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Summary

This thesis studies two fundamental issues in wireless communication, i.e. robust

receiver design and performance analysis.

In wireless communication with high mobility, the channel statistics or the

channel model may change over time. Applying the joint data sequence detection

and (blind) channel estimation approach, we derive the robust maximum-likelihood

sequence detector that does not require channel state information (CSI) or

knowledge of the fading statistics. We show that its performance approaches

that of coherent detection with perfect CSI when the detection block length L

becomes large. To detect a very long sequence while keeping computational

complexity low, we propose three pilot-based algorithms: the trellis search

algorithm, pilot-symbol-assisted block detection and decision-aided block detection.

We compare them with block-by-block detection algorithms and show the former’s

advantages in complexity and performance.

The commonly used performance measures at the physical layer are average

error probabilities, obtained by averaging instantaneous error probabilities over

fading distributions. For average performance of coherent receivers, we propose

to use the convexity property of the exponential function and apply the Jensen’s

inequality to obtain a family of exponential lower bounds on the Gaussian

Q-function. The tightness of the bounds can be improved by increasing the number

of exponential terms. The coefficients of the exponentials are constants, allowing

easy averaging over fading distribution using the moment generating function (MGF)

method. This method is applicable to finite integrals of the exponential function.
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Summary

It is further applied to the two-dimensional Gaussian Q-function, symbol error

probability (SEP) of M -ary phase shift keying, SEP of M -ary differential phase shift

keying and signals with polygonal decision regions over additive white Gaussian

channel, and their averages over general fading. The tightness of the bounds is

demonstrated.

For average performance of differential and noncoherent receivers, by expressing

the noncentral Chi-square distribution as a Poisson-weighted mixture of central

Chi-square distributions, we obtain an exact expression of the error performance

of quadratic receivers. This expression is in the form of a series summation

involving only rational functions and exponential functions. The bit error probability

performances of optimum and suboptimum binary differential phase shift keying

(DPSK) and quadrature DPSK receivers over fast Rician fading with Doppler shift

are obtained. Numerical computation using our general expression is faster than

existing expressions in the literature.

Moving on to the perspective of the data link layer, we propose to use the

probability of instantaneous bit error outage as a performance measure of the

physical layer. It is defined as the probability that the instantaneous bit error

probability exceeds a certain threshold. We analyze the impact of channel estimation

error on the outage performance over Rayleigh fading channels, and obtain the

optimum allocation of pilot and data energy in a frame that minimizes the outage

probability. We further extend the outage concept to packet transmission with

automatic repeat request (ARQ) schemes over wireless channels, and propose the

probability of instantaneous accepted packet error outage (IAPEO). It is observed

that, in order to satisfy a system design requirement of maximum tolerable IAPEO,

the system must operate above a minimum signal-to-noise ratio (SNR) value. An

ARQ scheme incorporating channel gain monitoring (ARQ-CGM) is proposed,

whose IAPEO requirement can be satisfied at any SNR value with the right

channel gain threshold. The IAPEO performances of ARQ-CGM with different

retransmission protocols are related to the conventional data link layer performance

vii
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measures, i.e. average accepted packet error probability, throughput and goodput.
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Chapter 1

Introduction

Wireless voice and data communication has become an increasingly vital part of our

modern daily life. Signals in wireless communication experience path loss, shadowing

and multipath fading effects. We focus here on the small-scale multipath fading

effect, which causes rapid fluctuation in the signal over a short period of time or

short travel distance, where the effects of path loss and shadowing are ignored.

Multipath fading causes a change in the signal amplitude and phase. In the case

of moving transmitter, receiver or moving objects in the environment, the signal

frequency is affected due to Doppler shift. The fading channel is classified as fast

fading or slow fading accordingly. Signals with large bandwidth may experience

multipath delay spread. Thus, the fading channel is classified as frequency selective.

Otherwise, the channel is considered flat.

Just like in any communication, two fundamental research issues in wireless

communication are receiver design and performance analysis. The objective

of receiver design is to find an optimum receiver structure that minimizes the

probability of detection error. Receiver design depends on the channel model and

the knowledge of the channel statistics or the channel state information (CSI) at

the receiver. There are many fading models, e.g. Rayleigh fading, Rician fading

and Nakagami-m fading, each with one or more fading parameters. The receiver

may have perfect, partial or no knowledge of the instantaneous CSI, the channel
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1. Introduction

model and the fading parameters. Different detection techniques are designed,

e.g. coherent detection, differential detection, sequence detection, depending on the

channel model and receiver knowledge [1–6]. As the channel model may change due

to mobility, there exists the need for a robust and simple receiver that applies to all

channel models and is easy to implement. As our demand on the data rate increases

and so does the signal spectrum, the fading channel changes from flat or frequency

nonselective to frequency selective. We are faced with the additional challenge of

the frequency selectivity in receiver design. However, in general, receiver techniques

developed for flat fading, e.g. diversity reception, can be extended to frequency

selective fading. Therefore, we focus on the receiver design for flat fading in this

thesis.

Similarly, in the performance analysis for flat fading channels, there remain

many unsolved problems. We want to obtain the performance in a simple closed

form, such that it is easy for system designers to specify required SNR to meet a

certain level of performance. The most commonly used performance measures for

fading channels are average bit error probability (ABEP) and average symbol error

probability (ASEP). They are obtained by averaging the instantaneous values, i.e.

instantaneous BEP (IBEP) and instantaneous SEP (ISEP), which are equivalent

to BEP and SEP over additive white Gaussian noise (AWGN) channels, over

the fading distribution. As receivers are classified into coherent receivers and

differential/noncoherent receivers, we look into the performance of coherent receivers

and differential/noncoherent receivers separately. For coherent receivers, the IBEP

and ISEP usually involve the Gaussian Q-function, or integrals of exponential

functions. Thus, averaging the IBEP/ISEP over fading may not result in a closed

form. For example, the average BEP of M -ary phase shift keying (MPSK) and

M -ary differential phase shift keying (MDPSK) over arbitrary Nakagami-m fading

involves special functions [7]. In such cases, we need simple and tight closed-form

bounds that can be averaged over fading. For differential/noncoherent receivers,

existing general expressions on error performance involve special functions including
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1.1 Receiver Design

the Marcum Q-function and the modified Bessel function of the first kind, or

integrals [8,9]. These forms are not convenient for computation or further analysis.

Expressions involving only elementary functions are desired.

We also observe that, for high data rate transmission or burst mode

transmission, ABEP or ASEP does not give a full picture of the quality of service

that the user experiences over time. As average metrics are obtained by averaging

the instantaneous values over all possible values of the fading distribution, the use

of a single average metric loses instantaneous information. Moreover, ABEP and

ASEP are performance measures of the physical layer. Conventionally, data link

layer protocols and higher layer protocols are often analyzed based on a two-state

Markov chain model of the physical layer performance [10,11]. The model assumes

only two states of the physical layer performance, i.e. good or bad. There is no

direct mapping of the physical layer performance metrics into the protocol analysis

framework. This makes cross layer performance analysis and cross layer design

difficult. Therefore, new physical layer performance measures are needed for higher

layer performance analysis.

In this chapter, we first give an overview of receiver design in wireless

communication and our research objective in robust receiver design in Section 1.1.

We then give an overview of performance analysis in wireless communication and

our detailed research objectives in this area in Section 1.2. In Section 1.3, we give

a summary of our main contributions in the two areas. Finally, we present the

organization of the thesis in Section 1.4.

1.1 Receiver Design

In a fading channel, the received signal is corrupted by channel fading as well

as AWGN. To overcome the effect of the channel gain, one approach of coherent

detection is to estimate the channel gain accurately and then compensate for it

before symbol-by-symbol data detection. Estimation of the fading gain is referred

to as channel estimation, or extraction of CSI. The decision-feedback method in
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[1–3] performs channel estimation using previous data decisions. It works well at

high SNR where decision errors are rare, but it suffers from error propagation at

low SNR. Another widely used channel estimation method is pilot-symbol-assisted

modulation (PSAM) [4]. It first estimates the fading gain using pilot symbols

periodically inserted into the data sequence, and then performs symbol-by-symbol

data detection. To improve the performance by obtaining more accurate channel

estimation, more frequent or longer pilot sequences can be used, but this reduces

bandwidth and power efficiencies. Alternatively, pilot symbols that are more distant

to the symbol(s) being detection can be used, but this incurs longer detection delay.

Differential encoding and differential detection is a viable alternative that does not

require CSI information. However, it incurs substantial performance loss compared

to coherent detection. For example, the performance of binary differential phase

shift keying (BDPSK) is 3dB worse than that of coherent BPSK over Rayleigh

fading [8]. The above-mentioned receivers are symbol-by-symbol receivers.

An example of sequence detectors is the multiple symbol differential detector

(MSDD) over static fading in [5,6]. It does not require CSI information or knowledge

of parameters of the fading channel. However, it is derived by averaging the

likelihood function over Rayleigh fading before making the data decision. Therefore,

knowledge of the channel model, i.e. Rayleigh fading, is required. Moreover, MSDD

for different channel models, e.g. AWGN, Rayleigh and Rician fading, have different

forms.

Due to mobility, the applicable channel model may change over time, e.g.

when the user in a high speed vehicle moves from an urban environment to a

suburban environment. The optimum receiver designed for one particular fading

environment may not perform well for another fading environment. In addition,

the channel statistics may change so quickly that the channel estimation method

cannot produce a good channel estimate in time. Our previous experience in [1, 2]

and the works of [12, 13] show that, for a receiver which requires knowledge of

channel statistics, an imperfect knowledge of channel statistics causes degradation
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in the performance. Therefore, there is the need for a robust receiver that does not

require CSI information or knowledge of the fading statistics.

Joint data sequence detection and blind channel estimation is an alternative

approach for receiver design. It is shown in [14] that this approach works well with

joint data sequence detection and carrier phase estimation on a phase noncoherent

AWGN channel. No knowledge of the channel statistics is required at the receiver

and no explicit carrier phase estimation is required in making the data sequence

decision. Being a sequence detector, the performance of the sequence detector

in [14] improves monotonically as the sequence length increases, and approaches

that of coherent detection with perfect CSI, in the limit as the sequence length

becomes large. This work shows that the joint data sequence detection and blind

channel estimation approach is a successful approach in designing robust receivers.

Therefore, we can apply this approach in designing a robust receiver for the fading

channel, that does not require CSI information or fading statistics.

1.2 Performance Analysis

For performance analysis, simple closed-form expressions are always preferred for

efficient evaluation. In cases where closed-form expressions are not available, finite

range integrals that can be computed efficiently are often resorted to. Lastly,

performance can always be obtained by simulation. However, for further analysis

such as parameter optimization which involves iterative algorithms, complicated

expressions and simulation would incur intensive computation and are often not

practical. Therefore, simple closed-form exact expressions are always desired.

Alternatively, closed-form bounds and approximations can be used.

A communication system is usually divided into several layers for design and

performance analysis. In this thesis, we consider the physical layer and and the data

link layer.

The commonly used physical layer performance measures for fading channels

are ABEP and ASEP. As the received signal strength is variable, ABEP and ASEP
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are computed by averaging the IBEP conditioned on the instantaneous SNR (or the

fading gain), over the distribution of the instantaneous SNR (or the fading gain).

Receivers are generally classified into two categories: coherent receivers and

differential/noncoherent receivers. For coherent receivers, it is well-known that the

Gaussian Q-function characterizes their error performance over the AWGN channel.

The BEP and SEP performances over AWGN are equivalent to IBEP and ISEP

for fading. The Gaussian Q-function is conventionally defined as the area under

the tail of the probability density function (PDF) of a normalized (zero mean, unit

variance) Gaussian random variable. An alternative form of the GaussianQ-function

was discovered by Craig [15], which is a finite range integral of an exponential

function. Due to the two integral forms of the Gaussian Q-function, a lot of work

has been done to compute it efficiently [16–24]. The tight bounds in the literature

are usually in forms that cannot be averaged over fading distributions easily [16,21,

23]. Bounds that are in very simple forms and can be averaged over fading easily

are usually quite loose [24]. On the other hand, the SEP performances of a few

two-dimensional modulation schemes, e.g. MPSK and MDPSK, are in the form of

a finite range integral of an exponential function, which is similar to the Craig’s

form of the Gaussian Q-function. The averages of these SEP performances over

fading do not always reduce to closed forms. For example, the SEP performances of

MPSK and MDPSK over Rayleigh fading are given in closed form in [25]. Their SEP

performances over Nakagami-m are found in closed form only for positive integer

values of m in [7, 26], while for arbitrary m they are expressed in terms of Gauss

hypergeometric function and Lauricella function [27, 28]. Their SEP performances

over Rician fading are found in finite range integrals [29]. Therefore, we aim to find

bounds on integrals of exponential functions that are in simple forms, such that

the average performances of various coherent receivers over fading can be obtained

easily. Though approximations and upper bounds are used more often, lower bounds

are also useful, as the combined use of upper and lower bounds shows the tightness

of the bounds, without comparing the individual bounds with numerical integration

6



1.2 Performance Analysis

of the exact value.

Having reviewed the average performances of coherent receivers, we now look

into the performances of differential and noncoherent receivers. The performance

of many differential or noncoherent receivers have been obtained individually.

For example, the performances of MDPSK and FSK with single or multichannel

reception over AWGN or fading are given in [8, 30–37]. The decision metrics of

these differential and noncoherent receivers are in quadratic forms. Therefore, we

refer to receivers with quadratic decision metrics as quadratic receivers. Ma and Lim

derived the MGF of the decision metrics of DPSK and NCFSK and obtains from

the cumulative density function a BEP expression involving an infinite multi-level

summation [37]. It does not show, however, how to generalize this approach to

a general quadratic receiver. Only a few publications obtain general expressions

on the error performance of a general quadratic receiver. Using a characteristic

function method, Proakis finds an expression involving the first-order Marcum

Q-function and the modified Bessel functions of the first kind [8, eq. (B-21)].

Hereafter, we refer to [8, eq. (B-21)] as the Proakis’ expression. The two special

functions in the Proakis’ expression are usually expressed as integrals or infinite

series summations. Therefore, the Proakis’ expression is not easy to compute. Simon

and Alouini express the Proakis’ expression for single channel reception over AWGN

in a finite range integral form [9]. The average of the finite range integral over the

fading distribution results in another finite range integral with integrand in terms of

elementary functions. Numerical integration is required to compute it. As both the

Proakis’ expression and the Simon and Alouini’s expression for general quadratic

receivers are not in simple forms, we aim to derive general expressions that involve

only elementary functions.

Having reviewed the average physical layer performance over fading, we now

move on to the data link layer. For high data rate communication, a single fade

may last over the duration of a large number of consecutive bits, and therefore,

result in the loss of these data. In a network scenario, it would result in poor
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upper layer performance [38]. ABEP as an average metric, does not reflect the poor

instantaneous quality of service (QoS) experienced by the user over such long fades,

nor do they reflect how often such poor QoS occurs. However, many upper layer

protocols are analyzed as a function of a single physical layer performance measure.

For example, [39, Fig. 22.4] shows the throughput of three pure ARQ schemes as

a function of ABEP. These results do not give a full picture of how upper layer

protocols perform with high data rates over a time-varying fading channel. Cross

layer analysis provides more information by considering physical layer parameters

when analyzing protocol performance. Reference [40], for example, analyzes the

impact of channel estimation error and pilot energy allocation on the throughput,

goodput and reliability of pure ARQ schemes. These parameters, however, do

not provide a good and concise indication of the physical layer performance.

References [41–43] use the packet error outage (PEO) probability as the performance

measure for log-normal shadowing channels. This PEO probability is the probability

that the average packet error probability (instantaneous packet error probability

averaged over the fading gain distribution) exceeds an APEP threshold. Thus, this

PEO probability is calculated using the statistical distribution of the shadowing

parameter. Hence, [41–43] address the system outage caused by the shadowing effect

which occurs over a large number of measurement locations [44], but not yet reflect

the instantaneous performance affected by multipath fading. We aim to propose

new physical layer performance measures suitable for higher layer protocol analysis

of a practical system. We also intend to improve on existing protocols based on new

performance measures.

1.3 Main Contributions

1.3.1 Receiver Design with No CSI

We want to design a robust receiver that works well in many channels without CSI

information or knowledge of the channel statistics. It has been shown that the
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joint data sequence detection and blind channel estimation approach works well in a

phase noncoherent AWGN channel [14]. Therefore, we apply the joint data sequence

detection and blind channel estimation approach to single-input-multiple-output

(SIMO) fading channels here, and derive the maximum-likelihood sequence detector

(MLSD) for quadrature-amplitude-modulated (QAM) signals. Similar to the

detector in [14], the detector for QAM over SIMO fading channels does not require

explicit channel estimation in making the data sequence decision. Therefore,

we name it MLSD with no CSI (MLSD-NCSI). As an imperfect knowledge of

channel statistics causes degradation in the performance of a receiver which

requires knowledge of channel statistics, we make the simplifying assumption that

MLSD-NCSI has no prior knowledge of channel statistics. We also assume that the

fading gain remains static over the sequence duration. This assumption is valid for

low fade rates and is common in the wireless communication literature [45–47].

By deriving an exact closed-form pairwise error probability expression for the

detector over slowly time-varying Rayleigh fading, we show that its performance

approaches that of coherent detection with perfect CSI when the detection block

length L becomes large. However, the computational complexity of MLSD-NCSI

increases exponentially with L. Therefore, to detect a very long sequence of

S symbols over a channel which can be assumed to remain static only over L

symbols, where S ≫ L, while keeping computational complexity low, we propose

three pilot-based algorithms: the trellis search algorithm, pilot-symbol-assisted

block detection and decision-aided block detection. We show that the algorithms

resolve phase and divisor ambiguities easily. We compare the three algorithms with

block-by-block detection algorithms, and show the former’s advantages in complexity

and performance.

1.3.2 Performance Analysis

We first analyze the the average performance of coherent receivers over fading.

Noticing that the Gaussian Q-function can be expressed as integrals of exponential
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functions, we propose to use the convexity property of the exponential function

and apply the Jensen’s inequality. We obtain three families of exponential upper

and lower bounds on the Gaussian Q-function. The tightness of the bounds can be

improved by increasing the number of exponential terms. The bounds are in simple

forms and they can be averaged over fading. This method is also applicable to finite

integrals of the exponential function. It is further applied to the two-dimensional

Gaussian Q-function, SEP of MPSK, MDPSK and signals with polygonal decision

regions over AWGN channel, and their averages over general fading. The tightness

of the bounds are demonstrated.

For quadratic receivers, their decision metrics are noncentral Chi-square

distributed. By expressing the noncentral Chi-square distribution as a

Poisson-weighted mixture of central Chi-square distributions, we obtain an exact

expression of the error performance of quadratic receivers. This expression is in

the form of a series summation involving only rational functions and exponential

functions. The BEP performances of optimum and suboptimum BDPSK and

QDPSK receivers over fast Rician fading with Doppler shift are obtained using the

general expression. Numerical computation using our general expression is faster

than existing expressions in the literature.

So far, the average performance analysis over fading is for the physical layer.

We now move on to the data link layer and analyze the physical layer performance

from the perspective of the data link layer. For high data rate or burst mode

transmissions, we propose to use the probability of instantaneous bit error outage

(IBEO) as a performance measure. It is defined as the probability that the IBEP

exceeds an IBEP threshold. For a given modulation scheme, the IBEO probability is

mathematically equivalent to the probability that the instantaneous SNR falls below

an SNR threshold required for the system to operate [48, chap.1]. However, if the

SNR outage probability is used as a performance measure, the SNR threshold values

for different modulation schemes should be different. The IBEO probability uses the

same IBEP threshold regardless of modulation scheme used, and, therefore, is a fair
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performance measure for comparison. The IBEO probability is also mathematically

equivalent to the capacity outage probability [49] defined as the probability that the

transmission rate is above the error-free Shannon capacity [50]. In practice, even

when a system transmits at a rate below the Shannon capacity using a capacity

achieving code, it still makes decision errors and the error performance is not related

to the capacity outage probability. We want to analyze the outage performance of

a specific practical system, e.g. ARQ with BPSK with channel estimation errors.

The capacity outage probability is not useful in this analysis.

The IBEO probability has been considered for BPSK over Rayleigh fading in

[51] and Nakagami-m fading in [52], assuming perfect knowledge of the CSI. However,

in practice, CSI is obtained using pilots that require energy. The quality of CSI,

in terms of channel estimation error, depends on the pilot energy. In this thesis,

we analyze the impact of channel estimation error on the outage performance over

Rayleigh fading channels. Given total energy and allowable bandwidth expansion,

we obtain the optimum allocation of pilot and data energy in a frame that minimizes

the outage probability.

We now proceed to performance analysis of data link layer protocol and

protocol design. We extend the outage concept to packet transmission with

ARQ schemes over wireless channels, and propose the probability of instantaneous

accepted packet error outage (IAPEO). It is observed that, in order to satisfy a

system design requirement of maximum tolerable IAPEO, the system must operate

above a minimum SNR value. An ARQ scheme by incorporating channel gain

monitoring (ARQ-CGM) is proposed, whose IAPEO requirement can be satisfied

at any SNR value with the right channel gain threshold. The IAPEO performances

of ARQ-CGM with selective repeat (SR-ARQ), stop and wait (SW-ARQ) and go

back N (GBN-ARQ) retransmission protocols are related to the data link layer

performance measures, i.e. average accepted packet error probability, throughput

and goodput.
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1.4 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we derive the robust MLSD-NCSI detector and propose three

pilot-based algorithms to detect very long sequences over time-varying fading. We

compare our algorithms with existing block-by-block detection algorithms, in terms

of detection delay, complexity and performance.

We then go into performance analysis in the next chapters. In Chapter 3, we

propose to use the Jensen’s inequality to lower bound the Gaussian Q-function, and

obtain two families of closed-form lower bounds.

In Chapter 4, a family of tight closed-form lower bounds on the finite range

integrals of exponential functions is obtained. It is applied to the SEP of MPSK,

MDPSK, signals with polygonal decision regions, and closed-form simple bounds are

obtained.

In Chapter 5, a new expression of the performance of general quadratic receivers

is obtained. It is applied to optimum and suboptimum BDPSK and QDPSK

receivers over fast Rician fading with Doppler shift.

In Chapter 6, the outage probability is proposed as a performance measure for

high data rate transmission or burst mode transmission over time-varying fading.

In Chapter 7, we propose ARQ with channel gain monitoring that has higher

reliability in time-varying channel than conventional ARQ schemes.

Finally, the concluding remarks are drawn in Chapter 8 and possible extensions

of the work in this thesis are recommended.
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Chapter 2

Sequence Detection Receivers with

No Explicit Channel Estimation

A signal transmitted over a wireless channel is perturbed by an unknown, complex,

fading gain in addition to AWGN noise. PLL based coherent detection requires long

acquisition times and, therefore, is not suitable for channels with significant time

variations or for burst mode transmission. Differential encoding and differential

detection is a viable alternative that does not require explicit CSI. However, it

incurs substantial performance loss compared to coherent detection. For example,

the performance of BDPSK is 3dB worse than that of coherent BPSK over Rayleigh

fading or AWGN [8]. Joint data sequence detection and (blind) channel estimation is

an alternative approach for receiver design. The channel is assumed to remain static

over L symbol intervals. We showed in [14] that this approach works well with joint

data sequence detection and carrier phase estimation on a phase noncoherent AWGN

channel. We extend this approach here to single-input-multiple-output (SIMO)

fading channels, and obtain the maximum-likelihood sequence detector with no CSI

(MLSD-NCSI) for QAM signals with diversity reception. It is also known as the

generalized likelihood ratio test (GLRT) detector [53]. MLSD-NCSI does not require

explicit channel estimation or knowledge of the channel statistics in making the data

sequence decision. Multiple symbol differential detection (MSDD) over static fading
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in [5] has a form similar to our MLSD-NCSI, but it requires perfect knowledge of

the channel statistics. The works of [54] and [6] take the same approach as [5].

Using some approximations, a detector is obtained in [6] for Rayleigh fading that

does not require knowledge of the channel statistics. However, [6] does not explain

why the same detector is also robust over Rician fading. We show here that the

detector of [6] is equivalent to MLSD-NCSI, and that its robustness is due to joint

data sequence detection and channel estimation.

The pairwise error probability (PEP) of MLSD-NCSI (GLRT) has been

analyzed in [53, 55]. PEP bounds over a phase noncoherent AWGN channel are

obtained in [53]. The divisor ambiguity error floor is obtained in [55]. We obtained

in [14] an approximate PEP over a phase noncoherent AWGN channel. Here, we

derive a new, exact, closed-form PEP expression over time-varying Rayleigh fading.

For static fading or at low fade rates, the PEP performance improves with L and

approaches that of coherent detection with perfect CSI (PCSI) when L becomes

large. The value of L, however, is limited by the channel fade rate. In practice, we

are concerned with detection of a very long sequence of S symbols while the channel

remains static only over L symbol intervals, where we have S ≫ L. One approach is

to divide the S-symbol sequence into blocks of L symbols and perform block-by-block

detection using MLSD-NCSI. The decision on a block of L symbols is independent

of previous and subsequent blocks. This decision process is clearly not optimal

for a slowly time-varying channel that has channel memory over more than one

block interval. Algorithms such as sphere decoding [56,57] and lattice decoding [58]

are based on this approach, and aim to reduce the computational complexity of

block-by-block detection via exhaustive search. An alternative approach for long

sequence detection is to make use of the continuity of the channel fading process by

using more than L adjacent symbols in each decision. Its performance is expected to

be better than block-by-block detection. We consider here three algorithms based

on this approach: the trellis-search algorithm, pilot-symbol-assisted block detection

(PSABD), and decision-aided block detection (DABD). Our aim is to compare
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the performance and complexity of these three algorithms with algorithms for

block-by-block detection, namely, sphere decoding [56,57] and lattice decoding [58],

which are simplified approximations to block-by-block detection using exhaustive

search.

The computational complexity of block-by-block detection using exhaustive

search grows exponentially with L, thus, rendering detector implementation usually

impractical for large values of L that are permitted by the channel fade rate. MSDD

for DPSK based on sphere decoding [56, 57] and combinatorial geometry [59] over

time-varying fading has a complexity still exponential in L for large L. Lattice

decoding algorithms for QAM in [58] have complexities of O(L2 logL). But, still, the

average complexity per symbol of all these algorithms increases with L. Therefore,

the choice of L remains a trade-off between complexity and additional performance

gains. The performance of our three pilot-based algorithms can be improved by

increasing L, but without an increase in the complexity.

Another key feature of our algorithms is the use of pilot symbols or the

trellis-search algorithm to resolve phase and divisor ambiguities of MLSD-NCSI.

In comparison, sphere decoding and lattice decoding rely on differential encoding

to resolve the ambiguities [56–58]. Since they are approximations of block-by-block

detection using exhaustive search, their error performance is lower bounded by that

of the latter. Therefore, we need only compare our pilot-based algorithms with

block-by-block detection using exhaustive search and differential encoding. We will

show that the use of pilot symbols or the trellis-search algorithm is more efficient

than using differential encoding in resolving the ambiguities, and leads to better

performance.

This chapter is organized as follows. In Section 2.1, MLSD-NSCI on an

unknown flat SIMO channel is derived and compared with MSDD. In Section

2.2, PEP performance over time-varying Rayleigh fading is analyzed. The PEP

analysis result motivates the three pilot-based algorithms we introduce in Section

2.3. The detection delay, computational complexity and BEP performances of the
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three algorithms are compared in Section 2.4. Conclusions are made in Section 2.5.

2.1 Maximum Likelihood Sequence Detector with

No Channel State Information (MLSD-NCSI)

Assume that the channel gain remains constant over the interval of L symbols. We

denote a baseband L-symbol uncoded transmitted block as s = [s(0) s(1) ... s(L−

1)]T , where s(k) is the transmitted symbol for the kth symbol interval [kT, (k+1)T ),

and T is the symbol duration. The received signal over the unknown channel at the

ith antennas is

ri = his+ ni. (2.1)

The gain hi is the complex path gain between the transmitter and the ith receive

antenna, i.e. the ith path, among a total of N paths. The path gains {hi}Ni=1 are

mutually independent of one another. The noise vector ni = [ni(0) ni(1) ... ni(L−

1)]T is the complex AWGN in the ith path over the L-symbol interval, with

E[ni(k)] = 0 and E[|ni(k)|2] = N0. The noise vectors {ni}Ni=1 are all mutually

independent of one another, and also independent of the path gains {hi}Ni=1. The

total average received SNR per bit is defined as

γb = Nγc = N
E[|hi|2]Eb

N0

= N
2σ2Eb

N0

, (2.2)

where γc is the average SNR at each receiver branch.

We can denote the received signal at all N antennas in matrix form as

R = shT +N, (2.3)

where RL×N = [r1, ..., rN ], hN×1 = [h1 ... hN ]
T , and NL×N = [n1, ...,nN ].

Under the i.i.d. complex AWGN assumption on the noise matrix N, we have

p(R|s,h) = 1

(πN0)NL
exp

(
−∥R− shT∥2F

N0

)
, (2.4)
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where ∥ ∥F denotes the Frobenius norm of a matrix [60]. We want to design an ML

receiver which decides on the sequence s and channel gain h that jointly maximize

p(R|s,h), i.e.

(̂s, ĥ) = argmax
s,h

p(R|s,h). (2.5)

It is clear from (2.4) that (2.5) is equivalent to

(̂s, ĥ) = argmin
s,h

∥R− shT∥2F

= argmin
s,h

N∑
i=1

∥ri − his∥2. (2.6)

Conditioned on a sequence hypothesis s, we first minimize
∑N

i=1 ∥ri − his∥2 with

respect to the channel gain h. Due to the independence of {hi}Ni=1, this is equivalent

to minimizing each term

∥ri − his∥2 (2.7)

with respect to hi individually. Using the orthogonal projection theorem, the

quantity in (2.7) is minimized when the error vector ri − his is orthogonal to the

signal vector s, i.e.

(ri − his) · s = 0, (2.8)

where the inner product of two complex vectors is defined as x ·y =
∑

i xiy
∗
i = yHx.

Solving (2.8) gives the ML estimate ĥi(s) that minimizes the error term in (2.7) and,

hence, that in (2.6), corresponding to the sequence hypothesis s, i.e.

ĥi(s) =
sHri
∥s∥2

. (2.9)

Substituting (2.9), (2.6) becomes

ŝ = argmin
s

N∑
i=1

∥∥∥∥ri − sHri
∥s∥2

s

∥∥∥∥2. (2.10)

Expanding the metric in (2.10) and dropping terms independent of s, the MLSD

detection rule simplifies to

ŝ = argmax
s

λ(s) = argmax
s

∑N
i=1 |sHri|2

∥s∥2
. (2.11)
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2.2 PEP Performance Analysis

The detector (2.11) does not require explicit channel estimation or knowledge of

the statistics of h in making its data sequence decision ŝ. It is applicable to any flat

channel model, e.g. phase noncoherent AWGN, Rayleigh/Rician and Nakagami

fading. Our MLSD-NCSI is commonly known as the GLRT detector [53]. In

comparison, MSDD maximizes the probability p(r1, ..., rN |s), which is obtained by

averaging (2.4) over h [5] (and θ [6]). Therefore, knowledge of the channel statistics

is required. Moreover, MSDD detectors for different channel models, e.g. AWGN,

Rayleigh and Rician fading, have different forms [5, 6]. By assuming high SNR, we

can easily simplify the MSDD detector for Rayleigh fading to the MLSD-NCSI in

(2.11) [6]. Simulation results show that the performance of MLSD-NCSI [6, eq. (23)]

with differential encoding over Rayleigh fading is almost equal to that of MSDD with

perfect knowledge of the channel statistics [6, eq. (22)]. In addition, it is observed

in [6] that the performance of MLSD-NCSI with differential encoding over Rician

fading [6, eq. (23)] is almost equal to that of MSDD with perfect knowledge of the

channel statistics [6, eq. (18)], although no explanation is given. The derivation of

(2.11) in this section gives the mathematical proof of the optimality and robustness of

MLSD-NCSI regardless of SNR value, while its equivalence to MSDD in performance

has been shown in [6].

2.2 PEP Performance Analysis

In this section, we use two methods in the two subsections to show that the PEP

performance of MLSD-NCSI with arbitrary QAM signals approaches that of the

coherent MLSD detector with perfect CSI, when the sequence length L becomes

large. As the PEP probability is equivalent to the node error probability of two

paths merging in a trellis structure, which will be discussed in full details in Section

2.3, it motivates us to propose the algorithms in Section 2.3.
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2.2 PEP Performance Analysis

2.2.1 PEP Performance over General Blockwise Static

Fading

We first analyze the PEP performance of MLSD-NCSI with arbitrary QAM signals

over a blockwise static fading channel with arbitrary fading statistics. Suppose

that the actual transmitted sequence is s0 = [s0(0) s0(1) ... s0(L − 1)]T and s1 =

[s1(0) s1(1) ... s1(L− 1)]T is an alternative sequence. We will show that, for a fixed

fading gain ∥h∥ (which is not known to the detector (2.11) ), the probability of the

event that the detector (2.11) decides in favor of s1 given that s0 is sent and s1 is

the only other alternative, approaches the value

Pc(ε
∣∣s = s0) = Q

√∥s0 − s1∥2
2N0

∥h∥2

 , (2.12)

as the sequence length L becomes large. The PEP for detector (2.11) is given by

P (ε
∣∣s = s0) = P

(
∥sH0 R∥2

∥s0∥2
<

∥sH1 R∥2

∥s1∥2
∣∣s = s0

)
= P

(∥∥∥∥∥s1∥(∥s0∥2h+NT s∗0)

∥∥∥∥2 < ∥∥∥∥∥s0∥(sH1 s0h+NT s∗1)

∥∥∥∥2∣∣s = s0

)
.

(2.13)

Using the identity: ∥x∥2 − ∥y∥2 = Re[(x+ y) · (x− y)], (2.13) simplifies to

P (ε
∣∣s = s0) = P

(
Re{

[
∥s0∥3(c0h+ v0)

]
·
[
∥s0∥3(c1h+ v1)

]
} < 0

∣∣∣∣s = s0

)
= P

(
Re
[
c∗1c0∥h∥2 + c0v

H
1 h+ c∗1h

Hv0 + vH
1 v0

]
< 0
∣∣s = s0

)
. (2.14)

Here,

c0 = (∥s0∥∥s1∥+ a+ jb)/∥s0∥2,

c1 = (∥s0∥∥s1∥ − a− jb)/∥s0∥2,

v0 = NT (∥s1∥s∗0 + ∥s0∥s∗1)/∥s0∥3,

v1 = NT (∥s1∥s∗0 − ∥s0∥s∗1)/∥s0∥3,

(2.15)
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2.2 PEP Performance Analysis

where

a = Re[sH1 s0],

b = Im[sH1 s0].
(2.16)

The elements of v0 are i.i.d. circularly symmetric Gaussian random variables,

each with variance 2(∥s1∥
2

∥s0∥2 + ∥s1∥
∥s0∥

a
∥s0∥2 )N0/∥s0∥2, while the elements of v1 are i.i.d.

circularly symmetric Gaussian random variables, each with variance 2(∥s1∥
2

∥s0∥2 −
∥s1∥
∥s0∥

a
∥s0∥2 )N0/∥s0∥2. It is easy to show that

x0 = c∗1h
Hv0

x1 = c0v
H
1 h

(2.17)

are independent circularly symmetric Gaussian random variables. Thus,

x = Re[x0 + x1] (2.18)

is a zero-mean Gaussian random variable with variance 2∥s1∥2
∥s0∥2 (

∥s1∥2
∥s0∥2 −

a2−b2

∥s0∥4 )∥h∥
2N0/∥s0∥2. As L becomes large so that ∥s0∥ and ∥s1∥ also become large,

the variance of x decays as 1/∥s0∥2, while

y = Re [c∗1c0] ∥h∥2 (2.19)

does not decay with 1/∥s0∥2 nor with 1/∥s1∥2. Finally, it is easily to show that

Re
[
vH
1 v0

]
= Re

[
N∑
i=1

v∗1(i)v0(i)

]
(2.20)

is zero-mean with variance proportional to 1/∥s0∥4. Thus, when L is large, Re[vH
1 v0]

in (2.14) can be neglected in comparison with x and y, and (2.14) simplifies to

P (ε
∣∣s = s0) ≈ P

(
x < −y

∣∣s = s0
)
. (2.21)

We finally arrive at the sequence PEP of

P (ε
∣∣s = s0) ≈ Q

√ (∥s0∥2∥s1∥2 − a2 − b2)2

2∥s1∥2 (∥s0∥2∥s1∥2 − a2 + b2)N0

∥h∥2

 . (2.22)

20



2.2 PEP Performance Analysis

Reorder elements of the sequences such that s0 = [dT
0 , c

T ]T and s1 = [dT
1 , c

T ]T ,

where d0 and d1 contain all the elements in which s0 and s1 differ. It is easy to

show that

sH1 s0 = dH
1 d0 + ∥c∥2. (2.23)

As L becomes large while d0 and d1 remain the same, ∥c∥2 also becomes large. We

obtain from (2.22) that:

P (ε
∣∣s = s0) −−−→

L→∞
Q

√∥d0 − d1∥2
2N0

∥h∥2

 . (2.24)

The quantity on the right hand side of (2.24) is the PEP Pc(ε|s = s0) in (2.12) of the

coherent MLSD detector with perfect CSI, under the assumption that the difference

between s0 and s1 remains fixed.

2.2.2 PEP Performance over Time-varying Rayleigh Fading

We now analyze the PEP performance of MLSD-NCSI over slowly time-varying

Rayleigh fading, where the fading gain remains constant over one symbol interval.

Let hi(k) denote the fading gain at the ith path over the kth symbol interval. The

received symbol in the ith path at the kth symbol interval over time-varying Rayleigh

fading is given by

ri(k) = hi(k)s(k) + ni(k). (2.25)

The fading processes in different paths are assumed mutually independent, i.e.

{hi(k)}k and {hj(l)}l are independent for i ̸= j,∀k, l. The autocorrelation of the

fading process in any path is given by

E[hi(k + n)h∗
i (k)] = 2σ2ρ(n). (2.26)

Note that even in the presence of uniformly distributed phase offset θ, hie
jθ and hi

are statistically identical.
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2.2 PEP Performance Analysis

From the decision rule (2.11), the probability of the event that the detector

decides in favor of s1 given that s0 is sent and s1 is the only other alternative, is

given by

P (ε|s = s0) = P

(∑N
i=1 |sH0 ri|2

∥s0∥2
<

∑N
i=1 |sH1 ri|2

∥s1∥2

∣∣∣∣s = s0

)

= P

(
N∑
i=1

∥s1∥2|sH0 ri|2 <
N∑
i=1

∥s0∥2|sH1 ri|2
∣∣∣∣s = s0

)
(2.27)

Using the identity:|x|2 − |y|2 = Re[(x− y)(x+ y)∗], (2.27) simplifies to

P (ε|s = s0) = P

(
N∑
i=1

Re
[(
sH−ri

) (
sH+ri

)∗]
< 0

∣∣∣∣s = s0

)
, (2.28)

where we have defined

s+ = ∥s1∥s0 + ∥s0∥s1

s− = ∥s1∥s0 − ∥s0∥s1.
(2.29)

Letting

X1i = sH−ri = xi + jyi

X2i = sH+ri = ui + jvi

(2.30)

(2.28) simplifies to

P (ε|s = s0) = P

(
Re

[
N∑
i=1

X1iX
∗
2i

]
< 0

∣∣∣∣s = s0

)

= P

(
N∑
i=1

xiui + yivi < 0

∣∣∣∣s = s0

)
. (2.31)

We now examine the statistics of {xi}Ni=1, {yi}Ni=1, {ui}Ni=1 and {vi}Ni=1. It is easy

to show that {xi}Ni=1 are i.i.d. zero-mean Gaussian random variables with variance

σ2
x = σ2

L−1∑
k=0

L−1∑
l=0

s∗−(k)s−(l)s0(k)s
∗
0(l)ρ(k − l) +

N0

2
∥s−∥2. (2.32)

Similarly, {yi}Ni=1 are i.i.d. zero-mean Gaussian random variables with variance

σ2
y = σ2

x. The sequences {xi}Ni=1 and {yi}Ni=1 are independent of each other. Similarly,
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2.2 PEP Performance Analysis

{ui}Ni=1 are i.i.d. zero-mean Gaussian random variables with variance

σ2
u = σ2

L−1∑
k=0

L−1∑
l=0

s∗+(k)s+(l)s0(k)s
∗
0(l)ρ(k − l) +

N0

2
∥s+∥2, (2.33)

and {vi}Ni=1 are i.i.d. zero-mean Gaussian random variables with variance σ2
v = σ2

u.

The sequences {ui}Ni=1 and {vi}Ni=1 are independent of each other. It can easily be

shown that xi, yi, ui and vi have cross-covariances

µxu = E
[
(xi − E[xi])(ui − E[ui])

]
µyv = E

[
(yi − E[yi])(vi − E[vi])

]
µxv = E

[
(xi − E[xi])(vi − E[vi])

]
µyu = E

[
(yi − E[yi])(ui − E[ui])

]
(2.34)

where

µxu = µyv = σ2

L−1∑
k=0

L−1∑
l=0

Re[s∗−(k)s+(l)s0(k)s
∗
0(l)]ρ(k − l)

+
N0

2
∥s0∥∥s1∥(∥s1∥ − ∥s0∥),

µxv = −µyu = σ2

L−1∑
k=0

L−1∑
l=0

Im[s∗−(k)s+(l)s0(k)s
∗
0(l)]ρ(k − l).

(2.35)

We next evaluate (2.31) conditioned on {ui}Ni=1 and {vi}Ni=1, i.e. P
(
ε|s =

s0, {ui}Ni=1, {vi}Ni=1

)
, where xi and yi remain independent Gaussian random variables

with means and variances

ηx|uv = E[xi

∣∣ui, vi] =
µxu

σ2
u

ui +
µxv

σ2
u

vi,

ηy|uv = E[yi
∣∣ui, vi] =

µxu

σ2
u

ui −
µxv

σ2
u

vi,

σ2
x|uv = σ2

y|uv =
σ2
xσ

2
u − µ2

xu − µ2
xv

σ2
u

.

(2.36)

Hence, conditioned on {ui}Ni=1 and {vi}Ni=1,

Z =
N∑
i=1

xiui + yivi (2.37)
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2.2 PEP Performance Analysis

is Gaussian distributed with mean and variance

ηZ|uv = E
[
Z
∣∣{ui}Ni=1, {vi}Ni=1

]
=

µxu

σ2
u

q,

σ2
Z|uv =

σ2
xσ

2
u − µ2

xu − µ2
xv

σ2
u

q,

(2.38)

where

q =
N∑
i=1

(u2
i + v2i ) (2.39)

is χ2
2N distributed with 2N degrees of freedom and PDF [8, eq. (2-1-110)]

pq(q) =
qN−1 exp(− q

2σ2
u
)

(N − 1)!(2σ2
u)

N
. (2.40)

Thus, we have

P
(
Z < 0

∣∣s = s0, {ui}Ni=1, {vi}Ni=1

)
= Q

(
ηz|uv/σz|uv

)
. (2.41)

Since

P
(
ε
∣∣s = s0, {ui}Ni=1, {vi}Ni=1

)
= P

(
Z < 0

∣∣s = s0, {ui}Ni=1, {vi}Ni=1

)
, (2.42)

we have

P
(
ε
∣∣s = s0, {ui}Ni=1, {vi}Ni=1

)
= Q

(√
µ2
xu

σ2
u(σ

2
xσ

2
u − µ2

xu − µ2
xv)

q

)
. (2.43)

As (2.43) turns out to be only a function of q, we can evaluate (2.31) by integrating

(2.43) over the χ2
2N distribution of q. This gives us [61, eq. (A13)]

P (ε
∣∣s = s0) =

∫ ∞

q=0

P
(
Z < 0

∣∣s = s0, q
)
fq(q)dq

=
1

2

[
1− µ

N−1∑
i=0

(
2i

i

)(
1− µ2

4

)i]
, (2.44)

where

µ =

√
µ2
xu

σ2
xσ

2
u − µ2

xv

. (2.45)

This PEP performance expression holds for arbitrary QAM signals.
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2.2 PEP Performance Analysis

In order to show that the PEP of MLSD-NCSI over blockwise static Rayleigh

fading approaches that of coherent detection in the limit as L becomes large, we

examine the case of BPSK as an example for simplicity. Since we assume static

fading, we have ρ(n) = 1, ∀n. For PSK signals, we have s(k) =
√
Ese

jϕ(k), where

Es is the energy per symbol, and ϕ(k) is the data modulated phase. We have

∥s0∥2 = ∥s1∥2 = LEs. Assuming that s0 and s1 differ only in l positions, we have

for BPSK that ∥s0 + s1∥2 = 4(L− l)Es, and ∥s0 − s1∥2 = 4lEs. Substituting these

and ρ(n) = 1 into (2.32)-(2.35) and (2.45), and after simplification, we obtain

µ =

√
lγ2

c

lγ2
c + (1 + l

L−l
)γc +

1
L−l

. (2.46)

As L increases while l is fixed, we obtain

µ −−−→
L→∞

√
lγc

lγc + 1
. (2.47)

The PEP of coherent detection with PCSI over static fading is given by [62, eq.

(2.35)]

Pc(ε
∣∣s = s0,h) = Q

√∥s0 − s1∥2
2N0

∥h∥2


= Q

(√
2lEb

N0

∥h∥2
)
. (2.48)

Letting q′ = ∥h∥2, which is χ2
2N distributed with PDF

pq′(q
′) =

q′N−1 exp(− q′

2σ2 )

(N − 1)!(2σ2)N
, (2.49)

the average coherent PEP is given by

Pc(ε|s = s0) =

∫ ∞

q′=0

Pc(ε
∣∣s = s0, q

′ = ∥h∥2)pq′(q′)dq′

=
1

2

[
1− µc

N−1∑
i=0

(
2i

i

)(
1− µ2

c

4

)i]
, (2.50)

where

µc =

√
l2σ2Eb

l2σ2Eb +N0

=

√
lγc

lγc + 1
. (2.51)
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Figure 2.1: Analytical PEP performance of sequence detection with BPSK

over Rayleigh fading, where s0 =
√
Es[1, ..., 1]

T , s1 =
√
Es[1, ..., 1,−1]T .

Comparing (2.51) and (2.47), we can rewrite (2.47) as µ −−−→
L→∞

µc. As (2.44) and

(2.50) are identical when µ = µc, it is proven that P (ε|s = s0) −−−→
L→∞

Pc(ε|s =

s0). This shows that MLSD-NCSI with BPSK can achieve coherent detection

performance without explicit CSI or knowledge of the channel statistics. The

detector only has to increase the detection block length L, while the number of

positions l where the alternative sequences differ remains fixed.

The analytical PEPs of MLSD-NCSI with BPSK, QPSK and 16QAM over

Rayleigh fading with various fade rates are obtained using (2.44) and (2.45) by

numerical calculation, and are shown in Fig. 2.1, Fig. 2.2 and Fig. 2.3 respectively.

We assume Clarke’s isotropic scattering model, where we have [63]

ρ(n) = J0(2πnfdT ) (2.52)
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Figure 2.2: Analytical PEP performance of sequence detection with QPSK

over Rayleigh fading, where s0 =
√
Es[1, ..., 1]

T , s1 =
√
Es[1, ..., 1, j]

T .

and i.i.d. paths. Here, fdT is the normalized Doppler frequency. As expected,

Fig. 2.2 and 2.3 show that the PEP performances of MLSD-NCSI with QPSK and

16QAM over static fading also approach that of coherent detection with PCSI, when

L becomes large. The additional performance gain by increasing L gets smaller when

L is already large.

The effect of time selectivity of the channel exhibits itself as an error floor,

as expected. This is due to the blockwise static fading assumption used in the

derivation of MLSD-NCSI, whereas the channel it is applied to is time-varying. For

low fade rates, the PEP results are close to those of static fading, as expected.

When the fade rate is high, error floors appear at high SNR. As MLSD-NCSI is

based on the blockwise static fading assumption, its application to the time-varying
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Figure 2.3: Analytical PEP performance of sequence detection with 16QAM

over Rayleigh fading, where s0 =
√
Es[3 + 3j, ..., 3 + 3j]T , s1 =

√
Es[3 + 3j, ..., 3 +

3j, 3 + j]T .

fading case even in the absence of noise may cause decision errors, resulting in the

irreducible error floor at high SNR. As the fade rate increases or L increases, the

channel varies more significantly within a detection block length, and the error floor

is higher and begins to appear at lower SNR. At low SNR however, the MLSD-NCSI

is robust, as its PEP performance is always close to that of static fading, because

the AWGN noise is dominant in causing decision errors.

Having obtained that the PEP performance of MLSD-NCSI approaches that of

coherent detection with PCSI when L increases if two sequences differ only in a few

positions, we aim to design algorithms to implement MLSD-NCSI where the error

probability in making each sequence decision is given by the PEP probability and
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where the possible sequences when making each decision share common segments.

2.3 Three Pilot-Based Algorithms

Analytical performance results in Section 2.2 show that, to improve sequence

detection performance, we need to increase the detection block length L. This,

however, increases computational complexity. The complexity of the MLSD-NCSI

detector in (2.11), when implemented by using exhaustive search, is exponential in

L, as the metric of ML sequences must be evaluated before a decision is made. The

algorithms proposed in [56, 58, 64–66] attempt to reduce complexity, but they still

require an average complexity per symbol that increases with L.

In addition, the MLSD-NCSI detector exhibits a detection ambiguity if one

possible sequence is a complex scalar multiple of another. References [5,6,53–59] all

resort to differential encoding with PSK or quadrant differential encoding with QAM

to overcome the phase ambiguity. However, this limits the asymptotic performance

of any sequence detector to that of coherent detection of differentially encoded

PSK/quadrant differentially encoded QAM [5, 54], which has 1-2dB performance

loss compared to coherent PSK/QAM. Divisor ambiguity results in an irreducible

error floor even in the absence of channel variation [55,58].

To implement the MLSD-NCSI on detection of very long sequences and to avoid

a complexity increasing with L, and also to resolve detection ambiguity, we propose

here three pilot-based algorithms: the trellis search algorithm, pilot-symbol-assisted

block detection and decision-aided block detection. The three pilot-based algorithms

adopt the general frame structure in Fig. 2.4 with P = 1 periodically inserted pilot

symbol and D consecutive data symbols per frame. The algorithms are used to

detect a long sequence of S = NF (P + D) + P symbols, where NF denotes the

number of frames in the sequence. The channel can be assumed static only over L

symbol intervals. In general, we have 1 ≪ L ≪ S.
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Figure 2.4: Transmitted sequence structure and detection blocks of PSABD

and DABD.

2.3.1 The Trellis Search Algorithm and Performance

It is well known that a convolutional/trellis-coded sequence can be decoded by doing

a trellis search. An uncoded sequence can also be decoded in a similar way. The

trellis search algorithm with uncoded M -PSK, for example, constructs a trellis with

M nodes at each time point k [67], each node labeled with the values assumed by

the data modulated phase ϕ(k), as in Fig. 2.5. All the branches leading into the

same node represent transmission of the symbol corresponding to that node at time

point k. At a time point when a known pilot symbol is sent, there exists only one

node corresponding to that pilot symbol, and all the branches leading to that node

represent the same pilot symbol. The trellis for general uncoded M -QAM can be

constructed in a similar manner.

Let s(k) = [s(0) ... s(k)]T denote the subsequence of the hypothesized

transmitted sequence s up to time k, and ri(k) = [ri(0) ... ri(k)]
T denote the
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Figure 2.5: Trellis diagram of uncoded QPSK.

subsequence of the received sequence ri at the ith receive antenna up to time k.

The metric of the path s(k) at time k is computed based on (2.11) with only the L

most recent symbols s̄(k, L) = [s(k−L+1) ... s(k)]T and the L most recent received

symbols r̄i(k, L) = [ri(k − L+ 1) ... ri(k)]
T in all antennas i = 1, ..., N , as

λ(s̄(k, L)) =

∑N
i=1 |s̄(k, L)H r̄i(k, L)|2

∥s̄(k, L)∥2
. (2.53)

Initially when there are fewer than L received symbols, i.e. 0 ≤ k ≤ L−1, the metric

λT (s(k)) is formed with all the available received signals s(k) instead of s̄(k, L).

In searching through the trellis for the sequence that maximizes the λT (s(k)),

we do not need to compute the metric of all hypothesized transmitted sequences.

Assume that two paths in the trellis, representing subsequences s0(k) and s1(k) of

the sequences s0 and s1, respectively, enter the same node at time k. The algorithm

compares the two metrics and discards the path representing s1(k) if λ(s̄0(k, L)) >
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λ(s̄1(k, L)), and vice versa. The same is repeated for all paths entering the same

node, and the path with the largest metric is saved as the survivor. Decision on a

data symbol is only made when the tails of all survivors have merged at the symbol.

It is clear that the same algorithm works for coded modulations in a similar manner.

Assume that s0 is the transmitted sequence and s1 is an alternative sequence.

Their subsequences s0(k) and s1(k) enter the same node at time k. The probability

that the algorithm chooses the path representing s1(k) at the node over s0(k), is

the PEP P (ε|s = s̄0(k, L)) given by (2.44) and (2.45) based on the subsequence

s̄(k, L). Although the metric λ(s̄(k, L)), as in [67] also, is not additive, it ensures

that the node error event probability, i.e. PEP P (ε|s = s̄0(k, L)), and therefore

the bit error probability, approaches that of PCSI as L becomes large, i.e. the

additivity of the metric is not crucial. The trellis search algorithm in [6, eq. (23)] is

similar, but its branch metric, although additive, is approximate – it is taken to be

λ(s̄(k, L))− λ(s̄(k− 1, L− 1)) for each branch. It is clear that the two trellis search

algorithms have the same order of complexity and detection delay. Our simulations

also show that they have similar performance with the same pilot-based structure.

Both algorithms can be simplified using reduced state sequence detection [68].

The per-survivor processing MLSD algorithm in [69] uses a similar trellis

structure. However, it first performs explicit channel estimation using the survivor

data symbols. It uses the Euclidean distance metric assuming PCSI to make decision

at each node. It is not shown analytically whether its error performance improves

with the sequence length. The application of the algorithm is ad hoc. In comparison,

the node error probability of our trellis-search algorithm is the PEP and has been

shown to improve with L. It is the theoretical foundation of the trellis-search

algorithm.

The BEP performance of the trellis-search algorithm over a phase noncoherent

AWGN channel is simulated and found to be consistent with results in [67]. The

BEP performances of the trellis-search algorithm with uncoded QPSK and 16QAM

over Rayleigh fading are shown in Fig.2.6 and Fig. 2.7, respectively. Similar to
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Figure 2.6: BEP performance of the trellis-search algorithm with QPSK over

Rayleigh fading.

PEP observations in Section 2.2.2, its BEP over static fading and also its BEP

over time-varying fading with very low fade rates improve with increasing L and

approaches coherent performance. This is achieved without an increase in the

computational complexity. However, if L is too large, an irreducible error floor

appears at high SNR with nonzero fade rates. With a larger fade rate, the error

floor is higher and begins to appear at lower SNR, as expected. On the other hand,

when the window size L increases while the fade rate remains fixed, the channel

varies more within a window length, and leads to a higher error floor at lower SNR.

Therefore, the choice of L depends on both the fade rate and the operating SNR

range. Any L thus chosen can be applied with the trellis-search algorithm as it does
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Figure 2.7: BEP performance of the trellis-search algorithm with 16QAM over

Rayleigh fading.

not affect the complexity at all. For N = 2 diversity reception, the error floor is

much lower as expected and therefore is not observed in the SNR range simulated

for fdT = 0.0001. Therefore, we can use larger L values than those in the single

diversity case.

2.3.2 Pilot-symbol-assisted Block Detection and

Performance

We propose here an alternative algorithm to implement the MLSD-NCSI by

introduction of pilot symbols into sequence detection. A sequence even with a large

L can be detected with a significantly reduced complexity if a sufficient number of
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Figure 2.8: BEP performance of PSABD with QPSK over static phase

noncoherent AWGN.

pilot symbols are included in each L-symbol detection.

Suppose that the channel gain remains static over F frame intervals. A

subsequence sP of length L is formed with (L − F ) consecutive data symbols and

the F/2 nearest pilot symbols on each sides, as shown in Fig. 2.4. The PSABD

receiver decides on ŝP where

ŝP = argmax
sP

λP (sP ) = argmax
sP

∑N
i=1 |sHP ri|2

∥sP∥2
. (2.54)

The PSABD detector in (2.54) decides on only (L−F ) consecutive data symbols in

the block detection of sP . Note that when only (L−F ) = 1 data symbol is detected

each time, PSABD is equivalent to PSAM [4] with the GLRT estimator in (2.9).

The BEP performances of PSABD with QPSK and 16QAM over a static phase
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Figure 2.9: BEP performance of PSABD with 16QAM over static phase

noncoherent AWGN.

noncoherent AWGN channel are shown in Fig. 2.8 and 2.9, respectively. The value

of D data symbols per frame does not affect error performance of PSABD, if the

channel is assumed static over F frames. Thus, we can use any D value with an

L, provided there are at least (L − F ) data symbols in F frames for at least 1

block detection, i.e. L − F ≥ FD. All schemes with different L values but the

same D share the same sequence structure, and hence, the same bandwidth and

power efficiencies, and therefore, can be compared fairly. Fig. 2.8 and 2.9 show

that PSABD in both cases outperforms PSAM with the same sequence structure,

and improves with increasing L, at the cost of computation complexity increasing

with (L−F ). For the same (L−F ) data symbols per block detection, performance

improves with F but without an increase in the complexity, which is similar to the
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Figure 2.10: BEP performance of PSABD with QPSK over Rayleigh fading.

case of PSAM. Therefore, given a design criterion of complexity, we can fix (L−F )

and further improve performance by increasing L and F at the same time. A larger

F can be realized, not by inserting more pilot symbols into the data sequence, but

by using more distant pilot symbols in block detection. This, however, results in a

longer detection delay, as in the case of PSAM.

Similar observations are made with PSABD over blockwise static Rayleigh

fading. The BEP of PSABD with QPSK and receive diversity N = 1, 2 are

shown in Fig. 2.10. The performance gain by increasing L is more significant with

multiple receive diversity at high SNR, whereas the performance gain by increasing

F while fixing (L−F ) is obvious in all diversity cases. Over time-varying fading, an

irreducible error floor appears at high SNR. As expected, the higher the fade rate,

the higher the error floor appearing at lower SNR. On the other hand, in the case

of the same fade rate and same (L− F ), the error floor increases not only with F ,
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but also with D. This is due to the fact that the L symbols involved in each block

detection span over F (D + 1) symbol duration. The larger F (D + 1) is, the more

significantly the channel varies within the duration, resulting in a higher error floor.

Therefore, the choice of P is a compromise between performance gain at low SNR

and the error floor at high SNR. Any choice of F does not affect complexity or the

increase in energy and bandwidth due to pilot symbols. The choice of D, however,

affects pilot overhead and hence, effective SNR. A large D results in a small increase

in SNR but a high error floor. Therefore, the choice of D is a compromise between

pilot overhead and the error floor at high SNR.

2.3.3 Decision-aided Block Detection and Performance

DABD uses previous data decisions and a pilot symbol in block detection. As shown

in Fig. 2.4, a subsequence sD of length L is formed with Amost recent data decisions,

(L − A − 1) consecutive data symbols and one pilot symbol in the future. DABD

decides on the (L− A− 1) data symbols using the MLSD-NCSI metric of sD, i.e.

ŝD = argmax
sD

λD(sD) = argmax
sD

∑N
i=1 |sHDri|2

∥sD∥2
. (2.55)

The BEP performance of DABD with QPSK over a static phase noncoherent

AWGN channel is shown in Fig. 2.11. The BEP performance over Rayleigh fading

with receive diversity N = 1, 2 is shown in Fig. 2.12. Both figures show that

the performance of DABD improves with the number of data symbols in each block

detection, i.e. L−A−1. In other words, given an L value, the performance degrades

with the number of previous decisions A. This is caused by error propagation when

previous data symbol decisions are used in decision making. This effect is more

significant when the fade rate fdT increases. The advantage of DABD, however, is

reduced computational complexity, which is determined by the value of L− A− 1.

Therefore, the choice of A is a compromise between complexity and performance.
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Figure 2.11: BEP performance of DABD with QPSK over static phase

noncoherent AWGN.

2.4 Comparison of the Three Pilot-Based

Algorithms with Existing Algorithms

2.4.1 Computational Complexity

For the trellis search algorithm, at each time point, (M − 1) comparisons are

performed at each node to choose one survivor from the M paths that lead to

that node. Hence, a total of (M − 1)M comparisons are performed at any time

point with M nodes. Computation of the MLSD-NCSI metric can be calculated

additively for both the numerator and the denominator, by adding the kth term
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Figure 2.12: BEP performance of DABD with QPSK over Rayleigh fading.

and subtracting the (k − L)th term in s̄(k, L)H r̄i(k, L) and ∥s̄(k, L)∥2. Thus, the

complexity per symbol of the trellis-search algorithm is independent of L and S, and

dependent only on M . Therefore, we can improve the performance by increasing L

without an increase in the complexity.

With the presence of pilot symbols and data decisions in block detection,

PSABD and DABD detect only (L−F ) and (L−A−1) data symbols, respectively,

in each block decision. Therefore, the computational complexity per symbol is now

reduced from ML/L to ML−F/(L − F ) and ML−A−1/(L − A − 1), respectively.

Performance of PSABD can be improved by increasing L and F at the same time,

by using more distant pilot symbols, while complexity remains fixed. Similarly,
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Table 2.1: Comparison of Computational Complexity and Detection Delay

Non-pilot-based

Algorithms

Computational Complexity

Per Symbol

Average Detection

Delay per Symbol Td

Exhaustive search O(ML/L) Td = (L− 1)/2

Sphere decoding O(2L/L) Td = (L− 1)/2

Lattice decoding O(L logL) Td = (L− 1)/2

Pilot-based

Algorithms

Computational Complexity

Per Symbol

Average Detection

Delay per Symbol Td

Trellis search O((M − 1)M) Td ≤ (D + 1)/2

PSABD O(ML−F/(L− F )) Td = (F − 1)(D + 1)/2

DABD O(ML−A−1/(L− A− 1)) Td = (D + 1)/2

performance of DABD can be improved by increasing L and A at the same time, by

using more data decisions, while complexity remains fixed.

2.4.2 Phase and Divisor Ambiguities

Phase and divisor ambiguities are common to sequence detectors. The decision

metric λ(s) in (2.11) exhibits a detection ambiguity if one possible sequence is a

complex scalar multiple of another. First, there is phase ambiguity between two

sequences s0 and s1 if one is a phase rotation of the other, i.e. s0 = s1e
jθ. Second,

there exists divisor ambiguity if one sequence is an amplitude amplification of the

other, i.e. s0 = |α|s1. A factor of |α|2 appears in both the numerator and the

denominator of the metric λ(s0) and cancel out, resulting in λ(s0) = λ(s1) and

hence, a decision ambiguity.

Phase and divisor ambiguities can be avoided when hypothesized sequences

share common symbols, as in the three pilot-based algorithms. In the trellis-search

algorithm, common symbols exist among paths that merge at a node. When two

paths merge at a node, they would normally share a common segment in the tail,
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when L is sufficiently large. In addition, uncoded sequences that merge at a node

share the same symbol where they merge. Periodic pilot symbols are also symbols

common to all sequences. All these common symbols prevent decision ambiguities.

In PSABD and DABD, phase and divisor ambiguities are avoided by common pilot

symbols and prior data decisions (for DABD) among all hypotheses.

2.4.3 Detection Delay

In the trellis search algorithm, decision on a data symbol is made only when the

tails of all the survivors merge. Merging of survivors depends not only on signals

before the data symbol concerned, but also on signals after that symbol. Therefore,

detection delay of the symbol is random. However, due to the existence of only one

node at time points where pilot symbols are transmitted, only one path will survive

at a time point with a pilot symbol, and hence, decisions on all data symbols prior to

that pilot symbol can be made latest at the pilot symbol. Therefore, the maximum

detection delay of a data symbol is in the range [1, D], depending on the spacing

between the data symbol and the pilot symbol. Thus, the mean symbol detection

delay Td is less than the maximum of (D + 1)/2.

For PSABD, decision on a data symbol can only be made when all transmitted

pilot symbols of the corresponding detection block have been received. Depending

on the position of the data symbol in a frame, detection delay of a data symbol is in

the range [(F/2−1)(D+1)+1, F/2 · (D+1)−1]. Thus, the mean symbol detection

delay is Td = (F − 1)(D + 1)/2.

Similarly, for DABD, decision on a data symbol is made when the transmitted

pilot symbol of the corresponding detection block has been received. Detection delay

of a data symbol is in the range [1, D], resulting in an average delay of Td = (D+1)/2.

Comparing the mean symbol detection delay of the algorithms in Table 2.1, PSABD

with a large F requires a longer detection delay than the trellis search and DABD.
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Figure 2.13: BEP performance comparison of QPSK over static phase

noncoherent AWGN.

2.4.4 Performance

The increase in SNR caused by insertion of pilot symbols is accounted for in

simulations, i.e.

γb = (1 + P/D)N
2σ2Eb

N0

. (2.56)

We use the three pilot-based algorithms to detect long sequences with P = 1 and

NF = 10. The performances of coherent detection with PCSI and MSDD are

obtained without the use of pilot symbols.

Simulation results with QPSK over the phase noncoherent AWGN channel in

Fig. 2.13 show that the performance of PSABD with F = 1 is close to that of
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Figure 2.14: BEP performance comparison of QPSK over time-varying

Rayleigh fading with fdT = 0.0001.

MSDD with the same L value. When we increase F and L at the same time while

maintaining a constant (L − F ), its performance improves. Hence, PSABD with

F > 1 performs better than MSDD. However, a large F value results in a longer

detection delay. Therefore, for a fair comparison with the trellis search algorithm

and DABD, we will use a value of F = 2 in PSABD such that the three algorithms

have similar detection delays. Further improvement in PSABD performance with

F = 2 requires larger (L − F ) and hence higher complexity. The performance of

the trellis search algorithm and DABD, however, can be improved with increasing

L and A, respectively, without increasing the complexity.
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Figure 2.15: BEP performance comparison of 16QAM over time-varying

Rayleigh fading with N = 1, fdT = 0.0001.

Simulations of MSDD and the three pilot-based algorithms with QPSK and

16QAM over Rayleigh fading are shown in Fig. 2.14 and Fig. 2.15. We observe

that, in order to achieve noticeable performance improvement over Rayleigh fading,

L must be increased significantly. For example, MSDD with L = 5 in Fig. 2.14

shows slight improvement over differential encoding and differential detection (i.e.

MSDD with L = 2). A very large L is required for MSDD to achieve a performance

approaching that of coherent detection with differential encoding. In comparison,

our three pilot-based algorithms at low SNR outperform coherent detection with

(quadrant) differential encoding. Therefore, they outperform the algorithms in

[5, 6, 53–59] that adopt (quadrant) differential encoding, because the performances
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of these latter algorithms can improve to that of coherent detection only as L

becomes very large. In addition, divisor ambiguity is not resolved by quadrant

differential encoding and exhibits itself as an error floor in MSDD performance.

Our three pilot-based algorithms do not suffer from divisor ambiguity. Observations

of simulation results over Rician fading are similar but omitted by space limitation.

Comparison in Fig. 2.15 shows that our trellis search algorithm performs slightly

better than that of [6] over Rayleigh fading, as the branch metric in [6, eq. (23)]

involves an approximation.

We do not find divisor ambiguity error floor with 16QAM in Fig. 2.13. The

trellis-search algorithm with L = 5 over Rayleigh fading with the fade rate fdT =

0.001 can reach a BEP of 2× 10−4, which is much lower than the divisor ambiguity

error floor over static fading in [55, 58] (the error floor of block error rate 3 × 10−3

corresponds to an approximate BEP of 7.5 × 10−4). Therefore, ambiguities are

effectively resolved by the trellis-search algorithm.

2.5 Conclusions

We derive the MLSD-NCSI receiver and compare it with the MSDD receiver on the

basis of the assumptions made in their derivations. It is proven that the PEP of

the MLSD-NCSI detector approaches that of coherent detection when L increases.

An exact closed-form PEP expression is obtained for MLSD-NCSI over time-varying

Rayleigh fading. To detect a long sequence without incurring an exponential receiver

complexity, we proposed three pilot-based algorithms. Their advantages in better

performance and lower complexity than the existing lattice and sphere decoding

block-by-block detection algorithms are demonstrated.
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Chapter 3

The Gaussian Q-function

For performance analysis, simple closed-form expressions are always preferred for

efficient evaluation. In cases where closed-form expressions are not available, finite

range integrals that can be computed efficiently are often resorted to. Lastly,

performance can always be obtained by simulation. However, for further analysis

such as parameter optimization which involves iterative algorithms, complicated

expressions and simulation would incur intensive computation and are often not

practical. Therefore, simple closed-form exact expressions are always desired.

Alternatively, closed-form bounds and approximations can be used. Hence, the

rest of the thesis aims at obtaining simple expressions, whether exact expressions or

bounds, that facilitate further analysis.

The Gaussian Q-function is of great importance in the performance analysis

of communication systems with coherent detection over AWGN. For example, the

BEP of BPSK over AWGN is expressed in a Gaussian Q-function [8, eq.(5-2-5)].

The Gaussian Q-function is conventionally defined as the area under the tail of the

normalized (zero mean, unit variance) Gaussian random variable, i.e. [8, eq.(2-1-97)]

Q(x) =
1√
2π

∫ ∞

x

exp

(
−t2

2

)
dt. (3.1)

In order to compute it efficiently, closed-form bounds and approximations are

obtained [16, 20, 23]. Moreover, as the argument appears only in the lower limit

of the integral, further analysis using the definition, e.g. averaging the Gaussian
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3. The Gaussian Q-function

Q-function over fading distribution, very often does not reduce to a closed form.

Therefore, for applications where closed-form results are not available, closed-form

approximations and bounds of the Gaussian Q-function are still useful to facilitate

analysis.

An alternative form of the Gaussian Q-function was discovered by Craig, as [15,

eq.(9)]

Q(x) =
1

π

∫ π/2

0

exp

(
− x2

2 sin2 θ

)
dθ, (3.2)

which involves integration over a finite range. The Craig’s form not only makes

numerical evaluation easier, it also makes averaging over fading easier using the

MGF method, i.e.

I(γ̄) =

∫ ∞

0

Q(
√
γ)pγ(γ)dγ

=

∫ ∞

0

1

π

∫ π/2

0

exp
(
− γ

2 sin2 θ

)
dθpγ(γ)dγ

=
1

π

∫ π/2

0

Mγ

(
− 1

2 sin2 θ

)
dθ. (3.3)

The MGF Mγ(s) associated with pγ(γ) and defined as [48, eq.(2.4)]

Mγ(s) =

∫ ∞

0

exp (sγ) pγ(γ)dγ, (3.4)

depends only on the fading model assumed [48, 1.1.3]. The use of the Craig’s

form leads to a closed-form expression for averaging the Gaussian Q-function over

Rayleigh fading [48, eq.(5.6)]. However, the average of the Craig’s form over other

fading distributions, e.g. Rician and Nakagami-m fading, involve a finite range

integral or the Gauss hypergeometric function. In such cases, we may resorts to

approximations and bounds. New approximations and bounds of the Gaussian

Q-function are derived based on the Craig’s form [21,24].

However, many well-known tight bounds are in the form of a product of an

exponential function with a complex rational or irrational function, or a sum of

such products. The average of these bounds over the distribution of fading very

often does not reduce to closed forms. Therefore, our objective in this chapter is
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3.1 Existing Bounds

to look for bounds in simple forms that can be averaged over fading distributions.

Although approximations and upper bounds are used more often than lower bounds

in performance analysis, lower bounds are still useful, as the combined use of

upper and lower bounds shows the tightness of the bounds, without comparing

the individual bounds with numerical integration of the exact value. The accuracy

of approximations, in contrast, can only be obtained by comparing with numerical

integration of the exact value.

Noticing that the definition and the Craig’s form of the Gaussian Q-function

are both integrals of the exponential function, we propose to apply the Jensen’s

inequality and obtain three families of exponential bounds. The tightness of our

bounds can be improved by increasing the number of exponential terms.

This chapter is organized as follows. We first summarize existing well-known

bounds in Section 3.1. In Section 3.2, We look into the Jensen’s inequality and its

application in deriving the Abreu bounds. The type 1 lower bounds are derived in

Section 3.3 by applying the Jensen’s inequality on the definition of the Gaussian

Q-function. The type 2 lower bounds are derived in Section 3.4 by applying the

Jensen’s inequality on the Craig’s form of the Gaussian Q-function. Our lower

bounds are averaged over fading in Section 3.5 and closed-form expressions are

derived. In Section 3.6, a family of lower bounds on the two-dimensional Gaussian

Q-function is derived using the Jensen’s inequality. Conclusions are made in Section

3.7.

3.1 Existing Bounds

Below are a few well-known closed form bounds based on the definition of the

Gaussian Q-function. By integration by parts, it is show that [23, eq.(2.121)]

Q(x) =
1√
2πx

exp

(
−x2

2

)
− 1√

2π

∫ ∞

x

1

t2
exp

(
−t2

2

)
dt. (3.5)
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3.1 Existing Bounds

Upper and lower bounding the second term in (3.5), upper bound QUB−WJ−1
1 and

lower bound QLB−WJ−2 are obtained [23, eq.(2.121)]

Q(x) ≤ QUB−WJ−1(x) =
1√
2πx

exp

(
−x2

2

)
Q(x) ≥ QLB−WJ−2(x) =

(
1− 1

x2

)
1√
2πx

exp

(
−x2

2

)
.

(3.6)

A tighter lower bound is obtained by improving the bound on the second term in

(3.5) as [16, eq.(8)]

Q(x) ≥ QLB−BS−1(x) =
1√
2π

x

1 + x2
exp

(
−x2

2

)
. (3.7)

Tighter upper and lower bounds are obtained in [16, eq.(11-12)]

Q(x) ≤ QUB−BS−1(x) =
1

1
2
x+ 1

2

√
x2 + 8

π

1√
2π

exp

(
−x2

2

)

Q(x) ≥ QLB−BS2−1(x) =
1

1
2
x+ 1

2

√
x2 + 4

1√
2π

exp

(
−x2

2

)
.

(3.8)

Among the bounds in (3.6)–(3.8), QUB−WJ in (3.6) is in the simplest form,

and can be averaged over Rayleigh and Nakagami-m fading. Though lower bound

QLB−WJ−2(x) can also be averaged over Rayleigh and Nakagami-m fading, it is

negative below 0dB. Therefore, it is not suitable for averaging over fading and will

not be considered in this chapter. The tighter bounds in (3.7)–(3.8), are in the

form of a product of an exponential function with a complex rational or irrational

function. The average of these bounds over the distribution of fading is, in general,

difficult to evaluate.

Since the discovery of the Craig’s form of the Gaussian Q-function, more bounds

have been obtained based on the Craig’s form. Abreu partitions the integration

range of [0, π/2] into two subranges where the integrand is purely convex or concave

[21]. The convex range is further partitioned, and the subintegral is upper bounded

using the Cotes trapezoidal rule and lower bounded using the Jensen’s Inequality.

Similarly, the concave range is partitioned, and the subintegral is upper bounded

1WJ are initials of the two authors and 1 is the number of exponential terms
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3.1 Existing Bounds

using the Jensen’s Inequality and lower bounded using the Cotes trapezoidal rule.

More detailed derivation will be shown in Section 3.23. Compact-form upper and

lower bounds are obtained in [21, eq.(34)]

Q(x) ≤QUB−A−2(x) =
f1(x)

8 + 2(π − 2)f2(x)
exp

(
− 2x2

f 2
1 (x)

)
+

4π + f2(x)π − 6f1(x)

8π + 2πf2(x)
exp

(
− 2x2

2 + f1(x)

)
(3.9)

and [21, eq.(33)]

Q(x) ≥QLB−A−3(x) =
3f1(x)

4π + πf2(x)
exp

(
− 2x2

2− f2(x)

)
+

4 + (π − 2)f2(x)− 2f1(x)

16 + 4(π − 2)f2(x)

[
exp

(
−x2

2

)
+ exp

(
− 2x2

f 2
1 (x)

)]
, (3.10)

where [21, eq.(30-31)]

f1 =

√
x2 + 3−

√
(x2 − 1)2 + 8,

f2 =

√√
(x2 − 1)2 + 8− (x2 − 1) =

√
4− f 2

1 .

(3.11)

Similar to the bounds in (3.7)–(3.8), the Abreu bounds are sums of a product of an

exponential function with a complex rational or irrational function. The average of

these bounds over the distribution of fading is, in general, difficult to evaluate.

Using the Craig’s form, Chiani obtains bounds in the simplest form as far as

we are aware of [24]. We summarize the derivation and results in our own notations

here. Splitting the integration range of [0, π/2] into n+ 1 subranges, by arbitrarily

choosing n + 2 values of θk such that 0 = θ0 < θ1 < ... < θn+1 = π/2, Chiani

upper bounds the integrand in (3.2) in the range [θk−1, θk) by its maximum values,

i.e. [24, eq.(7)]

exp

(
− x2

2 sin2 θ

)
≤ exp

(
− x2

2 sin2 θk

)
. (3.12)

This results in the Chiani upper bound [24, eq.(8)]

Q(x) ≤ QUB−CDS(x) =
n+1∑
k=1

ak exp
(
−bkx

2
)
, (3.13)
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3.1 Existing Bounds

where

ak =
θk − θk−1

π
,

bk =
1

2 sin2 θk
.

(3.14)

Special compact-form upper bounds from (3.13) are given by

QUB−CDS−1(x) =
1

2
exp

(
−x2

2

)
, (3.15)

[24, eq.(10)]

QUB−CDS−2(x) =
1

4
exp

(
−x2

2

)
+

1

4
exp

(
−x2

)
, (3.16)

and [24, eq.(11)]

QUB−CDS−3(x) =
1

4
exp

(
−x2

2

)
+

1

12
exp

(
−x2

)
+

1

6
exp

(
−2x2

)
. (3.17)

Though not shown in [24], we can also lower bound the integrand in (3.2) in

the range [θk−1, θk) by its minimum values, i.e.

exp

(
− x2

2 sin2 θ

)
≥ exp

(
− x2

2 sin2(θk−1)

)
(3.18)

and obtain the lower bound

Q(x) ≥ QLB−CDS(x) =
n+1∑
k=1

ak exp
(
−bk−1x

2
)
, (3.19)

where ak and bk are given in (3.14). With n = 1 and θ1 = π/3, we obtain

QLB−CDS−1(x) =
1

6
exp

(
−2

3
x2

)
. (3.20)

With n = 2 and θ1 = π/6, θ2 = π/3, we obtain

QLB−CDS−2(x) =
1

6
exp

(
−2

3
x2

)
+

1

6
exp

(
−2x2

)
. (3.21)

With n = 3 and θ1 = π/6, θ2 = π/4, θ3 = π/3, we obtain

QLB−CDS−3(x) =
1

6
exp

(
−2

3
x2

)
+

1

12
exp

(
−x2

)
+

1

12
exp

(
−2x2

)
. (3.22)
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3.2 Jensen’s Inequality

We refer to the lower bounds in (3.19)–(3.22) as the Chiani lower bounds in this

thesis, though they are not given in [24].

The Chiani bounds in (3.13)–(3.22) are a sum of exponentials with constant

coefficients. The simple form is suitable for manipulation of the Gaussian

Q-function. For example, averaging exponential bounds over any fading distribution

using the MGF method reduces to a closed form, as long as the fading MGF is given

in exact closed form. However, the Chiani bounds, especially the lower bounds, are

in general much looser than the Abreu bounds with the same number of exponential

terms.

3.2 Jensen’s Inequality

We look into the Jensen’s inequality here and examine how it is applied in [21] to

derive the Abreu bounds on the Gaussian Q-function. We will use the Jensen’s

inequality in a different way to derive new bounds in Section 3.3 and Section 3.4.

Jensen’s inequality [70, eq.(12.411)]: Let f(θ) and p(θ) be two functions

defined for a ≤ θ ≤ b such that α ≤ f(θ) ≤ β and p(θ) ≥ 0, with p(θ) ̸≡ 0. Let ϕ(u)

be a convex function defined on the interval α ≤ u ≤ β, then

ϕ

(∫ b

a
f(θ)p(θ)dθ∫ b

a
p(θ)dθ

)
≤
∫ b

a
ϕ(f)p(θ)dθ∫ b

a
p(θ)dθ

. (3.23)

In order to bound the the Craig’s form of the Gaussian Q-function in (3.2),

Abreu lets [21]

ϕ(u) = exp

(
− x2

2 sin2 u

)
,

f(θ) = θ,

p(θ) = 1.

(3.24)

However, in order to apply the Jensen’s inequality, ϕ(f) must be a convex function.

It is shown that ϕ(f) is convex in [0, θ̄x] and concave in [θ̄x, π], where

θ̄x = sin−1

(
1

2

√
x2 + 3−

√
(x2 − 1)2 + 8

)
. (3.25)
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3.3 Bounds Based on Definition

Therefore, the Jensen’s inequality can be applied in the interval [0, θ̄x] or [θ̄x, π],

which can be further partitioned. If ϕ(f) is convex in [a, b], the Jensen’s inequality

results in a lower bound as

1

π

∫ b

a

exp

(
− x2

2 sin2 θ

)
dθ ≥ b− a

π
exp

[
− x2

2 sin2
(
a+b
2

)] . (3.26)

If ϕ(f) is concave in [a, b], we have

1

π

∫ b

a

exp

(
− x2

2 sin2 θ

)
dθ ≤ b− a

π
exp

[
− x2

2 sin2
(
a+b
2

)] . (3.27)

In order to lower bound ϕ(f) in concave intervals and to upper bound it in convex

intervals, Cotes trapezoidal rule is applied.

In summary, to apply the Abreu method to derive a lower bound, first, the

integration range is partitioned into subranges where the integrand is purely convex

or concave. Second, integral in the convex subrange(s) is lower bounded using the

Jensen’s inequality. Third, integral in the concave subrange(s) is lower bounded

using the Cotes trapezoidal rule. Last, by summing the lower bound in the convex

subrange(s) and the lower bound in the concave subrange(s), the lower bound on

the Gaussian Q-function is obtained.

3.3 Bounds Based on Definition

3.3.1 Lower Bounds Based on Definition

Let us look at the definition of the Gaussian Q-function in (3.1). We first split the

integration range of [x,∞] into n+1 subranges, by arbitrarily choosing n+2 values

of αk such that x = α0x < α1x < ... < αn+1x = ∞. Thus, (3.1) becomes

Q(x) =
n+1∑
k=1

1√
2π

∫ αkx

αk−1x

exp

(
−t2

2

)
dt. (3.28)

Due to convexity of the exponential function in the entire real domain, we can apply

the Jensen’s inequality for each summation term in (3.28).
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3.3 Bounds Based on Definition

Letting

ϕ(u) = exp(u),

f(t) = −t2

2
,

p(t) = 1,

a = αk−1x,

b = αkx,

(3.29)

we obtain a lower bound on (3.28) using the Jensen’s inequality as

QLB−KW1(x) =
n+1∑
k=1

akx exp
(
−bkx

2
)
, (3.30)

where

ak =
αk − αk−1√

2π
≥ 0

bk =
α2
k + α2

k−1 + α2
kαk−1

6
≥ 0

(3.31)

The last summation term in (3.30) is zero for any n. Therefore, the lower bound

QLB−KW1(x) is a sum of n terms. The form of QLB−KW1(x) is simpler than that of

the Abreu bound in (3.10).

When n → ∞, we have

lim
n→∞

QLB−KW1(x) =
∞∑
k=1

dt√
2π

exp

(
−1

6

dt3

dt

)
=

∞∑
k=1

∫ αkx

αk−1x

1√
2π

exp

(
−t2

2

)
dt, (3.32)

which is equal to the Craig’s form in (3.1). As expected, simply by increasing n, the

lower bound QLB−KW1(x) approaches the exact value for all argument values.

As the values of {αk} can be chosen arbitrarily, they can be optimized to

minimize error in the region of interest [0, R), i.e.

{αk}o = argmin
{αk}

∫ R

0

∣∣Q(x)−QLB−KW1(x, {αk})
∣∣C(x)dx, (3.33)
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3.3 Bounds Based on Definition

where C(x) is the cost of error. For example, to minimize relative error, we have

C(x) = 1/Q(x). To minimize average error in fading, C(x) given by the fading

distribution. Alternatively, we can strategically select {αk} values to obtain bounds

in neat compact expressions. With n = 1 and α1 = 3/2, we have

QLB−KW1−1(x) =
x

2
√
2π

exp

(
−19

24
x2

)
. (3.34)

It is tighter than the single-term Chiani lower bound QLB−CDS−1(x) in (3.20)

between 0dB and 10dB. With n = 2 and α1 = 4/3, α2 = 3, we have

QLB−KW1−2(x) =
x

3
√
2π

exp

(
−37

54
x2

)
+

5x

3
√
2π

exp

(
−665

270
x2

)
. (3.35)

This two-term bound is tighter than the two-term Chiani lower boundQLB−CDS−2(x)

in (3.21) between -5dB and 20dB. With n = 3 and α1 = 4/3, α2 = 2, α3 = 4 we

have

QLB−KW1−3(x)

=
x

3
√
2π

exp

(
−37

54
x2

)
+

2x

3
√
2π

exp

(
−38

27
x2

)
+

√
2

π
x exp

(
−14

3
x2

)
. (3.36)

It is tighter than the three-term Chiani bound QLB−CDS−3(x) in (3.22) between

-5dB and 20dB. We can find bounds in neat compact form with arbitrary number

of exponential terms, as long as the values of αk chosen are in neat compact form,

e.g. integers and fractions.

Fig. 3.1 and Fig. 3.2 show that the lower bounds QLB−KW1(x) increase with

the number of exponential terms for any argument value and approach the exact

Gaussian Q-function. However, when n > 2, improvement is only observed for small

arguments values. The figures show the argument in log scale in order to display a

wide range of argument values.

The new three-term lower bound QLB−CDS−3(x) is compared with existing

bounds in Fig. 3.3 and Fig. 3.4. As our interest is to obtain bounds on the Gaussian

Q-function that can be averaged over fading, only bounds that can be averaged over

fading are compared. It is shown that our three-term QLB−KW1−3(x) is much tighter
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Figure 3.1: Lower bounds QLB−KW1(x) for small argument values.

than the three-term QLB−CDS−3(x) for all argument values. The combined use of

the our three-term QLB−KW1−3(x) and the Chiani upper bound QUB−CDS−3(x) or

QUB−WJ−1(x) shows the tightness of the bounds, if the exact value is not available.

One shortcoming of lower bounds QLB−KW1(x) is that they all approach zero

when x approaches zero, while Q(0) = 1/2. Hence, lower bounds QLB−KW1(x) are

loose for very small argument values. Therefore, we must take care of the argument

value in the application of QLB−KW1(x). It is not advised to average QLB−KW1(x)

over a fading distribution where the PDF is concentrated at small values, e.g. for

average error performance at very low average SNR.
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Figure 3.2: Lower bounds QLB−KW1(x) for large argument values.

3.3.2 Upper Bounds Based on Definition

Now let us look at the Wozencraft’s expression of the Gaussian Q-function in (3.5).

We denote the second term in (3.5) as G(x), i.e.

G(x) =
1√
2π

∫ ∞

x

1

t2
exp

(
−t2

2

)
dt. (3.37)

We first split the integration range of [x,∞] into n+1 subranges, by arbitrarily

choosing n + 2 values of βk such that x = β0x < β1x < ... < βn+1x = ∞. Thus,

(3.37) becomes

G(x) =
n∑

k=1

1√
2π

∫ βkx

βk−1x

1

t2
exp

(
−t2

2

)
dt. (3.38)
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Figure 3.3: Comparison of lower bound QLB−KW1−3(x) with existing bounds

for small argument values.

Due to convexity of the exponential function in the entire real domain, we can apply

the Jensen’s inequality for each summation term in (3.38).

Letting

ϕ(u) = exp(u),

f(t) = −t2

2
,

p(t) =
1

t2
,

a = βk−1x,

b = βkx,

(3.39)
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Figure 3.4: Comparison of lower bound QLB−KW1−3(x) with existing bounds

for large argument values.

we obtain a lower bound on (3.38) using the Jensen’s inequality as

GLB(x) =
n∑

k=1

1

βk−1

− 1

βk√
2πx

exp

(
−βkβk−1

2
x2

)
. (3.40)

Substituting (3.40) into (3.5), we obtain an upper bound on the Gaussian Q-function

as

QUB−KW (x) =
n∑

k=0

ak
x

exp
(
−bkx

2
)
, (3.41)
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3.3 Bounds Based on Definition

where

ak =


1√
2π

, k = 0

−βk − βk−1√
2π

, k ≥ 1

bk =


1

2
, k = 0

βkβk−1

2
, k ≥ 1

(3.42)

are constant coefficients that are independent of x. This form can be averaged over

Rayleigh or Nakagami-m fading.

When n → ∞, we have

lim
n→∞

QUB−KW (x) =
1√
2πx

exp

(
−x2

2

)
−

∞∑
k=1

d
(−1

t

)
√
2π

exp

(
−1

2

dt

d
(−1

t

))

=
1√
2πx

exp

(
−x2

2

)
− 1√

2π

∞∑
k=1

∫ βkx

βk−1x

dt

t2
exp

(
− dt

2dt/t2

)
,

(3.43)

which is equal to (3.5). As expected, simply by increasing n, the upper bound

QUB−KW (x) approaches the exact value for all argument values.

As the values of {βk} can be chosen arbitrarily, they can be optimized to

minimize error in the region of interest. Alternatively, we strategically select {βk}

values to obtain bounds in neat compact expressions. With n = 1, QUB−KW−1(x)

reduces to the upper bound QUB−WJ−1(x) in (3.6). With n = 2 and β1 = 2, we

obtain

QUB−KW−2(x) =
1√
2πx

exp

(
−x2

2

)
− 1

2
√
2πx

exp
(
−x2

)
. (3.44)

With n = 2 and β1 = 2, β2 = 3, we obtain

QUB−KW−3(x) =
1√
2πx

exp

(
−x2

2

)
− 1

2
√
2πx

exp
(
−x2

)
− 1

6
√
2πx

exp
(
−3x2

)
.

(3.45)

We can find bounds in neat compact forms with arbitrary number of exponential

terms, as long as the values of βk chosen are in neat compact form, e.g. integers and

fractions.
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Figure 3.5: Upper bounds QUB−KW (x) and comparison with existing bounds

for small argument values.

The upper bounds QUB−KW (x) with different numbers of exponential terms

with small and large argument values are shown Fig. 3.5 and Fig. 3.6, respectively.

For large argument values, our bounds are very tight even for one exponential term.

They are much tighter than the Chiani three-term upper bound QUB−CDS−3(x).

For small argument values, it is obvious that the bounds become tighter with the

number of exponential terms. Our three-term bound QUB−KW−3(x) is tighter than

the Chiani three-term bound QUB−CDS−3(x) above 10dB. The combined use of

QLB−KW1(x) and the Chiani upper bound QUB−CDS−3(x) shows the tightness of

the bounds, if the exact value is not available.

One shortcoming of QUB−KW (x) is that it approaches infinity when x

approaches zero, while Q(0) = 1/2. Hence, QUB−KW (x) is loose for very small
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Figure 3.6: Upper bounds QUB−KW (x) and comparison with existing bounds

for large argument values.

argument values. Therefore, we must take care of the argument value when applying

the upper bound QUB−KW (x). It is not advised to average QUB−KW (x) over a fading

distribution where the PDF is concentrated at small values, e.g. at very low average

SNR.

3.4 Lower Bounds Based on Craig’s Form

We now look at the Craig’s form of the Gaussian Q-function in (3.2). We first split

the integration range of [0, π/2] into n+ 1 subranges, by arbitrarily choosing n+ 2
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3.4 Lower Bounds Based on Craig’s Form

values of θk such that 0 = θ0 < θ1 < ... < θn+1 = π/2. Thus, (3.2) becomes

Q(x) =
n+1∑
k=1

1

π

∫ θk

θk−1

exp

(
− x2

2 sin2 θ

)
dθ. (3.46)

Due to convexity of the exponential function in the entire real domain, we can apply

the Jensen’s inequality for each summation term in (3.46).

Applying the Jensen’s inequality in (3.2) with

ϕ(u) = exp(u),

f(θ) = − x2

2 sin2 θ
,

p(θ) = 1,

a = θk−1,

b = θk,

(3.47)

we obtain a lower bound on (3.46) as

QLB−KW2(x) =
n+1∑
k=1

ak exp
(
−bkx

2
)
, (3.48)

where

ak =
θk − θk−1

π
≥ 0

bk =
1

2

cot(θk−1)− cot(θk)

θk − θk−1

≥ 1

2

(3.49)

are constant coefficients that are independent of x. The first summation term in

(3.48) is zero for any n, given that cot(0) = ∞. Therefore, Q(x) is lower bounded

by a sum of n exponentials. Our new lower bound has exactly the same simple form

as that of the Chiani bounds in (3.19). This makes manipulation of the Gaussian

Q-function simple, which will be shown in Section 3.5.

When n → ∞, we have

lim
n→∞

QLB−KW2(x) =
∞∑
k=1

dθ

π
exp

(
d cot(θ)

dθ

x2

2

)
=

∫ π/2

θ=0

1

π
exp

(
− 1

sin2 θ

x2

2

)
dθ, (3.50)
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Figure 3.7: Lower bounds QLB−KW2(x) for small argument values.

which is the same as (3.2). As expected, simply by increasing n, the lower bound

approaches the exact value for all argument values, as shown in Fig. 3.7 and Fig.

3.8.

As the values of {θk} can be chosen arbitrarily, they can be optimized to

minimize error in the region of interest. Alternatively, the values of {θk} can be

chosen as equi-spaced for simplicity. However, the coefficients {ak} and {bk} are,

in general, irrational numbers that are not in a compact form. Hence, the bounds

using the above-mentioned two choices of {θk} are generally not in desirable form

for further analysis. Therefore, we strategically select {θk} values to obtain bounds

in neat compact expressions. With n = 1 and θ1 = π/4, we obtain

QLB−KW2−1(x) =
1

4
exp

(
− 2

π
x2

)
. (3.51)
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Figure 3.8: Lower bounds QLB−KW2(x) for large argument values.

This bound is much tighter than the single-term Chiani lower bound QLB−CDS−1(x)

in (3.20) for all argument values. It is also tighter than our single-term bound

QLB−KW1(x) in (3.34). With n = 2 and θ1 = π/6, θ2 = π/3, we obtain

QLB−KW2−2(x) =
1

6
exp

(
−
√
3

π
x2

)
+

1

6
exp

(
−2

√
3

π
x2

)
. (3.52)

This two-term bound is much tighter than the two-term Chiani lower bound

QLB−CDS−2(x) in (3.21) for all argument values. It is also tighter than the two-term

bound QLB−KW1−2(x) in (3.35). With n = 3 and θ1 = π/6, θ2 = π/4, θ3 = π/3, we
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Figure 3.9: Comparison of lower bound QLB−KW2−3(x) with existing bounds

for small argument.

obtain

QLB−KW2−3(x)

=
1

6
exp

(
−
√
3

π
x2

)
+

1

12
exp

(
−2(3−

√
3)

π
x2

)
+

1

12
exp

(
−6(

√
3− 1)

π
x2

)
.

(3.53)

This is the only three-term bound that has a neat compact form. It is much tighter

than the three-term Chiani boundQLB−CDS−3(x) in (3.22) and the three-term bound

QLB−KW1−3(x) in (3.36) for all argument values. No bound with a neat compact

form is found with n > 3. Note that the values of {θk} for the bounds in (3.51) and

(3.52) happen to be equi-spaced, while those for (3.53) do not.
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Figure 3.10: Comparison of lower bound QLB−KW2−3(x) with existing bounds

for large argument.

Fig. 3.9 and Fig. 3.10 show that our three-term lower bound QLB−KW2(x) is

tightest among three-term lower bounds. The combined use of the Chiani 3-term

upper bound QUB−CDS−3(x) and QLB−KW1(x) shows the tightness of the bounds,

when the exact value is not available.

In summary, QLB−KW2(x) has a much simpler form than QLB−KW1(x) and the

lower bounds in the literature as far as we are aware of. It has the same simple form of

Chiani lower bound QUB−CDS(x). Moreover, it is tighter than the above-mentioned

lower bounds with the same number of terms.
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3.5 Averaging Gaussian Q-Function over Fading

3.5 Averaging Gaussian Q-Function over Fading

The analysis of error probabilities over fading often involves averaging the Gaussian

Q-function over fading distribution, i.e.

I(γ̄) =

∫ ∞

0

Q(
√
csigγ)pγ(γ)dγ, (3.54)

where csig is a constant depending on the modulation scheme. For example, csig = 2

for BPSK and csig = 1 for binary orthogonal signals. Here, γ is the instantaneous

SNR. The commonly used statistical characteristic of the multipath fading channel

is the PDF of γ, i.e. pγ(γ). There are several models describing the statistical

characteristics of the multipath fading channel. The Rayleigh distribution is used to

model multipath fading with a large number of scatterers and no direct line-of-sight

(LOS) path. The PDF of the instantaneous SNR is given by

pγ(γ) =
1

γ̄
exp

(
−γ

γ̄

)
. (3.55)

The MGF corresponding to this fading model is given by

Mγ(s) = (1− sγ̄)−1. (3.56)

The Rice distribution is used to model a fading channel with one strong direct

LOS path and many random weaker scattered paths. The instantaneous SNR is

non-central Chi-square distributed with PDF

pγ(γ) =
(1 +K)e−K

γ̄
exp

(
−(1 +K)γ

γ̄

)
I0

(
2

√
K(1 +K)γ

γ̄

)
. (3.57)

The K factor is the ratio between the power in the direct LOS path and the power

in the scattered paths. Its value is in the range [0,∞). The MGF of Rician fading

is given by

Mγ(s) =
1 +K

1 +K − sγ̄
exp

(
Ksγ̄

1 +K − sγ̄

)
. (3.58)

Rayleigh fading is a special case of Rician fading by letting K = 0. A more

general fading model is the Nakagami-m fading. The instantaneous SNR is gamma
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3.5 Averaging Gaussian Q-Function over Fading

distribution with PDF

pγ(γ) =
mmγm−1

γ̄mΓ(m)
exp

(
−mγ

γ̄

)
, (3.59)

where m is the Nakagami-m fading parameter, with value in the range [1/2,∞). Its

MGF is given by

Mγ(s) =
(
1− sγ̄

m

)−m

. (3.60)

Depending on the channel fading model, (3.54) does not always result in a

closed-form expression. For example, for Nakagami-m fading with non-integer values

of m, (3.54) involves the Gauss hypergeometric function [7, 27], which is defined as

an infinite series. This complicates the computation of (3.54). Having obtained new

lower bounds QLB−KW1(x) and QLB−KW2(x) in simple form, we can lower bound

the average of Gaussian Q-function over fading using new lower bounds.

3.5.1 Averaging Lower Bound QLB−KW1(x) over Nakagami-m

Fading

The lower bound QLB−KW1(x) obtained in Section 3.3 has a form simpler than that

of the Abreu bound in (3.10). Due to the simple form, the average of QLB−KW1(x)

over Nakagami-m fading results in a closed-form expression.

By substitutingQLB−KW1(x) in (3.30) and pγ(γ) of Nakagami-m fading in (3.59)

into (3.54) and changing order of summation and integration, we have

I(γ̄) ≥
n∑

k=0

ak
√
csig

mm

γ̄mΓ(m)

∫ ∞

0

γm− 1
2 exp

[
−
(
bkcsig +

m

γ̄

)
γ

]
dγ. (3.61)

Using the integration rule in [70, eq.(3.326-2)],∫ ∞

0

xm exp(−βxn)dx =
Γ(m+1

n
)

nβ
m+1
n

, (3.62)

(3.61) reduces to

ILB−KW1(γ̄) =
n∑

k=1

ak
√
csigm

mΓ(m+ 1
2
)

γ̄mΓ(m)

(
bkcsig +

m

γ̄

)−(m+ 1
2
)

, (3.63)
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which is a closed-form expression. Computation of the n-term summation in (3.63) is

simpler and faster than computation of expressions involving Gauss hypergeometric

functions.

3.5.2 Averaging Upper Bound QUB−KW (x) over Nakagami-m

Fading

The simple form of the upper bound QUB−KW (x) in (3.41) allows it to be averaged

over Rayleigh and Nakagami-m fading in a closed-form expression. As the exact

closed-form expression of the Gaussian Q-function averaged over Rayleigh fading

has been obtained, we only analyze here the average of the upper bound QUB−KW (x)

over Nakagami-m fading.

By substituting QUB−KW (x) in (3.41) and pγ(γ) of Nakagami-m fading in (3.59)

into (3.54) and changing order of summation and integration, we have

I(γ̄) ≤
n∑

k=1

akm
m

√
csigγ̄mΓ(m)

∫ ∞

0

γm− 3
2 exp

[
−
(
bkcsig +

m

γ̄

)
γ

]
dγ. (3.64)

Using the integration rule in [70, eq.(3.326-2)],∫ ∞

0

xm exp(−βxn)dx =
Γ(m+1

n
)

nβ
m+1
n

, (3.65)

(3.64) reduces to

IUB−KW (γ̄) =
n∑

k=1

ak
√
csigm

mΓ(m− 1
2
)

γ̄mΓ(m)

(
bkcsig +

m

γ̄

)−(m− 1
2
)

, (3.66)

which is a closed-form expression. Computation of the n-term summation in (3.66) is

simpler and faster than computation of expressions involving Gauss hypergeometric

functions.

3.5.3 Averaging Lower Bound QLB−KW2(x) over Fading

As the coefficients of our exponential lower bound QLB−KW2(x), i.e. {ak} and {bk}

in (3.49), are constants, manipulation of the Gaussian Q-function becomes simple
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3.5 Averaging Gaussian Q-Function over Fading

using the MGF method. By substituting the lower bound QLB−KW2(x) in (3.48)

into (3.54), we have

I(γ̄) ≥
n+1∑
k=2

ak

∫ ∞

0

exp (−bkcsigγ) pγ(γ)dγ. (3.67)

Using the MGF defined in (3.4), (3.67) reduces to a closed-form lower bound, as

ILB−KW2(γ̄) ≥
n+1∑
k=2

akMγ(−bkcsig), (3.68)

where the coefficients {ak} and {bk} are given in (3.49). Being able to bound the

Gaussian Q-function with a sum of exponentials with constant coefficients allows

us to apply the MGF method conveniently. The advantage of the MGF method is

that the MGF of various fading models have already been obtained in closed-form

expressions and summarized in [48, 2.2]. Therefore, computation of (3.68) is simple

and straightforward.

For Nakagami-m fading, for example, computation of (3.68) is simpler than

the computation of the Gaussian hypergeometric function. The bound in (3.68) for

fading also applies to the Chiani upper and lower bounds but with the coefficients

in (3.14). Fig. 3.11 and Fig. 3.12 show that (3.68) for Nakagami-m fading is

tight even with only two terms. As we have shown that the bound QLB−KW2(x) is

tighter than the bound QLB−KW1(x) and the Chiani lower bound QLB−CDS(x) with

the same number of terms, as expected, the average of QLB−KW2(x) over fading, i.e.

ILB−KW2(γ̄), is tighter than the averages ofQLB−KW1(x) and the Chiani lower bound

QLB−CDS(x), i.e. ILB−KW1(γ̄) and ILB−CDS(γ̄). Similarly, IUB−KW (γ̄) is expected

to be tighter than IUB−CDS(γ̄) with the same number of exponential terms. If the

exact value by numerical integration is not available, the combined use of upper

bound IUB−KW (γ̄) and lower bound ILB−KW2(γ̄) shows tightness of the bounds,

without comparing the individual bounds with the exact value.

Although lower bound QLB−KW2−2(x) diverge from Q(x) for very large

argument values in the log scale in Fig. 3.8, the absolute difference between the

bound and the exact value is very small compared to the value for small argument
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Figure 3.11: Bounds on the average of the Gaussian Q-function over

Nakagami-m fading at low SNR.

values. Thus, the difference averaged over the entire argument range weighted by

the fading distribution is dominated by the difference for small argument values.

Therefore, the average of the bounds over fading is a constant offset from the exact

average curve and do not diverge at high SNR.

3.6 Bounds on 2D Joint Gaussian Q-function

The two-dimensional joint Gaussian Q-function can also be lower bounded by a sum

of exponentials using the Jensen’s inequality.

The two-dimensional joint Gaussian Q-function is defined as [48, eq.(4.3)]

Q(x, y; ρ) =
1

2π
√
1− ρ2

∫ ∞

x

∫ ∞

y

exp

[
−x2

1 + y21 − 2ρx1y1
2(1− ρ2)

]
dx1dy1. (3.69)
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Figure 3.12: Bounds on the Gaussian Q-function over Nakagami-m fading at

high SNR.

It can also be expressed as the sum of two single integrals as [71, eq.(10)]

Q(x, y; ρ) =
1

2π

∫ θ∗x

0

exp

(
− x2

2 sin2 θ

)
dθ +

1

2π

∫ θ∗y

0

exp

(
− y2

2 sin2 θ

)
dθ, (3.70)

where

θ∗x = tan−1

(
x
y

√
1− ρ2

1− ρx
y

)
∈ [0, π),

θ∗y = tan−1

(
y
x

√
1− ρ2

1− ρ y
x

)
∈ [0, π).

(3.71)

Applying the Jensen’s inequality as in Section 3.4, we obtain the exponential lower
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3.6 Bounds on 2D Joint Gaussian Q-function

bound on (3.70) as

Q(x, y; ρ) ≥ QLB−KW (x, y; ρ)

=
n+1∑
k=2

axk
exp

(
−bxk

x2
)
+

n+1∑
k=2

ayk exp
(
−bykx

2
)
, (3.72)

where

axk
=

θxk
− θxk−1

2π
, bxk

=
1

2

cot(θxk−1
)− cot(θxk

)

θxk
− θxk−1

,

ayk =
θyk − θyk−1

2π
, byk =

1

2

cot(θxy−1)− cot(θyk)

θyk − θyk−1

,
(3.73)

and θxk
, θyk are chosen such that 0 = θx0 < θx1 < ... < θxn+1 = θ∗x, 0 = θy0 < θy1 <

... < θyn+1 = θ∗y.

The product of two Gaussian Q-functions, i.e. Q(x)Q(y), is a special case of

(3.70) by letting ρ = 0. Thus, it is also lower bounded by (3.72) with (3.73) and

θ∗x =
π

2
− tan−1

(y
x

)
∈ [0, π),

θ∗y = tan−1
(y
x

)
∈ [0, π).

(3.74)

In applications where the ratio y/x is constant, the integration limits θ∗x and θ∗y are

constants. Thus, the coefficients {axk
}, {bxk

}, {ayk} and {byk} of our bound in (3.72)

are constants which do not depend on the values of x or y. Therefore, our bound in

(3.72) can be easily manipulated.

To apply the Abreu method in [21], depending on the values of x and y, the

convexity of the integrands exp[−x2/(2 sin2 θ)] and exp[−y2/(2 sin2 θ)] changes over

their integration ranges [0, θ∗x) and [0, θ∗y), respectively. In [21, eq.(50)], for each

integral, there are three cases to consider. Hence, the Abreu method is more difficult

to apply than our method in Section 3.4. In addition, θ∗x and θ∗y are functions of x

and y. Thus, the coefficients of the Abreu bounds are functions of x or y. Hence,

the Abreu bound, denoted as QLB−A(x, y; ρ), in general, cannot be averaged over

fading using the MGF method, even if the ratio y/x is constant. To apply the Chiani

method in [24], if θ∗x > π/2, the integration range of the first integral in (3.70) must

be partitioned into [0, π/2) and [π/2, θ∗x), where the integrand increases or decreases
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Figure 3.13: Lower bounds on 2D joint Gaussian Q-function Q(x, x; 0.8) with 4

exponentials.

monotonically. The second integral is treated likewise. For constant y/x values, the

Chiani bound QLB−CDS(x, y; ρ) has the same form as our lower bound and can be

averaged over fading. Fig. 3.13 shows that our bound QLB−KW (x, y; ρ) in (3.72)

is much tighter than the equally-simple Chiani lower bound QLB−CDS(x, y; ρ), and

has similar tightness as the Abreu bound QLB−A(x, y; ρ). In comparison, both the

Chiani upper bound QUB−CDS(x, y; ρ) and the Chiani lower bound QLB−CDS(x, y; ρ)

are quite loose. For fair comparison, the bounds in Fig. 3.13 have equal numbers of

exponential terms.
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3.7 Conclusions

Using the Jensen’s inequality on the definition and the Craig’s form of the Gaussian

Q-function, we obtain two families of exponential lower bounds on the Gaussian

Q-function. The tightness of the lower bounds can be improved by increasing

the number of exponential terms. The lower bound QLB−KW2(x) has constant

coefficients, which allows for easy manipulation on the Q function. A closed-form

lower bound on the Gaussian Q-function averaged over fading is obtained by

averaging QLB−KW2(x) over fading as a function of the MGF of the fading model.

Using the same method to derive QLB−KW2(x), a family of lower bounds on the

two-dimensional Gaussian Q-function is obtained.
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Chapter 4

Error Performance of Coherent

Receivers

The error performances of many two-dimensional modulation schemes with coherent

detection are not in closed forms. Similar to the Craig’s form of the Gaussian

Q-function, the SEP performances of many modulation schemes over AWGN involve

finite range integrals of exponential functions, e.g. MPSK [15], MDPSK [72] and

signals with polygonal decision region [15]. In order to compute SEP values,

numerical integration is usually resorted to. Alternatively, simple closed-form

approximations and bounds are derived to compute it more efficiently. Though

approximations and upper bounds are used more often than lower bounds in

performance analysis, lower bounds are useful, as the combined use of upper

and lower bounds shows the tightness of the bounds, without comparing the

individual bounds with numerical integration of the exact value. The accuracy

of approximations, however, can only be obtained by comparing with numerical

integration of the exact value.

In [21], Abreu bounds the Craig’s form of the Gaussian Q-function by making

use of the convex/concave property of the integrand. This method can be applied to

finite range integrals of an arbitrary exponential function. When the integrand is not

purely convex or concave over the entire integration range, the integration range is
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divided into several subranges where the integrand is purely convex or concave. The

integrand in the convex subrange(s) is lower bounded using the Jensen’s inequality

and upper bounded using the Cotes trapezoidal rule. Similarly, the integrand in

the concave subrange(s) is upper bounded using the Jensen’s inequality and lower

bounded using the Cotes trapezoidal rule. The bounds obtained using the Abreu

method usually have coefficients which are functions of the SNR. Thus, in general,

the Abreu bounds cannot be averaged over fading distribution easily.

Chiani [24] divides the integration range into a few subranges and bounds

the integrand with its maximum and minimum values in each subrange. For

applications where the integrand is not monotonic over the entire integration range,

the integration range is first divided into subranges where the integrand increases

or decreases monotonically. Each monotonic subrange can be further divided and

the integrand is upper and lower bounded with its maximum and minimum values

in each subrange. Similar to the Chiani bounds on the Gaussian Q-function, the

upper and lower bounds obtained by the Chiani method has constant coefficients.

Therefore, the Chiani bounds can be averaged over fading using the MGF method

easily. However, the Chiani bounds are usually looser than the Abreu bounds with

the same number of exponential terms.

We propose to apply the Jensen’s inequality on the exponential function

(instead of the integrand) in an SEP expression. A family of exponential lower

bounds are obtained. The tightness of our bounds can be improved by increasing

the number of exponential terms. The bounds have the same simple form of the

Chiani bounds in and, therefore, can be easily averaged over the fading distribution

using the MGF method. This method is applied to the SEP of MPSK, MDPSK

and signals with polygonal decision regions. We show that our bounds are tighter

than the Chiani bounds and the Abreu bounds with similar numbers of exponential

terms. To apply the Chiani method and the Abreu method, a good analysis of the

integrand is necessary to divide the integration range. Our method does not depend

on the monotonicity or convexity property of the integrand. Hence, this method is
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easier to apply than the Chiani method and the Abreu method.

This chapter is organized as follows. In Section 4.1, lower bounds on the SEP

performances of MPSK, MDPSK and signals with polygonal decision region over

AWGN are obtained using the Jensen’s inequality. In Section 4.2, lower bounds on

the average SEP performances over fading are obtained using the MGF method.

Conclusions are made in Section 4.3.

4.1 Lower Bounds on SEP over AWGN

For an error probability that can be expressed in the following form

P =
n+1∑
k=1

∫ θk

θk−1

exp (g(θ)γ) dθ, (4.1)

where g(θ) is integrable, the Jensen’s inequality in (3.23) can be applied. Letting

ϕ(u) = exp(u),

f(θ) = g(θ)γ,

p(θ) = 1,

a = θk−1,

b = θk,

(4.2)

we obtain the lower bound

PL =
∑
k

ak exp (−bkγ) , (4.3)

where

ak = θk − θk−1,

bk =

∫ θk
θk−1

g(θ)dθ

θk − θk−1

,

(4.4)

are constant coefficients independent of γ. This lower bound can be averaged over

the distribution of γ using the MGF as in (3.68). It will be shown in detail in Section

4.2.
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When n → ∞, we have

lim
n→∞

PL =
∞∑
k=1

dθ exp

(
−g(θ)dθ

dθ
γ

)
=

∫ θn+1

θ0

exp (−g(θ)γ) dθ, (4.5)

which is equal to (4.1). As expected, simply by increasing n, the lower bound

approaches the exact value for all argument values

4.1.1 SEP of MPSK over AWGN

The SEP of coherent MPSK is given by [15, eq.(5)]

P (es|γ) =
1

π

∫ π−π/M

0

exp

(
−γ sin2(π/M)

sin2 θ

)
dθ. (4.6)

We first split the integration range of [0, π−π/M ] into n+1 subranges, by arbitrarily

choosing n + 2 values of θk such that 0 = θ0 < θ1 < ... < θn+1 = π − π/M . Thus,

(4.6) becomes

P (es|γ) =
n+1∑
k=1

1

π

∫ θk

θk−1

exp

(
−γ sin2(π/M)

sin2 θ

)
dθ. (4.7)

Applying the Jensen’s inequality in (3.2) with

ϕ(u) = exp(u),

f(θ) = −γ sin2(π/M)

sin2 θ
,

p(θ) = 1,

a = θk−1,

b = θk,

(4.8)

on each summation term in (4.7), we obtain an exponential lower bound as

P (es|γ) ≥
n+1∑
k=2

ak exp (−bkγ) , (4.9)
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where

ak =
θk − θk−1

π
,

bk = sin2
( π

M

) cot(θk−1)− cot(θk)

θk − θk−1

,
(4.10)

are constant coefficients that are independent of γ. Therefore, the lower bound can

be averaged over fading using the MGF method easily. Note that the k = 1 term is

0. Hence, the lower bound is a sum of n exponentials.

When n → ∞, we have

lim
n→∞

P (es|γ) =
∞∑
k=1

dθ

π
exp

(
sin2

( π

M

) d cot(θ)

dθ
γ

)
=

∫ π−π/M

θ=0

1

π
exp

(
−sin2(π/M)

sin2 θ
γ

)
dθ, (4.11)

which is equal to (4.6). As expected, simply by increasing n, the lower bound

approaches the exact value for all argument values, as shown in Fig. 4.1.

The integrand in (4.6) is not monotonic over the entire integration range of

[0, π−π/M). Hence, the Chiani method requires partitioning the entire integration

into monotonic subranges, i.e. [0, π/2) and [π/2, π − π/M). Bounds in the two

subranges are derived separately. Choosing θk such that 0 = θ0 < θ1 < ... < θn1 =

π/2 < θn1+1 < ... < θn+1 = π − π/M , the Chiani bounds on the SEP of MPSK are

given by

P (es|γ) ≤
n1∑
k=1

ak exp (−bkγ) +
n∑

k=n1+1

ak exp (−bk−1γ)

P (es|γ) ≥
n1∑
k=2

ak exp (−bk−1γ) +
n∑

k=n1+1

ak exp (−bkγ)

(4.12)

where

ak =
θk − θk−1

π
,

bk =
sin2(π/M)

sin2 θ
.

(4.13)

The Chiani bounds have the same simple form as our lower bound.
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Figure 4.1: Lower bounds on the SEP of MPSK over AWGN.

The integrand is neither convex nor concave over the entire integration range.

Therefore, the Abreu method in [21] requires partitioning the integration range into

[0, θ̄γ), [θ̄γ, π − θ̄γ) and [π − θ̄γ, π − π/M), in which the integrand is purely convex

or concave. This partitioning results in a bound with a minimum of 4 exponential

terms. The value of θ̄γ is obtained by solving

∂2

∂θ2
exp

(
−γ sin2(π/M)

sin2 θ

)
= 0 (4.14)

and is given by

θ̄γ = sin−1

1

2

√
2 sin2

( π

M

)
γ + 3−

√[
2 sin2

( π

M

)
γ − 1

]2
+ 8

 . (4.15)
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4.1 Lower Bounds on SEP over AWGN

If θ̄γ < π/M , the integration range is partitioned into [0, θ̄γ), [θ̄γ, π − π/M), which

corresponds to a bound with three exponential terms. As θ̄γ is a function of γ, the

coefficients of the Abreu bounds are

Our method, in comparison, does not depend on monotonicity or convexity

of the integrand. Hence, partitioning is not required and implementation of the

method is straightforward. Fig. 4.1 shows that our bound is much tighter than the

Chiani bound and the Abreu method with similar numbers of exponential terms.

4.1.2 SEP of MDPSK over AWGN

The SEP of MDPSK is given by [72, eq.(3)]

P (es|γ) =
1

π

∫ π−π/M

0

exp

(
− γ sin2(π/M)

1 + cos(π/M) cos θ

)
dθ. (4.16)

We first split the integration range of [0, π−π/M ] into n+1 subranges, by arbitrarily

choosing n + 2 values of θk such that 0 = θ0 < θ1 < ... < θn+1 = π − π/M . Thus,

(4.16) becomes

P (es|γ) =
n+1∑
k=1

1

π

∫ θk

θk−1

exp

(
− γ sin2(π/M)

1 + cos(π/M) cos θ

)
dθ. (4.17)

Applying the Jensen’s inequality in (3.2) with

ϕ(u) = exp(u),

f(θ) = − γ sin2(π/M)

1 + cos(π/M) cos θ
,

p(θ) = 1,

a = θk−1,

b = θk,

(4.18)

on each summation term in (4.17), we obtain an exponential lower bound on the

SEP of MDPSK as

P (es|γ) ≥
n+1∑
k=1

ak exp (−bkγ) , (4.19)

84



4.1 Lower Bounds on SEP over AWGN

with

ak =
θk − θk−1

π
,

bk = 2 sin
( π

M

) tan−1(βk)− tan−1(βk−1)

θk − θk−1

,
(4.20)

where

βk = tan

(
θk
2

)√
1− cos(π/M)

1 + cos(π/M)
. (4.21)

Note that the lower bound is a sum of n+ 1 exponentials.

As the integrand in (4.16) decreases monotonically over the entire integration

range, partitioning is not required to derive the Chiani bounds [24, eq.(29)]

n∑
k=1

ak exp (−bkγ) ≤ P (es|γ) ≤
n∑

k=1

ak exp (−bk−1γ) , (4.22)

where

ak =
θk − θk−1

π
,

bk =
sin2(π/M)

1 + cos(π/M) cos θk
.

(4.23)

For the Abreu method, similar to the case of MPSK, θ̄γ where convexity of the

integrand changes is obtained by solving

∂2

∂θ2
exp

(
− γ sin2(π/M)

1 + cos(π/M) cos θ

)
= 0 (4.24)

and equivalently

cos2
( π

M

)
cos3 θ − γ sin2

( π

M

)
cos
( π

M

)
cos2 θ

−
[
2 cos2

( π

M

)
+ 1
]
cos θ +

[
γ sin2

( π

M

)
− 2
]
cos
( π

M

)
= 0.

The solution of θ̄γ is a complex function of γ and M . If θ̄γ > π−π/M , the integrand

is concave over the entire integration range. The Abreu lower bound consists of a

minimum of two exponentials. If θ̄γ < π−π/M , the integrand is concave over [0, θ̄γ)

and convex over [θ̄γ, π − π/M). The Abreu lower bound consists of a minimum of

three exponential term.
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Figure 4.2: Lower bounds on the SEP of MDPSK over AWGN.

Our bound in (4.19) does not require analysis of the integrand. Fig. 4.2

shows that our two-term lower bound is already very tight. It is much tighter

than the Chiani lower bound and the Abreu lower bound with similar numbers of

exponentials.
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4.1.3 SEP of Signals with Polygonal Decision Region over

AWGN

The SEP of a two-dimensional constellation point with polygonal decision region is

given by [15, eq.(13)]

P (es|γ) =
1

2π

N∑
i=1

∫ αi

0

exp

(
− x2

i sin
2(ϕi)

No sin
2(θ + ϕi)

)
dθ, (4.25)

where N is the number of triangles the decision region consists of, and x2
i = csigEb

depends on the signal decision region. Thus, (4.25) is a function of γ = Eb/No.

Using change of variable θ′ = θ + ϕi, (4.25) becomes

P (es|γ) =
1

2π

N∑
i=1

∫ ϕi+αi

ϕi

exp

(
−csig sin

2(ϕi)

sin2(θ′)
γ

)
dθ′. (4.26)

We split the integration range of [ϕi, ϕi + αi] into n + 1 subranges, by arbitrarily

choosing n+ 2 values of θk such that ϕi = θ0 < θ1 < ... < θn+1 = ϕi + αi. Applying

the Jensen’s inequality in each subrange, we obtain the exponential lower bound on

(4.25)

P (es|γ) ≥
N∑
i=1

n+1∑
k=1

aik exp (−bikγ) , (4.27)

where

aik =
θik − θik−1

2π
,

bik = csig sin
2(ϕi)

cot(θik−1
)− cot(θik)

θik − θik−1

.
(4.28)

Note that (4.27) contains N(n + 1) exponential terms. By choosing 0 as a θim for

all i’s, (4.27) can be reduced to Nn terms.

When n → ∞, we have

lim
n→∞

P (es|γ) =
N∑
i=1

∞∑
k=1

dθ

2π
exp

(
csig sin

2(ϕi)
d cot(θ)

dθ
γ

)

=
N∑
i=1

∫ ϕi+αi

ϕi

1

2π
exp

(
−csig sin

2(ϕi)

sin2 θ
γ

)
dθ, (4.29)
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which is equal to (4.6). As expected, simply by increasing n, the lower bound

approaches the exact value for all argument values.

To apply the Chiani method, we need to determine if the integrand is monotonic

in [ϕi, ϕi + αi]. It depends on the values of ϕi and αi. Therefore, for each triangle

of the polygonal decision region, we need to determine monotonic subranges and

divide arbitrarily before applying the Jensen’s inequality.

To apply the Abreu method, for each triangle of the polygonal decision region,

we need to solve for the point that separates convex and concave intervals in [ϕi, ϕi+

αi]. The value of the point is a function of γ and may not be obtained analytically.

Numerical root-finding algorithms may be used to determine the value. Then, the

convex or concave subranges are divided arbitrarily before applying the Jensen’s

inequality.

Our method is much simpler than the above-mentioned two methods, as the

integration range can be arbitrarily divided. No analysis of the integrand or the

integration range is required.

4.2 Lower Bounds on Average SEP over Fading

If an error probability can be bounded by a sum of exponentials with constant

coefficients, bounds on the average probability over fading can be easily obtained

by using the MGF method.

4.2.1 SEP of Signals with 2D Decision Regions over Fading

The average error probability over fading is obtained by averaging the instantaneous

error probability conditioned on the instantaneous SNR γ, over the distribution of

γ, i.e.

P (es) =

∫ ∞

0

P (es|γ)pγ(γ)dγ. (4.30)
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If P (es|γ) can be expressed in the following general form:

P (es|γ) = c

∫ b

a

exp (f(θ)γ) dθ, (4.31)

by changing the order of integration, (4.30) simplifies to

P (es) = c

∫ b

a

M (f(θ)) dθ, (4.32)

where M(γ) is the MGF function defined in (3.4). But still, the exact average

probability in (4.32) involves a finite range integral and very often does not reduce

to a closed form. For example, the SEP performances of MPSK and MDPSK over

Rayleigh fading are given in closed form in [25, eq.(7-8)]. Their SEP performances

over Nakagami-m are found in closed form only for positive integer values of m

in [7, eq.(18)(20)], [26], while for arbitrary m they are expressed in terms of Gauss

hypergeometric function and Lauricella function [27, 28], respectively. Their SEP

performances over Rician fading are found in finite range integrals [29]. Numerical

integration is resorted to in such cases.

If P (es|γ) can be lower bounded by a sum of exponentials, i.e.

P (es|γ) ≥
∑
k

ak exp (−bkγ) , (4.33)

substituting (4.33) into (4.30), (4.32) is lower bounded as

P (es) ≥
∑
k

akMγ(−bk). (4.34)

Being able to bound the instantaneous error probability with a sum of exponentials

with constant coefficients allows us to apply the MGF method conveniently.

Lower bounds on the SEP performances of MPSK and MDPSK over fading

are given by (4.34) with {ak} and {bk} in (4.10) and (4.20), respectively. The SEP

lower bounds for MPSK and MDPSK over Rician fading are shown in Fig. 4.3, Fig.

4.4 and Fig. 4.5, respectively. The SEP lower bounds for MPSK and MDPSK over

Nakagami-m fading are shown in Fig. 4.5 and Fig. 4.6, respectively. The four figures

show that our bounds are much tighter than the Chiani bounds in [24, eq.(39)(41)]

with the same {θk} values. Both our bounds and the Chiani bounds become tighter

with increasing n.
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Figure 4.3: Lower bounds on the SEP of MPSK over Rician fading.

4.2.2 Product of Two Gaussian Q-functions over Fading

The average of the product of two Gaussian Q-functions over fading is given by [73,

eq.(1)]

I =

∫ ∞

0

Q(A1
√
γ)Q(A2

√
γ)pγ(γ)dγ,A1 ≥ 0, A2 ≥ 0. (4.35)

It is used in obtaining the SEP of general rectangular M -ary quadrature amplitude

modulation over fading. Exact closed-form expressions have been obtained for

Rayleigh fading [74, eq.(5)] and Nakagami-m fading [73, eq.(6)] [75, eq.(20)(35)]

but not for Rician fading.

The product of two Gaussian Q-functions is a special case of the

two-dimensional Gaussian Q-functions. Using the exponential lower bound on the
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Figure 4.4: Lower bounds on the SEP of MDPSK over Rician fading.

two-dimensional Gaussian Q-functions in (3.72), the MGF of Rician fading in (3.58)

and the MGF method in (4.32), (4.35) for Rician fading is lower bounded by

I ≥
n+1∑
k=2

axk

1 +K

1 +K − bxk
A2

1γ̄
exp

(
Kbxk

A2
1γ̄

1 +K − bxk
A2

1γ̄

)

+
n+1∑
k=2

ayk
1 +K

1 +K − bykA
2
2γ̄

exp

(
KbykA

2
2γ̄

1 +K − bykA
2
2γ̄

)
, (4.36)

which is a sum of 2n exponential terms. Here, γ̄ is the average SNR, axk
, ayk , bxk

,

and byk are given in (3.73) and

θ∗x =
π

2
− tan−1

(
A2

A1

)
∈ [0, π),

θ∗y = tan−1

(
A2

A1

)
∈ [0, π).

(4.37)
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Figure 4.5: Lower bounds on the SEP of MPSK over Nakagami-m fading.

Fig. 4.7 shows that our lower bound in (4.36) becomes tighter with increasing n. It

is much tighter than the Li lower bound in [73, eq.(12)] at low SNR for all the four

cases.

4.3 Conclusions

We propose to apply the Jensen’s inequality to lower bound integrals of exponential

functions. Using this method, we obtain exponential lower bounds on the SEP

of MPSK, MDPSK, and signals with polygonal decision regions over an AWGN

channel. The tightness of the bounds can be improved by increasing the number of

exponential terms. The coefficients of the exponential bounds are constants. Hence,
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Figure 4.6: Lower bounds on the SEP of MDPSK over Nakagami-m fading.

the lower bounds on the average SEP performances over fading are easily obtained

by averaging lower bounds on the SEP performances over fading distribution using

the MGF method. Numerical results show that our bounds are tighter than the

Chiani bounds and the Abreu bounds with similar numbers of exponential terms.
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fading.
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Chapter 5

Error Performance of Quadratic

Receivers

In Chapter 4, we looked into coherent detection. When estimation of the carrier

phase is difficult, e.g. over fading channels, coherent detection is not possible. In

such cases, differential and noncoherent detection techniques are used instead. For

example, differentially coherent detectors are used to detect DPSK signals. The

square law detector of frequency shift keying (FSK) signals, and the MLSD-NCSI

detector in Chapter 2 are examples of noncoherent detectors that do not require an

explicit channel estimate. A lot of work has been published on the error performance

of individual differential or noncoherent detectors over AWGN or fading channels.

For example, the BEP of BDPSK and binary orthogonal signals with multichannel

reception over AWGN are obtained in [8, eq.(12-1-13)] and [8, eq.(12-1-24)],

respectively. The average BEP of BDPSK and binary orthogonal square-law

detected FSK signals over slow Rayleigh fading are given in [8, eq.(14-3-10)] and

[8, eq.(14-3-11)], respectively. The average BEP of QDPSK over slow Rayleigh,

Rician and Nakagami-m fading are given in [30–32], respectively. The average

BEP of BDPSK and QDPSK over slow Rayleigh and Rician fading channels with

diversity reception are obtained in [33, 34]. The average BEP of BDPSK over

slow Nakagami-m fading channels with diversity reception is obtained in [35]. The
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average BEP of BDPSK over fast Rician fading with diversity reception is obtained

in [36]. The average BEP of BDPSK, QDPSK and noncoherent frequency shift

keying (NCFSK) with diversity reception over arbitrarily correlated Rician fading

is obtained in [37].

The decision metrics of differential and noncoherent detectors are usually

in quadratic forms, for both single and multichannel reception over AWGN and

fading channels. Only a few publications obtain general expressions on the error

performance of a general quadratic receiver. Using a characteristic function method,

Proakis finds an error probability expression for general quadratic receivers with

complex Gaussian distributed signals, in terms of the first-order Marcum Q-function

and the modified Bessel functions of the first kind with order 0, 1, ..., L− 1, where L

is the diversity order, and other elementary functions [8, eq. (B-21)]. The first-order

Marcum Q-function and the modified Bessel function of the first kind are defined

as infinite range integrals. Therefore, evaluation of the Proakis’ expression involves

numerical integration over an infinite range due to the special functions involved.

Using alternative integral forms of the Marcum Q-function and the zeroth-order

modified Bessel function of the first kind, Simon and Alouini express the Proakis’

expression for single channel reception over AWGN in a finite range integral form

[9]. When this integral is averaged over the fading distribution, the integration

order of the double integral can be interchanged. This often results in a closed

form expression or a single integral. For multichannel reception over AWGN, the

Proakis’ expression can be written in terms of the generalized Marcum Q-function.

Again, by using the integral form of the generalized MarcumQ-function, the Proakis’

expression is expressed in a finite range integral. Averaging the expression over the

joint PDF of multichannel fading, by interchanging the order of integration, the

performance of diversity reception over fading results in a finite range integral with

integrand in terms of elementary functions. However, in general, the integral does

not reduce to a closed-form expression and, hence, numerical integration is required.

By performing eigendecomposition of the decision metrics of DPSK and
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NCFSK, Ma and Lim derived the MGF of the decision statistics and obtains from

the cumulative density function a BEP expression involving an infinite multi-level

summation [37]. It does not show, however, how to generalize this approach to a

general quadratic receiver whose decision metric is of a more general form than that

of DPSK and NCFSK.

Our target here is to find a general expression for a general quadratic receiver,

which involves only elementary functions, such that its computation is simpler than

the existing expressions. The decision metric of a quadratic receiver is noncentral

Chi-square distributed. Its PDF can be expressed as a Poisson-weighted mixture

of central Chi-square PDF. Thus, the error probability of a quadratic receiver

results in a triple sum involving only elementary functions. Using this expression,

we obtain exact BEP performances of of optimum and suboptimum BDPSK and

QDPSK receivers over fast Rician fading with Doppler shift. Computation using

our expressions are more efficient than the existing expressions involving confluent

hypergeometric functions. We also obtain alternative BEP expressions of BDPSK

over slow Rayleigh and Rician fading.

This chapter is organized as follows. In Section 5.1, we obtain a new exact

expression of the error probability of general quadratic receivers which involves only

elementary functions (rational functions and exponential functions) . In Section

5.2, we apply the expression to the BEP performance analysis of BDPSK over fast

Rician fading with Doppler shift. New exact expressions involving only elementary

functions are obtained for both the optimum receiver and the suboptimum receiver.

Similarly, in Section 5.3, exact BEP expressions involving only elementary functions

are obtained for the optimum and suboptimum receivers of QDPSK. Conclusions

are made in Section 5.4.
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5.1 New Expression for Performance of

Quadratic Receivers

The error probability of quadratic receivers are usually in the following form

P (ε) = P (R0 < R1). (5.1)

Here, the random variable Ri is the sum of squares of L independent random

variables, i.e.

Ri = ∥xi∥2, (5.2)

where the elements of xi = [xi1, ..., xiL]
T are complex Gaussian distributed with

nonidentical means mik and identical variances 2σ2
i . Therefore, Ri is noncentral

Chi-square distributed with 2L degrees of freedom and noncentrality parameter

s2i =
L∑

k=1

|mik|2. (5.3)

The PDF of Ri is given by [8, eq. (2-1-118)]

pi(r) =
1

2σ2
i

(
r

s2i

)L−1
2

exp

(
−r + s2i

2σ2
i

)
IL−1

(
si
√
r

σ2
i

)
. (5.4)

Here, Im(x) is the mth-order modified Bessel function of the first kind, usually

defined as [70, eq. (8.431-3)]

Im(x) =
(x/2)m

Γ(m+ 1
2
)Γ(1

2
)

∫ π

0

e±x cos θ sin2x θdθ, [Re(m+
1

2
) > 0]. (5.5)

Alternatively, it can also be represented by the infinite series [70, eq. (8.445)]

Im(x) =
∞∑
k=0

(x/2)m+2k

k!Γ(m+ k + 1)
. (5.6)

Substituting (5.6) into (5.4), (5.4) can also be expressed as

pi(r) =
∞∑
k=0

exp

(
− s2i
2σ2

i

) (
s2i
2σ2

i
)k

k!
p′i,L+k(r), (5.7)
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where

p′i,k(r) =
rk−1 exp

(
− r

2σ2
i

)
(2σ2

i )
kΓ(k)

(5.8)

is the normalized central Chi-square distribution with 2k degrees of freedom. From

the representation in (5.7), the noncentral Chi-square distribution can be seen as

a Poisson-weighted mixture of central Chi-square distributions, each with 2(L + k)

degrees of freedom.

Having obtained the PDF of R0 and R1, (5.1) depends on whether R0 and R1

are independent of each other.

5.1.1 Independent R0 and R1

If R0 and R1 are independent, we can evaluate (5.1) by averaging P (R1 > c|R0 = c)

over the statistics of R0, i.e.

P (ε) =

∫ ∞

c=0

P (R1 > c|R0 = c)p0(c)dc. (5.9)

As R0 and R1 are independent of each other, we have

P (R1 > c|R0 = c) = P (R1 > c) =

∫ ∞

c

p1(r)dr. (5.10)

Substituting the PDF of R1 in (5.7), (5.10) is given by

P (R1 > c|R0 = c) =
∞∑
k=0

exp

(
− s21
2σ2

1

) (
s21
2σ2

1
)k

k!

1

(2σ2
1)

kΓ(k)

∫ ∞

c

rk−1 exp

(
− r

2σ2
1

)
dr.

(5.11)

Using the integration rule [70, eq.(3.351-2)]∫ ∞

u

xn exp(−µx)dx = exp(−µu)
n∑

k=0

n!

k!

uk

µn−k+1
, [u > 0,Re[µ] > 0, n = 0, 1, 2...]

(5.12)

(5.11) reduces to

P (R1 > c|R0 = c) = exp

(
−s21 + c

2σ2
1

) ∞∑
k=0

(s21/2σ
2
1)

k

k!

k+L−1∑
j=0

(c/2σ2
1)

j

j!
. (5.13)
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Substituting (5.13) and the PDF of R0 in (5.7), (5.9) can be evaluated by

P (ε) =

∫ ∞

c=0

∞∑
k=0

exp

(
− s21
2σ2

1

) ( s21
2σ2

1

)k
k!

k+L−1∑
j=0

exp

(
− c

2σ2
1

) ( c
2σ2

1

)j
j!

·
∞∑
l=0

exp

(
− s20
2σ2

1

) (
s20
2σ2

0
)l

l!

cl+L−1 exp
(
− c

2σ2
0

)
(2σ2

0)
l+LΓ(l + L)

dc. (5.14)

By changing the order of integration and summation, and using the integration

rule [70, eq. (2.321 2)]∫
exp(ax)xndx = exp(ax)

n∑
i=0

(−1)n−in!xi

i!an−i+1
, (5.15)

(5.14) can be simplified to

P (ε) =
exp

(
− s20

2σ2
0
− s21

2σ2
1

)
(1 +

σ2
0

σ2
1
)L

∞∑
k=0

(
s21
2σ2

1

)k
k!

L−1+k∑
j=0

1

j! (1 +
σ2
1

σ2
0
)j

·
∞∑
l=0

(L− 1 + j + l)!

(
s20

2σ2
0(1+

σ2
0

σ2
1
)

)l

(L− 1 + l)! l!

=
exp (−A0 − A1)

SL
0

∞∑
k=0

Ak
1

k!

L−1+k∑
j=0

1

j!Sj
1

∞∑
l=0

(L− 1 + j + l)!(A0/S0)
l

(L− 1 + l)!, l!
(5.16)

where

A0 =
s20
2σ2

0

,

A1 =
s21
2σ2

1

,

S0 = 1 +
σ2
0

σ2
1

,

S1 = 1 +
σ2
1

σ2
0

.

(5.17)

By using the following formula [70, eq. (9.212-1)]

1F1(L+ j, L;x) = ex 1F1(−j, L;−x), (5.18)
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where 1F1(a, b;x) is the confluent hypergeometric function defined as

1F1(a, b;x) ==
∞∑
k=0

a(a+ 1) · · · (a+ k − 1)

b(b+ 1) · · · (b+ k − 1)

xk

k!
, (5.19)

(5.16) further simplifies to

P (ε) =
e
−A1−A0+

A0
S0

SL
0

∞∑
k=0

Ak
1

k!
·
L−1+k∑
j=0

(L− 1 + j)!

Sj
1

j∑
l=0

(A0/S0)
l

(L− 1 + l)! l! (j − l)!
. (5.20)

where the parameters are given in (5.17). The error probability expression in (5.20)

is an exact expression involving only rational functions and exponential functions.

It is much simpler than the Proakis’ expression which involves special functions

including the Marcum Q-function and the modified Bessel function of the first kind.

It is also much simpler than Simon and Alouini’s expression while involves integrals.

Although (5.20) involves infinite series summation, it converges fast with k and

therefore, the infinite series summation indexed by k can be truncated for numerical

calculation.

An alternative method to calculate the error probability in (5.1) is to use

Proakis’ expression for the probability [8, Appendix B]

P (D < 0), (5.21)

where

D = A∥x0∥2 +B∥x1∥2 + CxH
1 x0 + C∗xH

0 x1 (5.22)

by letting

A = 1,

B = −1,

C = 0,

µxx = σ2
0,

µyy = σ2
1,

µxy = 0.

(5.23)
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The error probability expression is given by [8, eq. (B-21)]

P (ε) = Q1(a, b)− I0(ab)e
−(a2+b2)/2 +

I0(ab)e
−(a2+b2)/2

(1 + v2/v1)2L−1

L−1∑
k=0

(
2L− 1

k

)(
v2
v1

)k

+
e−(a2+b2)/2

(1 + v2/v1)2L−1

L−1∑
n=1

In(ab)
L−1−n∑
k=0

(
2L− 1

k

)

·

[(
b

a

)n(
v2
v1

)k

−
(a
b

)n(v2
v1

)2L−1−k
]
, (5.24)

where

v1 =
1

2σ2
0

,

v2 =
1

2σ2
1

,

a =

√
s21

σ2
0 + σ2

1

,

b =

√
s20

σ2
0 + σ2

1

.

(5.25)

Comparing with (5.20), (5.24) involves special functions including the Marcum

Q-function and the modified Bessel function of the first kind, and therefore, is more

complex than our expression in (5.20). The Proakis’ expression will be used to verify

our expression in (5.20) numerically.

5.1.2 Correlated R0 and R1

Assume that the L elements of xi are i.i.d. complex Gaussian random variables with

mean mi and variance 2σ2
i . The cross-covariance of x0l and x1l for all l is given by

µ01 = E[(x0l −m0)(x1l −m1)
∗], (5.26)

whereas x0l and x1j are uncorrelated for i ̸= j. Thus, x0 and x1 can be decorrelated

by linear transformation. Let

y0 = µx0 + x1,

y1 = x0 + µ∗x1.
(5.27)
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By showing that

x0 =
µ∗y0 − y1

|µ|2 − 1
,

x1 =
µy0 − y1

|µ|2 − 1
,

(5.28)

we can prove that

P (∥x0∥2 < ∥x1∥2) = P (∥y0∥2 < ∥y1∥2). (5.29)

We want to solve for the value of µ such that y0l and y1l for all l are uncorrelated,

i.e.

E [(y0l − E[y0l]) (y1l − E[y1l])
∗] = 0, (5.30)

and hence,

µ01µ
2 + (2σ2

0 + 2σ2
0) + µ∗

01 = 0. (5.31)

The solution to (5.31), i.e.

µ = −
2σ2

0 + 2σ2
1 +

√
(2σ2

0 + 2σ2
1)

2 − 4|µ01|2
2µ10

, (5.32)

ensures that y0 and y1 are independent. The means and variances of the elements

of y0 and y1 are given by

m′
0 = µm0 +m1,

2σ′2
0 = |µ|22σ2

0 + 2σ2
1 + 2Re[µµ01],

m′
1 = m0 + µ∗m1,

2σ′2
1 = 2σ2

0 + |µ|22σ2
1 + 2Re[µµ01].

(5.33)

Hence, we have

s′20 = L
(
|µ|2|m0|2 + |m1|2 + 2Re[µm0m

∗
1]
)
,

s′21 = L
(
|m0|2 + |µ|2|m1|2 + 2Re[µm0m

∗
1]
)
.

(5.34)
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Thus, (5.29) can be computed by (5.20) with

A0 =
L (|µ|2|m0|2 + |m1|2 + 2Re[µm0m

∗
1])

|µ|22σ2
0 + 2σ2

1 + 2Re[µµ01]
,

A1 =
L (|m0|2 + |µ|2|m1|2 + 2Re[µm0m

∗
1])

2σ2
0 + |µ|22σ2

1 + 2Re[µµ01]
,

S0 =
(|µ|2 + 1)(2σ2

0 + 2σ2
1) + 4Re[µµ01]

2σ2
0 + |µ|22σ2

1 + 2Re[µµ01]
,

S1 =
(|µ|2 + 1)(2σ2

0 + 2σ2
1) + 4Re[µµ01]

2σ2
0 + |µ|22σ2

1 + 2Re[µµ01]
.

(5.35)

Computation of (5.20) with (5.35) involving only elementary functions is simpler

than computation using the Proakis’ expression involving special functions.

An alternative method to calculate the error probability in (5.1) is to use

Proakis’ expression for the probability in (5.21) [8, Appendix B] by letting

A = 1,

B = −1,

C = 0,

µxx = σ2
0,

µyy = σ2
1,

µxy =
1

2
µ01.

(5.36)

The error probability expression is given by (5.24) [8, eq. (B-21)] with

v1 =

√
(σ2

0 + σ2
1)

2 − |µ01|2 − σ2
0 + σ2

1

4σ102σ2
1 − |µ01|2

,

v2 =

√
(σ2

0 + σ2
1)

2 − |µ01|2 + σ2
0 − σ2

1

4σ102σ2
1 − |µ01|2

,

a =

√
2v21v2(α1v1 − v2)

(v1 + v2)2
,

b =

√
2v1v22(α1v1 + v2)

(v1 + v2)2
,

(5.37)

where

α1 = 2L
(
|m0|2σ2

1 + |m1|2σ2
2 − Re[m0m

∗
1µ

∗
01]
)
,

α1 = L
(
|m0|2 − |m1|2

)
.

(5.38)
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The Proakis’ expression will be used to verify our expression in (5.20) with (5.35)

numerically.

5.2 BEP of BDPSK over Fast Rician Fading with

Doppler Shift and Diversity Reception

The BEP performances of BDPSK over fast Rician fading channels with Doppler

shift and MRC using optimum and suboptimum differential detection receivers have

been expressed in [36] in the form of an infinite series summation of the confluent

hypergeometric functions. The BEP performance of the suboptimum receiver is

also obtained in [37] as an infinite multi-level summation. Though exact expressions

have been obtained in the literature, we use this as an example to demonstrate

application of our new expression which results in alternative BEP expressions that

involve only elementary functions.

The received signal over Lth path at the kth symbol interval is given by

r(k) =
√
Ebe

jϕ(k)c(k) + n(k), (5.39)

where Eb is the energy per transmitted bit, and ϕ(k) is the data-modulated phase.

The complex fading gain c(k) is given by

c(k) = dej2πfd(k+1)T [1, ..., 1]T + b(k), (5.40)

where dej2πfd(k+1)T is the LOS component in each path with Doppler shift fd and

b(k) is the scatter component. The correlation function of the scatter component

is given by

E[bl(k)b
∗
i (k − j)] = 2σ2r(j)δli, (5.41)

where r(j) is the correlation coefficient. We define ρ = r(1). n(k) is the complex

AWGN noise, whose correlation function is given by

E[nl(k)n
∗
i (k − j)] = N0δliδj. (5.42)
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The K factor of the Rician distribution is given by K = |d|2/2σ2. The SNR at each

path is defined as

γc =
Eb(|d|2 + 2σ2)

N0

=
2Ebσ

2(K + 1)

N0

. (5.43)

5.2.1 Suboptimum Receiver

For the suboptimum receiver which has no knowledge of the Doppler shift in the

LOS component, the decision rule is given by

Re
[
r(k − 1)Hr(k)

] bit 0

≷
bit 1

0. (5.44)

Assuming that bit 0 is transmitted, i.e. ∆ϕ(k) = 0, and the reference phase ϕ(k −

1) = 0, hence, ϕ(k) = 0, the BEP is given by

Pb = P (Re
[
r(k − 1)Hr(k)

]
< 0), (5.45)

which can also be expressed in quadratic form as

Pb = P (∥x0∥2 < ∥x1∥2), (5.46)

where

x0 = r(k) + r(k − 1),

x1 = r(k)− r(k − 1).
(5.47)

The elements of x0 are i.i.d. complex Gaussian random variables with mean and

variance

m0 =
√

Ebd[e
j2πfd(k+1)T + ej2πfdkT ],

2σ2
0 = 4Ebσ

2(1 + ρ) + 2N0.
(5.48)

Hence,

s20 = 2LEb|d|2[1 + cos(2πfdT )]. (5.49)
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Similarly, the elements of x1 are i.i.d. complex Gaussian random variables with

mean and variance

m1 =
√

Ebd[e
j2πfd(k+1)T − ej2πfdkT ],

2σ2
1 = 4Ebσ

2(1− ρ) + 2N0,
(5.50)

and, hence,

a21 = 2LEb|d|2[1− cos(2πfdT )]. (5.51)

It is easy to show that x0 and x1 are independent. Thus, ∥x0∥2 and ∥x1∥2 are two

independent noncentral Chi-square distributed random variables. Therefore, (5.46)

can be expressed as (5.20), where (5.17) are simplified to

A0 =
LKγc[1 + cos(2πfdT )]

K + 1 + (1 + ρ)γc
,

A1 =
LKγc[1− cos(2πfdT )]

K + 1 + (1− ρ)γc
,

S0 =
2(K + 1 + γc)

K + 1 + (1− ρ)γc
,

S1 =
2(K + 1 + γc)

K + 1 + (1 + ρ)γc
.

(5.52)

Computation of (5.20) with (5.52) involving only elementary functions is simpler

than computation using the Proakis’ expression involving special functions.

In the case of fd = 0, we have A1 = 0. The BEP expression reduces to

Pb = exp

(
− LKγc
1 +K + γc

)[
1 +K + γc(1− ρ)

2(1 +K + γc)

]L

·
L−1∑
j=0

(L− 1 + j)!

[
1 +K + γc(1 + ρ)

2(1 +K + γc)

]j j∑
l=0

{
LKγc[1+K+γc(1−ρ)]

(1+K+γc)[1+K+γc(1+ρ)]

}l

(j − l)! l! (L− 1 + l)!
, (5.53)

which is equivalent to the alternative BEP expressions in [48, eq. (9.393)] and [34,

eq.(76)] derived using the Proakis’ expression.

For the case of single diversity where L = 1, (5.53) reduces to the existing BEP

expression in the literature [48, eq.(8.229)]

Pb =
1 +K + γc(1− ρ)

2(1 +K + γc)
exp

(
− Kγc
1 +K + γc

)
. (5.54)
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Letting K = 0, (5.53) reduces to the BEP over Rayleigh fading as

Pb =

[
1 + γc(1− ρ)

2(1 + γc)

]N L−1∑
j=0

(
L− 1 + j

j

)[
1 + γc(1 + ρ)

2(1 + γc)

]j
, (5.55)

which is obtained in [33]. It is equivalent to the alternative form in [48, eq.(9.394)].

For the case of single diversity over Rayleigh fading, by letting L = 1 and

K = 0, both (5.54) and (5.55) reduce to [48, eq.(8.230)]

Pb =
1 + γc(1− ρ)

2(1 + γc)
. (5.56)

Therefore, by using the new expression for quadratic receivers, we may obtain

more alternative performance expressions.

5.2.2 Optimum Receiver

For the optimum receiver which perfectly compensates the Doppler shift in the LOS

component, the decision rule is given by

Re
[
r(k − 1)Hr(k)e−j2πfdT

] bit 0

≷
bit 1

0. (5.57)

The BEP is given by

Pb = P (Re
[
r(k − 1)Hr(k)e−j2πfdT

]
< 0), (5.58)

which can also be expressed in the same quadratic form as (5.46) where

x0 = r(k) + r(k − 1)ej2πfdT ,

x1 = r(k)− r(k − 1)ej2πfdT .
(5.59)

We can show that the elements of x0 are i.i.d. complex Gaussian random variables

with mean and variance

m0 = 2
√

Ebde
j2πfd(k+1)T ,

2σ2
0 = 4Ebσ

2 [1 + ρ cos(2πfdT )] + 2N0.
(5.60)
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Similarly, the elements of x1 are i.i.d. complex Gaussian random variables with

mean and variance

m1 = 0,

2σ2
1 = 4Ebσ

2 [1− ρ cos(2πfdT )] + 2N0.
(5.61)

The cross-covariance of x0l and x1l is given by

µ01 = E[(x0l −m0)(x1l −m1)
∗] = j4Ebσ

2ρ sin(2πfdT ), (5.62)

x0 and x1 can be decorrelated by linear transformation, as in (5.27) with

µ = j
K + 1 + γc +

√
(K + 1 + γc)2 − [ργc sin(2πfdT )]2

ργc sin(2πfdT )
. (5.63)

Hence, y0 and y1 are independent complex Gaussian distributed, with means and

variances

m′
0 = µ2

√
Ebde

j2πfd(k+1)T ,

2σ′2
0 =

2N0C0

K + 1
,

m′
1 = 2

√
Ebde

j2πfd(k+1)T ,

2σ′2
1 =

2N0C1

K + 1
,

(5.64)

where

C0 = (|µ|2 + 1)(K + 1 + γc) + (|µ|2 − 1)ργc cos(2πfdT )− 2|µ|ργc sin(2πfdT ),

C1 = (|µ|2 + 1)(K + 1 + γc)− (|µ|2 − 1)ργc cos(2πfdT )− 2|µ|ργc sin(2πfdT ).

(5.65)

Therefore, the BEP of optimum BDPSK receiver can be expressed as (5.20), with

A0 = 2|µ|2LKγc/C0,

A1 = 2LKγc/C1,

S0 = 1 + C0/C1,

S1 = 1 + C1/C0.

(5.66)

Computation of (5.20) with (5.66) involving only elementary functions is simpler

than computation using the Proakis’ expression involving special functions.

109



5.2 BEP of BDPSK over Fast Rician Fading with Doppler Shift and
Diversity Reception

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

γ
c
 (dB)

B
E

P

 

 

optimum receiver
suboptimum receiver

N=1

N=2

N=4

Figure 5.1: BEP performance comparison between optimum and suboptimum

receivers over fast Rician fading with Doppler shift and diversity reception.

5.2.3 Numerical Results

The BEP performances of suboptimum and optimum receivers of DBPSK in

eq. (5.20) with parameters in (5.52) and (5.66) are simpler than the equivalent

expressions in [36, eq. (28), (40)] which involve the confluent hypergeometric

function. Our expressions are also simpler than the Proakis’ expression which involve

the generalized Marcum Q-function and the modified Bessel function of the first

kind.

Fig. 5.1 shows the BEP performances of the optimum and suboptimum receivers

by numerical calculation using (5.20), (5.52) and (5.66) for K = 5, fdT = 0.03 and

fDT = 0.05. The Jake’s spectrum is assumed, where ρ = J0(2πfDT ). The numerical
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results of (5.20) match well with those of Proakis’ expression in (5.24) and [36, eq.

(28)], therefore, only one curve is shown for each receiver. Though both (5.20)

and [36, eq. (28)] involve infinite sequence summation, numerical calculations show

that (5.20) converges faster than [36, eq. (28)], and takes less than half time to

compute using MATLAB.

5.3 BEP of QDPSK over Fast Rician Fading with

Doppler Shift and Diversity Reception

The exact BEP expression for QDPSK with suboptimum receiver in the presence

of nonzero Doppler shift fdT is obtained in [37]. The performance of the optimum

receiver has not been found in the literature, though it can be obtained using the

Proakis’ expression in [8, Appendix B].

5.3.1 Suboptimum Receiver

The exact BEP of the Gray coded QDPSK suboptimum receiver is given by

Pb =
1

2

[
P
(
Re
[
r(k − 1)Hr(k)ejπ/4

]
< 0
)
+ P

(
Re
[
r(k − 1)Hr(k)e−jπ/4

]
< 0
)]

.

(5.67)

The first summation term can be expressed as

P
(
Re
[
r(k − 1)Hr(k)ejπ/4

]
< 0
)
= P (∥x0∥2 < ∥x1∥2), (5.68)

where

x0 = r(k) + r(k − 1)e−jπ/4,

x1 = r(k)− r(k − 1)e−jπ/4.
(5.69)

Similarly, the second summation term can be expressed as

P
(
Re
[
r(k − 1)Hr(k)e−jπ/4

]
< 0
)
= P (∥x0∥2 < ∥x1∥2), (5.70)
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where

x0 = r(k) + r(k − 1)ejπ/4,

x1 = r(k)− r(k − 1)ejπ/4.
(5.71)

Denoting (5.20) as f(A0, A1, S0, S1), (5.67) is given by

Pb =
1

2
[f(A0, A1, S0, S1) + f(A′

0, A
′
1, S

′
0, S

′
1)] , (5.72)

where

A0 = 2LKγc
[1 + cos(2πfdT + π/4)]µ2 − 2 sin(2πfdT + π/4)µ+ 1− cos(2πfdT + π/4)

[2γc(1 + ρ/
√
2) +K + 1]µ2 − 2

√
2γcρµ+ 2γc(1− ρ/

√
2) +K + 1

,

A1 = 2LKγc
[1− cos(2πfdT + π/4)]µ2 − 2 sin(2πfdT + π/4)µ+ 1 + cos(2πfdT + π/4)

[2γc(1− ρ/
√
2) +K + 1]µ2 − 2

√
2γcρµ+ 2γc(1 + ρ/

√
2) +K + 1

,

S0 = 2
(2γc +K + 1)µ2 − 2

√
2γcρµ+ 2γc +K + 1

[2γc(1− ρ/
√
2) +K + 1]µ2 − 2

√
2γcρµ+ 2γc(1 + ρ/

√
2) +K + 1

,

S1 = 2
(2γc +K + 1)µ2 − 2

√
2γcρµ+ 2γc +K + 1

[2γc(1 + ρ/
√
2) +K + 1]µ2 − 2

√
2γcρµ+ 2γc(1− ρ/

√
2) +K + 1

,

(5.73)

and

A′
0 = 2LKγc

[1 + cos(2πfdT − π/4)]µ2 + 2 sin(2πfdT − π/4)µ+ 1− cos(2πfdT − π/4)

[2γc(1 + ρ/
√
2) +K + 1]µ2 − 2

√
2γcρµ+ 2γc(1− ρ/

√
2) +K + 1

,

A′
1 = 2LKγc

[1− cos(2πfdT − π/4)]µ2 + 2 sin(2πfdT − π/4)µ+ 1 + cos(2πfdT − π/4)

[2γc(1− ρ/
√
2) +K + 1]µ2 − 2

√
2γcρµ+ 2γc(1 + ρ/

√
2) +K + 1

,

S ′
0 = 2

(2γc +K + 1)µ2 − 2
√
2γcρµ+ 2γc +K + 1

[2γc(1− ρ/
√
2) +K + 1]µ2 − 2

√
2γcρµ+ 2γc(1 + ρ/

√
2) +K + 1

,

S ′
1 = 2

(2γc +K + 1)µ2 − 2
√
2γcρµ+ 2γc +K + 1

[2γc(1 + ρ/
√
2) +K + 1]µ2 − 2

√
2γcρµ+ 2γc(1− ρ/

√
2) +K + 1

,

(5.74)

where

µ =
2γc +K + 1 +

√
(2γc +K + 1)2 − 2(γcρ)2√

2γcρ
. (5.75)

Computation of (5.20) with (5.73) and (5.74) involving only elementary functions is

simpler than computation using the Proakis’ expression involving special functions.
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5.3.2 Optimum Receiver

The exact BEP of the Gray coded QDPSK suboptimum receiver is given by

Pb =
1

2

{
P
(
Re
[
r(k − 1)Hr(k)ej(−2πfdT+π/4)

]
< 0
)

+P
(
Re
[
r(k − 1)Hr(k)e−j(2πfdT+π/4)

]
< 0
)}

. (5.76)

The first summation term can be expressed as

P
(
Re
[
r(k − 1)Hr(k)ej(−2πfdT+π/4)

]
< 0
)
= P (∥x0∥2 < ∥x1∥2), (5.77)

where

x0 = r(k) + r(k − 1)ej(2πfdT−π/4),

x1 = r(k)− r(k − 1)ej(2πfdT−π/4).
(5.78)

Similarly, the second summation term can be expressed as

P
(
Re
[
r(k − 1)Hr(k)e−j(2πfdT+π/4)

]
< 0
)
= P (∥x′

0∥2 < ∥x′
1∥2), (5.79)

where

x0 = r(k) + r(k − 1)ej(2πfdT+π/4),

x1 = r(k)− r(k − 1)ej(2πfdT+π/4).
(5.80)

Following the approach in 5.1.2, (5.76) is given by

Pb =
1

2
[f(A0, A1, S0, S1) + f(A′

0, A
′
1, S

′
0, S

′
1)] , (5.81)

with

A0 = 2LKγc
(1 +

√
2
2
)µ2 −

√
2µ+ 1−

√
2
2

C0

,

A1 = 2LKγc
(1−

√
2
2
)µ2 +

√
2µ+ 1 +

√
2
2

C1

,

S0 = 1 + C0/C1,

S1 = 1 + C1/C0,

(5.82)
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where

C0 = [2γc(1 + ρ cos(π/4− 2πfdT )) +K + 1]µ2 − 4γcρµ sin(2πfdT + π/4) (5.83)

+ 2γc(1− ρ cos(π/4− 2πfdT )) +K + 1, (5.84)

C1 = [2γc(1− ρ cos(π/4− 2πfdT )) +K + 1]µ2 − 4γcρµ sin(2πfdT + π/4) (5.85)

+ 2γc(1 + ρ cos(π/4− 2πfdT )) +K + 1, (5.86)

µ =
2γc +K + 1 +

√
(2γc +K + 1)2 − [2γcρ sin(π/4− 2πfdT )]2

2γcρ sin(π/4− 2πfdT )
, (5.87)

and

A′
0 = 2LKγc

(1 +
√
2
2
)µ′2 +

√
2µ′ + 1−

√
2
2

C ′
0

,

A′
1 = 2LKγc

(1−
√
2
2
)µ′2 −

√
2µ′ + 1 +

√
2
2

C ′
1

,

S ′
0 = 1 + C ′

0/C
′
1,

S ′
1 = 1 + C ′

1/C
′
0,

(5.88)

where

C ′
0 = [2γc(1 + ρ cos(π/4 + 2πfdT )) +K + 1]µ′2 + 4γcρµ

′ sin(2πfdT + π/4) (5.89)

+ 2γc(1− ρ cos(π/4 + 2πfdT )) +K + 1, (5.90)

C ′
1 = [2γc(1− ρ cos(π/4 + 2πfdT )) +K + 1]µ′2 + 4γcρµ

′ sin(2πfdT + π/4) (5.91)

+ 2γc(1 + ρ cos(π/4 + 2πfdT )) +K + 1, (5.92)

µ′ = −
2γc +K + 1 +

√
(2γc +K + 1)2 − [2γcρ sin(π/4 + 2πfdT )]2

2γcρ sin(π/4 + 2πfdT )
. (5.93)

Computation of (5.20) with (5.82) and (5.88) involving only elementary functions is

simpler than computation using the Proakis’ expression involving special functions.

5.3.3 Numerical Results

The BEP performances of suboptimum and optimum receivers of DBPSK in eq.

(5.20) with parameters in (5.73), (5.74), (5.82) and (5.88) involve only elementary

functions. Therefore, they are simpler than the Proakis’ expression which involve
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Figure 5.2: BEP performance comparison between QDPSK optimum and

suboptimum receivers over fast Rician fading with Doppler shift and diversity

reception.

the generalized Marcum Q-function and the modified Bessel function of the first

kind.

Numerical results for QDPSK with K = 5, fdT = 0.03, fdT = 0.05 are shown in

Fig. 5.1. Our expression matches perfectly with the Proakis’ expression numerically,

therefore, only one curve for each receiver is shown here. The gap between optimum

and suboptimum QDPSK receivers is much larger than that for BDPSK. It shows

that QDPSK is more susceptible to Doppler shift.
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5.4 Conclusions

In this chapter, we obtained an exact expression for the error probability of a general

quadratic receiver. The expression is in the form of a series summation involving

only rational functions and exponential functions. Our expression is simpler than

the Proakis’ expression which involves the generalized Marcum Q-function and the

modified Bessel function of the first kind. We apply our expression and obtain exact

BEP performances of suboptimum and optimum BDPSK and QDPSK receivers over

fast Rician fading with Doppler shift. Numerical results show that QDPSK is more

susceptible to Doppler shift than BDPSK.
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Chapter 6

Outage Probability over Fading

Channels

Automatic repeat request (ARQ) is widely applied in packet transmission to achieve

high reliability by using an error detecting code together with packet retransmission.

It is originally designed for the additive white Gaussian noise (AWGN) channel,

where the channel is time invariant, based on average performance measures.

The commonly used average reliability performance measure for ARQ schemes is

(average) accepted packet error probability (AAPEP) [39, 40]. It is defined as

the packet error probability among all accepted packets. For transmission over

a multipath fading channel, a signal is perturbed by a time-varying multiplicative

complex fading gain in addition to AWGN. AAPEP is computed by considering

packets that experience all channel conditions and takes an average over the channel

fading distribution. In the averaging process, instantaneous information is no longer

preserved. For example, in high data rate communication, a single fade may last

over the duration of a large number of consecutive bits and may cause the loss of

these data. In a network scenario, it would result in poor upper layer performance

[38]. However, the average performance may still be good if the instantaneous

performance in good channel conditions outweighs that in poor channel conditions.

Hence, average performance measures are not adequate in providing a satisfactory
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quality of service (QoS) for small-scale time-varying fading.

References [41–43] use the PEO probability as the performance measure

for log-normal shadowing channels. This PEO probability is the probability

that the average packet error probability (instantaneous packet error probability

averaged over the fading gain distribution) exceeds an APEP threshold. Thus, this

PEO probability is calculated using the statistical distribution of the shadowing

parameter. Hence, [41–43] address the system outage caused by the shadowing

effect which occurs over a large number of measurement locations [44].

A more meaningful performance measure for high data rate packet transmission

or bursty transmission with ARQ over time-varying fading is instantaneous accepted

packet error outage (IAPEO) probability. We first define a maximum tolerable

IAPEP threshold, above which all accepted packets are considered unreliable. The

IAPEO probability is the probability that the IAPEP exceeds the IAPEP threshold.

It is more meaningful than AAPEP, as it reflects, in the long term, how often reliable

transmission fails.

In order to compute IAPEO, we need to start at the bit level. We proposed

to use the instantaneous bit error outage (IBEO) probability as a long-term

performance measure for high data rate symbol-by-symbol transmission over

time-varying fading, whereas the short-term performance measure is the IBEP.

We first define a maximum tolerable IBEP threshold, above which all the data

transmitted are considered lost or unreliable. The IBEO probability is the

probability that the IBEP exceeds the IBEP threshold. As data are usually

transmitted in packets, we extend the outage concept to packet transmission and

propose instantaneous packet error probability (IPEP) and the IPEO probability

in a similar manner as short-term and long-term performance measures for packet

transmission.

For a given modulation scheme, the IBEO probability is mathematically

equivalent to the probability that the instantaneous SNR falls below an SNR

threshold required for the system to operate [48, chap.1]. However, if the SNR
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outage probability is used as a performance measure, the SNR threshold values for

different modulation schemes should be different. The IBEO probability uses the

same IBEP threshold regardless of modulation scheme used, and, therefore, is a fair

performance measure. The IBEO probability is also mathematically equivalent to

the capacity outage probability [49] defined as the probability that the transmission

rate is above the error-free Shannon capacity [50]. In practice, even when a system

transmits at a rate below the Shannon capacity using a capacity achieving code, it

still makes decision errors and the error performance is not related to the capacity

outage probability. We want to analyze the outage performance of a specific practical

system. Therefore, the capacity outage probability is not useful in our analysis.

We consider receiver with imperfect CSI in Rayleigh fading channels.

Closed-form expressions and bounds on the IBEO/IPEO probabilities are obtained

as functions of the channel estimation mean square error (MSE). It turns out that

the IBEO/IPEO performance with imperfect CSI differs significantly from that of

perfect CSI, in that the outage performance deteriorates rapidly with MSE, when

MSE is above a certain value, which is determined partly by the IBEP/IPEP

threshold chosen. We show that the system must operate above a minimum

SNR in order to satisfy a design requirement of maximum tolerable IBEO/IPEO

probability. We then obtain the optimum energy allocation between pilots and data

that minimizes the outage performance. It is shown that a small fraction of the

total energy, must always be dedicated to pilots to perform channel estimation. At

the same time, the optimum pilot energy never exceeds half the total energy.

This chapter is organized as follows. In Section 6.1, we first list the upper

and lower bounds on the erfc function and the inverse erfc function to be used in

the outage performance analysis. In Section 6.2, the system model and channel

estimation method are described. In Section 6.3, the IBEO/IPEO probabilities are

analyzed. In Section 6.4, the optimum energy allocation solution that minimizes the

outage performance is obtained. Conclusions are made in Section 6.5.
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6.1 The erfc Function and Inverse erfc Function

The complementary error function, i.e. erfc, and its inverse function, erfc−1, are used

in our outage performance analysis. As both functions are not in closed form, further

analysis involving the two functions are not trivial. Therefore, we first derive in this

section, bounds and approximations that can be used in the outage performance

analysis.

The erfc function is usually defined as [8, eq.(2-1-95)]

erfc(x) =
2√
π

∫ ∞

x

exp(−t2)dt, (6.1)

or in the Craig’s form as [15, eq.(10)]

erfc(x) =
2

π

∫ π/2

0

exp

(
− x2

sin2 θ

)
dθ. (6.2)

It is related to the Gaussian Q-function as

erfc(x) = 2Q(
√
2x). (6.3)

We summarized in Chapter 3 many closed-form bounds on the Gaussian Q-functions

and derived new lower bounds. However, only a few of them are invertible. The

simplest bound is the single-term Chernoff bound

erfc(x) < exp(−x2). (6.4)

The two-term Chiani upper bound (3.21)

erfc(x) <
1

2
exp

(
−x2

)
+

1

2
exp

(
−2x2

)
, (6.5)

is tighter than the Chernoff bound. We obtained a single-term lower bound in (3.52)

erfc(x) >
1

2
exp

(
− 4

π
x2

)
. (6.6)

We obtained the tighter two-term lower bound in (3.52)

erfc(x) >
1

3
exp

(
−2

√
3

π
x2

)
+

1

3
exp

(
−4

√
3

π
x2

)
. (6.7)
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The inverse erfc function is required in calculating the outage probabilities.

However, the two expressions of the erfc function in (6.1) and (6.2) are both not

invertible. The inverse erfc function can be computed numerically in MATLAB

using the function erfcinv. Alternatively, invertible bounds on the erfc function can

be used to obtain closed-form bounds on the inverse erfc function. The Chernoff

bound in (6.4) gives us the widely used upper bound

erfc−1(x) <
√
− lnx. (6.8)

Using the tighter upper bound in (6.5), we obtain a closed-form upper bound on

erfc−1(x) as

erfc−1(x) <

√
ln

(√
8x+ 1 + 1

4x

)
. (6.9)

It is much tighter than the upper bound in (6.8). Similarly, using the lower bound

in (6.6), we obtain a closed-form lower bound

erfc−1(x) >

√
−π

4
ln(2x). (6.10)

Using the tighter lower bound in (6.7), we obtain a tighter closed-form lower bound

erfc−1(x) >

√√
3π

6
ln

(√
12x+ 1 + 1

6x

)
. (6.11)

Figure 6.1 shows that the upper bound in (6.9) is much tighter than the upper

bound in (6.8), and the lower bound in (6.11) is much tighter than the lower bound

in (6.10).

6.2 System Description

We consider transmission using BPSK or QPSK signals over a

single-input-single-output wireless channel corrupted by Rayleigh fading and

AWGN. The binary message sequence is first broken up into groups of m

information bits. Each group of m information bits is encoded by a binary (n,m)
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Figure 6.1: Upper and lower bounds on the inverse erfc function.

linear block code into n bits. Each group of n coded bits is prefixed by p pilot bits

for channel estimation. The uncoded case is a special case of the general coded case

by letting n = m. It is assumed that the p pilots bits are transmitted by BPSK

modulation, while the n coded bits are modulated by either BPSK or QPSK.

The fading gain is assumed static over the duration of a packet. The received

signal over the k-th symbol interval [kT, (k+1)T ), where T is the symbol duration,

is given by

rp(k) =
√

Eph+ n(k), k = 1, ..., p,

rd(k) =
√
Ede

jϕ(k)h+ n(k), k = p+ 1, ..., p+ n/ log2 M.
(6.12)

Note that, as the symbol duration T is identical for BPSK and QPSK, the
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transmission rate of QPSK is double that of BPSK. In (6.12), Ep and Ed are

energy per transmitted pilot symbol and coded data symbol, respectively. M is

the constellation size. We have M = 2 for BPSK and M = 4 for QPSK. For BPSK,

we have

ϕ(k) =

 0, bit 0

π, bit 1
(6.13)

and for Gray-coded QPSK,

ϕ(k) =



0, symbol 0 bits 00

π
2
, symbol 1 bits 01

π, symbol 3 bits 11

3π
2
, symbol 2 bits 10

(6.14)

The fading gain h is a complex Gaussian random variable with mean zero and

variance E[|h|2] = 2σ2. The complex AWGN {n(k)}k are i.i.d. complex Gaussian

random variables with mean zero and variance E[|n(k)|2] = N0. The noises {n(k)}k
are independent of the fading gain h.

The effective SNR per information bit is defined as

γ̄ =
2σ2Eb

N0

, (6.15)

where the effective energy per information bit is given by

Eb =
pEp + n Ed

log2 M

m
. (6.16)

The increase in energy due to pilot insertion and coding redundancy is accounted for

in Eb. As analysis later shows that the error outage performance in the presence of

channel estimation error depends only on the normalized total pilot energy instead

of the individual values of Eb or p, we define here the parameter ε as the fraction of

total pilot energy normalized with respect to the total packet energy, i.e.

ε =
pEp

pEp + n Ed

log2 M

. (6.17)
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The minimum mean square error (MMSE) channel estimate ĥ for one packet is

given by [40]

ĥ =

p∑
i=1

wo(i)rp(i), (6.18)

where we have

wo(i) =
2σ2
√
Ep

2σ2pEp +N0

, i = 1, ..., p (6.19)

for blockwise static fading. The channel estimation MSE is given by

2V 2 =
2σ2N0

2σ2pEp +N0

= 2σ2 1

εmγ̄ + 1
. (6.20)

The channel estimate ĥ is a complex Gaussian random variable with mean zero and

variance [76, eq.(2.48)]

2σ̂2 = 2(σ2 − V 2) =
(2σ2)2pEp

2σ2pEp +N0

= 2σ2 εmγ̄

εmγ̄ + 1
. (6.21)

Hence, x = |ĥ|2 is exponentially distributed with the PDF

px(x) =
1

2σ̂2
exp

(
− x

2σ̂2

)
u(x), (6.22)

where u(x) is the unit step function, and 2σ̂2 is given in (6.21).

In the special case of PCSI, we have

2V 2 = 0. (6.23)

Substituting (6.23), (6.21) simplifies to

2σ̂2 = 2σ2. (6.24)

6.3 Instantaneous Error Outage Probability

Analysis

Instantaneous error outage can be defined at bit level or packet level, depending on

system design requirements.

124
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6.3.1 Instantaneous Bit Error Outage Probability of BPSK

and QPSK

We derive here the probability that the IBEP exceeds an IBEP threshold value.

Assume that at the kth data symbol interval, the estimate of the channel gain h

obtained by the MMSE channel estimator, is ĥ. Assume that the bit 0 is sent. Let

eb define the event that the detected bit contains an error. The IBEP conditioned

on the channel estimate ĥ, i.e. P (eb|ĥ), is given by [2, Appendix III]

P (eb|ĥ) = P
(
Re[rd(k)ĥ

∗e−jα] < 0
∣∣ϕ(k) = 0, ĥ

)
=

1

2
erfc

√Ed cos2 α|ĥ|2
2EdV 2 +N0

 , (6.25)

where

α =

 0, BPSK

π/4, QPSK
(6.26)

Assume that the IBEP threshold value is PTH
IBEP. The instantaneous bit error

outage (IBEO) probability, PIBEO, is the probability that the IBEP exceeds PTH
IBEP,

i.e.

PIBEO = P
(
P (eb|ĥ) > PTH

IBEP

)
. (6.27)

Substituting (6.25) into (6.27), PIBEO can be simplified to

PIBEO = P

(
x = |ĥ|2 <

[
erfc−1(2PTH

IBEP)
]2

c

)
(6.28)

where

c =
Ed cos

2 α

2EdV 2 +N0

. (6.29)

Here, the PDF of x is given in (6.22). The IBEO probability in (6.28) is in a form

similar to the outage probability in diversity combining systems, which is defined as

the probability that the combined instantaneous SNR at the receiver falls below a
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6.3 Instantaneous Error Outage Probability Analysis

certain SNR threshold [48, chap.1]. The latter is evaluated by integrating the SNR

PDF over SNR values below the SNR threshold. Similarly, PIBEO can be evaluated

using the distribution of x in (6.22). Letting

b =
1

2σ̂2
=

1

2σ2 − 2V 2
, (6.30)

(6.28) simplifies to

PIBEO =

∫ [erfc−1(2PTH
IBEP)]

2

c

−∞
px(x)dx = 1− exp(−y), (6.31)

where

y =
[
erfc−1(2PTH

IBEP)
]2 b

c
,

b

c
=

2EdV
2 +N0

2(σ2 − V 2)Ed cos2 α
.

(6.32)

Using the upper and lower bounds on the inverse erfc functions in (6.8), (6.9) and

(6.11), (6.31) is upper bounded as

PIBEO ≤ 1−

(√
16PTH

IBEP + 1 + 1

8PTH
IBEP

)−b/c

≤ 1−
(
2PTH

IBEP

)b/c
(6.33)

and lower bounded as

PIBEO ≥ 1−

(√
24PTH

IBEP + 1 + 1

12PTH
IBEP

)−
√

3π
6

b
c

. (6.34)

We can show that (6.31) is a monotonically decreasing function of the channel

estimation MSE 2V 2. However, given a specific channel estimation method, e.g.

MMSE, we cannot reduce MSE freely, as 2V 2 and Ed are related if the total energy

per packet is fixed. Substituting (6.17), (6.20) and (6.21), (6.32) becomes

y =

[
erfc−1(2PTH

IBEP)
]2

cos2 α

(1− ε)m log2Mγ̄ + εmnγ̄ + n

(1− ε)εm2 log2 Mγ̄2

=


[
erfc−1(2PTH

IBEP)
]2 (n− 1)εmγ̄ +mγ̄ + n

(1− ε)εm2γ̄2 , BPSK[
erfc−1(2PTH

IBEP)
]2 (n− 2)εmγ̄ + 2mγ̄ + n

(1− ε)εm2γ̄2 , QPSK
(6.35)
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6.3 Instantaneous Error Outage Probability Analysis

Hence, BPSK and QPSK with channel estimation have different IBEP and different

IBEO probabilities.

For the special case of PCSI at the receiver, by letting 2V 2 = 0 in (6.32), (6.31)

reduces to

PIBEO = 1− exp

(
−
[
erfc−1(2PTH

IBEP)
]2 n

(1− ε)mγ̄

)
, (6.36)

which is identical for BPSK and QPSK.

In a practical QoS specification, we may require that, in the long term, the

fraction of all bits received that have IBEP greater than PTH
IBEP be no more than a

threshold PTH
IBEO. As the explicit expression of the IBEO probability is a function

of the SNR, it is easy to show that the minimum SNR γ̄TH
b that satisfies the IBEO

threshold requirement, is given by

γ̄TH
b =

√
[(n− 1)ε+ 1]2 + 4dn(1− ε)ε+ (n− 1)ε+ 1

2dm(1− ε)ε
(6.37)

for BPSK, and

γ̄TH
b =

√
[(n− 2)ε+ 2]2 + 4dn(1− ε)ε+ (n− 2)ε+ 2

2dm(1− ε)ε
, (6.38)

for QPSK, where for both cases

d = − ln(1− PTH
IBEO)

[erfc−1(2PTH
IBEP)]

2 > 0. (6.39)

For the special case of PCSI at the receiver with 2V 2 = 0, (6.37) and (6.38)

both reduce to

γ̄TH
b =

n

dm(1− ε)
, (6.40)

which is identical for BPSK and QPSK.

6.3.2 Instantaneous Packet Error Outage Probability

Data are often transmitted, detected and retransmitted in the form of packets,

instead of individual bits or symbols, e.g. in an ARQ scheme. Therefore, one may

be more interested in the packet error performance. Thus, we extend the idea of

IBEO probability to packet error performance, and propose the IPEO probability

as a packet level QoS measure.
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6.3 Instantaneous Error Outage Probability Analysis

Uncoded Case

For uncoded transmissions, we have n = m. Let ep define the event that the received

packet contains one or more bit errors. The IPEP conditioned on the channel

estimate ĥ is given by

P (ep|ĥ) = 1−
[
1− P (eb|ĥ)

]n
, (6.41)

where the IBEP P (eb|ĥ) is given in (6.25). Similar to the IBEO probability , the

IPEO probability represents the fraction of packets that has the IPEP exceeding an

IPEP threshold PTH
IPEP, i.e.

PIPEO = P
(
P (ep|ĥ) > PTH

IPEP

)
. (6.42)

Substituting (6.41) into (6.42), PIPEO can be shown equivalent to the IBEO

probability P (eb|ĥ) > PTH
IBEP) with

PTH
IBEP = 1−

(
1− PTH

IPEP

)1/n
. (6.43)

Hence, the IPEO probability of BPSK or QPSK is given by (6.31) with (6.32) or

(6.35) using PTH
IBEP in (6.43). Similarly, the minimum required SNR γ̄TH

p that satisfies

the IPEO requirement of PIPEO < PTH
IPEO for BPSK and QPSK are given by (6.37)

and (6.38) with (6.39), respectively, by using PTH
IBEP in (6.43) and replacing PTH

IBEO

with PTH
IPEO.

Error Detection Coded Case

We now consider the case of error-detection-coded packet transmissions. Let eu

define the event that the received packet contains an undetectable error pattern. The

IPEP of a coded packet is defined as the conditional undetectable error probability

P (eu|ĥ). The IPEO probability is the probability that P (eu|ĥ) exceeds an IPEP

threshold. As the weight distributions for many codes are still unknown, it is difficult

to compute the exact P (eu|ĥ). However, we can use the following general upper

bound for linear block codes [39, eq.(3.42)]

P (eu|ĥ) ≤ 2−(n−m)P (ep|ĥ). (6.44)
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6.3 Instantaneous Error Outage Probability Analysis

Thus, the IPEO probability is upper bounded as

PIPEO < PUB
IPEO = P

(
PUB(eu|ĥ) > PTH

IPEP

)
. (6.45)

Substituting (6.41) and (6.44) into (6.45), the IPEO upper bound is simplified to

PUB
IPEO = P

(
P (eb|ĥ) > PTH

IBEP

)
, (6.46)

with

PTH
IBEP = 1−

[
1− 2−(n−m)PTH

IPEP

]1/n
, (6.47)

which is equivalent to an IBEO probability. Therefore, the IPEO upper bound for

BPSK and QPSK is given by (6.31) with (6.32) or (6.35) using PTH
IBEP in (6.47).

By setting the upper bound PUB
IPEO < PTH

IPEO, we can ensure that the exact IPEO

performance satisfies the threshold requirement PTH
IPEO, as

PIPEO < PUB
IPEO < PTH

IPEO. (6.48)

Thus, we can obtain an upper bound of the minimum required SNR γ̄TH
p , i.e. γ̄TH,UB

p ,

using results in Section 6.3.1. The γ̄TH,UB
p for BPSK and QPSK are given by (6.37)

and (6.38) with (6.39), respectively, by using PTH
IBEP in (6.47) and replacing PTH

IBEO

with PTH
IPEO.

Note that by letting n = m, the error-detection-coded transmission reduces to

the uncoded transmission. The IPEP and IPEO expressions reduce to those of the

uncoded transmission.

6.3.3 Numerical Results

It is shown in (6.35) and (6.36) that the IBEO probability depends only on the

normalized total pilot energy ε, instead of the individual values of Ep or p. So,

without loss of generality, we use a pilot length of p = 5 here. We analyze in this

section the case of equal energy per transmitted bit where

Ep =
Ed

log2 M
, (6.49)
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Figure 6.2: IBEO v.s. effective SNR γ̄ for BPSK with p = 5,m = 23, n = 28.

and, hence,

εeq =
p

p+ n
. (6.50)

The IBEO probabilities of BPSK and QPSK with equal energy per transmitted

bit are shown in Fig. 6.2 and Fig. 6.3, respectively. The upper bounds in (6.8) and

(6.9) and the lower bound in (6.11) on the inverse erfc function are used to compute

upper and lower bounds on the IBEO probability with imperfect CSI in (6.31) with

(6.35) and the IBEO probability with PCSI in (6.36). The exact IBEO curves are

computed numerically using the erfcinv function in MATLAB. The Chernoff bound

leads to a simple IBEO probability upper bound expression, but the bound is quite
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Figure 6.3: IBEO v.s. effective SNR γ̄ for QPSK with p = 5,m = 23, n = 28.

loose for both BPSK and QPSK. The two-term Chiani exponential upper bound and

our two-term exponential lower bound result in tighter closed-form upper and lower

bounds on the IBEO probability. The upper and lower IBEO bounds differ less than

1dB and, therefore, serve as good indicators of the exact IBEO probability, when

the exact inverse erfc function is not available. The IBEO performance loss due to

imperfect CSI is about 1dB in SNR for BPSK, and about 1.5dB for QPSK. This

shows that QPSK is more susceptible to channel estimation errors. The performance

loss due to imperfect CSI is not affected by the IBEP threshold PTH
IBEP.

The IBEO probabilities of BPSK and QPSK as a function of normalized channel

estimation MSE are shown in Fig. 6.4 and Fig. 6.5, respectively. As expected,

the upper and lower bounds are quite tight. When the MSE is above a critical

value of about 10−2, the IBEO performance saturates. When the MSE is below
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the critical value, the IBEO performance improves fast with decreasing MSE. The

MSE critical value corresponds to an SNR critical value of about 10dB in Fig. 6.2

and Fig. 6.3. The exact critical values, however, are affected by PTH
IBEP. A smaller

PTH
IBEP corresponds to a smaller MSE critical value, and a higher SNR critical value.

As QPSK is more susceptible to channel estimation errors than BPSK, the IBEO

probability of QPSK is higher than that of BPSK, given the same MSE.

Fig. 6.6 and Fig. 6.7 show the minimum SNR required γ̄TH
b as functions of the

two system design parameters PTH
IBEP and PTH

IBEO for BPSK and QPSK, respectively.

As the IBEP and the IBEO probability represent short-term and long-term reliability

respectively, it is expected that a higher SNR is required to meet higher reliability

requirements. Hence, the smaller the values of PTH
IBEP and PTH

IBEO, the higher the

required SNR to meet the requirements. QPSK requires a higher SNR than BPSK

to achieve the same IBEO performance as it is more susceptible to channel estimation

errors.

Fig. 6.8 and Fig. 6.9 show the maximum channel estimation MSE as functions

of the two system design parameters PTH
IBEP and PTH

IBEO for BPSK and QPSK,

respectively. The maximum allowed MSE deteriorates rapidly when PTH
IBEP or PTH

IBEO

is large. Therefore, in order to keep the MSE below the above-mentioned MSE

critical value, values of PTH
IBEP and PTH

IBEO should be properly chosen to be small.

Again, as QPSK is more susceptible to channel estimation errors than BPSK, in

order to achieve the same performance as BPSK, QPSK requires a smaller MSE.

Due to the equivalence of the IPEO probability to the IBEO probability, the

IPEO performance and the effect of imperfect CSI on them is similar to the IBEO

of symbol-by-symbol transmission, and therefore, is not repeated here.

6.4 Optimum Pilot Energy Allocation

It is well-known that the accuracy of channel estimation can be improved by using

more energy on pilots. However, given fixed total transmission energy, an increase

in pilot energy effectively reduces the energy available for data transmission. This,
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Figure 6.4: IBEO v.s. normalized MSE for BPSK with p = 5,m = 23, n = 28.
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in turn, leads to degraded performance. Therefore, there should exist an optimum

allocation of energy between pilot and data symbols such that the outage probability

is minimized.

We first look into the minimization of the IBEO probability in (6.31), i.e.

εo = arg min
0≤ε≤1

1− exp(−y), (6.51)

where y is given in (6.35). As 1− exp(−y) is a monotonically increasing function of

y, minimizing PIBEO is equivalent to minimizing y in (6.32), i.e.

εo = arg min
0≤ε≤1

[
erfc−1(2PTH

IBEP)
]2 b

c
. (6.52)

As the coefficient
[
erfc−1(2PTH

IBEP)
]2

is a positive constant, minimizing y is equivalent

to minimizing b/c. Thus, the optimum energy allocation problem is simplified to

the minimization of b/c, i.e.

εo = arg min
0≤ε≤1

b

c
. (6.53)

The IBEO optimization problem does not depend on the IBEP threshold PTH
IBEP.

Therefore, the optimum solution applies to arbitrary PTH
IBEP values. It has been shown

that the IPEO probability is equivalent to the IBEO probability with PTH
IBEP in (6.43)

or (6.47). Thus, the optimum solution for IBEO probability also minimizes the IPEO

probability. In addition, the optimization problem does not depend on the inverse

erfc function. Hence, the same optimum solution applies regardless of the bounds

on the inverse erfc function used.

6.4.1 BPSK

Using (6.35), the optimum energy allocation problem for BPSK in (6.53) simplifies

to

εo = arg min
0≤ε≤1

(n− 1)εmγ̄ +mγ̄ + n

(1− ε)εm2γ̄2
. (6.54)

By solving ∂(b/c)/∂ε = 0, and hence,

(n− 1)mγ̄ε2 + 2(mγ̄ + n)ε− (mγ̄ + n) = 0, (6.55)
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we obtain the optimum solution

εo =

√
n(mγ̄ + 1)(mγ̄ + n)− (mγ̄ + n)

(n− 1)mγ̄
. (6.56)

Note that in (6.56), we have chosen the solution with εo > 0.

We next show that, for a given n value, the optimum value of εo satisfies the

following inequalities for any m value:

√
n− 1

n− 1
≤ εo ≤

1

2
. (6.57)

By showing that

∂εo
∂γ̄

= −
n
[√

n(mγ̄ + 1)−
√
mγ̄ + n

]2
2(n− 1)mγ̄2

√
n(mγ̄ + 1)(mγ̄ + n)

≤ 0, (6.58)

we prove that εo decreases monotonically with γ̄. Therefore, εo is upper and lower

bounded as [40]

εmin ≤ εo ≤ εmax, (6.59)

where

εmin = lim
γ̄→0

εo(γ̄) = lim
γ̄→0

∂
∂γ̄

√
n(mγ̄ + 1)(mγ̄ + n)− (mγ̄ + n)

∂
∂γ̄
(n− 1)mγ̄

=
1

2
,

εmax = lim
γ̄→∞

εo(γ̄) = lim
γ̄→∞

√
n (m+ 1/γ̄) (m+ n/γ̄)− (m+ n/γ̄)

(n− 1)m
=

√
n− 1

n− 1
.

(6.60)

This shows that, at higher SNR values, less optimum pilot energy is required.

However, a small fraction of the total energy, i.e. (
√
n− 1)/(n− 1), must always be

dedicated to pilots to perform channel estimation. On the other hand, the optimum

pilot energy never exceeds half the total energy.

For a given SNR value γ̄, εo is a monotonically decreasing function of the data

length n. It can be proven by showing that

∂εo
∂n

= −
(mγ̄ + 1)

[√
n(mγ̄ + 1)−

√
mγ̄ + n

]2
2
√
n(mγ̄ + 1)(mγ̄ + n)(n− 1)2mγ̄

≤ 0. (6.61)
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6.4.2 QPSK

Using (6.35), the optimum energy allocation problem for QPSK simplifies to

εo = arg min
0≤ε≤1

(n− 2)εmγ̄ + 2mγ̄ + n

(1− ε)εm2γ̄2
. (6.62)

By solving ∂(b/c)/∂ε = 0, and hence,

(n− 2)mγ̄ε2 + 2(2mγ̄ + n)ε− (2mγ̄ + n) = 0, (6.63)

we obtain the optimum solution for QPSK

εo =

√
n(mγ̄ + 1)(2mγ̄ + n)− (2mγ̄ + n)

(n− 2)mγ̄
. (6.64)

By showing that

∂εo
∂γ̄

= −
n
[√

n(mγ̄ + 1)−
√
2mγ̄ + n

]2
2(n− 2)mγ̄2

√
n(mγ̄ + 1)(2mγ̄ + n)

≤ 0, (6.65)

we prove that εo decreases monotonically with γ̄. Therefore, the upper and lower

limits of εo can be found by

εmin = lim
γ̄→0

εo(γ̄) = lim
γ̄→0

∂
∂γ̄

√
n(mγ̄ + 1)(2mγ̄ + n)− (2mγ̄ + n)

∂
∂γ̄
(n− 2)mγ̄

=
1

2
,

εmax = lim
γ̄→∞

εo(γ̄) = lim
γ̄→∞

√
n (m+ 1/γ̄) (2m+ n/γ̄)− (2m+ n/γ̄)

(n− 2)m
=

√
2n− 2

n− 2
.

(6.66)

For a given SNR value γ̄, by showing that

∂εo
∂n

= −
(mγ̄ + 1)

[√
n(mγ̄ + 1)−

√
2mγ̄ + n

]2
√
n(mγ̄ + 1)(2mγ̄ + n)(n− 2)2mγ̄

≤ 0, (6.67)

we conclude that εo decreases monotonically with the data length n.

6.4.3 Numerical Results

Comparisons of the IBEO performance using equal bit energy allocation and

optimum pilot energy allocation with BPSK and QPSK are shown in Fig. 6.10
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Figure 6.10: Optimum IBEO performance for BPSK with p = 5,m = 23.

and Fig. 6.11, respectively. Optimum pilot energy allocation clearly outperforms

equal bit energy allocation. The gain in SNR is about 0.2dB for large n values. The

improvement in performance is only significant when n is large. When n is close to

m, the pilot energy based on equal bit energy allocation is close to that of optimum

pilot energy allocation. Thus, the difference in performance is small between the

two allocation methods. The amount of performance improvement is not affected by

the value of PTH
IBEP, or the inverse erfc function used. As QPSK is more susceptible

to channel estimation errors, its performance improvement by optimum pilot energy

allocation is more significant than that of BPSK.

The unique optimum pilot energy solution for BPSK and QPSK are shown in

Fig. 6.12 and Fig. 6.13, respectively. The solution εo decreases with effective SNR

γ̄. Thus, a smaller fraction of energy is required on pilots for channel estimation
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Figure 6.11: Optimum IBEO performance for QPSK with p = 5,m = 23.

when the signal condition is good. The solution εo is upper and lower bounded as

in (6.59), (6.60) and (6.66). As QPSK is more susceptible to channel estimation

errors, more pilot energy is required for optimum IBEO performance than BPSK.

Fig. 6.14 and Fig. 6.15 show that, for both BPSK and QPSK, when n increases,

a smaller fraction of total energy is used on pilots. This is accompanied by a

smaller bandwidth expansion of p/(n/ log2M) caused by insertion of pilot symbols.

However, the value of n is limited by the channel fade rate, as the channel gain is

assumed static over the duration of (p+ n/ log2 M) symbols.
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Figure 6.12: Optimum normalized total pilot energy εo v.s. effective SNR γ̄

for BPSK with p = 5.
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Figure 6.13: Optimum normalized total pilot energy εo v.s. effective SNR γ̄

for QPSK with p = 5.
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Figure 6.14: Optimum normalized total pilot energy εo v.s. data length n at

γ̄ = 10dB for BPSK with p = 5.
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Figure 6.15: Optimum normalized total pilot energy εo v.s. data length n at

γ̄ = 10dB for QPSK with p = 5.
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6.5 Conclusions

In this chapter, we proposed to use IBEP/IPEP to represent the short-term

reliability of symbol-by-symbol/packet transmission, and IBEO/IPEO probability

to represent the long-term reliability of symbol-by-symbol/packet transmission,

respectively. A closed-form expression and upper and lower bounds are obtained

for the IBEO probability over Rayleigh fading channels with imperfect CSI. The

IPEO probability is shown equivalent to the IBEO probability. It is shown that the

IBEO/IPEO performance improves rapidly with MSE, when MSE drops below a

certain value, which is determined partly by the IBEP/IPEP threshold chosen.

The optimum allocation of energy between pilot and coded bits that minimizes

the IBEO/IPEO probability is derived. It is shown that the optimum allocation is

not affected by the IBEP/IPEP threshold values.
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Chapter 7

ARQ with Channel Gain

Monitoring

As discussed in Chapter 6, ABEP, being an average metric, does not reflect the

poor instantaneous quality of service (QoS) experienced by the user over such long

fades, nor does it reflect how often such poor QoS occurs. We proposed in Chapter

6 to use the IBEO/IPEO probability as a performance measure for high data rate

transmission over time-varying fading. It is defined as the probability that the

IBEP/IPEP exceeds the IBEO/IPEO threshold. It reflects, in the long term, how

often continuous transmission fails. Thus, IBEO/IPEO provides a new dimension

in QoS than IBEP/IPEP.

We extend here the idea of IBEO from symbol-by-symbol transmission to

packet transmission with ARQ schemes, and propose an instantaneous performance

measure, the IAPEO probability. An IAPEO event is defined as the event that the

IAPEP conditioned on a given fading gain, exceeds a maximum tolerable IAPEP

threshold. The IAPEO probability is the probability that the IAPEP exceeds the

IAPEP threshold, and is calculated using the channel fading statistics. We show

that, for a pure ARQ, the system must operate above a minimum SNR, in order to

satisfy a design requirement of a maximum tolerable IAPEO.

In order to overcome the shortcoming of the conventional ARQ, we next
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propose an ARQ scheme by integrating channel gain monitoring with a conventional

pure ARQ scheme, naming it ARQ-CGM. If the channel gain estimate is below

a threshold, a retransmit request is send to the transmitter; otherwise, a packet

proceeds to demodulation and cyclic redundancy check (CRC). A closed-form

upper bound expression for the IAPEO is obtained as a function of a channel

estimate threshold value. For any SNR, the channel estimate threshold value that

ensures a maximum system design IAPEO threshold can be obtained. The IAPEO

performance of ARQ-CGM is related to the conventional average performance

measures, i.e. average throughput, goodput and AAPEP. It is shown that the

AAPEP of ARQ-CGM improves over the conventional ARQ with a compromise

in throughput and goodput.

When the channel gain threshold is set to be zero, ARQ-CGM reduces to the

conventional ARQ. Therefore, the outage performance, AAPEP, throughput and

goodput we obtain for ARQ-CGM also apply to the conventional ARQ by setting

the channel gain threshold to zero.

This chapter is organized as follows. In Section 7.1, the IAPEO performance of

the conventional ARQ is obtained. In Section 7.2, ARQ-CGM is proposed and its

outage performance is obtained. The average performance measures of ARQ-CGM

are obtained in Section 7.3. Numerical Results are obtained and analyzed in Section

7.4. Conclusions are made in Section 7.5.

7.1 Instantaneous Accepted Packet Error Outage

of Conventional ARQ

The system model is the same as that in Section 6.2 and therefore, is not repeated

here. Let ea define the event that the receiver accepts a packet that contains an

error pattern. Given a channel estimate ĥ, the IAPEP is the probability that the
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receiver commits an error in accepting packets, and is given by [39, eq.(22.1)]

P (ea|ĥ) =
P (eu|ĥ)

1− P (ep|ĥ) + P (eu|ĥ)
. (7.1)

Substituting (6.41) and (6.44), we obtain an upper bound on IAPEP, as

P (ea|ĥ) ≤ PUB(ea|ĥ) =
1−

(
1− P (eb|ĥ)

)n
1 + [2n−m − 1]

(
1− P (eb|ĥ)

)n . (7.2)

Assume that the maximum tolerable IAPEP threshold value is PTH
IAPEP. The

IAPEO probability, PIAPEO, is the probability that the IAPEP exceeds PTH
IAPEP, i.e.

PIAPEO = P
(
P (ea|ĥ) > PTH

IAPEP

)
. (7.3)

From (7.2), it is clear that PIAPEO is upper bounded as

PIAPEO ≤ PUB
IAPEO = P

(
PUB(ea|ĥ) > PTH

IAPEP

)
. (7.4)

Substituting (7.2) into (7.4), PUB
IAPEO can be simplified to

PUB
IAPEO = P

(
P (eb|ĥ) > PTH

IBEP

)
, (7.5)

where

PTH
IBEP = 1−

[
1− PTH

IAPEP

1 + (2n−m − 1)PTH
IAPEP

]1/n
. (7.6)

Hence, the upper bound on the IAPEO probability is equivalent to an IBEO

probability, with PTH
IBEP in (7.6). Therefore, the IAPEO upper bound for BPSK

and QPSK is given by (6.31) with (6.32) or (6.35) using PTH
IBEP in (7.6).

Upper bounds on the minimum required SNR, γ̄TH,UB
p , for BPSK and QPSK

that satisfy the IAPEO threshold of PTH
IAPEO are given by (6.37) and (6.38) with

(6.39), respectively, by using PTH
IBEP in (7.6) and replacing PTH

IBEO with PTH
IAPEO. Due

to the equivalence of IAPEO probability to the IBEO probability, the IPEO/IAPEO

performances and the effect of imperfect CSI on them are similar to the IBEO of

symbol-by-symbol transmission.

Same as the IBEO performance in Fig. 6.2 and Fig. 6.3, the IAPEO

performance decreases monotonically with the SNR. Therefore, the system must

operate above a minimum SNR, in order to satisfy a design requirement of a

maximum tolerable IAPEO.
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Figure 7.1: Receiver diagram of ARQ-CGM.

7.2 ARQ-CGM and Outage Performance

In conventional pure ARQ schemes, if the SNR is lower than the SNR required

for desired outage performance of PTH
IAPEO, the system cannot achieve the required

PTH
IAPEO. To cope with this shortcoming of conventional ARQ schemes, we propose

in this section a new ARQ scheme by incorporating channel gain monitoring with a

conventional pure ARQ scheme. We name it ARQ-CGM.

The receiver diagram of ARQ-CGM is shown in Fig. 7.1. Similar to

conventional pure ARQ schemes, channel estimation is performed to obtain an

estimate of the channel gain, which is necessary for coherent demodulation of

BPSK/QPSK signals. The magnitude of the channel estimate ĥ is checked against

a channel estimate threshold |hTH|. If ĥ is greater than |hTH|, the received signal

proceeds to demodulation and CRC check. If ĥ is less than |hTH|, a retransmission

request is sent to the transmitter. This scheme can apply to all three basic

retransmission protocols, namely, SR-ARQ, SW-ARQ and GBN-ARQ. We name

them SR-ARQ-CGM, SW-ARQ-CGM and GBN-ARQ-CGM. ARQ-CGM can also

apply to other variants of retransmission protocols, such as opportunistic multi-hop

ARQ in underwater networks [77,78].

The IAPEP conditioned on the channel estimate ĥ is the same as that of

the conventional ARQ in (7.1) when |ĥ| > |hTH|. When |ĥ| < |hTH|, packets

are not accepted, and hence, the IAPEP is zero. The IAPEO is thus defined
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as the probability that the IAPEP exceeds the threshold PTH
IAPEP, conditioned on

|h| > |hTH|, i.e.

PCGM
IAPEO = P

(
P (ea|ĥ) > PTH

IAPEP

∣∣∣∣|ĥ| > hTH

)
. (7.7)

Using the upper bound (7.2) and substituting the IBEP expression in (6.25), we

obtain an upper bound on the IAPEO probability as

PCGM,UB
IAPEO = P

(
x = |ĥ|2 <

[
erfc−1(2PTH

IBEP)
]2

c

∣∣∣∣|ĥ| > hTH

)
, (7.8)

where c is given in (6.29) and PTH
IBEP is given in (7.6). The conditional probability

can be evaluated by Bayes Theorem as

PCGM,UB
IAPEO =

P
(
x = |ĥ|2 <

[
erfc−1(2PTH

IBEP)
]2
/c, |ĥ| > hTH

)
P (|ĥ| > hTH)

. (7.9)

Given the PDF of x in (6.22), (7.9) is simplified as

PCGM,UB
IAPEO =

∫ [erfc−1(2PTH
IBEP)]

2
/c

x=|hTH|2
px(x)dx∫ ∞

x=|hTH|2
px(x)dx

= 1− exp
(
−y + b|hTH|2

)
, (7.10)

where y and b are given in (6.32) and (6.30), respectively. Comparing with the

IAPEO probability of conventional ARQ schemes, which is equivalent to the IBEO

probability in (6.31), the IAPEO upper bound of ARQ-CGM in (7.10) only differs

by the term exp
(
b|hTH|2

)
. We can adjust the IAPEO performance of ARQ-CGM

simply by changing the channel estimate threshold value hTH. In other words,

incorporation of channel gain monitoring allows us to have more control of the

outage performance of accepted packets.

Assume that the maximum tolerable IAPEO probability is PTH
IAPEO. By setting

the upper bound PCGM,UB
IAPEO < PTH

IAPEO, we can ensure that the exact IAPEO

performance satisfies the threshold requirement. Using the exact expression of the
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IAPEO upper bound in (7.10), it is easy to show that the IAPEO requirement is

satisfied when using the channel estimate threshold

|hTH| =
√

1

b
ln(1− PTH

IAPEO) +
1

c
[erfc−1(2PTH

IBEP)]
2
. (7.11)

Applying the upper and lower bounds on the inverse erfc functions in (6.8), (6.9)

and (6.11), |hTH| is upper bounded as

|hTH| <

√√√√1

b
ln(1− PTH

IAPEO) +
1

c
ln

(√
16PTH

IBEP + 1 + 1

8PTH
IBEP

)

<

√
1

b
ln(1− PTH

IAPEO)−
1

c
ln (2PTH

IBEP), (7.12)

and lower bounded as

|hTH| >

√√√√1

b
ln(1− PTH

IAPEO) +
1

c

√
3π

6
ln

(√
24PTH

IBEP + 1 + 1

12PTH
IBEP

)
. (7.13)

When the exact inverse erfc function is not available numerically, the upper bounds

on |hTH| should be used to ensure the maximum tolerable IAPEO.

In contrast to conventional ARQ schemes, given any SNR value, we can

always find the threshold |hTH| for ARQ-CGM such that the IAPEO threshold

requirement is satisfied. If the required IAPEO threshold is greater than the IAPEO

of conventional ARQ schemes in (6.31), |hTH| is reduced to zero, and the ARQ-CGM

scheme reduces to a conventional ARQ scheme.

7.3 Average Performance of ARQ-CGM

7.3.1 SR-ARQ-CGM

The average probability of a packet being correctly received and finally accepted

by the receiver is given by P (Cp, |ĥ| > hTH). It can be evaluated by averaging the
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instantaneous value, i.e. P (Cp, |ĥ| > hTH|ĥ) over the distribution of x = |ĥ|2, i.e.

P (Cp, |ĥ| > hTH) =

∫ ∞

0

P (Cp, |ĥ| > hTH|ĥ)b exp(−bx)dx

=

∫ ∞

|hTH|2

[
1− 1

2
erfc(

√
cx)

]n
b exp(−bx)dx. (7.14)

Using the Chernoff bound on the erfc function in (6.4), a lower bound on (7.14) is

obtained as

Z >
n∑

l=0

[
1− 1

2
exp

(
−c|hTH|2

)]n−l

exp
[
−(b+ lc)|hTH|2

] l−1∏
k=0

n− k

2(b/c+ k + 1)
. (7.15)

Applying the tighter upper bound on the erfc function in (6.5), a tighter lower bound

on (7.14) is obtained as

Z >
n∑

k=0

(
n

k

)(
−1

4

)k k∑
t=0

(
k

t

)
exp

{
− [(2k − t)c+ b] |hTH|2

}
(2k − t) c

b
+ 1

. (7.16)

Applying the tight lower bound on the erfc function in (6.7), a tight upper bound

on (7.14) is obtained as

Z <

n∑
k=0

(
n

k

)(
−1

6

)k k∑
t=0

(
k

t

)exp
{
−
[
2
√
3

π
(2k − t)c+ b

]
|hTH|2

}
2
√
3

π
(2k − t) c

b
+ 1

. (7.17)

Alternatively, using an accurate approximation of the erfc function in [79, eq.(31)]

erfc(x) ≈ 1

6
exp(−x2) +

1

3
exp(−4

3
x2), (7.18)

we obtain a closer approximation of P (Cp, |ĥ| > hTH) as

Z ≈
n∑

k=0

(
n

k

)(
−1

6

)k k∑
t=0

(
k

t

)
exp

{
−
(
4k−t
3

c+ b
)
|hTH|2

}
2t
(
4k−t
3

c
b
+ 1
) . (7.19)

The probability of a packet passing the channel estimate threshold test while

containing at least one error bit is

P (ep, |ĥ| > hTH) =

∫ ∞

|hTH|2

{
1−

[
1− 1

2
erfc(

√
cx)

]n}
b exp(−bx)dx

= exp(−b|hTH|2)− P (Cp, |ĥ| > hTH). (7.20)
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Using (6.44), the probability of a packet being accepted with undetectable error is

upper bounded as

P (eu, |ĥ| > hTH) ≤ 2−(n−m)P (ep, |ĥ| > hTH). (7.21)

Throughput is the rate of information bits accepted by the receiver, and includes

packets that are accepted correctly and those accepted with undetectable error.

Hence, we have

ηsr =
m

p+ n
log2 M

[
P (Cp, |ĥ| > hTH) + P (eu, |ĥ| > hTH)

]
. (7.22)

Substituting (7.20) and (7.21), we have

ηsr =
m

p+ n
log2 M

{
Z + 2−(n−m)

[
exp(−b|hTH|2)− Z

]}
. (7.23)

Goodput is the rate of information bits accepted by the receiver correctly, i.e.

ηgsr =
m

p+ n
log2 M

P (Cp, |ĥ| > hTH) =
m

p+ n
log2 M

Z. (7.24)

The AAPEP, which shows the average reliability of ARQ-CGM, is given by

P (ea) = 1− ηgsr
ηsr

=
exp(−b|hTH|2)− Z

exp(−b|hTH|2) + (2n−m − 1)Z
. (7.25)

The AAPEP only depends on the channel error statistics and choice of the error

detecting code and is independent of the retransmission protocol. Therefore,

SR-ARQ-CGM, SW-ARQ-CGM and GBN-ARQ-CGM have the same AAPEP.

When hTH is zero, ARQ-CGM reduces to the conventional ARQ. Therefore,

the throughput, goodput and AAPEP of conventional SR-ARQ are given by (7.23),

(7.24) and (7.25), respectively, by letting |hTH| = 0.

7.3.2 SW-ARQ-CGM

For throughput of SW-ARQ-CGM, we must consider the idle time spent in waiting

for an acknowledgement for each transmitted packet. Let D be the idle time from

the end of transmission of one packet to the beginning of transmission of the next.
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Let τ be the signaling rate of the transmitter in bits per second. The round-trip

delay time is defined as the time interval between between the transmission of a

packet and the reception of its acknowledgement. In one round-trip delay time, the

transmitter can transmit a total of 1+Dτ/(p+n/ log2 M) packets if it does not stay

idle. By evaluating the average number of packets that the transmitter could have

transmitted during the interval from the beginning of transmission of one packet

to the reception of a positive acknowledgement for that packet, the throughput of

SW-ARQ-CGM follows [39, eq.(22.6)] as

ηsw =
m
[
P (Cp, |ĥ| > hTH) + P (eu, |ĥ| > hTH)

]
p+ n

log2 M
+Dτ

(7.26)

=
m
{
Z + 2−(n−m)

[
exp(−b|hTH|2)− Z

]}
p+ n

log2 M
+Dτ

. (7.27)

Making use of the AAPEP of SW-ARQ-CGM, which is the same as that of

SR-ARQ-CGM in (7.25), the goodput of SW-ARQ-CGM can be derived as

ηgsw =
mZ

p+ n
log2 M

+Dτ
. (7.28)

7.3.3 GBN-ARQ-CGM

In GBN-ARQ-CGM, when the transmitter receives a retransmission request, it

resends that packet and the N − 1 packets that were transmitted earlier. The

parameter N depends on the transmission rate τ and the round-trip delay D +

(p + n/ log2 M)/τ and is given by N = 1 + Dτ/(p + n/ log2 M). Therefore, the

throughput of GBN-ARQ-CGM is given by [39, eq.(22.5)]

ηgbn =
mP

p+ n
log2 M

+Dτ(1− P )
, (7.29)

where P = P (Cp, |ĥ| > hTH) + P (eu, |ĥ| > hTH). Hence, we obtain

ηgbn =
m
{
Z + 2−(n−m)

[
exp(−b|hTH|2)− Z

]}
p+ n

log2 M
+Dτ {1− Z − 2−(n−m) [exp(−b|hTH|2)− Z]}

(7.30)
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Making use of the AAPEP of GBN-ARQ-CGM, which is the same as that of

SR-ARQ-CGM in (7.25), the goodput of SW-ARQ-CGM can be derived as

ηggbn =
mZ

p+ n
log2 M

+Dτ {1− Z − 2−(n−m) [exp(−b|hTH|2)− Z]}
. (7.31)

7.4 Numerical Results

The performance bounds obtained for conventional ARQ in Section 7.1 and those

for ARQ-CGM in Section 7.2 and 7.3 depend on the values of m and n and are

not influenced by the specific code structure. Without loss of generality, a (28,23)

linear block code is adopted in this section. Analysis in the last two sections show

that the performance of the conventional ARQ and ARQ-CGM depend only on the

normalized total pilot energy ε, instead of the individual value of Ep or p. Therefore,

without loss of generality, we use a pilot length of p = 5 here. We consider here only

the equal bit energy allocation case, i.e. Ep = Ed/ log2M .

For the conventional ARQ, in order to satisfy the maximum tolerable IAPEO

threshold PTH
IAPEO, the SNR must be above the minimum SNR, γ̄TH, given in (6.37)

and (6.38) for BPSK and QPSK, respectively. ARQ-CGM, however, is able to

achieve PTH
IAPEO at any SNR value by setting the right channel estimate threshold

hTH, as shown in Fig. 7.2 and Fig. 7.3. The exact numerical inverse erfc function is

used here. One may want to set the channel estimate threshold to be greater than

|hTH| to obtain a lower IAPEO. This, however, will lead to a lower throughput and

goodput due to more retransmissions, and, hence, is not advised. The IAPEO curves

of the two schemes start to merge at γ̄TH, when |hTH| reduces to 0 and ARQ-CGM

reduces to the conventional ARQ.

The channel estimate threshold |hTH| for BPSK and QPSK are shown in Fig.

7.4 and Fig. 7.5, respectively. The figures show that the bounds on |hTH| in (7.12)

and (7.13) are quite tight. The value of |hTH| is dominated by PTH
IAPEP at low SNR,

and dominated by PTH
IAPEO at high SNR. As the IAPEO performance of QPSK is

worse than that of BPSK, the required |hTH| to satisfy for QPSK is larger than that
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Figure 7.2: IAPEO probability v.s. effective SNR γ̄ for BPSK with p = 5,m =

23, n = 28, ε = εeq.

of BPSK.

The goodput of SR-ARQ-CGM with BPSK using the bounds and

approximation in (7.15)–(7.19) are compared in Fig. 7.6. We observe that the

bounds are very tight. The following numerical results are obtained using the

approximation in (7.19).

The AAPEP of ARQ-CGM is lower than that of conventional ARQ, as shown in

Fig. 7.7. In other words, the average reliability of ARQ is also improved by channel

gain monitoring. As expected, the improvement in reliability comes with the tradeoff

of lower throughput and goodput, as shown in Fig 7.8 and Fig. 7.9, respectively. It

is a result of more retransmissions caused by channel gain monitoring.
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Figure 7.3: IAPEO probability v.s. effective SNR γ̄ for QPSK with p = 5,m =

23, n = 28, ε = εeq.

The throughput and goodput of ARQ-CGM with BPSK and QPSK are

compared in Fig. 7.10 and Fig. 7.11, respectively. Theoretically, the transmission

rate of QPSK is double that of BPSK. Due to the pilot overhead and the fact

that QPSK is more susceptible to imperfect CSI, the throughput and goodput of

ARQ-CGM with QPSK is less than double those of BPSK.

7.5 Conclusions

The probability of IAPEO is proposed as a performance measure for ARQ schemes

over wireless channels. We obtain a closed-form upper bound expression for IAPEO

of a pure ARQ over Rayleigh fading. We show that, in order to satisfy a system
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Figure 7.4: Channel estimate threshold |hTH| v.s. effective SNR γ̄ for BPSK

with p = 5,m = 23, n = 28, ε = εeq.

design requirement of maximum tolerable IAPEO, the system must operate above

a minimum SNR value. To overcome this shortcoming, we propose ARQ-CGM,

such that the IAPEO requirement can be satisfied at any SNR value with the

right channel gain threshold. The IAPEO performance of ARQ-CGM with selective

repeat retransmission protocol is related to the conventional performance measures,

i.e. AAPEP, throughput and goodput. It is shown that its average reliability is

higher than the conventional ARQ, at the cost of lower throughput and goodput.
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Chapter 8

Summary of Contributions and

Future Work

8.1 Summary of Contributions

In order to design a robust receiver for fading channels, we applied the joint data

sequence detection and blind channel estimation approach and assume that the

receiver has no knowledge of the channel statistics and does not extract CSI. We

have used this approach to obtain robust receivers for the phase noncoherent AWGN

channel and an arbitrary flat fading channel. We can apply this approach to

other channels to derive robust receivers. The receivers are sequence detectors.

If the receiver objective is to detect the data sequence only, explicit extraction of

the CSI is not needed. However, if the CSI is required, e.g. for CSI feedback

to the transmitter [80], it can be computed using the data sequence decision.

Sequence detectors, in general, have the implementation problem of exponential

computational complexity. The trellis search algorithm is a powerful algorithm to

reduce the exponential complexity to linear complexity.

For performance analysis, we started on the physical layer with coherent

receivers. As the performance of coherent receivers are in the form of integrals

of exponential functions (including the Gaussian Q-function), we proposed to use
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the Jensen’s inequality. We obtained three families of exponential bounds that have

simple forms. Our bounds can be averaged over fading and they are much tighter

than existing bounds with the same forms that can be averaged over the same fading

channel. The tightness of the bounds can be improved by increasing the number of

exponential terms. Moreover, coefficients of the bounds can be adjusted to tighten

the bounds. We conclude that the Jensen’s inequality is a very powerful tool in

performance analysis.

Following coherent receivers, we then studied the performance of differential and

noncoherent receivers whose decision metrics are in quadratic forms. By expressing

the noncentral Chi-square distribution as a Poisson-weighted mixture of central

Chi-square distributions, we obtained an exact expression of the error performance

of quadratic receivers. This expression is in the form of a series summation involving

only elementary functions. It can be truncated for numerical calculation. The BEP

performances of optimum and suboptimum BDPSK and QDPSK receivers over fast

Rician fading with Doppler shift were obtained using the general expression. Our

general expression is more efficient than existing expressions in the literature in

numerical computation. However, the limitation of our expression is that it is only

applicable to Rician type signals. So is the Proakis’ expression. The Simon’s

expression is obtained by averaging AWGN performance over arbitrary fading.

Therefore, it is applicable to any fading channel.

Having analyzed the average performances of coherent receivers and

differential/noncoherent receivers at the physical layer, we moved up to the data link

layer. The issue that is been long neglected is that the performance measure for the

physical layer at the data link layer or higher layers is the two Markov model which is

entirely different from the ABEP/ASEP performance measures at the physical layer.

Conventional higher layer performance analysis results do not show how higher layer

performance are affected by the performance measures at the physical layer. We need

to build a link between the performance measures of the two layers. Our first step

was to propose the IBEP/IPEP/IAPEP and the IBEO/IPEO/IAPEO probability
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as short-term and long-term reliability performance measures, respectively. A

closed-form expression and bounds were obtained for the IBEO/IPEO/IAPEO

probability over Rayleigh fading channels with imperfect CSI. We showed that

the IBEO/IPEO/IAPEO performance improves rapidly with channel estimation

MSE, when MSE drops below a certain value. The optimum allocation of energy

between pilot and coded bits that minimizes the IBEO/IPEO/IAPEO probability

was obtained. It was shown that the optimum allocation is not affected by the

IBEP/IPEP/IAPEP threshold values. In order to achieve system design IAPEO

performance at any SNR value, ARQ with channel gain monitoring was proposed.

Its IAPEO, AAPEP, throughput and goodput were derived. It was shown that

its average reliability is higher than the conventional ARQ, at the cost of lower

throughput and goodput.

8.2 Future Work

In the average performance analysis for coherent receivers, the Jensen’s inequality

can be applied to lower bound integrals of exponential functions. We will look

for more applications where this lower-bounding method can be applied. In

addition, a convex function can be upper-bounded by its approximate using the

Cotes trapezoidal rule [21]. This provides a method to upper-bound the Gaussian

Q-function and other integrals of exponential functions.

For the average performance analysis for quadratic receivers, the expression

we obtained is a general expression and can always applicable. There are many

applications. For example, the energy detector used for spectrum sensing in cognitive

radio is a quadratic receiver [81]. We can generalize the expression the case where the

decision metrics have different cardinality. For example, in the outage performance

analysis of multiuser detection in cellular communication, the decision metric for

interferences has more components than decision metric for the signal. The Proakis’

expression and the Simon’s expression are not applicable to this scenario. Moreover,

the expression we obtained involves infinite series. We can look for approximate or
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upper/lower bounds based on the new form. We will look into the conditions when

each approximation or bound may be applied.

We now move on to the data link layer. Conventionally, data link layer and

upper layer protocols work and are analyzed based on the discrete-time two-state

Markov-chain model. This model assumes that the channel condition or link

reliability is either good or bad. The transition probabilities between the states are

specified. The commonly used average performance measures in the physical layer,

e.g. ABEP and ASEP, do not fit into this model directly [82]. We proposed to use

IBEP/IPEP/IAPEP and IBEO/IPEO/IAPEO probability to represent short-term

and long-term reliability. We will investigate how our IBEP/IBEO model can map

to the Markov-chain model, such that existing protocol performance results based

the Markov-chain model can be easily converted to the performance over fading.

We will also look into cross-layer protocol design that uses or is based on the outage

performance as the performance measure.

The outage probabilities we proposed are for fading channels. When the

shadowing effect is taken into consideration, the same outage probabilities can be

used, by averaging the fading gain over the fading distribution and the shadowing

distribution. Therefore, the outage probabilities reflect the effects of both fading and

shadowing. Alternatively, we may propose two sets of outage probabilities, one at

the multipath fading level and one at the shadowing level. Thus, each set of outage

probabilities only reflects the effect caused by multipath fading or shadowing. When

the shadowing effect is considered, the mapping of the outage probabilities into the

Markov chain model is more involved.
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