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Abstract 

Purpose – This paper introduces an unsupervised modular approach for eye centre localisation in images and 
videos following a coarse-to-fine, global-to-regional scheme. The design of the algorithm aims at excellent 
accuracy, robustness and real-time performance for use in real-world applications. 

Design/methodology/approach – A modular approach has been designed that makes use of isophote and 
gradient features to estimate eye centre locations. This approach embraces two main modalities that 
progressively reduce global facial features to local levels for more precise inspections. A novel Selective Oriented 
Gradient (SOG) filter has been specifically designed to remove strong gradients from eyebrows, eye corners and 
self-shadows, which sabotage most eye centre localisation methods. The proposed algorithm, tested on the BioID 
database, has shown superior accuracy.  

Findings – The eye centre localisation algorithm has been compared with 11 other methods on the BioID 
database and 6 other methods on the GI4E database. The proposed algorithm has outperformed all the other 
algorithms in comparison in terms of localisation accuracy while exhibiting excellent real-time performance. This 
method is also inherently robust against head poses, partial eye occlusions and shadows. 

Originality/value – The eye centre localisation method utilises two mutually complementary modalities as a novel, 
fast, accurate and robust approach. In addition, other than assisting eye centre localisation, the SOG filter is able 
to resolve general tasks regarding the detection of curved shapes. From an applied point of view, the proposed 
method has great potentials in benefiting a wide range of real-world HCI applications. 

Keywords Eye centre localisation, HCI, Pupil and iris analysis, Pattern recognition 

Paper type Research paper 

 

1. Introduction 

Eye centre localisation from images and videos has received a considerable amount of attention in the area of HCI through 

utilization of computer vision techniques. Its study is still rapidly expanding due to the increased availability of HCI devices 

and systems. The ability to accurately localise eye centres can promise to bring significant benefits to a HCI system that is 

designed to observe its users and to capture user attentiveness. With the knowledge of user attention and predicted user 
intentions, a HCI system can make informed decisions and therefore can respond to a user in a more intelligent and natural 

way. Compared to other facial cues of a particular user such as age and gender that remain unchanged during a HCI session, 

eye analysis provides a constant stream of information that can address the dynamic nature of HCI. Furthermore, eye analysis 

excels in remote and contactless HCI, which provides an ideal channel for elderly people and those with motor disabilities to 

access HCI systems.  

Generally, eye centre localisation methods fall into two main categories: passive methods and active methods. The former 
type of method is based on inherent features from periocular appearance or geometry, while the latter is based on additive 

features created by active lighting. More specifically, an additive feature based method projects near-infrared illumination 

toward the eyes and results in reflections on the corneas, which are commonly referred to as ‘glints’ (Zhu and Ji, 2005). This 

type of method has been widely employed for commercial eye trackers (Holmqvist, 2011). Being highly reliant on dedicated 

devices, this type of method essentially alters the primary task of eye centre detection into corneal reflection detection as a 

simplified task. Therefore, a passive inherent feature based method is more generalizable since it employs characteristic 
features from the eye region itself and therefore becomes the method we explore in this paper.  

Both types of methods have witnessed real-world applications in different areas. For example, smart solutions are available 

that monitor gaze directions of a driver in order to identify driver distraction/drowsiness and provide timely alerts (Tawari, 

Chen and Trivedi, 2014). These driver assistance systems, capable of detecting and acting on driver inattentiveness, are of 

great value to road safety. Eye/gaze tracking has also been employed for psychological and medical applications (Mele and 

Federici, 2012). Its ability to reflect human processing of visual information and to indicate levels of cognitive load can 
contribute to reading comprehension and presentation design. For example, statistics such as eye saccade, gaze direction and 

gaze duration are valuable user feedback and therefore can lead to adaptive e-learning systems (Rosch and Vogel-Walcutt, 

2013) that can react and adapt to users’ psychological responses. 

Although research in eye centre localisation is becoming increasingly active and sophisticated, a few issues remain 

unresolved that restrict most works from being transformed into real-world applications that can benefit the daily lives of 
human beings. We summarise the three major general issues that undermine the practicability of these works as follows: 
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1) Lack of accuracy in real-world scenarios. Many research works are tested on controlled databases where ideal 

illumination, high-resolution images and desirable viewpoint are available. When tested under various types of real scenes 

with dynamic environmental factors, their performance drops severely.  

2) Undesirable real-time performance. As reliable as they might be, sophisticated algorithms often incur large computational 

cost, rendering them unsuitable for real-time implementations.  

3) High dependence on expensive or inconvenient hardware configuration.  A high cost and complexity of algorithm 

implementation will limit the usability and applicability of any method. Inexpensive yet effective methods are in high 

demand in order to boost real-world applications. 

Therefore, resolving these issues can bridge the gaps in the field of eye centre localisation under realistic scenes and will give 

rise to HCI applications that are more accessible and robust. To this end, our method for eye centre localisation aims to 

maintain high accuracy on low-resolution images by utilising two types of features, and to increase robustness to head pose 
and to decrease computational cost by following a global-to-regional scheme. We also design a Selective Oriented Gradient 

(SOG) filter specifically to strengthen robustness to self-shadowing and interfering facial edges. Moreover, our method is 

unsupervised and only requires a webcam to function. Therefore it is of great practical value due to its ease of use and 

implementation. 

1.1 Related works 

Eye centre localisation methods are commonly based on analysis geometrical/morphological features (Cuong and Hoang, 
2010) that conform to a pre-designed eye model, or machine learning techniques that train classifiers with appearance 

features. Others combine these two types of methods to increase the accuracy and robustness (Hansen and Ji, 2010) of eye 

centre localisation in images containing a wide range of variations (e.g. illumination variation, different head poses, shadows 

and specularities, etc.) 

Timm and Barth (2011) proposed to localise eye centres by means of gradients. In this approach, periocular geometry was 

expressed by an objective function that peaked at the centre of a circular object. Despite its capability in dealing with 

deformation of circular pupil/iris contours, its performance would decline in the presence of strong gradients from eyelids, 

eyebrows, shadows and occluded pupil/iris. This remains to be an unsolved problem shared by most eye centre localisation 

methods. Another unsupervised method using geometrical features investigated the self-similarity space, where image 

regions that can maintain particular characteristics under geometric transformations receive high self-similarity scores (Leo et 

al., 2014). This eye model is derived from the rotational invariance of a pupil/iris region. As a result, extraction of a pupil/iris 
region directly affects computation of self-similarity scores, because the inclusion of eyebrows and other interfering sharp 

edges can produce high self-similarity scores that surpass those from the pupil/iris. In addition, isophote patterns also proved 

to be effective as a type of geometrical feature (Valenti and Gevers, 2008). Characterising contours of equal pixel intensity, 

isophotes are invariant to linear lighting changes as well as in-plane rotations and thus can give excellent eye centre 

localisation results even under challenging experimental conditions. Furthermore, isophote features have been combined with 

the shape regression model by Wei, Pang and Chen (2014) for improved accuracy and robustness.  

On the other hand, with regard to machine learning based methods (Alpaydin, 2014), training data pose a critical influence on 

the performance of the algorithms (Zhu and Ramanan, 2012). More specifically, variations posed by illumination and head 

rotation have a huge impact on the accuracy and robustness of most algorithms. Inspired by Fisher Linear Discriminant (FLD) 

(Duda, Hart and Stork, 2012), Kroon, Hanjalic and Maas (2008) designed a linear filter trained by image patches extracted 

from normalized face images. This method not only considers the high response from a filtered face image, but also examines 

a rectangular neighbourhood around the estimated eye centre positions. This is based on the observation that a pupil in an 
image is formed by a collection of dark pixels within a small region. Another machine learning based method (Niu et al., 

2006) focuses on the design of a novel classifier rather than the extraction of representative features. This method introduces 

a 2D cascade AdaBoost classifier that combines bootstrapping positive samples and bootstrapping negative samples (Viola 

and Jones, 2001). The final localisation of an eye is achieved by fusion of multiple classifiers. More recently, invariant eye 

patterns were investigated by Ren et al. (2014) in order to facilitate localisation of eyes with arbitrary angles in face images. 

They constructed a codebook of Scale Invariant Feature Transform (SIFT) features and validated its relative scale and 
rotation invariance on near-frontal face images rotated by from 0 to 180 degrees. In general, unsupervised methods have 

advantages that they are independent of training data and are therefore less biased toward a certain type of environmental 

setting. For unsupervised methods, models characterising eye regions are vital in determining the accuracy and robustness of 

the resulting algorithms.  

Many eye centre localisation methods are designed for only frontal faces and thus deteriorate with the presence of head 

rotations and/or eye movements. Asadifard and Shanbezadeh (2010) employed a cumulative distributed function (CDF) for 

adaptive centre of pupil detection on frontal face images. Their approach firstly extracts the top-left and top-right quarters of 

a face image as the regions of interest and then filters each region of interest with a CDF. An absolute threshold is defined for 

the filtering process given the fact that the pixels in the pupil region are darker than the rest of the eye region. Despite the 

limitation that this method only accounts for frontal faces, the eye model in this method only considers the intensity values of 

an eye region in a greyscale image. Only when a complete pupil can be extracted by means of erosion would this method 
give an accurate estimation of the eye centre. However, under realistic scenes, specularities on a pupil or those caused by a 

pair of spectacles will split the pupil into several disconnected regions while self-cast shadows would easily change the 

values calculated by a CDF. Another study on frontal faces (Türkan, Pardas and Cetin, 2007) explored edge projections for 

eye localisation. With a face image available, their method firstly defines a rough horizontal position for the eye region 

according to facial anthropometric relations. After the eye band is cropped, it gathers eye candidate points that are extracted 

by a high-pass filter of a wavelet transform. A Support Vector Machine (SVM) based classifier (Chang and Lin, 2011) is then 

used to estimate the probability value for every eye candidate. This type of method normally requires that all face images are 
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perfectly aligned so that the facial geometry agrees with facial anthropometric relations as the prior knowledge. Any 

misalignment will cause inconsistency to the features and will thus lead to poor results.  

In summary, the attention that eye analysis receives has never faded despite the variety of observed facial features. A facility 

for eye centre localisation and exploitation of its practical application offers huge potential for HCI applications. The 

challenges of this research area largely arise from poor illumination conditions that create shadows and specularities around 

the eye region. Further complications arise from changes in head pose and eye movement, long distance scenarios and 

dependency on dedicated devices or complex system structures. Apart from the studies reviewed in this section, we provide a 

detailed summary of 11 state-of-the-art methods in section 3 and a comparison with our eye centre localisation method. 

 

2. Eye centre localisation – an unsupervised modular approach 

We propose a hybrid method that can perform accurate and efficient localisation of eye centres in low-resolution images and 

videos in real time. An overview of the proposed method can be found in Figure 1.  

Figure 1 An overview of the eye centre localisation algorithm 

 

The algorithm includes two main modalities, using global isophote features and regional gradient features, respectively. The 

first modality performs a global estimation of eye centres over a face image and extracts eye regions. Results from the first 

modality are then fed into the second modality as prior knowledge, which lead to a local and more precise estimation of eye 
centres. The two energy maps generated by the two main modalities are fused to enable the final estimation of eye centres. 

2.1 Isophote based global centre voting and eye detection 

A pupil and an iris in an image can be represented by contours of equal intensity values, i.e. isophotes (Lichtenauer, Hendriks 

and Reinders, 2005). Equation (1) is then formulated (Valenti and Gevers, 2008) to calculate displacement vectors which 

point from pixels to the centres of isophotes they belong to.  

���, ��� = 	 − �
�, 	
���
�� 	 + 	 
���
��
�� − 2
�
��
� + 	 
��
�� 																																																																			(1) 
where 
�, 
� 
��, 
�� and 
�� are first-order and second-order derivatives of the luminance function 
(�, �). The importance of 

each vote is indicated by the curvedness of the isophote since the iris and pupil edges that are circular obtain high curvedness 

values as opposed to flat isophotes. The curvedness (Koenderink and Doorn, 1992) can be calculated as: 

��(�, �) = 	 �
��� + 	 2 × 
��� + 	 
��� 																																																																								(2) 
We also consider the brightness of the isophote centre in the voting process based on the fact that the pupil is normally darker 

than the iris and the sclera. Therefore, an energy map ��(�, �) is constructed that collects all the votes to reflect the eye 
centre position following equation (3), where � is the maximum greyscale in the image (� = 255 in the experiments). ���� + ��, � + ��� = [� − 	
�� + ��, � + ���] 	 × ��(�, �)																																				(3) 
Our isophote based modality is different from other isophote feature based methods, in that it extracts isophote features for 

the whole face instead of periocular regions. Pixels with intensities below 30% of the maximum value are removed. The 

lower half of ��(�, �) is simply removed since it is unlikely to concern any eye region information regardless of normal head 

rotations. For the remainder of the left and right half of the energy map ��!"(�, �) and 	��!#(�, �), we further calculate the 
energy centre, i.e. the first moment divided by the total energy, which is selected instead as the optimal eye centres. 

Taking	��!"(�, �) as an example, this can be formulated as equation (4) 

$cx�!" , cy�!"( = 	 ∑ ∑ $�, �( ∙ ��!"(�, �)+�,-.�,-∑ ∑ ��!"(�, �)+�,-.�,- 																																																									(4) 
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where 3�!" = 	 $cx�!" , cy�!"( is the optimal estimation of the left eye centre, 4 and 5 are the maximum row and column 

number in ��!". The eye region to be analysed by our second modality is then selected which centres at the optimal eye 

centre estimation (its width being 1/10 of the face size and its height being 1/15 of the face size). As a result, our method does 
not require an eye detector and is robust to head rotations since global isophotes are investigated. This process is shown in 

Figure 2. 

Figure 2 An illustration of the first modality for eye centre estimation and eye detection 

     

(a) (b) (c) (d) (e) 

Note: (a) A face image (BioID Technology Research, 2001) detected by the Viola-Jones face detector (Viola and Jones, 2004). (b) 

Displacement vectors calculated by equation (1). (c) The energy map calculated by equation (3). (d) The energy centre found by equation 
(4), denoted by a circled asterisk sign. (e) The optimal eye centre position found and the eye region selected. 

The isophote features employed by the first modality are extracted on the global level, i.e. from a whole face image rather 

than a pre-detected eye region. Despite its computational efficiency, it is deemed a coarse estimation due to global variations 

such as uneven lighting and strong edges from outside the eye region. Therefore, a second modality is needed to analyse 

gradient features iteratively at the local level, i.e. from within a refined eye region, for enhanced precision. The modality 

introduced in Section 2.2 is further boosted by an iris radius constraint (Section 2.3) and a SOG filter (Section 2.4). 

2.2 Gradient based eye centre estimation 

A pupil and an iris can also be characterised by radial vectors pointing inward to an eye centre. Specifically, prominent 

gradient vectors on a circular iris/pupil boundary should agree with the radial directions. Therefore the dot product of each 

gradient vector with its corresponding radial vector is maximised. This is formulated by Timm and Barth (2011) as an 

objective function: 

6∗ = arg 4;�6 <1= > > 
6(�, �) ∙ (?@+
�,- (�, �) ∙ A(�, �))�.

�,- B																																																			(5) 
?(�, �) = 	 C(�, �) − 6‖C(�, �) − 6‖� ,				∀�∀�:	‖?(�, �)‖� = 1,			‖A(�, �)‖� = 1																																													(6) 

where 6 is the centre candidates, 6∗ is the optimal centre, = is the number of pixels in the eye region to be analysed, ?(�, �) 
is the displacement vector connecting a centre candidate 6 and C(�, �) which is a pixel different from 6, A(�, �)	is the 
gradient vector, 
6 is the intensity value at an isophote centre and	4	;5�		5 have the same definition as in the preceding 

subsection. The displacement vectors and gradient vectors are both normalised to unit vectors. We only preserve the 

gradients whose directions are reverse to the corresponding displacement vectors based on the fact that the pupil should be 

darker than its neighbouring regions and thus generates inward gradients. A sample implementation of this approach is 

illustrated in Figure 3. 

Figure 3 A sample implementation of the second modality using local gradient features 

   

(a) (b) (c) 

Note: Using gradient features for eye centre localisation. (a) An eye image where the localised eye centre is displayed. (b) The 
display of gradient magnitude where the gradient directions (inverted) are represented by arrows. The gradients with magnitude 

below 70% of the maximum are removed. (c) The resulting energy map for eye centre candidates. 

To resolve the challenges posed by strong shadows inside an eye region and sharp edges outside the eye region, we introduce 

a radius constraint and design a SOG filter that can effectively deal with the circularity measure and automatically remove 

strong gradients from eyebrows and eyelids. 
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2.3 Iris radius constraint 

We introduce an iris radius constraint based on the assumption that shadows and eyebrow segments have random radius 

values, while the iris radii are more constant relative to the size of a face. This provides a way to differentiate circular clusters 
of various radii and to determine their weights in energy map accumulation. The function for the significance measure 

emulates the frequency response of a Butterworth low pass filter: 

HI(�, �) = 	 J 11 + K‖?(�, �)‖� − �L M�NO 																																																																														(7) 
where ‖?(�, �)‖� is the Q� norm of the displacement vector without being normalised to a unit vector. D is the estimated 

radius of the iris. R and L correspond to the order and the cutoff frequency of the filter. The curves corresponding to varying R and L following equation 7 are shown in Figure 4.  

Figure 4 The radius weight function curves emulating the frequency responses of a Butterworth low pass filter 

  

(a) (b) 

Notes: (a) Curves with varying R (R = 1, 2	, 3) and constant L (L = 2). (b) Curves with varying L (L = 1, 2	, 3) and constant R (R = 2). 
The radius weight function is maximally flat around the estimated centre D and drops rapidly when the radius is out of the 

flatness band. Increasing L  while decreasing R  will enhance the rigidity of the constraint which could be assumed for 

circumstances where strong shadows are present. D is a value relative to the size of the face region. This objective function 

allows adjustable coefficients that effectively alleviate the problematic issues posed by edges around eyelids, eye corners and 

shadows. 

 

2.4 SOG filter 

We specifically design a novel SOG filter that discriminates gradients of rapid change in orientation from those of less 

change. It is perfectly tailored to reinforce the two main modalities despite its versatile applicability. The basic idea takes the 

form of a statistical analysis of gradient orientations within a window centred at a pixel position. For each �� × �� window 
centred at pixel S, the gradients in � and � directions are calculated whose orientations follow: 

THSU5VW = 	 tanZ- K
�
�M∙ 180°^ 																																																																																					(8) 
We then stack gradient orientations into _	(_	 ` 	360) orientation bins, where each bin contains the count of the orientations 
from a ∙ bcd°e  to (a + 1) ∙ bcd°e 	(0 f a f _ − 1) within the window. If the count recorded in a bin exceeds a threshold, the 
corresponding pixels that accumulate the bin will have their gradient vectors halved, i.e. their weights reduced. As a result, 

the objective function becomes: 

6∗ = arg 4;�6 <1= > > gI(�, �) ∙ HI(�, �) ∙ [� − 
(�, �)] ∙ (?@+
�,- (�, �) ∙ A(�, �))�.

�,- B																						(9) 
where gI(�, �) is the weight of a gradient vector adjusted by the SOG filter.  
The threshold for the counts is determined by an absolute value as well as a value relative to the number of pixels with non-

zero gradients within the window. As a result, the pixels that maintain similar gradient orientations to their neighbours will 

have their weights reduced and they are referred to as ‘impaired pixels’ in the rest of the paper. When a curve has low local 
curvature, it comprises more ‘impaired pixels’. Figure 5 demonstrates the effectiveness of a SOG filter applied to an image 

containing irregular curves and an image of an eye region. 
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Figure 5 Gradient filtering using a SOG filter 

 
(a) 

 
(b) 

Note: (a) An example of curved shape detection using a SOG filter where the ‘impaired pixels’ are detected and marked 

in red. (b) An example where a SOG filter is applied to an eye image. The magnitudes of the gradients are computed 

where the edges on the eye pouch and eye lid are successfully detected and marked in red. 

It is shown in Figure 5 that the SOG filter has successfully distinguished curves with low and high curvatures and that it is 

effective in dealing with intersected and occluded curves or curve segments. In the eye image, the gradients in the eyelid and 
shadowed eye pouches are detected as ‘impaired pixels’ whose weights are to be reduced in the accumulation of the energy 

map while gradients around the iris and the pupil maintain their original weights. This approach resolves challenges brought 

by shadows, facial makeup and edges on eyelids, eyebrows and other facial parts outside the iris, which are extremely 

problematic for most geometrical feature based eye centre localisation approaches. 

2.5 Energy map integration 

In the final stage, the two energy maps �� and �i are integrated into �j(�, �) so that they both contribute to the election of 
the eye centre. It is critical, prior to the integration, to determine the confidence of each modality, to estimate the complexity 
of the eye image, and thus to determine their weights in the fusion mechanism.  

The left eye region is taken as an example to illustrate the fusion mechanism. If the equivalent centroid 3�!" 	calculated by 
equation (4) is close to the pixel position 3.��" that has the maximum value in the first energy map ��!"(�, �), 3�!"  is 
considered confident since the isophote centre and the equivalent centroid coincide. In this case, more gradients from the 

pupil/iris are present, allowing the second modality to be more robust and precise. The two main modalities are then utilised 
and fused following equation (10): 	�j(�, �) = 	 -‖klmnZ	kolplq‖O ∙ ��(�, �) + 	 �i(�, �)																																				 																																														(10)		   
where 	0 ` ‖3�!" − 	 3r�.��‖� f s, with s taking a value relative to the width of the eye region sj . In our experiments, ϵ = 	0.3ϵu pixels. The coefficient of 0.3 is an empirical value found to be a suitable weight adjustment factor for the first 

modality. It corresponds to the average diameter of the iris in our experiments. When C2wx and Cy2zx disagree and have a 
large Euclidean distance, the first energy map will have high energy clusters sparsely distributed, potentially caused by 

severe shadows and specularities. The second modality will be influenced by ‘impaired pixels’ and produce erroneous centre 

estimates. Therefore only the equivalent centroids 3�!" and 3�!#  are selected to be the final eye centres. 
The maximum response in the final energy map will represent the estimated eye centre. Estimation of the final right eye 
centre follows the same approach.  

 

3. Eye centre localisation experiments and results 

We employed two publicly available datasets for algorithm evaluation, i.e. the BioID dataset and the GI4E dataset. The 

BioID dataset (BioID Technology Research, 2001) consists of 1520 images with ground truth data of eye centre coordinates. 

It has been popular in the literature for the evaluation of other eye centre localisation algorithms. The variations in this 
dataset include illumination, face scale, head pose and the presence of glasses. The GI4E dataset (Villanueva et al., 2013) 

contains images of 103 subjects with 12 different gaze directions. Therefore, the impact of eye and head movement on the 

proposed algorithm can be evaluated. The relative error measure proposed by Jesorsky, Kirchberg and Frischholz (2001) was 

used to evaluate the accuracy of the algorithm. This approach firstly calculates the absolute error, i.e. the Euclidian distance 

between the centre estimates and the ground truth provided by the dataset, and then normalises the Euclidian distance relative 
to the pupillary distance. This is formulated by equation (12). 

U = 	 max��"|j}, �#~��}�L 																																																																																														(12) 
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where �"|j} and �#~��} are the absolute errors for the eye pair, and L is the pupillary distance in pixels. The maximum of �"|j}  and �#~��}  after normalisation is defined as ‘max normalised error’ U.�� . Additionally, the accuracy curve for the 
minimum normalised error U.~+  and the average normalised error U���  are calculated. A relative distance of U = 0.25 
corresponds to half the width of an eye.  

Evaluation results on the BioID dataset are shown in Figure 6 where representative examples of accurately and inaccurately 

localised eye centres are demonstrated, as well as the overall accuracy curve on this dataset. The proposed algorithm is 

further compared with 11 other methods in the literature, summarised in Table 1. 

Figure 6 Results of the proposed eye centre localisation method tested on the BioID dataset 

 

(b) 

 

(a) (c) 

Note: (a) Accuracy curve of the proposed method on the BioID dataset. (b) Examples of accurately localised eye centres. (c) Examples of 

inaccurately localised eye centres. The localised eye centres are marked in red, compared to the ground truth (provided by the dataset) 

marked in green. 

Table 1 Comparison of the accuracy for eye centre localisation on the BioID dataset. 

Method 

Accuracy under minimum and maximum normalised error 

Score U.�� f 0.05 U.~+ f 0.05 U.�� f 0.10 U.~+ f 0.10 U.�� f 0.25 U.~+ f 0.25	
The proposed method 85.66% 95.46%  93.68% 99.06%  99.21% 99.93% 6 

(Ren et al., 2014) 77.08% \  92.25% \  98.99% \ 1 

(Leo et al., 2014) 80.67% \  87.31% \  93.86%* \ 0 

(Valenti and Gevers, 2012) 86.09% 96.07%  91.67% 97.87%  97.87% 100%* 3 

(Timm and Barth, 2011) 82.50% 93.50%*  93.40% 98.50%*  98.00% 100%* 1 

(Asadifard and Shanbezadeh, 2010) 47.00% \  86.00% \  96.00% \ 0 

(Kroon, Hanjalic and Maas, 2008) 65.00% \  87.00% \  98.80% \ 0 

(Valenti and Gevers, 2008) 84.10% 96.28%  90.85% 97.94%  98.49% 100%* 2 

(Campadelli, Lanzarotti and Lipori, 2006) 62.00% \  85.20% \  96.10% \ 0 

(Niu et al., 2006) 75.10%* \  93.00% \  96.30%* \ 0 

(Hamouz et al., 2005) 58.00%* \  76.00%* \  90.80%* \ 0 

(Cristinacce, Cootes and Scott, 2004) 57.00%* \  96.00%* \  97.10%* \ 2 

Note: Those with a ‘*’ notation are not explicitly provided by the author(s) but are measured from the accuracy curves available. Those with 

a ‘\’ notation are neither explicitly nor implicitly provided by the author(s). The numbers in bold are the highest accuracy in their 

corresponding ranges and those underlined the second highest. The accuracy measure for U.~+ f 0.25 does not contribute to scores since very 
similar results have been achieved by all the methods. 

The proposed method gains the best results for the accuracy measure U.~+ f 0.10 as well as U.�� f 0.25, and the second 
best for U.�� f 0.05 and U.�� f 0.10. Except for the accuracy measure for U.~+ f 0.25 where very similar results have 

been achieved by all the listed method, a score of 2 is assigned to every first rank and a score of 1 is assigned to every second 
rank. The proposed method gains a total score of 6, outperforming all the other methods in comparison. 
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Figure 7 The Accuracy curves of the proposed method on the 
GI4E dataset, in comparison with 6 other methods 

Figure 8 Results of eye centre localisation on 
representative image frames from a video 

 

 

(a) 

 

(b) 

Note: (a) eye regions from the raw video frames, 

where the arrows represent strong gradients on 
edges. (b) the energy maps corresponding to all 

pixels in (a). 

 

Similarly to the experiments by Villanueva et al. (2013) and Baek et al. (2013), we also evaluated the proposed method on 

the GI4E dataset and compared it to 6 other methods. As shown by Figure 7, the proposed method outperforms all the other 

methods in comparison and proves to be robust against eye/head movement by achieving 97.9% accuracy for U.�� f 0.05. 
Tests on video data also validated the superior accuracy and efficiency of the proposed method. Results of a few 

representative image frames from a video recording can be found in Figure 8, which further reflect the accuracy and 

robustness of gradient features against facial accessory, dynamic eye morphology and occlusion. In addition, we further 

evaluated the robustness of the proposed method against head poses and eye occlusions in challenging illumination 
conditions. In this test, an under-illuminated environment was created by two near-infrared (NIR) lamps while a NIR 

bandpass filter was mounted to the camera lens. An over-exposed condition was simulated by adjusting camera settings (i.e. 

exposure and gain). Results can be found in Figure 9 which displays representative frames captured during this test. 

Figure 9 Eye centre localisation results demonstrating the robustness of the proposed algorithm against 
challenging illuminations, head poses and eye occlusions 

 

(a) 

 

(b) 

Note: (a) Representative results generated in an under-illuminated environment. For assist with visualisation, we increased the brightness of 

the eye regions in (a) and displayed them separately. In (a), from left to right, challenging conditions include specularities, eye movement, 

half-closed eyes and head pose. (b) Representative results generated from over-exposed image frames. In (b), from left to right, challenging 

conditions include head pose, facial accessory, extreme eye position and eye occlusion. 
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We further demonstrate the simplicity and efficiency of the proposed method by comparing it to Timm and Barth (2011) 

which claims to have achieved excellent real-time performance as one of its key features. Take the image containing a	41 ×47	eye region, i.e. 1927 pixels, as an example (Figure 3), the method in comparison performs per-pixel estimation of the eye 

centre, assuming that every pixel is an eye centre candidate. Therefore 1927 iterations are needed before the optimal 

candidate can be selected. The proposed method, on the other hand, resolves the problem by utilising the prior knowledge 

from the first modality which, through an initial estimation, avoids the per-pixel candidate assumption. The removal of low-

energy pixels in the first modality largely reduces the number of candidates, i.e. number of iterations in the second modality. 

In the same sample image of the 41 × 47	eye region, the iterations decrease to only 67, making our algorithm 29 times faster. 

With a webcam running at 30 frames per second, the proposed algorithm is capable of localising eye centres in detected faces 

accurately in real time.  

4. Discussion and conclusion 

This paper introduces an unsupervised modular approach for eye centre localisation, suitable for HCI system 

implementations. The novelty of this approach can be summarised as follows: 

1) The proposed modular scheme is different from the majority of existing approaches that follow the conventional three 

stages, i.e. pre-processing, feature extraction and classification. In fact, the two main modalities in our method are based on 

different eye models and employ different types of features. As a result, the proposed method can benefit from the relative 

rotational invariance brought by the isophote features, as well as the iterative circularity measurements by the gradient 

features.  

2) Most existing methods require the eye regions to be located prior to eye centre localisation. This is commonly achieved by 

image cropping according to facial anthropometrics or pre-trained eye detectors. While the former type of approach cannot 

deal with different head poses, the latter type is complex and often yields inaccurate results in undesirable environments. In 

contrast, the proposed method first analyses features at the global level such that no eye detector is needed. Subsequently, 
global features are processed for regional analysis, meaning that the local features are naturally robust to head poses. 

3) The designs of the iris radius constraint and the SOG filter are tailored to this modular scheme. They effectively deal with 

interfering edges and shadows, which severely sabotage most eye centre localisation algorithms. 

4) The interaction of the two main modalities not only results in increased accuracy and robustness, but it reduces the 

computation load by filtering eye candidates before performing iterative analysis. 

A number of experiments have been carried out to justify the effectiveness of the proposed method on different datasets, 

under different illuminations, and with the presence of head poses and eye occlusions. Tested on the BioID dataset, the 

proposed method has outperformed the 11 other methods in comparison with the highest localisation accuracy. Tested on the 

GI4E dataset, the proposed method has achieved the highest accuracy, compared to 6 other methods. The proposed method 

will afford great potentials in implementations of a variety of HCI systems and will benefit the development of assistive 

technologies that can assist the elderly people and those with motor disabilities. 
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