2,655 research outputs found

    A looped-functional approach for robust stability analysis of linear impulsive systems

    Full text link
    A new functional-based approach is developed for the stability analysis of linear impulsive systems. The new method, which introduces looped-functionals, considers non-monotonic Lyapunov functions and leads to LMIs conditions devoid of exponential terms. This allows one to easily formulate dwell-times results, for both certain and uncertain systems. It is also shown that this approach may be applied to a wider class of impulsive systems than existing methods. Some examples, notably on sampled-data systems, illustrate the efficiency of the approach.Comment: 13 pages, 2 figures, Accepted at Systems & Control Letter

    Analysis of A Nonsmooth Optimization Approach to Robust Estimation

    Full text link
    In this paper, we consider the problem of identifying a linear map from measurements which are subject to intermittent and arbitarily large errors. This is a fundamental problem in many estimation-related applications such as fault detection, state estimation in lossy networks, hybrid system identification, robust estimation, etc. The problem is hard because it exhibits some intrinsic combinatorial features. Therefore, obtaining an effective solution necessitates relaxations that are both solvable at a reasonable cost and effective in the sense that they can return the true parameter vector. The current paper discusses a nonsmooth convex optimization approach and provides a new analysis of its behavior. In particular, it is shown that under appropriate conditions on the data, an exact estimate can be recovered from data corrupted by a large (even infinite) number of gross errors.Comment: 17 pages, 9 figure

    Stochastic model predictive control for constrained networked control systems with random time delay

    Get PDF
    In this paper the continuous time stochastic constrained optimal control problem is formulated for the class of networked control systems assuming that time delays follow a discrete-time, finite Markov chain . Polytopic overapproximations of the system's trajectories are employed to produce a polyhedral inner approximation of the non-convex constraint set resulting from imposing the constraints in continuous time. The problem is cast in a Markov jump linear systems (MJLS) framework and a stochastic MPC controller is calculated explicitly, oine, coupling dynamic programming with parametric piecewise quadratic (PWQ) optimization. The calculated control law leads to stochastic stability of the closed loop system, in the mean square sense and respects the state and input constraints in continuous time

    Contributions à la stabilisation des systèmes à commutation affine

    Get PDF
    Cette thèse porte sur la stabilisation des systèmes à commutation dont la commande, le signal de commutation, est échantillonné de manière périodique. Les difficultés liées à cette classe de systèmes non linéaires sont d'abord dues au fait que l'action de contrôle est effectuée aux instants de calcul en sélectionnant le mode de commutation à activer et, ensuite, au problème de fournir une caractérisation précise de l'ensemble vers lequel convergent les solutions du système, c'est-à-dire l'attracteur. Dans cette thèse, les contributions ont pour fil conducteur la réduction du conservatisme fait pendant la définition d'attracteurs, ce qui a mené à garantir la stabilisation du système à un cycle limite. Après une introduction générale où sont présentés le contexte et les principaux résultats de la littérature, le premier chapitre contributif introduit une nouvelle méthode basée sur une nouvelle classe de fonctions de Lyapunov contrôlées qui fournit une caractérisation plus précise des ensembles invariants pour les systèmes en boucle fermée. La contribution présentée comme un problème d'optimisation non convexe et faisant référence à une condition de Lyapunov-Metzler apparaît comme un résultat préliminaire et une étape clé pour les chapitres à suivre. La deuxième partie traite de la stabilisation des systèmes affines commutés vers des cycles limites. Après avoir présenté quelques préliminaires sur les cycles limites hybrides et les notions dérivées telles que les cycles au Chapitre 3, les lois de commutation stabilisantes sont introduites dans le Chapitre 4. Une approche par fonctions de Lyapunov contrôlées et une stratégie de min-switching sont utilisées pour garantir que les solutions du système nominal en boucle fermée convergent vers un cycle limite. Les conditions du théorème sont exprimées en termes d'Inégalités Matricielles Linéaires (dont l'abréviation anglaise est LMI) simples, dont les conditions nécessaires sous-jacentes relâchent les conditions habituelles dans cette littérature. Cette méthode est étendue au cas des systèmes incertains dans le Chapitre 5, pour lesquels la notion de cycles limites doit être adaptée. Enfin, le cas des systèmes dynamiques hybrides est exploré au Chapitre 6 et les attracteurs ne sont plus caractérisés par des régions éventuellement disjointes mais par des trajectoires fermées et isolées en temps continu. Tout au long de la thèse, les résultats théoriques sont évalués sur des exemples académiques et démontrent le potentiel de la méthode par rapport à la littérature récente sur le sujet.This thesis deals with the stabilization of switched affine systems with a periodic sampled-data switching control. The particularities of this class of nonlinear systems are first related to the fact that the control action is performed at the computation times by selecting the switching mode to be activated and, second, to the problem of providing an accurate characterization of the set where the solutions to the system converge to, i.e. the attractors. The contributions reported in this thesis have as common thread to reduce the conservatism made in the characterization of attractors, leading to guarantee the stabilization of the system at a limit cycle. After a brief introduction presenting the context and some main results, the first contributive chapter introduced a new method based on a new class of control Lyapunov functions that provides a more accurate characterization of the invariant set for a closed-loop system. The contribution presented as a nonconvex optimization problem and referring to a Lyapunov-Metzler condition appears to be a preliminary result and the milestone of the forthcoming chapters. The second part deals with the stabilization of switched affine systems to limit cycles. After presenting some preliminaries on hybrid limit cycles and derived notions such as cycles in Chapter 3, stabilizing switching control laws are developed in Chapter 4. A control Lyapunov approach and a min-switching strategy are used to guarantee that the solutions to a nominal closed-loop system converge to a limit cycle. The conditions of the theorem are expressed in terms of simple linear matrix inequalities (LMI), whose underlying necessary conditions relax the usual one in this literature. This method is then extended to the case of uncertain systems in Chapter 5, for which the notion of limit cycle needs to be adapted. Finally, the hybrid dynamical system framework is explored in Chapter 6 and the attractors are no longer characterized by possibly disjoint regions but as continuous-time closed and isolated trajectory. All along the dissertation, the theoretical results are evaluated on academic examples and demonstrate the potential of the method over the recent literature on this subject

    Time-triggered and event-triggered control of switched affine systems via a hybrid dynamical approach

    Get PDF
    This paper focuses on the design of both periodic time- and event-triggered control laws of switched affine systems using a hybrid dynamical system approach. The novelties of this paper rely on the hybrid dynamical representation of this class of systems and on a free-matrix min-projection control, which relaxes the structure of the usual Lyapunov matrix-based min-projection control. This contribution also presents an extension of the usual periodic time-triggered implementation to the event-triggered one, where the control input updates are permitted only when a particular event is detected. Together with the definition of an appropriate optimization problem, a stabilization result is formulated to ensure the uniform global asymptotic stability of an attractor for both types of controllers, which is a neighborhood of the desired operating point. Finally, the proposed method is evaluated through a numerical example.Agence Nationale de la Recherche (ANR)France Grant ANR-18-CE40-0022-01Agencia Estatal de InvestigaciĂłn (AEI)-Spain Grant PID2019-105890RJ-10

    Nondeterministic hybrid dynamical systems

    Get PDF
    This thesis is concerned with the analysis, control and identification of hybrid dynamical systems. The main focus is on a particular class of hybrid systems consisting of linear subsystems. The discrete dynamic, i.e., the change between subsystems, is unknown or nondeterministic and cannot be influenced, i.e. controlled, directly. However changes in the discrete dynamic can be detected immediately, such that the current dynamic (subsystem) is known. In order to motivate the study of hybrid systems and show the merits of hybrid control theory, an example is given. It is shown that real world systems like Anti Locking Brakes (ABS) are naturally modelled by such a class of linear hybrids systems. It is shown that purely continuous feedback is not suitable since it cannot achieve maximum braking performance. A hybrid control strategy, which overcomes this problem, is presented. For this class of linear hybrid system with unknown discrete dynamic, a framework for robust control is established. The analysis methodology developed gives a robustness radius such that the stability under parameter variations can be analysed. The controller synthesis procedure is illustrated in a practical example where the control for an active suspension of a car is designed. Optimal control for this class of hybrid system is introduced. It is shows how a control law is obtained which minimises a quadratic performance index. The synthesis procedure is stated in terms of a convex optimisation problem using linear matrix inequalities (LMI). The solution of the LMI not only returns the controller but also the performance bound. Since the proposed controller structures require knowledge of the continuous state, an observer design is proposed. It is shown that the estimation error converges quadratically while minimising the covariance of the estimation error. This is similar to the Kalman filter for discrete or continuous time systems. Further, we show that the synthesis of the observer can be cast into an LMI, which conveniently solves the synthesis problem
    • …
    corecore