ||((¢)|| is bounded,
therefore, £|/¢(¢)]|? is also bounded. By Lemma 2.1.1 we have that ||{(¢)||? is

uniformly continuous. Therefore, noting (2.18) and using Lemma 2.1.2, we obtain

lim |G (0] = 0. (2.21)

dit,)  dit) d(t)

Figure 2.1 The relation between different ¢;, 7 = 1,2,....

This, together with (2.11) and (2.20), implies
lim |G(0)] = 0.

Thus, the time-delay singular system is asymptotically stable. Finally, as that this

system is also regular and impulse-free, by Definition (2.1.1), we then have that
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the system is admissible. This completes the proof. O

Remark 2.2.1. Eq. (2.20) can be seen as a generalization of the iterative equation
in (Xu et al., 2002) for systems with constant time delay. Also, based on (2.11),
which is equivalent to (20) in (Xu et al., 2002), the stability of the fast subsystem
has been shown for the case of time-varying delay. Thus, the results in (Xu et al.,
2002), and in (Zhu et al., 2007) and (Feng et al., 2002) as well, can be extended

easily to the case of time-varying delay.

2.3 Delay-Range-Dependent Exponential Stability for Singular Sys-
tems with Time-Varying Delay

The conditions in Theorem (2.2.1) ensures only asymptotic stability. In this section,
exponential stability conditions is derived. Moreover, an estimate of the conver-
gence rate of the states of system (2.1) is presented. Also, the delay will be assumed
to vary in a range and thereby more applicable in practice (He et al., 2007a). The

time delay is assumed to satisfy:

(2.22)

with d, d and u are given scalars.

Before proceeding to the main results, the following preliminary is needed.

Lemma 2.3.1. (Kharitonov et al., 2005) Given a matriz D, let a positive-definite

matriz S and a positive scalar n € (0,1) exist such that

D'SD —n*S <0
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then, the matriz D satisfies the bound

Amag (5)
/\min (S)

“D’” < xe ™ with x = and A = —In(n)

where © is a positive integer.

Now, we have the following result.

Theorem 2.3.1. Let 0 < d < d, p < 1 and o > 0 be given scalars. System
(2.1) is exponentially admissible with o = a if there ezist a nonsingular matriz P,
symmetric and positive-definite matrices QQ1, Qs, (J3, Z1 and Zy, and matrices M;,

N; and S;, 1 = 1,2 such that the following LMI holds:

Hll le eadMlE _eaale 22—Lil,—;i-‘:ll—]\fl CSl CM1 ng
x Iy e4ME —e%E 521N, oSy oMy ALU
x % —Q 0 0 0 0 0
* * —Q 0 0 0 0
R <0 (223)
* ok * * —£ 2a—1 VA 0 0 0
* % * * * ~c(Z1+2Z3) O 0
* % * * * * —cZy 0
* K * * * * * =U
with the following constraint:
E'TP=P'E>0 (2.24)

where

3
My =PTA+A"P+» Qi+ NE+ (NE)T +2aE" P

=1

My, = PTAg+ (N,E)T — NyE + S1E — MyE
Mgy = —(1 — p)e Qs + SHE + (S2E)T = NyE — (NLE)T = MyE — (MyE)T

e2ad - 620“‘1'

d=d-d, U=dz+dZ, Ms=AU, c=—F
a
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Proof. The system can be shown to be regular and impulse-free. Therefore, there

exist two matrices R and L such that (Lemma 1.2.1)

i, I 0 - A0
E=REL= : A=RAL= : (2.25)
0 0 0 Ip,

Define A;, N; in a similar manner as (2.7)-(2.8), M;, S; similar to N;, Z; =
R TZ,R7! and

_ Py P _ i O
PorTpL= | 2| g _pgr=|9m Quz | (2.26)

P21 PQQ Qi?l Qi22

Using (2.23) and Schur complement, we get

II;; I
11 21 <0
* H22

Substitute (2.25) into the previous inequality, pre- and post multiply by diag{L", L™},

diag{L, L} and using Schur complement, we have

3
P2T2+P22+ZQ1'22 Py A
j=1 <0
ApoPro ~(1 = p)e™4Qq

Pre- and post-multiplying by [—A;{QQ ]I] and its transpose, and noting that Q; > 0
and p > 0 (since if p < 0, the first condition in (2.22) will be violated), we get

A;—22Q322Ad22 — 6“2‘13@322 <0 which 1mphes p(e"aAdgg) <1 (227)
So there exist constants 8 > 1 and « € (0,1) such that

”em‘izAfm” <BY,i=1,2,---. (2.28)
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_ Ci(t)
Ca(t)

(2.1) becomes equivalent to the following one

Let ¢(t) = L™'z(t) , where (;(t) € R™ and ((¢) € R*™". Then, system

G(t) = A6 () + Aan it = d(t)) -+ AnaGe(t - d(2)), (2.29)
0= Cg(t) —+ Ad21<1(t — d(t)) —+ Ad22<2(t - d(t)) (2.30)

Now, choose the Lyapunov functional as follows:

V() =¢"TETPL() + t ¢ (5)e Q¢ (s)ds + t_CT(s)e2“(s‘t)Q2C(s)ds

t—d t—d

t 0 pt
T€2a(s—-t) 5 — T 2a(s—t) 7 7/
+/t_d(t)<(8) QzC(S)der-/_E/He(EC(s)) e Z1E((s)dsdo
_'d t
+/_ / (E{(s))Te2(0 Z, E¢(s)dsdd (2.31)
—d Ji+8

Then, the time-derivative of V (¢) along the solution of (2.29) and (2.30) is given
by

V(t) = 2¢T (O PTEC() + ¢T()@i¢(t) = ¢T (= d)e™ 4@ ¢t — d)
+¢T(OQ:C(t) ~ ¢ (t — d)e2Qu¢ (¢ — )
+¢TOQs¢E) — (1 —d@)CT (¢ — d()e Qs (t ~ d(1))

+A(EE() T ZEC) - / (Eé(s))TeR0 2, B (s)ds
t—d

t—d

+ (d = ) (EC()T ZE¢(t) - / (E((s)) Te** 0 2, B (s)ds

t—d

t t
- 20 / ¢T(8)e® Q¢ (s)ds — 2a / _¢T(8)e™CIQx( (s)ds
t—d t—d
t
—2a /t_ " ¢T(s)e® =93¢ (s)ds
—2a /(i /t (E((s)) e~ 7, B (s)dsdd
~d Jt+o

_(—i t . .
- 20 /_ _ /t +H(EC(8))T€2“(S‘“Z2EC(8)dsd9 (2.32)

d
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Adding now these terms to (2.32)

0
_ ~ _ _ _ ted(t)
2 [CT(t)Sl +¢T(t - d(t))S2] x [E¢(t—d(t)) — E¢(t —d) — / ~ EC(s)ds] =0

t—d

[

2 [T, +¢T(t - d(t) ] x [E«t -0 - Bg(e -0 - |

—d(t)
gives

9

V(6) < Y W+ (BT [0+ B 2) (BL(o)

2¢O+ (T - )R] [ Bis)s

t—d(t)

[ BTz, Be(syas
t—d(t)

t—d(t)

—2 (T8 + ¢T(t - d() )] / Eé(s)ds

t—d

t—d(2)
- / _d (E{(s))Te* 0 (Z) + Zy) E{(s)ds
t—d
t—d

—2 [T O+ ¢ (- de)E] [ Bi(s)ds

t—d(t)
t—d

- /t_d(t)<E<‘<s>)Tem-”z‘zEc’(s)ds

—2c /t CT(S)eQQ(S—t)Qlc(S)dS — % /t_ CT(S)eQa(s—t)ch(s)ds
t—d t—d

% /t » CT(8)e2260 Gy (s)ds
0 t

2 / ) / (Bé(s))T 26— Z, i (s)dsd6
S .

- Za/_ (EC(s))"e?*50 Z, EC(s)dsdo
—d t+6

where

3
Uy =C'() [PTA+ AP+ > Qi+ MiE+ (N E)"| ¢(t)

=1




51

Uy =2¢"(t) [PT Ay + (NE)T = NiE + SiE — M E]| ((t — d(t))
= (Tt —d®) [ = (1 = p)e 2@ + SE + (5,E)T — N,E
~ (NoB)T — MzE — (Mo E)T]¢(t — d(t))
Uy =20 (OME((t—d) U5 =-2¢T(t)S1 E((t - d)

We=2("(t —d(t)MEC(t —d)  Wp=—2("(t - d(t))SE((t - d)
Uy = (T (¢ — d)e Q¢ —d) o= —¢T(t — d)e22Qy((t — d)

Noting that Z; > 0 and Z, > 0, adding and subtracting these terms:

/-3 [CT@) Ny 4+ ¢T(t = d(t))No] 20 e~ 2670 [¢T ()N + ¢ (¢ — d(2)) W] " ds

/ DR+ (T (= d(£)Fy] 27 69 [¢T (1), + ¢T (¢ — d(8))No] T ds
¢ d(t)

Sl —|—CT t—d(t ))S_g] (Z—l —i—Z—g)_l X

e
e [(T(1)8) + (Tt - d(1)55] " ds
/t Y08+ - de)8) (7+ ) x
o—2(5=) [CT( 15+ CT(t = d(e) 5] ds
[

+ ()M + (T (t = d(t)) M) 2o e 2200 [¢T(6) My + ¢ (¢ — d())Mo] ' ds

”/t_d@) [CT(O)M, + CT(t — d()) M) 2o e™ 220 [¢T ()N, + ¢ (¢ — d(1)) ) ds

gives

V(&) +2aV(G) <

O+ AT (@2 +d Z) A+

e2aa . 62114 ~ _ _ 1T 2ad _ ,20d
S(Z1+ 2Z5) S
2a (%1 +2) A

t
— / [’I]T(t)N + Ec(s)eZa(s—t)Z_l] e—2a(s—t)Z‘1—1 [nT(t)N + E(( ) 2a(s—-t)Z ] ds
t—d(t)

_l’_
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t—d(t) - . _ _ _ o
- / _ [nT(t)S + E¢(s)e* ) (Zy + Zg)] e 2= (Z) 4+ Z5) ™ x
t—d

[nT(t)g + E((s)e?s? (21 + Z_Q)] ! ds

t—d — _. _ _ — . _37T
- / [nT(t)M ¥ EC(S)@Q"‘(S'”ZQ] g=2a(s=t) 7 =1 [nT(t)M ¥ EC(s)eZa(s‘t)Zg] ds
t—d(t)

- _ o . 2ad _ ~ ]~
<"+ AT (2 +dZ2) A+ NZ7INT
g2od _ g2d 1~ g20d _ p2ad P
+ TS’ (Zl + Zz) ST + TMZz MT]T](t)
where
¢(2) Oy Ihy ME -5 E
¢t —d(t)) * Iy ME -SF
n(t) = II= ~
((t - d) x % —e2dg, 0
¢(t—d) * % 0 ~2ad (3,
M | i, | Ex i ]
- N, — M. ~ S. ~ 1,
N = 2 M = 2 S e 2 A — d
0 0 0 0
0 | 0 0 0

W

My =P'A+ATP+ ZCZ +ME+ (NME)" +2aE™P
=1
Mip=PTA;+ (N2E)T - NE+ S E—-ME

].=.[22 = —(1 t ,U,)eﬁgaEQ3 + S_ZE + (S—QE)T - NQE bt (NZE) M E ( E)T

M.
Pre- and post-multiply (2.23) by diag {LT LT, e 4T e[ T [ 1,1 ]I} and its
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transpose, respectively, gives

ﬂll ﬁlg MlE —glE f_;%:_l_LTNl CLTsl CLTMl ﬁlg
x« My B —5E €=LLTN,  cLTS,  oLTMy LTALU
*x % —em20d(, 0 0 0 0 0
* % * —e""‘EQ_Q 0 0 0 0
! 20d 1 < O
e20d_
*  x * * -S4 0 0 0
* % * * * —c(Z1 + Zs) 0 0
* % * * * * —cZo 0
x % * * * * * -U
where

3
My =P A+ATP+» Qi+ ME+ (ME)T +2aE"P
=1
My =P A, + (NQE)T - NE+ S5 FE - ME
My = —(1 - u)e‘gaaég, + 8B + (SB)T — NoFE — (N,E)T — MyE — (MyE)T

— — _ _ _ 62113 _ e?ad_
d=d—d, U=dZi+dZ,, Mig=L"A"U, CZT
Then, using Schur complement implies
—~ o~ 2a3_1~__1~
N+ AT (dZi+d Za) A+ NZ 7 NT
2ad _ p2ad 1~ 2ad _ p20d __ _ . __
+ 85+ 2) " 5T+ MM <0

which implies in turn

V(¢) +2aV(¢) <0 which leads to V(¢) < e 2V (g(t)

Then, the following estimation is obtained

MG SV (G) < eV () < dee™2|¢]|2
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where A\; = Anin(P11) > 0 and A, > 0 is sufficiently large and can be found since
V(#(t)) is a bounded quadratic functional of ¢(¢). This leads to

A
@I < fllcbllce"“t (2.33)
1
Now, define

ti = ti—l - d(ti_l), 1= 1,2, e

tg=1

Then, similar to what we did in the proof of Theorem 2.2.1, there exists a positive

integer k(t) such that

k(t)—1

Gft) = ("Ad22)k(t)C2(tk(t)) - Z (—Ad2) Aan (1 (i)

=0

and t € [—d,0]. Therefore, from (2.28), (2.27), (2.33), Lemma 2.3.1 and noting
that

ktyd>t, t; ——t~Zd )>t—id
Jj=
we get,

k(t)—1

162 < Az 1], + || A Z | Adze’|| 162 (Eny)
k(t)-1 i
< xe ** W ||, +||Ad211l\/ Il D | Aaz’|| emot=E+0D)
i=0
k(t)-1
< IxlI#ll. + [l Agl \/ 2620 |, ST [l Agzall’ €

i=0
r

IA

X+ a1/ 2 “dM] ], e
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where

“/B_ )\ma:v (Q322)

X=A\yT 75

M = )
1—7 Amin (Q322)

Thus, the time-delay singular system is exponentially stable with a minimum decay-
ing rate = «. Finally, as this system is also regular and impulse-free, by Definition
2.1.1, we then have that the system is exponentially admissible. This completes

the proof. (]

Remark 2.3.1. (Xu and Lam, 2006) It is noted that the condition in (2.24) is
non-strict LMI, which contains equality constraints; this may result in numerical
problems when checking such non-strict LMI conditions since equalily constraints
are fragile and usually not satisfied perfectly. Therefore, strict LMI conditions are
more desirable than non-strict ones from the numerical point of view. Considering
this, Egs. (2.23) and (2.24) can be combined into a single strict LMI. Let P > 0
and S € RV be any matriz with full column rank and satisfies ETS = 0.
Changing P to PE + SQ) in (2.23) yields the strict LMI. This remark applies to
Theorem 2.4.1 as well.

Remark 2.3.2. Taking the limits of the elements of (2.23) as @ — 0, Theorem
2.8.1 yields an admissibility conditions for time-delay singular systems. Moreover,
when E =1, the singular delay system in (2.1) reduces to a state-space delay system
and the result of Theorem 2.2.1 as a — 0 coincides exactly with the result in (He

et al., 2007a).

Remark 2.3.3. Ifd, =0, Q1 = €I, Q2 = €I, Zy = €3], with¢; > 0, i =1,2,3,
being sufficiently small scalars, My = My = Sy = Sy = 0, the result of Theorem
2.3.1 as @ — 0% s equivalent to Theorem 1 in (Zhu et al., 2007). Therefore,
Theorem 1 in (Zhu et al., 2007) can be applied to the case of time-varying delays.

Remark 2.3.4. If o < 0, the proof of Theorem 2.3.1 will be the same except the
fact that —e=224®) yyll be bounded by —e~2°% instead of —e~2%%. Therefore, if Ila

is rewritten as Iy = —(1—p)e~224N Q5+ S, E + (S2E)T — NoE — (N, E)T — MyE —
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(MyE)T, where

di 1 0
d(a) = 1 ifa<

do ifa>0
then Theorem 2.3.1 will be generalized to include negative decaying rates, i.e.

lz(®)]] < ve~*|¢|l,, @ < 0. This fact will be discussed again in Remark 4.2.6.

Example: Consider the time-delay singular system studied in (Zhu et al.,
2007) with

*10, A_O.SO, Ad:—lO
00 -1 -1 0 B
Let 8 = 0, we know from (Zhu et al., 2007) that this system is asymptotically
stable for constant delay 7 < 7* and unstable for constant delay 7 > 7, where
7 = 1.2092. Now, allowing time-varying delay, the exponential stability of this
system will be investigated using Theorem 2.3.1. For various d, the maximum
allowable decay rates o, which guarantee the exponential stability for given lower
bound d and derivative bound p, are listed in Table 2.1. As it is clear from the table,
if we increase d, then we obtain smaller decay rates o. Figure 2.2 gives the solution
behavior of z; and z, as compared to e~%% when d(t) = |0.05 cos(3¢) + 0.4] and
the initial condition is ¢(¢) = [1+0.1sin(40t), —(140.1sin(20t))]",¢ € [—0.405,0].
From Figure 2.2, we can see that the states x; and z exponentially converge to

zero with a decay rate more than 0.3.

Now, let B = 0.5 (i.e. the delay appear also in the algebraic constraint). For
d=02,d=0.5 and p = 0.5, the maximum allowable decay rate is @ =0.32. O

Table 2.1 Maximum allowable decay rates « for different d with d = 0.2 and p = 0.5
d 05 0.6 0.7 0.8 0.9 1 1.1
a 03239 0.3014 0.2816 0.2642 0.2411 0.1323 0.0290
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Figure 2.2 Solution behavior of z; and z; as compared to ™03

Delay-Range-Dependent Exponential Stability for Singular Sys-
tems with Multiple Time-Varying Delays

As a natural extension of the results of the previous section, it is of theoretical

and practical importance to consider the case with multiple time delays. Systems

with many feedback paths are most commonly to encounter multiple delays with

different lower and upper bounds. The delays are assumed to be time-varying and

an estimate of the convergence rate of the states of the system (2.1) is presented.

It is shown also that this rate depends on the minimum bounds of the delays.

Consider the linear time-delay singular system:

/4

Ei(t) = Az Arx(t — d
) (t)+k2=; k(t — di(t)) (234)
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Figure 2.3 An example of a tree

where the time delays di(t), k = 1,...,p, are assumed to satisfy:

0<d, <d(t)<d
G < di(t) < dy (2.35)

de(t) <p <1

with d,, di and p are given scalars. Also, d and d are positive scalars with d =

max{dy,dy,...,dp} and d = min{d,,d, ..., d,}-

In the rest of this section, the following terminology borrowed from graph theory

will be used (Cormen et al., 2001).

A tree structure is a way of representing the hierarchical nature of a structure

in a graphical form (see Figure (2.3)).

The topmost node in a tree is called the root node.

A node is a parent of another node (child) if it is one step higher in the

hierarchy and closer to the root node.

Nodes at the bottommost level of the tree are called leaf nodes.

Now, we have the following results.
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Theorem 2.4.1. Let d, and di, with0 < d, <dy, k=1,...,p, u <1 and a >0
be given scalars. System (2.34) is exponentially admissible with o = « if there exist
a nonsingular matriz P, symmeiric and positive-definite matrices Qr1, Qro, Qks,
Zw oand Zya, k= 1,...,p, and matrices My;, Ny; and Sg;, 1= 1,2, k=1,...,p,
such that the following LMI hold

m Y AU
* T 0 <0 (2.36)
* x U
with the following constraint
ETP=P'E>0 (2.37)

where

2c 2cx
T= dlag { el dy 1Z L= 2adk — 2ady, (Zkl + Zkz),

ezadk - €2adk }

A=A i .. 4l z‘thAk=[Akoo]

P
U= Z (dem + dekg) with Ek = sz —_ d_k

Slc Sk] Onx?m(k—l) S];rz 0 0 0n><3n(p—k) ] ;o k=1, D

p 3
=P A+ AP+ Z {Z Qri + N E + (NklE)T} +2aETP

k=1 i=1

=[H12 e"ganE —e"ElSnE Hpg e"ép plE —'EGEPSNE]



60

G = diag{J1,...,Jp}
s e MpE —e®%*SiE
Jp = * —Qk1 0 , k=1,...,p
* * _QkQ
My, = PT A+ (NeoE)T — NyE 4 SwE — MuE, k=1,...,p
ks = —(1 — p)e 2% Qus + SkoE + (SioE)T — NioE
— (NE)' = MyoE — (MieE)', k=1,...,p.

Proof. The system can be shown to be regular and impulse-free. Therefore, there

exist two matrices R and L such that (Lemma 1.2.1)

o~

_ I 0 _ A 0
E=REL= , A=RAL = . (2.38)

0 0 0 L,

Now, define P similar to (2.26), Zwi = R Z,R~! and

- Akair Akar2 - Qrinn Qritz
Arg = RALL = ., Qu=L"QunL=

Akd21 Akd22 Qki2l Qki22

Using (2.36) and Schur complement, we get

I, = = = [,... 10
! < 0 where [ 1 pﬂ
x Q Q = diag {Il13,. .., s}

Substitute (2.38) into this inequality, pre- and post-multiply by diag{L",..., LT},

diag{L, ..., L} and using Schur complement, we have

p 3
P+ Py + Qrizz X
* kzz; ; <0 (2.39)

* H

where X = [ PhAan ... PhApm ]
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H = diag {——(1 - ,u)e_zaa"Qisgg} ,it=1,...,p

Pre- and post-multiplying (2.39) by diag {I[, e"alll, s e"‘aPI[} and its transpose,
respectively, and noting that g > 0 (since if g < 0, the first condition in (2.35) will
be violated), Lemma 2 in (Fridman, 2002) implies

p -_—
p() €% Apan) < 1 (2.40)
k=1

From (2.40), there exist constants § > 1 and v € (0, 1) such that

p 7 .
| ZeadkAkde <BY, =12 (2.41)
k=1
L -1 = Cl(t) T n—r
et ((t) = L7'z(t) = " , where (;(t) € R™ and {3(t) € R™". System (2.34)
Ca(t

is equivalent to the following one

G(t) = AG (1) + ) {AranGi(t — di(t)) + Arar2Ca(t — di(t))} (2.42)

k=1

0 =(a(t) + Z {Aran it — di(t)) + Aganalalt — di(t))} - (2.43)

k=1

Now, choose the Lyapunov functional as follows:

V()= ¢ (E"P¢(t) + Z {/ ) CT(S)eza(s"t)leg(s)ds
k=1 (Vi

t

+ . CT(S)em(s"t)kaC(S)dS
t—dg

+/ d ()CT(S)eza(s_t)Qki"C(S)d'S
o . .

+ / ) (E¢(s))Te?==0 7 EC(s)dsdf
di, Jt4+6

dk
/ / (E((s))Te? -0 Z B (s )dsde} (2.44)
t+6
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Then, the following estimation can be obtained

GOl < 4/l (2.45)

where A; and A, are positive integers. In order to prove the exponential stability
of the fast subsystem, the relation in (2.43) should be used. In the case of multiple
delays, a relation similar to (2.20) cannot be found. Thus, a tree structure will be

adopted to model the dependency of (»(t) on past instances. Now, define

top =1 (2.46)
tij = t-1)v; — Amod(Gp)+1) (Laa=1)v;) (2.47)
© = {ti; | ti; € (—d,0] and t4-1y, ¢ (—d,0]} (2.48)
Ag =1 (2.49)
Ay = (A(i-l)uj) X (—Amoa(j,p)+1)d22) (2.50)

where

v; = the greatest integer less than or equal to % ,
mod(j,p) = the remainder of the integer division —j-, and
P

t;; and A; are undefined if ti-1y, € (—d,0).

If we let the parents of ¢;; and Aij to be t(;_1),, and A(i_l),,j, respectively, ¢;;’s and
/Alij’s will represent two trees with the same structure (see Figure 2.4), with roots

t and [, respectively.

Remark 2.4.1. Figure 2.4 represents an example with p = 2. Toke note that
Ca(tij) depends on the value of ¢ at all times indicated by the children of t;; in the

tree. Note also that the values of the leaf nodes of the t;;’s tree belongs to ©.

Noting that mod(j,p) = j if j < p, then from (2.43), and using the definitions
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Level 0 Aur 11/0\2 =t
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Level 1 (\.‘3 tia [ R vl /}// Nt “”31\
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Level 2 Az_;, /3/ L #y “J\\t”
) g N //' '\\
b N < y; \_\
Level 3 t, Cj’ A {‘?) : Ass @GAﬁ A }_) L
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t e 8 .69 tc8 t ¢6
A 414 415

Figure 2.4 An example with p = 2.
(2.46)-(2.50), we get

Z {Akd21<1 t - dk( )) + Akd22<2(t - dk(t))}

k:l
-1

&
—~~
~
N’

I
f—’H

—Arnaei(ty) + Alj@(tlg‘)}

7=0

p—1
{Au@ t15) } Z{ —AgranGi(ty)} + Y {Alez(tlj)} (2.51)
t1;€6 tl'j:éoe
if t1; ¢ ©, from (2.43) and (2.46)-(2.50), we get
(7+L)p-1
AiGaltyy) = Ay Z { = Atmod(rp)+1)d211 (t2r) — Afmod(rp)+1)ya22Ce (t2r) }
r=jp
(G+1)p-1

= { —Ale(mod(r,p)+ 1)d21 Cl (t2r)A1j A(mod(r,p)+1)d22 CQ (t27‘) }
= {—A1jA(mod(r,p)+1)d21C1 (tor) + Aerz(th)}

thus, (2(?) in (2.51) can be computed from

p—1

Q)= {AU@(tlj)} + > {=AGyamty)}

t1;€0 7=0
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p—1 (j+L)p-1
+ Z Z {~A1j Atmod(rp)+1)d21C1 (t2r) + A Calter) }
=0 r=jp
t1j¢e
-1
= Z {AIJCZ t1;) }-i-Z{ A(;+1)d21§1(t1g)}
tljee =l
p?-1
+ Z {—A1jA(mod(j,p)+1)d21C1(tzj)+A2jC2(t2j)}
tlf;;ée
1 piti-l
= Z {AIJCQ tlg } Z Z {AzJA(mod(]p)+1)d21(l(t(z+l)])}
t1;€0 i=0 j=0
tiyj¢6
p*-1
+ 3 {A2j42(t2j)}
tli.:ée
1 piti-1
= Z Z { 1._7C2 i }— Z Z {AijA(mod(j,p)+1)d21C1(t(i+1)j)}
1=1 tv_yee =0 =0
t.',,j¢6
p2—1
+ Y {A2jC2(t2j)}
tar 0

Continuing in the same manner, if {5; ¢ O,

(3+1)p-1
AgiCaltey;) = Z {—Asz(mod(r,p)+1)d21C1(tsr) — Asz(mod(r,p)+1)d22C2(tsr)}
r=Jp
(G+1)p-1
Z {——Asz(mod(r,p)+1)d21C1 (tar) + AsrCa(tsr)}
r=jp
we get,
3 2 pi+1_l
=>_ > {Aij@(tig‘)} -3 > {Az‘jA(mod(j,p)ﬂ)dmCl(t(¢+1)j)}
=1 ti; €6 i=0 j=0
tiuj ¢e
p’-1
+ Z {ASjC2(t3j)}
j=0

tgjée
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Note that

ti; = ti-1yw; — dmodGp)+1) (Ei-1)r;)

< Uim1yy; — Lmod(ip)+1) < L1y

which means that the time of a child is always less than the time of its parent.

Therefore, there exists a positive finite integer k(t) such that

k(t) k(t)—1pitl-1
Z Z { 1_7(2 17 } Z Z {Az]A(mod(] p)+1) d21<1 (t(1+1)])}
i=1 t;;€0 =0 "y j= §§6

and t;; € [—d, 0]. Thus, we get

k(t)
[SOIEDSDIR(Z I

=1 1,,€0
k(t)—1pitl-1

+ 30 3 {1l Ameagas el el (2:52)

tingée

Now, in order to estimate ||(2(¢)||, the two terms in (2.52) have to be estimated.

For the first term, from (2.49)-(2.50), A;; can be written as

Aij = (A(i—l)l/j) X (—A(mod(jp)+1)d22) = (A(i—l)uj) X (—Ag,d22)

Iterating on /Al(i_l)uj gives after (i — 1) iterations /Lj = Ag.doa .- Akydze, where

k1,...,k; are integers between 1 and p. Then, we have

~

Aij = Akidggeadki . Ak1d2260¢dk1 e“"‘dii (253)

with d” Ze L dx,. Note also that since t;; € ©, czij is greater than or equal to ¢.
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Therefore, using (2.53), the first term in (2.52) can be bounded by

k() k(t)

>SS {1t} sl < 30 3 {Agets

i=1 t,,€0 i=1 t;;€0

Hliglee™ (254)

Now, the summation Z sums over the leaves in level 7 (see Figure 2.4). This
;€0
summation is bounded by the summation over all the nodes in level ¢, which has

the worst case sum when all the nodes exist in the level (i.e. p* nodes). Therefore,

Z {szlije"”i”[ } can be bounded by

ti; €6

pi—1 . p—1 . pt—1 X
{HAi.je“d“ }=Z|\Aijeadij +ob Y [l Agen®|
]_—_0 ]:0 jzp‘—l

Note that flij’s in each summation have the same parent. The parent of /L-j’s

in the first summation is /l(i_l),,o, in the second summation is /l(i_l),,l and so on.
pi-1 R

Therefore, using (2.46)-(2.50), Z {Hflije"‘d“]]} equals to
Jj=0

p—1
A ad;;_ d ;
E A G100 €410 A(mod(jp)+1)d22€ oG+ 0 || 4.
=0
p-1 g
i i R DL I A(mod(;
+ D Mg e T Aoy )z mesim |
Jj=p*-1
p—1
A adg;_ d ;
< N Ag-1ymee™ 0 | E Amod(j p)+1)dea€” (eGP ...
7=0
p'-1

1 dAi— v, a_ .
+ HA(i—l)V(pi—lﬁl)ea ity ” Z A(mod(j,p)+1)d22€ dmod(s.0)+1) (255)

j=pi~!

p
From the definition of mod(j, p), all the summations in (2.55) are equal to Z Apgrre®,

k=1
Therefore,
i—1_1
P

p'=1 . p . _
DA < Y7 I Aamnye e Y Apase™™
=0 j=0 k=1
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pi—l__l R
Note that Z H/l(i_l) ;2%-i|| is the summation over all the nodes in the previous
=0
level (i.e. level i —1). Following the same procedure with level (7 — 1) and iterating

until level 0 gives

. IRE
Z Akd22eadk:| (2.56)
k=1

pi-1 i
3 I Ageti|| <
7=0

Therefore, using (2.41) and (2.54), the first term in (2.52) can be bounded by

k(t)

gl

=1

p

Z{Amzeaﬁk}] ot < 72 gl (2.57)

k=1

Now, in order to estimate the second term in (2.52), define

1A1]} = max{[| Asan, .., [l Apes [}
Then, from (2.46)-(2.50), we get

1AisllemCerms) < | A1y, Amodgipy+ yazalle™ ) e2dtmedtamrn tivy)
< N A1, Amod(yp+1anaeHmocimn |

< N Ag-1y,e ") A anae®® | (2.58)
Iterating on A(i_mj and t;,, gives after (i — 1) iterations,

[|Ayjlle™ ) < ||Te™ ket Ay gooe®i .. Ay gaoe®® |
< ”Akid22€“a’°i - Ak1d22€az"1 ||e_°‘te°‘a

< [[Age™ et (2.59)

Now, using (2.45) and noting that || Agmod(jp)+1)aa1ll < ||A1] for any integer j, the
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second term in (2.52) can be estimated as

k(t)-1piti-1
S Y 1Al Amoagnr e 16t
=0 tz-i;[é)e
. by k(t)=1piti_1 A
< ”AlH \//\:j||¢||c Z E || Ay e~ Ee+0s)
=0 j

=0
tiuj ¢9
Using (2.59), this term is bounded by

k(t)—~1pitli_1

)\ o oo o
RS e e ew
t"l’ ¢8
pi+1_1
Note that for any i, Z | Ae|F = m||A.||, where m equals to the number of nodes
t,-z_jée

in level ¢ + 1 (see Figure 2.4). It can be seen easily that the worst case is when all

the nodes exist in the level (i.e. p**! nodes), and we get

k(t)—1ptl—1 k(t)—1pitl_1 i
> 2 {ise i XX {1}
= i=0  j=0
tiv, ¢8

Using now (2.56) and (2.41)

k(t)-1pitli_1

> 3 (e

Jj=

} < 1_@; (2.61)

Therefore, using (2.60) and (2.61), the second term in (2.52) can be estimated as

k(t)—-1pitl_1

30D Al Awmoatam+na ¢ G
=0 tii;ée

)\2 ad ﬂ

< |4 7 4l (2.62)
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Now, from (2.57) and (2.62), ||(2(¢)] in (2.52) is estimated by

B b A2 d B —at
C@)] < [1—_—7 + || Ay | R [l e
Thus, system in (2.42) and (2.43) is exponentially stable with a minimum decaying
rate equals to a. Finally, as this system is also regular and impulse-free, by Defini-
tion (2.1.1), we conclude that the system (2.34) is exponentially admissible. This
completes the proof. U

Example: Consider the following singular system with multiple time delays:

(10 0 [ 3 2 0
E=1010], A=10 -5 1],
(000 1 0 2

[ 0 05 0 [ 005 01 0
Au=| 0 0 01 [, A= 0 -04 0.05
| 0.1 0 -01 | 01 01 -01

Let d, = 0.5, d; = 0.6, d, = 0.6, d; = 0.8 and p = 0.5. Using Theorem 2.4.1,
the guaranteed convergence rate of this system is given by ¢ = 2.4. Figure 2.5
gives the solution behavior of z;, z, and z3 when d;(¢) = 0.55 + 0.04 sin(5¢),
da(t) = 0.7+0.05 sin(5t) and the initial conditionis ¢(t) =[ 2 —1 —1.0556 |',t €
[—0.7,0]. As it is expected, ||z(t)| is bounded by ye=24, O

Example: Consider the following time-delay singular system:

-1 2 —4.7 0.4
E= 5 A= )
i -2 4 E —4.9 0.8 ]
0.7 —-0.95 1 0.8
Al = A2 =
1.1 —1.75 14 -1.3

Simulation results show that this systems is unstable for large delays. Now, let



70

3
x1
- X2
mmmmm x3
------- 2exp(-2.41)
[
o
2
E
=)
[}
=
_2 f-
-3 1 -1 L L L i 1
-0.5 0 0.5 1 1.5 2 2.5 3

times[s]
Figure 2.5 Solution behavior of z1, x5 and x3

d, = 0.1, d; = 0.5, d, = 0.2, and u = 0.3. For various «, the maximum allowable
d,, for which the system is exponentially stable are listed in Table 2.2. Note that as
a increases, the maximum allowable dy decreases. Figure 2.6 gives the simulation
results of z; and z, when d;(t) = 0.3 4+ 0.1sin(2t)|, do(t) = |2 + 0.25sin(t)| and
the initial function is ¢(¢) = [ —0.059 0.47 |7,t € [~2,0]. As it is expected from
Table 2.2, ||z(t)]| is bounded by ve™%%. 0O

Table 2.2 Maximum allowable d, for different o
« 001 01 015 02 025 0.3 0.35

dy 573 330 2.79 243 184 1.01 0.32

2.5 Conclusion

This chapter dealt with the stability of the class of singular systems with single and
multiple time-varying delays. Delay-dependent and delay-range-dependent condi-
tions have been stated. Also, an estimate of the convergence rate of such stable
systems has been presented. The results are expressed in terms of LMIs. The

results have been illustrated with examples. It is worth mentioning that the stabil-
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Figure 2.6 Solution behavior of z; and .

ity results developed in this chapter will play important roles in dealing with the

stabilization problem as can be seen in the following chapters.
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CHAPTER 3

STATE FEEDBACK CONTROLLER FOR TIME-DELAY
SINGULAR SYSTEMS

In this chapter, the state feedback stabilization problem for singular time-delay sys-
tems will be tackled. First, LMI conditions will be presented that help in designing
a state feedback controller such that the closed-loop time-delay singular system
is regular, impulse-free and stable. Then, these LMI conditions are adopted to
find the controller gains such that the closed-loop time-delay singular system is
admissible and also satisfies %%, performance level. The results are based on The-
orem 2.2.1 of Chapter 2. We assume in this chapter that the whole state vector is

accessible.

3.1 State Feedback Stabilization for Singular Systems with Time-Varying
Delay

In this section, the state feedback stabilization problem for time-delay singular

systems will be tackled. Consider the linear time-delay singular system:

Ei(t) = Ax(t)+ Agz(t — d(t)) + Bu(t) (3.1a)
z(t)

I

¢(t), te[—d,0] (3.1b)

where z(t) € R"™ is the state, u(t) € R™ is the control input, the matrix E € R**"
may be singular, and we assume that rank(EF) = r < n, A, Ay and B are known
real constant matrices, ¢(t) € C? is a compatible vector valued continuous function

and d(¢) is a time-varying continuous function that satisfies:

0<d) <d and dt) <p<1 (3.2)
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Consider the following state feedback controller:

ut) = Kxz(t), K € R™* (3.3)

Applying this controller to system in (3.1), we obtain the closed-loop system as

follows:

Ei(t) = (A+ BK)z(t) + At — d(t)) = Aqz(t) + Agz(t — dt))  (3.4)

Then, we have the following result.

Theorem 3.1.1. Letd > 0 and p < 1 be given scalars. System (8.1) is stabilizable
if there exist matrices P, Y, T >0, @ > 0, Z > 0, an invertible matrizc G and free

mairices N;, 1 = 1,2, 3 such that:

I, My I dN
*x Il Iz ENQ

_ <0 (3.5)
* * Il33 dN3
o * * * —dZ
E'P = P'E>0 (3.6)
TB = BG (3.7)
E'TT = TE>0 (3.8)

where:

Iy =Q+TA+BY + ATT" + Y BT + N\E + (N, E)T
My =TAs+ (NE)T — N\E

M3 =P —T+(N;E)T + ATTT +YTBT

Moy = —(1 — p)Q — NoE — (N2 E) "

My = —(N3E)T + AJTT

My =dZ-T-T"
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Moreover, a stabilizing state feedback control law is given by:

K=G'Y

Proof. Let T be a positive-definite matrix, then T'A.; can be written as

TAy=T(A+BK)=TA+TBK

Now, assume that there exists an invertible matrix G such that TB = BG. Thus,

TA+TBK =TA+ BGK

Let Y = GK, gives
TA+BGK =TA+ BY

Applying Theorem 2.2.1 to the closed-loop system in (3.4), and letting T = T} = T3,
the results of Theorem 3.1.1 follows immediately. ol

Remark 3.1.1. [t is noted that some conservativeness is introduced due to the con-
straint in (3.7). Moreover, the matriz B should be of full column rank. However, if
we impose the free matrices N;, 1 = 1,2,3, to be equal to zero (which will also intro-
duce some conservativeness), LMI conditions could be obtained without introducing
the constraint in (8.7). Therefore, both approaches (introducing the constraints or
letting the free matrices equal to zero) will give LMI conditions. Based on some
numerical examples, the advantage of either of the approaches over the other turns

out to depend on the example itself.

Example: Consider the time-delay singular system described by:

100 05 0 1
E=(010], A= 0 -1 =021,
000 005 1 0.1
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-1 01 0 1
Ag=1 0 05 0.1 ], B=105
0.1 0 02 1

with d = 1 and g = 0.5. The open-loop response of this system with ¢(t) =
[2, =1, 2.333]" and d(¢) = |0.05sin(5¢) + 0.8| is shown in Figure 3.1. As it can be
seen, the open-loop system is unstable. In order to stabilize this system, solving

the LMlIs of Theorem 3.1.1, gives

K= [ —-0.7907 -0.2976 —0.9838 ] )

Figure 3.2 and Figure 3.3 show the closed-loop response of the system. O
30
A
20 /1

/ \
< ~ / '
3 Ny \
c -10 ~ !
o \
']
= \
-20} \
S
\
-30 x1 \
..... x2 t
3
-40 - = —x3 .
-50

-0.5 0 0.5 1 1.5 2 25 3 3.5
times[s]

Figure 3.1 The open-loop solution behavior of z; and =z, with d(t) =
|0.05sin(5¢) + 0.8] and #(t) = [2, —1, 2.333]T

Example: Consider the time-delay singular system described by:

10 —05 -2
00 1 -1
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T
x1
- X2
————— x3
']
o
2
=
-]
L]
=
-2t !
/
1
i
-3+
0 5 10 15

times[s]

Figure 3.2 Behavior of z; and xy with d(¢) = |0.05sin(5¢) + 0.8] and ¢(t) =
[2, —1, —2.9011]" for the closed-loop dynamics.

Control

times|[s)

Figure 3.3 Behavior of the controller
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-3 1 1
Ag = B =

0 05| 0
with d = 1.2 and pu = 0.55. The open-loop response of this system with ¢(t) =
[1+ 0.1sin(40¢), 2]" and d(t) = |0.1cos(2t) + 1| (see Figure 3.5 for the variation
of the delay) is shown in Figure 3.4. As it can be seen, the open-loop system is
unstable. In order to stabilize this system, solving the LMIs of Theorem 3.1.1,

gives
K =|-17.2949 2.3204 } ;

Figure 3.6 and Figure 3.7 show the closed-loop response of the system. 0

Magnitude

times[s]

Figure 3.4 The open-loop solution behavior of z; and x5 with d(t) = |0.1 cos(2t) + 1|
and ¢(t) = [1 + 0.1sin(40¢), 2]T

3.2 J%, Stabilization for Singular Systems with Time-Varying Delay

The problem of 4%, control for standard state space systems, delay systems and

singular systems has attracted a lot of researchers and a huge amount of results
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1.05F

Magnitude

0.95[

0.9r

0.85

0.8
0

times{s]

Figure 3.5 The time-varying delay d(t) = |0.1 cos(2¢) + 1|

x1
- — ~x2|7

Magnitude

times|[s]

Figure 3.6 Behavior of z; and zy with d(¢) = |0.1cos(2t) + 1| and ¢(t) = [1 +
0.1sin(40t), 2] for the closed-loop dynamics.
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5
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_10 -
_12 -
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times[s]

Figure 3.7 Behavior of the controller

can be found in the literature. The idea of J#, control is to design a stabilizing
controller that not only stabilize the system but also reject external disturbances.
Two methods are usually used to tackle the %, control problem for time-delay sin-
gular systems: the transfer function method (frequency domain) and the functional

method (time domain).

In the transfer function method, a stabilizing controller is designed such that the
resulting closed-loop transfer function from the disturbance w to the controlled
output z, say, 7,,(s), is as small as possible, i.e., the effect of the disturbance on
the controlled output is minimized. The transfer function 7},(s) is a function of
frequency and it is hard to tell if it is big or small. Therefore, the #%,-norm can
be used as a measure of the size of the transfer function. However, for time-delay
singular systems, no transfer function is defined for time-varying delays. Thus, the

functional method (time domain) has to be used to tackle the %, control problem.

Consider the linear time-delay singular system:

Ei(t) = Az(t)+ Agz(t —d(t)) + Bu(t) + Baw(t) (3.9a)
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W bd

System

Controller

3

Figure 3.8 The standard ¢, control problem

2(t) = Cz(t) + Boow(t) (3.9b)
x(t) = (), te€[-d, 0 (3.9¢)

where z(t) € R™ is the state, u(t) € R™ is the control input, w(¢) € RF is the
disturbance input that belongs to Ls[0,00), 2(t) € R® is the controlled output, the
matrix E € R™"™ may be singular, and we assume that rank(E) = r < n, A, Ay
and B are known real constant matrices, ¢(¢) € C¥ is a compatible vector valued

continuous function and d(t) is a time-varying continuous function that satisfies:

0<d(t) <d and dit) <p<l (3.10)

The following definitions will be used in the sequel.

Definition 3.2.1. The time-delay singular system (3.9) is said to be admissible,
if the system with u(t) = 0 and w(t) = 0 is admassible in the sense of Definition

2.1.1.

Definition 3.2.2. For a given scalar v > 0, system (3.9) with u(t) = 0 is said to
be admissible with J€, performance v if it is admissible in the sense of Definition
3.2.1 and under zero initial condition, ||z(t)|l2 < v||w(t)|l2 for any non-zero w(t) €

L2[0, OO)
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Now, consider the following state feedback controller:
u(t) = Kz(t), K € R™" (3.11)

The problem under consideration is to design a state feedback controller such that
the closed-loop system is admissible and satisfies a prescribed 575, performance

level. Then, we have the following results.

Theorem 3.2.1. Letd > 0 and p < 1 be given scalars. System (3.9) is stabilizable
with % performance v if there exist matrices P, Y, T >0, Q@ > 0, Z > 0, an

invertible matriz G and free matrices N;,i =1,2,3 such that:

(11, +C7C Ty My &N TBy |
* [y a3 dalNo 0
Q= * x  II33 dyNs TB,; <0 (3.12)
* * * —doZ 0
i * * ok x =4+ Bl,B., |
E'P = PTE>0 (3.13)
TB = BG (3.14)
E'TT = TE>0 (3.15)

where:

i =Q+TA+BY + ATTT+Y'BT + N\E + (N E)7
My =TA;+ (ME)T — M\E

M3=P' —T+ (NsE)T+ATTT + YTBT

My = —(1 - w)Q — NoE — (NLE)T

Moz = —(NV3E)T + T4y

Oyzs=doZ ~-T-T"
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Moreover, a stabilizing state feedback control law is given by:

K=G'Y

Proof. Following the steps in the proof of Theorem 2.2.1, the system can be shown
to be regular, impulse-free and stable. In order to show that the closed-loop sys-
tem satisfies the J%2, performance level v, let us define the following performance

function:

Joo = /0 CLT@)2() — v (e (b)]dt

According to V' (x¢)|;=¢ = 0 under zero initial condition, and following the steps in

the proof of Theorem 2.2.1, we obtain

Joo < /Ooo{z—r(t)z(t) — 7w (Dw(t) + V(zy)]dt

< / T (Ot

where n(t) = [z7(t) z7(t—d(t)) (EZ(t))T w'(t)]". From (3.12), it is easy to see
that J, <0, that is || z(t)||2 < vllw(t)]||2 for any non-zero w(t) € Ly]0, 00). O

In order to optimize the performance, one should solve the following optimization

problem.

OP1. ~

min
P’G)Y7T>07Q>OvZ>07N‘i77:=1,213
st.y>0
(3.12) — (3.15).

Example: Consider the time-delay singular system described by:

1 00 -05 0 1 -3 1 0
E=1010]|, A= 0 -1 02 |, 4=|0 05 02],
000 01 01 -0.1 0 0 03
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1 0.2
B=|os5|, Bu=]|o0s5], c:[1 oo], Bus = 0.
1 0.1

with d = 0.6 and = 0.2. The open-loop response of this system with ¢(¢) =
[l —2 —0.5]" and d(t) = |0.03sin(5¢) 4+ 0.5] is shown in Figure 3.9, which is
unstable. In order to stabilize this system and reject external disturbance, solving

the optimization problem OP1, gives

K=[~3.4826 _1.3746 —1.2942],

v =10.65

Figure 3.10 and Figure 3.11 show the closed-loop response of the system with
d(t) = |0.03sin(5t) + 0.5] and ¢(t) =[1 —2 —0.7617]".

Magnitude

-15} N

-30 . . L ;
-0.5 0 0.5 1 1.5
times[s]

Figure 3.9 The open-loop response of x; and zy with d(¢) = |0.03 cos(5t) + 0.5| and
#(t)=[1 ~20.5)"

Moreover, to illustrate the disturbance rejection, the closed-loop system with zero

initial condition will be simulated under a finite energy disturbance. The dis-
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Magnitude

_2.5 1 1 1 1 I 1 1 1 I
-05 0 0.5 1 1.5 2 25 3 3.5 4 4.5

times|[s]

Figure 3.10 Behavior of z; and z with d(t) = |0.03cos(5t) + 0.5 and ¢(t) =
[1 —2 —0.7617]7 under the state feedback controller.

0.8 T T T T T T Y

: u(t)

0.4r

Control
o

-0.8 L s . 1 1 ) .
0 0.5 1 1.5 2 25 3 3.5 4 4.5

times[s]

Figure 3.11 Behavior of the controller
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turbance is shown in Figure 3.12 and its norm is ||w(t)|s = 54.1363. The dis-
turbed output is shown in Figure 3.13 and its norm is ||z(t)||2 = 0.4782. Note that
||I|Z((?)‘l||22 = 0.009 < 7 = 0.65. In this simulation, the delay function is chosen to be
d(t) =0.5. O

A =

-
T

0.8F

0.6

0.4

Disturbance

0 2 4 6 8 10 12 14 16 18
times|[s]

Figure 3.12 Disturbance w(t) = 2sin(t 4 0.9)e=0-3¢+09),

Example: Consider the time-delay singular system described by:

1 05 0 -3 1
E= s A= s Ad"" ’
00 0 -1 0 0.5
1 0.2
B = . Bu- . c=[10], Bm-=o
0.5 0.5

with d = 1.2 and p = 0.2. The open-loop response of this system with ¢(¢) = [1 0]"
and d(t) = |0.03sin(5¢) + 1| is shown in Figure 3.14, which is unstable. In order

to stabilize this system and reject external disturbance, solving the optimization
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0.03 T T T T T T T T

Output
o
4

-0.005

~0.01 . . \ . \ . . .
0 2 4 6 8 10 12 14 16 18
times|[s]

Figure 3.13 Solution behavior of the disturbed output ||z(t)||e = 0.4782

problem OP1, gives

K= [ —9.8918 —0.6905 ]

v=2.1

Figure 3.15 and Figure 3.16 show the closed-loop response of the system with
d(t) = 10.03sin(5¢t) + 1|.

Moreover, to illustrate the disturbance rejection, the closed-loop system with zero
initial condition will be simulated under a finite energy disturbance. The dis-
turbance is shown in Figure 3.17 and its norm is ||w(t)||s = 54.1363. The dis-
turbed output is shown in Figure 3.18 and its norm is ||z(¢)[|s = 1.9286. Note that
%Z—((?)% = 0.0356 < v = 2.1. In this simulation, the delay function is chosen to be

d(t) = 0.9. O
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Magnitude

-1 0 1 2 3 4 5
times[s]

Figure 3.14 The open-loop response of z; and z; with d(¢) = |0.03 cos(5t) + 1| and
¢(t) = [1, 0]

Magnitude

-1 0 1 2 3 4 5
times[s]

Figure 3.15 Behavior of z; and z, with d(¢) = |0.03cos(5¢t) + 1| and ¢(t) =
[1, —5.8514] " under the state feedback controller.
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times[s]

Figure 3.16 Behavior of the controller

1.2 ( w(t) |
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04} 1

Disturbance

1 1 1 L

0 2 4 6 8 10 12 14 16 18
times[s]

Figure 3.17 Disturbance w(t) = 2sin(t + 0.9)e~0-3¢+0.9),

88
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005 [—z0l
0.04
0.03F

3 002

3

o

6 8 10 12 14 16 18
times|[s]

Figure 3.18 Solution behavior of the disturbed output ||z(t)||2 = 1.9286

3.3 Conclusion

This chapter dealt with the state feedback stabilization problem of time-delay sin-
gular systems. First, LMI conditions are provided in order to design a stabilizing
state feedback controller. Then, LMI conditions are provided in order to solve
the state feedback %, stabilization problem. Some numerical examples have been

given to illustrate the effectiveness of the results.
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CHAPTER 4

STATIC OUTPUT FEEDBACK CONTROLLER FOR TIME-DELAY
SINGULAR SYSTEMS WITH SATURATING ACTUATORS

In this chapter, the static output feedback stabilization problem for singular time-
delay systems in the presence of saturating actuators will be tackled. The problem
will be considered in the absence and presence of input delay. In the absence of
input delay, an iterative LMI (ILMI) algorithm is proposed to design a stabilizing
static output feedback controller. In the presence of input delay, PENBMI is used
to solve a set of bilinear matrix inequalities (BMI) in order to design a stabilizing
static output feedback controller. The objective of the control designs is twofold.
It consists in determining both a static output feedback control law to guarantee
that the system is regular, impulse-free and exponentially stable with a predefined
decaying rate for the closed-loop system, and a set of safe initial conditions for which
the exponential stability of the closed-loop system is guaranteed and at the same
time the control remains between some given bounds. The results presented here
are delay-range-dependent. Some numerical examples will be given to demonstrate

the effectiveness of the results.

4.1 System Description

Consider the following time-delay singular system:

Ei(t) = Ax(t)+ Agz(t — d(t)) + Bsat(u(t)) (4.1a)
y(t) = Cuz(t) (4.1b)

3

z(t) = ¢(t), te[—d,0] (4.1¢)



91

where z(t) € R" is the state, u(t) € R™ is the saturating control input, y(t) € R?
is the measurement, the matrix £ € R™™ may be singular, and we assume that
rank(E) =r < n, A, Ay, B and C are known real constant matrices, sat(u(t)) =
[sat(ui(t)), ..., sat(um(t))], where sat(u;(t)) = sign(u,(t)) min(ju,(t)|, @), ¢(t) € C?
is a compatible vector valued continuous function, and d(t) is the time-delay that

is assumed to satisfy:

0<d<d(t)<d and dit) <p<1

where d, d and p are given scalars.

Now, consider the following static output feedback controller:
u(t) = Ky(t), K € R™“ | (4.2)
Applying this controller to system (4.1), we obtain the closed-loop system as follows:
Ei(t) = Az(t) + Aqx(t — d(t)) + Bsat(KCxz(t)) (4.3)

The following definition will be used in the sequel.

Definition 4.1.1. (Khalil, 1992) A set Q is called a region of attraction if for all
¢(t) € Q,
i #(8) = 0

Due to the existence of the saturation term, generally, the system cannot be sta-
bilized globally (see Figure 4.1). Therefore, our problem is considered as a local
stabilization problem. Generally, for a given stabilizing static output feedback K,
it is not possible to determine exactly the region of attraction of the origin with
respect to system (4.3). Hence, a domain of initial conditions, for which the expo-

nential stability of system (4.3) is ensured, has to be determined.

It is of common practice to approximate the region of attraction by sets constructed
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Domain of attraction

e

e o, ‘-w-nmM_.,__,_,...,,,,,_,_«____....... ‘_M‘,Au»-*-"""'//
Figure 4.1 Region of attraction.

from the Lyapunov functional. It is shown in (Khalil, 1992) using LaSalle’s theorem

that the set
Q.={zeR"V(z)<c}

is a subset of the region of attraction and it can be used to approximate it (see

Figure 4.2).

Domain of attraction

Figure 4.2 A subset of the region of attraction constructed by Lyapunov functional.

In this chapter, the Lyapunov functional used in Chapter 2 will be adopted; namely
(2.31) and (2.44). It can be seen that even the set {2, cannot be determined exactly.

However, this set can be approximated by an ellipsoid as it will be seen later (see
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Figure 4.3). For more details on this subject, we refer the reader to (Khalil, 1992;

Domain of attraction

O ={x | V{x] < ¢}

Figure 4.3 Approximation of the region of attraction.

Tarbouriech and Gomes da Silva, 2000; Molchanov and Pyatnitskiy, 1989; Cao et
al., 2002; Hu et al., 2002; Bernstein and Michel, 1995) and references therein.

4.2 Static Output Feedback Controller of Singular Systems with Time-
Varying Delay and Saturating Actuators

The problem to be tackled in this section can be summarized as follows: Find a
static output feedback law of the form (4.2) and a set of initial conditions such
that the closed-loop system (4.3) is exponentially admissible with a predefined
minimum decaying rate. The technique introduced in (Tarbouriech and Gomes da,
Silva, 2000); namely, the differential inclusion, will be adopted in order to write
the saturated nonlinear system (4.3) in a linear polytopic form. Let us write the

saturation term as

sat(KCx(t)) = D(p(z))KCz(t), D(p(z)) € R™™ (4.4)
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where D(p(z)) is a diagonal matrix for which the diagonal elements p;(z) are defined

fort=1,..,mas

pi(z) =41 if —7; < (KC)iz <

where (KC); is the i** row of (KC). Using this, system (4.3) can be written as

follows:
Ei(ty = (A+ BD(p(x))KC)x(t) + Agz(t — d(t)) (4.5)

The coefficient p;(z) can be viewed as an indicator of the degree of saturation of
the i*" entry of the control vector. In fact, the smaller p;(z), the farther is the state

vector from the region of linearity defined by:

Since we address the problem of local stabilization, a limit is imposed on z yielding

a lower bound for p;(z). Define the following region of interest in the state space:
S(K,w) = {z € R" | -w < KCz < W}

where every component of the vector @* is defined by u;/ p, with 0 < p. < 1. This

implies

which can be rewritten as:
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Since (KC);x can be positive or negative, we have

Ui

~ . > <

if (KC)z >0 = O P, = p, < piz)
U;

1 . < — <

if (KC)z <0 = O 2 = p, < pi(z)

p,<pfz) <1, Vi=1,...,m
which allow us to define the vector p = [p,, ..., p_] and the following matrices
Aj =A+ BD(’YJ)KC, ] = ]., ...,2m

where D(v,) is a diagonal matrix of positive scalars ;) for i = 1,...,m, which
arbitrarily take the value one or P, Note that we have 2™ matrices since the

matrices D(v;) have m diagonal elements, each have two possibilities.

Now, if x € S(K,u”), we have

pi(z) 0
Dp(z)) = |
0 0 pu(z)
([p, ... 0 1... 0 p - 0| [1...00
e | oo s e e s e
0 0 p 00 p_ 0 01 0 01

€ {D(m),- - D(7am)}.

Therefore,

D(p(z)) € {D(m1),.--, D(7yam)}
=(A+ BD(p(z))KC) € co{A, ..., Aam }
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2m

=(A+ BD(p(z))KC) = Z A4
j=1

27‘"-

with Z’\j’t = 1 and Aj; > 0, which implies that EZ(t) can be determined from
=1

the following polytopic model:

2m
Ei(t) = AeAja(t) + Agz(t — d(t)) (4.6)

j=1
Remark 4.2.1. (Hourani et al., 2004) Notice that the trajectories of the poly-
topic system (4.6) includes all trajectories of the saturated system (4.8), but the
converse 1s not necessarily true. This means that the stability of system (4.6) is
only a sufficient condition to the stability of system (4.3). Thus, some unavoidable

conservativeness is introduced.

Remark 4.2.2. Different control saturation models are proposed in the literature,
i.e. regions of saturation, differential inclusion and sector modeling. In (Gomes
da Silva et al., 2002), a comparative analysis of these models is presented, and
concluded that the differential inclusion model leads to the least conservative design.
Based on that, the differential inclusion model for the actuator saturation is used

here.

Remark 4.2.3. Using this saturation model, the problem of controlling the nonlin-
ear system (4.5) is transformed to the problem of controlling the linear time-variant
system (4.6). However, the time-variant matriz A(t) evolves with time inside a con-
vex polyhedron of matrices (see Figure 4.4). Now, the question is as follows: if we
proof the stabilizability of the 2™ linear time-invariant systems that uses the vertices
of that convex polyhedron as its A’s matrices, does this imply the stabilizability of
the linear time-variant system? The answer is yes, and this will be the result of the

next theorem.

Theorem 4.2.1. Let 0 < d < d, a > 0, a vector p and p < 1 be gwen. If

there exist symmetric and positive-definite matriz P, a matriz @@, symmetric and
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Figure 4.4 A(t) evolves with time inside a convex polyhedron of matrices.

positive-definite matrices 1, (2, 3, Z1 and Zs, matrices M;, N; and S;, 1 = 1,2,

a matriz K and a positive scalar k such that

ET(PE+8Q) p(KC)"

—Hjll My, eME —eS\ E ezzi_lNl ¢S cM; Tijs ]
x Ty eSME —*iSHE €5lN, oSy My AJU
x % - 0 0 0 0 0
* * * —Q2 0 0 0 0
2o <0
* % * * —£ (;a_l Z1 0 0 0
* % * * * —c(Zy+2Zy) O 0
* * * * * * —cZy 0
* % * * * * * -U
) j=1,..,2m

Bi (}:(C')Z KlﬂiQ



98

where

3
Iy = (PE+SQTA+AT(PE+5Q)+> Qi+ NME+(NE)"

i=1

+(PE + SQ)"BD(y;)KC + ((PE + SQ)"BD(y;)KC) "
+2aET(PE + 5Q)
I, = (PE+SQ) Ag+ (NB)" — N\E+ S E — MyE
My = —(1—p)e Qs+ SE + (SHE)T — NyE — (N,E)T — MyE — (MuE)T

2ad _ ,2ad

2

€ €

Il
I

d—d, U=dZ% +dZ, 5= A"U+ (BD(v,)KC)' U, ¢ =

where S € R™ (™" s any matriz with full column rank and satisfies ETS = 0,
then there exists a static oulput feedback controller (4.2) such that the closed-loop
system (4.3) is locally exponentially admissible with o = « for any compatible initial

condition belonging to:

2 2
141 V9
where
K1 k™1
vy = -, Vy = —
X1 X2
1 — 6—20@ 1 — 6—2043
X1 = /\ma:c(ETPE) + /\ma:c(Ql)— + /\maz(QE)—_‘"—"_
2a 20
1— 6—2a3
/\ma:c  a.
+ (@s3) oo ]
2ad — 1+ e~22¢
= /\maa: VA /\maa: ETE
X = Aael Z1) Amaa (B B) =2
9 E _ .—2ad —2ad
+ /\ma:c(Z2)/\ma:c(ETE) e © re

402

Proof. Assume that z(t) € S(K,uf), ¥t > 0 (will be proved later). Therefore,
Ei(t) can be determined from the polytopic system (4.6). Applying Remark 2.3.1
to (2.23)-(2.24) in Theorem 2.3.1 yields a single matrix inequality. Then, if we
apply this matrix inequality 2™ times to the parameters A; with j = 1,...,2™, Ay,
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FE, d, d and p, we will have (4.7). Now, we will show that the system is regular and

impulse-free. For this purpose, choose two nonsingular matrices R, L such that

_ I. 0
E=REL=
0 0
and let
_ An A _ Py P
A, = RA,L = 11 Aj12 7 PR TPL = 11 12
Aj21 A]‘QQ P21 P22

Now, proceeding in a similar way as for the proof of regularity and impulse-free in

Theorem 2.2.1, yields

AJ‘T22P22+P2T2A]‘22<0, j=1,...2"

2777:
Using the fact that A;; > 0 and Z Aje =1,

j=1

)\jytA;rQQPQQ + Pg—g)\j’tAjgg <0, g=1,... 2m’ Vt € (0, OO)

which gives

T om

Py + P2T2 Z AjiAjea <0

Jj=1

2m
[z; we
=1

which implies

2m
Z Aj+Ajoo is nonsingular Vit € [0, 00).
j=1
Therefore, system (4.6) is regular and impulse-free. Now, choose a Lyapunov func-

tional as in Theorem 2.3.1, and proceeding in a similar manner as in the proof of
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Theorem 2.3.1, then

V(t)+2aV(t) <

_ o o - 2a3__1~__ _

N O+ AT (2, +d2) A+ = NZ7INT
(8%

e2a3_62ad~ _ o] ~ e2aa_e2ad~__l~

—— S(Z,+Z T e MZy MTn(t

+— S(Zv+2Z)" ST+ 5 5 In(t)

2771
with all the variables as defined in Theorem 2.3.1 and A is replaced by Z A

Jj=1
om

Then, by convexity and noting that ZAN = 1 with A;; > 0, condition (4.7)

J=1 -
yields:

V(t) +2aV(t) <0

The rest of the proof is similar to the proof of Theorem 2.3.1, and the details is

omitted.

Now, we will prove that z(t) € S(K,@”), Vt > 0. By virtue of condition (4.8), one

has

ET(PE+SQ)E — p(KC)]x™'u;%p.(KC); 2 0

(2

=rE"(PE+SQ)E > p.(KC)u;?p.(KC);.
Therefore,
kET(PE+ SQ)E <1 implies Ei(KC)iTﬂi_Q&(KC)i <1
which means that the ellipsoid defined by I' = {x € R* : 2T ET(PE+ 5Q)z < k™1}

is included in the set S(K,@”). Suppose now that the initial condition ¢(t) satisfies
(4.9). The Lyapunov functional in (2.31) at ¢ = 0 can be rewritten as follows:

V(0) = ¢T(0)ET(PE + 5Q)(0) + / T Qu(s)ds
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T(8)e?*Q,h(s)ds ' $)Te?*Qi0(s)ds
+/_E¢(> Q2(5) +/_d(0)¢(> Qs(s)
+ /_ i /6 (BEd(s))Te** Zy E¢(s)dsdh

+ /_ ; /9 (Ed(s))T€** Zo E(s)dsdh

where P, Q1, 2, Q3, Z, and Zy are symmetric positive-definite matrices. Now,

the terms of the Lyapunov functional can be bounded as follows:

¢"(0)ET(PE + SQ)p(0) = ¢" (0)ET PE$(0) < A maw<ETPE>||¢n2

/ 67 ()2 Qu(5)ds < Aman(Q1) / cds]o]? < Amas Q)=
—2ad
/_ 4T Qui(5)ds < M @2) =9
0 1 —2ad
¢(5)T62a8Q3¢(5)ds .<_ ’\maa:(QS) ”(b”

“(‘)1(0) 0o . 0 ro0 -
/ _ / (E¢(s))" €** Z) EP(s)dsdf < Amac(Z1) Amaz(ET E) / B / e** ds|@||.
—dJé -d J 8

20d —1+e 20 . o

< /\maz(Zl)/\maw(ETE) Ao I|¢Hc
24 0 . 20d — e~20d 4 g=2ed . o
[ [ BT 2aBi(e)isd < Moo 2o (BT ) EE T

Therefore, from the definition of V(0), it follows that = (0)E"(PE + SQ)z(0) <
V(0) < xill¢ll? +X2H¢Hi < 7! and, in this case, one has z(0) € ' C §. Now,
since V(0) < 0, we conclude that T ()ET(PE + SQ)z(t) < V(t) < V(0) <
xillol? + X2||¢||z < k7!, which means that z(t) € S, Vt > 0 (See Figure 4.5 for
a graphical representation of different sets). Therefore, Ex(t) can be determined

from the polytopic system (4.6). This completes the proof. O

Remark 4.2.4. Being inside the set Q(v1,v2), the compatibility of the initial con-
dition is also very important especially when saturation is present. As discussed in
Chapter 1, incompatible initial conditions results in jump discontinuities due to the

singular structure. Such jump discontinuities may take the system outside the set
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imation

i

N
A

§ = x| -u“<Ké;<u°}
Figure 4.5 Different sets in the proof of Theorem 4.2.1

Q(vy, ve), where the controller may be unable to stabilize the system.

It is obvious that (4.7) is a BMI, and consequently its solution is very difficult.
Thus, an ILMI approach similar to (Cao et al., 1998) and (Zheng et al., 2002) will
be proposed. The derivation of the algorithm is similar to (Cao et al., 1998) and
(Zheng et al., 2002) and the details will be omitted. This algorithm has the same
disadvantages as those in (Cao et al., 1998) and (Zheng et al., 2002), i.e. based on a
sufficient conditions. The following is the proposed algorithm and the explanation

is given later.

ILMI Algorithm.
e Step 1. OPL1.
min 0
Py>0,Q0,Q1>0,02>0,Q3>0,Zp0>0,Mp,Np,Sp,p=1,2,x

s5.t.(4.12) — (4.13)
K=0and Xg=F.
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Set 1 = 1, X1 = E, Zn = Zm and Zgl = ZQ().

Step 2. OP2.

min i
P;>0,0,01>0,Q2 >07Q3>07MP’NP>SP p=1,2,K K

5.6.(4.12) — (4.13)

Let §;* and K™ be the solution of OP2. If §;* < —a, where « is a prescribed
decay rate, then K™ is a stabilizing static output feedback gain, go to step 5,

otherwise, go to step 3.

Step 3. OP3.

min tr(E'T;)

P;>0,Q,01>0,Q2>0,Q3>0,Z,;>0,Mp,Np,Sp,p=1,2,5
s.t.(4.12) — (4.13)
B =B and K = K*.

If | X;B—TB|| <€ gotostep 4, elseset i =i+ 1, X; =T, Zy; = ZYu
and Zy = Z;‘(z._l), then go to step 2.

Step 4. The system may not be stabilizable via static output feedback. Stop.

Step 5. OP4.
min T
P>0,0,01>0,02>0,035>0,2,>0,Mp,Np,Sp,p=1,2, K,k
s.t.(4.12) = (413) Bi=oa
HI>ETPE  51>0Q: &1>Q, (4.10)
04l > Q3 o051 > 23 o6l > Zy (4.11)
where

1 — 6—20@ 1— e—QaE 1 — —2ad
r=w | § + 0o + 03 + ¢ 04
2a 200 2c0
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2ad — 1 + e~2d
4¢?

05 + Amaz(E T E)

9 E _ »2ad —2ad
+wy (Am(ETE) e = re 56>

+ wzk, and wi,w, and wy are weighting factors.

We solve this problem iteratively in two steps as follows:

a) Fix K, and solve for P > 0, @, @1 > 0, Q2 > 0, Q3 > 0, Z, > 0, M), N,
Sp, p=1,2, and k.

b) Fix Z; and Z,, and solve for P > 0, @, Q1 > 0, @2 > 0, Q5 > 0, M), N,
Sp,p=1,2, Kand k. Set X =T

The set (4.9) is calculated from the matrices that solve OP4.

B'T, -
Iy ( I, E_ﬁingE —e—ﬁidle
+D(y)KC)T
(B'T;
~I 0 0 0
+D(7;)KC)

*
o o o o o o o
*

*

*



—2pd_1 —28;d_,-2p;d
e——ﬁ{"N 1 L—"—?BET_S 1
0 0
—28;d_1 —28;d_,—2p;d
R
0 0
0 0
_Qi%%—_lzh. 0
—26;d_o—20;d
* -Q—TQ—ET——(ZU + Zo;)
* *
* *
-
ETT,  p (KC),
P (KC), KTy
where

IT;18

H22

e—Qﬁij.z_ﬁei—Qﬁii J\{1 Hle
0 0
e—Qﬂij;ﬁei-'Qﬁié M, AdTU
0 0
0 0
0 0
0 0
e~2Pid_o—2p;d
- ———_—2,3‘7"221‘ 0
* =U
Jj=1

3
= A+ AT +) Qi+ NME+ (ME)"

i=1

~X;BB'T; - (X;BB'T})" + X;BB" X, —26,E"T,

= AU+ (BD(v;)KC)'U

105

<0

(4.13)

= —(1—w)e?P" D Qs+ SoF + (S2F)T — NoE — (N2E)T — MyE — (MoE)T
7’

d

= (BE+5Q) d(B)=

&l

itB>0

ifg<0

and the other variables as defined previously.

Remark 4.2.5. The core of this algorithm is OP2 and OP3. As shown in (Cao

et al., 1998), OP2 guarantees the progressive reduction of B; while OP3 guarantees

the convergence of the algorithm. Yet, in (Cao et al., 1998), only X needs to be

fized in order to get LMIs, while in our case, we have also to fix either Z, and Zy

or K to get LMIs. Thus, we will fit Zy and Zy in OP2, and K in OP3. This way
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of solving this problem will not affect the convergence of the algorithm. It is worth
noting that although this ILMI algorithm is convergent, we may not achieve the
solution because B may not always converge to its mintimum. For more details on

the numerical properties of the algorithm, we refer the reader to (Cao et al., 1998).

Remark 4.2.6. Noting Remark 2.8.4, as 3 decreases in the algorithm, this is
nothing but an increasing decaying rate, and as 3 becomes negative, the system
becomes exponentially stable. This fact resembles the facts in (Cao et al., 1998)
and (Zheng et al., 2002) that all eigenvalues of (A— BKC) are shifted progressively
toward the left-half-plane through the reduction of (.

Remark 4.2.7. In order to start the algorithm, OP2 should have o solution for
i =1. Yet, the solution depends on the initial matriz X. In (Zheng et al., 2002),
some Riccati equation is proposed in order to select an initial X for the descriptor
version of this algorithm. In (Lin et al., 2004), it has been proved that this Riccals
equation may not have a solution and an initial value of X =1 is proposed instead.
Actually, the identity matriz may not do the job for even some simple systems, an

example of such systems is

I o
00

(A,B,C)=(1LI), E=

Our numerical experience indicates that an initial choice of Xo = E often leads to
a convergent result. With this Xy, OP1 is used here to get initial values for Z1 and
Zs.

Remark 4.2.8. The minimization of § in OP1 and OP2 should be done using
the bisection method. The lower bound of the bisection method can be any value
less than —a since we are not interested in minimizing B less than —«. The upper
bound of the bisection method can be any sufficiently large number. These upper and
lower bounds should be chosen only once and can be fized throughout the algorithm.

Remark 4.2.9. OP/ is used in order to enlarge the set of initial conditions (4.9).

2ad

The satisfaction of (4.10)-(4.11) means that x; < 6; + 1—62; 26, + L=

e—2ad

oo -(53 +
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1_6—2a46 and xa < A, ETE 2a3—1+e_2“‘355+)\maz ETE Mé& There-
4 X ax 2

2a 4o 4a?

fore, because v; = %, if we minimize the criterion as defined in OP4, then greater
the bounds on |¢|> and ||¢||z tend to be. In other words, by using OP4, we orient
the solutions of LMIs (4.7)-(4.8) in a sense to obtain the set Q(v1,1v2) as large as
possible. For more discussion on this topic, we refer the reader to (Tarbouriech and

Gomes da Silva, 2000).

Example: Consider the time-delay singular system described by:

100 00 1 0 0 03
E=10101|, A4=|l10 01|, A= 0 04 0 |,
000 10 -1 02 03 0

1 =2
100
B=101 03 |, C=
010
0.1 —0.3

This system is originally unstable for all values of delay. Now, allowing time-
varying delay, the exponential stabilizability of this system will be investigated
using Theorem 4.2.1 and the iterative algorithm. Letting d = 0.2, d = 0.6, x = 0.5,
T =7 and a = 0.3, the ILMI algorithm gives after 14 iterations
g | THHS0 SLEes vy = 14.8960, vy = 82.6586.
1.3943  0.8652

Figures 4.6 and 4.7 give the simulation results for the closed-loop system when
d(t) = 0.4+ 0.15sin(3t)| and the initial condition is ¢(t) = [5, 12, 9.6]7,t €
[—0.6,0]. Changing the control amplitude saturation level, Figure 4.8 presents the

functional dependence of v; and v, on the level of control saturation %.

For various «, the values 14 and v, for which we guarantee the exponential admis-
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Figure 4.6 Behavior of z1, T» and x3 versus time ¢.

sibility of the saturated system are listed in Table 4.1. The number of iterations
are also listed in Table 4.1. It is shown that as the predefined decaying rate «

increases, the size of the set of the initial conditions Q(v1, o) decreases.

Table 4.1 Computation results of example 2 with @ = 15

a 0.001 0.2 0.4 0.6 0.8 1 1.2

2 192.1172  97.0467 48.7601  25.8165 14.0812 7.9295 5.5883

vy 067.1209 509.6311 268.5460 165.2845 90.6967 37.1311 28.2688
Iterations 11 13 14 15 16 17 18

4.3 Extension to the Case of Input Delay

Considering the transfer delays of sensor-to-controller and controller-to-actuator
that appear in many control systems. The stabilization problem of system (4.1) in

the presence of input delay will be tackled. Therefore, system (4.1) is rewritten in

the following form:

Ei(t) = Az(t) + Agz(t — di(t)) + Bisat(u(t)) + Basat(u(t — da(1))) (4.14)
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y(t) = Cx(t) (4.14D)
z(t) = ¢(t), t€[=d,0 (4.14c)
with
0 < dy, <di(t) <dy and d(t) < p < 1 k=12

where d;, and dy are given positive scalars. Also, d and d are positive scalars with

d = max{d,,d,} and d = min{d;,d,}.

The closed-loop system with controller (4.2) is rewritten as follows:
Ei(t) = Az(t) + Agz(t — di(t)) + Bysat(KCxz(t)) + Besat(KCx(t — da(t)))4.15)

The problem to be tackled in this section can be summarized as follows: Find a
static output feedback law of the form (4.2) and a set of initial conditions such
that the closed-loop system (4.15) is exponentially admissible with a predefined

minimum decaying rate.

Express the saturation term as in (4.4), then system (4.15) can then be written in

the following equivalent form:

Ei(t) = (A + BiD(p(z())KC)z(t) + Agz(t — di(t))
+ By D(p(a(t — da(£)))) K Calt — da(t)) (4.16)

Similar to the previous section, let 0 < p. <1 be a lower bound to p;(z), and define
a vector p = [;_)1, ) Em]' The vector p is associated to the following region in the
state space:

S(K,w°)={z e R* | -w < KCz < w0}

where every component of the vector @ is defined by @,/ p;
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Define now matrices 4;, j = 1,...,2™ and B, ¢ =1, ..., 2™ as follows:

A; = A+ B1D(y;)KC
B, = BoD(7.)KC

where D(vy;) and D(7.) are diagonal matrices of positive scalars v;;) and ~y. for
1 =1,...,m, which arbitrarily take the value one or p;- Note that the matrices A;
and B, are the vertices of two convex polytopes of matrices. If z(t) € S(K,u”) and
z(t — dao(t)) € S(K,u”), it follows that (A + BD(p(z(t)))KC) € co{Ay, ..., Aam}
and By D(p(z(t — d2(1))))KC € co{B,...,Banm}. We conclude that if z(t) and
z(t—ds(t)) € S(K,@*), then Ez(t) can be determined from the following polytopic

model:
2m gm
Ea(t) =Y NuAjn(l) + Agz(t — d(t)) + Y et Bew(t — da(t)) (4.17)

2771 2711
with 3 A =1,%, >0, 7 =1and 7, > 0.

j=1 c=1
Theorem 4.3.1. Let 0 < d, < dy, k=1,2, u <1 and a be given scalars. If there
ezist a non-singular matrix P, symmetric and positive-definite matrices Qr1, Qxa,
ng, Zkl and ZkQ, k= 1,2, and matrices Mki; Nki and Ski; 1= 1,2, k= 1,2, and

K and a positive scalar k such that

M, T AU
x T 0 <0 j=1,...,2%¢c=1,...,2™ (4.18)
*x * =U

Ei "1 >0, i=1,...m (4.19)



112
with the following constraint

E'P=P'E>0 (4.20)

where

20dy, _ 1 eQaEk — e2ady

T:diag{—TZkl,— 2a

A= A+BD(1)KC Ay 0 0 ByD(3)KC 0 0]

2
U= Z {(deZi1 + dpZk2) } with dy = di — dy,
k=1
Hlj Fe 5 _ _ . ) )
I = andT:[Nl S1 My Ny S Mz]
| * €

Nl;r: _N]I[ OnxSn(k—l) N];rz 00 Onx3n(2—k)]

M, = M12—1 0x3n(k-1) Mg 00 O"><3"(2"°)]

Sk: = I SIIL On><3n(k:—1) 512—2 00 Onx3n(2—k) ]

2 (3
+ Z {Z Qi + N B + (NklE)T} +2aE"P

k=1 i=1
F, = [ My b MpE —e*DSHE Ty e*eMyE —e®2SyE ] and
G =diag{Jx} k=1,2
s % MpE —e®SuF
Ji = * —Qr1 0
* * —Qk2

M, = PTAg+ (NoE)" — Ny E + Si E — My E
M. = P"ByD(7.)KC + (N3 E)' — Nyt E + Sy E — My E
Mz = —(1— 1)e~ 2% Qs + S B + (SkeE)" — NioE — (NwE)" — Mo E

~ (ME)7.
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then, there exists a static output feedback controller (4.2) such that the closed-loop
system (4.15) is locally exponentially admissible with 0 = a — é for any compatible

initial condition belonging to:

2 2
Qv ) ={p €y, : gl + ¢l <1} (4.21)
n )
where
1 |
vy=-—, vy = —
X1 X2
2 -
1 — e—Zan 1 — 204y
= Amaz ETP mazx mazx
X1 = Amaz( E)+ ; {/\ (Qr1) ot Amaz(Qk2) 5o
1— 6—2aﬁk
Amaaf: LT
+Armaz (Qk3) oo }

QQE]C — 14 6——2(13’“
4a?

X2 = Z {/\maz(Zkl)/\maz(ETE)

k=1

+/\maz(Zk2)/\maz(ETE)

26@; — e~ 204, | 6—2a3k
42

Proof. Assume that z(t) € S(K, @), Vt > 0. Therefore, Fi(t) can be determined
from the polytopic system (4.17). Note that system (4.17) is equivalent to the

following system:

2711 2771
Bi(t) = Y Nerer {Ajz(t) + Agw(t — d(t)) + Bew(t — da(t))} (4.22)
7=1 c=1
with 3 " Xe =1, 4, >0, > 7y =1 and 7, > 0.
7=1 c=1

Then, if we apply Theorem (2.4.1) 4™ times to the parameters A; with j =
1,...,2™, B, with ¢ = 1,...,2™, Ay, E, di, dy and p, we will have (4.18) and

(4.20). First, we will show that the system is regular and impulse-free. For this
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purpose, choose two nonsingular matrices R, L such that

_ I. 0
E=REL=
0 0
and let
A = RAL — Ajin Aje P RpTPL_ Py Py
j = jb= = =
Aj21 Aj22 P21 P22

Now, proceeding in a similar way as for the proof of regularity and impulse-free in

Theorem 2.2.1, yields
AjpPo + PjyAj <0, j=1,...2"
Using the fact that A;, > 0,
At Ajoa Paz + PiyXjiAjee <0, j=1,...2™, Vt € (0,00)

adding these inequalities together, gives

T gm
P22 + P2_5 Z)\j’tAjzz <0

Jj=1

2711
[Z g
j=1

which implies

2m

Z/\j’tAjgg is nonsingular V¢ € (0, 00).

=1
which implies that system (4.17) is regular and impulse-free. Now, choose a Lya-
punov functional as in Theorem (2.4.1), and proceeding in a similar manner as in

the proof of Theorem (2.4.1), then

V() 420V (&) <
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2

. o _ - 20y, -1~ = -
<" () |04+ S0 AT (@2 + deZir) A+ ———NeZg' N
p 2a
62a2k —e20d . _ o]~ eQGEk — glady o~
+Tsk (Zkl + Zk2) Sp + ———QQ—Mka;MJ n(t)
2m
with all the variables as defined in Theorem (2.4.1), A is replaced by Z’\j’tAj
j=1
. j
and Ay is replaced by Z 71 Be. Then, by convexity, condition (4.18), (4.20) and
om e=1 o
noting that Z Aje =1, A0 >0, Z T;c = 1 and 75, > 0,
j=1 j=1

V(G) +2aV(¢) <0

Completing the proof in a similar manner as in Theorem (2.4.1), yields the expo-

nential stability result.

Now, by virtue of condition (4.19), z(t) € S(K,w”), ¥Vt > 0. Therefore, E&(t) can

be determined from the polytopic system (4.17). This completes the proof. O

In order to maximize the ball of initial conditions, following the idea in (Tarbouriech

and Gomes da Silva, 2000), we suggest the following optimization problem:

5 ~ Z
. ] 1— —2ad; 1 — —2ady, 1— —2ady,
OP: Minimize w, Z 01 + ¢ Ora + ¢ Ors + c Opa | +

poet 20 20 20
9 _ _ _ -
2ad;, — 1 4 e~22% 2ad, — e~2%d 4 ¢~20dk
ws ) | Mnaa B B)—— Bik5 + Amaa (B B) ==t Sks
k=1
+wsk subject to the previous BMIs and the following LMIs:
&l>E'PE Okl > Qi sl > Qo
Orall > Qs dpsll > Zia Osll > Zio

where £ = 1,2 and wy, we and ws are weighting factors.
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Figure 4.9 Behavior of x; and x5 versus time ¢.

Example: Consider the time-delay singular system described by:

1 0 0.5 -=0.5 -1 0
E= , A= L Ag=
0 0 —-0.5 -0.5 0 0O
1 1 01
By = , By = ) C= [ 10 ]
01 0 0

Letting d; = 0.2, dy = 0.4, d, = 0.1, dp = 0.3, = 0.4, T = 20 and o = 0.1, using
PENBMI, gives

—1.4452
K= , v, = 146.69 Vg = 213.22

0.0308

Figures 4.9 and 4.10 gives the simulation results for the closed-loop system when
di(t) = 10.3 + 0.3sin(t)], da(t) = |0.2 + 0.3 sin(t)| and the initial condition is ¢(t) =
[10 + 0.5sin(30t), —(10+ 0.5sin(30t))]", ¢ € [-0.4,0].
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Figure 4.10 Behavior of the controllers

4.4 Conclusion

This chapter has dealt with the static output feedback stabilization of the class
of time-delay singular systems in the presence of actuator saturation. A delay-
range-dependent static output feedback controller has been designed and an ILMI
algorithm has been proposed to compute the controller gains. Then, system dy-
namics is generalized to include input delay and a set of BMIs has to be solved

to give the controller gains. The effectiveness of the results has been illustrated

through examples.
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CONCLUSION

In this thesis, the class of singular systems with time-varying delays has been
treated. The results are based on time domain methods and the conditions are
mainly presented in the LMI setting. There are efficient numerical methods to
determine whether an LMI is feasible or to solve a convex optimization problem
with LMI constraints (Boyd et al., 1994); namely, interior point methods. The free
solver SEDUMI is used to solve the convex optimization problems while PENBMI
is used to solve the BMI problems. YALMIP is used as an interface in both cases.
For a brief introduction on SEDUMI and PENBMI, we refer the reader to (Lofberg,
2004).

In chapter 1, some preliminary results and definitions for time-delay singular sys-
tems have been presented. The solution behavior of singular systems and the impul-
sive behavior of the solutions are studied. It has been shown that the jump discon-
tinuities propagate via the algebraic constraints, and consequently, they propagate
between different states. Also, the solution behavior of time-delay systems and the
propagation of jump discontinuities in the higher derivatives of the solution vector
are studied. Due to the existence of delayed terms, these jump discontinuities also
propagate between different time instances. For time-delay singular systems, where
both constraints and delayed terms exists, jumps propagate between different time
instances and different state components. This behavior is inherited from both
singular systems and time-delay systems. Some definitions are presented to insure
the existence and uniqueness of solutions and the absence of any impulsive behav-
ior. Incompatible initial conditions can also give rise to impulses and the notion
of compatible initial conditions has been discussed. Physical example that can be
modeled by the class of time-delay singular systems are presented to motivate the

work in this thesis.

Chapter 2 has dealt with the stability of the class of singular systems with single
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and multiple time-varying delays. The free-weighting matrices approach is adopted
to reduce the conservatism of the results. First, delay-dependent conditions have
been stated such that the singular time-delay system is regular, impulse-free and
stable. This result can be used to generalize many results appear in the literature
for singular systems with constant time-delays to the case of time-varying delays.
Then, delay-range-dependent conditions have been stated such that the singular
time-delay system is regular, impulse-free and exponentially stable. Moreover, an
estimate of the convergence rate of such stable systems has been presented. Then,
this result has been extended to the case of multiple time-varying delays. Some
graph theory terminologies and concepts have been adopted in order to prove the
stability of the algebraic subsystem. The results in this chapter are expressed in

terms of LMIs.

Chapter 3 has dealt with the state feedback stabilization problem of this class
of systems. First, LMI conditions are provided in order to design a stabilizing
state feedback controller. Then, LMI conditions are provided in order to solve
the state feedback %, stabilization problem. Note that an equality constraint was
imposed in order to change the problem from BMI to LMI. This equality constraint

introduces some inevitable conservatism.

In Chapter 4, some nonlinearities are introduced in the model of the system. These
nonlinearities are introduced in the control as saturation nonlinearities. This was
motivated by the fact that every physical actuator is subject to saturation. The
static output feedback stabilization problem is then tackled. A local stabilization
problem is considered where the controller gains and a set of initial conditions
should be given such that the system is guaranteed to be regular impulse-free and
stable. Also, the results allow us to predefine a decaying rate for the states that the
closed-loop system has to satisfy. The nonlinear system is transformed to a linear
polytopic system. The conditions for solving the problem turned to be BMIs, whose
efficient softwares to solve are not available up to date. Solving BMIs is an N-P hard

problem. Therefore, an iterative LMI algorithm was proposed in order to solve for
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the controller gains. The algorithm was proposed to enlarge the initial conditions
set as large as possible. The problem is extended to the case where input delay
appears. BMI conditions have to be solved in order to get the controller gains and
the set of initial conditions. It is not easy to get an iterative algorithm for these
BMIs and PENBMI is used to solve for the controller gains. Note that PENBMI

gives only a local solution.

As a future work, we would propose the following.

e PID.
The most popular method used in the industry today is the PID controller.
As it was discussed in Chapter 1, many chemical processes can modeled as
time-delay singular systems. Therefore, PID controller design for singular
time-delay systems is an interesting problem to tackle. A work concerning
PID controller design for singular systems and its application to chemical

processes can be found in (Rao et al., 2003).

e Controllability and observability.
Controllability is an important property of a control system, and the con-
trollability property plays a crucial role in many control problems, such as
stabilization of unstable systems by feedback. To the best of the author’s
knowledge, no work has been reported in the literature regarding the control-

lability or observability of time-delay singular systems.

e Nonlinear time-delay singular systems.
It would be of considerable interest to study the extensions to the nonlinear
case. The general mathematical description of nonlinear time-delay singular

systems is given by the following form:

#(t) = F(t,z(t), z(t — d(t)),y(t), y(t — d(t)), u(t))

0= G(t,z(t), (t — d(t), y(t), y(t — d(t)), u(t))
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The asymptotic stability of this class of systems is studied in (Pepe, 2005;
Pepe et al., 2006; Pepe and Verriest, 2003). There is a lot of work that has
to be done in the context of analysis and control of this class of nonlinear

systems.

Markovian jump singular systems with delays.

A class of stochastic systems driven by continuous-time Markov chains has
been used to model many practical systems, where random failures and re-
pairs and sudden environment changes may occur. This class of systems is
referred to in the literature as Markovian jump systems. Applications of
Markovian jump systems include failures and repairs of machine in manufac-
turing systems, modifications of the operating point of a linearized model of
a nonlinear system, power systems and economics systems. Also, networked
control systems are modeled as jump linear systems (Chan and Ozguner,
1995; Krtolica et al., 1994). For more details on what has been done on this
class of systems, we refer the reader to the recent books by Boukas (Boukas
and Liu, 2002; Boukas, 2005). For the class of Markovian jump singular sys-
tems, we refer the reader also to the other recent book by Boukas (Boukas,
2008). There are only few papers on Markovian jump singular systems with
delays (Boukas et al., 2005a; Boukas et al., 2005b) and there is a lot of work

that has to be done in this context.

In (Michiels et al., 2004), two recent proposed simple modifications/generalizations
of static output feedback are investigated; namely, introducing time-delay in
the control law and making the gain time-varying. Both approaches have
been shown to be complementary and existing results are brought together
in a unifying framework. Motivated by this work, the generalization of the
static output feedback controller presented here could be the subject of a

forthcoming work.
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