27 research outputs found

    3D Face tracking and gaze estimation using a monocular camera

    Get PDF
    Estimating a user’s gaze direction, one of the main novel user interaction technologies, will eventually be used for numerous applications where current methods are becoming less effective. In this paper, a new method is presented for estimating the gaze direction using Canonical Correlation Analysis (CCA), which finds a linear relationship between two datasets defining the face pose and the corresponding facial appearance changes. Afterwards, iris tracking is performed by blob detection using a 4-connected component labeling algorithm. Finally, a gaze vector is calculated based on gathered eye properties. Results obtained from datasets and real-time input confirm the robustness of this metho

    Eye centre localisation: An unsupervised modular approach

    Get PDF
    © Emerald Group Publishing Limited. Purpose - This paper aims to introduce an unsupervised modular approach for eye centre localisation in images and videos following a coarse-to-fine, global-to-regional scheme. The design of the algorithm aims at excellent accuracy, robustness and real-time performance for use in real-world applications. Design/methodology/approach - A modular approach has been designed that makes use of isophote and gradient features to estimate eye centre locations. This approach embraces two main modalities that progressively reduce global facial features to local levels for more precise inspections. A novel selective oriented gradient (SOG) filter has been specifically designed to remove strong gradients from eyebrows, eye corners and self-shadows, which sabotage most eye centre localisation methods. The proposed algorithm, tested on the BioID database, has shown superior accuracy. Findings - The eye centre localisation algorithm has been compared with 11 other methods on the BioID database and six other methods on the GI4E database. The proposed algorithm has outperformed all the other algorithms in comparison in terms of localisation accuracy while exhibiting excellent real-time performance. This method is also inherently robust against head poses, partial eye occlusions and shadows. Originality/value - The eye centre localisation method uses two mutually complementary modalities as a novel, fast, accurate and robust approach. In addition, other than assisting eye centre localisation, the SOG filter is able to resolve general tasks regarding the detection of curved shapes. From an applied point of view, the proposed method has great potentials in benefiting a wide range of real-world human-computer interaction (HCI) applications

    Tecnicas de seguimiento de caracteristicas faciales en secuencias de imágenes basadas en metodos de libre modelo.

    Get PDF
    Las características faciales juegan un papel importante en el desarrollo de sistemas basados en visión por computador para diferentes aplicaciones como son: la interacción hombre maquina, reconocimiento automático de expresiones faciales o también la identificación de la fatiga en conductores de automóviles, dentro de estos sistemas, el seguimiento de características faciales es una de las etapas que necesitan ser desarrolladas, por lo tanto, este documento se centra en la revisión de las diferentes técnicas para el seguimiento de características faciales, como son métodos de libre modelo (filtro de Kalman, filtro de partículas, entre otras)

    Tecnicas de seguimiento de caracteristicas faciales en secuencias de imágenes basadas en metodos de libre modelo.

    Get PDF
    Las características faciales juegan un papel importante en el desarrollo de sistemas basados en visión por computador para diferentes aplicaciones como son: la interacción hombre maquina, reconocimiento automático de expresiones faciales o también la identificación de la fatiga en conductores de automóviles, dentro de estos sistemas, el seguimiento de características faciales es una de las etapas que necesitan ser desarrolladas, por lo tanto, este documento se centra en la revisión de las diferentes técnicas para el seguimiento de características faciales, como son métodos de libre modelo (filtro de Kalman, filtro de partículas, entre otras)

    Real-Time Group Face-Detection for an Intelligent Class-Attendance System

    Full text link

    Eye center localization and gaze gesture recognition for human-computer interaction

    Get PDF
    © 2016 Optical Society of America. This paper introduces an unsupervised modular approach for accurate and real-time eye center localization in images and videos, thus allowing a coarse-to-fine, global-to-regional scheme. The trajectories of eye centers in consecutive frames, i.e., gaze gestures, are further analyzed, recognized, and employed to boost the human-computer interaction (HCI) experience. This modular approach makes use of isophote and gradient features to estimate the eye center locations. A selective oriented gradient filter has been specifically designed to remove strong gradients from eyebrows, eye corners, and shadows, which sabotage most eye center localization methods. A real-world implementation utilizing these algorithms has been designed in the form of an interactive advertising billboard to demonstrate the effectiveness of our method for HCI. The eye center localization algorithm has been compared with 10 other algorithms on the BioID database and six other algorithms on the GI4E database. It outperforms all the other algorithms in comparison in terms of localization accuracy. Further tests on the extended Yale Face Database b and self-collected data have proved this algorithm to be robust against moderate head poses and poor illumination conditions. The interactive advertising billboard has manifested outstanding usability and effectiveness in our tests and shows great potential for benefiting a wide range of real-world HCI applications

    Multi-sensor driver drowsiness monitoring

    Get PDF
    A system for driver drowsiness monitoring is proposed, using multi-sensor data acquisition and investigating two decision-making algorithms, namely a fuzzy inference system (FIS) and an artificial neural network (ANN), to predict the drowsiness level of the driver. Drowsiness indicator signals are selected allowing non-intrusive measurements. The experimental set-up of a driver-drowsiness-monitoring system is designed on the basis of the soughtafter indicator signals. These selected signals are the eye closure via pupil area measurement, gaze vector and head motion acquired by a monocular computer vision system, steering wheel angle, vehicle speed, and force applied to the steering wheel by the driver. It is believed that, by fusing these signals, driver drowsiness can be detected and drowsiness level can be predicted. For validation of this hypothesis, 30 subjects, in normal and sleep-deprived conditions, are involved in a standard highway simulation for 1.5 h, giving a data set of 30 pairs. For designing a feature space to be used in decision making, several metrics are derived using histograms and entropies of the signals. An FIS and an ANN are used for decision making on the drowsiness level. To construct the rule base of the FIS, two different methods are employed and compared in terms of performance: first, linguistic rules from experimental studies in literature and, second, mathematically extracted rules by fuzzy subtractive clustering. The drowsiness levels belonging to each session are determined by the participants before and after the experiment, and videos of their faces are assessed to obtain the ground truth output for training the systems. The FIS is able to predict correctly 98 per cent of determined drowsiness states (training set) and 89 per cent of previously unknown test set states, while the ANN has a correct classification rate of 90 per cent for the test data. No significant difference is observed between the FIS and the ANN; however, the FIS might be considered better since the rule base can be improved on the basis of new observations
    corecore