120 research outputs found

    Sparse Inverse Covariance Estimation for Chordal Structures

    Full text link
    In this paper, we consider the Graphical Lasso (GL), a popular optimization problem for learning the sparse representations of high-dimensional datasets, which is well-known to be computationally expensive for large-scale problems. Recently, we have shown that the sparsity pattern of the optimal solution of GL is equivalent to the one obtained from simply thresholding the sample covariance matrix, for sparse graphs under different conditions. We have also derived a closed-form solution that is optimal when the thresholded sample covariance matrix has an acyclic structure. As a major generalization of the previous result, in this paper we derive a closed-form solution for the GL for graphs with chordal structures. We show that the GL and thresholding equivalence conditions can significantly be simplified and are expected to hold for high-dimensional problems if the thresholded sample covariance matrix has a chordal structure. We then show that the GL and thresholding equivalence is enough to reduce the GL to a maximum determinant matrix completion problem and drive a recursive closed-form solution for the GL when the thresholded sample covariance matrix has a chordal structure. For large-scale problems with up to 450 million variables, the proposed method can solve the GL problem in less than 2 minutes, while the state-of-the-art methods converge in more than 2 hours

    PowerModels.jl: An Open-Source Framework for Exploring Power Flow Formulations

    Full text link
    In recent years, the power system research community has seen an explosion of novel methods for formulating and solving power network optimization problems. These emerging methods range from new power flow approximations, which go beyond the traditional DC power flow by capturing reactive power, to convex relaxations, which provide solution quality and runtime performance guarantees. Unfortunately, the sophistication of these emerging methods often presents a significant barrier to evaluating them on a wide variety of power system optimization applications. To address this issue, this work proposes PowerModels, an open-source platform for comparing power flow formulations. From its inception, PowerModels was designed to streamline the process of evaluating different power flow formulations on shared optimization problem specifications. This work provides a brief introduction to the design of PowerModels, validates its implementation, and demonstrates its effectiveness with a proof-of-concept study analyzing five different formulations of the Optimal Power Flow problem
    • …
    corecore