178 research outputs found

    Robust iso-surface tracking for interactive character skinning

    Get PDF
    International audienceWe present a novel approach to interactive character skinning, which is robust to extreme character movements, handles skin contacts and produces the effect of skin elasticity (sliding). Our approach builds on the idea of implicit skinning in which the character is approximated by a 3D scalar field and mesh-vertices are appropriately re-projected. Instead of being bound by an initial skinning solution used to initialize the shape at each time step, we use the skin mesh to directly track iso-surfaces of the field over time. Technical problems are two-fold: firstly, all contact surfaces generated between skin parts should be captured as iso-surfaces of the implicit field; secondly, the tracking method should capture elastic skin effects when the joints bend, and as the character returns to its rest shape, so the skin must follow. Our solutions include: new composition operators enabling blending effects and local self-contact between implicit surfaces, as well as a tangential relaxation scheme derived from the as-rigid-as possible energy to solve the tracking problem

    Automatic generation of dynamic skin deformation for animated characters

    Get PDF
    © 2018 by the authors. Since non-automatic rigging requires heavy human involvements, and various automatic rigging algorithms are less efficient in terms of computational efficiency, especially for current curve-based skin deformation methods, identifying the iso-parametric curves and creating the animation skeleton requires tedious and time-consuming manual work. Although several automatic rigging methods have been developed, but they do not aim at curve-based models. To tackle this issue, this paper proposes a new rigging algorithm for automatic generation of dynamic skin deformation to quickly identify iso-parametric curves and create an animation skeleton in a few milliseconds, which can be seamlessly used in curve-based skin deformation methods to make the rigging process fast enough for highly efficient computer animation applications

    Implicit Skinning: Real-Time Skin Deformation with Contact Modeling

    Get PDF
    SIGGRAPH 2013 Conference ProceedingsInternational audienceGeometric skinning techniques, such as smooth blending or dualquaternions, are very popular in the industry for their high performances, but fail to mimic realistic deformations. Other methods make use of physical simulation or control volume to better capture the skin behavior, yet they cannot deliver real-time feedback. In this paper, we present the first purely geometric method handling skin contact effects and muscular bulges in real-time. The insight is to exploit the advanced composition mechanism of volumetric, implicit representations for correcting the results of geometric skinning techniques. The mesh is first approximated by a set of implicit surfaces. At each animation step, these surfaces are combined in real-time and used to adjust the position of mesh vertices, starting from their smooth skinning position. This deformation step is done without any loss of detail and seamlessly handles contacts between skin parts. As it acts as a post-process, our method fits well into the standard animation pipeline. Moreover, it requires no intensive computation step such as collision detection, and therefore provides real-time performances

    LiveCap: Real-time Human Performance Capture from Monocular Video

    Full text link
    We present the first real-time human performance capture approach that reconstructs dense, space-time coherent deforming geometry of entire humans in general everyday clothing from just a single RGB video. We propose a novel two-stage analysis-by-synthesis optimization whose formulation and implementation are designed for high performance. In the first stage, a skinned template model is jointly fitted to background subtracted input video, 2D and 3D skeleton joint positions found using a deep neural network, and a set of sparse facial landmark detections. In the second stage, dense non-rigid 3D deformations of skin and even loose apparel are captured based on a novel real-time capable algorithm for non-rigid tracking using dense photometric and silhouette constraints. Our novel energy formulation leverages automatically identified material regions on the template to model the differing non-rigid deformation behavior of skin and apparel. The two resulting non-linear optimization problems per-frame are solved with specially-tailored data-parallel Gauss-Newton solvers. In order to achieve real-time performance of over 25Hz, we design a pipelined parallel architecture using the CPU and two commodity GPUs. Our method is the first real-time monocular approach for full-body performance capture. Our method yields comparable accuracy with off-line performance capture techniques, while being orders of magnitude faster

    Implicit muscle models for interactive character skinning

    Get PDF
    En animation de personnages 3D, la déformation de surface, ou skinning, est une étape cruciale. Son rôle est de déformer la représentation surfacique d'un personnage pour permettre son rendu dans une succession de poses spécifiées par un animateur. La plausibilité et la qualité visuelle du résultat dépendent directement de la méthode de skinning choisie. Sa rapidité d'exécution et sa simplicité d'utilisation sont également à prendre en compte pour rendre possible son usage interactif lors des sessions de production des artistes 3D. Les différentes méthodes de skinning actuelles se divisent en trois catégories. Les méthodes géométriques sont rapides et simples d'utilisation, mais leur résultats manquent de plausibilité. Les approches s'appuyant sur des exemples produisent des résultats réalistes, elles nécessitent en revanche une base de données d'exemples volumineuse, et le contrôle de leur résultat est fastidieux. Enfin, les algorithmes de simulation physique sont capables de modéliser les phénomènes dynamiques les plus complexes au prix d'un temps de calcul souvent prohibitif pour une utilisation interactive. Les travaux décrits dans cette thèse s'appuient sur Implicit Skinning, une méthode géométrique corrective utilisant une représentation implicite des surfaces, qui permet de résoudre de nombreux problèmes rencontrés avec les méthodes géométriques classiques, tout en gardant des performances permettant son usage interactif. La contribution principale de ces travaux est un modèle d'animation qui prend en compte les effets des muscles des personnages et de leur interactions avec d'autres éléments anatomiques, tout en bénéficiant des avantages apportés par Implicit Skinning. Les muscles sont représentés par une surface d'extrusion le long d'axes centraux. Les axes des muscles sont contrôlés par une méthode de simulation physique simplifiée. Cette représentation permet de modéliser les collisions des muscles entre eux et avec les os, d'introduire des effets dynamiques tels que rebonds et secousses, tout en garantissant la conservation du volume, afin de représenter le comportement réel des muscles. Ce modèle produit des déformations plus plausibles et dynamiques que les méthodes géométriques de l'état de l'art, tout en conservant des performances suffisantes pour permettre son usage dans une session d'édition interactive. Elle offre de plus aux infographistes un contrôle intuitif sur la forme des muscles pour que les déformations obtenues se conforment à leur vision artistique.Surface deformation, or skinning is a crucial step in 3D character animation. Its role is to deform the surface representation of a character to be rendered in the succession of poses specified by an animator. The quality and plausiblity of the displayed results directly depends on the properties of the skinning method. However, speed and simplicity are also important criteria to enable their use in interactive editing sessions. Current skinning methods can be divided in three categories. Geometric methods are fast and simple to use, but their results lack plausibility. Example-based approaches produce realistic results, yet they require a large database of examples while remaining tedious to edit. Finally, physical simulations can model the most complex dynamical phenomena, but at a very high computational cost, making their interactive use impractical. The work presented in this thesis are based on, Implicit Skinning, is a corrective geometric approach using implicit surfaces to solve many issues of standard geometric skinning methods, while remaining fast enough for interactive use. The main contribution of this work is an animation model that adds anatomical plausibility to a character by representing muscle deformations and their interactions with other anatomical features, while benefiting from the advantages of Implicit Skinning. Muscles are represented by an extrusion surface along a central axis. These axes are driven by a simplified physics simulation method, introducing dynamic effects, such as jiggling. The muscle model guarantees volume conservation, a property of real-life muscles. This model adds plausibility and dynamics lacking in state-of-the-art geometric methods at a moderate computational cost, which enables its interactive use. In addition, it offers intuitive shape control to animators, enabling them to match the results with their artistic vision

    Efficient and Realistic Character Animation through Analytical Physics-based Skin Deformation

    Get PDF
    Physics-based skin deformation methods can greatly improve the realism of character animation, but require non-trivial training, intensive manual intervention, and heavy numerical calculations. Due to these limitations, it is generally time-consuming to implement them, and difficult to achieve a high runtime efficiency. In order to tackle the above limitations caused by numerical calculations of physics-based skin deformation, we propose a simple and efficient analytical approach for physicsbased skin deformations. Specifically, we (1) employ Fourier series to convert 3D mesh models into continuous parametric representations through a conversion algorithm, which largely reduces data size and computing time but still keeps high realism, (2) introduce a partial differential equation (PDE)-based skin deformation model and successfully obtain the first analytical solution to physics-based skin deformations which overcomes the limitations of numerical calculations. Our approach is easy to use, highly efficient, and capable to create physically realistic skin deformations

    A Revisit of Shape Editing Techniques: from the Geometric to the Neural Viewpoint

    Get PDF
    3D shape editing is widely used in a range of applications such as movie production, computer games and computer aided design. It is also a popular research topic in computer graphics and computer vision. In past decades, researchers have developed a series of editing methods to make the editing process faster, more robust, and more reliable. Traditionally, the deformed shape is determined by the optimal transformation and weights for an energy term. With increasing availability of 3D shapes on the Internet, data-driven methods were proposed to improve the editing results. More recently as the deep neural networks became popular, many deep learning based editing methods have been developed in this field, which is naturally data-driven. We mainly survey recent research works from the geometric viewpoint to those emerging neural deformation techniques and categorize them into organic shape editing methods and man-made model editing methods. Both traditional methods and recent neural network based methods are reviewed

    Real-time human performance capture and synthesis

    Get PDF
    Most of the images one finds in the media, such as on the Internet or in textbooks and magazines, contain humans as the main point of attention. Thus, there is an inherent necessity for industry, society, and private persons to be able to thoroughly analyze and synthesize the human-related content in these images. One aspect of this analysis and subject of this thesis is to infer the 3D pose and surface deformation, using only visual information, which is also known as human performance capture. Human performance capture enables the tracking of virtual characters from real-world observations, and this is key for visual effects, games, VR, and AR, to name just a few application areas. However, traditional capture methods usually rely on expensive multi-view (marker-based) systems that are prohibitively expensive for the vast majority of people, or they use depth sensors, which are still not as common as single color cameras. Recently, some approaches have attempted to solve the task by assuming only a single RGB image is given. Nonetheless, they can either not track the dense deforming geometry of the human, such as the clothing layers, or they are far from real time, which is indispensable for many applications. To overcome these shortcomings, this thesis proposes two monocular human performance capture methods, which for the first time allow the real-time capture of the dense deforming geometry as well as an unseen 3D accuracy for pose and surface deformations. At the technical core, this work introduces novel GPU-based and data-parallel optimization strategies in conjunction with other algorithmic design choices that are all geared towards real-time performance at high accuracy. Moreover, this thesis presents a new weakly supervised multiview training strategy combined with a fully differentiable character representation that shows superior 3D accuracy. However, there is more to human-related Computer Vision than only the analysis of people in images. It is equally important to synthesize new images of humans in unseen poses and also from camera viewpoints that have not been observed in the real world. Such tools are essential for the movie industry because they, for example, allow the synthesis of photo-realistic virtual worlds with real-looking humans or of contents that are too dangerous for actors to perform on set. But also video conferencing and telepresence applications can benefit from photo-real 3D characters, as they can enhance the immersive experience of these applications. Here, the traditional Computer Graphics pipeline for rendering photo-realistic images involves many tedious and time-consuming steps that require expert knowledge and are far from real time. Traditional rendering involves character rigging and skinning, the modeling of the surface appearance properties, and physically based ray tracing. Recent learning-based methods attempt to simplify the traditional rendering pipeline and instead learn the rendering function from data resulting in methods that are easier accessible to non-experts. However, most of them model the synthesis task entirely in image space such that 3D consistency cannot be achieved, and/or they fail to model motion- and view-dependent appearance effects. To this end, this thesis presents a method and ongoing work on character synthesis, which allow the synthesis of controllable photoreal characters that achieve motion- and view-dependent appearance effects as well as 3D consistency and which run in real time. This is technically achieved by a novel coarse-to-fine geometric character representation for efficient synthesis, which can be solely supervised on multi-view imagery. Furthermore, this work shows how such a geometric representation can be combined with an implicit surface representation to boost synthesis and geometric quality.In den meisten Bildern in den heutigen Medien, wie dem Internet, Büchern und Magazinen, ist der Mensch das zentrale Objekt der Bildkomposition. Daher besteht eine inhärente Notwendigkeit für die Industrie, die Gesellschaft und auch für Privatpersonen, die auf den Mensch fokussierten Eigenschaften in den Bildern detailliert analysieren und auch synthetisieren zu können. Ein Teilaspekt der Anaylse von menschlichen Bilddaten und damit Bestandteil der Thesis ist das Rekonstruieren der 3D-Skelett-Pose und der Oberflächendeformation des Menschen anhand von visuellen Informationen, was fachsprachlich auch als Human Performance Capture bezeichnet wird. Solche Rekonstruktionsverfahren ermöglichen das Tracking von virtuellen Charakteren anhand von Beobachtungen in der echten Welt, was unabdingbar ist für Applikationen im Bereich der visuellen Effekte, Virtual und Augmented Reality, um nur einige Applikationsfelder zu nennen. Nichtsdestotrotz basieren traditionelle Tracking-Methoden auf teuren (markerbasierten) Multi-Kamera Systemen, welche für die Mehrheit der Bevölkerung nicht erschwinglich sind oder auf Tiefenkameras, die noch immer nicht so gebräuchlich sind wie herkömmliche Farbkameras. In den letzten Jahren gab es daher erste Methoden, die versuchen, das Tracking-Problem nur mit Hilfe einer Farbkamera zu lösen. Allerdings können diese entweder die Kleidung der Person im Bild nicht tracken oder die Methoden benötigen zu viel Rechenzeit, als dass sie in realen Applikationen genutzt werden könnten. Um diese Probleme zu lösen, stellt die Thesis zwei monokulare Human Performance Capture Methoden vor, die zum ersten Mal eine Echtzeit-Rechenleistung erreichen sowie im Vergleich zu vorherigen Arbeiten die Genauigkeit von Pose und Oberfläche in 3D weiter verbessern. Der Kern der Methoden beinhaltet eine neuartige GPU-basierte und datenparallelisierte Optimierungsstrategie, die im Zusammenspiel mit anderen algorithmischen Designentscheidungen akkurate Ergebnisse erzeugt und dabei eine Echtzeit-Laufzeit ermöglicht. Daneben wird eine neue, differenzierbare und schwach beaufsichtigte, Multi-Kamera basierte Trainingsstrategie in Kombination mit einem komplett differenzierbaren Charaktermodell vorgestellt, welches ungesehene 3D Präzision erreicht. Allerdings spielt nicht nur die Analyse von Menschen in Bildern in Computer Vision eine wichtige Rolle, sondern auch die Möglichkeit, neue Bilder von Personen in unterschiedlichen Posen und Kamera- Blickwinkeln synthetisch zu rendern, ohne dass solche Daten zuvor in der Realität aufgenommen wurden. Diese Methoden sind unabdingbar für die Filmindustrie, da sie es zum Beispiel ermöglichen, fotorealistische virtuelle Welten mit real aussehenden Menschen zu erzeugen, sowie die Möglichkeit bieten, Szenen, die für den Schauspieler zu gefährlich sind, virtuell zu produzieren, ohne dass eine reale Person diese Aktionen tatsächlich ausführen muss. Aber auch Videokonferenzen und Telepresence-Applikationen können von fotorealistischen 3D-Charakteren profitieren, da diese die immersive Erfahrung von solchen Applikationen verstärken. Traditionelle Verfahren zum Rendern von fotorealistischen Bildern involvieren viele mühsame und zeitintensive Schritte, welche Expertenwissen vorraussetzen und zudem auch Rechenzeiten erreichen, die jenseits von Echtzeit sind. Diese Schritte beinhalten das Rigging und Skinning von virtuellen Charakteren, das Modellieren von Reflektions- und Materialeigenschaften sowie physikalisch basiertes Ray Tracing. Vor Kurzem haben Deep Learning-basierte Methoden versucht, die Rendering-Funktion von Daten zu lernen, was in Verfahren resultierte, die eine Nutzung durch Nicht-Experten ermöglicht. Allerdings basieren die meisten Methoden auf Synthese-Verfahren im 2D-Bildbereich und können daher keine 3D-Konsistenz garantieren. Darüber hinaus gelingt es den meisten Methoden auch nicht, bewegungs- und blickwinkelabhängige Effekte zu erzeugen. Daher präsentiert diese Thesis eine neue Methode und eine laufende Forschungsarbeit zum Thema Charakter-Synthese, die es erlauben, fotorealistische und kontrollierbare 3D-Charakteren synthetisch zu rendern, die nicht nur 3D-konsistent sind, sondern auch bewegungs- und blickwinkelabhängige Effekte modellieren und Echtzeit-Rechenzeiten ermöglichen. Dazu wird eine neuartige Grobzu- Fein-Charakterrepräsentation für effiziente Bild-Synthese von Menschen vorgestellt, welche nur anhand von Multi-Kamera-Daten trainiert werden kann. Daneben wird gezeigt, wie diese explizite Geometrie- Repräsentation mit einer impliziten Oberflächendarstellung kombiniert werden kann, was eine bessere Synthese von geomtrischen Deformationen sowie Bildern ermöglicht.ERC Consolidator Grant 4DRepL

    Acceleration Skinning: Kinematics-Driven Cartoon Effects for Articulated Characters

    Get PDF
    Secondary effects are key to adding fluidity and style to animation. This thesis introduces the idea of “Acceleration Skinning” following a recent well-received technique, Velocity Skinning, to automatically create secondary motion in character animation by modifying the standard pipeline for skeletal rig skinning. These effects, which animators may refer to as squash and stretch or drag, attempt to create an illusion of inertia. In this thesis, I extend the Velocity Skinning technique to include acceleration for creating a wider gamut of cartoon effects. I explore three new deformers that make use of this Acceleration Skinning framework: followthrough, centripetal stretch, and centripetal lift deformers. The followthrough deformer aims at recreating this classic effect defined in the fundamental principles of animation. The centripetal stretch and centripetal lift deformers use rotational motion to create radial stretching and lifting effects, as the names suggest. I explore the use of effect-specific time filtering when combining these various deformations together, allowing for more stylized and aesthetic results. I finally conclude with a production evaluation, exploring possible ways in which these techniques can be used to enhance the work of an animator without losing the essence of their art

    Extending Implicit Skinning with Wrinkles

    Get PDF
    We propose a wrinkle system that takes as input the fields created in the implicit skinning framework, calculates the angle between their gradients and builds a scalar angle field. Its gradient resembles plausible wrinkle directions. The system is procedural and works as a post process by projecting vertices in a wrinkle field constituted of convolution surfaces
    • …
    corecore