
Extending Implicit Skinning with Wrinkles

Fabio Turchet
MPC London, Bournemouth

University, UK
fabio-tu@moving-

picture.com

Oleg Fryazinov
The National Centre for
Computer Animation,

Bournemouth University, UK
ofryazinov@bournemouth.ac.uk

Marco Romeo
MPC London, UK

marco-ro@moving-
picture.com

ABSTRACT

We propose a wrinkle system that takes as input the fields created in
the implicit skinning framework, calculates the angle between their
gradients and builds a scalar angle field. Its gradient resembles
plausible wrinkle directions. The system is procedural and works
as a post process by projecting vertices in a wrinkle field constituted
of convolution surfaces.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Re-
alism - Animation

Keywords
Implicit skinning, convolution surfaces, HRBF, wrinkles simula-
tion

1. INTRODUCTION

Skinning is one of the most important areas in the field of computer
animation and visual effects, where character realism and believ-
ability are essential. A large number of methods exist and are im-
plemented in modern animation systems [6]. One of the recent ad-
vancements in the area which produces quite realistic results is the
Implicit Skinning technique [14]. Unlike other methods which only
use surface (vertices and triangles) data, Implicit Skinning makes
use of implicit fields, in particular Hermite Radial Basis Functions
(HRBF). This helps solving the drawbacks that linear blend skin-
ning and dual quaternion skinning comport: loss of volume, lack of
collisions and unwanted bulging.
During animation, the fields associated to each skeleton bone are
rigidly transformed and the mesh vertices march in the direction of
the gradient of the combined field until they reach the isovalue they
had in rest pose. This allows to better preserve the initial shape and
deal with self collisions in the folding region, either by stopping the
marching at gradient discontinuities or by using a contact operator
[15]. The framework also allows the creation of interesting effects

through the use of gradient-based operators, for example the bulge
in contact which approximates volume preservation. Nevertheless,
to our knowledge important secondary effects such as wrinkling
have not been previously investigated for this technique.

In this paper we propose to extend implicit skinning with wrinkles.
Our technique benefits from the available transformed scalar fields:
from their interaction a vector field that resembles plausible wrinkle
directions is generated, hence creating a hybrid polygonal-implicit
approach.
The main contributions of the paper are:
1) A technique for the creation of wrinkle curves based on the im-
plicit skinning deformation,
2) A large set of parameters to allow users to procedurally tune the
behaviour of the wrinkles and thus obtain the desired result.

2. RELATED WORK

Despite being considered a secondary effect in skin simulation sys-
tems [5], wrinkling as a separate effect attracted the attention of
both academia and industry as an important detail to add realism to
CG characters.

Elastic thin sheets like cloth or skin create wrinkles when com-
pression forces are applied, to preserve material and isometry (the
property of being inextensible) of the rest-pose object.
Current approaches can be categorized in artist-driven, in which
drawn wrinkles maps are blended [7]; procedural based on textures
[8] and physics based, often using a bending energy formulation in
a specialized cloth solver [3].
An accurate way to measure stretching and compression is via the
stretch tensor as presented in [12]. Their work is focused on aug-
menting coarse cloth mesh simulations with fine details as wrinkles
and refine the tessellation in localized areas through adaptivity. The
rest mesh is parametrized to a plane in order for the triangles to have
a common frame of reference and the stretch tensor is calculated as
defined in [13]. This is then diagonalized and its eigenvalues and
eigenvectors give the magnitude and direction of the wrinkle vec-
tor field, respectively. Wrinkles are then generated as convolution
surfaces from this field’s streamlines by growing curves from seeds
with the highest vector magnitude. Our technique follows the same
procedural approach for curves generation but substitutes the stress
field by the gradient of a scalar angle field, without using planar
parametrization.

Recent works on skin in particular make use of physics-based sim-
ulation. In [11] is presented an approach in which thin shells are
embedded in coarser finite element meshes to simulate the wrin-

kling effects of hard skin surrounding soft objects. The key idea
is the use of frequency based position constraints, modeled as dis-
cretized continuous functions, that allow wrinkle formation only at
wavelengths matching physical material properties. The work by
[9] extends this technique by adding multi-layer support for het-
erogeneous materials and creating extremely fine and realistic skin
details trough the use of adaptive meshes, for which normal or dis-
placement maps can be exported.

Wrinkles as part of a larger simulation framework were presented
in Weta’s proprietary Tissue system [2] that uses finite elements
to simulate fascia/fat/skin layers and constraints to solve wrinkling
problems.

3. METHOD

Figure 1: In pink and blue two HRBF fields; angles between their
gradients are shown in yellow.

Our method works in the Implicit Skinning framework [14], as a
post-process following the projection step that brings the vertices
reaching their rest-pose isovalue (0.5 in our implementation). The
following subsections detail the steps to generate plausible wrinkles
for a mesh deformed with the implicit skinning algorithm. The
required inputs are therefore the implicit fields of the segmented
mesh of which we use value and gradient.

3.1 Angle Fields Preparation

At the very core of the technique lies the generation of a discrete
scalar field for each pair of adjacent joints in the skeleton hierarchy.
Let f1 and f2 be two consecutive fields with compact support. Dur-
ing animation of a bending joint chain f1 and f2 will rotate rigidly
towards each other. For each vertex in f1∩ f2 we can then calculate
straightforwardly the angle between the gradients of f1 and f2 as
(see Figure 1):

angle(f1, f2) = arccos
(
∇ f1 ·∇ f2

)
Once an angle field fA is defined, we approximate its gradient with
finite differences by searching in the one-ring neighbours the posi-
tion with minimum value pmin. For a source vertex p the gradient
is then:

∇ fA = pmin− p

In practice, the user can choose to use a version of this field in
which the gradients are biased towards one of the connected edge

(a) Original angle gradient field

(b) Topology-biased gradient field

Figure 2: Angle field generation using one-ring neighbours (a) and
connected vertices (b)

vectors. This helps in some cases to achieve more realistic anisotropic
patterns (see Figure 2). To generate fields less dependent on the
mesh resolution we can also search in ring neighbours of levels
greater than one, which are pre-stored for efficiency.
Considering three hierarchical fields f1, f2 and f3, we allow them
to interoperate in such a way that f1 can create wrinkles with field
f2, but not with f3, child of f2. Being the angle calculation inde-
pendent per each vertex, this step can be parallelized.

3.2 Curves Creation

At each frame every vertex is processed and inserted in a priority
queue based on its angle value. The curve generation algorithm
begins by selecting a seed from the top of the queue (red dots in
Figure 5(f)); starting from it, vertices are added to the curve by
iteratively choosing the next candidate in the one-ring neighbour-
hood N that has edge vector most similar to the gradient of the field
at the source point. Process is repeated for the newly added point.
As in [12] the curve is grown in both directions, with the addition
that for each seed we invert the gradient at that point to grow the
second half of the curve. By indicating with q a candidate neigh-
bour and by e = q− p the edge vector, the next vertex to add to the
curve is calculated as:

pnext = min
q∈N

(arccos
(
e ·∇ fA))

The generated angle field has gradients pointing in plausible wrin-
kles directions because the angles decrease moving further away
from the folding region, where their values are similar to the joint
bending angle.
Every time a new point is added, its Euclidean distance is checked
against all the current curves to enforce the constraint that all of
them must stay at a minimum user-defined distance. The curve
points loop terminates when a point’s angle is under a user-set
threshold or when it ends up outside of the allowed internal re-
gion of the mesh. Due to the fact that for dense meshes the number

of curve points can be high and would negatively influence per-
formance, a resampling of the curve can be performed which in
practice corresponds to a simple pruning.
In order to maintain temporal coherence between consecutive frames,
the active curve list is kept from a frame to another and a curve re-
moved from it if its corresponding seed ends up outside one of the
associated fields (i.e. its isovalue differs from 0.5). Therefore the
curves are not grown again from their associated seed after they are
generated. This is in line with the observation that for human skin
in particular, wrinkles tend to form at the same position for multiple
repetitions of the same movement (fingers are a typical example),
a feature exploited for instance by [4] for their wrinkle likelihood
map generation.

During animation, fields rigidly rotate and interpenetrate one an-
other which causes configurations for which a field (the one asso-
ciated to a finger phalanx for example) happens to be "immersed"
into another field. This becomes problematic because seeds will be
selected from the whole mesh segment and wrinkle would appear
in unwanted regions, like the nail. Therefore, as a precomputation
only the vertices on the same side of the joints’ bending direction
are selected for wrinkle generation. This is done easily by thresh-
olding based on the dot product between the vertex normal and the
up vector of the associated bone’s local rotation frame.

3.3 Wrinkles Field

The curves created as described in section 3.2 are a set of line seg-
ments connecting vertices of the mesh. We transform these seg-
ments into convolution surfaces wi and threshold the sum of their
field contributions:

vwrinkles = ∑
i
(wi)−T

In our method we use convolution surfaces with line segments as
skeletons and Cauchy kernel as a potential function. This surface
for line segment with position vector ai, normalized direction di
and length l has the following closed-form formulation [10]:

wi(x)=
n

2p2(p2 + s2n2)
+

l−n
2p2q2 +

1
2sp3 (atan[

sn
p
]+atan[

s(l−n
p

])

where n = (x− ai) · di, p2 = 1+ s2(|x− ai|2− n2) and q2 = 1+
s2(|x−ai|2 + l2−2ln)

The following default parameters are used for the convolution sur-
face: T = 0.5 and s = 0.85.

The advantage of using convolution surfaces is double: the seg-
ments smoothly blend in and they can be integrated straightfor-
wardly with the existing HRBF fields.
Because we don’t have stretch information per face in our method,
we modulate the radius of each segment by a factor that depends
on the angle magnitude at each curve point. This in general makes
the wrinkle thicker at the center of the field and smoothly narrower
at the edges. For fast value query each segment’s bounding box is
also inserted in a KD-tree.

3.4 Projection

After obtaining vertices positions from the last step of implicit skin-
ning and wrinkle field vwrinkles, we combine the HRBF field and

(a) Original field’s wrinkles

(b) Topology-biased field’s wrinkles

Figure 3: Wrinkles generated from the fields in Figure 2

wrinkles field. Thus, the value vcomb at an arbitrary point pw is:

vcomb(pw) = max(vHRBF (pw)−0.5, vwrinkles(pw))

It can be seen that here we use simple a set-theoretic operation, yet
more complex blend operators can be used as well. We project ver-
tices to this combined field by using Newton iterations (Figure 3).
During projection we do not calculate the collisions using gradient
discontinuities. Instead, to avoid evident mesh interpenetrations,
we reuse the smoothing coefficients generated in the main implicit
skinning step to exclude from the displacement the vertices in the
colliding folding region.

Unfortunately we cannot use the equivalency between the decom-
posed stretch tensor’s eigenvalues and the angles magnitude to ac-
tivate the wrinkles because already in rest-pose the angle values are
not zero and during animation we experienced noisy fluctuations in
the angle field. Therefore, in order to have a smooth appearance
of the wrinkles, the depth of the curve is modulated by the offset
between the current and the rest-pose’s joint activation angles, in a
fashion similar to how a pose-based deformation works. The grad-
ual appearance is achieved by placing the curve vertices initially
under the surface at a distance R corresponding to the radius of the
segment and smoothly moving them upwards in the normal direc-
tion.

For fast preview purposes also a simplified procedure can be ap-
plied. Instead of projecting the vertices to the wrinkles field, a sim-
ple displacement of the vertices corresponding to the curve points
can be executed. However in this case the wrinkles radius is not
controllable and wrinkles appear to be too sharp and uniform.

3.5 Parameters

Our system is procedural and allows the user to control the wrinkles
appearance by tweaking basic parameters (see Figure 4), some of
which are described below.

Figure 4: Plugin Parameters

Wrinkle Radius: the base radius for the convolution surfaces
Direction Threshold: the minimum angle that the gradients at two
consecutive points of curve must form. This parameter helps to
achieve a more organic look and longer wrinkles as it allows the
curves to be more or less straight.
Seed Angle Threshold: the minimum angle that a seed point must
have to be selected. This allows wrinkles to start forming also at
the edges.
Field Threshold: minimum isovalue that a seed vertex must have
to be selected
Angle Threshold: the minimum angle that any curve point must
have; this controls the termination of the curve growth process
Seed Distance: keeps the seeds at a minimum Euclidean distance
Displace Strength: controls how deep the convolution surfaces
stay under the mesh so to modulate bigger or smaller displacements
Ramp Control: a smooth spline that controls how fast and linear
is the wrinkle appearance
Appearance Time: activation time, expressed in frames or joint
angle degrees
Topology Bias: this parameter forces the angle field calculation to
examine only the connected vertices.

4. IMPLEMENTATION

We implemented the method as a C++ Maya 2015 plugin. We store
both value and gradient of the rest-pose HRBF fields as OpenVDB
textures because their evaluation is computationally too expensive
as it requires solving a linear system per frame. This means that
at each frame we don’t recompute the HRBF field but we use the
inverse matrix of the joint transformations to read the value in rest-
pose.
The angle field computation and the vertex projection are multi-
threaded, but could also be implemented on the GPU easily for

example using the Fabric Engine framework [1]. Our code could
be further optimized, but performance highly depends on the num-
ber of iterations in the projection steps which in turn determines
the number of accesses to the textures. On a quad-core Intel Xeon
X3470 machine. for the thumb mesh with 15K vertices, 15 curves
and 4 joints the framerate is ~10fps (including implicit skinning
projection and smoothing).

5. RESULTS

We conducted tests of the technique mainly on cylindrical objects
such as fingers, arms and legs and achieved believable results. Fig-
ure 5 and accompanying video show a detail of the thumb which is
particularly interesting due to various wrinkle patterns of different
sizes. This example uses constant radius and the field used is the
non biased one: note how the curves develop independently of the
mesh connectivity because of the higher degree of freedom in terms
of possible neighbours directions.
Even though our technique doesn’t always produce full wrinkle
curves from one edge to the other of the finger (due to discontinu-
ities or noise in the field), it still creates an organic and believable
look. Note the use of the smoothing coefficients to avoid wrinkle
displacement where vertices collide and the patterns comparable to
a real example (Figure 5 (f)). Moreover, close wrinkles are blend-
ing in quite naturally because of the convolution surfaces formula-
tion. Figure 6 shows comparative results between biased and non
biased fields for the mesh of an arm: the topology-biased field pro-
duces more believable wrinkles.
In some cases unwanted bulges can appear: this is due to curves
which are too short or with too high curvature in some of their seg-
ments. This could be addressed by filtering out these cases from
the final used set. In addition, we noticed that the 3D texture reso-
lution can strongly condition the quality of the angle fields due to
interpolation approximations. In general we achieved better results
using 4 or more ring-neighbours levels, especially for high resolu-
tion meshes; even though this improves the accuracy of the vector
field, it also consequently slows down the system because more
vertices have to be processed.

During animation the technique behaves as expected in terms of
temporal coherence, with wrinkle curves that don’t pop between
frames and slide thanks to the underlying deformation. If the curves
were retraced at each frame from the seeds, the result would be un-
stable and non coherent, mainly because of the differences in two
temporally consecutive fields.
Nevertheless, the behaviour of the technique during animation could
be further improved. Dynamic appearance is still not convincing
enough, in fact the wrinkles appear too suddenly: this could be
improved by tweaking the activation nonlinear curve manually or
deriving it from experiments. Self collisions between the convolu-
tion surfaces (using a bulge-in-contact operator) would also prove
beneficial to the overall fleshy look and dynamism of the deforma-
tion.

6. LIMITATIONS

Despite its potential, the presented technique has some limitations.
For example, being the system time-dependent, finding the right
parameters could require various iterations, something that makes
it close in spirit to a simulation. Nevertheless, the user can always
tweak single frames without rerunning the whole animation; in this

(a) (b) (c)

(d) (e) (f)

Figure 5: (a) Default Dual Quaternion skinning; (b) Implicit Skinning; (c) Angle gradient field (non biased); (d) Seeds and curves; (e)
Wrinkles after projection; (f) Picture of a real thumb

case wrinkles will form following only the field at current frame.
In addition, We also noticed that the quality of the fields tends to
depend on the input shape, something that might limit the technique
to cylindrical limbs and prevent the application to, for instance, face
wrinkles generation.
Finally, a better falloff of the radius per curve would be desirable
as wrinkles should fade away the further they are from the joint.

7. CONCLUSIONS AND FUTURE WORK

In this paper we presented a technique that allows wrinkles creation
within the Implicit Skinning framework. The technique creates
convenient and plausible results even comparable with physically
accurate stretch-based methods. The results show the potential of
the technique for applications within a production pipeline.

As future work we intend to integrate adaptive tessellation using for
example Pixar’s OpenSubdiv. Even though in a production pipeline
is not common to have varying topology, the performance would
benefit by having more detail only where needed, with the option
to export displacement maps for rendering.
It would also be useful to investigate ways to make the convolution
surfaces look less cylindrical and more organic, not restriced only
to circle profiles; for example noise could be added, or segments
with different radius could be layered.
Finally, another interesting future direction inspired by [4] would
be to combine the proceduralism of the method with a trained ap-
proach to learn the space of input parameters for a closer match to
physical appearance of acquired data.

8. REFERENCES
[1] Fabric Engine , 2015,. http://fabricengine.com/.
[2] WETA digital, 2013, tissue system,.

http://www.fxguide.com/fxguidetv/
fxguidetv-166-weta-digitals-tissue-system/.

[3] R. Bridson, S. Marino, and R. Fedkiw. Simulation of
clothing with folds and wrinkles. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 28–36. Eurographics Association, 2003.

[4] C. Cao, D. Bradley, K. Zhou, and T. Beeler. Real-time
high-fidelity facial performance capture. ACM Trans.
Graph., 34(4):46:1–46:9, July 2015.

[5] S. Clutterbuck and J. Jacobs. A physically based approach to
virtual character deformation. In ACM SIGGRAPH 2010:
Talks, 2010.

[6] J. Gain and D. Bechmann. A survey of spatial deformation
from a user-centered perspective. ACM Trans. Graph.,
27(4):107:1–107:21, Nov. 2008.

[7] J. Jimenez, J. I. Echevarria, C. Oat, and D. Gutierrez. GPU
Pro 2, chapter Practical and Realistic Facial Wrinkles
Animation. AK Peters Ltd., 2011.

[8] S. Kimmerle, M. Wacker, and C. Holzer. Multilayered
wrinkle textures from strain.

[9] P. Li and P. G. Kry. Multi-layer skin simulation with adaptive
constraints. In Proceedings of the Seventh International
Conference on Motion in Games, MIG ’14, pages 171–176,
New York, NY, USA, 2014. ACM.

[10] J. McCormack and A. Sherstyuk. Creating and rendering
convolution surfaces. In Computer Graphics Forum,
volume 17, pages 113–120. Wiley Online Library, 1998.

[11] O. Rémillard and P. G. Kry. Embedded thin shells for wrinkle

(a)
(b) (c) (d)

(e)
(f) (g) (h)

Figure 6: Comparison of the results obtained for an arm. (a)-(d) up and down side using topology biased field; (e)-(h) up and down side
using normal, non biased field

simulation. ACM Trans. Graph., 32(4):50:1–50:8, July 2013.
[12] D. Rohmer, T. Popa, M.-P. Cani, S. Hahmann, and

A. Sheffer. Animation wrinkling: Augmenting coarse cloth
simulations with realistic-looking wrinkles. ACM Trans.
Graph., 29(6):157:1–157:8, Dec. 2010.

[13] Y. Talpaert. Tensor Analysis and Continuum Mechanics.
Springer Netherlands, 2010.

[14] R. Vaillant, L. Barthe, G. Guennebaud, M.-P. Cani,
D. Rohmer, B. Wyvill, O. Gourmel, and M. Paulin. Implicit
skinning: Real-time skin deformation with contact modeling.
ACM Trans. Graph., 32(4):125:1–125:12, July 2013.

[15] R. Vaillant, G. Guennebaud, L. Barthe, B. Wyvill, and M.-P.
Cani. Robust iso-surface tracking for interactive character
skinning. ACM Trans. Graph., 33(6):189:1–189:11, Nov.
2014.

