58 research outputs found

    Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Full text link
    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral efficiency. The interference-PSD estimation enables DS-CDMA systems to significantly suppress interference.Comment: To appear, IEEE Transactions on Wireless Communication

    Capacity -based parameter optimization of bandwidth constrained CPM

    Get PDF
    Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth limited systems due to its small side lobes, fast spectral decay and the ability to be noncoherently detected. Furthermore, the constant envelope property of CPM permits highly power efficient amplification. The design of bit-interleaved coded continuous phase modulation is characterized by the code rate, modulation order, modulation index, and pulse shape. This dissertation outlines a methodology for determining the optimal values of these parameters under bandwidth and receiver complexity constraints. The cost function used to drive the optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral density found by evaluating the constrained channel capacity. The capacity can be reliably estimated using Monte Carlo integration. A search for optimal parameters is conducted over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are presented for a system employing a trellis-based coherent detector. To constrain complexity and allow any modulation index to be considered, a soft output differential phase detector has also been developed.;Building upon the capacity results, extrinsic information transfer (EXIT) charts are used to analyze a system that iterates between demodulation and decoding. Convergence thresholds are determined for the iterative system for different outer convolutional codes, alphabet sizes, modulation indices and constellation mappings. These are used to identify the code and modulation parameters with the best energy efficiency at different spectral efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate the capacity and EXIT chart designs

    Multiuser non coherent massive MIMO schemes based on DPSK for future communication systems

    Get PDF
    The explosive usage of rich multimedia content in wireless devices has overloaded the communication networks. Moreover, the fifth generation (5G) of wireless communications involves new requirements in the radio access network (RAN) which require higher network capacities and new capabilities such as ultra-reliable and low-latency communication (URLLC), vehicular communications or augmented reality. All this has encouraged a remarkable spectrum crisis in the RF bands. A need for searching alternative techniques with more spectral efficiency to accommodate the needs of future emerging wireless communications is emerging. In this context, massive MIMO (m-MIMO) systems have been proposed as a promising solution for providing a substantial increase in the network capacity, becoming one of the key enabling technologies for 5G and beyond. m-MIMO provides high spectral- and energy-efficiency thanks to the deployment of a large number of antennas at the BS. However, we have to take into account that the current communication technologies are based on coherent transmission techniques so far, which require the transmission of a huge amount of signaling. This drawback is escalating with the excessive available number of antennas in m-MIMO. Therefore, the differential encoding and non coherent (NC) detection are an alternative solution to circumvent the drawbacks of m-MIMO in coherent systems. This Ph.D. Thesis is focused on signal processing techniques for NC detection in conjunction with m-MIMO, proposing new constellation designs and NC detection algorithms, where the information is transmitted in the signal differential phase. First, we design new constellation schemes for an uplink multiuser NC m-MIMO system in Rayleigh fading channels. These designs allow us to separate the users' signals at the receiver thanks to a one-to-one correspondence between the constellation for each user and the received joint constellation. Two approaches are considered in terms of BER: each user achieves a different performance and, on the other hand, the same performance is provided for all users. We analyze the number of antennas needed for those designs and compare to the required number by other designs in the literature. It is shown that our designs based on DPSK require a lower number of antennas than that required by their counterpart schemes based on energy. In addition, we compare the performance to their coherent counterpart systems, resulting NC-m-MIMO based on DPSK capable of outperforming the coherent systems with the suitable designs. Second, in order to reduce the number of antennas required for a target performance we propose a multi-user bit interleaved coded modulation - iterative decoding (BICM-ID) scheme as channel coding for a NC-m-MIMO system based on DPSK. We propose a novel NC approach for calculating EXIT curves based on the number of antennas. Then using the EXIT chart we find the best channel coding scheme for our NC-m-MIMO proposal. We show that the number of users served by the BS can be increased with a 70% reduction in the number of antennas with respect to the case without channel coding. In particular, we show that with 100 antennas for error protection equal design for all users and a coding rate of 1/2 we achieve the minimum probability of error. Third, we consider that current scenarios such as backhaul wireless systems, rural or suburban environments, and even new device-to-device (D2D) communications or the communications in higher frequencies (millimeter and the emerging ones in terahertz frequencies) can have a predominant line-of-sight (LOS) component, modeled by Rician fading. For all these new possible scenarios in 5G, we analyze the behavior of the NC m-MIMO systems when we have a Rician fading. We present a new constellation design to overcome the problem of the LOS channel component, as well as an associated detection algorithm to separate each user in reception taking into account the characterization of the constellation. In addition, for contemplating a more realistic scenario, we propose grouping users which experience a Rayleigh fading with those with Rician fading, analyzing the SINR and the performance of such combination in a multi-user NC m-MIMO system based on M-DPSK. The adequate user grouping allows unifying the constellation for both groups of users and the detection algorithm, reducing the complexity of the receiver. Also, the number of users that may be multiplexed may be further increased thanks to the improved performance. In the fourth part of this Thesis, we analyse the performance of multi-user NC m- MIMO based on DPSK in real environments and practical channels defined for the current standards such as LTE, the future technologies such as 5G and even for communications in the terahertz band. For this purpose, we use a metric to model the time-varying characteristics of the practical channels. We employ again the EXIT charts tool for analyzing and designing iteratively decoded systems. This analysis allows us to obtain an estimate of the degradation of the system's performance imposed by realistic channels. Hence, we show that our proposed system is robust to temporal variations, thus it is more recommendable the employment of NC-m-MIMO-DPSK in the future communication standards such as 5G. In order to reduce he number of hardware resources required in terms of RF chains, facilitating its implementation in a real system, we propose incorporating differential spatial modulation (DSM). We present and analyze a novel multiuser scheme for NC-m-MIMO combined with DSM with which we can see that the number of antennas is not a affected by the incorporation of DSM, even we have an improvement on the performance with respect to the coherent case. Finally, we study the viability of multiplexing users by constellation schemes against classical multiplexing techniques such as time division multiple access (TDMA). In order to fully characterize the system performance we analyze the block error rate (BLER) and the throughput of a NC-m-MIMO system. The results show a significant advantage regarding the number of antennas for multiplexing in the constellation against TDMA. However, in some cases, the demodulation of multiple users in constellation could require an excessively large number of antennas compared to TDMA. Therefore, it is necessary to properly manage the tradeoff between throughout and the number of antennas, to reach an optimal operational point, as shown in this Thesis.El inmenso uso de contenido multimedia en los dispositivos inalámbricos ha sobrecargado las redes de comunicaciones. Además, la quinta generación (5G) de sistemas de comunicaciones demanda nuevos requisitos para la red de acceso radio, la cual requiere ofrecer capacidades de red mayores y nuevas funcionalidades como comunicaciones ultra fiables y con muy poca letancia (URLLC), comunicaciones vehiculares o aplicaciones como la realidad aumentada. Todo esto ha propiciado una crisis notable en el espectro electromagnético, lo que ha llevado a una necesidad por buscar técnicas alternativas con más eficiencia espectral para acomodar todos los requisitos de las tecnologías de comunicaciones emergentes y futuras. En este contexto, los sistemas multi antena masivos, conocidos como massive MIMO, m-MIMO, han sido propuestos como una solución prometedora que proporciona un incremento substancial de la capacidad de red, convirtiéndose en una de las tecnologías claves para el 5G. Los sistemas m-MIMO elevan enormemente el número de antenas en la estación base, lo que les permite ofrecer alta eficiencia espectral y energética. No obstante, tenemos que tener en cuenta que las actuales tecnologías de comunicaciones emplean técnicas coherentes, las cuales requieren de información del estado del canal y por ello la transmisión de una enorme cantidad de información de señalización. Este inconveniente se ve agravado en el caso del m-MIMO debido al enorme número de antenas. Por ello, la codificación diferencial y la detección no coherente (NC) son una solución alternativa para solventar el problema de m-MIMO en los sistemas coherentes. Esta Tesis se centra en las técnicas de procesado de señal para detección NC junto con m-MIMO, proponiendo nuevos esquemas de constelación y algoritmos de detección NC, donde la información sea transmitida en la diferencia de fase de la señal. Primero, diseñamos nuevas constelaciones para un sistema multi usuario NC en m- MIMO en enlace ascendente (uplink) en canales con desvanecimiento tipo Rayleigh. Estos diseños nos permiten separar las señales de los usuarios en el receptor gracias a la correspondencia unívoca entre la constelación de cada usuario individual y la constelación conjunta recibida en la estación base. Hemos considerado dos enfoques para el diseño en términos de probabilidad de error: cada usuario consigue un rendimiento distinto, mientras que por otro lado, todos los usuarios son capaces de recibir las mismas prestaciones de probabilidad de error. Analizamos el número de antenas necesario para estos diseños y comparamos con el número requerido por otros diseños propuestos en la literatura. Nuestro diseño basado en DPSK requiere un número menor de antenas comparado con los sistemas basados en detección de energía. También comparamos con su homólogo coherente, resultando que NC-m-MIMO basado en DPSK es capaz de superar a los sistemas coherentes con los diseños adecuados. En segundo lugar, para reducir el número de antenas requerido para un rendimiento dado, proponemos incluir un esquema de codificación de canal. Hemos optado por un esquema de modulación codificado por bit entrelazado y decodificación iterativa (BICMID). Hemos empleado la herramienta EXIT chart para el diseño de la codificación de canal, proponiendo un nuevo enfoque para calcular las curvas EXIT de forma NC y basadas en el número de antenas. Los resultados muestran que el número de usuarios servidos por la estación base puede ser incrementado reduciendo un 70% el número de antenas con respecto al caso sin codificación de canal. En particular, para un array de 100 antenas y un diseño que ofrezca iguales prestaciones a todos los usuarios, con un código de tasa 1=2, podemos conseguir la mínima probabilidad de error. En tercer lugar, consideramos escenarios donde el canal tenga una componente predominante de visión directa (LOS) con la estación base modelada mediante un desvanecimiento tipo Rician. Por ejemplo, sistemas inalámbricos de backhaul, entornos rurales o sub urbanos, comunicaciones entre dispositivos (D2D), también cuando nos movemos hacia frecuencias superiores como son en la banda de milimétricas o más recientemente, la banda de terahercios para buscar mayores anchos de banda. Todos estos escenarios están contemplados en el futuro 5G. Los diseños presentados para canales Rayleigh ya no son válidos debido a la componente LOS del canal, por ello presentamos un nuevo diseño de constelación que resuelve el problema de la componente LOS, así como una guía para diseñar nuevas constelaciones. También proponemos un algoritmo asociado al diseñno de la constelación para poder separar a los usuarios en recepción. Además, para contemplar un escenario más realista donde podamos encontrar tanto desvanecimiento Rayleigh como Rice, proponemos agrupar usuarios de ambos grupos, analizando su rendimiento y relación señal a interferencia en la combinación. El adecuado agrupamiento permite unificar el diseño de la constelación para ambos desvanecimientos y por tanto reducir la complejidad en el receptor. También, el número de usuarios multiplicados en la constelación podría ser incrementado, gracias a la mejora en el rendimiento. El cuarto módulo de esta tesis es dedicado a analizar el rendimiento de los diseños propuestos en presencia de canales reales, donde disponemos de variabilidad temporal y en frecuencia. Proponemos usar una métrica que modela las características de la variabilidad temporal y, usando de nuevo la herramienta EXIT, analizamos los sistemas decodificados iterativamente considerando ahora los parámetros prácticos del canal. Este análisis nos permite obtener una estimación de la degradación que sufre el rendimiento del sistema impuesto por canales reales. Los resultados muestran que los sistemas NC-m-MIMO basados en DPSK son muy robustos a la variabilidad temporal por lo que son recomendables para los nuevos escenarios propuestos por el 5G, donde el canal cambia rápidamente. Otra consideración para introducir los sistemas NC con m-MIMO es la problemática de necesitar muchas cadenas de radio frecuencia que llevarían a tamaños de dispositivos enormes. Para reducir este número se propone la modulación espacial. En esta Tesis, estudiamos su uso con los sistemas NC, proponiendo una solución de modulación espacial diferencial para esquemas con múltiples usuarios combinado con NC-m-MIMO. Finalmente, estudiamos la viabilidad de multiplexar usuarios en la constelación frente a usar técnicas clásicas de multiplexación como TDMA. Para caracterizar completamente el rendimiento del sistema, analizamos la tasa de error de bloque (BLER) y el throughput de un sistema NC-m-MIMO. Los resultados muestran una ventaja significativa en cuanto al número de antennas para multiplexar usuarios en la constelación frente al requerido por TDMA. No obstante, en algunos casos, la demodulación de múltiples usuarios en la constelación podría requerir un número de antennas excesivamente grande comparado con la multiplexación en el tiempo. Por ello, es necesario gestionar adecuadamente un balance entre el throughput y el número de antenas para alcanzar un punto operacional óptimo, como se muestra en esta Tesis.Programa Oficial de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Ana Isabel Pérez Neira.- Secretario: Máximo Morales Céspedes.- Vocal: María del Carmen Aguayo Torre

    Multicarrier Frequency Hopping Spread Spectrum Techniques With Quasi-Cyclic Low Density Parity Check Codes Channel Coding

    Get PDF
    This work presents a new proposed Multicarrier Frequency Hopping Spread Spectrum (MCFH-SS) system employing Quasi-Cyclic Low Density Parity Check (QC-LDPC) codes instead of the conventional LDPC codes. A new technique for constructing the QC-LDPC codes based on row division method is proposed. The new codes offer more flexibility in terms of high girth, multiple code rates and block length. Moreover, a new scheme for channel prediction in MCFH-SS system is proposed. The technique adaptively estimates the channel conditions and eliminates the need for the system to transmit a request message prior to transmitting the packet data. The ready-to-use channel will be occupied with a Pseudonoise (PN) code and use for transmission or else, it will be banned

    Iterative receiver in multiuser relaying systems with fast frequency-hopping modulation

    Get PDF
    In this thesis, a novel iterative receiver and its improved version are proposed for relay-assisted multiuser communications, in which multiple users transmit to a destination with the help of a relay and using fast frequency-hopping modulation. Each user employs a channel encoder to protect its information and facilitate interference cancellation at the receiver. The signal received at the relay is either amplified, or partially decoded with a simple energy detector, before being forwarded to the destination. Under flat Rayleigh fading channels, the receiver at the destination can be implemented non-coherently, i.e., it does not require the instantaneous channel information to demodulate the users’ transmitted signals. The proposed iterative algorithm at the destination exploits the soft outputs of the channel decoders to successively extract the maximum likelihood symbols of the users and perform interference cancellation. The iterative method is successfully applied for both cases of amplify-and-forward and partial decode-and-forward relaying. The error performance of the proposed iterative receiver is investigated by computer simulation. Under the same spectral efficiency, simulation results demonstrate the excellent performance of the proposed receiver when compared to the performance of decoding without interference cancellation as well as the performance of the maximum likelihood multiuser detection previously developed for uncoded transmission. Simulation results also suggest that a proper selection of channel coding schemes can help to support significant more users without consuming extra system resources. In addition, to further enhance the receiver’s performance in terms of the bit error rate, an improved version of the iterative receiver is presented. Such an improved receiver invokes inner-loop iterations between the channel decoders and the demappers in such a way that the soft outputs of the channel decoders are also used to refine the outputs of the demappers for every outer-loop iteration. Simulation results indicate a performance gain of about 2.5dB by using the two-loop receiver when compared to the performance of the first proposed receiver

    Some fundamental issues in receiver design and performance analysis for wireless communication

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Residue number system coded differential space-time-frequency coding.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2007.The rapidly growing need for fast and reliable transmission over a wireless channel motivates the development of communication systems that can support high data rates at low complexity. Achieving reliable communication over a wireless channel is a challenging task largely due to the possibility of multipaths which may lead to intersymbol interference (ISI). Diversity techniques such as time, frequency and space are commonly used to combat multipath fading. Classical diversity techniques use repetition codes such that the information is replicated and transmitted over several channels that are sufficiently spaced. In fading channels, the performance across some diversity branches may be excessively attenuated, making throughput unacceptably small. In principle, more powerful coding techniques can be used to maximize the diversity order. This leads to bandwidth expansion or increased transmission power to accommodate the redundant bits. Hence there is need for coding and modulation schemes that provide low error rate performance in a bandwidth efficient manner. If diversity schemes are combined, more independent dimensions become available for information transfer. The first part of the thesis addresses achieving temporal diversity through employing error correcting coding schemes combined with interleaving. Noncoherent differential modulation does not require explicit knowledge or estimate of the channel, instead the information is encoded in the transitions. This lends itself to the possibility of turbo-like serial concatenation of a standard outer channel encoder with an inner modulation code amenable to noncoherent detection through an interleaver. An iterative approach to joint decoding and demodulation can be realized by exchanging soft information between the decoder and the demodulator. This has been shown to be effective and hold hope for approaching capacity over fast fading channels. However most of these schemes employ low rate convolutional codes as their channel encoders. In this thesis we propose the use of redundant residue number system codes. It is shown that these codes can achieve comparable performance at minimal complexity and high data rates. The second part deals with the possibility of combining several diversity dimensions into a reliable bandwidth efficient communication scheme. Orthogonal frequency division multiplexing (OFDM) has been used to combat multipaths. Combining OFDM with multiple-input multiple-output (MIMO) systems to form MIMO-OFDM not only reduces the complexity by eliminating the need for equalization but also provides large channel capacity and a high diversity potential. Space-time coded OFDM was proposed and shown to be an effective transmission technique for MIMO systems. Spacefrequency coding and space-time-frequency coding were developed out of the need to exploit the frequency diversity due to multipaths. Most of the proposed schemes in the literature maximize frequency diversity predominantly from the frequency-selective nature of the fading channel. In this thesis we propose the use of residue number system as the frequency encoder. It is shown that the proposed space-time-frequency coding scheme can maximize the diversity gains over space, time and frequency domains. The gain of MIMO-OFDM comes at the expense of increased receiver complexity. Furthermore, most of the proposed space-time-frequency coding schemes assume frequency selective block fading channels which is not an ideal assumption for broadband wireless communications. Relatively high mobility in broadband wireless communications systems may result in high Doppler frequency, hence time-selective (rapid) fading. Rapidly changing channel characteristics impedes the channel estimation process and may result in incorrect estimates of the channel coefficients. The last part of the thesis deals with the performance of differential space-time-frequency coding in fast fading channels

    Advanced constellation and demapper schemes for next generation digital terrestrial television broadcasting systems

    Get PDF
    206 p.Esta tesis presenta un nuevo tipo de constelaciones llamadas no uniformes. Estos esquemas presentan una eficacia de hasta 1,8 dB superior a las utilizadas en los últimos sistemas de comunicaciones de televisión digital terrestre y son extrapolables a cualquier otro sistema de comunicaciones (satélite, móvil, cable¿). Además, este trabajo contribuye al diseño de constelaciones con una nueva metodología que reduce el tiempo de optimización de días/horas (metodologías actuales) a horas/minutos con la misma eficiencia. Todas las constelaciones diseñadas se testean bajo una plataforma creada en esta tesis que simula el estándar de radiodifusión terrestre más avanzado hasta la fecha (ATSC 3.0) bajo condiciones reales de funcionamiento.Por otro lado, para disminuir la latencia de decodificación de estas constelaciones esta tesis propone dos técnicas de detección/demapeo. Una es para constelaciones no uniformes de dos dimensiones la cual disminuye hasta en un 99,7% la complejidad del demapeo sin empeorar el funcionamiento del sistema. La segunda técnica de detección se centra en las constelaciones no uniformes de una dimensión y presenta hasta un 87,5% de reducción de la complejidad del receptor sin pérdidas en el rendimiento.Por último, este trabajo expone un completo estado del arte sobre tipos de constelaciones, modelos de sistema, y diseño/demapeo de constelaciones. Este estudio es el primero realizado en este campo
    corecore