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Abstract

A method for designing robust feedback
controllers for multiloop systems is presented.
Robustness is characterized in terms of the
minimum singular value of the system return
difference matrix at the plant input. Analytical
gradients of the singular values with respect to
design variables in the controller are derived. A
cumulative measure of the singular values and
their gradients with respect to the design
variables is used with a numerical optimization
technique to increase the system's robustness.
Both unconstrained and constrained optimization
techniques are evaluated. Numerical results are
presented for a two-input/two-output drone flight
control system.
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A,B,C,D
A,B,T

controller matrices

augmented system matrices
decibel
H plant
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s matrices
plant transfer matrix
cumulative constraint
jdentity matrix

return difference matrix
}g*pctive function

I14KG]

controller transfer matrix
nth loop gain in L matrix
dfagonal gafn and phase change matrix
order of controller
order of plant, input, and
output
element of controller quadruple
reference input
Laplace variable
plant input vector
left and right eigenvectors
plant state vector
¢ controller state vector

plant output vector
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8 sideslip angle (deg)

6182 etevon and rudder deflections
(deg)

an nth singular value

0,0 maximum and minimum singular value

SM»9D global minimum and desired
singular value )

én ath loop phase in L matrix

¢ 16 roll angle and rate (deg/sec)

Vv yaw angle and rate (deg/sec)

w frequency (rad/sec)

[]* complex conjugate transpose of [ ]

. represents time derivative of ( )

trl ] trace of a square matrix [ ]

Introduction

A well-designed feedback control system
should provide stability robustness with respect
to plant uncertainty. For single-input/single-
output systems, the classical concepts of gain and
phase margins are employed as measures of system
robustness. In multiloop systems, these classical
single-loop measures may not always provide a good
measure of system robustness. Recently, matrix
singular value properties of a multiloop system's
return difference matrix have been proposed as a
measure of system robustness (1-4). Several
authors have even related the singular values of
the return difference matrix to multiloop gain and
phase margins (3-4).

The majority of the effort to date has
focused on singular values as analysis tools.
Only a small amount of effort has been focused on
the use of singular values for control law
synthesis (5-7). Stein (5) discusses the
frequency domain interpretation of the linear
quadratic Gaussian (LQG) based design in terms of
singular values. He shows how the LQG methodology
can be used to design feedback controllers which
satisfy design requirements expressed as singular
value conditions. Safonov and Chen (7) discuss a
procedure for maximizing singular values for
stability margin optimization. The purpose of
this paper is to introduce a new design method
which employs a numerical optimization technique
to search for the controller design variables that
increase the minimum singular value of the system
return difference matrix. The singular value

WY = ) S5

o



gradients required in the optimization schemes are
derived analytically. Numerical results are
computed for a two-input/two-output system which
represents an experimental drone afrcraft with a
lateral attitude control system (8).

System Description

Let the multiloop feedback system shown in
figure 1 be described by a set of constant
coefficient differential equations of the form

Plant
X = Fx + Gyu (1)
z = Hx (2)
Controller
Xc = Axc + Bz (3)
u = Cxc + Dz (4)

Equation (1) represents an Ng order plant having
No output measurements, z, modeled by equation
(8) and Nc control 1inputs, u. Equations (3) and
(4) represent an Mth order feedback controller
driven by the sensor output z. In terms of a
transfer function matrix, the plant and the
controller are

z = [H(Is-F)-16,Ju = G(s)u (5)
u = [C(Is-A)"2B + DIz T -K(s)z (6)
respectively.

Assuming the closed-loop system to be stable,
the robustness of the nominal system at the plant
input can be examined by computing o (I1+KG) as a
function of frequency (s=ju) and usTng the
guaranteed stability criterion

g (L-1-1) < o(1+KG) (7)

at all frequencies (3). In this paper, the matrix
L is a diagonal gain and phase change matrix at
the input of the plant as shown in figure 1.

L = Diag [ kpeJén]

The matrix L is the identity matrix for the
nominal system and it can be shown that

F(L-1-1) = /(1-1/k)2 + 2/kp(1-cose ) (8)
max )
n
) n-1.2....Nc

Equation (8) is plotted in figure 2 with k, and
¢n as parameters. This figure can be used to
determine the gain margins for a particular phase
margin for simuitaneous changes of both gain and
phase in all input channels (4).

Singular Value Gradient.Derivation

In order to perform the optimization, it is
necessary to determine the gradients of the
singular value g (I+KG) with respect to elements 1in
the controller quadruple matrices A,B,C, and D.
Let the parameter p represent one of the elements
of the controller matrices which are the design
variables. It was shown in reference 4 that for a
distinct singular value o of a complex matrix
(I+KG), the gradient with respect to a real
parameter p 1s given by

1+KG a (I+KG
a_oﬂi—_)— = Re [Un* ( )vn] (9)
ap p

where v and u are respectively right and left
normalized efgenvectors of (I+KG). (For repeated
eigenvalues see reference 9 for the corresponding
"Gateaux differential" expressions.)

It can be shown that

14KG
i:ff_:f_l = Re [ﬁ(IsJK)'lﬁ(vnun*)
apT
[-LT(1s-R)-1T]) (10)
(No+M)x(Nc+M)
where -
3 .[‘3%.?] " [Ti‘f]
BIA 0;1
(Nc+M)X(No+") (No+M)x (Ng+M)
X - [”0] : [(.;‘3]
BH) A 0
(Ng+M)x (Ng+M) (Ng+M)xN
T = [-DH}-C) T= [0]
! 1

Nex(Ng+M) (Ng+M)xM'

.



To derive the matrix quation (10), define p
as an element of the matrix P. Then the scalar
equation (9) can be written as

207 (14KG) , pe, g 2(ISTOB)

S _ *
= Re » tr[{3C/3peB+CeaB/op+CeaA/apeBlv u 1 (11)
where ¢ =(1s-A)-1, Note that
3B/ap = 0

and

T - 1)ff
B = F+ 1,80 (12)

v 3

(Ns+M)x(Nc+M)

where
h=[-1i0]
Nex(Nc+M)
F10
-3l
0:0
(Ng+M)x (Ng+M)

Equation (11) can be written as

20, (14XG) 2 (1,P) a (T8 .
L aRetr S AR HoBvnup*
ap ap ap

(13)

Using the matrix trace properties Re tr(A)aRe
tr(A*), a matrix relation for the gradients with
respect to all of the elements of P can be written
as '

adn(I+KG)

_ *
55— = Rel{ 174 (G0 Bp)*} { eBuup*) (14)
(Nc+M)x (Ng+M)

The complex conjugate transpose of equation (14)
gives equation (10). The gradient expressions for
the matrices (I+KG)-1, KG, KG(I+KG)-! can be
obtained in the same manner and are given in the
Appendix. Two additional computations are
involved in computing singular value gradients at
each frequency point. The first computation {s
the solution of a set of (Ng + M) simultaneous
equations and is relatively inexpensive since the

matrix A is already available in upper Hessenberg
form (10) from the computation of the singular
values. The second is the computation of the
eigenvectors and generally involves a low-order
complex matrix.

Optimization Schemes

Let us assume that the minimum over the
frequency domain of the singular value o (I+KG) of
a stable system is gy. It is desired to
increase gy to a desired value op as
1llustrated in figure 3. An increased gy
results in better gain and phase margins of the
system as shown in equation (7) and figure 2.
Optimization schemes to achieve this objective
using the gradient information of equation (10)
are described next.

Unconstrained Minimization Approach

In the unconstrained minimization approach, a
single objective function J is minimized by
changing the design variables p. Since o (I+KG)
is less than gp over a range of frequencies
instead of at a single point, all of the
violations where ¢(I+KG)< op are represented by
a single cumulative measure J.

J(p) -21 (Max{ 0,[ap-0 (Jui.p)]} )2 (15)

The summation 1s taken over a large number of
frequency points where both the choice of the
frequency range and spacing of the frequency
points in a frequency range are left to the
designer. A geometric description of the
cumulative objective function is shown in figure
3. The objective is to minimize (preferably
reduce to zero) the shaded area below the gp

line. A conjugate gradient algorithm (11) is used
to search for the controller design variables p
which minimize J without allowing ¢ to go near
zero during the search process. Not allowing ¢ to
go near zero is particularly important to avoid
destabilizing the system during the linear search
process, especially when o has sharp drops at
specific frequencies. The method is expected to
work when g and 3g/3p variations with frequency
are not too large over small frequency ranges. If
J can be reduced to zero, then the minimum
singular value reaches gp or higher.

Constrained Minimization Approach

In the constrained minimization approach, an
objective function J is minimized with respect to
the design variables p subject to the inequality
constraint g<0. In this approach the cumulative
measure of all of the violations o (I+KG)< op is
treated as the constraint (12). The objective
function J and the constraint g are defined as



J(p) = 1/2 tr[CTcC) (16)

9(p) =1 (Max{0,[9p-c(duy,p)]} )2 (17)
i

The choice of J in equation (16) is desirable
since a lower C is reflected in lower control
activity. Other choices of J are possible., In
equation (17), the summation is taken over a large
number of frequency points as before. A geometric
description of the cumulative constraint is shown
in figure 3. The objective is to reduce the
shaded area to zero by satisfying the inequality
constraint g<0. Although the present paper is
confined to a single constraint, additional
constraints on responses and singular value bounds
at other points in the loop can be considered for
an overall design., The method of feasible
directions (11) is used to search for the
controller design variables p which minimize J
subject to g<0. The method uses the objective
function and constraint gradient information to
determine a parameter move direction and a scalar
multiplier in the usable-feasible direction to
satisfy all constraints. When the constraint
condition is satisfied, then g<0 which implies
o>sp for all wy from the definftion of g in
equation (17).

Numerical Results

Numerical results are presented for a two-
input/two-output system which represents a drone
aircraft with a lateral attitude control system
(4 and 8). A nominal controller is available for
comparison. The present method is used to
increase the robustness by redesigning the nominal
controller, A block diagram of the drone lateral
attitude control system is shown in figure 4
(8). The plant state vector x is defined as

x=[83¥0es1/2062]T7

The plant matrices F, Gy, and H as defined in
equations (1) and (2) are given in table 1. The
nominal controller matrices A,B,C, and D as
defined in equations (3) and (4) are given in
table 2. The eigenvalues of the nominal open-icop
and closed-loop system are given in table 3, The
etgenvalue at A = 0,1889 ¢+ j1,051 results in an
unstable dutch roll mode. The elements of the
input vector are the elevon and rudder actuator
commands, respectively. All gain and phase
changes are considered at the points X in figure
4, The minimum singular value of the return
difference matrix (I+KG) over the operating
frequency range is plotted in figure 5 for the
nominal system. The minimum singular value is
constant at 0,35 over low frequencies, then drops
to its lowest value of 0.25 near 1.2 radians/sec
which is close to the frequency of the unstable
open-loop pole, The minimum singular value
approaches unity asymptotically as KG attenuates
at higher frequencies. Using the stability
condition given in equation (7), the stability is

guaranteed if g (L-1-1) < 0.25. This can be
interpreted in terms of gain and phase margins

using figure 2. The guaranteed simultaneous gain
margins are -2.0 d8 and 2.5 d8 (] = °§ = 0),

The simultaneous phase margins are £15°% (k| =

ko = 0 dB). '

Figures 6a and 6b show the gradients of
o (I+KG) with respect to the nominal controller
parameters ajj, a22,...d22. The
location of these parameters in the block diagram
fs shown in figure 4. The elements by; and
bzf do not show up in figure 4 since téeir unity
values are embedded in the controller structure.
The gradients with respect to cj) and djj are
quite large. The gradients with respect to other
diagonal elements ajj, azp, €22, dpz,
etc, are relatively sma]?. These gradients
attenuate to zero before 10 rad/sec except for the
one with respect to dyj which attenuates at 30
rad/sec. It may be noted that although the off-
diagonal elements are zero, the singular value
gradients with respect to them are quite large.

Results of unconstrained minimization (Design
1). Unconstrained minimizatTon is performed using
€11 and dpp as the design parameters. The
desired m%nimum singular value gp 1s 0.6. The
equality relatfons dj; = 0 and cpp = app .
dpp are maintained to satisfy the 1/s and
s;%s+2) structure of the nominal control law.
Hence the design parameters are basically
proportional to gains in each loop. Although the
convergence pattern of both the objective function
and the design variables are not shown, the
objective function reduces to zero in one
fteration and the values of cpp and dpp are
0.13 and 9.69, respectively. Note that ¢ 2 =
-2dgp = -19.38. The singular value plot ?s
shown in figure 7 as design 1. The minimum
singular value oy is 0.6 as desired. The price
paid for the higher value of oy is the loss of
rapid attenuation at higher frequencies. With
%M = 0.6, the guaranteed gain margins are -4.1

B and 8.0 dB and the phase margins are t35°,

This reflects substantial improvement over the
nominal stability margins. The efgenvalues of the
closed-loop system are given in table 3, .

Results of constrained minimization (Design

2). Text the same problem s solved using the
constrained optimization approach defined as
design 2. The desired minimum singular value ap
1s again 0.6. The objective function is chosen as
defined by equation (16). The convergence pattern
for design 2 is shown in figure 8. The J and g
are normalized by their starting value J, and
gg» respectively. The constraint f{s sat?sfied
in three iterations but at the cost of increased
J. The values of c; agd dpp after five
iterations are 2.08x{0' and 5.91, respectively.
The corresponding singular value plot is shown in
figure 7 as design 2, The minimum singular value
%M‘ 0.68. The loss of attenuation at higher

requencies is much less as compared to destgn 1,
probably because the algorithm tries to minimize
the growth of 0.5(c112 + c222) as well.
The efgenvalues of the closed-loop system are
given in table 3.




As a general rule, an increase in robustness
is accompanied by degraded response and increased
control activity. This effect is examined from
time response plots of the closed-loop system
using the nominal, design 1, and design 2
controllers presented in figures 9a through 9e.
The input is a unit ramp-hold elevon command which
rises linearly from 0 to 1 in 0.4 seconds as shown
in figure 9a. The sideslip 8 response is shown in
figure 9b. The increase in sideslip from the
nominal are roughly four times for design 1 and
twice for design 2. Figures 9c and 9d show that
the roll and yaw rates are 10 to 20% lower than
nominal. The elevon activity increases by 25% for
design 1 and 10% for design 2. The increase in
rudder activity is roughly three times for design
1 and twice for design 2 with large inftial
overshoot.

Conclusions

A method for designing feedback controllers
to increase the robustness of multiloop systems
has been presented. Gradients of the singular
values of the return difference matrix with
respect to design variables in the controller were
derived analytically. A cumulative measure of the
singular values and their gradients was used with
a numerical optimization algorithm to increase the
system's robustness.

A numerical example was given to illustrate
the method. For the example, a nominal controller
was available. The present method was used to
design a new controller which provided increased
robustness. The global minimum singular value was
fncreased substantially using both the
unconstrained optimization approach and the
constrained optimization approach. For both of
these cases, the time response of the system using
these controllers was degraded. Some high
frequency attenuation was lost. For a better
overall design, more constraints need to be added.
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Appendix

The singular value gradients of some useful
gatrices with respect to the controller quadruple
is presented fn this appendix. The left and
right eigenvectors u, and v, in each expres-

sion belong to the singular value of that
particular matrix.

30p(14KG) "1

S

= e[ Mo Bvpuq*{ -(1+K6) (A.1)

T 1]

aon(KG)

- Re[ foBvpun* -1i TeT]] (A.2)
]



30, (KG(I+KG)-1

3§T

Toa 1]

where ¢4 = (Ig-A + B T)-1

= Re[ flo Bvpun*( -(I+KG)'1E

(A.3)

(A.4)

The gradient expression for g (6K) etc. at the

output can be derived similarly starting from
equation 9.

Table 1 Plant matrices F, Gy, and H for drone
lateral attitude control system

[ -.08527  -0.0001423  -0.99%
-26.86 -2.75 0.38%
-0.4248  -0.06224  -0.06714
0 1 0
0 0 0
L o 0 0
0 0
0 0
0 0 o 1 0
0 0 "= l:o 0.07
1 o .
o 1

0.04142 0 0.1862
0 143 186 |
0 8792 2086 | |
0 0 0 '
0 -20.0 0

0 0 -20.0

Table 2 Controller quadruple matrices A, B, C, and
D for drone lateral attitude control

system

0
A=

:
c 1.0

0

o}
0
-4.116

|

i

Table 3 Eigenvalues of drone lateral attitude
control system

CLOSED LOOP
MODE OPEN LOOP

NOMINAL DESIGN-1 DESIGN-2

1 -0.03701 -0.6511 -0.0386 -0.01%99
2,3 | 01889 j1.051 | -0.2553 ¢ j1.187 | -0.643 = j 0.823] -0.533 + } 0.959

4 -3.5 -2.60 -6.225 ¢ J2.382 1 -3.866 £ | 2.276
5 -20.0 -18.70 -11.11 -16.08
6 -20.0 -20.15 -20.02 -20.00
7 0 0 0
8 -2.261

———————— T
-Clis-Arlp -—«TH—
+ |
|
-0} !
________ -
CONTROLLER

Fig. 1 Block diagram of a multiloop system.
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control system.
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Fig. 8 Convergence pattern of constrained
minimization (Design 2).
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