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Abstract 

Purpose – Robust design is a well-known quality improvement method that focuses on building 

quality into the design of products and services. Yet, most well established robust design models 

only consider a single performance measure and their prioritization schemes do not always 

address the inherent goal of robust design. In this paper, we propose a new robust design method 

for multiple quality characteristics where the goal is to first reduce the variability of the system 

under investigation and then attempt to locate the mean at the desired target value. 

 

Design/methodology/approach – In this paper, we investigate the use of a response surface 

approach and a sequential optimization strategy to create a flexible and structured method for 

modeling multiresponse problems in the context of robust design. Nonlinear programming is 

used as an optimization tool. 

 

Findings – Our proposed methodology is demonstrated through a numerical example and the 

results are compared to that of the traditional robust design method. The proposed methodology 

provides enhanced optimal robust design solutions consistently.  

 

Originality/value – This paper is perhaps the first study on the prioritized response robust 

design with the consideration of multiple quality characteristics. The findings and key 

observations of this paper will be of significant values to the quality and reliability 

engineering/management community.   

 

Keywords Quality, robust design, multiresponse problems 
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Introduction 

In today’s industrial production environment, it is essential that companies create and retain a 

competitive advantage over their competitors with respect to quality in order to be successful. 

The robust design (RD) methodology, first developed by Taguchi (1986, 1987), is important to 

industrial quality improvement initiatives. This approach focuses on building quality into the 

design of products and services though the determination of the optimum operating conditions in 

order to minimize performance variability and deviation from the target value of interest (i.e. 

process bias). Since it was first introduced, this approach has come under serious criticism due to 

the statistical analysis methods and optimization approaches utilized. In his method of RD, 

Taguchi advocates minimizing signal-to-noise ratios to determine the best overall combination of 

design parameter settings and identifying adjustment factors, which are used to adjust the mean 

to the desired target value. Yet, Nair and Shoemaker (1990) argue that by simply collapsing 

experimental data into signal-to-noise ratios much of the information concerning the system’s 

behavior is lost. Additionally, Taguchi gives no real justification for the use of these ratios, and 

the details surrounding the use of adjustment factors to achieve the target value of interest are 

sketchy at best. To address these issues, there have been several attempts in the literature to 

improve the analysis and optimization phases of the RD methodology.  

Several RD optimization models that are relevant to the work presented here are based on   

the dual response approach, which was first considered by Myers and Carter (1973). Here, the 

process mean and variance of a single quality characteristic are modeled separately using 

response surfaces. These functions are then optimized simultaneously to determine the system’s 

optimum operating parameters. The first attempt to combine this type of optimization model 

within the RD methodology was developed by Vining and Myers (1990). As an extension to this 
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dual response approach to RD, Lin and Tu (1995) proposed the mean-squared error (MSE) 

model. This approach relaxed the zero-bias assumption of the previous model to provide 

solutions that are better (or at least equal), in terms of the variance achieved, through a more 

flexible optimization model. Lin and Tu (1995) further suggested assigning different weights to 

process bias and variability as a way of prioritizing the optimization procedure. Along these 

lines, Park and Cho (2003), Shin and Cho (2005), and Cho and Park (2005) considered more 

complex RD systems from the viewpoints of non-normal data, process oriented modeling, and 

unbalanced design space, respectively, Finally, Kovach and Cho (2006) and Lee et al. (2007) 

developed RD models for unbalanced data structures and irregular experimental situations, 

respectively.  

The RD optimization models discussed thus far may be considered multiresponse 

approaches because they simultaneously optimize the response models for both the process mean 

and variance. These approaches, however, only consider the response models for the process 

mean and variance for a single performance measure. Yet, customer judge products on multiple 

scales simultaneously. Further, the prioritization scheme of these optimization models do not 

always address the inherent goal of RD. Taguchi (1986, 1987) believed it was vital to quality 

improvement efforts to not simply focus on adjusting the process mean to the desired target 

value. He felt strongly that it was also critical to reduce the variability of the process around the 

mean. Therefore, when optimizing a system, RD should consider multiple quality characteristics 

simultaneously and place top priority on minimizing process variability. In this paper, we 

propose a new approach to the multiresponse RD problem to address these issues, called 

variance-prioritized multiresponse robust design (VPMRD). In this approach, the optimization 

phase of RD is formulated as a nonlinear goal programming problem where the prioritization 
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scheme is specified using a preemptive optimization procedure. Through a numerical example, 

we demonstrate the use of this methodology to determine the optimum operating conditions for 

the system under investigation based on experimentation and system modeling.  

In the next section, we describe our proposed methodology in detail. Then, an example is 

used to demonstrate the practical implementation of our proposed approach. Next, a comparison 

study is conducted to validate the proposed model. Finally, we discuss conclusions concerning 

the practical implications of the proposed approach. 

 

The proposed methodology 

While there are several optimization models that can be employed within the RD methodology, 

few consider the inherent goal of RD. Recall that Taguchi’s quality philosophy suggests that 

quality improvement efforts should not simply focus on the mean; it also involves the variability 

around the mean. Yet, well-established optimization approaches, including the dual response 

(Vining and Myers, 1990) and MSE models (Lin and Tu, 1995), may have failed to place top 

priority on minimizing the variance. Therefore, we propose a new method of RD that creates a 

structured, yet flexible modeling approach for multiresponse RD problems where the goal is to 

first reduce the variability of the system under investigation and then attempt to reduce the 

process bias. In this new approach, we utilize nonlinear goal programming techniques [3] to 

determine the system’s optimum operating conditions based on response surface models of the 

system derived though experimentation and analysis.  

The methodology proposed in this paper is shown in Figure 1, which consists of first 

determining the problem to be considered and choosing the responses of interest, as well as the 

design factors, to be included in the investigation. This information is then used to create the 
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appropriate experimental design, and the experiment is carried out according to plan. Next, data 

collected from the experiment are analyzed using the least squares method of regression analysis. 

Based on these results, response surface models for the mean and variance of each response are 

created. Finally, the proposed VPMRD model is used to simultaneously optimize the responses 

to obtain the settings for the design parameters that make the system under investigation perform 

optimally relative to minimizing the process’ variance and bias. 

[Figure 1 Approximately Here] 

Planning 

In an RD study, the determination of the quality characteristics of interest is strongly related to 

the nature of the problem being investigated. Similarly, the choice of experimental parameters is 

often derived from the responses under investigation using prior engineering knowledge 

concerning the system being studied. In many situations, however, practitioners may not have 

sufficient experience to effectively choose the appropriate experimental parameters. Therefore, 

the alternative is to collect data relative to potential experimental factors and then use 

multivariate studies, correlation analysis, and/or screening experiments to determine the specific 

factors to consider in an RD investigation. 

 

Experimentation 

In designing an experiment, there are many standard approaches from which to choose. These 

include, but are not limited to, factorial designs, Taguchi designs, and response surface designs. 

The key, therefore, is to choose the design that best addresses the experimental question and 

supports the desired data analysis given the available resources (i.e. time and experimental 

budget). The size of the experiment is determined in part by the number of factors included, the 
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number of levels of each factor to be tested, and the number of replications planned. The results 

obtained form the experiment provides the information necessary to create response surface 

models that describe the behavior of the system under investigation. 

 

System modeling 

To create response surface models for the mean and variance of each quality characteristic under 

investigation, we utilize the least squares method of regression analysis. Using this approach, 

consider that each of the n treatment combinations in an experiment consists of r replicates. For 

each response of interest, let yuj represent the j
th

 response at the u
th

 treatment where 

1 2j , , , r= K  and 1 2u , , , n= K . Then, for each quality characteristic, the mean and variance for 

the u
th

 treatment can be estimated using the following equations: 

 
( )

2

1 12   and    
1

r r

uj uj uj j

u u

y y y
y s

r r

= =
−

= =
−

∑ ∑
 (1) 

for 1 2u , , , n= K . Assuming the underlying distribution of the experimental data is normal with 

constant variance, the estimators given in Equation (1) are then used to create the response 

surface functions of the mean and variance based on the method of least squares regression 

analysis as follows. The model for the mean, therefore, is written as 

 ( )µ
∧ ∧

=x Xβ ,  (2) 

where 

 ( )
1

T T
∧ −

=β X X X y , (3) 
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X is the design matrix, 
∧

β  is the estimate of the vector of unknown model parameters, and y  is 

the vector of estimated means for each treatment combination in an experiment. In addition, the 

response surface function for the variance is given as 

 ( )
∧∧

= γXx2σ , (4) 

where 

 ( )
1

T T 2
∧ −

=γ X X X s , (5) 

∧

γ  is the estimate of the vector of unknown model parameters, and 2
s  is the vector of estimated 

variances for each treatment in an experiment. However, if the underlying distribution of the 

experimental data is skewed (i.e. is significantly non-normal) or the assumption of constant 

error-variance is violated significantly, the data will have to be transformed in order to proceed 

with this type of analysis. Commonly used transformations include, but are not limited to, a log 

transformation or square root transformation; the transformation to be used depends on the 

specific situation and the degree to which the necessary assumptions are violated. Assuming the 

necessary assumptions can be verified, the fitted response functions for each quality 

characteristic under investigation are then optimized simultaneously to determining the system’s 

optimum operating parameters. 

 

Optimization 

The framework for the proposed optimization model is shown in Table 1 and is structured 

in such a way that given the system parameters and the models of their behavior, the goal is to 

find the design factor settings based on satisfying the system requirements and goals by 

minimizing the objective function. In our proposed model, k responses of type t are considered. 
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These designations are necessary to accommodate the different types of quality characteristics 

that may be considered in an RD investigation. According to Taguchi, responses are usually 

categorized as one of the following three types. 

1. Smaller-the-better (S-type): Minimize the quality characteristic of interest (i.e. the 

target value equals zero). 

 

2. Nominal-the-better (N-type): The quality characteristic of interest has a specific target 

value. 

 

3. Larger-the-better (L-type): Maximize the quality characteristic of interest (i.e. the 

target value approaches infinity). 

 

Further, ( )ktµ
∧

x  and ( )2

ktσ
∧

x  are the response surface functions for the process mean and 

variance of response ykt, respectively, which are assumed to be independent of each other, and 

k t
µ

τ ∧  and 
2
k tσ

τ ∧  are the desired target values for the mean and variance of response ykt, 

respectively. 

[Table 1 Approximately Here] 

 

In the proposed model, the constraints consist of the system’s technical requirements and 

its desired goals. The system requirements are characterized by the upper and/or lower limits on 

the system variables under consideration, which must be satisfied in order for the solution to be 

feasible. Further, the constraints representing the system goals model the deviation from the 

desired target values for both the mean and variance of each response. Overall, the system goal is 

to minimize the deviation from the desired target values. Additionally, we can specify the 

priority of individual goals in the objective function given this framework.  

The objective function for the proposed model is formulated as a nonlinear goal 

programming problem (Hillier and Liberman, 2001). This type of approach makes the general 

multiresponse problem inherently easier to solve because the objective function can be modeled 
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as a single function using deviation variables. In mathematical programming terms, deviation 

variables are also known as auxiliary variables. In the objective function for our proposed model, 

these variables are used to denote the under- and over-achievement of a constraint (i.e. a desired 

range or target value), which are given as  and  g gd d
− + , respectively; hence, the deviation 

variables are also used in formulating the constraints for the proposed model. For example, 

consider the constraint associated with the process mean of a particular response of interest. 

Using deviation variables, this constraint can be written in general terms as 

   ( )
k t

g ktd
µ

µ τ ∧

∧

= −x ,  for 1 2g , , , r= K   (6) 

where 

 g g gd d d+ −= −  (7) 

and  

 

{ if 0

0 otherwise

if 0

0 otherwise

g g
g

g g
g

d d
d

d d
d

+

−

≥
=

 ≤
= 


 (8) 

Given these definitions, the constraint in Equation (6) can then be rewritten as 

 ( ) ( )
k t

kt g g
d d

µ
µ τ ∧

∧
+ −

− − =x . (9) 

Further, the method described here for modeling constraints using deviation variables for the 

mean of a quality characteristic can also be used for modeling the variance. Given this type of 

approach, the deviation variables associated with the constraints for the mean and variance of 

each response are then combined to form a single objective function as follows: 

 

min ( ) ( ) ( )1 1 1 2 2 2 r r r
Z f d , d , f d , d , , f d , d

− + − + − + =  K                    (10) 

s.t. Constraints due to system requirements: 
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1. S-type quality characteristic: ( ) USLkS kSµ
∧

≤x  for 1 2k , , , a= K  

2. N-type quality characteristic: ( )LSL USLkN kN kNµ
∧

≤ ≤x  for 1 2k a , a , , b= + + K  

3. L-type quality characteristic: ( ) LSLkL kLµ
∧

≥x  for 1 2k b , b , , c= + + K  
 

Constraints due to system goals: 

1. Process mean: 

( )
k t

kt g gd d
µ

µ τ ∧

∧
− ++ − =x  for t = type of quality characteristic (S-, N-, or L-) 

2. Process variance: 

( )
2

2

k t

kt g gd d
σ

σ τ ∧

∧
− ++ − =x  for t = type of quality characteristic (S-, N-, or L-) 

Bounds: 

1. Design factors: maxmin iii xxx ≤≤ for 1 2i , , , n= K  

2. Deviation variables: 0, ≥+−
gg dd  and 0=⋅ +−

gg dd  for 1 2g , , , r= K  

 

In the proposed model, the constraints are delineated according to the type of quality 

characteristic considered where USL and LSL are the upper and lower specification limits, 

respectively, for the system’s requirements. To establish a prioritization scheme for the 

optimization procedure, our proposed model utilizes a preemptive approach involving sequential 

optimization. Here, weights of different magnitudes are assigned to the deviation variables 

associated with the process mean and variance. In this model, we propose setting priorities in 

such a way that the goal is to first minimize the variance and then attempt to achieve the mean 

equal to the desired target value. The proposed approach is illustrated through the numerical 

example in the following section. 

 

Implementation of the proposed model 

Consider the problem of optimizing a chemical filtration process for measuring dosages with 

respect to filtration time, volume, and purity. Here, we consider temperature ( 1x ) and pressure 

( 2x ) as design factors and filtration time ( 1Sy ), filtration volume ( 2Ny ), and filtration purity 
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(
3L

y ) as our responses of interest. Hence, this becomes a multiresponse RD study, given that 

there are multiple quality characteristics of interest in determining the optimum operating 

conditions for the system under investigation. In this example, filtration time is considered an S-

type quality characteristic since it is desirable to minimize processing time. Additionally, the 

system configuration has a maximum processing time of 7 seconds that cannot be exceeded. The 

desired target for the volume of the filtered chemical dose is 10 mL, where the allowable 

tolerance is ±0.5 mL; therefore, filtration volume is considered an N-type response. Further, 

filtration purity is required to be as high as possible, therefore this response is considered an L-

type quality characteristic with a natural bound at 100%. In this particular example, it is critical 

that we reduce the variability of each response simultaneously in order to stabilize the processing 

cost in terms of filtration time and improve product quality by minimizing the occurrence of 

under- and over-filled vials and stabilizing filtration purity. 

 To estimate quadratic models of the responses, a central composite design with four 

center points is chosen for this experiment. Additionally, the experiment is replicated three times 

and data are collected concerning the responses of interest. The experimental design schemes and 

the data for each response are displayed in Tables 2-4, respectively.  

[Table 2 – Approximately Here] 

[Table 3 – Approximately Here] 

[Table 4 – Approximately Here] 

 Analysis of the data, using the method shown in Section 2.3, results in response surface 

models for the mean and variance of each response as follows: 

( ) 2 2

1 1 2 1 2 1 22 1725 0 1913 0 1470 0 0613 0 1163 0 2375S . - . x - . x . x - . x - . x xµ
∧

= +x  (11) 
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( )2 2 2

1 1 2 1 2 1 20 03300 0 0004 0 0008 0 0154 0 0151 0 0013S . - . x - . x - . x - . x . x xσ
∧

= +x  (12) 

( ) 2 2

2 1 2 1 2 1 210 0000 0 0497 0 0434 0 0381 0 0256 0 055N . . x . x - . x - . x - . x xµ
∧

= + +x  (13) 

( )2 2 2

2 1 2 1 2 1 20 0058 0 0001 0 0022 0 0011 0 0006 0 0013N . . x - . x . x - . x . x xσ
∧

= + + +x  (14) 

( ) 2 2

3 1 2 1 2 1 294 9775 0 4832 0 7465 0 3725 0 3175 0 1550L . . x . x - . x - . x . x xµ
∧

= + + +x  (15) 

( )2 2 2

3 1 2 1 2 1 20 1898 0 0011 0 0039 0 0942 0 0902 0 0013L . - . x - . x - . x - . x . x xσ
∧

= +x  (16) 

 Using Equations (11) through (16), the proposed VPMRD optimization model is then 

applied to obtain the optimum operating conditions for the filtration process, as shown in Table 

5. In this particular example, the constraints are comprised of the bounds on the responses that 

must be strictly adhered to. These bounds are denoted by the technical requirements of the 

system stated as the USL and/or LSL. Specifically, filtration time must be less than 7 seconds, 

filtration volume must be within the range of 9.5-10.5 mL, and filtration purity must be greater 

than zero. Further, the goals are determined based on the desire to minimize the process bias and 

variance. For this example, the target values of interest are theoretically zero seconds for 

filtration time, 10 mL for filtration volume, and 100% for filtration purity. Additionally, we 

specify that the target for the variance is equal to zero because the goal of an RD study is always 

to minimize the variance. Given these constraints and their associated deviation variables, the 

deviation function to be minimized considers the over-achievement for the S- and N-type quality 

characteristics and the under-achievement for the N- and L-type quality characteristics of 

interests for the mean and the over-achievement of each quality characteristic for the variance. 

Here, the streamlined procedure for preemptive goal programming is used to first minimize the 

variance and then attempt to achieve the mean equal to the desired target value where all 
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responses of interest are weighted equally. The big M method [3] is utilized to establish a 

prioritization scheme within the optimization process. Here, the deviation variables associated 

with the variance are given substantially larger weights, designated by M, over that of the 

deviation variables associated with the process bias.  

[Table 5 – Approximately Here] 

The results of the proposed method, which are shown in Table 6, indicate the goal of zero 

variance for filtration purity was achieved; yet, the variance of both filtration time and volume 

slightly exceed zero. In addition, the mean of each response is achieved with minimal amounts of 

bias allowed; however, none of the mean values achieved the exact target value desired. 

[Table 7 – Approximately Here] 

 

Comparison study 

In this section, we validate the proposed methodology by comparing its results to those obtained 

using traditional RD optimization models, including both the dual response approach (Vining 

and Myers, 1990) and the MSE model (Lin and Tu, 1995). The dual response approach 

minimizes the variance with the constraint that the process mean equals the desired target value, 

which can be written as 

 min ( )2σ
∧

x  (17) 

 s.t. ( )µ τ
∧

=x  

 Ω∈x  
 

where Ω  is the region of interest. This optimization model is typically used for problems in 

which it is critical that the quality characteristic of interest adheres strictly to the desired target 
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value. Given this approach, we obtain optimum operating conditions that result in the mean 

located on target with some amount of variation around the mean.  

To improve upon the dual response approach, Lin and Tu (1995) relaxed its zero-bias 

assumption (i.e. the constraint requiring that the process mean must equal the desired target 

value) and proposed a model that simultaneously minimizes the squared difference of the mean 

from the target value and the variance as follows: 

 

 min ( ) ( )
2

2+ µ τ σ
∧∧ 

− 
 

x x  (18) 

 s.t. Ω∈x  

 

When minimizing the variability of the response of interest is of equal or greater importance than 

achieving the desired target value, this optimization strategy is often utilized. Based on such an 

approach, it is observed that by allowing some difference between the mean and the desired 

target value, the resulting process variance is less than or at most equal to the variance of the 

dual response approach. 

For the purpose of comparison, we utilize an approach similar to that demonstrated by 

Tang and Xu (1995) in which we approximate the traditional RD models using the VPMRD 

framework developed in this paper. Here, we reformulate the original RD models as goal 

programming problems and apply them to the example used previously to illustrate our proposed 

methodology. The formulations of and the results obtained from these equivalent models are 

presented in the following sections. The results obtained using these models are then compared 

to the results obtained from our proposed methodology.  

 

Expansion of the dual response approach for multiresponse problems 
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Using the dual response approach, the first priority of the optimization procedure is to achieve 

the desired target value and then the model attempts to minimize the variance. To approximate 

the optimization procedure of the dual response approach for a multiresponse problem, we use a 

preemptive goal programming approach, which is similar to that used in the proposed model. As 

discussed previously, all quality characteristics are equally weighted; yet in this case, 

substantially larger weighted priorities are placed on the deviation variables associated with 

minimizing the process bias over that of the deviation variables associated with minimizing the 

variance. Given the same response surface models and constraints used to demonstrate the 

proposed model, the big M method can be used in the optimization procedure to establish a 

prioritization scheme that reflects the dual response approach for multiple quality characteristics 

as follows: 

 ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )1 1 1
3 3 32 4 6 1 3 3 5

Z d d d M d M d d M d
+ + − + − + − = + + + + + +   (19) 

Based on Equation (19), we can interpret the objective of this model as an attempt to locate the 

mean at the desired target first and then an attempt is made to minimize the variance. Therefore, 

this equivalent model replicates the goals of the original dual response approach and allows us to 

optimize multiple quality characteristics simultaneously. The results obtained using this model 

are shown in Table 7. 

[Table 7 Approximately Here] 

 

Expansion of the MSE model for multiresponse problems 

In terms of the MSE model, minimizing the squared difference of the mean from the desired 

target value and minimizing the variance are of equal priority in the optimization procedure and 

are considered simultaneously. The optimization procedure of the MSE model can be 
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approximated for multiresponse problems using a nonpreemptive goal programming approach 

(Hillier and Liberman, 2001). To create this equivalent model, equal weights are given to the 

variables in the deviation function for the mean and variance. Again, based on the response 

surface models and constraints used to illustrate the proposed model, we establish a prioritization 

scheme that reflects the MSE model for multiresponse problems, which can be written as  

 min ( ) ( ) ( ) ( ) ( ) ( )2 4 6 1 3 3 5Z d d d d d d d
+ + − + − + − = + + + + + +   (20)  

From Equation (20), we can observe that minimizing the bias and minimizing the variance are of 

equal importance. This prioritization scheme effectively replicates the original intention of the 

MSE model, and this formulation also allows us to optimize multiple quality characteristics 

simultaneously. The results obtained using this model are shown in Table 8. 

[Table 8 Approximately Here] 

 

Discussion of comparison study results 

The results of this study comparing the proposed approach to that of the prioritization 

schemes associated with traditional RD optimization models are best considered based on the 

evaluation of the mean and variance at their optimal settings. In terms of the variance, Table 9 

shows the optimum operating conditions for each approach, which also represents the deviation 

from the target, given that the desired target value is zero. The only result that indicates the goal 

of zero variance was achieved is for the response of filtration purity using the proposed VPMRD 

approach; all other results slightly exceed zero. Yet, it is important to note that the proposed 

method also resulted in the lowest variance for the response of filtration time in comparison to 

the other approaches. In terms of the mean, Table 10 shows the evaluation of the mean at the 

optimum operating conditions and the deviations of the mean from the target value for each 
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optimization method considered here. For filtration time, all optimization methods over-achieve 

the target, with the multiresponse expansion of the dual response concept producing the 

minimum deviation. In terms of filtration volume and purity, all approaches under-achieve the 

target. Here, the multiresponse expansion of the MSE and the dual response concepts produce 

the minimum deviation for the filtration volume and purity, respectively.  

[Table 9 – Approximately Here] 

[Table 10 – Approximately Here] 

 As has been shown with other RD models in the past, we see here that a trade-off exists 

between minimizing the variance and minimizing the process bias. Based on the results of this 

comparison study, it can be concluded that the proposed model achieves its primary goal of first 

minimizing the variance and then attempting to achieve the mean equal to the desired target 

value. This logic explains why this method tended to produce the minimum variance, but not the 

minimum process bias. Yet, this approach provides a flexible and structured method for 

modeling multiresponse RD problems in the presence of responses with differing objectives. 

Therefore, this method is useful in situations where minimizing the variance is more critical than 

achieving a specific target value for problems involving multiple objectives. 

 

Conclusion 

In this work, a new RD optimization approach and framework was proposed, called VPMRD, to 

handle situations in which we wish to determine the optimum operating conditions for a system 

when the problem entails multiple responses and in cases where it is critically important that the 

variance of the responses being considered is minimized. Here, the proposed method utilized 

goal programming techniques to model a multiresponse problem in a single objective function 
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using deviation variables. The objective of the proposed model addressed the inherent goal of 

RD where the first priority was to minimize the variance. The proposed optimization approach 

was described in detail and illustrated though the use of a numerical example. The results 

obtained from this approach were then compared to that of expanded approaches of the 

traditional RD optimization models in order to address multiple quality characteristics. 

 The result of this work provides a method for using RD in real-world situations where 

optimal solutions are desired in the face of multiple responses. The approach discussed here 

illustrates that there are trade-offs in design between minimizing the variance and achieving the 

desired target value. Yet, the specific model proposed here addresses these trade-offs by 

providing a flexible and structured method for modeling multiresponse RD problems. 
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Figure 1 A Process Map of the Proposed Methodology 
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Table 1 General Model of the Proposed VPRMD Framework 

 

Given Design factors: 1 2ix , i , , , n= …  

Responses: kty , where 

 1 2 ,k , , , a, , b, c= K K K  

 t = type of quality characteristic (S-, N-, or L-) 

Fitted response models: Mean: ( )ktµ
∧

x  and variance: ( )2

ktσ
∧

x  

Desired target values: Mean: 
k t

µ
τ ∧  and variance: 

2
k tσ

τ ∧  

Find Robust design factor specifications: 1 2*

ix , i , , , n= …  

Deviation variables associated with constraints: 1 2g gd , d , g , , , r
− +

= K  

Satisfy Constraints:  

1. System requirements 

2. System goals 

Minimize ( ) ( ) ( )1 1 1 2 2 2 r r rZ f d , d , f d , d , , f d , d
− + − + − + =  K  

 

 

 

Table 2 Experimental Design and Observations of Filtration Time 

for the Multiresponse Chemical Filtration Study 

 

Temperature Pressure 
Filtration Time 

(seconds) 

 

Coded Units 3 Replications 

Average Variance 

Treatment No. 1x  2x  
1 1S

y  
1 2S

y  
1 3S

y  
1S

y  2

1S
s  

1 -1 -1 3.86 4.03 3.92 3.94 0.007 

2 1 -1 3.12 3.07 3.02 3.07 0.003 

3 -1 1 2.82 2.79 2.87 2.83 0.002 

4 1 1 1.07 0.97 0.99 1.01 0.003 

5 -1.414 0 1.30 1.26 1.32 1.29 0.001 

6 1.414 0 2.07 2.14 2.11 2.11 0.001 

7 0 -1.414 0.60 0.63 0.68 0.64 0.002 

8 0 1.414 2.03 2.08 2.04 2.05 0.001 

9 0 0 2.12 1.79 2.16 2.02 0.041 

10 0 0 2.80 2.52 2.42 2.58 0.039 

11 0 0 2.19 2.02 2.14 2.12 0.008 

12 0 0 1.96 1.77 2.19 1.97 0.044 
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Table 3 Experimental Design and Observations of Filtration Volume 

for the Multiresponse Chemical Filtration Study 

 
Temperature Pressure Filtration Volume (mL)  

Coded Units 3 Replications 
Average Variance 

Treatment No. 1x  2x  
2 1N

y  
2 2N

y  
2 3N

y  
2N

y  2

2N
s  

1 -1 -1 9.70 9.79 9.73 9.74 0.002 

2 1 -1 9.96 9.95 9.93 9.95 0.000 

3 -1 1 9.94 9.96 9.97 9.96 0.000 

4 1 1 10.00 9.97 9.89 9.95 0.003 

5 -1.414 0 9.78 9.87 10.01 9.89 0.013 

6 1.414 0 10.02 10.15 9.92 10.03 0.013 

7 0 -1.414 9.80 10.04 9.98 9.94 0.016 

8 0 1.414 10.10 9.99 10.01 10.03 0.003 

9 0 0 10.12 10.01 9.86 10.00 0.001 

10 0 0 10.10 9.97 9.85 9.97 0.001 

11 0 0 10.08 9.99 10.13 10.07 0.017 

12 0 0 9.98 10.11 9.78 9.96 0.004 

 

 

 

 

 

Table 4 Experimental Design and Observations of Filtration Purity 

for the Multiresponse Chemical Filtration Study 

 
Temperature Pressure Filtration Purity (%)  

Coded Units 3 Replications 
Average Variance 

Treatment No. 1x  2x  
3 1L

y  
3 2L

y  
3 3L

y  
3L

y  2

3L
s  

1 -1 -1 93.09 92.99 93.03 93.04 0.003 

2 1 -1 93.76 93.83 93.81 93.80 0.001 

3 -1 1 94.33 94.35 94.3 94.33 0.001 

4 1 1 95.64 95.76 95.72 95.71 0.004 

9 -1.414 0 93.59 93.73 93.76 93.69 0.008 

10 1.414 0 94.94 94.88 94.9 94.91 0.001 

11 0 -1.414 93.41 93.28 93.59 93.43 0.024 

12 0 1.414 95.39 95.42 95.36 95.39 0.001 

13 0 0 94.37 95.17 94.64 94.73 0.166 

14 0 0 95.36 95.63 94.99 95.33 0.103 

15 0 0 95.76 94.93 95.43 95.37 0.175 

16 0 0 94.12 94.2 95.13 94.48 0.315 
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Table 5 Proposed VPMRD Optimization Model 

for the Multiresponse Chemical Filtration Study 

 

Given Design factors, x :  

1x  = Temperature (ºF) 

2x  = Pressure (psi) 

Responses, y : 

1Sy  = Filtration time (seconds)  

2Ny  = Filtration volume (mL)  

3Ly  = Filtration purity (%) 

Fitted response models:  

 Mean: ( )k tµ
∧

x  from Equations (11), (13), and (15) 

 Variance: ( )2

k tσ
∧

x  from Equations (12), (14), and (16) 

Desired target values: Mean: 
k t

µ
τ ∧  and variance: 

2
k tσ

τ ∧   

Mean:  
1

0
Sµ

τ ∧ =  
2

10
Nµ

τ ∧ =  
3

100
Lµ

τ ∧ =  

Variance: 
2
1

0
Sσ

τ ∧ =  
2
2

0
Nσ

τ ∧ =  
2
3

0
Lσ

τ ∧ =  

Find Robust design factor specifications: 1 2*

ix , i ,=  

Deviation variables associated with goals: 1 2 6g gd , d , g , , ,
− +

= K  

Satisfy Constraints: 

1. ( )1 7Sµ
∧

≤x  2.   ( )29 5 10 5N. .µ
∧

≤ ≤x  3.   ( )3 0Lµ
∧

≥x  

Goals: 

1. ( )1 1 1 0S d dµ
∧

− ++ − =x   4.   ( )2

2 4 4 0N d dσ
∧

− ++ − =x  

2. ( )2

1 2 2 0S d dσ
∧

− ++ − =x   5.   ( )3 5 5 100L d dµ
∧

− ++ − =x  

3. ( )2 3 3 10N d dµ
∧

− ++ − =x   6.   ( )2

3 6 6 0L d dσ
∧

− ++ − =x  

Bounds: 

1. Design factors: 1 414 1 414  for  1 2i. x . i ,− ≤ ≤ =  

2. Deviation variables: 0g gd , d− + ≥  and 0g gd d− +⋅ =  for 1 2 6g , , ,= K  

Minimize ( ) ( ) ( ) ( )( ) ( )( ) ( )( )1 1 1
3 3 32 4 6 1 3 3 5Z M d M d M d d d d d

+ + + + − + − = + + + + + + 
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Table 6 Results of the Proposed VPMRD Approach 

for the Multiresponse Chemical Filtration Study  

 

Optimal Settings x* = (1.4117,  0.0651)  

Mean 

 ( )1Sµ
∧

x  = 1.9927  

( )2Nµ
∧

x  = 9.9919  

( )3Lµ
∧

x  = 94.9788 

Variance 

( )2

1Sσ
∧

x  = 0.0017 

( )2

2Nσ
∧

x  = 0.0081 

( )2

3Lσ
∧

x  = 0 

 

 

 

 

 

 

Table 7 Results of the Multiresponse Expansion of the Dual Response Approach 

for the Multiresponse Chemical Filtration Study  

 

Optimal Settings x* = (0.5444,  1.2825) 

Mean 

 ( )1Sµ
∧

x  = 1.5409 

( )2Nµ
∧

x  = 9.9909 

( )3Lµ
∧

x  = 95.6735 

Variance 

( )2

1Sσ
∧

x  = 0.0033 

( )2

2Nσ
∧

x  = 0.0033 

( )2

3Lσ
∧

x  = 0.0088 
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Table 8 Results of the Multiresponse Expansion of the MSE Model  

for the Multiresponse Chemical Filtration Study 

 

Optimal Settings x* = (0.4759,  1.2135)  

Mean 

 ( )1Sµ
∧

x  = 1.6086  

( )2Nµ
∧

x  = 9.9982  

( )3Lµ
∧

x  = 95.6509 

Variance 

( )2

1Sσ
∧

x  = 0.0069 

( )2

2Nσ
∧

x  = 0.0033 

( )2

3Lσ
∧

x  = 0.0311 

 

 

 

 

 

 

 

Table 9 Comparison of Optimization Methods in Determining the 

Optimal Design Factor Settings and the Evaluation of the Variance 

for the Multiresponse Chemical Filtration Study 

 

Method 
Optimal Settings 

(x1*, x2*) ( )2

1Sσ
∧

x  ( )2

2Nσ
∧

x  ( )2

3Lσ
∧

x  

Multiresponse 

Expansion of the 

Dual Response 

Approach 

(0.5444, 1.2825)   0.0033 0.0033 0.0088 

Multiresponse 

Expansion of the 

MSE Model 

(0.4759, 1.2135) 0.0069 0.0033 0.0311 

Proposed VPMRD 

Approach 
(1.4117, 0.0651) 0.0017 0.0081 0 
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Table 10 Comparison of Optimization Methods in Determining the 

Optimal Design Factor Settings and the Evaluation of the Mean 

for the Multiresponse Chemical Filtration Study  

 

Method 
Optimal Settings 

(x1*, x2*) ( )1Sµ
∧

x  1d +  ( )2Nµ
∧

x  3d −  ( )3Lµ
∧

x  5d −  

Multiresponse 

Expansion of 

the Dual 

Response 

Approach 

(0.5444, 1.2825) 1.5409 1.5409 9.9909 0.0091 95.6735 4.3265 

Multiresponse 

Expansion of 

the MSE 

Model 

(0.4759, 1.2135) 1.6086 1.6086 9.9982 0.0018 95.6509 4.3491 

Proposed 

VPMRD 

Approach 

(1.4117, 0.0651) 1.9927 1.9927 9.9919 0.0081 94.9788 5.0212 

 

 

  


