390,625 research outputs found

    New heuristic-based design of robust power system stabilizers

    No full text
    This paper proposes a new robust design of power system stabilizers (PSSs) in a multimachine power system using a heuristic optimization method. The structure of each PSS used is similar to that of a conventional lead/lag stabilizer. The proposed design regards a multimachine power system with PSSs as a multi-input multi-output (MIMO) control system. Additionally, a multiplicative uncertainty model is taken into account in the power system representation. Accordingly, the robust stability margin can be guaranteed by a multiplicative stability margin (MSM). The presented method utilizes the MSM as the design specification for robust stability. To acquire the control parameters of PSSs, a control design in MIMO system is formulated as an optimization problem. In the selection of objective function, not only disturbance attenuation performance but also robust stability indices are considered. Subsequently, the hybrid tabu search and evolutionary programming (hybrid TS/EP) is employed to search for the optimal parameters. The significant effects of designed PSSs are investigated under several system operating conditions

    Development of a variance prioritized multiresponse robust design framework for quality improvement

    Get PDF
    Robust design is a well-known quality improvement method that focuses on building quality into the design of products and services. Yet, most well established robust design models only consider a single performance measure and their prioritization schemes do not always address the inherent goal of robust design. This paper aims to propose a new robust design method for multiple quality characteristics where the goal is to first reduce the variability of the system under investigation and then attempt to locate the mean at the desired target value. The paper investigates the use of a response surface approach and a sequential optimization strategy to create a flexible and structured method for modeling multiresponse problems in the context of robust design. Nonlinear programming is used as an optimization tool. The proposed methodology is demonstrated through a numerical example. The results obtained from this example are compared to that of the traditional robust design method. For comparison purposes, the traditional robust design optimization models are reformulated within the nonlinear programming framework developed here. The proposed methodology provides enhanced optimal robust design solutions consistently. This paper is perhaps the first study on the prioritized response robust design with the consideration of multiple quality characteristics. The findings and key observations of this paper will be of significant value to the quality and reliability engineering/management community

    Design optimization for cost and quality: The robust design approach

    Get PDF
    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process

    A robust design methodology suitable for application to one-off products

    Get PDF
    Robust design is an activity of fundamental importance when designing large, complex, one-off engineering products. Work is described which is concerned with the application of the theory of design of experiments and stochastic optimization methods to explore and optimize at the concept design stage. The discussion begins with a description of state-of-the-art stochastic techniques and their application to robust design. The content then focuses on a generic methodology which is capable of manipulating design algorithms that can be used to describe a design concept. An example is presented, demonstrating the use of the system for the robust design of a catamaran with respect to seakeeping

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Integrated optimal design and sensitivity analysis of a stand alone wind turbine system with storage for rural electrification

    Get PDF
    In this paper, the authors investigate a robust Integrated Optimal Design (IOD) devoted to a passive wind turbine system with electrochemical storage bank: this stand alone system is dedicated to rural electrification. The aim of the IOD is to find the optimal combination and sizing among a set of system components that fulfils system requirements with the lowest system Total Cost of Ownership (TCO). The passive wind system associated with the storage bank interacts with wind speed and load cycles. A set of passive wind turbines spread on a convenient power range (2 – 16 kW) are obtained through an IOD process at the device level detailed in previous papers. The system cost model is based on data sheets for the wind turbines and related to battery cycles for the storage bank. From the range of wind turbines, a “system level” optimization problem is stated and solved using an exhaustive search. The optimization results are finally exposed and discussed through a sensitivity analysis in order to extract the most robust solution versus environmental data variations among a set of good solutions

    The use of singular value gradients and optimization techniques to design robust controllers for multiloop systems

    Get PDF
    A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system

    Robust Optimization Design of Bolt-Shotcrete Support Structure in Tunnel

    Get PDF
    The uncertainty of rock and soil parameters is one of the key problems to limit the stability of tunnel support structure. Based on this, a robust optimization design method is proposed to reduce the sensitivity of support system to the uncertainty of rock and soil parameters. By defining the design parameters, noise factors and system response, a robust design system for bolt-shotcrete support structure is established. The non-dominant solutions of system robustness and support cost consist of the Pareto Front, then an knee point recognition method is designed to further filter all non-dominant solutions and determine the only optimal solution. The robust optimization design of the bolt-shotcrete support structure is carried out with a tunnel as the engineering background. The results show that the method can not only improve the stability and adaptability of the supporting structure, but also reduce the economic cost to the greatest extent, which provides a reference for the optimization design of other geotechnical engineering supporting structures
    corecore