46,768 research outputs found

    RIDI: Robust IMU Double Integration

    Full text link
    This paper proposes a novel data-driven approach for inertial navigation, which learns to estimate trajectories of natural human motions just from an inertial measurement unit (IMU) in every smartphone. The key observation is that human motions are repetitive and consist of a few major modes (e.g., standing, walking, or turning). Our algorithm regresses a velocity vector from the history of linear accelerations and angular velocities, then corrects low-frequency bias in the linear accelerations, which are integrated twice to estimate positions. We have acquired training data with ground-truth motions across multiple human subjects and multiple phone placements (e.g., in a bag or a hand). The qualitatively and quantitatively evaluations have demonstrated that our algorithm has surprisingly shown comparable results to full Visual Inertial navigation. To our knowledge, this paper is the first to integrate sophisticated machine learning techniques with inertial navigation, potentially opening up a new line of research in the domain of data-driven inertial navigation. We will publicly share our code and data to facilitate further research

    Vision-based Real-Time Aerial Object Localization and Tracking for UAV Sensing System

    Get PDF
    The paper focuses on the problem of vision-based obstacle detection and tracking for unmanned aerial vehicle navigation. A real-time object localization and tracking strategy from monocular image sequences is developed by effectively integrating the object detection and tracking into a dynamic Kalman model. At the detection stage, the object of interest is automatically detected and localized from a saliency map computed via the image background connectivity cue at each frame; at the tracking stage, a Kalman filter is employed to provide a coarse prediction of the object state, which is further refined via a local detector incorporating the saliency map and the temporal information between two consecutive frames. Compared to existing methods, the proposed approach does not require any manual initialization for tracking, runs much faster than the state-of-the-art trackers of its kind, and achieves competitive tracking performance on a large number of image sequences. Extensive experiments demonstrate the effectiveness and superior performance of the proposed approach.Comment: 8 pages, 7 figure

    Real-Time Motion Planning of Legged Robots: A Model Predictive Control Approach

    Full text link
    We introduce a real-time, constrained, nonlinear Model Predictive Control for the motion planning of legged robots. The proposed approach uses a constrained optimal control algorithm known as SLQ. We improve the efficiency of this algorithm by introducing a multi-processing scheme for estimating value function in its backward pass. This pass has been often calculated as a single process. This parallel SLQ algorithm can optimize longer time horizons without proportional increase in its computation time. Thus, our MPC algorithm can generate optimized trajectories for the next few phases of the motion within only a few milliseconds. This outperforms the state of the art by at least one order of magnitude. The performance of the approach is validated on a quadruped robot for generating dynamic gaits such as trotting.Comment: 8 page

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions
    corecore