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Abstract

Secondary effects are key to adding fluidity and style to animation. This thesis introduces

the idea of “Acceleration Skinning” following a recent well-received technique, Velocity Skinning, to

automatically create secondary motion in character animation by modifying the standard pipeline

for skeletal rig skinning. These effects, which animators may refer to as squash and stretch or drag,

attempt to create an illusion of inertia. In this thesis, I extend the Velocity Skinning technique to

include acceleration for creating a wider gamut of cartoon effects. I explore three new deformers

that make use of this Acceleration Skinning framework: followthrough, centripetal stretch, and

centripetal lift deformers. The followthrough deformer aims at recreating this classic effect defined

in the fundamental principles of animation. The centripetal stretch and centripetal lift deformers

use rotational motion to create radial stretching and lifting effects, as the names suggest. I explore

the use of effect-specific time filtering when combining these various deformations together, allowing

for more stylized and aesthetic results. I finally conclude with a production evaluation, exploring

possible ways in which these techniques can be used to enhance the work of an animator without

losing the essence of their art.
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Chapter 1

Introduction

The twelve fundamental principles of animation laid out by The Nine Old Men of Walt

Disney Animation Studios have been a driving factor for animators everywhere [33]. These principles,

created by the pioneers of traditional hand-drawn animation, have been guiding artists on how

to create believable and lively characters for almost a century. Principles such as squash and

stretch and followthrough add vitality to animation. Since the dawn of computer animation,

many new techniques were created to adapt these principles to suit the world of 3D animation [21].

However, this is quite a challenging task. Traditional animators were primarily restricted by only

one limitation: their skills as an artist. An exceptional traditional animator can put pencil to paper,

draw shapes and figures moving the way they desire, and bring characters to life. 3D animation, on

the other hand, is not quite as straightforward. The animator must be provided with a rigged and

skinned character with which to animate. Much like a puppeteer is limited by the capabilities of

their marionette, 3D animators are limited by the deformations supported by their character rig.

Rigging is the process of creating a skeletal structure for a character to allow an animator to

control it. Skinning is process of “binding” the character mesh to these skeletal joints so that when

the joints move, the corresponding parts of the character mesh are deformed along with it. Standard

approaches to skinning a character include methods such as Linear Blend Skinning (LBS) or Dual

Quaternion Skinning (DQS) (see section 2.3 for further details). Many principles of animation, such

as squash and stretch, also require the characters shape to be aesthetically morphed based on the

underlying motion of the character. The common approach to achieving such effects in 3D is to

apply non-linear deformers onto the character mesh; these deformers transform the target mesh by
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Figure 1.1: Non-linear bend deformer applied onto a cylinder in Autodesk Maya

translating vertices based on certain user-driven parameters. This requires animators to manually

tweak these parameters to create the desired effects. For example, Fig. 1.1 showcases a non-linear

bend deformer applied to a cylinder in Autodesk Maya. The user has applied curvature and adjusted

the lower and upper bounds of the deformer independently.

Novel approaches to the rigging and skinning process have been proposed over the years;

Many of these approaches attempt to enhance deformation to emulate these animation principles.

These approaches can be broadly split into two categories:

• Geometric Approaches: These approaches primarily use shapes and geometry to guide their

deformation. Such methods generally require less computation power, making them more

interactive. This factor also typically makes these techniques more user-friendly. However,

such approaches may place more of an onus on the artist to craft the deformations the way

they desire, thereby making it less physically accurate. It is up to the artist to painstakingly

create the effect they desire.

• Physically-Based Simulations: These approaches introduce physical forces and mass to

2



compute simulations over time intervals. The results of these simulations are then typically

used to deform the skinned mesh. While these methods provide more accurate physical defor-

mations, they generally require more computation power, making them less interactive. While

the simulation is itself generally automated (the user supplies predefined values and runs the

simulation), such methods require a trial-and-error approach to achieve the required results,

making them less directable.

1.1 Primary Contributions

The recently introduced “Velocity Skinning” technique is a geometric approach to skinning

which uses the linear and angular velocities of skeletal joints to guide deformation of skinned mesh

vertices [32]. This method accepts a skinned skeletal rig as input. The artist animates their character

as usual. Velocity Skinning then further displaces each vertex on the mesh (in addition to standard

skinning) using a set of deformation functions. These functions are guided by the kinematic motion of

the skeletal joints. Through this method, effects such as squash and stretch or floppy followthrough

are inherently present as part of the rig and need not be manually configured during rigging. The

deformations also expose parameters to allow enhanced artist control, if desired. Finally, Velocity

Skinning is proposed as a generic framework; its mathematics enable the addition of new deformation

functions with ease.

In this thesis, I provide an overview of the recently created “Velocity Skinning” framework

and propose enhancements to this technique. The primary contributions of this thesis are as follows:

• I expand the Velocity Skinning technique by also considering the acceleration of skeletal joints,

proposing a new system: Acceleration Skinning. This includes the utilization of the following

acceleration terms:

– Linear Acceleration a

– Angular Acceleration α

– Tangential Acceleration at

– Centripetal Acceleration ac

• I use these acceleration terms to propose three new deformation functions, further expanding

the gamut of effects supported by this framework:

3



– Followthrough

– Centripetal Stretch

– Centripetal Lift

• I propose the use of effect-specific time filtering to independently modify the reactivity of each

deformer.

• I propose enhancements to the existing Velocity Skinning system to allow more refined artist

control (these enhancements, namely twist-bend decomposition and local joint control, were

included in the official Velocity Skinning publication [32]).

• Finally, I conduct a study to evaluate the usability of these tools in a practical production

scenario.

The benefits of Acceleration Skinning are:

• Like Velocity Skinning, it remains a geometric approach, making it fast to compute.

• It is artist-driven and easy to control.

• It is a generic framework that supports any skeletal rig. It is not restricted to any particular

skeletal hierarchy (such as biped or quadruped hierarchies).

• It expresses the supported deformation effects as part of the skinning process.

• The range of supported effects can easily be expanded. New deformation functions may be

implemented to utilize these same kinematic terms to create new effects.

• Each deformer function provides a set of input parameters that an artist may tweak to tune

the effect to their liking.

1.2 Terminology

We slightly deviate from the terminology used in traditional animation (defined by the

fundamental principles of animation) for practical purposes. This deviation is best explained with

an example. Consider a cloth draped over a character. When the character moves, the cloth

drags behind them. When the character comes to a stop, the cloth overshoots the characters rest

4



position before settling back down. In traditional animation, this entire process of dragging and

settling is referred to as followthrough [33] (see section 2.2 for more detailed concepts). Within our

framework, Velocity Skinning provides a deformer to handle floppy drag deformation (like the effect

of the cloth dragging behind the character). However, this deformer does not allow the skinned mesh

to overshoot the skeletal position. Acceleration skinning proposes a new deformer created specifically

to model this remaining portion of the effect: overshooting and settling down. Both of these effects

are decoupled and can be controlled independently. For convenience, in this thesis, we refer to the

first effect as drag and the second effect as followthrough. This naming convention is somewhat

consistent with the terminology described in The Animator’s Survival Kit [36] (see Fig. 2.1).

5



Chapter 2

Related Work

2.1 Historical Growth of Animation

Animation has existed as a medium of artistic expression for over a century. Looking back

through history, one can see the art grow and develop from humble beginnings. We have record of

cave wall paintings from over 35,000 years ago depicting animals with extra sets of legs, intended to

portray motion [36]. The Zoetrope, a cylindrical toy from the 1860s, lets viewers peer through slits

in a rotating cylinder to catch momentary glimpses of sequential drawings pasted on the inside [36].

Spinning the cylinder creates the illusion of movement. Cartoonist J. Stuart Blackton in his work

“The Enchanted Drawing” films himself drawing a face, and cleverly uses film edits to change the

expressions on the face to react to his actions [16]. One may argue that there is no actual animation

in this short film, however the idea to amalgamate drawings and motion picture to convey emotion

in this fashion was fresh and imaginative [24]. In 1914, Winsor McCay animated a cartoon dinosaur.

In a live performance, he projected the animation onto a screen and “interacted” with it. This

work, “Gertie the Dinosaur”, is credited as the first historical example of character animation: an

animated character with personality and individuality that audiences could relate to [36] [37]. In

the 1920s, Walt Disney had the novel idea of synchronizing cartoons with sound. 1928 saw the

release of Disney’s famous “Steamboat Willie”, the first ever released animated cartoon featuring

Mickey Mouse [2]. Funneling further efforts into following up this success, Disney and his animators

became adept in the art of creating sound cartoons [24]. This time period saw a marked rise in

other animation studios such as Fleischer Studios by the brothers Max and Dave, who rose to fame
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with the creation of their character, Ko−Ko the Clown. Production companies began investing in

animation as well, most notably Warner Bros. funding Leon Schlesinger Productions to create the

Looney Tunes animated series [11] [4]. This competitive atmosphere drove the animation industry

into what eventually became known as “The Golden Age of Animation” [11]. The invention of

computers, followed closely by the ingenuity of engineers, heralded in the age of computer graphics

and animation. In 1972, Ed Catmull created groundbreaking work in 3D computer graphics in his

work “A Computer Animated Hand” [10] [14]. Advances in technology such as this paved the way

for Pixar Animation Studios to create the world’s first 3D animated feature length film [10]. From

Gertie the Dinosaur to the modern, bleeding-edge renders of 3D animation, virtual reality, and visual

effects, animation has certainly come a long way. However, the goals behind animation have mostly

remained unchanged since the early days; a desire for visually conveying an artistic expression of

character. While the technology involved in this expression has undoubtedly evolved through the

ages, the foundational concepts behind such creative expression were developed by the early pioneers

of animation based on their keen observation of physical movement.

2.1.1 Fundamental Principles of Animation

The fabled nine old men of Walt Disney Animation Studios are credited to have had a

significant hand in consolidating the art form into a set of “twelve fundamental principles of ani-

mation” [33]. Certain principles, such as staging, arcs, solid drawing, and exaggeration, deal with

getting the character silhouettes and movement to read easily on-screen, focusing on bringing the

point across to the audience quicker. Other principles, including squash and stretch, anticipation,

follow through and overlapping action, secondary action, and more involve enhancing the aesthetics

of the motion itself. These principles attempt to make the character motion more believable and

appealing to an audience. For example, stretch and squash is one of the most important of these

twelve principles, as it is instrumental in conveying an illusion of gravity and other forces. For

example, when a bouncing ball is in mid flight, it may stretch a bit in the direction of movement.

When it collides with another surface, it squashes on impact before expanding again [8].
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Figure 2.1: Drag and follow-through effect visible on the ears and jowls of a bulldog animation.
Source: The Animator’s Survival Kit [36]

2.2 Followthrough and Overlapping Action

Another essential principle is that of “follow through and overlapping action.” This principle

came to be at Walt Disney Studios due to Disney’s disapproval of his animators’ quality of work.

In a review session, he is quoted to have said, “Things don’t stop all at once, guys; first there’s one

part and then another.” [36]. This ideology propelled and still effectively summarizes the creation

of this principle of animation. We can observe in real life that the movement of organic objects

or beings occurs in stages or parts. Loose appendages rarely move on their own; they are affixed,

either naturally or intentionally, upon a primary source of action. When in motion, such appendages

drag behind the primary action. When the primary source comes to rest, the appendages overshoot

beyond the rest position before settling down. For example, one can think of loose hanging clothes,

long ears or tails on a dog, or loose hanging flesh like a big belly. Animating such phenomena

requires the use of followthrough to effectively abstract reality. In essence, this principle attempts

to capture and express inertia artistically. Examples from seminal works in animation include the

jowl animation on a Hollywood bulldog (Fig. 2.1) or the cloth and arm animation on this simple

character (Fig. 2.2), both examples sourced from The Animator’s Survival Kit [36].

8



Figure 2.2: Simple character animation demonstrating follow-through and overlapping action on the
arms and legs. Source: The Animator’s Survival Kit [36]

2.2.1 Commercial Examples

Critically analyzing character animation, it is easy to find these concepts used often in

animation past and present. One exciting use of drag and follow through hearkens back to a style

of animation prominent in the late 1920s through 1930s: rubber hose animation. This style, used

extensively by Fleischer Studios, re-envisions characters’ limbs as rubber hoses without any skeletal

joints or muscles. This style allows the character’s arms and legs to flail around in the air. Examples

can be found in timeless cartoons such as Popeye, Betty Boop, and Felix the Cat.

Many examples can also be found digging into Ub Iwerks’s work. A classic example is

from Disney’s Silly Symphonies’ pilot episode, Skeleton Dance (Fig. 2.3) [3]. Released in 1929, Ub

Iwerks nearly single-handedly finished the animation in roughly six weeks [27]. There are parts

of the animation when the bones follow the rubber hose animation style. Individual bones bend

to add fluidity to the overall movement. This iconic short cemented Walt Disney’s tradition of

creating “musical novelties” through the Silly Symphony series. Another similar example, also from

Ub Iwerks and Grim Natwick, is from the cartoon series Flip the Frog from the early 1931 episode

Spooks (Fig. 2.4) [1].
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Figure 2.3: Example of a skeleton with rubber-hose bones. Frame from The Skeleton Dance,
Silly Symphonie by Walt Disney, animated by Ub Iwerks, Les Clark, and Wilfred Jackson, 1929.
Distributed by Walt Disney Animation Studios [3].

Figure 2.4: Example of a skeleton with rubber-hose bones. Frame from Spooks, Flip the Frog by
Ub Iwerks and Grim Natwick, 1931. Distributed by MGM [1].
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Figure 2.5: Breakdown pose used to add fluidity in the animation without resorting to bending
joints or using rubber hose animation. Source: The Animator’s Survival Kit [36].

Jumping ahead in time, animators such as Art Babbit and Richard Williams elevated the

art form by avoiding such extreme uses of this technique [36]. They instead found ways to apply

this method sparingly while still making an impact (Fig. 2.5). R. Williams explains and expands his

recommended approach to obtain fluidity in his seminal work “The Animator’s Survival Kit” [36].

He suggests retaining the notion of a skeletal structure, but adding flexibility by successively delaying

or advancing different parts of the hierarchy.

2.3 Modern Animation Pipeline

2.3.1 3D Mesh

The modern 3D animation pipeline involves numerous steps. To animate a character, it

must first be designed and modeled in 3D (Fig. 2.6). The 3D model must consist of a polygonal

mesh of vertices. Although other forms of 3D modeling exist, such as NURBS surfaces, these

are typically not used in the entertainment industry; even in instances where they are, they are

eventually converted to a polygonal mesh. There are certain facilities which exclusively use NURBS,

however their use is not as widespread as it once was, especially in the entertainment industry [30].

Once the character is modeled, it exists as a static geometry in 3D space. One can only perform

basic transformations on the character, such as translation, rotation, and scale. More complex

transformations and deformations require the use of additional techniques and setup.
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Figure 2.6: Polygonal 3D model of a dragon
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Figure 2.7: Skeletal rig of a dragon model. Rigged by Rodney Costa

2.3.2 Skeletal Rig

For character animation, one must first set up an animation skeletal rig for the character

(Fig. 2.7). This skeletal setup consists of a hierarchy of bones/joints. Typically, the position of

these joints in 3D space may derive inspiration from the natural anatomy of the character. For

example, if it is a human character, the skeletal setup may contain one spine, two arms, two legs,

etc. Constraints are then added to limit the rotation of these joints; the elbow or knee joint moves

differently than a shoulder joint, for example. One may constrain certain joints in the skeleton to

imitate these limits, if so desired.

2.3.3 Skinning

Finally, after the skeleton has been setup as desired, it must be bound back to the character

mesh through a process called “skinning”. This is done to enable the skeletal movement to deform

the character mesh. When an animator moves the forearm of the skeleton, the skeleton should

deform the corresponding forearm of the character to match. The simplest form of skinning, rigid

skinning, involves rigidly attaching vertices to a single joint, i.e., every vertex can only be attached

to one joint each. When a joint rotates, all the vertices attached to it are transformed along with

it. This is a very simple approach, but can lead to self-collision, especially in areas like the elbows

and knees (Fig. 2.8).

Linear Blend Skinning (LBS) addresses this issue by allowing a single vertex to be influenced

by multiple joints. When skinning a skeletal rig to a mesh in this method, artists must take care to
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Figure 2.8: Rigid skinning can cause self-collision in areas with high bend angles.

finely tune “skinning weights” on the character. These skinning weights are a sort of mapping to

indicate which bones in the skeleton have influence over which vertices on the mesh. For instance,

the parts of the mesh around a character’s elbow may be influenced by the movement of both the

forearm and upper arm. Such intricacies are handled by the mapping through per-vertex weights

(Fig. 2.9); each vertex on the mesh is associated with a set of bones which influence it, and each of

these influences is given a “weight”. This weight determines to what extent the corresponding bone

affects the specified vertex, giving us a blend between the deformations dictated by rigid skinning.

These weights represent the relative amount of deformation exerted by each bone that influences a

given vertex. The total sum of weights on each vertex adds up to one to avoid scaling artifacts.

It is common practice to set up various controllers (typically using curves) around the

character to control joint movement (Fig. 2.10). This allows animators to quickly select the curves

to control the parts of the body they wish to animate. Once the skinning is complete, one may

animate the character by transforming the joint controllers, and adding keyframes to time out the

animation as desired. Many of the steps involved in rigging and skinning may be automated using

procedural or expression-based techniques [7].

2.4 Technical Advancements in Graphics

While LBS remains a commonly used skinning technique, it is not without flaws. The linear

interpolation of transformation matrices used in LBS causes many well known artifacts, including

the “candy-wrapper effect” (Fig. 2.11). Recent technical advancements in graphics have improved

the process of rigging and skinning characters, providing enhanced quality of deformation. For

example, Dual Quaternion Skinning (DQS) is another skinning technique based on the concept of a
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Figure 2.9: Skinning weights of a single joint on the tail of a dragon model. Rigged by Rodney
Costa
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Figure 2.10: Skeletal rig of a dragon model with controllers set up to control the rig. Rigged by
Rodney Costa
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Figure 2.11: Results of LBS (left) and DQS (right) deformation applied on the same skeletal
transformation. The pinching of the arms due to extreme joint rotation (candy wrapper effect)
can be see here. [17]

dual quaternion (a quaternion with “dual number” coefficients) [17]. DQS solves the candy-wrapper

issue, as dual quaternion mathematics is better suited to represent such transformations. Further

extensions to DQS have also been proposed to make it more suitable to the production requirement

of the animation industry [23].

Many of these methods require meticulous efforts from the rigger to manually setup paint

weights and check for unappealing deformation through a trial and error process. In scenarios where

such deformation is not directly avoidable, riggers may resort to the use of corrective blend shapes

to create more appealing deformation. While this is an effective method of addressing the issue,

it further consumes the artists’ time by requiring the respective poses to be manually resculpted

for use as blend shapes. Further methods were developed to ease this burden. Delta Mush is one

such example developed by Rhythm and Hues [25]. Delta Mush (DM) operates on top of a rigidly

skinned mesh. It iteratively smooths the geometric mesh (using Laplacian smoothing) on each frame

to reduce self-penetrations. This leads to a loss of surface detail. The detail is then restored by

transforming the mesh using precomputed delta values which reflect changes between the smooth

and unsmooth meshes. While DM is an effective technique, its iterative nature hinders its use in
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real-time applications such as virtual reality or gaming. More optimized versions of DM, such as

Direct Delta Mush (DDM) offer solutions to this problem by removing iterative computations and

operating on the skinning weights, rather than on the mesh itself [22].

Other approaches to easing the process of creating a rig include Implicit Skinning [34]. This

technique approximates the rigged mesh as an iso-surface. It generates a set of implicit fields around

each skeletal joint, and uses the motion of these fields to guide vertex deformations. This method

approximates skin-contact effects and creates aesthetically pleasing muscular bulges with real-time

deformation. Later enhancements expand the gamut of deformations possible through this method

by accounting for skin elasticity (effect caused by the skin sliding during joint rotation) [35].

Other methods, including “Fast Automatic Skinning Transformation”, attempt to enhance

skin deformation by using energy based systems. Rather than having an artist or rigger exten-

sively specify skinning transformations and constraints, this technique allows animators to work

with less degrees of freedom and automatically computes the remaining degrees of freedom using

an approximated energy-based formulation [18]. Similar to energy-based systems, physically-based

deformation techniques are available in plenty. These methods, unlike most geometric approaches,

are capable of automatically augmenting primary deformation of skeletal animation by simulating

secondary motion and volume conservation. From generating a volumetric mesh to approximate

tissue, muscle, and fat motion [13] to using force dynamics as the building blocks of rigging sys-

tems [9], these methods exhaustively cover novel approaches to many of the problems present in

geometric deformation systems, such as collision detection. More computationally-friendly simula-

tion techniques enable real-time deformations for interactive gaming. One such method converts the

character mesh into multiple layers of voxels, each layer corresponding to an anatomical phenomena

such as bone, muscle, fat, etc. Applying primary deformation on the bone voxels and propogating

this motion through neighboring voxel layers automatically generates secondary motion [28].

Certain simulation systems also attempt to use physically-based techniques to create more

cartoon-like deformation. Such models approach this problem in their own unique ways. One uti-

lizes the velocity of the rigid body to dynamically simulate squash and stretch deformation [15].

Another method focuses efforts not only on the effective deformation of animated characters, but

also on enabling artists to control these deformations with ease [12]. Complementary Dynamics, a

very recent work in this area of study, proposes a method to use dynamics to add secondary motion

to a rig. Unlike other existing approaches, this method preserves the primary action animated by
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the artist, and uses physics to simulate complementary secondary action. This secondary action is

simulated in a subspace orthogonal to the primary action to enable the resulting deformation to

enhance the artists’ intended animation, rather than undo it [38]. Another work proposes generat-

ing implicit surfaces and applying forces to create cartoon-like deformation, including squash and

stretch, and followthrough [31]. One method in motion capture emulates cartoon-like rubber-hose

animation from traditional animation by allowing joints to grow in length. The skeletal hierarchy

of the rigged character is divided into “sub-joints” with dynamic springs interconnecting them. The

sub-joint positions are then computed using Bezier curve interpolation to create smoother defor-

mation, resulting in the character having curved limbs [19]. “Kinodynamic Skinning” describe skin

deformation by using skeletal motion to induce velocity-based vector fields [5]. This use of dynamics

enables volume preservation and prevents unwanted “fold-over” trajectories.

The work presented in this thesis, however, uses a geometric approach, not a dynamic one.

We work with instantaneous values of velocity and acceleration, i.e, kinematic motion, to describe

and drive the deformation of the skinned mesh, rather then integrating over a time step. Methods

closer to this approach include the work by Noble et. al. [29], which attempts to curves character

limbs by applying non-linear deformers onto joints. The targeted joints and bend angles are informed

by the character animations “lines of action”. Likewise, the squash-and-stretch deformer by Kwon et

al. [20] proposes a geometric approach to generate squash and stretch motion by deforming the joints

themselves. This controlled scaling of skeletal joints cuses the skinned mesh to deform accordingly

and creates a result that is closer to the animation style found in traditional animation [20].

Unlike the above stated works, the methods described in this thesis utilize the kinematic

motion of the skeleton to inform the deformation of the mesh, rather than deforming the skeletal

joints themselves. Noble et. al. [29] determines the lines of action on their characters using a method

based off of bone velocity, which is similar to our approach as well. However, their approach considers

a targeted joint and its parent in isolation. The overall hierarchy of the skeleton is not considered in

this method. Also, the resulting deformation is finally applied onto the target mesh through the use

of Autodesk Maya’s lattice deformers and non-linear bend deformers. In contrast, our approach is to

compute effect-specific deformation functions that directly define the vertex displacement resulting

from the deformation. No additional deformers are required to visualize the final effect.
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Chapter 3

Velocity Skinning

Velocity Skinning is a recent technique in computer graphics. It is a collaborative effort

of multiple researchers, including myself. While this work is not the focus of this thesis, the two

are tightly coupled with each other. This chapter is here to provide more clarity on the topic. My

personal contributions to this publication are detailed in sections 3.4 onward. Further details about

Velocity Skinning may be found in the publication [32].

3.1 Motivation

When a character is animated, the underlying skeletal joints translate and rotate, causing

the character mesh to deform, creating the illusion of animation. When these joints move in space,

their positions and orientations change over time. If we compute the rate of this displacement,

we can obtain the corresponding velocity of the joint. Velocity Skinning presents a method to

exploit this velocity information inherently present in skeletal animation to aesthetically deform the

character mesh to which the skeleton is skinned. Put simply, the velocity of a joint (and its ancestry

of joints) is used to displace the vertices influenced by it on the character mesh. This displacement

can be parameterized to create the desired effects. Further details about the method are provided

in subsequent sections. The objectives of this method are:

• To automate the process of creating squash and drag effects

• To work out of the box with user controllable parameters
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• To work in real-time on meshes with up to 106 triangles

• To perform non-linear time edits, i.e., to be able to create the desired effects without requiring

any information about the history of the deformation

3.2 Method

3.2.1 Formulation

We begin with the standard Linear Blend Skinning (LBS) method formulation. In LBS, for

every resultant vertex position p on the mesh, we have

p =
∑
j

bjpj .

Where j is the collection of joints influencing the vertex position p,

bj is the skinning weight,

pj is the vertex position obtained from rigid skinning

Differentiating with respect to time, we get

v(p) = ṗ =
∑
j

bj ṗj .

Here ṗj is the net velocity of the vertex position pj . This depends on the rigid motion of

joint j. However the the rigid motion of joint j is affected by the rigid motion of its parents, and so

on and so forth. Therefore, we can further decompose ṗ along the hierarchy of joints.

ṗj =
∑

k∈Anc(j)

vk

Where vk is the relative velocity induced by joint k with respect to its parent. Plugging this

decomposition into the previous equation, we have

v(p) =
∑
j

bj

 ∑
k∈Anc(j)

vk

 .

Reformulating this as a single summation, we get
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v(p) =
∑
j

b̃jvj

where

b̃j =
∑

k∈Desc(j)

bk.

Based on the above equations, we can see that the effective velocity of the position p is a

linear sum of the local velocities of its relative joints, i.e., its ancestry of joints. The final formulation

shows that the velocity skinning weights b̃j are directly derived from the rigid skinning weights bk.

This notion of a local joint velocity may be further decomposed into translational and rotational

components.

vj(p) = uj + ωj × (p− pj)

where

uj is the velocity of joint j due to translation,

ωj is the angular velocity of joint j,

p− pj is the vector connecting p to the center of rotation,

ωj × (p− pj) is the effective angular velocity at p due to rotational motion (Fig. 3.1)

Putting everything together, we have

v(p) =
∑
j

b̃j (uj + ωj × (p− pj)) . (3.1)

3.2.2 Deformation

Equation (3.1) gives us the velocity at position p. However, what we require is the deforma-

tion at position p caused by this velocity v(p). Just as v(p) is related to the linear sum of relative

velocities of its ancestor joints, let us suppose that the resulting global deformation is also related

to the linear sum of relative local deformations of its joint hierarchy. The final deformation applied

onto point p is

pfinal = p︸︷︷︸
skinning

+ d(p)︸︷︷︸
velocity−skinning

,
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Figure 3.1: Visualizing rotational component of Velocity Skinning formulation

where d(p) is the global deformation at point p;

d(p) =
∑
j

b̃jψj(p), (3.2)

and ψj(p) is the local deformation of p caused by the joint j.

Like the velocity term, this local deformation can be further decomposed into deformation

caused by translational and rotational components:

d(p) =
∑
j

b̃j(ψuj + ψωj (p)).

This formulation gives us a linear blend of deformations which propagate along the hierarchy

of the skeleton. However, ψ is merely a deformation function. It may refer to any deformation. In

this context, our objective is to model drag and squash. Therefore, we require a deformation function

for drag, and a separate one for squash. Conceptually, for the drag deformation, we simply translate

or rotate the position p opposite to the direction of motion. Skipping ahead, we have the following

formulation for the drag deformer ψdv:
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ψdv
j (p) = (ψdv

uj
+ ψdv

ωj
(p))

ψdv
uj

= −uj

ψdv
ωj
(p) = (R(θ)− I)(p− pj) (3.3)

where

R(θ) is a rotation matrix representing the rotation of joint j by angle θ,

I is the identity matrix, and

pj is the vertex position obtained from rigid skinning.

In the above equation, R is constructed using the angle of rotation theta about the axis

defined by ω

θ = −kdv||vi|| (3.4)

where

vi is the vertex velocity, and

kdv is a user controlled parameter defining the magnitude of deformation.

Similarly, we have the squash deformers

ψsv
j (p) = (ψsv

uj
+ ψsv

ωj
(p)) (3.5)

The squash deformation involves generating scaling matrices. This is done by computing a

centroid for the application of the scaling deformation, which is computed as the barycenter of the

vertices influenced by a given joint. Like the drag deformer, the squash deformer includes a user

controllable value ksv to scale the intensity of squash deformation. Further explanations regarding

these deformation functions and their derivations can be found in the relevant publication [32].

3.3 Per-Vertex Paint Weights

Till now, we have discussed different effects that velocity skinning can produce. We have

seen that artists may tweak the input parameters kdv, ksv, etc. to define how subtle or pronounced
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Figure 3.2: Effects of weight painting: Vertex weights on a cow model painted to emphasize de-
formation on the horns and ears (left), LBS results (center), Velocity Skinning results with weight
painting applied (right)

the deformation should be. However, artists may wish to have more granular control over the effects.

It is common to wish for effects to be more pronounced in certain parts of the character than others.

This can be achieved through the use of per-vertex weight painting. These weights are simply scalar

values assigned to each vertex on the mesh, used to scale the deformation effect applied on said

vertex. Artists may modify these weights non-uniformly over the mesh to create a more fine-tuned

result. This allows artists to localize the effects to specific parts of the mesh. For example, in Fig 3.2,

the weights on the mesh were painted to emphasize the deformation to the cow’s head, and more

specifically on the ears and horn. Such granular control cannot be expressed through pure skeletal

deformation. From the user interface, these per-vertex weights may be interactively painted over

the surface of the mesh.

The artists are not only limited to positive scalar values. If so desired, they may use negative

weights to cause the vertex to deform in the opposite direction. This may be useful if you require

parts of the skin to lean in to the animation rather than drag behind it. For example, consider the

bird shown in Fig 3.3. This rig has just a single joint. All of the deformation seen is created through

the use of paint weights. We see that the while most of the body drags behind the animation, one

of the wings leads the action.

Bear in mind that while using per-vertex paint weights, the aesthetic quality of the resulting

deformation lies in the hands of the user. Great care must be taken to paint the weights. The onus

is on the user, much like in LBS and DQS. For example, consider the deformation of the dragon

shown in Fig 3.4. Discontinuity is visible in certain parts of the mesh. This is a direct result of the
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Figure 3.3: Weight painting: No weights applied (top row), positive weights applied (center row),
positive and negative weights applied (bottom row) [32]

weight painting. The change in vertex weights across the mesh is too sudden to achieve a smooth

deformation result. However, if the artist wished to create, say, a zombie dragon with parts of the

skin peeling off and flapping around, this deformation may be deemed usable. At the end of the

day, as with all art, context determines what is good and bad. It is the prerogative of the artist to

exploit these tools as they see fit.

3.4 Enhancing Artist Control

3.4.1 Twist-Bend Decomposition

In a practical scenario, artists may desire enhanced control over the previously discussed

deformation effects. For example, let us assume that we have an aged character with weakened and

saggy muscles. When this character holds up their arm, we can see the clearly defined muscular

degeneration. If they rapidly twist the arm from side to side, the sagging muscles will flap back and

forth. However, if they rapidly bend their arm at the same pace, the magnitude of muscle movement

is not nearly as high. Therefore, we may assume that artists may want to handle different types of

rotational movement differently. One approach to such enhanced control is to decompose rotation

due to bending and rotation due to twisting.
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Figure 3.4: Effects of mesh deformation from discontinuous paint-weights
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Mathematically, the axis of rotation of a bone is give by ωj . In the case of bending motion,

we know that the bone must lie on the plane orthogonal to ωj . However, considering the case of

twisting motion, the bone is aligned with the axis of rotation ωj (see Fig 3.5). Therefore, we can

decompose these two different motions by comparing the axis of rotation to the joint orientation.

When they are aligned, we have a pure twisting motion. When they are orthogonal, we have pure

bend. Any combination of these two motions (bend and twist) can be represented as a weighted

sum of the two motions. For convenience, we consider a weighted linear sum.

twist+ bend = 1

This alignment can be computed using a dot product as:

m = |ω̂j · lj | (3.6)

m ∈ [0, 1]

where

m is the twist magnitude of the rotation,

lj is a unit vector aligned with the axis of joint j, and

ω̂j is the axis of rotation of joint j.

We can see from this formulation that the twist magnitude m has a value ranging from zero

to one, representing the fraction of the net rotation caused by twist. Similarly, we can say that

whatever motion is not caused by twist, must be induced by the bending of joints. Therefore, we

consider bend magnitude = 1−m. These values may be used to scale the net rotation deformation

independently, thereby providing a clear decomposition of rotation caused by twist vs bend.

ψdv′

ωj
= ψtv + ψbv (3.7)

where

ψdv′

ωj
is the enhanced or updated drag deformer,

ψtv is the drag due to twist,

ψbv is the drag due to bend.

We know from (3.4) that θ contains a user controlled parameter kdv. This value may
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Figure 3.5: Distinguishing rotation due to bending (left) and twisting (right) motions. ω is orthog-
onal to lj in the case of bend, and aligned to it in the case of twist.

be scaled independently in the twist/bend deformation functions using the respective magnitudes

previously computed. Expanding on (3.3), we can re-envision ψdv
ωj

to include a parameter for the

angle of rotation θ as

ψdv
ωj
(p, θ) = (R(θ)− I)(p− pj). (3.8)

Combining (3.6), (3.7), and (3.8) we have

ψdv′

ωj
(p) = ψdv

ωj
(p, θt) + ψdv

ωj
(p, θ(1− t)).

We now have a distinct twist-bend decomposition. However, the objective is to enhance artist control

over this motion. With the above equation, although we have a decomposition, we do not have any

means for an artist to control these twist/bend values independently. Hence, we can reparametrize

as

ψdv′

ωj
(p) = ψdv

ωj
(p, θtv) + ψdv

ωj
(p, θbv) (3.9)
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Figure 3.6: Cylinder rigged with the joints off-center demonstrating twist deformation (a, b, and c)
and bend deformation (d)

where

θtv = −mktv||vi||,

θbv = (1 +m)kbv||vi||,

where ktv and kbv are user controlled parameters defining how pronounced the drag effect caused

by twist and bend must be respectively. In Fig. 3.6, one can see the drag deformation effect caused

due to the twisting motion vs the bending motion of the cylinder.

3.4.2 Local Joint Control

3.4.2.1 Motivation

Till this point, all of the user controllable parameters discussed, such as kdv, ktv, kbv, etc,

have been global controls. It may be beneficial to also consider localizing these parameters to a joint

specific control. Artists may find such control desirable to isolate the deformation effects to a specific

joint or chain of joints. For example, if we have a character walk cycle, we may wish to localize the

deformation to the arms alone. Hence, it would be desirable to control deformation parameters at

a per-joint level.

3.4.2.2 Method

Recall the deformation equation 3.2

d(p) =
∑
j

b̃jψj(p).
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Regardless of what the targeted deformation function is (ψdv, ψsv, etc), we know that there

exists a value k which allows the user to scale the magnitude of deformation. This is a global value,

constant throughout the skeletal hierarchy. Let us replace this with a value kj local to each joint.

If we consider the case of ψdv
ωj
, we have the angle of rotation θ computed using the global

scale kdv as

θ = −kdv||vi||.

Substituting this with the localized value kdvj , we have

θ = −kdvj
||vi||.

Similar substitutions may be performed for all deformation functions ψ. Note that the high

level formulation of velocity skinning remains intact. The net deformation of a vertex position p

still depends on the deformation of its ancestor joints. This gives rise to an interesting behavior;

it is not possible for a given joint ji to remove or negate the deformation inherited from its parent

joint ji−1. Deformation effects cumulatively propagate down the skeletal hierarchy. This remains

consistent with the behavior of the Velocity Skinning method.

This behavior may be better conceptually understood by thinking of it in the context of

frames of reference. If a character rotates their shoulder, that will automatically move their elbow,

wrist and fingers. Even if they keep their elbow static (without any rotation), the position and

orientation of the forearm is still affected by the shoulder rotation. In other words, the forearm

is static in a local frame of reference with respect to the elbow joint. However, it is displaced in

a global frame of reference. This is the same concept behind the local joint control in Velocity

Skinning. Disabling deformation of a joint ji merely prevents any deformation within the local

frame of reference. However, any deformations inherited from higher up the skeletal chain will be

preserved, and cannot be negated.

3.4.2.3 Comparison with Paint-Weights

Consider using Velocity Skinning to deform a character walk cycle. We may wish to disable

deformation on the legs, but retain deformation on the arms. Although this may be achieved using

the per-vertex paint weights discussed in section 3.3, having a joint level control provides yet another
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Figure 3.7: Cylinder rig demonstrating a joint chain for the given scenario

approach which may be more desirable in circumstances such as this. If we explicitly know that we

do not want a certain joint to have any deformation, it would be much easier to disable deformation

on a per-joint level as opposed to manually zero-ing the vertex weights on all relevant vertices. Also,

some vertices may be influenced by multiple joints. In such cases, modifying the vertex weights will

compute the net deformation from the entire joint hierarchy, and then proceed to scale the result

by the artist specified weight. However, as using joint specific control enables artists to negate the

deformation of certain joints, it is possible for such vertices to still deform due to the influence of

other joints.

Consider the joint chain given in Fig. 3.7. Let as assume that an artist wants to disable

deformation on the bottom half of the mesh but have the top half deform. They may use paint

weights to disable deformation of the vertices on the bottom half of the mesh and leave the top half

untouched, but they must then carefully handle the vertices in the intermediate region, such as the

vertex pi. If the painting is not a smooth gradation, it may lead to undesirable discontinuity in
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the deformation. However, if approached using local joint control, one may disable deformation of

joint j0 while preserving deformation on joint j1. In this case, using the joint-level parameterization

enables automatically taking advantage of the smoothness and spatial influence of the precomputed

skinning weights without requiring any extra set-up or painting.

d(pi) =
∑
j

b̃jψj(pi)

d(pi) = b̃j0ψj0(pi) + b̃j1ψj1(pi)

ψj0(pi) = 0

∴ d(pi) = b̃j1ψj1(pi)

As we only consider the influence of b̃j1 , the smoothness of the resulting deformation across

this region depends on the skinning weights bj . If appropriate care has been taken when painting

these skinning weights, then Velocity Skinning naturally creates a smooth transition on the mesh

across the vertices between the two joints. This is not extra work for the artist, as the standard

industry pipeline demands fine-tuned paint weights for most commonly used skinning approaches.

Thus, for this particular scenario, using local joint control may provide a more pleasing deformation

out of the box with less artist intervention. Of course, the artist may use a combination of both of

these approaches if they so desire.
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Chapter 4

Acceleration Skinning

4.1 Analysis of Acceleration

We know from Chapter 1 that followthrough is a fundamental principle of animation and

has been used extensively in animation throughout history. Modeling this effect using a framework

like Velocity Skinning could be beneficial to artists; drag and followthrough are two effects that

often go hand in hand with each other. Modeling this effect using the existing velocity skinning

framework could create a more wholesome and unified tool.

Breaking down the desired followthrough effect into a set of technical requirements reveals

that to successfully create this effect, the character mesh must be deformed beyond the skeleton’s

rest position, ie, the mesh must deform even after the skeletal animation has come to a stop. This

requires re-envisioning our existing concepts. When a rigid body is at rest, its speed and velocity

are zero. If there is no motion, there is no velocity. Acceleration, however, gives us more ways to

break down the motion. When a rigid body is perfectly at rest, its acceleration is zero. However, if

it is in motion and then comes to rest, there exists a deceleration value acting upon it even after the

body has come to rest. This deceleration is responsible for bringing the body to a stop. It exists for

a period of time, and eventually tapers to zero as well.

Fig. 4.1 demonstrates this relationship between velocity and acceleration. This graph plots

the Z-axis component of angular velocity ω and angular acceleration α for a rotating object. This

object begins rotating from rest, rotates for a while, and comes to rest again. We see from the graph

that the ω term has only one peak (or lobe). In contrast, the α value has two lobes, one positive and
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Figure 4.1: Relationship between angular velocity ω and angular acceleration α for a body that begins
rotating and returns to rest visualized on a graph. This graph plots only the Z-Axis component of
these two terms.

one negative. Similar behavior may be observed for linear motion. We use this to our advantage to

model followthrough; The positive lobe is used to deform the mesh in one direction and the negative

lobe is used to deform the mesh in the opposite direction.

Mathematically, the velocity of a rigid body can be described using the sum of its two

quantities: linear velocity u, and angular velocity ω. If we possess knowledge of the body’s center

of mass or center of rotation, then these two quantities are sufficient to compute the velocity at any

point on the surface of the body. The velocity at a point p on the surface of the body is defined as

v = ṗ = u+ ω × r

where r is the relative position of p with respect to the axis of rotation. Similarly, we can extend

this logic to acceleration as well. The acceleration of a rigid body may be described using a sum of

its linear acceleration a and angular acceleration α, where

a = u̇
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α = ω̇.

The local acceleration experienced by a point p on the surface of the body can, similarly, be expressed

as

LocalAcceleration = p̈ = a+ α× r + ω × ω × r.

Relating this concept back to the topic of a skeletal rig, this LocalAcceleration can be used

to represent the acceleration of a vertex on the mesh. The local center of rotation is merely the axis

about which a given joint rotates. Notice that when differentiating vertex angular velocity ω × r,

we end up with two quantities α× r and ω × ω × r.

• α× r: We call this term “tangential acceleration” at(Fig. 4.2). It acts in a direction tangential

to the circle of rotation at the vertex point of p, and is parallel to the the vertex velocity vector

ω × r.

• ω×ω×r: We propose to call this term “centripetal acceleration” ac(Fig. 4.2). It acts along the

radial direction, pointing inwards, towards the center of rotation, its magnitude is proportional

to the distance from the center of rotation.

Fig. 4.3 visualizes these terms on a rotating flower. For convenience, we rephrase the above

terms as functions:

at(α, r) = α× r (4.1)

ac(ω, r) = ω × (ω × r) (4.2)

4.2 Incorporating Acceleration in Skinning

Consider an animated clip where a character begins to wave their arm and then stops mid-

wave. Suppose we would like to apply followthrough onto this animation. When the arm stops

animating, rather than coming to an abrupt stop, we would like it to shoot beyond the stopping

pose and then settle back into it, as discussed in section 2.2. Suppose we would like to model this

as an effect using Velocity Skinning.

36



Figure 4.2: Centripetal and tangential acceleration terms visualized for circular motion

Figure 4.3: Velocity (left) and acceleration (right) terms visualized on rotational motion on a flower.
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Within the context of Velocity Skinning, it makes sense to envision this effect as another

deformation function ψfto which may be added to the summation.

d(p) =
∑
j

b̃jψ
fto

This function may again be decomposed into linear and angular functions corresponding to transla-

tional and rotational motion.

d(p) =
∑
j

b̃j(ψ
fto
tr + ψfto

rot (p))

To create the followthrough effect, the target mesh must be deformed beyond the skeleton’s

rest position, ie, the mesh must deform even after the skeletal animation has come to a stop. If we

attempt to create this effect using velocity, we run into a problem; once the skeleton stops moving,

both linear velocity u and angular velocity ω are zero, and we no longer have any input signals to

work with. This is where we reach the limitations of working solely with velocity. Acceleration,

however, provides us with further possibilities, as discussed in section 4.1.

Utilizing these acceleration terms in our deformers, we have ψfto
tr as a function of linear

acceleration a.

ψfto
tr = ψfto

aj
= −aj

For rotational motion, we have two separate terms to consider: at and ac. We can see

from Fig. 4.3 that tangential acceleration at provides a vector that is axis aligned with the vertex

acceleration ω × r. This is the same value used in the rotational drag deformer ψdv
ωj
. To recap,

ψdv
ωj
(p) = (R(θω)− I)(p− pj).

Here, the ω value is present as part of the rotation matrix R, as the axis of rotation. We have the

angle of rotation

θω = −kdv||vi||.

In the original Velocity Skinning formulation, the vertex velocity vi is computed as the
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velocity caused by the rotation of vertex position p about the bone origin pj , expressed as

vi = ω × (p− pj).

Therefore, we have the angle of rotation due to vertex velocity θω defined as

θω = −kdv||ω × (p− pj)||. (4.3)

Substituting α in place of ω, we have angle of rotation due to tangential vertex acceleration

θα = −kft||α× (p− pj)||. (4.4)

where kft is a user-controlled scalar value. Notice that this formulation resembles Eq. 4.1. Therefore,

we rewrite Eq. 4.4 as

θα = −kft||at(α, (p− pj))||.

Fig. 4.4 shows these terms visualized on a rotating flower. Finally, updating the deformation function

to reflect these modifications, we have

ψfto
rot = ψfto

αj
(p) = (R(θα)− I)(p− pj). (4.5)

Fig. 4.5 showcases the effect of ψfto
αj

applied onto a rotating flower animation.
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Figure 4.4: Tangential acceleration visualized on a rotating flower.

Figure 4.5: A simple rotating flower animation (top) and the results of applying the followthrough
deformer from Eq. 4.5 on it (bottom)
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Chapter 5

Deformers

5.1 Followthrough

5.1.1 Followthrough Warping

Applying ψfto using the existing system results in both drag deformation (where deforma-

tion causes the mesh to “trail behind” the skeleton) as well as followthrough deformation (where

deformation causes the mesh to shoot in front of the skeleton.) As both of these deformation effects

are controlled by a single acceleration input, modifying the magnitude of acceleration affects the

magnitude of both deformations (drag and followthrough). However, it is more desirable to provide

artists with independent control of each effect.

Acceleration denotes the rate of change of velocity. When the velocity and acceleration

vectors point in the same direction (Fig. 5.1), the magnitude of velocity increases. Within the

current context of the followthrough deformer, this configuration of ω and α vectors causes the drag

effect. In Fig 4.1, this corresponds the first (positive) α lobe. At this point, both α and ω are

positive. When these vectors are pointing away from each other (Fig. 5.1), the deformer generates

an effect of the mesh shooting in front of the skeleton, rather than trailing behind it. In Fig 4.1,

this corresponds to the second α lobe, where α is negative (deceleration) and ω is positive. This

produces followthrough. This is the effect we truly like to capture with the followthrough deformer.

Using the intuition stated above, we see that a comparison between the ω and α vectors

provides the information needed to determine whether to engage the drag or followthrough effects.
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Figure 5.1: ω and α vectors visualized on a bending cylinder in cases where they are aligned (left)
and pointing in opposite directions (right)
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This is done using a simple dot product ω · α. Computationally, we handle this by scaling the

existing ψfto with a function (which we call warp function). This function is generated using the

dot product ω · α, remapped to fit within the [0, 1] value range. The final deformation function is

defined as follows:

ψft
αj
(p) = ψfto

αj
(p)f(ωj · αj , limit) (5.1)

f(ω · α, limit) =


0 if ω · α ≥ 0,

|ω·α|
limit if 0 ≥ ω · α ≥ limit,

1 otherwise

where

ψft
αj

is the warped rotational followthrough deformer,

ψfto
αj

is the original rotational followthrough deformer before warping,

f is the warp function, and

limit is a user-defined limit or threshold representing the transition between the drag and

followthrough portion of the input signal.

The effect of the warp function applied onto an input acceleration signal can be seen visual-

ized in Fig. 5.2 (a and b). We can perform a similar warping on translational followthrough, defined

as:

ψft
aj

= ψfto
aj
f(aj · vj , limit), (5.2)

where ψft
aj

is the warped translational followthrough. This gives us a “warped signal” con-

taining just the followthrough deformation (Fig. 5.2b), giving artists the ability to target and inde-

pendently tweak the followthrough deformation as per their aesthetic requirements.

5.1.2 Tangential Acceleration Drag

Now that we have the capability to separate the drag and followthrough effects indepen-

dently, it is worth considering the nature of drag as modelled by acceleration, as opposed to velocity.

These two functions result in different deformations. When we model drag using velocity, we have
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Figure 5.2: Input acceleration signal (a), warp function applied to extract followthrough (b), warp
function used to extract acceleration-based drag (c)

a certain smooth deformation over time. Computing acceleration using finite differences, however,

leads to increased sensitivity to small variations and noise. When we model the drag effect using

acceleration, the deformation captures and reflects these smaller changes (Fig. 5.3). Artistically,

both of these approaches have merit. Velocity-based drag may be preferred to mimic the effect of

moving through a medium with higher friction. Acceleration-based drag may be preferred when

more subtleties are desired in the deformation. We may repurpose the warp function to create an

acceleration-based drag deformer:

ψda
αj
(p) = ψfto

αj
(p)[1− f(ωj · αj , limit)]

ψda
aj

= ψfto
aj

[1− f(aj · vj , limit)] (5.3)

where

ψda
αj

is the rotational drag deformer modeled using angular acceleration α, and

ψda
aj

is the translational drag deformer modeled using linear acceleration a.

We may modify the kft term used in ψfto independently for ψft and ψda to allow users

to independently control the intensities of followthrough and acceleration-based drag deformations
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Figure 5.3: ω (top) and α (bottom) driven drag effect at moments where the animation changes
directions.
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Figure 5.4: Results of deforming the source flower animation in Fig. 4.5 using acceleration-based
drag ψda (top) and warped followthrough ψft (bottom)

respectively. Fig. 5.2 (a and c) show the effects of the warp function used to extract acceleration-

based drag from an input acceleration signal. Fig. 5.4 shows the results of applying the warp function

on the previously seen flower animation (Fig. 4.5).

Working with acceleration-based drag may occasionally lead to an interesting intricacy.

Consider a scenario in which the source animation has a constant velocity. The resulting derivative

of velocity in this scenario would be zero. In other words, there would be no acceleration, and

by extension, no deformation. This is simply a by-product of how acceleration works. Of course,

depending on the context of the animation, this may be preferred to having constant deformation.

For example, if the source animation switches between several different constant velocities, then

applying acceleration-based drag would cause deformation only at the points of change. Depending

on the context, this may be a desirable effect. Again, it is up to the artist to decide where and how

they wish to use these effects.

5.2 Centripetal Stretch

The centripetal acceleration of a rigid body:

• pulls the body radially inward toward the center of rotation,
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Figure 5.5: Centripetal acceleration ac of a vertex acts radially inward toward the point of rotation

• has a magnitude proportional to the radius of rotation.

When observing how chefs make pizza, we see that after kneading and pressing the dough,

they proceed to toss it in the air with a spin of their wrists. This spin creates creates a force that

stretches the dough farther out. We can clearly see the relevance of centripetal acceleration in this

process. This is what inspired the creation of the Centripetal Stretch deformer.

5.2.1 Computation

To model this effect, we need a deformer function ψcs that computes the deformation for

any given vertex on the mesh. By simple adapting Eq. 4.2, we have

ψcs(p) = −kcsac(ωj , p− pj)

where

ωj is the angular velocity of the rotating joint,

pj is the joint origin, and

kcs is a user defined effect scale.

Recall that the magnitude of centripetal acceleration acts inwards toward the point of ro-

tation, as visualized in Fig 5.5. Our deformation needs to push vertices outward, away from the

center. Hence, the output of the deformer is negated to reverse the direction.
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Figure 5.6: Centripetal stretch effect applied onto an animation of a flower twisting its head

This creates an effect that translates vertices outward away from the point of rotation. As

the magnitude of acceleration increases linearly with distance, the vertices farther away from the

center of rotation experience larger deformation than those closer to the center. To exaggerate this

effect, we replace the coefficient kcs with a function k(x) to scale the deformation effect with respect

to p. Applying quadratic mapping, we have:

ψcs(p) = −k(p− pj)ac(ωj , p− pj)

k(x) = kcs||x||2

The effects of the centripetal stretch deformer can be seen applied to a twisting flower

animation in Fig 5.6.

5.3 Centripetal Lift

Consider the motion of a twirling cloth, such as a dancer’s skirt. As the dancer twirls, their

skirt gently lifts. The same centripetal forces that caused the pizza dough to expand also cause

this effect on the cloth. Thus far, we have exploited the concepts of angular acceleration, tangential

acceleration, and centripetal acceleration. However, to model this effect using the acceleration

skinning framework, we explore another option which I call “centripetal lift”.
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5.3.1 Computation

Consider the eventual goal described above: attempting to make a dress lift as it twirls.

Assume we have cylindrical cone representing a simplified version of the skirt. Assume this cone

twists about an axis aligned to its height. The drag deformer creates a natural twirl effect, putting

us half way towards achieving our goal. Now we need a deformer to cause the dress to lift. Consider

Fig 5.7. From this diagram, we can see that the vertex normals of the cone are somewhat aligned with

the direction in which we would like to displace these vertices to create a lifting effect. However,

blindly translating these vertices along the normal would not serve any purpose. To achieve our

desired effect, we need the ends of the cone to lift (or deform) more than the tip of the cone. Recall

that our drag deformer also exhibits this same behavior. Therefore, we can use the drag deformer

to control the magnitude of the lift. Based on this intuition, we have the following equation:

ψcl = kcl||ψda||n̂i

where kcl is a scalar coefficient to control the deformation intensity.

We now have a basic deformation function that works. However, we are only considering

the influence of drag. Ideally, the effects of other deformers should contribute towards the lifting of

the cone as well. To make this more generic, consider replacing ψda with d1 which is a linear sum

of all deformation functions supported by the acceleration skinning system.

d1 = ψda + ψsv + ψft + ψcs

ψcl = kcl||d1i ||n̂i

The issue with this equation is that while it considers the magnitude of all the deformers in

d1, it does not take into account the directional effect of these vectors. This is rectified by introducing

a dot product to take this alignment of vectors into account as follows:

ψcl = kcl(d1i · n̂i)n̂i

Directly injecting this deformer function into the existing acceleration skinning summation

causes a recursion issue; we require the summation of all deformers as an input to ψcl, but must ensure
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Figure 5.7: Vectors visualized on the surface of a conical mesh to compute centripetal lift deforma-
tion.

that ψcl is not passed as an input to itself as part of the summation. This can be accommodated

by revising the acceleration skinning formulation as two separate passes:

d1(p) = ψda(p) + ψsv(p) + ψft(p) + ψcs(p)

ψcl(p) = kcl(d1i(p) · n̂i)n̂i

d(p) =
∑
j

b̃j(d1(p) + ψcl(p))

Fig 5.8 and 5.9 showcase the effects of the centripetal lift deformer applied on top of drag

(5.8) or drag with centripetal stretch (5.9).

5.3.2 Limitations

The centripetal lift deformer, in its current state, has the following limitations:

• It can only be applied on a cylindrical cone, cylinder, or frustrum. Applying the deformer to

other shapes creates unappealing deformation due to the change in flow of vertex normals.

• The base(s) of this base geometry must not be closed. Applying the deformer on closed meshes
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Figure 5.8: Effects off ψda and ψcl deformers on a simple twist animation. Wireframe view (top),
textured view (bottom).

Figure 5.9: Effects off ψda, ψcs, and ψcl deformers on a simple twist animation. Wireframe view
(top), textured view (bottom).
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causes abnormal swelling of the tips of the mesh, since all of the vertex normals point radially

outward. Results from this experiment can be seen in Fig 5.10.

• All of the selected geometry listed above lack a base; they have hole(s) in the mesh. This does

not comply to industry standard practices of using “thick-walled” geometry. If you require a

mesh with a hole, it is common practice to extrude the relevant polygonal faces on the mesh

to give it some thickness. As we saw, however, adding thickness to our base geometry causes

issues with the deformation results

Theoretically, these limitations may be addressed with a workaround: applying the deforma-

tion onto a procedurally generated deformation frustrum and mapping the resulting displacement

onto a given a target mesh. Assume that the deformation frustrum is procedurally generated with

the following parameters:

• The user selects a target joint or joint chain.

• The height of the frustrum matches the height of the target joints (or the vector connecting

the end points of a targeted joint chain).

• The radii of the bases of the frustrum match the radii of the cross section of the target mesh

at the ends of the targeted join or joint chain.

• The frustrum is positioned in the same space as the targeted mesh such that the two meshes

overlap each other.

We generate a deformation frustrum and apply a mapping scheme to transfer the vertex

displacement from one mesh onto the other. A number of different mapping schemes may be used to

accomplish this. For instance, we may ensure that the vertex count on the deformation frustrum is

equal to the number of vertices on the target mesh, and then apply a bijection function to perform

1:1 correspondence mapping between the two. Each vertex on the deformation mesh is responsible

for deforming a unique vertex on the target mesh. If desired, more complex mapping involving

Nearest Point Transform or Iterative Closest Point Transform [6] [26] may be used.
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Figure 5.10: Effects off of the centripetal lift deformer applied onto non-conical geometry
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Figure 5.11: A given input signal processed by increasingly larger time filters from (a) through (c).

5.4 Effect-Specific Time Filter

For all of the examples showcased thus far, the input signals (u, a, ω, α etc.) have been

filtered over time. Rather than globally applying a static time filter on these terms, we may apply

temporal filters independently for each effect. In other words, each deformer function has it’s own

unique input for the velocity and acceleration terms (ωdv, ωsv, ωcs, etc). The size of the time filter

is a user controllable value, isolated to each individual deformer. Increasing the size of the filter

leads to slower deformation, as more frames contribute to the filtered value. Conversely, reducing

the filter size yields snappier deformation effects. The changes in signal are visualized in Fig. 5.11.

A comparison between using a smaller and larger time filter on a flower animation clip is presented

in Fig. 5.12.

Let us explore a practical example that makes use of this technique. The canonical approach

to combining deformation functions thus far has been to compute a linear sum of the effects. This,

however, leads to certain specific issues. The centripetal stretch deformer is active when there is

centripetal acceleration, and the followthrough deformer is active when there is tangential decelera-

tion. Consider the state of these quantities immediately after the skeleton of an animated character

has come to rest. Depending on how fast the skeleton was moving and how fast it came to rest,

some tangential deceleration may be present, but there will not be any centripetal acceleration. ac

is always zero when the skeleton is at rest. Therefore, in such circumstances, ψcs will hit zero defor-

mation before ψft starts to act. This is not aesthetically pleasing (see Fig. 5.13). Effect-specific time

filtering may be used in this scenario to “blend” the two deformation effects together. In Fig 5.14,
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Figure 5.12: Comparison between the use of a large time filter (top) and a small time filter (bot-
tom) applied on the acceleration-based drag and followthrough deformers. Frames (2), (3), and
(5) emphasize the differences between the two filters, showing that small filters increase deformer
reactivity.

we see the results of the same previous example, but with artist-tuned time filters. This result is

obtained by using:

• Slower centripetal stretch (larger time filter)

• Faster followthrough effect (smaller time filter)

Exploiting this new approach provides the following benefits:

• We enhance the artists’ control of the effects by allowing them to further tune the results.

• The deformation response can be modified independently per effect.

• We are able to retain the system’s existing approach to combining effects by computing their

linear sum.
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Figure 5.13: Result of combining deformers using a linear sum. Follow-through and Centripetal
Stretch effects are “mutually exclusive” in this example; they do not overlap. Centripetal stretch
deformer is active from images (1) to (5), followthrough deformer is active from (5) to (7).
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Figure 5.14: Results from artist-tuned time filters. Comparing these results with fig. 5.13, we see
that the centripetal stretch and followthrough effects are now blended together. This change is
particularly visible on images (3), (4) and (5).

57



Chapter 6

Production Evaluation

Once we had a stable system for velocity skinning, I conducted a study to evaluate the

usability of this tool in a production environment. Volunteer animators provided character animation

as input, and I assumed the role of an effects artist to test out this system. This study was conducted

before extending velocity skinning to include acceleration, so only a subset of the tools and deforms

discussed were available for use in the final result.

6.1 Procedure

Our implementation of the velocity skinning system was originally built to import rigged

characters from custom ASCII data files. These rigs were typically created in Blender and exported

to Collada format. These Collada files were then parsed to extract relevant data and stored in the

custom data format for injection into the system. A rudimentary real-time animation functionality

was supported allowing the user to move and rotate joints on the skeleton and capture these results as

skeletal animation. However, professionally trained 3D artists generally prefer to work in Autodesk

Maya over Blender. Maya is also the industry standard for rigging and animation work. Hence, I

modified this pipeline to support integration with Maya. I wrote a set of python scripts in Maya

to parse a targeted character rig and export its data to our proprietary format. I later extended

this functionality to support character animation as well, allowing us to work with higher quality

animation input.

The models used in this study were obtained from various royalty free sources online. Clem-
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Figure 6.1: Deformed cow animation sequence from section 6.2.1

son student (now instructor) Rodney Costa volunteered to rig these characters to be more animator

friendly. We had three students from Clemson University’s Digital Production Arts MFA program

graciously volunteer to be animators for this study. They all unanimously agreed to create character

animation as per our specifications to provide us with higher quality artist input. Their experience

levels with character animation varied; some were beginners while others had prior industry experi-

ence. Unfortunately, they were not as inclined to step outside of Maya. Finally, they chose the rigs

they wished to use. They animated their characters. I then exported this animation and then ap-

plied and tweaked the deformations using our velocity skinning system. More detailed walk-throughs

of my process and approach to applying these deformations are available as part of supplemental

material of our Eurographics 2021 publication [32].

6.2 Results

I used our system to perform deformation on four different animation inputs.

6.2.1 Cow Animation 1

I personally animated this input using the realtime user capture tools available in our ve-

locity skinning implementation. As a result, this animation lacks the subtleties achievable using

more robust animation tools. Applying deformation on this animation was a very easy and straight-

forward process. The results obtained out-of-the box were very fluid. Minimal amounts of tweaking

the input parameters quickly yielded more tame results. I turned down the squash and drag in-

tensities to make the effects more subtle. I then proceeded to modify the velocity paint weights on

the mesh, with the objective of emphasizing more deformation on the cows head, particularly on
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Figure 6.2: Final distribution of paint weights on the cow model used in 6.2.1

the tips of the horns and ears. I also added a bit more weight to the bottom of cows front feet.

This is because, in the source animation, the cow kicks his front left foot a bit, and I wanted to

exaggerate this movement using the drag deformer. The final distribution of paint weights can be

seen in Fig. 6.2. The final results are shown in Fig 6.1.

6.2.2 Dragon

A dragon fly cycle was animated by a volunteer with professional animation experience. I

approached the effects on this animation by taking a minute to observe the characteristics of the

cycle, and then turned on the deformers at default settings to see what we get. The immediate results

were far too exaggerated for my taste, but my goal was to identify which parts of the deformation had

the potential to be used in the final results. At this stage, I liked the deformation seen on the hands
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Figure 6.3: Deformed dragon animation sequence from section 6.2.2.

Figure 6.4: Final distribution of paint weights on the dragon model used in section 6.2.2

and horns of the dragon. I then painted weights for the character, using this intuition to guide me.

I chose to use extremely sparse weights, isolating the tips of the horns, fingers, snout, and tail. The

final paint weights can be seen in Fig. 6.4. After painting the weights, I turned off all of the deformers.

I wanted the deformation to be subtle, so starting with all the effect intensities/magnitudes scaled

down to zero felt like a logical way to approach this clip. I slowly introduced a bit of drag, and once I

was happy, started adding in squash. Combining both of these effects together on this particular clip

added bounciness to the motion. Finally, I added some translation drag to introduce some overlap

in relation to the rotational deformer. In conclusion, majority of my time on this clip was invested

in coming up with an end goal; deciding how to deform the character. After deciding that, the

remainder of my time was spent on painting the vertex weights. Out of the entire process, tweaking

the effect intensities took the least amount of item. The final results are shown in Fig 6.3.
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Figure 6.5: Deformed cow walk cycle from section 6.2.3. Subtle deformation is seen on the horns
and ears. The hips have a natural side-to-side sway.

6.2.3 Cow Animation 2

One of the volunteers chose to animate a walk cycle on the cow rig. It was a very plain

walk cycle, with a bit of bobbling on the head to add some personality. I began by adding zero-ing

the intensity of all deformers and gently adding in some drag rotation. The cow’s head movement

caused the horns to bobble back and forth, adding a lot of contrast to the motion. Introducing drag

translation capitalized on the cow’s side to side motion, and created an interesting effect. Personally,

I was very captivated by how it delayed the cow’s tail. Once again, after I reached a point where

I was satisfied with the overall deformation and had a fairly clear idea of what I wanted the final

result to look like, I started to paint vertex weights. After completing a first pass on the weights,

I had a decent amount of deformation on the cow’s head, and toned down the effect on the body.

(Fig. 6.6) However, I had lost the effect on the tail that captivated me at the start of the process.

While refining the painting and redoing the tail, I had the idea to use just a spot of negative weights

at the tip of the tail (Fig. 6.7). My goal was to make it look like the cow was intentionally flicking its

tail while walking, rather than having it simply follow the primary action. In my personal opinion,

this added more character to the animation. At this point, I was mostly happy with the results,

but the cow’s legs were flailing around a lot. I wanted to completely turn off all deformation on

62



Figure 6.6: First pass of weight painting on the cow model used in section 6.2.3.

these parts. Rather than adjust the paint weights again, I decided to modify the local deformation

controls to zero out the drag intensity for the joints on the legs. Re-evaluating my situation at that

point, I realized that I had gone overboard with the deformation on the horns and ears. They were

too exaggerated for my taste. I revisited the paint weights and turned it down until I was satisfied

with the results (Fig. 6.7). In a short duration of time, I was able to take a simple walk cycle and

push it artistically further. The final results are shown in Fig 6.5.

6.2.4 Flower

Our final volunteer decided to animate a flower. They were not as experienced in animation

and were also unable to spend as much time on the animation compared to other volunteers. As a

result, the animation that they shared with me was still a work in progress. Rather than continue

their work and cleaning up the animation in Maya, I decided to throw it into Velocity Skinning

in its current state. This was an interesting experiment to see what can be done with input that

was incomplete. The movements were much broader in this clip compared to the others I worked
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Figure 6.7: Negative paint weights used on cow tail (left); Refined paint weights on the horns and
ears (right).

on. I decided to use Velocity Skinning on this one to get a better “preview” of what the animation

would look like when it was completed and more polished. As the motion was so broad, applying

deformers onto the clip caused extremely exaggerated effects, and in some cases, went as far as

breaking the mesh in certain parts. To fix this, I utilized the deformation visualizer present in

the Velocity Skinning toolkit [32]. This allowed me to freeze a static pose from the deformation and

study what it looks like from various angles. I decided to fine tune the paint weights on the mesh

in this static pose. This allowed me to clean up any parts of the mesh that were breaking due to

excessive deformation. By repeating this process iteratively for all problematic poses, I was able to

create paint weights that prevented any unwanted deformations. Fig. 6.9 portrays this process of

identifying and tweaking the issue. For the final effect, I decided to remove any deformation from

the flower pot as this was hopping around the scene. To go hand in hand with that, I also removed

deformations from the base of the stem. The ends of the leaves and flower petals were painted to

have the most deformation. Even in such early stages of animation, Velocity Skinning was able to

add fluidity to the given movement. This serves as an example of how this technique can also be

used for pre-visualization. See Fig. 6.8 for final deformation results.

After completing this study, the final results were shared with the volunteer artists. They

were mostly satisfied and enthusiastic. One became even more inspired and requested permission to

use this technique in a short film.
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Figure 6.8: Deformed flower animation from section 6.2.4.
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Figure 6.9: Process of cleaning up undesired deformation on problematic poses using per-vertex paint
weights. Problematic pose (a), cleanup and deformation fine-tuning process by painting weights (b),
(c), (d), final paint weights (e)
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Chapter 7

Conclusions and Discussion

7.1 Summary

In this thesis, I introduced Acceleration Skinning as an extension to the recent Velocity

Skinning technique by considering the effects of skeletal acceleration. The general idea is to utilize

acceleration terms to further expand the gamut of deformation effects available through this skinning

system. I showcased some of the possibilities by creating three new deformation functions and

tested them through a custom C++ implementation. The refinement of artist control over the

deformation through the use of twist-bend decomposition and local joint controls was demonstrated.

The inclusion of effect-specific time filtering and its relevance to enhancing artist control was also

explored.

A production evaluation of these deformation effects was also conducted, with very promising

results. The volunteers were hesitant to use our custom C++ application; they preferred to work

in Maya as much as possible. Due to this constraint, they contributed in the role of animators,

and I assumed the role of an effects artist, adding secondary motion to their animation. After

completing my work, I shared the results with the volunteer animators. They were mostly satisfied

and enthusiastic. One became even more inspired and requested permission to use this technique in

a 3D animated short film.

In summary:

• Acceleration skinning is a generic framework with an expandable collection of effects.
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• Its goal is to use kinematic skeletal motion to create aesthetically pleasing deformation through

skinning.

• This method is fast, easy to compute, and works “out of the box” on standard skeletal rigs.

• This method is not intended as a replacement to dynamic simulations, but rather an artist-

driven tool to create stylized secondary motion.

• A case study suggested that the technique could be used in a production environment.

7.2 Limitations

• Like Velocity Skinning, Acceleration Skinning is not physically accurate. This method does

not track the history of motion over time steps, or consider the effects of mass on deformation.

• The method requires a skeletal rig to work. It does not support rigs which use blend shapes.

All of the kinematic terms used as input to the deformation functions are computed based

on the rotational and translational motion of the skeletal joints. If there is no skeleton, the

deformation functions will not have any input to operate with. Hypothetically, a modification

to the method that uses the kinetic motion of individual vertices, rather then the skeletal

hierarchy may be conceived. Such an extension may allow support for blend shapes. However,

in its current state, this method does not work with non-skeletal rigs.

• Any motion applied to a joint will only cause deformation to propagate down the skeletal hier-

archy. The deformation will not propagate up the skeleton. This limitation may hypothetically

be circumvented by dynamically modifying the skeletal hierarchy and considering a single tar-

getted joint as the root. However, as of now, this possibility has not been explored. Hence,

this method fails to model contact effects between the rigged character and other assets. This

is one of the situations where dynamic simulation approaches create far more accurate results.

• Exaggerated motion may lead to self-penetration of different parts of the mesh. As we do not

consider the relative position of vertices, we have no mechanism of tracking self-intersections

(Fig. 7.1).

• Experiments revealed that rotating successive joints in opposite directions may lead to unap-

pealing scaling deformation. This is due to our approach of combining the contribution of each
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Figure 7.1: Fast skeletal motion or exaggerated deformation my lead to self-intersection on parts of
the mesh [32]

Figure 7.2: Rotation of successive joints in opposite directions may cause unnatural scaling arti-
facts [32]

joint motion by using a direct sum (Fig. 7.2).

• The proposed centripetal lift deformer only creates appealing deformations on cones, conical

cylinders, and frustrums. Theoretical approaches to resolving this issue through the use of

mapping systems are discussed in Section 5.3.2.

7.3 Future Extensions

While we chose to create effects that hearken back to traditional animation, we need not

limit ourselves to this restriction. The existing system can be expanded to create any effect. The

desired effect must be mathematically expressed using the kinematic motion of skeletal joints. Then,
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the proposed framework may be used to model the desired deformation as a function of skinning.

One possible future extension may be to model spring motion using this skinning system.

If we re-imagine our drag and followthrough effects in the context of spring motion, we can consider

their combined result as a single oscillation. Drag models half of the oscillation, followtrough models

the other half. Hypothetically, if we were to expand the system to include higher order derivatives,

more number of oscillations could be modeled. We know from definitions that:

p = Displacement

ṗ = Velocity

p̈ = Acceleration

...
p = Jerk

....
p = Jounce (or Pinch)

These kinematic terms could be incorporated to emulate spring motion oscillations as follows:

Displacement p = result of LBS

Velocity ṗ = first half of first oscillation

Acceleration p̈ = second half of first oscillation

Jerk
...
p = first half of second oscillation

Jounce (or pinch)
....
p = second half of second oscillation

Even more higher order derivatives may be computed to yield further oscillations of the

spring as desired. We see that this skinning system is not merely a collection of effects, but a

framework upon which desired effects may be built. From an implementation perspective, we see

from the production evaluation that artists prefer to work within Maya, if possible. Therefore, I

hypothesize that implementing Acceleration Skinning as a plugin for Maya would improve artists’

satisfaction as well as speed up workflow. Having Acceleration Skinning available within Maya

would allow animators to immediately visualize the effects of secondary motion applied on top of

their character animation. If desired, they may even switch back and forth between animating the

primary motion and tuning Acceleration Skinning effects to have the two work hand in hand.

Another possible application lies in employing this technique for use in real-time gaming.
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As Acceleration Skinning works out of the box, it may be applied on top of gaming character

animation. This may be beneficial to automatically add secondary effects to game characters that

use user input. While all of the content and images presented in this thesis have been from CPU

based computation, Velocity Skinning has already been adapted for GPU accelerated computing [32].

All of the deformers presented operate on a per-vertex basis, making them simple to encode in a

vertex shader.

In summary, Acceleration Skinning extends the Velocity Skinning method, tapping further

into its potential, and provides a wider collection of stylized deformations for artists to employ.
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[17] Ladislav Kavan, Steven Collins, Jǐŕı Žára, and Carol O’Sullivan. Geometric skinning with
approximate dual quaternion blending. ACM Transactions on Graphics (TOG), 27(4):1–23,
2008.

[18] Ladislav Kavan and Olga Sorkine. Elasticity-Inspired Deformers for Character Articulation.
ACM Trans. on Graphics. Proc. ACM SIGGRAPH Asia, 31(6), 2012.

[19] Jiyong Kwon and InKwon Lee. Exaggerating Character Motions Using Sub-Joint Hierarchy.
Computer Graphics Forum., 27(6):1677–1686, 2008.

[20] Yunmi Kwon and Kyungha Min. Motion Effects for Dynamic Rendering of Characters. Lecture
Notes in Electrical Engineering, 181:331–338, Jan. 2012.

[21] John Lasseter. Principles of Traditional Animation Applied to 3D Computer Animation. Com-
puter Graphics. Proc. ACM SIGGRAPH, 21(4), 1987.

[22] Binh Huy Le and JP Lewis. Direct Delta Mush Skinning and Variants. ACM Trans. on
Graphics. Proc. ACM SIGGRAPH, 38(4), 2019.

[23] Gene S Lee, Andy Lin, Matt Schiller, Scott Peters, Mark McLaughlin, Frank Hanner, and
Walt Disney Animation Studios. Enhanced dual quaternion skinning for production use. In
SIGGRAPH Talks, pages 9–1, 2013.

[24] Leonard Maltin and Jerry Beck. Of Mice and Magic: A History of American Animated Car-
toons. Plume, 1987.

[25] Joe Mancewicz, Matt L. Derksen, Hans Rijpkema, , and Cyrus A. Wilson. DeltaMush: Smooth-
ing Deformations While Preserving Detail. In DigiPro, 2014.

[26] Sean Mauch. A fast algorithm for computing the closest point and distance transform. 2000.

[27] Russel Merritt and J. B. Kaufman. Walt Disney’s Silly Symphonies. A Companion to the
Classic Cartoon Series. La Cineteca del Friuli, 2006.

[28] Naoya Iwamoto and Hubert P.H. Shum and Longzhi Yang and Shigeo Morishima. Multi-layer
Lattice Model for Real-Time Dynamic Character Deformation. Computer Graphics Forum.
Proc. Pacific Graphics, 34(7), 2015.

[29] Paul Noble and Wen Tang. Automatic Expressive Deformations for Stylizing Motion. In
GRAPHITE, 2006.

[30] Jeffrey A. Okun and Susan Zwerman. The VES Handbook of Visual Effects. Industry Standard
VFX Practices and Procedures. Focal Press, 2010.

[31] Agata Opalach and Steve Maddock. Disney Effects Using Implicit Surfaces. In Workshop on
Animation and Simulation, 1994.

[32] Damien Rohmer, Marco Tarini, Niranjan Kalyanasundaram, Faezeh Moshfeghifar, Marie-Paule
Cani, and Victor Zordan. Velocity Skinning for Real-time Stylized Skeletal Animation. Com-
puter Graphics Forum, 2021.

[33] Frank Thomas and Ollie Johnston. Disney Animation: The Illusion of life. Disney Editions,
1981.
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