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Assessment by simulation of CP-QFSK as an alternative modulation scheme for TDMA 

Digital Cordless Telecommunications Systems operating in indoor applications 
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One of the major driving elements behind the explosive boom in wireless revolution is the 

advances in the field of modulation which plays a fundamental role in any communication 

system, and especially in cellular radio systems.  Hence, the elaborate choice of an efficient 

modulation scheme is of paramount importance in the design and employment of any 

communications system.  Work presented in this thesis is an investigation (study) of the 

feasibility of whether multilevel FSK modulation scheme would provide a viable alternative 

modem that can be employed in TDMA cordless communications systems.  In the thesis the 

design and performance analysis of a non-coherent multi-level modem that offers a great deal of 

bandwidth efficiency and hardware simplicity is studied in detail.  Simulation results 

demonstrate that 2RC pre-modulation filter pulse shaping with a modulation index of 0.3, and 

pre-detection filter normalized equivalent noise bandwidth of 1.5 are optimum system parameter 

values.  Results reported in chapter 5 signify that an adjacent channel rejection factor of around 

40 dB has been achieved at channel spacing of 1.5 times the symbol rate while the DECT 

system standards stipulated a much lower rejection limit criterion (25-30dB), implying that CP-

QFSK modulation out-performs the conventional GMSK as it causes significantly less ACI, 

thus it is more spectrally efficient in a multi-channel system.  However, measured system 

performance in terms of BER indicates that this system does not coexist well with other 

interferers as at delay spreads between 100ns to 200ns, which are commonly encountered in 

such indoor environment, a severe degradation in system performance apparently caused by 

multi-path fading has been noticed, and there exists a noise floor of about 40 dB, i.e. high 

irreducible error rate of less than 5.10-3.  Implementing MRC diversity combiner and BCH 

codec has brought in a good gain.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Literature Review 

In the developed and industrialized countries, the number of wireless access connections 

between the user terminals of a telecommunication network such as mobile phones and 

the fixed, high-capacity transport network has already exceeded the number of wired 

ones.  Communications and computing have become sort of a lifestyle, and the trend 

will undoubtedly grow further in the near future, with the development of wireless 

fidelity (Wi-Fi) hot spots and the commercialization of low-cost wireless local area 

networks (LANs) for the home.  The driving elements behind this wireless revolution 

are the advances in the fields of modulation, coding, equalisation and multiple access 

schemes.  At the heart of all these is modulation which plays a fundamental role in any 

communication system, and perhaps especially in a wireless or radio system that enables 

information to be transmitted over the radio channel [1]. 

In any communication system, the two primary resources that are of paramount 

importance are the transmitted power and channel bandwidth, hence communication 

channels can be classified primarily as power-limited or band-limited, and a general 

system design objective priority would be to use these two resources as efficiently as 

possible since government regulatory bodies, such as the UK Radio communications 

Agency, define limits on spectrum occupancy for a given transmitted data rate, hence it 

is highly desirable to operate a digital communications system with narrow band 

signalling [2].  As far as band-limited channels are concerned, spectrally efficient 
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modulation techniques would be used to maximize the spectrum efficiency in these 

channels such as the mobile radio channel.  Thus the choice of modulation technique 

has a direct impact on the capacity of a digital mobile communication system as it 

determines the bandwidth efficiency of a single physical channel in terms of the number 

of bits per second per Hertz (b/s/Hz).  In selecting a suitable modulation scheme for a 

mobile radio system, careful consideration must be given to achieving the following [3, 

4]: 

- High bandwidth efficiency. 

- High power efficiency. 

- Low carrier-to-cochannel interference power ratio (C/I). 

- Low out-of-band radiation. 

- Low sensitivity to multipath fading. 

- Constant or near constant envelope. 

- Ease and cost of system implementation. 

Optimising all these features at the same time is not possible as each has its practical 

limitation and also is related to others.  For instance, to achieve high bandwidth 

efficiency one may choose to use high-level modulation.  However, the power efficiency 

of the system would be reduced consequently.  Moreover, the band-limited high-level 

modulated signal will have a large envelope variation which results in a large out-of-

band radiation.  Accordingly if this signal is to be passed through a power efficient 

nonlinear amplifier that in turn introduces interference to adjacent channels, and 

although this can be circumvented by using linear power amplifiers, these have poor 

power efficiency.  Hence, it is necessary to look for a good compromise among these 

criteria, depending on the precise nature of the anticipated utilisation of the system in 

question [5]. 
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Digital modulation techniques are broadly classified in two groups: linear and nonlinear 

schemes, each one being thought to be more appropriate for the two channels types 

mentioned earlier on.  Linear schemes are generally non-constant envelope after band-

limiting and the information is carried in both the amplitude and phase of the carrier, 

whereas nonlinear modulation has a constant envelope property and the information is 

solely contained in the excess phase function of the carrier.  The modulation techniques 

more used in the present systems belong to the group of continuous phase modulations 

or, equivalently, constant envelope modulations, which are inherently power efficient.  

However, further improvements in related systems, like amplification devices, permit 

the increasing use of linear modulations, leading to a more bandwidth efficient systems. 

 

The use of multilevel modulation schemes instead of binary ones results in an increase 

of the bit transmission rate for a given bandwidth.  So, for a given bit rate, they imply a 

reduction of the required channel bandwidth and an increase in the spectrum efficiency, 

thus achieving a significant increase in the number of accommodated users.  However, a 

consequence of transmitting more than one bit per symbol is that the signal power must 

be commensurately increased for the same channel noise if the symbol error is not to 

increase.  This implies an increase in the cluster size in cellular radio, leading to a 

reduction of the number of channels per cell.  The result is that the teletraffic throughput 

is not modified, but the complexity is significantly increased.  This situation is very 

frequently encountered in conventional cellular systems i.e., where macro cells are 

deployed which also requires a low SNR (Signal to Noise Ratio) to avoid co-channel 

interference, it is not surprising therefore, that multilevel modulation schemes were not 

deployed.  However, in a micro cell environment, as in the case of an indoor 

environment, the situation is completely different due to the close proximity of the base 

station and the mobile.  High values of SNR can be achieved within the coverage area 
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with considerably lower power, thus increasing the power efficiency of the unit.  

Furthermore, because of the extremely fast fall off in signal level, the signal to 

interference ratio (SIR) is significantly higher.  A research study performed in such 

minimum cluster sizes showed that multilevel modulation schemes can be introduced 

without cluster size penalties [6]. 

Returning to further general issues in the evolution of advanced personal 

communications systems, much research effort has focused on increasing the system 

capacity in terms of both enhancing data rate and user numbers.  Given the constraints 

imposed by the limitations of spectrum availability it is becoming increasingly 

necessary to evolve new strategies to meet present and projected user requirements.  

Proposed approaches include both reducing cell sizes even further and finding strategies 

for managing co-channel interference [7, 8].  

Over the past two decades or so, there has been a large amount of research done on 

continuous phase- constant envelope digital modulation systems (CPM) on account of 

their promising potential merits if employed in applications where efficient spectrum 

utilisation is required and/or some immunity to nonlinear distortion produced by the 

power amplifiers in transmitters are obtained.  This constraint of phase continuity 

affects the signal in two important ways.  Firstly, the transient effects are lessened at the 

symbol transitions, thereby offering spectral bandwidth advantages.  Secondly, memory 

imposed upon the waveform by continuous phase transitions, improves performance by 

providing for the use of several symbols to make a decision.  This property of 

introducing memory into the modulated carrier while maintaining a constant envelope 

allows for the received signal to be detected non-coherently, and since fast acquisition 

of the reference carrier phase is one of the crucial technical problems encountered in the 

rapid fading conditions of mobile radio channels when coherent detection is used, non-
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coherent demodulation techniques are beneficial as carrier recovery circuit is not needed 

and that reduces the complexity of the handset which in turn reduces its cost [9-15].  A 

detailed account of the suitability and rationale behind the choice of a sub-class of the 

CPM signalling called quaternary frequency shift keying (QFSK) in which the 

instantaneous frequency is constant over each symbol interval and the phase is 

constrained to be continuous is given in chapter 4. 

Again in the context of the deployment of CP-QFSK in cellular and pico-cell 

environments, it is worthy of note that the success of Orthogonal Frequency Division 

Multiple Access (OFDMA) suggests application of CP-QFSK in this access scheme.  In 

OFDMA the transmitted frame contains many sub-carriers which are independently 

modulated whilst each sub-carrier remains orthogonal to every other.  

In the intervening years since continuous phase modulation schemes were first 

investigated, the personal communications environment has changed out of all 

recognition as new services have emerged and user demand has far exceeded all earlier 

projections for growth.  This means that not only are new strategies in multiple access 

required but also earlier schemes need to be re-evaluated in the light of the changing 

circumstances. 

From the aforementioned accounts, the CP-QFSK modulation scheme is a case in point 

and merits consideration as a viable promising alternative modulation scheme that could 

be employed for cordless telephony with telepoint facility and in other applications such 

as systems employing femtocell technology. 

 

1.2 Aims and objectives   

This research work aims to investigate the feasibility of employing Continuous Phase 

Quaternary Frequency Shift Keying (CP-QFSK) modem in short-range cordless systems 
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such as DECT and other applications such as femtocells systems to enhance their data 

transmission capacity in a dual data rate system with a common air interface for the 

same allocated spectrum, and keeping the introduced changes to the standard system to 

a minimum thereby allowing a significant increase in the number of the accommodated 

users.  To this end, the following objectives are sought: 

 

1- To justify the choice of a bandwidth-efficient modulation scheme as an optimum 

candidate for short range digital telephony systems. 

2- To design a simulation model and test bed with interrelated system design 

parameters carefully defined and optimised. 

3- Assess the overall system performance in different radio propagation channel 

media. 

4-  To evaluate the utilisation of adaptive and non-adaptive techniques in sustaining 

system quality and robustness. 

5- To highlight some important aspects proposed for future work.  

 

1.3 Thesis Outline   

Following this introductory chapter, an overview of cellular mobile and femtocell 

communications systems reviewing their background information is presented in 

chapter 2. 

Chapter 3 starts off by an overview of the DECT system with main focus placed on its 

physical layer structure as it is to be used as a base line reference.  Then, a concise 

treatment of computer simulation techniques highlighting their significance in the 

system design and in particular it gives an insight of the simulation software being used 
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in the design and optimisation of the current and proposed systems is presented.  It also 

explores the DECT system design and its performance characterisation. 

Chapter 4 outlines a rational of the grounds justifying CP-QFSK scheme as a candidate 

proposed to improve DECT data throughput.  It includes a detailed account of the 

modem design along with its parameter optimisation.  Measured system performance 

under static channel conditions is reported at the end of this chapter. 

Chapter 5 is devoted for investigating the system behaviour in different propagation 

media.  It is divided in to two main areas: the evaluation of system performance in 

indoor channel under the effects of non-fading conditions and under fading conditions 

and in turn evaluating the system quality in both environment scenarios. 

Chapter 6 examines a number of countermeasures against the aforementioned adverse 

propagation effects through the use of adaptive and non-adaptive techniques so as to 

maintain an acceptable system quality.  The overall system performance is evaluated 

and presented herein. 

Chapter 7 concludes the outcomes from this project work and recommends some further 

research work to be conducted. 
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CHAPTER 2 

 

Mobile and Personal Communications Systems Overview 

 

2.1 Evolution of mobile and personal communications systems  

The cellular radio business has expanded explosively over the last two decades or so 

and continues to expand rapidly. Mobile radio has been used for over 70 years. Even 

though the cellular concept, spread spectrum techniques, digital modulation, trunking 

techniques, and other modern radio technologies were known more than 50 years ago, 

mobile telephone service did not appear in useful forms until the early 1960’s, and then 

only as elaborate adaptations of simple dispatching systems. Wireless communications 

have become very pervasive. The first cellular systems were analog voice transmission, 

and some ‘data transmission’ modulated into the voice channel for signaling the 

occasionally handover or power control command [1]. 

Some of the most used standards were/are AMPS, D-AMPS, TACS, PCS, CDMA, 

NMT, GSM, DCS and UMTS (WCDMA). The number of mobile phones and Wireless 

Internet users has increased significantly in recent years to the extent that in some 

countries there exist more mobile phones than fixed phones. Mobile communications 

technology has evolved along a logical path, from the simple first-generation analogue 

products designed for business use to second-generation digital wireless 

telecommunications systems for residential and business environments to the third-

generation aimed at bringing together the wireless and the Internet worlds together 

along the real-time video and multimedia graphics over the wireless medium [2]. These 

technologies took their own logical evolutionary process and the following sections 

briefly discuss that. 
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2.2 First Generation Mobile Systems (1G) 

Although commercial mobile telephone networks existed as early as the 1960s, many 

consider the analogue networks of the late 1970s and early 1980s to be the first 

generation (1G) wireless networks when mobile phones came about into the market. 

The technology was designed for specific business purposes of voice communications 

and created to putting the telephones on the move (hence the term mobile phones).  

Various analogue techniques came into the market. 

In the 1960’s, Bell Systems developed the Improved Mobile Telephone Service System 

(IMTS), which was to form the basis of the first generation mobile communications 

system. With the invention of microprocessors and the cellular communications concept 

in the 1970’s – 1980’s, the first generation mobile communication system was born [3]. 

In the early 1970’s Motorola designed and manufactured low, mid and high tier private 

land mobile radios having few competitors for the mid and high tier product lines (50 

and 100 watt radios). However, in the low tier, less than 25 watt radio category, there 

were numerous contenders, mostly from European manufacturers with a “Nordic 

Mobile Telephone” heritage. In Europe, TACS was introduced with 1000 channels and 

a data rate of 8 kbps.  AMPS and TACS use the frequency modulation technique for 

radio transmission. Traffic is multiplexed onto an FDMA (Frequency Division Multiple 

Access) system. 

AMPS, which was made available in 1983 had a total of 40MHz of spectrum allocated 

from the 800MHz band by the Federal Communications Commission (FCC) and 

offered 832 channels with a data rate of 10 kbps [4]. 

In the late 1970’s the American public got their first taste of mobile communications 

when Citizen Band (CB) radio became popular. It was an unlicensed, short range, 
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“party-line” experience. Those skilled in the art knew that something better was needed.  

And the American communications industry responded. The Federal Communications 

Commission and major industry players, like AT&T and Motorola, specified America’s 

first public mobile radio telephone system, AMPS (Advanced Mobile Telephone 

System).  By the mid 19980’s AMPS was a proven technology and cellular subscriber 

growth was constantly exceeding forecasts. The most prominent 1G systems are [5]: 

 ETACS (Extended Total Access Communication System) in the UK 

 AMPS (Advanced Mobile Phone System) in North America and Asia 

 NMT (Nordic Mobile telephone) in Norway, Sweden and Finland 

 NTT (Nippon Telegraph and Telephone) in Japan 

These mobile systems worked on the concept of cells where, the mobile system's total 

coverage area is divided into a number of smaller interlocking regions called cells, 

whose radii are 5 to 10 miles only rather than 100 miles as in earlier mobile radio 

systems. Each cell is assigned its own base station and a fixed number of radio channels 

for duplex communications with the mobile units within its cell boundary.  

Furthermore, the base station's radio coverage is deliberately limited to within one cell 

size so that the frequency channels allocated to one cell can be safely reused in cells that 

are sufficiently remote. This "frequency reuse" capability of the cellular network is the 

key feature that allows more users to be accommodated in the network without 

requiring any additional channel allocation, and consequently, the system capacity is 

improved. A further desirable feature of the cellular concept is its ability to expand the 

traffic handling capacity gracefully with "cell splitting". When traffic builds up in a 

busy cell and traffic blockage begins to occur, that cell is subdivided into a number of 

smaller units called split cells. By careful frequency planning and appropriate reduction 

of the transmit power in these new split cells, it is again possible to increase the total 
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number of mobile users serviceable within the original cell boundary. Cell splitting thus 

provides an attractive expansion strategy for upgrading the cellular mobile system 

capacity [6]. 

With 1G introduction, the mobile market showed annual growth rates of 30 to 50 

percent, rising to nearly 20 million subscribers by 1990. However, all these systems, 

based on analogue modulation techniques, had their inherent practical limitations in 

terms of the number of channels, proliferation of incompatible standards in different 

countries and regions, and one big challenge faced these systems was the inability to 

handle the growing capacity needs in a cost-efficient manner. Also different bandwidths 

and protocols made it difficult to enlarge the network for digital processing. This 

restricted the expansion plans of these technologies and thus, was costly to implement.  

Most of the users of the first generation mobile phones were restricted to big corporate 

and business users only. All of these limitations were the key forces behind the 

emergence and development of a new generation of digital systems [7].  

   

2.3 Second Generation Mobile Systems (2G) 

By the end of the 1980’s, it became clear that the first generation analog cellular 

systems would not be able to meet continuing demand into the next century unless 

something was done about four inherent limitations of these systems; (1) severely 

confined spectrum allocations; (2) a perception among more sophisticated users, the 

chief revenue generators, that the systems were limited in usefulness because of 

annoying sounds and interference as the mobiles moved about in a multipath fading 

environment, as well as their having only trivial access to a growing catalog of 

attractive network features; (3) inability to substantially lower the cost of mobile  

terminals and infrastructure, and (4) incompatibility among the various analog systems, 
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especially in Europe, thus preventing the subscriber from using his or her phone abroad, 

coupled with the trend towards globalization of the world’s economy it is desirable that 

communications take place globally providing ‘communications anywhere – any time’. 

What is the solution? Spectrum space is probably the most limited and precious 

resource available in the industrialized world [8]. Continued allocation of additional 

spectrum to meet the cellular services’ growing demand is simply out of the question. 

The solution is to further multiplex traffic (e.g., in the time domain) into a radio system 

on top of the conventional frequency and spatial domains. Such time multiplexing 

requires that all the traffic and signaling functions be realized with digital techniques 

[2]. 

Digital radio hides the effects of fading and interference from the user. Moreover, 

digital modulation and all its logical extensions make access to network features much 

easier. Half-duplex digital radios are theoretically cheaper to produce than full-duplex 

analog radios. These practical considerations together with political pressure in Europe 

have led to the rise of the second generation (2G) digital systems, most prominent of 

which are [9]: 

 GSM system (Global System for Mobile communication, the European 200 KHz 

TDAM standard): The most successful family of cellular standards and the first 

digital cellular system developed for compatibility throughout Europe operating 

at 900MHz range.  Data rates vary according to switching type.  

 D-AMPS (Digital Advanced Mobile Phone Service, also known as IS-45), 

operates at 800MHz, and uses TDMA standard.  Used mainly in USA. 

 N-CDMA (Narrow-band Code Division Multiple Access, also known as IS-95): 

operates at 800MHz and characterized by high capacity and small cell radius and 

uses spread spectrum technology.  It is used mainly in USA 
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 Digital European Cordless Telephone (DECT) in the late 1980’s and early 

1990’s in which specific features were included to allow international roaming 

and a wide variety of auxiliary services. 

A new design was introduced into the mobile switching center of 2G systems. In 

particular, the use of base station controllers (BSCs) lightens the load placed on the 

NSC (Mobile Switching Center) found in the 1G systems. This design allows the 

interface between the MSC and BSC to be standardized. Hence, considerable attention 

was devoted to interoperability and standardization in 2G systems so that carriers could 

employ different manufacturers for the MSC and BSCs. In addition to enhancements in 

MSC design, mobile-assisted handoff mechanism was introduced by sensing signals 

received from adjacent base stations, a mobile unit can trigger a handoff by performing 

explicit signaling with the network. Currently there are three prevalent 2G networks.  

These are: GSM, CDMA, and CDPD [10]. 

 

2.3.1 Global System for Mobile Communications (GSM) 

GSM was launched in the early 1990’s, and was one of the first truly digital systems for 

mobile telephony. It was specified by ETSI and originally intended to be used only in 

the European countries. However GSM proved to be a very attractive technology for 

mobile communications and, since the launch in Europe, GSM has evolved to more or 

less a global standard [7].  

GSM networks are by far the most popular and widespread wireless communication 

media across the world, having a wide customer base in Europe and Asia-Pacific and 

command more than 50 percent of mobile customers. It is based on narrow-band 

TDMA technology, where available frequency bands are divided into time slots. Each 

user is given access to one particular time slot separated by regular intervals. It allows 



Chapter 2                                                                         Mobile and Personal Communications Systems 

16 

 

eight simultaneous communications on a single 200 KHz carrier and is designed to 

support 16 half-rate channels. GSM supports data services where users can send and 

receive data at rates up to 9600bps. A unique feature of GSM, not found in older analog 

systems, is the Short Message Service (SMS). SMS allows GSM users to exchange text-

based messages up to a length of 160 characters over the wireless network [11]. A GSM 

network, as shown in figure 2.1, typically consists of three major components: mobile 

stations, base station sub-system, and primary network.  

 

 

Fig. 2.1. GSM network elements 

 

GSM network architecture, as shown above, comprises several transceiver stations 

(BTS), which are clustered and connected to a base station controller (BSC). Several 

BSCs are then connected to an MSC which in turn has access to several databases, 

including the visiting location register (VLR), home location register (HLR), and 

equipment identity register (EIR). It is responsible for establishing, managing, and 

clearing connections, as well as routing calls to the proper radio cell. It supports call 

routing at times of mobility. A gateway MSC provides an interface to the public 

telephone network. The HLR provides identity information about a GSM user, its home 
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subscription base, and service profile. It also keeps track of mobile users registered 

within its home area. The VLR stores information about subscriptions visiting a 

particular area within the control of a specific MSC. The EIR is used for equipment 

registration so that the hardware in use can be identified. If a device is stolen, service 

access can be denied by the network or if a device has not been previously approved by 

the network vendor , EIR checks can prevent the device from accessing the network. In 

GSM, each mobile device is uniquely identified by International Mobile Subscription 

Identity (IMSI).  It identifies the country in which the mobile system resides, the mobile 

network, and the mobile subscriber. The IMSI is stored on a Subscriber Identity Module 

(SIM) that can exist in the form of a plug-in module or an insertable card. With a SIM, a 

user can practically use any mobile phone to access network services. The protocols 

behind 2G networks support voice and some limited data communications, such as Fax 

and short messaging service (SMS), and most 2G protocols offer different levels of 

encryption and security. While first-generation systems support primarily voice traffic, 

second-generation systems support voice, paging, data, and fax services [10]. 

 

2.3.2 Code Division Multiple Access (CDMA) 

CDMA (Code Division Multiple Access) was the first digital standard implemented in 

North America, USA, by Qualcomm. CDMA uses the spread spectrum concept of 

sharing a larger spectrum with multiple users, as the same time as assigning them 

unique digital codes uses a spread spectrum in the 824-849 and 869-894 MHz bands.  

There is a channel spacing of 1.23 MHz, and a total of 10 radio channels with 118 users 

per channel. Main advantage of operating in these bands is its ability to provide higher 

bandwidth while preventing interference due to the digital coding. CDMA’s ability to 

allow more calls to occupy the same space in the channel increases its capacity, hence, 
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provides a cost-effective solution to its users.  It can provide higher data rates of more 

than 64 kbps due to frequency reuse and soft handoffs. Additionally, the cell planning is 

simpler. It is promoted in a big way as a step towards 3G high bandwidth networks [5]. 

 

 

 

 

 

 

 

Fig. 2.2. CDMA network 

 

Table 2.1 [6] summarizes some essential characteristics of the cellular mobile standards: 

 

System IS-54 GSM CDMA 

  Multiple access   TDMA/FDMA   TDMA/FDMA   CDMA/FDMA (DS) 

  Up link (MHz) 

  Down link (MHz) 

  869-894 

  824-849 

  935-960 

  890-91.5 

  869-894 

  824-849 

  Duplexing   FDD   FDD   FDD 

  Ch. spacing (kHz)   30   200   1250 

  Modulation   P /4QPSK   GMSK.   BPSK/QPSK 

  Tx power (Peak) 

  Tx power (avg.) 

  600 mW 

  200 mW 

  1 W 

  125 mW 

  600 mW 

  600 mW 

  Speech coding   VSELP   RPE-LTP   QCELP 

  Codec rate (kb/s)   7.95   13   8 (var.) 

  Speech/RF Ch.   3   8   None 

  Ch. bit rate (kb/s)   48.6   270.833  

  Ch. coding   1/2 rate conv.   1/2 rate conv.   1/2 rate fwd, 1/3 rate 

rev 

Rev 

  Frame dur. (ms)   40   4.615  20 

Table 2.1. Cellular mobile radio standards 
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2.3.3 Cellular Digital Packet Data (CDPD) 

While the above technologies were advancing, there was a concern amongst certain 

organizations that had already invested substantially in analog networks. There was a 

need to have a technology that could be put as an overlay over these existing networks 

and at the same time provide some digital services to their customers. Cellular Digital 

Packet Data (CDPD) is the solution more popular in North America [5]. It uses unused 

bandwidth normally used by AMPS mobile phones between 800 and 900 MHz to 

transfer data. Speeds up to 19.2 kbit/s are possible.  It is a packet data overlay that 

works on idle time in-between calls to transmit and receive information. It uses the 

concept that cell phones are not always used for voice communication, and hence the 

time slot can be exploited to provide a low-cost data transmission facility to consumers.  

Its popularity comes mainly from its cost-effectiveness, as it uses existing networks, 

thus reducing the risk of technology obsolescence. 

In the early 1990's, CDPD was large on the horizon as a future technology. However, it 

had difficulty competing against existing slower but less expensive Mobitex and Data 

Tac systems, and never quite gained widespread acceptance before newer, faster 

standards such as GPRS became dominant. 

These technologies are still voice-centric. Digitization of signals was aimed at 

improving channel capacity and voice clarity rather than transmission of data.  

However, the very fact that digitized information could be transmitted over these 

channels gave rise to the idea of exchanging information on top of voice over the same 

networks. This gave rise to the concept of Personal Communication Systems (PCS) that 

could shift the focus to data communications as well, although the prime focus remains 

voice. PCS operates in the frequency band of 1800-1900MHz and thus can 
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accommodate a higher number of channels. More bandwidth was made available, hence 

a higher subscriber base could be achieved. Also, the focus slowly started shifting 

towards data communications over wireless, leading to protocols such as SMS, WAP, 

Wi-Fi, and Bluetooth, among others. As of the year 2004, major carriers in the United 

States are threatening to shut down CDPD service. As of July 2005, the former AT&T 

Wireless CDPD network is no longer active, and singular Wireless CDPD customers 

have been informed that as of the end of the year, it will be down as well [11]. 

 

2.4 2.5G Networks – A Step towards 3G 

The evolution of GSM to 3G is about gradually adding more functionality, possibilities 

and value to the existing GSM network and business. The evolution begins with an 

upgrade of the GSM network to 2.5G by introducing the general packet radio system 

(GPRS) technology. GPRS provides GSM with a packet data air interface and IP based 

core network.  Before going ahead full-fledged into 3G mobile systems, there are a few 

crucial technologies, popularly known as 2.5G networks, that are taken to gradually 

migrate existing networks towards 3G [4]. Some of these network technologies such as 

GPRS, HSCSD, and EDGE that aim to implement packet data services and increase the 

data rates over the existing GSM and TDMA networks, will be discussed in the sub-

sections to follow. 

 

2.4.1 General Packet Radio Service (GPRS) 

The move into the 2.5G world began with GPRS aiming at extending 2G networks to 

have the capability of launching packet-based services while enhancing the data rates 

supported by these networks, hence, it is essentially an overlay on top of existing GSM 
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and TDMA networks, which provides a telecom operator with the facility of reusing the 

radio spectrum across multiple users and thereby enhancing the capacity of the network. 

Soon after the first GSM networks became operational in the early 1990s and the use of 

the GSM data services started, it became evident that the circuit switched bearer 

services were not particularly well suited for certain types of applications with a bursty 

nature. The circuit switched connection has a long access time to the network and the 

call charging is based on the connection time. 

In packet switched networks, the connections do not reserve resources permanently, but 

make use of the common pool, which is highly efficient in particular for applications 

with a bursty nature. The GPRS system has a very short access time to the network and 

the call charging is solely based on the amount of transmitted data compared to circuit-

switched data that always requires at least one time slot to be allocated during an entire 

data session, regardless of how much data is actually transmitted and the user has to 

establish a new connection when he or she wants to get some information. This 

connection establishment process sometimes takes as much as 20-40 seconds [12]. 

The idea of packet data solution is to reuse frequencies across multiple users and hence 

optimize the use of frequency spectrum at all times. Thus, users can have the advantage 

of being connected all the time but paying only for the data exchanged between the 

mobile device and the network. This facilitates the convergence of cellular and Internet 

service providers, leading to a very exciting new business model. 

The GPRS system brings the packet switched bearer services to the existing GSM 

system, i.e. it is not a completely new system; rather, it is an upgrade or data overlay 

over the voice-based existing GSM cellular networks, meaning, it is still having the 

same functionality for voice calls, and it is even possible to have simultaneous voice 

and data on some handsets. This smooth migration also means that users enjoy the same 
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coverage for GPRS as for present cellular networks, as opposed to building a 

completely new network from scratch. This situation is possible because GPRS is 

introduced as a simple software upgrade for the majority of the operator’s equipment: 

the base station, and being able to reuse the same base stations saves lots of money and 

trouble. In the GPRS system a user can access the public data networks directly using 

their standard protocol addresses (IP, X.25), which can be activated when the MS is 

attached to the GPRS network. 

The GPRS MS can use between one and eight channels over the air interface depending 

on the MS capabilities, and those channels are reserved separately making it possible to 

have multi-slot MSs with various uplink and downlink capabilities. The resource 

allocation in the GPRS network is dynamic and dependent on demand and resource 

availability. Packets can also be sent on idle time between speech calls. With the GPRS 

system it is possible to communicate point-to-point or point-to-multipoint, it also 

supports the SMS and anonymous access to the network. The theoretical maximum 

throughput in the GPRS system is 160 kbps per MS using all eight channels without 

error correction.  

The network architecture of GPRS is shown in figure 2.3. It consists of a packet 

wireless access network and an IP-based backbone. It brings a few new network 

elements and a software upgrade to the GSM network. The most important ones are the 

Serving GPRS Support Node (SGSN) and Gateway GPRS Support Node (GGSN), to 

perform the tracking of packet-based mobile terminals, security and access control, 

interfacing with external packet data networks for exchange of packet-based data. As 

shown in Fig.2.3, base stations (BSSs) are connected to SGSNs, which are subsequently 

connected to the backbone network. SGSNs interact with MSCs and various databases 

to support mobility management functions. The BSSs provide wireless access through a 
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TDMA MAC protocol. Both the mobile station (MS) and SGSNs execute the Sub-

network-Dependent Convergence protocol (SNDCP), which is responsible for 

compression / decompression and segmentation and reassembly of traffic. The SGSNs 

and GGSNs execute the GRPS tunneling Protocol (GTP), which allows the forwarding 

of packets between an external public data networks (PDN) and mobile unit (MU). It 

also allows multiprotocol packets to be tunneled through the GPRS backbone. 

The application developer can access the advanced features of GPRS by using Attention 

(AT) commands, and GPRS turns the handset into an IP-based device on which just 

about any Internet Application can run. However, it is worth mentioning that GPRS has 

difficulties guaranteeing any quality of service (QoS) because of a lack of support in the 

base station controller, and the Packet Control Unit (PCU) is limiting the functionality 

by not being capable of handling different data streams differently, and that’s why one 

of the most important additions to GPRS in the second release of the core network 

(3GPP release 1999) is the extensive QoS functionality. This standard is the same for 

EDGE and UMTS.  Another important part of this standard is the possibility to use 

several services for one MS and have different qualities of service for them [10]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Architecture of GSM GPRS 
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2.4.2 High-Speed Circuit Switched Data (HSCSD) 

The first phase GSM specifications provided only basic transmission capabilities for the 

support of data services, with the maximum data rate in these early networks being 

limited to 9.6 kbps on one timeslot. HSCSD specified in rel’96, was the first GSM 

phase 2 + work item that clearly increased the achievable data rates in the GSM system.  

The maximum data rate of a HSCSD configuration with 14.4 kbps channel coding is 

115.2 kbps, i.e. up to eight times the bit rate on the single slot full-rate traffic channel 

(TCH/F). In practice, the maximum data rate is limited to 64 kbps due to core network 

and interface limitations. The main benefit of the HSCSD feature compared to other 

data enhancement schemes is that it is an inexpensive way to implement higher data 

rates in GSM networks due to relatively small incremental modifications needed to the 

network equipment. Terminals, however, need to be upgraded to support multislot 

capabilities. Two types of HSCSD configurations exist, symmetric and asymmetric.  

For both types of configurations the channels may be allocated on either consecutive or 

non-consecutive timeslots taking into account the restrictions defined by the mobile 

station’s multislot classes, described in detail in [13]. 

With HSCSD, the same circuit-switched technology is used as regular GSM, but 

multiple timeslots can be used for one connection. The first HSCSD systems appeared 

in 2000, and the first batch of terminals was in the form of PC cards. This format 

enables users who are already frequently checking their mail and using the Internet / 

intranet on the go to achieve higher speeds. The network implementation suits best 

applications that have continuous streaming of data since the network continues to be 

circuit-switched. The problem with this implementation consists of its complex 
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handover mechanism while roaming and its potential conflict with GPRS. Hence, the 

solution may be seen implemented mostly in isolated packets [5]. 

 

2.4.3 Enhanced Data Rates for GSM Evolution (EDGE) 

EDGE, is a cost-effective upgrade to existing GSM / GPRS and TDMA networks 

providing users with data speeds as high as 384 kbps.  GSM networks, as mentioned 

above, have already offered advanced data services, like HSCSD, with multislot 

capability and the simultaneous introduction of 14.4 kbps per time slot data, and GPRS 

are both major improvements, increasing the available data rates from 9.6 kbps up to 64 

kbps (HSCSD) and 160 kbps (GPRS). Now that these two services are available, there 

is a need for even higher speeds for both of them. This feature is exactly what EDGE 

provides, making it possible to transfer more data in each time slot. While a GPRS 

upgrade mainly consists of new nodes in the core network, EDGE accelerates speeds 

over the air. 

EDGE is specified in a way that enhances the throughput per time slot for both HSCSD 

and GPRS. The enhancement of HSCSD is called Enhanced Circuit Switched Data 

(ECSD), whereas the enhancement of GPRS is called Enhanced General Packet Radio 

Service (EGPRS). In ECSD, the maximum data rate does not increase from 64 kbps due 

to the restrictions in the A-interface, but the data rate per time slot triples. Similarly, in 

EGPRS, the data rate per time slot triples and the peak throughput, with all 8 time slots 

in the radio interface, reaches 473 kbps. 

The enhancement behind tripling the data rates is the introduction of Octagonal Phase 

Shift Keying (8-PSK) modulation in addition to the existing Gaussian Minimum Shift 

Keying (GMSK). An 8-PSK signal is able to carry 3 bits per modulated symbol over the 

radio path, while a GMSK signal carries only 1 bit per symbol. The carrier symbol rate 
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(270.833 kbps) of standard GSM is kept the same for 8-PSK and the same pulse shape 

as used in GMSK is applied to 8-PSK. The increase in data throughput does not come 

for free, the price being paid in the decreased sensitivity of the 8-PSK signal as it makes 

the reception and decoding trickier. This affects, e.g. the radio network planning, and 

the highest data rates can only be provided with limited coverage. As a result, the 

receiver must be more advanced, and the signal quality must be higher. This situation is 

a bit of a problem, however, because the signal quality for wireless systems often varies 

greatly as users move around (especially as they move further from the base stations).  

To remedy this problem, EDGE provides nine different coding schemes compared to 

the four that GPRS uses, and a connection can be switched between different schemes. 

The choice of coding scheme is dynamic and depends on the current Channel to 

Interference (C/I). As the signal quality goes down, EDGE switches to a coding scheme 

that is more robust but that also gives a lower throughput. The GMSK spectrum mask 

was the starting point for the spectrum mask of the 8-PSK signal but along the 

standardization process, the 8-PSK spectrum mask was relaxed with a few dB in the 

400 kHz offset from the center frequency [14]. This was found to be a good 

compromise between the linearity requirements of the 8-PSK signal and the overall 

radio network performance. 

In order to facilitate the convergence between GSM and TDMA, EDGE also has access 

to an upgrade for TDMA networks. One obstacle here is that TDMA channels are 30 

kHz while GSM channels are 200 kHz. An EDGE version that remedies this situation is 

called Compact EDGE, as opposed to the standard classic EDGE. The compact version 

is for data only and uses a time-divided control for its 200 kHz channel using less 

spectrum than classic (6 MHz compared to 2.4 MHz required by classic). A TDMA 

operator can either choose to deploy compact EDGE in its existing channel structure or 
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free up some frequencies in order to implement classic EDGE. One major benefit of this 

convergence is the emergence of handsets that support both systems in the future [3].   

 

2.5. Third Generation (3G) Wireless networks  

It is now obvious that the 2.5G systems such as GPRS can provide a large host of new 

possibilities when developing applications. Also, new needs now exist and that people 

in general want fancier handsets and more network capabilities.  However, the quality 

of service for applications was clearly not prioritized in 2.5G, and the bit rates are not 

all that high in reality. By the late 1990’s the Internet was pervasive and the wireless 

industry looked to mobile data as the growth opportunity, and hence a greater demand 

to remove the distinction between fixed and mobile networks became apparent. Access 

to internet and Intranets, Teleworking, and the advent of the Virtual Office, were 

concepts that became more commonplace, and once again the industry undertook the 

task of defining new wireless systems commonly known thereafter as third generation 

(3G) which to be based on packet data. 3G systems are therefore designed for 

multimedia communications: with them person-to-person communication can be 

enabled with high quality images and video, and access to information and services on 

public and private networks is enabled by the higher data rates and new flexible 

communication capabilities of third generation systems. This, together with the 

continuing evolution of the second generation systems is creating new business 

opportunities not only for manufacturers and operators, but also for the providers of 

content and applications using these networks [15]. For 3G, the challenge is 

globalization and convergence of office and home applications and services with the 

help of new communications tools. 
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The International Telecommunications Union (ITU) has made a recommendation (ITU-

R M687-2) on what the 3G systems, or International Mobile Telecommunications 

2000(IMT-2000), should bring. This recommendation includes the following items [3]: 

 A QoS that is comparable to fixed voice networks 

 A Phased development, with the first phase supporting bit rates of up to 2Mbps  

 The capability to build terminals that have many different form factors ranging 

in size from what 2G phones offer to what you can carry in vehicles 

 A flexible architecture where you can easily add additional applications 

The involved companies agreed that things such as flexible multimedia management, 

Internet access, flexible bearer services, and cost-effective packet access for best-effort 

services were of high importance. Because the Internet has become a global force and a 

daily tool for people (both professionally and privately), it is important to define a wide-

area wireless system that is capable of utilizing all of those services. The challenge was 

to migrate toward an architecture where all of the benefits of the Internet remained 

while still preserving the high QoS of 2G systems (with low down times and guaranteed 

bit rates in 2G via circuit switching). The vision of a mobile Internet where not only 

Internet services but also a whole new range of tailored services would emerge started 

to form. This vision included the capability to access the services any time, anywhere, 

and on any device. 

During the late 1990s, there was an intriguing race between a number of camps in order 

to convince the world that their idea of the 3G was the best. The different contestants in 

this race all had reasons for liking some proposals better than others (such as patents, in-

house competence, similarity, compatibility with legacy systems, and so on). At the 

same time, everyone had the feeling that things needed to work better than in the 2G 
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systems, where the different and incompatible standards made international roaming 

difficult and expensive. 

In 1997, this standardization was driven separately in the United States, Japan, and 

Europe, although the participating companies often were present in all of the 

standardization bodies. In the first half of 1998, Europe made several decisions in the 

direction of WCDMA while the United States supported EDGE and cdma2000.  Japan 

was also working toward standardizing WCDMA, but there were some key differences 

between its work and the European standard. In 1998, the ITU called for proposals for 

IMT-2000, and 10 proposals were submitted for the terrestrial part. These proposals 

spurred several standards to work toward harmonization and the Japanese 

standardization body, ARIB/TTC, and the European counterpart, ETSI, T1P1 (United 

States), and TTA (Korea) to join forces in the strive toward a global standard. The result 

was one WCDMA standard, and the Third Generation Partnership Project (3GPP) 

formed. U.S. standardization bodies then created 3GPP2, which standardizes the 

cdma2000 system. Also in 2000, GERAN (GSM EDGE Radio Air Interface) was added 

to 3GPP. 

After additional harmonization work resulted in compromises between the different 

CDMA standards, they became closer to each other but still had three modes of the 

CDMA standard. In addition, EDGE is also part of the IMT 2000 Family of 3G 

standards. The work toward making the different standards compatible is an ongoing 

process, and it will probably take some time. Not only does it involve technical issues, 

but it also involves the business aspects for operators who have customers who have 

legacy handsets to consider. The good part is that most applications will run on top of 

the Internet Protocol (IP) over any of these bearers, making it easy for developers to 

produce products that work anywhere. With the advent of 3G networks, the wireless 
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and the Internet worlds are being brought together along with more real-time video and 

multimedia graphics, also made available over the wireless medium [16]. The following 

sub-sections serve a brief overview of some emerged 3G systems such as WCDMA, 

CDMA2000, UMTS. 

 

2.5.1 Wideband Code Division Multiple Access (WCDMA) 

After the big global success with the second generation (2G) GSM and the increased 

need for spectrum efficiency and data transmission, it was evident that there was a need 

for a third-generation mobile system. UMTS was selected as the first 3G system for 

many reasons, mainly because it is a very efficient way to utilize the radio resources – 

the RF spectrum. Wideband Code-Division Multiple-Access (WCDMA) is a wideband 

Direct-Sequence Code Division Multiple Access (DS-CDMA) system, i.e. user 

information bits are spread over a wide bandwidth by multiplying the user data with 

quasi-random bits (called chips) derived from CDMA spreading codes. In order to 

support very high bit rates (up to 2 Mbps), the use of a variable spreading factor and 

multicode connections is supported. WCDMA was adopted as a standard by the ITU 

under the name "IMT-2000 direct spread". Its specification has been created in 3GPP 

(the 3rd Generation Partnership project), which is the joint standardisation project of the 

standardisation bodies from Europe, Japan, Korea, the USA and China. Within 3GPP, 

WCDMA is called UTRA (Universal Terrestrial Radio Access) FDD and TDD, the 

name WCDMA being used to cover both FDD and TDD operation. WCDMA is a 

technology for wideband digital radio communications of Internet, multimedia, video 

and other capacity-demanding applications. 

WCDMA has been selected for the third generation of mobile telephone systems in 

Europe, Japan and the United States. It is based on radio access technique proposed by 
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ETSI Alpha group and the first full specifications was completed at the end of 1999.  

However, commercial networks were scheduled to open in Europe and elsewhere in 

Asia at the beginning of 2002. UMTS is all about noise and power control.  Strict power 

control is a necessity to make sure that transmitted signals are kept to a level that 

ensures they all reach the base station at the same power level, hence the inter-cell 

interference needs to be minimized since all cells are operating on the same frequency; 

this is a challenge. 

Voice, images, data, and video are first converted to a narrowband digital radio signal. 

The signal is assigned a spreading code to distinguish it from the signal of other users. 

WCDMA uses variable rate techniques in digital processing and it can achieve multi-

rate transmissions. UMTS networks need to support all current second generation 

services and numerous new applications and services [17]. UMTS has now become the 

global standard and has been accepted throughout the world. Several upgrades that 

accommodate higher data speed HSDPA (High Speed Downlink Packet Access) and 

HSUPA (High Speed Uplink Data Access) and service the users with data speeds in 

excess of 10Mbps. There are several current consideration about converting the current 

GSM900 spectrum into UMTS900, giving a much higher spectrum efficiency, and 

better indoor RF penetration. The main system design parameters of the WCDMA air 

interface are summarized in table 2.2 [15] 
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Mutiple access method DS-CDMA 

Duplexing method Frequency division duplex/time division duplex 

Base station synchronization Asynchronous operation 

Chip rate 3.84 Mbps 

Frame length 10 ms 

 

Service multiplexing 

Multiple services with different quality of 

service requirements multiplexed on one 

connection 

Multirate concept Variable spreading factor and multicode 

Detection Coherent using pilots symbols or common pilot 

Multiuser detection, smart antennas Supported by the standard, optional in the 

implementation 

 

Fig. 2.2 Main  WCDMA air interfaces parameters 

 

2.5.2 Code Division Multiple Access 2000 (CDMA 2000)  

Cdma2000 specification was developed by the 3GPP2, a partnership consisting of five 

telecommunications standards bodies: ARIB and TTC in Japan, CWTS in China, TTA 

in Korea and TIA in North America. Cdma2000 has already been implemented to 

several networks as an evolutionary step from cdmaOne as cdma2000 provides full 

backward compatibility with IS-95B, and is not constrained to only the IMT-2000 band, 

but operators can also overlay acdma2000 1x system, which supports 144 kbps now and 

data rates up to 307 kbps in the future, on top of their existing cdmaOne network [15].  

 

2.5.2.1 Cdma2000 1x EV-DO and cdma2000 3x  

Cdma2000 1x EV-DO and cdma2000 3x are an ITU-approved, IMT-2000 (3G) 

standards. Cdma2000 3x is part of what the ITU has termed IMT-2000 CDMA MC 
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(Multi Carrier). It uses less than 5 MHz spectrum to give speeds of over 2 Mbps. 

Cdma2000 1x with lower data speed is considered to be a 2.5G technology. 

Commercially introduced in 1995, CDMA quickly became one of the world's fastest-

growing wireless technologies. In 1999, the International Telecommunications Union 

selected CDMA as the industry standard for new "third-generation" (3G) wireless 

systems. Many leading wireless carriers are now building or upgrading to 3G CDMA 

networks in order to provide more capacity for voice traffic, along with high-speed data 

capabilities. Today, over 100 million consumers worldwide rely on CDMA for clear, 

reliable voice communications and leading-edge data services [15, 18].  

 

2.5.2.2 CDMA2000 1X for Voice and Data 

CDMA2000 1X technology supports both voice and data services over a standard (1X) 

CDMA channel, and provides many performance advantages over other technologies. 

First, it provides up to twice the capacity of earlier CDMA systems (with even bigger 

gains over TDMA and GSM), helping to accommodate the continuing growth of voice 

services as well as new wireless Internet services. Second, it provides peak data rates of 

up to 153 kbps (and up to 307 kbps in the future), without sacrificing voice capacity for 

data capabilities. CDMA2000 1X phones also feature longer standby times. And 

because it's backwards-compatible with earlier CDMA technology, CDMA2000 1X 

provides an easy and affordable upgrade path for both carriers and consumers [15, 18]. 

 

2.5.2.3 CDMA2000 1xEV-DO for Faster Data 

For users who want higher-speed or higher capacity data services, a data-optimized 

version of CDMA2000 called 1xEV-DO provides peak rates of over 2 Mbps, with an 

average throughput of over 700 kbps, comparable to wireline DSL services, and fast 
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enough to support even demanding applications such as streaming video and large file 

downloads. CDMA2000 1xEV-DO also delivers data for the lowest cost per megabyte, 

an increasingly important factor as wireless Internet use grows in popularity. 1xEV-DO 

devices will provide "always-on" packet data connections, helping to make wireless 

access simpler, faster and more useful than ever [15]. 

 

2.5.3 Universal Mobile Telecommunications System (UMTS)  

UMTS is a 3G broadband, packet-based transmission of text, digitized voice, video, and 

multimedia at data rates up to and possibly higher than 2 Mbps, offering a consistent set 

of services to mobile computer and phone users no matter where they are located in the 

world. Based on the GSM communication standard, UMTS, endorsed by major 

standards bodies and manufacturers, is the planned standard for mobile users around the 

world. Once UMTS is fully implemented, computer and phone users can be constantly 

attached to the Internet as they travel and, as they roaming service, have the same set of 

capabilities no matter where they travel to. Users will have access through a 

combination of terrestrial wireless and satellite transmissions. The higher bandwidth of 

UMTS also promises new services, such as video conferencing. UMTS promises to 

realize the Virtual Home Environment in which a roaming user can have the same 

services to which the user is accustomed when at home or in the office, through a 

combination of transparent terrestrial and satellite connections. UMTS is a network 

consisting of two main elements connected over a standard interface, called Iu. These 

two elements are: 

 UTRAN (UMTS Terrestrial Radio Access Network). This is composed of Node 

B which is equivalent to the GSM BTS and the Radio Network Controller 

(RNC) which is equivalent to the GSM BSC. A novelty with the UTRAN 



Chapter 2                                                                         Mobile and Personal Communications Systems 

35 

 

concept is the existence of a new modulation scheme: the Frequency Division 

Duplex (FDD) and W-CDMA. This mode offers the highest efficiency within a 

single system whatever the conditions. One carrier uses 5 MHz. 

 The Core Network: This is the equivalent of the GSM NSS. There are two 

options for the implementation of 3G and the evolution of the GSM Core 

Network: 

 ATM based architecture: this R'99 architecture may reuses in some cases 

the two-domain architecture of GSM/GPRS, with: 

- Iu-PS: Packet Switched instead of Gb on the packet domain. 

-   Iu-CS: Circuit Switched instead of A on the circuit domain. 

 Transport Independent and multimedia architecture: this R'00 

architecture is in line with the Next Generation Networks architecture 

and introduces separation of control and user planes. It also integrates 

multimedia capabilities [19]. 

 

2.6 Indoor Wireless Base Stations (Small Cells) 

Indoor base stations commonly known as picocells and femtocells are one of the fastest 

growing areas of mobile communications addressing the problem of achieving high 

quality indoor coverage. They represent a massive business opportunity and many 

analysts view it as a key for unlocking the Small/Medium Enterprise (SME) revenue 

stream for all kinds of operators. Basically, these are small indoor access points that are 

designed to provide dedicated mobile network coverage within a limited area, such as a 

house or an office. Unlike larger macrocells, these units are relatively low-power 

devices and are designed to be as 'plug and play' as broadband modems have become.  

Another key difference between traditional base stations and these scaled-down 
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versions is that they link back to the service provider via a broadband line, usually any 

variant of the Digital Subscriber Line (xDSL) to provide network backhaul, rather than 

using a leased line or microwave link [20].   

Picocells and femtocells not only employ the same base technology, they have much 

more in common such as: 

 Low hardware costs: Femtocells cost under $100.  Picocells cost slightly more 

as they contain additional functionality. 

 Internet connectivity: Femtocells and picocells are designed to plug into any 

home/office network that is connected to the internet which connects them to the 

rest of the mobile operator’s network. 

 Plug and play installation: Femtocells and picocells are designed to be plugged 

into a router or DSL modem, the power to be turned on and for the devices to 

automatically configure themselves with no customer intervention. 

 Low cost operation: Both technologies are designed to have very low 

operational costs for the operator. They offer in most cases fully automated 

installation as well as fully automated remote management capabilities. 

Although the architecture and technology platforms employed for femtocells and 

picocells are identical, significant differences still exist between them [21] such as: 

 Enhanced capacity: Individual picocells are likely to be able to support a greater 

number of simultaneous users than a femtocell. 

 Expandability: Picocells can be intelligently chained together to increase 

capacity as well as connected to distributed antenna systems to improve 

coverage further. 



Chapter 2                                                                         Mobile and Personal Communications Systems 

37 

 

 More complex IT environment: Picocells operate inside company IT networks.  

Consequently, installation is essentially plug and play, and there exists a need to 

tailor the installation in many cases to the business so as to fit the IT policies of. 

 Picocells are normally installed and maintained directly by the network operator 

who pays for site rental, power and fixed network connections back their 

switching centre. However, femtocells are intended to be much more 

autonomous. They are self-installed by the end user in their home or office. 

 Femtocells automatically determine which frequency and power levels to 

operate at, rather than being directed from a central network element. This 

allows the network to adapt automatically as new femtocells are added or 

moved. Hence femtocell would not normally broadcast a list of nearby 

neighbouring cells. Mobile phones would thus maintain the connection on the 

femtocell as much as possible, but risk dropping the call or having a short 

outage if the call needs to be switched across to an external macro or microcell. 

 Femtocell capacity is somewhere between 4 and 32 users, depending on 

applications, whereas picocell is thought to support 16 to 64 users or more. 

 

The cell radii of femtocells are about 10% – 30% of those of picocells. Therefore, by 

using a large number of femtocells, the total indoor capacity can be increased by a 

factor of 10–100 compared to the case of using a few picocells. 

Femtocell’s highest in-building capacity, easiness of deployment and maintenance 

(plug-and-play), Wi-Fi offloading, and convenience of broadband backhaul make it 

more attractive than picocell for indoor deployment [22]. Table 2.3 summarizes key 

traits of picocells and femtocells: 
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Aspect Picocell Femtocell 

Installation Operator User 

Capacity 10-50 users 3-5 users 

Connection to the core network Coaxial or fiber optic ADSL, Cable 

Coverage range <100m <30m 

Price Cheap Very cheap 

Frequency/radio parameters Centrally planned Locally determined 

Site rental Operator Customer 

Table 2.3 Comparison between femtocells and picocells 

 

In-building coverage options are not limited to picocells and femtocells.  Also used are 

repeaters, distributed antennas, radiating cable and in-building microcells, however, the 

focus would be herein solely on femtocells. 

  

2.6.1 Emergence of Femtocells 

Femtocells have emerged in the last few years as an alternative solution for operators to 

improve coverage and throughput in indoor environments. Recently they have gained 

momentum in the mobile industry due to their unique characteristics and capabilities 

that resolve the problems existing macrocell-based systems have.  Some of those 

problems and technological factors behind the emergence of femtocells as a viable 

compelling solution are: 

Long-Term Evolution networks (LTE) promise to change the mobile broadband 

landscape with peak data rates of over 100 Mbps, high-speed mobility, reduced latency, 

and the support of a variety of real-time applications. However, simply providing LTE 
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coverage is not enough to fulfill indoor service requirements. Therefore, operators need 

to complement macro network with femtocell deployments more tailored to residential 

and workplace use [23]. Traditionally, mobile operators’ mission is to deliver services 

to mobile users constantly on the move who use their mobile phones mainly for voice 

services. With the emergence of technologies such as UMTS and the Fixed Mobile 

Convergence (FMC), mobile services usage are changing and new trends are appearing 

leveraging indoor importance. In such context, high data rates and coverage are the two 

main ingredients that each operator should offer to remain competitive. However, 

operators usually fail to provide high quality of services to home users and 45% of 

home and 30% of business subscribers experience problems with poor indoor coverage 

[24]. With macro cellular network, it is very difficult for operators to provide high-

quality services and cell coverage to indoor users. It is nearly impossible for operators 

to deploy a huge number of outdoor base stations in areas densely populated in order to 

improve indoor coverage. 

Recent studies show that voice revenues are declining in favour to data volumes and 

revenues. This is partly due to the convergence between mobile and Internet since the 

introduction of 3G mobile services. With fast and reliable access to the Internet, data 

volumes have increased far faster than the revenues and this trend is expected to 

accelerate in the future. In order to be competitive, operators need to find ways to 

substantially decrease the cost per bit of delivering this data, while not placing limits on 

customers’ appetites for consuming the data. This emphasizes the need of femtocells as 

indoor solutions. From a business perspective, femtocell saves Operational Expenditure 

(OPEX) on the macro backhaul network due to traffic offload from macrocell network. 

Capital Expenditure (CAPEX) is also saved since no new base stations or capacity 

expansions are needed [25].  
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Besides voice revenues diminishing, a new trend appears regarding wireless usage. 

Roughly 66% of calls initiated from mobile handset and 90% of data services are 

occurring indoor [26]. Voice networks are designed to tolerate low signal quality, since 

the required data rate for voice signals is very low, on the order of 10 kbps or less, 

whereas data networks, require much higher signal quality in order to provide the higher 

data rates, and as the signal from the macrocell attenuates and deteriorates quicker once 

it reaches indoors due to high frequency range commonly used in 3G system, the 

operators need to improve indoor coverage without additional macrocell deployment.  

Femtocell constitutes a promising solution to address indoor coverage with limited cost 

impact. Femtocell satisfies both the subscriber, who is happy with the higher data rates 

and reliability, and the operators, who increase revenues with no additional deployment 

of macrocell networks [27]. 

In addition, one of the fundamental characteristics of WCDMA as a radio multiplexing 

access technology is that the effective cell capacity is interference-limited. This implies 

that 3G service, which requires high-bandwidth capacity, is available to end users only 

when the user is located near the cell, and the number of simultaneous users in the cell 

is small. This is almost contradictory to the macrocell environment, leading to a 

situation in which the effective data rate in the macrocell environment is only a fraction 

of the theoretical maximum data rate. The solution to this problem necessitates the 

provision for good indoor signal quality and low number of simultaneous users per cell.  

These are both met by a femtocell as a device that is specifically intended for small-

scale indoor coverage to solve exactly these very issues. 
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2.6.2 Femtocell Network Architectures 

Femtocell network is an extension of the Mobile Network Operator (MNO) macro 

network, and connecting it to existing operator networks requires a network architecture 

that addresses the security needs of operators and mobile users, while supporting the 

scalable deployment of millions of femtocells. In addition, it must allow ordinary 

customers to install them with plug-and-play simplicity ensuring that critical services 

such as emergency calling are also supported with the same reliability and accuracy as 

fixed-line emergency calling [28] (in this publication, simulation work was carried out 

and results were reported, so there is no point in repeating such simulations herein). The 

femtocell network architecture describes the major nodes and connections in a femtocell 

network. As shown in Fig.2.4, there are three network elements that are common to any 

femtocell network architecture [29]. These are: 

 Femtocell Access Point (FAP) 

 Security Gateway (SeGW) 

 Femtocell Device Management System (FMS) 

Two other elements that are in all femtocell network architectures are entities that 

enable connectivity to the mobile operator core. Depending on the specific architecture 

used for circuit switched calls, there can be either a Femtocell Convergence Server 

(FCS) or a Femtocell Network Gateway (FNG). For packet calls, depending on the air 

link technology, there can be either a PDSN or xGSN (GGSN/SGSN) in the core. In 

most cases, the PDSN / xGSN are the same as those used for macro networks. 
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Fig. 2.4 Femtocell network architecture components 

 

 Femtocel Access Point (FAP) 

Femtocell Access Point is the primary node in a femtocell network that resides in the 

user premises to implement the functions of the base station and base station controller 

and connects to the operator network over a secure tunnel via the Internet. A FAP can 

be introduced into a home in multiple ways. A standalone FAP can be directly 

connected to the home router. In some applications, FAP may also include a built-in 

router, which is useful in prioritizing FAP voice traffic over other Internet traffic in the 

home network. More advanced FAP’s include an Analog Terminal Adapter (ATA) to 

connect a fixed line phone. In some cases, FAPs are full-blown residential gateways 

with built-in Wi-Fi and a broadband modem (xDSL, cable). 

 Security Gateway 

The security gateway is a network node that secures the internet connection between 

femtocell users and the mobile operator core network. It uses standard Internet security 

protocols such as IPSec to authenticate and authorize femtocells and provide encryption 

support for all signaling and user traffic. It supports a large number of femtocells 
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connecting to the operator’s network and is designed for use in carrier networks, thus 

meets requirements such as scalability, high availability, and network management. 

 Femtocell Device Management System 

The femtocell management system, also located in the operator network, plays a critical 

role in the provisioning, activation and operational management of femtocells using 

industry standards such as TR-069. It is perhaps the most critical node in ensuring the 

scalability of a femtocell network to millions of devices. To ensure low-cost 

deployment and easy setup for subscribers, the activation and provisioning of the 

femtocell must be plug-and-play with no on-site assistance required from the mobile 

operator. Various standards bodies specify the use of the TR-069 family of standards as 

the base device management framework for femtocells. TR-069 uses a proven web-

based architecture that can scale to support millions of devices. 

- FCS or FNG 

FCS or FNG enables femtocells to connect to the operator core network. This is 

important for the operation of femtocells as this is what allows it to communicate with 

the core elements in the operator’s networks and allow seamless service for mobiles. 

Depending on the specific architectural model used to support Circuit-Switched 

Services the FCS /FNG can be used. 

- PDSN / xGSN 

The PDSN / xGSN enable femtocell users to receive packet data services over the 

mobile operator’s core. In most cases, these will be the same as those used by the 

mobile operator’s macro network. 

Latest technological progress allowed powerful processing capabilities to be applied to 

low cost home base stations, and the network protocol stacks can now be substantially 

collapsed. The P protocol has rapidly replaced hierarchic telecom-specific transmission 
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protocols. This enabled femtocells to utilize flat networks, such as the Internet, as a 

backhaul transport to operator core networks. At the 3GPP RAN plenary meeting held 

on May 2008 a feasibility study was compiled and the reference architecture for the 

Home NodeB was agreed on. The agreed architecture is based on a UMA/GAN. The 

feasibility study is described in the 3GPP Technical Report (TR) 25.820 [30] which is a 

part of UMTS release 8 defined the HNB feasibility and to outlined possible obstacles, 

and defined the basic architecture and characterizes the different RF and interference 

issue. It also listed the mobility and access control scenarios. In the same meeting two 

work items were set. Stage 2 specifies the architecture and Stage 3 specifies the 

protocols. The stage 2 UTRAN architecture is specified in the 3GPP release 8 Technical 

Specification (TS) 25.467 [31]. Three different 3G femtocell architectures have been 

proposed [32]. The following sub-sections discuss these models with more focus on the 

GAN-based RAN architecture. 

 

2.6.2.1 Legacy Iub IP 

The first way is to change as little as possible and to use the existing standard Circuit 

Switched (CS) and Packet Switched (PS) interfaces tunneled over the internet to 

connect the femtocell and the RNC. This is called the Iu-b over IP [33]. This saves 

expenses due to less extra hardware is needed on the operator side. Handovers are also 

possible between femtocells and macrocells, just like between the current macro 

NodeBs. These solutions looked to exert leverage on the existing 3GPP defined Iub 

interface that exists between 3G Radio Network Controllers (RNCs) and 3G base 

stations (NodeBs).  Primarily proposed by RNC vendors, these approaches allowed 

operators to influence the same RNC to support Home NodeBs in addition to macro 

network NodeBs.  Each femtocell is connected to the RNC over the standard 3GPP Iub 



Chapter 2                                                                         Mobile and Personal Communications Systems 

45 

 

interface (TS 25.434) [34]. The Iub protocol stack is encapsulated within the IP 

signalling, also called a tunnelling Iub. Network security is handled by the Internet 

Protocol Security (IPsec) protocol. As Iub over IP solutions enable operators to operate 

their existing core networks through standard interfaces (Iu-CS and Iu-PS), they meet 

the operator requirement for full service transparency, as well as the requirement for 

low initial deployment cost and network disruption. The main concern with this 

approach is the ability of the RNC to scale up to serving hundreds of thousands of 

Home NodeBs (HNBs). The challenge with scaling this approach is in the basic design 

of RNCs, which are typically optimized to support a relatively low number of very 

high-capacity macro NodeBs. The fact that Iub typically has vendor-specific features, 

makes this approach only suitable for equipment manufacturers with an installed RNC 

base. The RNC’s lack of scalability in accommodating a large number of HNBs resulted 

in this alternative architecture no longer being considered after an initial feasibility 

study carried out in 3GPP standardization. 

 

2.6.2.2 IMS and SIP 

One alternative approach to femtocells integrated into core network connectivity is to 

use a new SIP-based protocol between the mobile core network and the Home NodeB. 

These include Voice-over IP (VoIP) using the Session Initiated Protocol (SIP), with the 

RNC function now fully integrated into the FAP. Operators would deploy a new SIP-

based core network that operates in parallel with their existing circuit and packet-based 

core network.  When a handset is connected to a femtocell, it receives all of its services 

from the new SIP core network. This architecture is more aligned with the Wireless 

Interoperability for Microwave Access (WiMAX) architecture, which is IP-based. SIP-

based approaches also hold the promise of cost-effective support for large-scale 
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deployments. As handsets are served by different core network when connected to 

femtocells as compared with when they are connected to macrocell network, service 

continuity between the indoor and outdoor base stations becomes potentially more 

complex due to different technologies being involved. As SIP-based approach requires 

operators to acquire and integrate a new core service network, the initial deployment 

costs are much higher than with other approaches. From Release-8 onwards, 3GPP 

started standardizing integration of femtocell access network into IMS infrastructure. 

 

2.6.2.3 Generic Access Network (GAN)-Based RAN Gateway 

Generic Access Network as defined in 3GPP TS 43.318 [35] and TS 44.318 [36] is a 

current 3GPP standard that may be used to support Home NodeB. The most recent 

proposals for femtocells integrating to core network are generally referred to as RAN 

Gateway solutions. As illustrated in Fig. 2.5, the RAN Gateway approach is based on a 

new, purpose-built, RAN Gateway that resides between an operator’s existing core 

network and the IP access network, akin to an RNC. 

On its Internet side, the RAN Gateway aggregates traffic from a large number of 

femtocells over the new Iu-over-IP interface. The RAN Gateway then integrates the 

traffic into the existing mobile core network through standard Iu-CS and Iu-PS 

interfaces on the core network side.  As the RAN Gateway solutions influence an 

operator’s existing core network through standard interfaces, they allow for full-service 

continuity as well as a low initial cost of deployment. 
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Fig. 2.5 GAN-based femtocell access network architecture 

 

The RAN Gateway approach employs ‘Flat IP’ architecture, in which a number of 

functions of a standard RNC are moved to the femtocell itself, and the scaling issues 

associated with the Iub over IP approach are avoided. Since this architecture removes 

the RNC, the functionality associated with this is moved into the Home NodeBs, as 

such, the Home NodeB is now more intelligent or autonomous and is often renamed as 

an ‘Access Point’. These tasks are significantly simpler than those required in a 

traditional RNC; for example, given the constrained environment of a femtocell, 

support for mobility is simpler, there is no need for soft-handoff, etc. This architecture 

is often referred to as ‘flattened’, ‘collapsed stack’ or ‘Base Station Router’. GAN-

based Home NodeB architecture has been considered in 3GPP, and the defined standard 

femtocell interface between HNB and HNB Gateway, Iuh, is likely to evolve from 

GAN-based Home NodeB architecture. 
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2.6.3 Interference Management in Co-channel Femtocell 

The introduction of femtocells fundamentally alters the cellular topology by creating an 

underlay of small cells, with largely random placements and possible restrictions on 

access to certain BSs, such that the femtocell and macrocell are located in two different 

layers, hence the network is known as a two-tier network, and consequently two types 

of interferences are distinguished; cross- and co-tier interferences. The cross-tier 

interference is caused by an element of the femtocell tier to the macrocell tier and vice 

versa. The co-tier interference takes place between elements of the same tier. 

To facilitate the integration and co-existence of these two tiers, several technical 

challenges such as network architecture, handover control, and interference 

management need to be tackled, of which interference management is perhaps the most 

significant one that occurs predominantly when femtocells are deployed in the same 

spectrum as the wireless network [20]. The interference of femtocell networks cannot 

be fully eliminated but it is possible to mitigate its effects through frequency allocation 

and power control as key factors among other techniques. The deployable femtocell 

zones are classified according to the density of femtocells, and co-existence of 

femtocells and macrocell to mitigate different sources of interferences and to ensure the 

best utilization of the spectrum [37]. 

Precise characterizations of the interference conditions in such heterogeneous and 

multi-tier networks have been the subject of extensive study [38, 39]. One of the 

important results reported in [40] is that, with open access and strongest cell selection, 

heterogeneous, multi-tier deployments do not worsen the overall interference conditions 

or even change the SINR statistics. This “invariance property” has also been observed 

in real-world systems by Nokia Siemens [41] and Qualcomm [42], and provides 
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optimism that femtocell deployments need not compromise the integrity of the existing 

macrocell network.  However, in practice, at least two aspects of femtocell networks 

can increase the interference significantly. First, under closed access, unregistered 

mobiles cannot connect to a femtocell even if they are close by. This can cause 

significant degradation to the femtocell (in the uplink) or the cell-edge macrocell user in 

the downlink, which is near to a femtocell [43]. Second, the signalling for coordinating 

cross-tier interference may be logistically difficult in both open and closed access.  

Over-the-air control signaling for interference coordination can be difficult due to the 

large disparities in power. Recognizing these challenges, standards bodies have initiated 

several study efforts on femtocell interference management including those by the 

Femto Forum [44] and 3GPP [45, 46]. In addition, advanced methods for intercell 

interference coordination (ICIC) specifically for femtocell networks has been a major 

motivation for the 3GPP LTE-Advanced standardization effort [47]. 

For 3G CDMA femtocells, the dominant method for interference coordination has been 

power control strategies [48–50] and/or reserving a “femtofree” band where macrocell 

users can go to escape cross-tier interference when it arises [51]. It is noteworthy that 

there has been a lot of experimental and simulation work undertaken in most of the 

above published references, so it is deemed herein that there is no point in repeating 

simulations of that kind. 

 

2.6.3.1 Co-Channel Femtocell Scenarios 

In indoor environment where femtocell is within the house and where losses due to 

walls and floors are fairly small, femtocell can provide coverage throughout a wide area 

with low power. Its users are protected from interference from the macrocell network by 

the exterior walls of the building which also cause the femtocell power to diminish 
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rapidly outside and consequently protect nearby macrocell users. Even when some 

interference increase does occur it is only felt when in close proximity, in which case 

the macrocell will simply allocate a little more power to affected users, thereby 

maintaining their signal quality with little impact on other users. Femtocell power is 

only high enough to just serve internal users, thus causing minimal degradation to 

macrocell user having a strong macrocell signal to access in most cases. In worst case 

scenario, where the macrocell user may be operating at the limit of macrocell coverage 

with a weak signal and low tolerance to additional interference and also where the 

femtocell is near the edge of the house and close to the window, thereby delivering its 

highest levels of interference to the user.  Without special mitigation techniques being 

applied, the femtocell can create a ‘dead zone’ around it, where the service available to 

the macrocell user is degraded. As well as the general downlink dead-zone instance, a 

number of other extreme interference situations could arise such as [52]: 

 Downlink power from femtocells with closed subscriber group causes interference 

to macrocell user that impacts on macrocell user experiences degraded service and 

potential loss of service. 

 Femtocell user at edge of femto coverage transmits at high power, causing noise 

rise to nearby macrocells yielding service degradation experienced by macrocell 

users at edge of coverage. 

 Macrocell user close to femtocell but far from macrocell operates at high power, 

causing interference and potentially receiver blocking to femtocell whereby 

Femtocell users experience degraded coverage and service. 

 Femtocell user at edge of coverage of femtocell 1 but close to femtocell 2, 

whereby the user experiences degraded downlink service due to interference from 
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femtocell 1 and transmits at high power, degrading uplink service for users of 

femtocell 2. 

 

2.6.3.2 Interference Mitigation in Co-Channel Femtocell Deployments  

The above cases have been thoroughly studied by a variety of organisations particularly, 

the 3GPP [28] and the Femto Forum [53]. Overall these studies demonstrated that there 

is a clear need for femtocells to implement interference mitigation techniques in order 

to avoid the occasional interference extreme cases. Some of these interference 

mitigation techniques are: 

 Channel assignment: The network assigns users who are not part of the 

femtocell subscriber group to the most appropriate channel. Users who are on 

the macrocell can avoid femtocell dead zones. Femtocell users can be assigned 

different channels to avoid interference in overlapping coverage areas. 

 Downlink power management: Femtocell transmit power is adjusted to give an 

appropriate trade-off between coverage and interference at a given location. This 

may be done using direct measurements of both the uplink and downlink 

channels and using measurements taken by both femtocells and user equipment 

to provide enhanced accuracy. 

 Power capping of user maximum transmit power: The Femtocell sends a 

broadcast message to mobiles in its coverage to ensure a given maximum 

transmit power is never exceeded. As users leave the femtocell coverage, they 

are thus prevented from causing excessive uplink interference to macrocells. 

 Dynamic receiver gain management: An adaptive attenuation level is included in 

the femtocell receiver to reduce its gain when a strong co-channel mobile is 

nearby, keeping the receiver operating within its linear dynamic range and 
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avoiding blocking while still providing sufficient sensitivity to detect mobile at 

the edge of femtocell coverage 

 Broad dynamic range specification and testing: Since mobiles can approach very 

close to femtocells, the strong signal-handling ability of the femtocell should be 

verified in conformance testing 

Numerous studies and increasing numbers of practical measurements have 

demonstrated that, if the interference mitigation techniques are appropriately 

implemented, they deliver performance within the network which improves overall 

performance for all users, including those on both the macrocell and femtocell 

networks, while significantly increasing overall network capacity and spectrum 

efficiency for the mobile network as a whole. 

Extensive user trials and measurements curried out on a system model mimic the real-

world potential co-channel interference between individual femtocells case proved that 

femtocells using the same interference mitigation techniques are capable of adapting 

well to deliver coverage over the desired areas with good performance delivering a full 

carrier of HSDPA capacity, resulting in very high traffic density and spectrum 

efficiency [52]. 

A number of techniques have been proposed to overcome interference in femtocell, 

some of which are hardware-based approaches such as cancellation techniques or the 

use of sectorial antennas. However, these techniques usually expensive to implement 

and imply an increase in the HeNB cost which is contrary to the femtocell essence. 

Even in WCDMA networks, where they are supposed to perform best, the tendency 

now is to drop their use, mainly due to errors in the cancellation process and therefore, 

interference avoidance is being considered as an approach with higher chances of 

success [54, 55]. Efficient alternatives are represented by strategies based on 
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interference avoidance and sub-channel management. These techniques are often used 

to mitigate interference in cellular networks and are of a great importance in femtocell 

due to cross-tier interference [27]. Interference avoidance strategies for two-tier CDMA 

network are proposed in [56] and for WiMAX OFDMA femtocell networks in [57] and 

[58]. Interference management and performance analysis in UMTS/HSPA+ femtocells 

is shown in [49]. Power control issues are investigated in [59]. UMTS macrocell and 

femtocell co-existence performance is evaluated also in [60]. 

 

2.6.4 Air Interface  

The femtocell concept can be based upon a wide variety of wireless technologies. 

Wideband Code Division Multiple Access (WCDMA) is the main radio access 

technology that is used by the UMTS network which is currently the dominating 

technology for radio access in femtocell development due to the fact that the 

interference averaging makes WCDMA receivers capable of separating UMTS signals 

at very low levels of SINR, and for its capability of delivering much high data rates, 

hence from the point of view of the air interface, UMTS is better suited than bearer 

technologies to cope with the high interference levels of two-layer networks and well 

suited for the deployment of femtocells. 

UMTS is a set of radio technologies specified by the 3GPP RAN group. The name 

given to its air interface is UMTS Terrestrial Radio Access (UTRA), which is specified 

for functioning in FDD and TDD modes. The main 3GPP Technical Specifications (TS) 

of the UMTS air interface consists of two parts: TS 25.101, which can be found in [61]; 

specifies the minimum RF features that the FDD mode of UTRA must provide in the 

UE. Then, TS 25.102, can be found in [62] which specifies the requirements of the 

TDD variant. Although the two options exist, most of the UMTS networks deployed 

worldwide use UMTS in FDD mode, mainly due to interference issues rising between 
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adjacent NodeBs that transmit in the same frequency band. Figure 2.6 shows the UMTS 

Release 4 femtocell network based on an Iu-over-IP architecture [33]. The main parts of 

the UMTS network are explained in the following sub-section. 

 

 

Fig. 2.6 UMTS femtocell network based on an Iu-over-IP architecture 

 

 The Radio Access Network (RAN) 

RAN in UMTS is called UTRAN, it connects the UEs with the core network and is 

responsible for handling the air interface, and it connects the UEs with the core network 

and is responsible for handling the air interface. The only part of UTRAN visible to the 

mobile user is the NodeB, which handles a single cell throughout the WCDMA air-

interface. RNC controls several NodeBs, performs Radio Resource Management 

(RRM) and is capable of directly communicating with other RNCs through the Iur 

interface. Furthermore, the RNC communicates with the core network by means of a 

logical interface called Iu. It also assigns CDMA codes to the UEs and determines the 

power control limits to avoid near-far problems. 

It is possible for the RAN to be fully integrated into the FAP device. However, there are 

different approaches where this could be done. If the RNC functionality is to be 

performed by the femtocell, then Iu messages to the core network need to be 
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encapsulated into IP packets in order to be transmitted through the Internet. This 

configuration is called an Iu-tunnel or Iu-over-IP and it seems an appropriate 

architecture for small and medium businesses [63], where several users simultaneously 

access the femtocell. The elevated number of users in this case with respect to the home 

environment, introduces the need for bringing the RNC functionality closer to the HNB. 

Since the number of UEs in a SOHO environment is reduced, other approaches are 

needed to remove the RNC from the femtocell and introduce it into the core network. 

This implies that Iub communications between the FAP and the RNC need to be 

encapsulated on IP packets. This architecture is thus called Iub-over-IP. 

 

 The Core Network (CN) 

UTRAN uses ATM for transporting speech at a different rate and hence RNCs cannot 

talk directly to old MSCs. Due to this, a new network element called the Media 

Gateway (MGW) was introduced to interface between UTRAN and MSCs. The SGSN 

is a network element inherited from the GPRS network that deals with data 

communications. It routes incoming packets to/from the appropriate RNC and it 

authenticates users into the network of the operator. The GGSN is nothing other than 

the entry point of the SGSN to the Internet. 

The air interface of UMTS is based on CDMA with a chip rate of 3.84 Mcps for a 

bandwidth of 5 MHz. A total of 12 channels are available. The radio frame has a time 

duration of 10 ms that is subdivided in 15 time slots of duration 0.667 ms, each 

containing 2560 chips. However, the number of bits carried by each time slot depends 

on the CDMA Spreading Factor (SF) and the digital modulation being used. UMTS 

employs QPSK modulation scheme, with each symbol is currying 2 bits. Fig. 2.7 

illustrates the modes of operation of FDD and TDD operation 
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Fig. 2.7 FDD and TDD operation principle 

 

The UMTS protocol stack has two well defined parts: 

- The Access Stratum (AS) comprises the layers that make up UTRAN plus lower 

layers that implement the ATM transport functionality. 

- The Non-Access Stratum (NAS) includes the upper layers that communicate the 

UE with the CN. 

Another key concept is that of the Radio Access Bearer (RAB) which is the means for 

transmitting information that the AS provides to the NAS. Basically it is the Service 

Access Point (SAP) that the RLC layer provides to the upper layers in the UTRA 

protocol stack. RABs are continuously established and released in order to provide 

transmission capabilities with different QoS to UMTS channels. UTRA is thus one of 

the fundamental parts of the AS because it communicates the UE with the NodeB and it 

is the entry point of users into the UMTS network. The UMTS air-interface channels 

are SAPs provided by the lower layers and are classified into three categories: 

 Logical channels are provided by the MAC layer to the RLC layer for the 

transmission of user information. 

 Transport channels are provided by the Physical (PHY) layer. 
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 Physical channels are transmitted over the air and communicate the PHY layers 

of different UTRA elements. 

In UMTS, channels are often transmitted by mapping several upper-layer channels into 

one lower-layer sub-channel. One upper-layer channel might be split across several 

lower-layer channels. Among other tasks, it is the responsibility of each layer to 

multiplex and segment channels received through its SAPs into the appropriate sub-

channels of the layer beneath. A more in-depth study of UMTS can be found in [64]. 

 

2.6.5 WCDMA Evolution Towards HSDPA 

The vision for further development in mobile communications is gradually shifting 

towards improved network coverage and capacity, higher data rates to users and 

progressive business model for the operators. To achieve these targets, there is ongoing 

research to identify the elements which require enhancements and changes to cope with 

the vision of the forthcoming 4G telecommunication system. 

According to the 3GPP framework, the further development of the UMTS network is 

based on an `All IP' solution. This concept also introduces the IP traffic handling in the 

UMTS core network (CN). In order to make a full UMTS system capable of handling IP 

traffic, it is also necessary to evolve the UTRAN and introduce an IP based solution 

especially for its air interfaces. 

3GPP has introduced the concept of High Speed Downlink Packet Access (HSDPA) for 

WCDMA in Release 5 specification [65, 66]. According to this specification, functions 

of RNC are implemented into BS and therefore, a separate RNC is not needed. These 

functions include scheduling and retransmission of packets, etc. HSDPA enables base 

stations to schedule downlink packet operations and packet retransmission control. In 

order to increase the performance of packet base transmission, HSDPA uses Hybrid 
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Automatic Repeat Request (HARQ) and Adaptive Modulation and Coding (AMC) 

techniques. These techniques provide backward compatibility with Release 4, and are 

also used as building blocks for HSDPA evolution especially for the enhancement of 

the UTRAN air interface. The introduction of HSDPA in the UMTS increases packet 

data performance up to 100% compared to earlier releases. HSDPA used TDM to 

transfer data packets in a single shared channel. In HSDPA over-the-air efficient 

scheduling, modulation, and encoding is done with the help of certain functions and 

some set of procedures. The HSDPA main functional entities comprise of cell change 

procedures, AMC, Fast Packet Scheduling (FPS) and HARQ [66]. With the help of the 

above mentioned functional entities, HSDPA provides higher data throughput up to 10 

Mbps, mainly this much data rates on the radio link are usually obtained with the help 

of a modulation mechanism that is used for resource configuration. Along with the 

variety of benefits, HSDPA also comes with some drawbacks. HSDPA uses adaptive 

modulation and coding methods which require modifications in the physical layer 

architecture. These modifications in the physical layer require significant changes in 

channel structure, multiplexing and a timing mechanism during HSDPA operation. 

HSDPA introduces three different types of channels [65], namely; HS-DSCH (high 

speed downlink shared channel), HS-SCCH (high speed shared control channel is a 

logical uplink channel, and HS-DPCCH (high speed shared control channel is a logical 

uplink channel). 

For the evaluation of 4G systems, major research emphasis is put on achieving higher 

data rates, to improve the coverage and capacity of the radio link and to find a good 

business model for operators. UMTS networks transformed to packet-switched 

technology architecture. 3GPP Release 7 and beyond specifications outlines the future 

development, enhancement and migration of the existing telecommunications network 
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architecture and radio interfaces. In the 3GPP vision, the evolution of 

telecommunication system is explained under High Speed Packet Access Evolution 

(HSPA+), System Architecture Evolution (SAE) and LTE [67]. HSPA+ is considered as 

a framework to improve UMTS network performance for further mobile 

communication development towards LTE and SAE. HSPA evolution brings 

advancement only in the packet-switched elements of the UMTS system, and intended 

to provide full backward compatibility to evolved UMTS systems. 

Along the path of communication system evolution, LTE has emerged to provide a 

packet-switched solution which uses OFDMA as an access technology [68]. LTE is 

used to provide an all-IP solution with flat network architecture, and has the capability 

to operate in both FDD and TDD modes. Unlike UMTS, LTE does not support soft 

handover. The LTE core network is based on an all-IP solution. According to the LTE 

forum, the evolution of HSPA will provide three to four times more efficient downlink 

rates and two to three times more efficient uplink rates. The trend of achieving a higher 

data rate is still continuous in 3GPP and it is known as HSPA+. One step towards the 

further development of LTE has already been taken and it is known as International 

Mobile Telecommunications Advanced (IMT-Advanced). For each LTE architectural 

design there is a shift of the capacity bottleneck between the air interface and the core 

network. LTE promises to give downlink transmission capacity of at least 100 Mbps, 

but it is quite evident that today's broadband link which is mainly comprised of DSL 

and cable modems cannot simply provide data rate support with sufficient capacity up 

to 100+ Mbps. Hence operators have to think about the deployment of new solutions 

with fiber/Ethernet and WiMAX solutions. 

The use of LIPA in the HNB and HeNBs makes the femtocell an attractive solution for 

the users, because LIPA enables users to maintain simultaneous access with both their 
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LAN and with the operator's networks. LIPA functionality will remain the main point of 

focus in femtocell.  LTE is likely to be the dominant cellular data platform for the 

foreseeable future, and the smooth integration of femtocells into LTE would follow suit. 

It is noteworthy that regardless of how air interfaces are configured, e.g., in OFDMA 

the subcarriers carry modulated and coded information, it still matters if the modulation 

process is investigated, so as a tractable example, the DECT system modulation scheme 

is investigated in the next chapter.  
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CHAPTER 3 

 

SIMULATION OF THE DECT SYSTEM 
 

3.1 Personal communications systems 

The explosive growth in demand for personal mobility in recent years has led to the 

development of Personal Communication Systems (PCS) that allow people to 

communicate anywhere, anytime [1,2].  In contrast to cellular mobile, PCS employ 

micro-cell technology with low power base stations and small cell sizes.  This allows 

PCS to handle a significantly higher traffic density than its cellular counterpart.  

Currently, standards for the emerging PCS are the Cordless Telephone (CT-2) [3, 4], 

and the Digital European Telecommunications (DECT) [5].  CT-2 is designed mainly 

for telepoint services.  It maps one telephone conversation onto a single frequency 

channel and operates in the 800 MHz band with 100 kHz channel spacing and 72 kb/s 

system bit rate. 

A third standard is the DCS1800 developed by the European Telecommunications 

Standards Institute (ETSI) to operate at the 1.8 GHz band [6].  It differs from GSM 

standard in operating frequency band, allowable transmitted power, and roaming 

capability. Table 3.1 summarises the basic technical characteristics of these PCS 

standards [7]. 
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System DECT CT-2 DCS-1800 

Multiple access TDMA/FDMA FDMA TDMA/FDMA (SD) 

Freq. band (MHz) 1800-1900 864-868 1710-1785 

Duplexing TDD TDD FDD 

Ch. spacing (kHz) 1728 100 200 

Modulation GMSK GMSK GMSK 

Tx power (peak) 

Tx power (avg.) 

250 mW 

10 mW 

10 mW 

5 mW 

1 MW 

125 mW 

Speech coding ADPCM ADPCM RPE-LPP 

Codec rate (kb/s) 32 32 13 

Speech/RF Ch. 12 1 8 

Ch. bit rate (kb/s) 1152 72 270.833 

Ch. coding CRC  1/2 rate conv. 

Frame dur. (ms) 10 2 4.615 
 

Table 3.1 Personal Communication Systems standards 

 

It is noted from this brief survey that all three PCS standards employ GMSK digital 

modulation as part of their air interface specifications. 

Cordless business communications span a range of potential applications and uses from 

a simple cordless telephone up to high capacity cordless business communications 

systems providing services for speech and high speed data.  To meet requirements in 

large buildings, cordless office communications systems must adopt a channel re-use 

strategy to cover the entire building with the available resources.  When frequency re-

use is considered, the entire building needs to be divided into smaller cells varying from 

one-cell-per floor-to one-cell-per-room.  The smaller cells, in the case of one-cell-per-
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room, can be referred to as picocells, which is employed when a line-of-sight (LOS) 

between the transmitter and the receiver is strictly necessary [8, 9]. 

A semi-isotropic or omni-horizontal centrally placed antenna can be used in order to 

illuminate each room by a single antenna with satisfactory SNR levels throughout the 

room.  Each room must have its own antenna so that, whenever possible, a line-of-sight 

will be provided to all receivers in the vicinity of the centrally placed transmitter 

antenna [10]. 

 

3.1.1 An overview of the DECT system 

The real merit of cordless technology is the provision of in-building cordless 

communication with high traffic density and a wide variety of both voice and data 

services.  Because these requirements were not met by any of the analogue cordless 

telephone specifications that have been in use in Europe, the Conference of European 

Posts and Telecommunications (CEPT) decided to develop a new standard for digital 

cordless telephony that would address the problems of incompatibility, cost and service 

quality.  A new European standard was formally initiated in 1988, built upon the earlier 

work (e.g. CT-2) which was originally called CT3, but has been known as DECT [4].  

The DECT standard has grown out of the need to provide for cordless communication, 

primarily for voice traffic, but also to provide support for a range of wireless data traffic 

requirements at a cost that encourages wide adoption. It is particularly targeted to 

support the following integrated telecommunications applications: 

 VOICE 

1. Business telephone exchange (single and multi-cell). 

2. Residential telephony with intercom facility. 

3. Public telephone services (Telepoint). 
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 DATA 

   1. ISDN connections such as telefax, teletext, and videophone. 

   2. Patch transfer 

   3. Remote terminal services 

   4. Real time file access 

DECT is based on a micro-cellular radio communication system that provides low-

power radio (cordless) access between portable parts and fixed parts at ranges up to a 

few hundred metres.  DECT is also able to support a number of alternative system 

configurations ranging from single cell equipment (e.g. domestic fixed parts) to large 

multiple cell installations (e.g. large business cordless PBX) [10]. The DECT 

specifications are fully described in the European Telecommunication Standard (ETS) 

draft (a series of 11 parts) proposed by the Radio Equipment and Standards (RES) 

Technical Committee of the ETSI.  The structure of this standard is based on the layered 

principles used in the Open Systems Interconnection (OSI) model as shown in Fig.3.1 

 

 

 

 

 

 

 

 

 

Fig. 3.1 DECT protocol layers 
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The complete interface corresponds to the lower three layers of the OSI model, however 

DECT defines four layers of protocol for the node-to-node communication. The 

additional layer is the Medium Access Control (MAC) layer, which exists in most of the 

mobile radio specifications having multiple access schemes (DECT, GSM, DCS1800, 

etc.). 

The Physical Layer (PHL) and the MAC layer are common to both user data and 

signalling data.  The PHL layer modulates and demodulates radio carriers with a bit 

stream of a defined rate to create a radio frequency channel, and the MAC layer is 

responsible for effective allocation of radio resources and for multiplexing and 

demultiplexing user and signalling data into slot-sized packets. 

The Data Link Control (DLC) layer maintains secure data link for signalling even when 

the base station has to be changed during the call (i.e. hand over process).  The Network 

Layer (NWL) is responsible for routing calls from the portable wishing to make a call to 

the fixed network and vice versa. 

The PHL is discussed in more detail in the next sub-section, as the following chapters 

will be dealing with the assessment of a multi-level digital modulation scheme for 

DECT system. 

 

3.1.2 The Physical Layer 

The PHL as mentioned earlier is responsible for segmenting the radio transmission 

medium into physical channels.  This is done using a TDMA scheme on multiple 

carriers.  Presently ten RF carriers are provided in the allocated frequency band between 

1800 MHz and 1900 MHz.  The standard also provides for possible extension of the 

band down to 1850 MHz to meet future demand [11].  On each carrier the TDMA 

structure defines 24 timeslots in a time frame of 10 ms which results in timeslots of 
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approximately 416.7 µs, that are used to transmit oneself contained packet of data per 

slot.  As seen from Fig.3.2 [4], the burst contains two fields, a synchronisation field of 

32 bits, and a data field of 388 bits (together with control information and error control).  

The synchronisation data allows the receiver to demodulate a single packet 

immediately, so as to enable very fast call set-up and unnoticeable handovers.  The data 

field is received from the MAC layer. 

The total 420 bits are modulated onto the carrier using a two-level FSK modulation with 

Gaussian prefiltering at a relative bandwidth (BT product) of 0.5.  If the modulation 

were coherent it would be GMSK; coherence is, however, not necessary.  The chosen 

modulation scheme permits the use of a simple receiver with non-coherent 

demodulation, bit-by-bit decision, and easily-implementable IF filters. 

The modulated data rate is 1152 kbit/s.  The complete packet therefore has a length of 

420 bit/1152 kbit/s, i.e. 364.6 µs.  When these packets are transmitted within a timeslot, 

there remains a guard space of 52 µs which is needed to allow for propagation delays, 

smooth ramp-up and ramp-down of the transmitter, and synthesiser switching between 

packets.  A physical channel is created by transmitting one packet every frame during a 

particular timeslot on a particular carrier.  The throughput of a physical channel 

available to the MAC layer is therefore 388bit/10ms, i.e. 38.8kbit/s.  The average 

transmitted power per physical channel is 10 mW.  The PHL is instructed by the MAC 

layer to transmit on which timeslot and carrier. 
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Fig. 3.2 DECT frame and slot structure 

 

As indicated in Fig. 3.2, the first 12 slots are normally used for transmission to the 

portable (down-link), and the second 12 slots for transmission in the opposite direction 

(up-link). The PHIL does not know that there is a Time Division Duplex (TDD) 

transmission mode, but is simply told by the MAC layer to transmit for instance on 

timeslot 5 and to receive on timeslot 17 [4]. 

In DECT, an Adaptive Differential Pulse Code Modulation (ADPCM) voice connection 

requires a pair of 32kbit/s TDD physical channels, whilst data services require various 

bandwidths.  Data connections for those services with data rates greater than 32kbit/s 

duplex are provided by using multiple duplex channels.  Those requiring less are 

provided by intermittent packet access of a single physical channel.  Since data 

connections are rarely symmetrical in their information transfer rate at any given 

moment, DECT allows the Mobile Data Terminal (MDT) or the base station (whichever 
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is sending more data) to transmit in both halves of the frame in one direction rather than 

to allow one frame half for the duplex reply as happens in voice connections.  This 

maintains a paired slot structure to all users but allows considerable asymmetric data 

transfer without allocating underused duplex bandwidth.  This enhances the spectral 

efficiency. 

With data communications on a cordless interface it is necessary to be able to allocate a 

variable number of physical channels to a connection, dependent on the required data 

rate, and to provide asymmetric radio channels to maintain spectral efficiency.  During 

a call the number of physical channels required and the level of asymmetry may vary 

due to changes in network demand or radio link quality.  Low bit rate services are 

serviced efficiently by packet access and by making use of any half slot provision 

whenever available.  

The MAC layer controls the transmission and/or reception of data for every half, full, or 

double slot by issuing primitives to the physical layer.  Each primitive specifies the 

operation for one slot position.  Continuous operation on a given physical channel 

requires a regular series of primitives.  Table 3.2 summarises the main parameters of the 

DECT air interface. 
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Table 3.2 DECT Air-Interface Parameters 

 

3.1.3 The DECT Cordless Office 

An office scenario is shown in Fig. 3.3 [12].  The handsets (Cordless Portable Part, 

CPP) establish radio links with the base stations (Radio Fixed Part, RFP).  The fixed 

network connections from the RFPs run to the Cordless Control Fixed Part (CCFP) and 

from there to the ISDN and PSTN connections.  With data, rather than speech calls the 

CPP becomes a Cordless Data Terminal (CDT) which communicates via the RFPs to 

the Cordless Data Control Fixed Part (CDCFP) located in the CCFP.  A voice 

connection, using ADPCM, simply requires a single 32 kbit/s TDD radio channel, while 

  Access Scheme   TDMA / FDMA 

  Duplexing   TDD 

  Band of Operation (MHz)   1800 – 1900 

  Channel Bit Rate (Mb/s)   1.152 

  Number of Carriers   10 

  Number of Channels   12 

  Modulation Scheme   GMSK 

  Channel Spacing (MHz)   1.728 

  Tx Power (mW)   250 (Peak), 10 (Average) 

  Frame Duration (ms)   10 

  Number of Slots in a Frame   24 (12 uplink, 12 down link) 

  Speech Coding   ADPCM 

  Codec Rate (Kb/s)   32 

  Channel Coding   CRC 
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data services may require much more bandwidth.  These data connections are provided 

by using more than one duplex 32 kbit/s radio channel [13, 14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.3 The DECT Cordless Office 

 

Data links are established between the CDCFP and the CDT and the information data is 

transferred in a numbered packets with some error protection. The RFP's may just 

transfer information on to the CDT or CDCFP for them to correct errors, request 

retransmission of erroneous data, and to perform re-sequencing of packets.  As an RFP 

does not interfere with the data, wideband multi-slot calls may use several RFP's.  Data 

connections are rarely symmetrical in their information transfer rate, e.g. file transfer in 

one direction at 64 kbit/s with only acknowledgements in the return direction.  If this 

asymmetry is not considered the channels will be under used with a corresponding 
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decrease in spectral efficiency.  Low bit rate services are supported by dividing a full 32 

kbit/s slot in two to provide shorter sub slots.  These full and half rate slots can coexist 

in the same DECT system.  The half rate slots contain the same synchronisation and 

control channel bandwidth as the full rate slot. These three slot types are outlined in 

table 3.3 [13] 

 

Slot Protected user rate (kbite/s) Unprotected user rate (kbite/s) 

DS (P80) 64.0 80 

FS (P32) 25.6 32 

HS (P08) 6.4 8 

 

Table 3.3 User bite rate for DECT slot types (DS=double slot, FS=full slot) 

 

3.2 Simulation Background  

Computer simulation has grown to become an integral part of the digital communication 

system design.  In order to efficiently design an effective and reliable communication 

system, it is necessary to assess the system to select the optimum operating parameters.  

Often, performance evaluation and trade-off considerations need to be undertaken.  To 

predict the performance of a communication system, three methods are generally used, 

an analytical approach, computer simulation, or direct measurement.  At the system 

design level, direct measurement is not applicable leaving either an analytical or 

computer simulation approach.  Analytical evaluation of performance can be carried out 

if the effects of system impairments can be represented correctly by analytical formula.  

In practice, it is extremely difficult to directly analyse the performance of complex 

systems for factors such as interference effects, multipath fading etc. without some form 

of simulation being involved.  Due to these reasons, system design engineers are 

becoming increasingly dependent on the use of simulation techniques as an essential aid 
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to the design and understanding of such systems.  Computer-aided techniques provide a 

useful and effective adjunct to direct analytical evaluation of system performance, some 

advantages of which are listed below: 

1.  Experimental results can be reproduced effortlessly provided the system model 

remains unchanged. 

2. Seeing the effect of different system parameters on the system performance can 

easily be achieved simply by changing a model parameter. 

3. Different system scenarios can be evaluated prior to the procurement of the 

hardware. 

Also, driven by the rising cost of process equipment, computer modelling has replaced 

time-consuming, trial and error equipment design in industry.  Not only has computer 

modelling proven extremely advantageous in design, but also in process optimisation 

and process control. 

Computer-aided techniques for systems analysis and design fall into two categories: 

formula-based approaches where the computer is used to evaluate complex formulas, 

thus freeing the designer from the repetitive work involved in substituting numbers into 

formulas, and simulation-based approaches where the computer is used to simulate the 

voltage and current waveforms or signals that flow through the system.  The second 

approach which involves waveform level simulations as the primary analysis tool is 

very flexible and can be used to model and analyse complex systems with any desired 

level of detail.  Waveform level simulation of communication and signal processing 

systems consist of the following steps: 

1.  Representing the system in the form of a signal flow block diagram. 

2.  Generating samples of all input signals (waveforms). 
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3. Performing discrete-time signal processing operations according to the functional 

model of each block. 

4. Storing the simulated waveforms and analysing the stored waveforms to extract 

performance measures. 

Monte Carlo techniques are used to handle random variations in signals and system 

parameters, and the simulations are run until enough samples have been accumulated to 

obtain statistical valid estimates of performance measures [15]. 

 

3.2.1  Monte Carlo Simulation 

For any simulation technique to be accurate, reasonable assumptions must be made on 

the statistical properties of the random sources and the communication system model. 

One common assumption in all is the Gaussian distribution for the channel noise and 

statistical independence of the random sources representing information bits and noise.   

BER estimation is performed at the decision device which can be either adaptive or 

fixed depending on the receiver used. In the simple threshold sensing device an error 

will occur whenever the received signal exceeds the threshold into the opposite side e.g. 

when a zero is sent and the received voltage vr exceeds threshold voltage VT. Fig. 3.4 

shows the probability density function 

 

Fig. 3.4 Probability density function 
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The probability of exceeding VT when a zero is sent is given by 

 

𝑃0 = ∫ 𝑃0
∞

𝑉𝑇
(𝑉)𝑑𝑉 = 1 − 𝐹0(𝑉𝑇)           (3.1) 

 

Where P(x) is the PDF, and F(x) is the CDF of the random variable x.  Similarly, when 

a one is sent, the probability of making an error and receiving a zero is given by 

 

𝑃1 = ∫ 𝑃1
𝑉𝑇

−∞
(𝑉)𝑑𝑉 = 𝐹1(𝑉𝑇)                        (3.2) 

 

Making the reasonable assumptions that transmission of 0’s and 1’s are equally 

probable, the average probability of error, P, will be  

 

𝑃 =
1

2
𝑃0 +

1

2
𝑃1 =

1

2
(𝑃0 + 𝑃1)                         (3.3) 

 

Simulation techniques differ from each other in the way the density functions are 

handled.  Assumptions should be made in order to propose a method of relating the tail 

of the density function to the probability of symbol error.  However, only in the Monte 

Carlo simulation technique no prior assumption is required for handling the tail 

function.  Instead, empirical determination of the distribution function is employed [16-

18].  The Monte Carlo simulation technique is the most general error estimation 

technique.  The price paid for generality and high accuracy is the high computational 

cost related to the number of observations that must be made in order to obtain a given 

probability.  The number of samples  required for simulation is related to the target 

probability of error  by [19, 20] 

 

sN

eP
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𝑁𝑠 =
𝑛𝑒

𝑃𝑒
                                                                   (3.4) 

 

Where  is the total number of samples observed,  is the number of errors observed.  

That is, if one error is expected at every  samples, the total number of samples 

required for simulation will be at least 

 

𝑁𝑠 =
𝑛𝑒

𝑃𝑒
=

1

10−6
= 106 

      

Using 10 samples per symbol, the minimum number of samples required will be  

 

𝑁𝑠 =
10

𝑃𝑒
=

10

10−6
= 107  

   

To observe at least 10 errors, the minimum number of samples required for simulation 

would be .  In a sophisticated system, simulation would mean several days 

of simulation time even with the advent of high speed workstations. 

The accuracy of the estimation depends on the number of samples in the simulation, 

probability of error, and the correlation between samples.  In general, the variance of 

the estimated error probability is inversely proportional to the number of samples, 

decrease with decreasing probability, and increase when there is correlation between the 

samples [21].  The dependence of the variance on the correlation between samples is 

complicated.  Davis has a fairly easy way of tackling the problem [22].  For a stationary 

ergodic sequence of random variables , the estimate of the mean  and 

the variance are given by 

sN en

6
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10 10 10
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𝐸 {
^

Ƞ
} = Ƞ                                                               (3.5) 

 

And 

 

𝑉 {
^

Ƞ
} =

𝑃𝑒

𝑁𝑠
                                                            (3.6) 

 

It is clear that if the variance is zero, the pdf of the estimator  would be equal to the 

true error probability P, and the estimator is strongly dependent on its variance.  Despite 

the superior accuracy of this method over all other simulation techniques, it has the 

demerit of extremely long simulation times due to the large number of samples 

required.  In order to reduce the sampling rate requirements, bandpass signals and 

systems are usually represented by their equivalent lowpass complex envelopes for 

simulation purposes as will be highlighted in the following subsection. 

 

3.2.2  Complex Lowpass Representation of Bandpass Signals 

One of the primary problems of all simulation techniques is the large number of 

samples required during a simulation run.  Large number of samples implies very large 

memory requirement and enormous computational power.  To clarify this, the concept 

of simulation in the context of sampling follows: 

From Nyquist theory, the minimum sampling rate  for a bandpass system is given by 

 

𝑓𝑠 = 𝑛𝑠 . 𝑓𝑚𝑎𝑥                                                                  (3.7) 
 

Where  and  is the maximum frequency content in the signal given by 

^

p

sf

sn  2 maxf
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𝑓𝑚𝑎𝑥 = 𝑓𝑐 + 𝑓𝑚                                                             (3.8) 
 

With  is the carrier frequency, and  is the single sided message bandwidth.  The 

step time (or clocking time)  is related to  by 

 

∆𝑡 =
1

𝑓𝑠
                                                                  (3.9) 

 

When a channel is represented by a tapped-delay-line FIR filter, this step time must be 

smaller than the separation between taps, otherwise, taps may overlap and distort the 

shape of the power delay profile.  If   is smaller than the coherence bandwidth of the 

channel , the  must be represented by  and the step time becomes 

.  The duration of the simulation is determined from the minimum number 

of symbols required to achieve an accurate estimate of the probability of error.  With 

 symbols required for a simulation run, and  samples per symbols, the simulation 

duration will be  

stop time = symbol time * number of symbols 

       

𝑇𝑠𝑡𝑜𝑝 = 𝑇𝑠𝑁𝑠𝑛𝑠 

 

The total number of samples used for simulation, , is given by 

 

𝑁𝑇 =
𝑇𝑠𝑡𝑜𝑝

∆𝑡
=

𝑇𝑠𝑁𝑠𝑛𝑠

∆𝑡
= (𝑇𝑠𝑁𝑠)𝑛𝑠(𝑓𝑐 + 𝑓𝑚)                               (3.10) 

 

cf mf

t sf
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Hence it is apparent from (3.7) that the number of samples required is proportional to 

the maximum frequency content in the signal.  For a microwave or millimetre wave 

system the carrier frequency is of the order of GHz, and therefore the number of 

samples required is substantially large and will result in enormous computational power 

requirements.  One way of reducing the number of samples required for the simulation 

is to use complex lowpass representation for bandpass signals [23, 24].  A bandpass 

signal x(t) can be represented as 

 

𝑥(𝑡) = 𝑅𝑒 { (𝑡)𝑒𝑗2𝜋𝑓  
𝑥
^

0

𝑡
}                                            (3.11) 

 

Where  is the complex envelope of x(t) given by 

 

(𝑡)𝑋
^ = 𝑋𝑐(𝑡) − 𝑗𝑋𝑠(𝑡) 

 

and  is the centre (or carrier) frequency.   is a straightforward extension of the 

conventional phasor representation of a lowpass signal referred to the arbitrary centre 

frequency f0
. 

Bandpass operations such as filtering can be represented in the same manner as the 

signal itself by its complex envelope [25, 26].  The impulse response h(t) of a bandpass 

filter can be written as 

 

ℎ(𝑡) = 2𝑅𝑒 { (𝑡)𝑒𝑗2𝜋𝑓 
ℎ
^

0

𝑡
}                                              (3.12) 

 

^

( )x t

of
^

( )x t
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Where  represents the baseband equivalent impulse response.  

Here  and  are real lowpass functions representing the inphase (I) and 

quadrature (Q) filtering effects respectively.  The complex envelope of the filter output 

 will then be given by  

 

(𝑡)𝑦
^ =  (𝑡)𝑥

^ ⊗  (𝑡)ℎ
^                                                         (3.13) 

 

in which  represents convolution and 

 

(𝑡) = 𝑦𝑐𝑦
^ (𝑡) − 𝑗𝑦𝑠(𝑡)                                                   (3.14) 

 

Where 

 

𝑦𝑐(𝑡) = 𝑋𝑐(𝑡) ⊗ ℎ𝑐(𝑡) − 𝑋𝑠(𝑡) ⊗ ℎ𝑠(𝑡)                                   (3.15) 

 

And 

 

𝑦𝑠(𝑡) = 𝑋𝑐(𝑡) ⊗ ℎ𝑠(𝑡) + 𝑋𝑠(𝑡) ⊗ ℎ𝑐(𝑡)                                  (3.16) 

 

Hence the bandpass signals as well as bandpass filtering operations can be reduced to 

complex lowpass signals and complex lowpass filtering operations respectively.  

Recalling that the complex envelope is a lowpass signal, a sampled representation needs 

only to have a bandwidth corresponding to the bandwidth of the signal.  In other words, 

since the complex envelope carries all the information necessary to estimate the 

^

( ) ( ) ( )h t h t jh tc s 

ch t( ) sh t( )

^

( )y t


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behaviour of a bandpass signal, there is no need to represent the carrier frequency  in 

the sampled domain.  Thus, the carrier frequency can be dropped from (3.7) and the 

number of samples required for a simulation would be reduced to 

 

𝑁𝑇 = (𝑇𝑠𝑁𝑠)(𝑛𝑠𝑓𝑚)                                                     (3.17) 

 

Comparing (3.7) and (3.14), one can easily see the reduction in the number of samples 

required for simulation.  This is the technique commonly employed in transmission 

systems simulations. 

 

3.2.3 Factors Affecting Simulation Accuracy 

A simulation model can be a very close replica of the actual system if all of the 

individual models constituting the simulation model are carefully designed.  But, like 

any other techniques, computer simulation techniques are not without short falls.  

However close the simulation model stands to the actual system, there will still remain 

some sources causing errors in the final simulation results [27].  Some of these error 

sources are: 

a)  Round off and amplitude errors will result due to the finite word length of computers 

being used. 

b)  Drifts in the sampling clock will cause time jitter errors. 

c)  When the continuous signals are not strictly bandlimited aliasing errors will occur. 

d)  Due to the representation of continuous time signals over a limited time period, 

truncation errors will result. 

e)  Because bit error estimation is a statistical process, the outcome of the simulation is 

therefore subject to statistical uncertainties caused by: 

cf
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i)  Finite rather than infinite data observation time  

ii)  Imperfect randomness properties of the random number generators used to represent 

the transmitted data and system noise contributions. 

Despite the deviation from a practical system, a simulation model can still reveal the 

relative differences in the performance of communication protocols, channel allocation, 

handover, frequency management strategies, modulation techniques, coding, 

interleaving etc.  It is of great importance to check the simulation against analysis for 

specific simple cases in order to verify the simulation.  This would enable to detect, if 

there is any, systematic errors in the systems simulator.  A typical case is to compare 

simulation against analysis for the systems performance in an AWGN channel. 

 

3.2.4 Software programs for Simulating Communication Systems  

The outstanding contribution of computer simulation to system performance prediction 

has strengthened the need to develop a number of software packages for simulating 

communication systems.  Simulation based approaches have been studied by a large 

number of people starting in the 1950's with block oriented languages such as MIDAS, 

SCADS, CSMP etc. [28].  These packages imitate the behaviour of analogue systems on 

a component by component basis based on the analogue block diagram as a convenient 

way of describing continuous systems. By the new developments in digital signal 

processing, software packages based on transform domain techniques began to appear 

in the early 1970's. Two examples of such software packages are described next. 

 

3.2.4.1 MATLAB and Simulink 

TMATLAB is both a computer programing language and a software environment for 

using that language effectively.  It is maintained by the MathWorks, Inc., of Natick, 
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Massachusetts, and is available for MS Windows and other computer systems.  The 

MATLAB interactive environment allows the user to manage variables, import and 

export data, perform calculations, generate plots, and develop and manage files for use 

with MATLAB. The language was originally developed in the 1970s for applications 

involving matrices, linear algebra, and numerical analysis (the name MATLAB stands 

for “Matrix Laboratory”).  Thus the language’s numerical routines have been well-

selected and improved through many years of use, and its capabilities have been greatly 

examined. 

MATLAB has a number of add-on software modules, called toolboxes that perform 

more specialized computations. They can be purchased separately, but all run under the 

core MATLAB program.  Toolboxes deal with applications such image and signal 

processing, financial analysis, control systems design, and fuzzy logic. And up-to-date 

list can be found at the MathWorks website. Simulink is built on top of MATLAB, so 

the user must have MATLAB to use Simulink.  It is included in the Student Edition of 

MATLAB, and is also available separately from The MathWorks Inc.  Simulink 

provides a graphical user interface that uses various types of elements called blocks, 

which are located in “libraries”, to create a simulation of a dynamic system, that is, a 

system that can be modelled with differential or difference equations whose 

independent variable is time.  The Simulink graphical interface enables the user to 

position the blocks, resize them, label them, specify block parameters, and interconnect 

the blocks to describe complicated systems for simulation.  Simulink models are 

developed by constructing a diagram showing the elements of the problem to be solved. 

Such diagrams are called simulation diagrams or block diagrams [29]. 
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3.2.4.2  Description of the simulation software package (BOSS) 

Shanmugan [30] described a very powerful simulation package, the Block Oriented 

System Simulator (BOSS) designed to benefit from the integrated hardware/software 

environment offered by workstations.  A brief description is presented in this section for 

one of the most popular packages, namely, BOSS, which is the package to be used by 

the author. 

Block Oriented Systems Simulator (BOSS) is an excellent example of an innovative 

framework for time-driven computer aided modelling, analysis, and design of 

communication systems [30-31].  It may be considered as an operating system for 

simulation as it makes all software requirements to build models and run simulations 

transparent to the user.  BOSS provides an intelligent, flexible and user-friendly 

simulation environment that employs the latest advances in the hardware, software, 

CAD/CAM technology and expert systems whereby it can perform a time-domain 

(waveform level) simulation of any system. 

The functional structure of the BOSS software is shown in Fig. 3.5. A simulation in 

BOSS is performed in four stages; module construction, system configuration, 

simulation, and presentation of results; by means of six stand-alone software packages.  

These are, the window manager, the block diagram editor, database manager, code 

generator, simulation manager, and the post processor. 

A system in BOSS is constructed by using the block diagram editor from the library 

blocks or user defined modules in a hierarchical manner allowing highly complex 

systems to be modelled. In the event that a new model can not be constructed from 

existing models using the block diagram approach, a so called custom coded block can 

be created whose function is specified by a subroutine, and once this programmed and 
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tested it could be linked to the existing set of BOSS library blocks, thus, new 

applications can be handled within the BOSS environment.     

 

 
Fig. 3.5 Functional structure of the BOSS software. 

 

Once a module is constructed it can be stored into a user created database where in a 

subsequent BOSS session, this module can be accessed by opening this database.  

BOSS also performs a variety of error and consistency checks as the models are being 

created.  This coupled with the visual interface and on-line help to minimise the 

bookkeeping problem, minimises errors considerably and permits the user to 

concentrate on problem definition and analysis rather than on the mechanics of 

simulation. 



Chapter 3            Simulation of the DECT system 

90 

 

The code generator produces the code.  The simulation manager checks for validity of 

simulation and system parameters, then compiles the code, producing the executable 

file and runs it.  The user has to choose the simulation duration and the step time.  

Probes can be attached to desired points in the system to observe the signals behaviour 

at that point.  During a simulation execution, selected signal values can be saved in a 

data file.  The post processor displays the simulation results on a high resolution screen 

using a variety of signal processing and plotting techniques.  The simulation system 

block diagram and the run time parameters are also presented along with the simulation 

results.  Simulation results can be presented in a various forms of plots including time 

domain plots (time plots, eye diagrams, scatter diagrams etc.), frequency domain plots 

(amplitude, phase, and power spectral plots), and other displays (histograms, 

correlation, probability density functions, cumulative distribution functions etc.). 

Due to the fact that Monte Carlo simulation technique is the most accurate and general 

error estimation technique [19, 20], and also due to the aforementioned advantages and 

merits of BOSS over MATLAB coupled with the author is acquainted with the coding 

language of the BOSS software, should a primitive (custom coded block) need be 

constructed, hence, BOSS has been adopted herein as a simulation tool.  

 

3.3 DECT Simulation Model 

Since the DECT system is to be used as a baseline reference in the proposed dual rate 

mobile data system having a common air interface, and to establish a frame of 

reference, the simulation of the DECT system is considered first. 

The simulation was implemented on a Sun Sparc workstation using the software 

package BOSS (Block Oriented Systems Simulator) systems simulator from Comdisco 

Systems, Inc. which runs under the UNIX operating system using X-windows.  Boss 
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program acts as a translator which converts block diagrams into simulation programs. 

The simulation of the DECT communications system was performed using the 

equivalent complex baseband lowpass representation as depicted in Fig.3.6. 

In the transmitter, the PRBS (Psudo Random Binary Source) generates a series of 

random binary NRZ (non-return-to-zero) square pulses of rate normalised with the 

DECT data rate equal to 1 bit/s, and have probability of 0 or 1 set to 0.5 with an initial 

seed set to a large odd number.  This data was first applied to a Gaussian pre-

modulation filter having bandwidth bit period product, BT of 0.5, function of which is 

to bandlimit and smooth out the baseband data stream, and consequently control the 

shape of the signal power spectrum (the design of this filter type will be outlined in next 

chapter).  The smoothed data was then driven into an FM transmitter via a VCO 

(voltage controlled oscillator) having a modulation index of 0.5.  At the receiver, a non-

coherent demodulation process of GMSK received signal was performed. 

Here, the received signal was passed through a pre-detection 6th order Butterworth 

lowpass filter before detection in order to remove noise and interference from adjacent 

channels. Its bandwidth was made a bit larger than the signalling bandwidth 

(normalised signalling bandwidth is 1.5), thereby preventing unnecessary degradation 

from intersymbol interference, in such case this filter has a normalised bandwidth of 

1.51. The signal is then limited so that unwanted envelope fluctuations can be 

eliminated before demodulation by the frequency discriminator.  Consequently, the 

output of the limiter is a constant envelope signal. 
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When this signal is input to the demodulator, a baseband signal proportional to the 

instantaneous frequency of the received signal is produced, i.e. the limiter discriminator 

gives a response proportional to the time derivative of the received signal phase.  That 

is, if the received signal is represented by 

 

𝑦(𝑡) = 𝐴(cos 𝜔𝑐 𝑡 + ⏀(𝑡))                                             (3.18) 

 

the response of the limiter discriminator [32] is 

 

𝜔𝑖(𝑡) = 𝜔𝑐 +
𝑑⏀(𝑡)

𝑑𝑡
                                                          (3.19) 

 

where  is the instantaneous frequency.  In terms of in-phase (i(t)) and quadrature 

(q(t)) components, the output of the demodulator is given by 

 

𝜔𝑖
/(𝑡) =

𝑑

𝑑𝑡
{𝑡𝑎𝑛−1 [

𝑞(𝑡)

𝑖(𝑡)
]}                                             (3.20) 

 

Using the identity 

 

𝑑

𝑑𝑡
(tan−1 𝑢) = (

1

1 + 𝑢2
)

𝑑𝑢

𝑑𝑡
                                            (3.21) 

 

and letting 

𝑢 =
𝑞(𝑡)

𝑖(𝑡)
 

      

i
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Equation (3.17) becomes 

 

𝜔𝑖
/(𝑡) = (1 +

𝑞2(𝑡)

𝑖2(𝑡)
)

−1

[
𝑖(𝑡)

𝑑𝑞(𝑡)
𝑑𝑖(𝑡)

− 𝑞(𝑡)
𝑑𝑖(𝑡)
𝑑𝑞(𝑡)

𝑖2(𝑡)
]                             (3.22) 

 

which can be rewritten as 

 

𝜔𝑖
/(𝑡) =

𝑖(𝑡)
𝑑𝑞(𝑡)

𝑑𝑡
− 𝑞(𝑡)

𝑑𝑖(𝑡)
𝑑𝑡

𝑖2(𝑡) + 𝑞2(𝑡)
                                        (3.23) 

 

from equation 3.23, it is clear that when the received signal is a GMSK modulated 

signal, the output of the demodulator is given by 

 

𝜔𝑖
/(𝑡) = 2𝜋𝑓𝑑(𝑎(𝑡) ∗ ℎ(𝑡))                                            (3.24) 

 

which are the original Gaussian filtered pulses that drive the modulator in the 

transmitter. Based on equation 3.23, the BOSS model for the frequency discriminator 

was designed.  The output of the discriminator was passed through a post-detection 4th 

order Butterworth lowpass filter having a normalised bandwidth, larger than the 

restored signal, of 0.7 for minimum intersymbol interference, it removes noise and 

unwanted frequency components which may result from the demodulation process.  The 

effect of pre and post-detection filtering on the performance of GMSK has been covered 

extensively by Lopes [33].  To achieve optimum performance at the demodulator, the 

timing clock should be recovered from the incoming data by means of a clock recovery 

circuit.  This circuit is composed of two stages; the symbol timing recovery circuit, and 
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the clock generator circuit.  In the symbol timing recovery, a timing sine wave having 

frequency equal to the symbol rate was extracted from the filtered data as follows: 

The pre-detection filter was tuned to , thus producing a spectral line at this 

frequency.  This filter is followed by a nonlinear device (squarer), used to obtain the 

sampling frequency which is subsequently filtered by means of a phase locked loop 

(PLL) tuned to  to achieve closer tracking of this frequency and to suppress the 

phase jitter contribution from the recovered signal and consequently reducing the 

number of occurring errors [34, 35]. Squaring the signal at the output of the pre-

detection filter yields 

 

𝑐𝑜𝑠2(2𝜋𝑓1𝑡) =
1

2
(1 + 𝑐𝑜𝑠2(2𝜋𝑓1𝑡))                                         (3.25) 

 

Since  from equation 2.22 

 

𝑐𝑜𝑠2(2𝜋𝑓1𝑡) =
1

2
+

1

2
cos(2𝜋𝑓0𝑡)                                             (3.26) 

 

Thus extracting a frequency  aligned to the incoming data.  A more detailed analysis 

is presented in [36, 37].  The second stage of the clock recovery is the clock generator 

that extracts the sampling instances from the zeros of the "timing wave".  This 

generated sequence of impulses is used to clock the sample and hold circuit every  

seconds at the centre of each symbol, as this is the optimum sampling point.  Initially, 

the sign wave is delayed in order to be aligned with the lowpass filtered data.  This 

delay for the alignment of the clock is related to the filter used at the demodulator.  The 
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exact value of the delay is extracted from the filtered eye diagram.  The output of the 

sample and hold is applied to a threshold detector whose output is decided by 

 

𝜔𝑖
/(𝑛𝑇) > 0: 𝑜𝑢𝑡𝑝𝑢𝑡 = +1 

    

𝜔𝑖
/(𝑛𝑇) < 0: 𝑜𝑢𝑡𝑝𝑢𝑡 = −1 

 

The simulation of the described system model of Fig. 3.6 was executed on BOSS which 

generates samples of all input waveforms and then performs discrete-time signal 

processing operations according to the functional model of each block.  In Fig.3.7, the 

generated user data that have a normalised bit rate of 1 is shown. 

 

 

Fig. 3.6 Generated user data 

 

Figure 3.8 below shows the eye diagram of the Gaussian pre-modulation filter having a 

normalised bandwidth of 0.5. 
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Fig.3.8 Eye diagram of the Gaussian filtered data 

 

The small eye closure in figure 3.7 signifies that a small amount of ISI has been 

introduced by the Gaussian filter. Figure 3.9 shows the power spectrum of the 

transmitted GMSK baseband signal.  From this figure it can be seen that the main lobe 

width is approximately 1.728MHz, also each sidelobe is around 30 dB down with 

respect to the main lobe, so they will not create a critical amount of interference. 

 

 

Fig.3.9 Power spectrum of DECT GMSK signal. 
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Using MATLAB software some computations were carried out to assess the amount of 

power contained by the main lobe and the sidelobes.  The main lobe retains 99.89% of 

the total power which is the percentage of the transmitted power in each DECT channel.  

Each sidelobe retains 41.25.10-3 % of the total power.  Assuming that the transmitted 

power per base station is 250mW (24dBm) is transmitted within the actual channel, and 

the remaining 274 µW are spread outside the channel.  This interference power is 

measured in 1 MHz bandwidth centred around the adjacent channel carrier, giving a 

value of 118.38 µW (-9.27dB) or 33dB below the transmitted power inside the channel.  

If the GMSK signal were to be filtered to remove these sidelobes, an AM modulation 

would be generated which would in turn make the GMSK signal lose one of its 

advantages, i.e., the constant envelope property.  When this filtered signal is amplified 

in the final stages before transmission, the non-linearities of the amplifiers will generate 

back those lobes [38, 39].  In order to maximize the transmitted output power an 

amplitude limiter device has instead been used in the transmitter as shown in Fig. 3.10 

below.  

 

 
 

 

 

 

 

   

Fig.3.10 Transmitter Structure. 
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3.4 Simulation of the DECT system in static channel  
 

Transmissions in a static channel are only affected by Additive White Gaussian Noise 

(AWGN).  The DECT system performance in the AWGN channel and in the multipath 

fading environment has been evaluated by means of simulation in terms of the BER.  

Monte Carlo estimation technique was used.  In the following sections, the obtained 

computer simulation results are presented. 

In any communication system, when the signal voltage impressed on the 

communication channel at the transmitter arrives at the demodulator, it will be 

accompanied by a voltage waveform which varies with time in an entirely unpredictable 

manner.  This unpredictable voltage waveform is a random process called noise.  A 

signal accompanied by such a waveform is described as being contaminated or 

corrupted by noise.  The communication of the signal may take several forms.  The 

noise may be added to the signal, in which case it is called additive noise, or the noise 

may multiply the signal, in which case the effect is called fading.  The term white is 

used in analogy with white light, which is a superposition of all visible spectral 

components over the band of optical frequencies [40].  The noise frequency components 

in a band limited system are expected to possess equal power in the passband, thus 

white by definition.  AWGN is a measure of the noise generated in a receiver when the 

transmission path is ideal.  The noise is assumed to have a constant power spectrum 

density over the channel bandwidth, and a Gaussian amplitude probability density 

function (pdf).  Generally, this type of channel is unrealistic in digital mobile radio, 

except in the case of microcells environment where there exists a line of sight 

transmission path with essentially no multipath.  The main use of the Gaussian channel 

is to give an upper bound on system's performance.  The Gaussian channel represents a 
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means of modelling the minimum possible SNR that can be achieved in a 

communication system, and improvements to that system can be assessed in terms of 

how close the BER approaches that of the Gaussian channel. 

Gaussian noise effects were simulated by a block which measures the input signal 

power.  The user specifies the desired SNR together with the receiver filter's equivalent 

noise bandwidth.  The output of this block is a complex white Gaussian noise with zero 

mean and variance adjusted to provide the desired signal to noise ratio.  The AWGN 

signal was directly added to the output signal from the transmitter, and its value 

corresponds to a given noise bandwidth such that the SNR is expressed in terms of bit 

energy to noise spectral density ( ). 

The BER was being measured in a block called error counter applying Monte Carlo 

technique.  Whilst BOSS library includes a simple error counter block, it was adapted to 

make it compatible with the system under investigation.  First, every received bit is 

compared with a delayed version of the transmitted bit to take account of the system 

and filters delay.  One hundred erroneous bits are accumulated by the error counter 

before the simulation was halted, so that the variance on the error probability estimate 

could be reduced to some reasonable value, thus the obtained BER would be a reliable 

measure.  Finally the ratio of the number of bits in error to the number of the bits 

received is computed in the error counter block.  The number of samples, number of 

errors, and the bit error rate are written to a file which can be accessed through the post 

processor.  In Fig. 3.11 the simulated BER performance versus  for the AWGN 

channel is plotted.  As can be seen from this plot that at  of 12 dB, a bit error 

rate of 10-3 can be attained, and these results are in broad agreement with those 

presented in [41]. 

 

b oE N/

b oE N/

b oE N/
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Fig. 3.11 Simulated BER performance of DECT static channel 

 

Using a closed form expression for the probability of error of digital FM perturbed by 

AWGN with discriminator detection found in [42, 43], a theoretical bit error rate was 

computed by means of MATLAB software and plotted against  as shown in 

figure 3.12 below. These calculated results agree with that obtained by computer 

simulation presented in Fig.3.11 (from Fig. 3.12, to obtain BER performance of 10-4, 

 has to be about 12dB. For the same BER criteria, from Fig. 3.11,  

should be about 13dB. On average, there is about 1dB difference. This level of disparity 

is acceptable considering the inevitable factors affecting simulation results outlined 

paragraph 3.2.3 of this chapter). It follows from the close coincidence of the theoretical 

and measured performance results that the modelled system adequately simulates the 

real scenario.   
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Fig. 3.12 Theoretical BER of DECT static channel 

 

Summary 

 
In this chapter, an overview of the simulation principles and the simulation package to 

be used have been presented. 

A DECT system model program has been created to serve as a baseline reference in the 

proposed dual rate data system to be designed in the later chapters to be having 

common air interface.  The results generated from the simulation tests of the DECT 

system have revealed that the small amount of ISI appears to have an insignificant 

impact on the signal quality.  Also, examining the generated GMSK power spectrum 

graph reveals that the simulated signal bandwidth is typical to the actual one i.e. 

1.728MHz, and that each sidelobe is around 30dB down with respect to the main lobe 

which results in no critical amount of interference to the adjacent channel occurs. 
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The theoretical and simulation results of the BER performance results in a multipath-

free channel conditions showed a close coincidence, which proves that the modelled 

system adequately simulates the real scenario. 

Building on this binary system, a 4-Level (quaternary) modulation system would be 

designed, simulated and evaluated in the next chapter aiming to double the current data 

throughput.  
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CHAPTER 4 

 

Continuous Phase-Quaternary Frequency Shift Keying 

System 

 

4.1 Grounds of suitability of CP-QFSK 

The two primary communication resources in any communication system are the 

transmitted power and channel bandwidth.  A general system-design objective priority 

would be to use these two resources as efficiently as possible.  Many communication 

channels can be classified primarily as power-limited or band-limited [1].  Different 

strategies are taken to optimize the use of the resources in each case: 

1- Power-limited channels: Such channels are often characterised by the power 

efficiency which is a measure of how much received power is required to achieve a 

specified BER performance.  This efficiency is also defined in terms of the required 

average received bit energy-to-noise density ratio ( b oE N/ ) for a given fd.  In these 

channels, coding schemes would generally be used to save power at the expense of 

bandwidth.  The typical example is a satellite mobile channel. 

2- Band-limited channels: Spectrally efficient modulation techniques would be used to 

maximise the spectrum efficiency in these channels frequently expressed in terms of the 

number of transmitted bits per second per Hertz (b/s/Hz).  A common example is the 

urban cellular radio channel. 

Apart from spectrally efficient modulation techniques, other approaches or strategies 

are used to reduce the required bandwidth such as: 

- Low-bit-rate speech and channel coding. 

- Multiple access techniques. 

- Deployment of microcells. 

- Increase in network intelligence. 
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The choice of modulation technique has a direct impact on the capacity of a digital 

mobile communication system.  It determines the bandwidth efficiency of a single 

physical channel in terms of the number of bits per second per Hertz (b/s/Hz) [2, 3]. 

Multilevel modulation schemes can be divided into three main categories according to 

the varying parameter: 

 M-ary Phase Shift Keying (PSK) in which the phase variations contain the transmitted 

information. 

 M-ary Frequency Shift Keying (FSK) where the information modulated in the 

frequency variations of the carrier. 

 M-ary Quadrature Amplitude modulation (QAM) where the transmitted information 

is contained in both the amplitude and phase variations. 

In selecting a suitable modulation scheme for a mobile radio system, consideration must 

be given to achieving the following: 

- High bandwidth efficiency. 

- High power efficiency. 

- Low carrier-to-cochannel interference power ratio (C/I). 

- Low out-of-band radiation. 

- Low sensitivity to multipath fading. 

- Constant or near constant envelope. 

- Ease and cost of system implementation. 

Optimising all these features at the same time is not possible as each has its practical 

limitation and also is related to others.  For instance, to achieve high bandwidth 

efficiency one may choose to use high-level modulation.  However, the power 

efficiency of the system would be reduced consequently.  Moreover, the bandlimited 

high-level modulated signal will have a large envelope variation which results in a large 

out-of-band radiation accordingly if this signal is to be passed through a power efficient 

nonlinear amplifier that in turn introduces interference to adjacent channels, and 

although this can be circumvented by using linear power amplifiers, but these have poor 
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power efficiency.  Hence, it is necessary to look for a good compromise among these 

criteria, depending on the precise nature of the anticipated utilisation of the system in 

question [4]. 

Regarding the digital modulation techniques, these can be broadly classified in two 

groups, each one being thought to be more appropriate for the two kinds of channels 

mentioned at the beginning.  The modulation techniques more used in the present 

systems belong to the group of continuous phase modulations or, equivalently, constant 

envelope modulations, which are inherently power efficient.  However, further 

improvements in related systems, like amplification devices, permit the increasing use 

of linear modulations, leading to a more bandwidth efficient systems. 

At this point it is worth pointing out the following issues: 

1. Amplification problem: 

Obviously, a highly efficient method of amplification should be searched for.  In a 

mobile environment, the power supply problem is quite important and a maximum 

duration of battery use without recharging is desired.  Also, the power amplifier in the 

handset is constrained to operate in its saturated nonlinear region in order to maximise 

the dc efficiency of the battery powered handset.  Owing to this imposed nonlinearity, 

linear modulation schemes such as QAM and QPSK would be unsuitable for mobile 

radio telephony [5].  The high power amplifiers (HPA) used in many systems, for 

example, in mobile radio handsets, are usually highly non-linear, because of the 

requirement for power efficiency.  These amplifiers give rise to amplitude modulation-

amplitude modulation (AM-AM) and amplitude modulation-phase modulation (AM-

PM) conversion, which may result in an irreducible BER floor.  The optimum solution 

is to use a constant envelop modulation scheme, which does not give rise to these 

effects.  For this reason, it is favourable if the signalling scheme can be of constant 

envelope and continuous phase type such as multilevel CP-FSK which falls under 

digital FM.  This is not the case for a modulation system with any kind of amplitude 

modulation or even for a system which in principle has a constant envelope but a non-

continuous phase.  This is due to the fact that this discontinuity introduces a high level 
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of side lobes which need be suppressed.  By doing this with the appropriate filtering, 

envelope variations are introduced.  If these variations are suppressed by hard limiting, 

the side lobes are introduced again resulting in severe adjacent channel interference, and 

in digital systems that transmit voice (GSM, DCS 1800, DECT), the bandwidth of the 

signal relative to the carrier is usually narrow, and filter implementation would be 

extremely difficult.  It has been found that the amplification of linear signals with high 

power non-linear amplifiers introduces a penalty of 2 to 3 dB, in terms of power 

efficiency [6]. 

2. Detection problem: 

An optimum receiver is usually a coherent one which requires the recovery of the 

frequency and phase of the carrier.  Non-coherent receivers such as the differential 

(when possible) or the limiter-discriminator type are suboptimum in the sense that they 

require an increase in the b oE N/  to achieve a given BER with respect to the optimum 

(typical values range from 1 to 3 dB), leading to not very power efficient systems.  This 

is true in an AWGN channel, but things are quite different in a phase-noisy channel, 

with multipath (fast Rayleigh fading), Doppler effect, and random FM.  As this is the 

case in the mobile radio channel, the possibility of non-coherent demodulation schemes 

such as discriminator detection due to its immunity against fast fading, centre frequency 

drift, and its applicability to arbitrary values of modulation index, should be valued 

positively [7].  It has been established in [8] that a small price is paid in using 

noncoherent FSK instead of coherent FSK for the decidedly large advantage of not 

having to establish M-coherent references at the receiver. 

3. System Complexity: 

Modulation schemes as mentioned earlier can be classified as either linear or nonlinear.  

Linear schemes are generally non-constant envelope after bandlimiting and the 

information is carried in both the amplitude and phase of the carrier, whereas nonlinear 

modulation has a constant envelope property and the information is solely contained in 

the excess phase function of the carrier.  If linear techniques are demodulated 

coherently, this requires carrier recovery using phase-locked techniques which greatly 
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increase the level of complexity of the demodulator [1].  Nonlinear schemes such as 

GMSK can be realised as direct modulation of a VCO, where the data sequence is 

applied directly to the tuning port.  Besides, nonlinear schemes can be demodulated 

noncoherently with limiter discriminator detection in which case the carrier reference 

required in a coherent system need not be generated at the demodulator.  With mobile 

telephony, where the requirement of a light handheld radio, imposed by the personal 

communication scenario in which everybody has fast access to all services through a 

personal handheld mobile unit, would mean a great decrease in size and weight of the 

handset and associated circuitry and this in turn reduces dramatically the cost.  

Therefore, modulation schemes that can be detected non-coherently offer a great deal of 

hardware simplicity and hence are much more desirable.    

4. Binary versus Multilevel schemes: 

The use of multilevel modulation schemes instead of binary ones produces an increase 

of the bit transmission rate for a given bandwidth.  So, for a given bit rate, they imply a 

reduction of the required channel bandwidth and an increase in the spectrum efficiency, 

thus achieving a significant increase in the number of the accommodated users.  

However, a consequence of transmitting more than one bit per symbol is that the signal 

power must be commensurately increased for the same channel noise if the symbol 

error is not to increase.  This implies an increase in the cluster size in cellular radio, 

leading to a reduction of the number of channels per cell.  The result is that the 

teletraffic throughput is not modified, but the complexity is significantly increased.  

This situation is very frequently encountered in conventional cellular systems, but if we 

consider microcells, e.g. in an indoor environment the situation is completely different 

due to the close proximity of the base station and the mobile, a high values of SNR can 

be achieved within the coverage area with considerably lower power, thus increasing 

the power efficiency of the unit.  Furthermore, because of the extremely fast fall off in 

signal level, the signal to interference ratio (SIR) is significantly higher.  Based on these 

principles, a research study performed in such minimum cluster sizes showed that 

multilevel modulation schemes can be introduced without cluster size penalties [9, 10]. 
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To sum up, the immunity to transmitter amplifier nonlinearity overweighs the use of 

constant envelope modulations, and the fading conditions and random phase and 

applicability to arbitrary values of modulation index lead to employing noncoherent 

detection methods (the severe fading conditions make carrier recovery quite difficult) 

which positively impacts on complexity and cost.  Based on the above considerations 

and given that the objective of this research is to accommodate the B-band ISDN 

services by the DECT system maintaining the spectral properties and keeping the 

introduced changes to the standard system to a minimum, it thus follows from all this 

that the multilevel FSK modulation scheme is a viable and promising alternative option 

and hence proposed for the aforementioned accounts.  The subsequent subsections 

explore this modulation scheme in more detail. 

 

4.2 Theoretical background of CP-QFSK  

Over the past two decades or so, there has been a large amount of research done on 

continuous phase- constant envelope digital modulation systems (CPM) on account of 

their promising possibilities if employed in applications where efficient spectrum 

utilisation is required and/or some immunity to nonlinear distortion produced by the 

power amplifiers in transmitters are obtained [11-16].  In this sub-section a sub-class of 

the CPM signalling scheme called quaternary frequency shift keying (QFSK) in which 

the instantaneous frequency is constant over each symbol interval and the phase is 

constrained to be continuous will be discussed.  This constraint of phase continuity 

results in affecting the signal in two important ways: Firstly, the transient effects are 

lessened at the symbol transitions, thereby offering spectral bandwidth advantages.  

Secondly, memory imposed upon the waveform by continuous phase transitions, 

improves performance by providing for the use of several symbols to make a decision 

[17]. 

An FSK signal can be generated by shifting the carrier signal by an amount equal to: 
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𝐴𝑛(𝑓) =
𝑠𝑖𝑛𝜋[𝑓𝑇 − (2𝑛 − 1 −𝑀)ℎ/2]

𝑛[𝑓𝑇 − (2𝑛 − 1 −𝑀)ℎ/2]
 

 

Where In = ±1, ±3, …, ±(M-1) represents the sequence of symbols that results from 

mapping k-bit blocks = log2 M of binary digits from the information sequence { na } into 

M= k
2  possible levels, to reflect the digital information that is being transmitted [1]. 

The switching from one frequency to another may be accomplished by having M 

separate oscillators tuned to the desired frequencies and selecting one of the M 

frequencies according to the particular k-bit symbol that is to be transmitted in a signal 

interval of duration T k Rb /  seconds, with bR  being the bit rate.  However, such 

abrupt switching from one oscillator output to another in successive signalling intervals 

results in relatively large spectral side lobes outside of the main spectral band of the 

signal, and consequently this method requires a large frequency band for transmission 

of the signal.  To avoid this happening, the information-bearing signal frequency 

modulates a single carrier whose frequency is changed continuously.  The resulting 

frequency-modulated signal is phase continuous i.e. the phase is a continuous function 

of time, and hence it is called Continuous-Phase Frequency Shift Keying (CP-FSK). 

In order to represent a CPFSK signal, we begin with a PAM signal.  The baseband data 

signal may be represented as 

 

𝑑(𝑡) =∑𝐼𝑛𝑔(𝑡 − 𝑛𝑇)                                                 

𝑛

(4.1) 

 

Where g(t) is a rectangular pulse of amplitude 1/2T and duration T seconds.  The signal 

d(t) is used to frequency-modulate the carrier.  Consequently, the equivalent complex 

lowpass waveform v(t) is expressed as 

 

𝑣(𝑡) = 𝐴 𝑒𝑥𝑝 {𝑗 [4𝜋𝑇𝑓𝑑∫ 𝑑(𝜏)𝑑𝜏 + 𝛷0

𝑡

−∞

]}                                    (4.2) 
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In the foregoing representation A is a real amplitude and df  is the peak frequency 

deviation which relates frequency displacement to baseband signal voltage, and 0  is 

an initial phase of the carrier.  The carrier modulated signal corresponding to (4.2) may 

be expressed as 

 

𝑠(𝑡) = 𝐴 𝑐𝑜𝑠[2𝜋𝑓𝑐𝑡 + ⏀(𝑡, 𝐼) + ⏀0]                                    (4.3) 

 

Where 0  is an arbitrary starting phase, and ( , )t I  represents the time-varying phase 

of the carrier, which is defined as 

 

⏀(𝑡, 𝐼) = 4𝜋𝑇𝑓𝑑∫ 𝑑(𝜏
𝑡

−∞

)𝑑𝜏 

 

Which by means of equation (4.1) becomes 

 

⏀(𝑡, 𝐼) = 4𝜋𝑇𝑓𝑑∫ [∑𝐼𝑛𝑔(𝜏 − 𝑛𝑇)] 𝑑𝜏
𝑡

−∞

                                (4.4) 

 

Although the signal d(t) contains discontinuities, the integral of d(t) is continuous which 

implies continuous-phase signal s(t).  The phase of the carrier in the interval 

nT t n T  ( )1  is determined by integrating (4.4), thus 

 

⏀(𝑡, 𝐼) = 2𝜋𝑓𝑑𝑇 ∑ 𝐼𝑘 + 2𝜋𝑓𝑑(𝑡 − 𝑛𝑇)𝐼𝑛

𝑛−1

𝑘=−∞

 

 

                                                = 𝜃𝑛 + 2𝜋ℎ𝐼𝑛𝑞(𝑡 − 𝑛𝑇)                                                  (4.5)  

 

Where h, n , and q(t) are defined respectively as 
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ℎ = 2𝑓𝑑𝑇                                                               (4.6)  

 

𝜃𝑛 = 𝜋ℎ ∑ 𝐼𝑘

𝑛−1

𝑘=−∞

                                                        (4.7) 

 

𝑞(𝑡) =

{
 
 

 
 
0                        𝑡 < 0                                                                      
𝑡

2𝑇
            0 ≤ 𝑡 ≤ 𝑇.                                                           (4.8)

1

2
                       𝑡 > 𝑇                                                                      

 

 

n  represents the accumulation (memory) of all symbols up to time (n-1)T.  The 

deviation ratio parameter h is called the modulation index.  Equation 4.8 represents a 

full response CPFSK modulation scheme which corresponds to linear phase trajectories 

over each symbol interval [18].  The set of phase trajectories ( , )t I  generated by the 

information sequence { nI } for the CP-QFSK with 0 0   is sketched in Fig.(4.1) for 

two symbol intervals.  As can be seen, the phase trajectories have a tree-like quality that 

corresponds to linear phase trajectories over each symbol interval in this case as a 

consequence of the fact that the pulse g(t) is rectangular.  Smoother phase trajectories 

and phase trees can be obtained using pulses that do not contain discontinuities such as 

the class of raised cosine pulses as will be shown later.  Furthermore, if h is a rational 

number, the tree will eventually fold upon itself modulus 2 , producing a trellis-like 

depiction. 

When expressed in the form of (4.5), CP-FSK becomes a special case of a general class 

of continuous-phase modulated (CPM) signalling scheme in which the carrier phase is 

given by 

 

⏀(𝑡, 𝐼) = 2𝜋 ∑ 𝐼𝑘ℎ𝑞(𝑡 − 𝑘𝑇);

𝑛

𝑘=−∞

         𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇                           (4.9) 
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Where q(t) is some normalized waveform shape (phase response function) that may be 

represented in general as the integral of some frequency pulse g(t), i.e. 

 

𝑞(𝑡) = ∫𝑔(𝜏)𝑑𝜏

𝑡

0

                                                (4.10) 

 

If g(t)=0 for t>T, the CPM signal is called full response CPM.  Otherwise, if g(t)  0 for 

t>T, the modulated signal is called partial response CPM, and in this case the pulse 

shape g(t) is smoother and the corresponding spectral occupancy of the signal is 

reduced.  An infinite variety of CPM signals can be generated by choosing different 

pulse shapes g(t) and varying the modulation index h and the alphabet size M [22]. 

 

 

Fig. 4.1 Phase trajectories of CP-QFSK 
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4.2.1 CPFSK Signal space diagram  

Continuous-phase signals cannot be represented by discrete points in signal space as in 

the case of PAM, PSK, and QAM due to the fact that the phase of the carrier is time-

variant.  Instead, a continuous-phase signal is described by the various paths or 

trajectories from one phase to another.  A constant amplitude CPM signal trajectories 

form a circle.  As an example, the signal space diagram for CP-FSK signals with h=1/2 

and h=1/4 is illustrated in Fig.(4.2).  The beginning and ending points of these phase 

trajectories are marked in the figure by a dot.  It is noted that the length of the phase 

trajectory increases with an increase in h and this in turn increases the signal bandwidth 

accordingly as will be demonstrated in the following sub-section. 

 

h=1/4 h=1/2  

Fig.4.2 Signal-space diagram for CP-FSK 

 

4.2.2 Power density spectrum of CP-QFSK 

An important descriptive feature of any information-carrying system is the power 

spectral density function (psdf) that results from the combination of the characteristics 

of the information signal and the technique of modulation.  Estimates of bandwidth 

occupancy, interference to or from flanking carrier channels, and relative comparisons 

of different modulation techniques all exemplify situations where a knowledge of the 

psdf is imperative [20].  In most digital communications systems, the available channel 
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bandwidth is limited.  It is of great importance to consider the constraints imposed by 

the channel bandwidth limitation in the selection of the modulation technique to be used 

to transmit the information.  Hence, the spectral content of the CP-QFSK modulation 

scheme described in section 4.1 needs to be derived from the general equation 

representing CPM.  Since the information sequence is random, a digitally modulated 

signal is a stochastic process.  We are interested in determining the power density 

spectrum of such a process, from which the channel bandwidth required to transmit the 

information-bearing signal can be determined.  We begin by computing the 

autocorrelation function and its Fourier transform.  The constant amplitude CPM signal 

previously defined by equation (3.3) is 

 

𝑠(𝑡, 𝐼) = 𝐴 𝑐𝑜𝑠[2𝜋𝑓𝑐𝑡 + ⏀(𝑡, 𝐼)]                                       (4.11) 

 

In the above equation the term 0  has been omitted (set to zero) without any loss of 

generality, and the information carrying phase function ( , )t I  is given by 

 

⏀(𝑡, 𝐼) = 2𝜋ℎ ∑ 𝐼𝑘𝑞(𝑡 − 𝑘𝑇)

∞

𝑘=−∞

                                       (4.12) 

 

The symbols in the sequence Ik are statistically independent, identically distributed, and 

each symbol can take one of the four levels;{ ±1, ±3, …, ± (M-1)}. The autocorrelation 

function of the equivalent lowpass signal 

 

𝑉(𝑡) = 𝑒𝑗⏀(𝑡,𝐼) 

 

Is 

 

⏀𝑣𝑣(𝑡 + 𝜏, 𝑡) = 𝐸 {𝑒𝑥𝑝(𝑗2𝜋ℎ ∑ 𝐼𝑘[𝑞(𝑡 + 𝜏 − 𝑘𝑇) − 𝑞(𝑡 − 𝑘𝑇)]

∞

𝑘=−∞

)}           (4.13) 
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Performing expectation over the data symbol {Ik}, and since these symbols are 

statistically independent, yielding; ⏀vv(t+ ; t) = 

 

∏ ∑ 𝑃𝑛 exp (𝑗2𝜋ℎ𝑛[𝑞(𝑡 + 𝜏 − 𝑘𝑇) − 𝑞(𝑡 − 𝑘𝑇)]
𝑀−1

𝑛=−(𝑀−1)

∞

𝑘=−∞

)  

 

The average autocorrelation function is 

 

⏀ˉ
𝑣𝑣(𝜏) =

1

𝑇
∫⏀𝑣𝑣(𝑡 + 𝜏, 𝑡

𝑇

0

)𝑑𝑡                                       (4.14) 

 

If we let   mT where 0   T and m=0,1,..., then (3.14) reduces to 

 

⏀ˉ
𝑣𝑣(𝜉 + 𝑚𝑇) 

 

=
1

𝑇
∫ ∏ { ∑ 𝑃𝑛𝑒𝑥𝑝(𝑗2𝜋ℎ𝑛[𝑞(𝑡 + 𝜉 − (𝑘 − 𝑚)𝑇) − 𝑞(𝑡 − 𝑘𝑇)])

𝑀−1

𝑛=−(𝑀−1)

}

𝑚+1

𝑘=1−𝐿

𝑇

0

  (4.15) 

 

nP  stands for the probability that the level being considered is n with n=

   1 3 1, ,... ( )M .  When  mT LT , where LT denotes the pulse length, in this case 

 

⏀ˉ
𝑣𝑣(𝜉 + 𝑚𝑇) = [𝜓(𝑗ℎ)]𝑚−𝑁𝜆(𝜉);         𝑚 ≥ 𝐿, 0 ≤ 𝜉 < 𝑇                           (4.16) 

 

Where ( )jh  is the characteristic function of the random sequence  I n
, defined as 

 

𝜓(𝑗ℎ) = 𝐸[𝑒𝑗𝜋ℎ𝐼𝑛] = ∑ 𝑃𝑛

𝑀−1

𝑛=−(𝑀−1)

𝑒𝑗𝜋ℎ𝑛                                          (4.17) 
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The Fourier transform of 
_

( )vv   yields the average power density spectrum of CPM 

signal as 𝑆(𝑓) = 

 

2𝑅𝑒 {∫ ⏀ˉ
𝑣𝑣

𝐿𝑇

0
(𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏 +

1

1−𝜓(𝑗ℎ)𝑒−𝑗2𝜋𝑓𝑇
∫ ⏀ˉ

𝑣𝑣(𝜏)𝑒
−𝑗2𝜋𝑓𝜏(𝐿+1)𝑇

𝐿𝑇
𝑑𝑡}       (4.18)  

 

A closed form expression for the power density spectrum can be obtained from the 

above equation (4.18) when the pulse shape g(t) is rectangular and zero outside the 

interval [0,T].  In this case q(t) is linear for 0 t T.  The resulting power spectrum 

may be expressed as 

 

𝑆(𝑓) = 𝑇 [
1

𝑀
∑𝐴𝑛

2

𝑀

𝑛=1

(𝑓) +
2

𝑀2
∑ ∑ 𝐵𝑛𝑚(𝑓)𝐴𝑛

𝑀

𝑚=1

𝑀

𝑛=1

(𝑓)𝐴𝑚(𝑓)]                 (4.19) 

 

Where 

 

𝐴𝑛(𝑓) =
sin 𝜋[𝑓𝑇 − (2𝑛 − 1 −𝑀)ℎ/2]

𝜋[𝑓𝑇 − (2𝑛 − 1 −𝑀)ℎ/2]
 

 

And 

 

𝐵𝑛𝑚(𝑓) =
cos(2𝜋𝑓𝑇 − 𝛼𝑛𝑚) − 𝜓 cos 𝛼𝑛𝑚

1 + 𝜓2 − 2𝜓 cos 2𝜋𝑓𝑇
 

 

𝛼𝑛𝑚 = 𝜋ℎ(𝑚 + 𝑛 − 1 −𝑀) 

 

𝜓 = 𝜓(𝑗ℎ) =
sin𝑀𝜋ℎ

𝑀 sin 𝜋ℎ
 

 

This is a formidable looking set of expressions, but they are relatively straight forward 

to calculate by means of MATLAB software on a computer.  Results of the power 

density spectra computation of CP-QFSK (M=4) are plotted in Fig.(4.3) as a function of 
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the normalized frequency fT, with the modulation index h as a parameter.  The 

modulation index is a function of the transmission rate, T, and the frequency deviation 

(fd), h=2fdT.  Only one half of the bandwidth occupancy is shown in the graph and the 

origin corresponds to the carrier fc.  The graph illustrates that the spectrum of CP-QFSK 

is relatively smooth and well confined for h<1.  As h approaches unity, the spectrum 

becomes very peaked and for h=1 where   1, it is found that impulses occur at M 

frequencies.  When h>1 the spectrum becomes much broader. 

In communication systems where CP-QFSK is used, the modulation index is designed 

to conserve bandwidth so that h<1.  Therefore it is concluded that the bandwidth 

occupancy of CP-FSK depends on the choice of the modulation index h, the pulse shape 

g(t), and the number of the signal levels M. 

 

 

Fig. 4.3 Normalised one-sided power spectral density of CP-QFSK 
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4.2.3 Bandwidth occupancy of CP-QFSK, MSK, and QPSK 

The special case of binary CPFSK with h=1/2 ( df T1 4/ ) and   0 corresponds to 

minimum shift keying (MSK), spectrum of which is [21] 

 

𝑆(𝑓) =
16𝑇

𝜋2
[
cos 2𝜋𝑓𝑇

1 − 16𝑓2𝑇2
]
2

                                                (4.20) 

 

whereas the spectrum of the quadrature phase shift keying (QPSK) is [22] 

 

𝑆(𝑓) = 2𝑇𝑏 [
𝑠𝑖𝑛 2𝜋𝑓𝑇𝑏
2𝜋𝑓𝑇𝑏

]
2

                                                  (4.21) 

 

Comparing these three spectral characteristics, the frequency variable was normalized 

by the bit interval bT  and these spectra are illustrated in Fig.4.4 below. 

 

 

Fig.4.4 Power density spectra of CP-QFSK, MSK, and QPSK. 
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From the above graph, it is clearly seen that the CP-QFSK signal has the narrowest 

main lobe among the three spectra and its side lobes fall off considerably faster than the 

MSK and QPSK do.  Consequently CP-QFSK has the narrowest spectral occupancy and 

hence is more bandwidth efficient than QPSK and MSK allowing more channels to be 

accommodated in a given bandwidth.  It has been proven in [23] that M-ary CPFSK has 

significantly less fractional-out-of-band power compared to PSK.  Thus, in bandlimited 

situations, CP-QFSK is superior to MSK and PSK.  

 

4.3 CP-QFSK baseband system simulation model  

Based on the theoretical basis presented in the previous section, a CP-QFSK system 

model has been designed.  In QFSK system the modulated signal has four distinct level 

states that are generated by a unique mapping scheme of consecutive dibits (pairs of 

bits) into symbols, i.e. each two consecutive bits in the TDMA signal are formed into a 

symbol having four possible levels depending on the logical levels of the two-bits.  

Obviously, the quaternary system would differ from the standard 2-level DECT system, 

previously shown in chapter 3 (Fig.3.6), in three circuit units, namely, the 2-4 level 

converter, the threshold comparator (decision circuit), and the 4-2 converter.  The 

global functional block diagram of the baseband equivalent model of the CP-QFSK is 

shown in Fig.4.5. 

The transmitter configuration consists of a PRBS data source which generates a serial 

NRZ binary data stream at a rate twice that of the DECT bit rate ( bf =2b/s normalised 

value) as shown in figure 4.5.  This unipolar binary bit stream was then converted by a 

serial-to-parallel (s-p) block, contained in the 2-4 level converter, into two separate 

NRZ bit streams one of which is delayed by a single bit duration creating an in phase, 

I(t), and quadrature phase, Q(t), sets having a symbol rate equal to half that of the 

incoming bit rate  3,1 =1b/s ,i.e., the baud (symbol) rate is equal to the DECT 

symbol rate.  These two bi-polar bit streams are combined together after the most 

significant stream is multiplied by a constant to form the four level states. 
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The mapping of the bits into symbols was done in accordance with Gray code, so that 

adjacent symbols differ by only one bit, and as noise and interference tend to cause 

decision errors mostly between adjacent symbols, any single symbol error will 

correspond to a single bit error.  Since the BOSS simulator library does not have a 

quaternary data generator, a custom coded look-up table created and incorporated into 

the BOSS module library.  The generated user data which is double that currently 

accommodated by DECT is shown in Fig. 4.6 below 

 

 

Fig.4.6. User binary data of twice the DECT rate. 

 

Eventually, each particular voltage level was associated with each symbol as shown in 

table 4.1. 

 

Quaternary Symbols Transmitted Signal  

Binary Dibits State (level) 

0 0 0 0 -3 

0 1 0 1 -1 

1 0 1 1 1 

1 1 1 0 3 

Table 4.1 Symbol mapping for QFSK 
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With this correspondence, each consecutive two bits in the TDMA signal are formed 

into a symbol having four possible levels depending on the logical levels of the two-

bits, thus a quaternary baseband data was created.  Figure 4.7. below shows a generated 

set of 10 consecutive arbitrary symbols. 

 

 

Fig.4.7 The baseband quaternary data.  

 

The generated quaternary signal was then applied to a premodulation filter with pulse 

shape g(t), to smooth out the sudden variations in the baseband signal, and consequently 

control the shape of the signal power spectrum.  The smoothed data is then applied to an 

FM modulator, the output of which is a constant amplitude signals as can be seen from 

figure 4.8 below 

 

 

Fig.4.8 Modulated signal amplitude. 

 

Figures 4.9 through 4.10 show the signal space diagram and phase trajectories 
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Fig. 4.9 Signal space diagram of CP-QFSK 

 

 

Fig.4.10 Phase trajectory of the generated quaternary signal for 10 symbols. 

 

The input to the receiver consists of the transmitted signal plus additive white Gaussian 

noise with single sided spectral density, 0N .  The predetection lowpass filter at the front 

end of the receiver suppresses noise and interference power in the signal band.  The 

output of the pre-detection filter is then limited before being passed on to the 

discriminator which converts the frequency variations, i.e., the derivative of the phase 

of the incoming signal, into voltage variations to yield the quaternary signal plus noise. 

After passing through a post-detection filter (LPF), the noise and unwanted components 
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are removed.  The output of the post-detection filter is then fed to a threshold 

comparator which converts the recovered baseband modulation signal into a sequence 

of di-bit symbols.  The threshold comparator is gated by the recovery clock that is 

generated by the symbol timing-recovery (STR) block at the baud rate enabling to 

sample the demodulated signal right in the middle of each symbol duration time.  The 

threshold voltage comparator has at its disposal three decision levels (rather than one in 

the standard system) corresponding to angular frequency deviations 0,  ;  >0 to 

regenerate the symbols and are set at the centre of the eye openings of the output signal 

of the post-detection filter, and the binary data is recovered back by means of the 4-2 

level converter.  Finally, the regenerated output is fed into the error rate counter for 

BER measurement.  In what follows, the parameters of the CP-QFSK system will be 

specified and optimised. 

 

4.4 Optimization of CP-QFSK System Parameters  

An important parameter in the specification of multi-level CPFSK is the modulation 

index h which determines the signal bandwidth.  Correct selection of h is critical not 

only in terms of the power spectral density but also in terms of the error rate 

performance of the modulation scheme [24].  However, the increase in the number of 

levels or the decrease in modulation index results in a narrower signal bandwidth and 

hence a higher spectrum efficiency.  But such strategy causes degradation in receiver 

sensitivity or bit error rate performance.  Therefore, a higher b oE N/  or otherwise an 

improvement in the BER performance is required for the increased level if to maintain 

the same system performance quality.  This can be attained through higher modulation 

index at the expense of increasing the degradation in the interference power in the 

adjacent channels due to spreading in the transmitted signal spectrum.  However, this 

increase in the signal bandwidth can be controlled by introducing pre-modulation 

filtering of the baseband waveform of the input to the FM modulator using proper pulse 

shaping.  The degree to which the spectrum of the modulated signal is compacted can 

be controlled by changing the bandwidth of the pre-modulation filter.  Correct selection 



 Chapter 4                             CP-QFSK System 

131 

 

of modulation index is critical not only in terms of the power spectral density but also in 

terms of the error rate performance.  The optimum value of modulation index is 0.5 

which is the minimum value that produces orthogonality in the signaling waveforms.  

That is, the signaling waveforms can be detected independently with no cross-

correlation between other signaling states.  For binary signaling this is generally 

referred to as minimum shift keying.  In CPQFSK orthogonal signaling (h=0.5) will 

result in a broad spectrum.  In addition, only two distinct signaling states would exist 

due to the phase wrap-around nature of the modulation scheme, and consequently, an 

ambiguity would arise in the demodulation process (270o=-90, -270o=90o).  

In order to reduce the spectral occupancy the modulation index has to be reduced.  

Therefore, there is a trade-off between the modulation index and the baseband filtering 

(pulse shaping) necessary to get a power spectrum that fits within the DECT spectral 

mask.  Thus, it follows from the above qualitative considerations that an optimum pulse 

shape which has good characteristics in both the time and frequency domain and a 

modulation index which will serve as system simulation parameters or system design 

criteria need to be found, i.e. there are three issues of concern: How does the system 

performance degrade in the presence of noise when varying the RF spectrum through 

baseband modulation pulse shaping?  What is the role of channel filtering in the 

obtainable performance?  What are the optimum values of the system parameters with 

different baseband shaping? 

Different types of pulse shaping functions for CPM are available to control the 

modulation signal power spectrum [19].  For the purpose of this work we shall restrict 

ourselves to investigate three particular pulse shaping functions: 

 

i)  Raised Cosine shaping in the time domain (LRC), where L refers to the 

length in symbol intervals of the pulse.  Raised Cosine pulse shaped CPQFSK 

(LRC-CPQFSK) can be either full or partial response signalling, such that 

when L 1 the modulation scheme is termed partial response. 
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ii)  Raised Cosine shaping in the frequency domain or spectral RC (SRC). 

 

iii)  Gaussian pulse shaping. 

 

In what follows, the interrelated system parameters in the presence of an AWGN 

channel having varied the transmitted spectrum through modulation pulse shaping, 

modulation index, and the IF filter bandwidth will be investigated and these interrelated 

system factors or parameters will be optimised accordingly.  For this purpose, since 

there is no unique definition of the M-ary CPFSK bandwidth [19], we will consider here 

the energy percentage bandwidth criterion provided that this bandwidth confines within 

the DECT bandwidth.  So, the 99.85%, 99.90%, 99.95%,and 99.99% energy 

bandwidths were examined to satisfy the above conditions.  At this point, it is worth 

mentioning that it is meant here by 99.95% energy bandwidth, the modulation 

frequency band containing 99.95% of the signal power. 

 

4.4.1 Gaussian Pulse Shaping  

BOSS library does not contain Gaussian type filters within its library.  However, it does 

include a convolutional filter, capable of implementing a time domain filtering by 

reading a time domain description of the transfer function file created by means of 

MATLAB software using Gaussian frequency pulse function [19] below in order to 

generate the respective time domain impulse response.  

 

𝑔(𝑡) =
1

2𝑇
[𝑄 (2𝜋𝐵

𝑡 −
𝑇
2

√𝑙𝑛2
) − 𝑄(2𝜋𝐵

𝑡 +
𝑇
2

√𝑙𝑛2
)]                                  (4.22) 

 

Where 0 BT  is the 3dB bandwidth of the Gaussian filter and Q is the error function 

that is given by 
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𝑄(𝑡) = ∫
1

√2𝜋
𝑒−𝜏

2/2

∞

𝑡

𝑑𝜏 

    

Fig.4.11 shows the generated Gaussian impulse responses for various bandwidth bit 

period product, BT, one of which then to be convolved in the time domain with the 

input quaternary signal sequence to produce the CP-QFSK signal. 

 

 

Fig.4.11. Impulse response of Gaussian filter. 

 

The generated power spectrum of the CP-QFSK signal in this case is shown in Fig.4.12.  

It can clearly be seen that the spectral occupancy is still within the DECT bandwidth 

shown in chapter 3 (Fig. 3.5).  The power spectrum also shows that the first side lobe is 

at about 30 dB below the main lobe, and the other side lobes diminish off in a fairly fast 

rate and this is reflected in eye opening of the eye diagram shown in Fig. 4.13.    
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Fig.4.12  Power spectrum of Gaussian shaped CP-QFSK signal 

 

Pre-detected received signal eye diagram is shown in Fig. 4.13.  Narrow eye opening 

signifies a considerable amount of ISI is being generated. 

 

 

Fig.4.13 Eye diagram of the received signal 
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The simulation was run to evaluate BER performance for a range of IF filter 

bandwidths, h, and receiver pre-detection filter normalized equivalent-noise bandwidth 

(B) which is dependent of the energy percentage bandwidth.  The output of the 

simulation is tabulated in table 4.2 having fixed the system performance quality at 

eP  3
10  which is denoted in the table by W. 

 

h B W [dB] 

  0.25   1.15           20.3 

0.3 1.2 19.2 

  0.35                 1.25 18.3 

0.4 1.3 17.6 

  0.45                 1.35            18.2 

0.5                 1.4  18.9 

Table 4.2. Optimization of system parameters having fixed eP  3
10 . 

 

The above table has the aim of exhibiting the optimum performance which refers to the 

choice of h=0.4, and B=1.3 for 6th order Butterworth receiver filter (a six-pole 

Butterworth filter requires less Eb/No than other types to attain the same BER 

performance quality), yielding a minimum value of b oE N/  ratio, i.e. smallest 

degradation, required to assure eP  3
10 , that can be further seen quite clearly in the 

comparison between Butterworth and Gaussian filters reported in Fig.4.14 below. The 

total noise power is proportional to the bandwidth of the transmission channel, and N-

o=NT/B, apparently, as the IF bandwidth, B, decreases , less Eb/No is needed due to 

more noise rejection.  However, a point is finally reached below which any further 

decrease in B, i.e. below optimality, will eventually lead to Pe being escalated.  Thus, to 

minimise the noise at the demodulator input the IF bandwidth has to be reasonably 

narrow. In Fig.4.14, narrow bandwidth errors are due to inter-symbol interference 

predomination; whereas for wider bandwidths, the error increases owing to noise. 
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Fig.4.14 Required b oE N/  for eP  3
10  vs. filter bandwidth 

 

Figure 4.15, below, establishes that the BER performance of the system with Gaussian 

pre-modulation filtering having BT=0.4, h=0.4, and IF bandwidth normalised to baud 

rate of B=1.3 are found to be the optimum parameter values.  It also exhibits that there 

exists a degradation in the BER performance of about 7 dB compared to the binary case 

presented in chapter 3 due to ISI domination.   
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Fig.4.15 CP-QFSK performance with Gaussian-type modulation. 
 

4.4.2 Spectrally Raised Cosine Pulse Shaping (SRC)  

Proceeding in a similar manner to that of the Gaussian filter case, the LSRC filter was 

modelled using the frequency pulse function g(t) below, and the required LSRC filters 

with different Roll off factors (  ) have been created 

 

𝑔(𝑡) =
1

𝐿𝑇
.
sin (

2𝜋𝑡
𝐿𝑇 )

2𝜋𝑡
𝐿𝑇

.
cos (𝛽

2𝜋𝑡
𝐿𝑇 )

1 − (
4𝛽
𝐿𝑇 . 𝑡)

2  ;     0 ≤ 𝛽 ≤ 1                          (4.23) 

          

Figure 4.16 below shows the generated power spectrum of the modulated signal having 

filter roll off factor  =0.4. 
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Fig.4.16 Power spectrum of SRC-shaped CP-QFSK signal 

 

From the above power spectrum, it is noticed that the first side lobe is at only 30 dB 

below the main lobe, and the other side lobes fall off gradually slowly and that in turn 

results in larger spectral occupancy and hence considerable Adjacent Channel 

Interference (ACI) being created. 

Figure 4.17 below shows the generated eye diagram of SRC-shaped quaternary data 

having  =0.4, indicating the ISI-free characteristics of such filter. 
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Fig.4.17 Eye diagram of SRC-shaped quaternary data 

 

The measured BER performance in this case, SRC  =0.4 and B=1.5, with h as a 

parameter is plotted in Fig.4.18 below: 

 

 

Fig.4.18. Measured BER performance for SRC-shaped CP-QFSK 
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From the above graph, it is obvious that h=0.25 is the optimum modulation index when 

Spectrally Raised Cosine filter is used to shape the quaternary data before applied to the 

modulator, also, it outperforms the Gaussian case (Fig. 4.15) by 2dB. 

 

4.4.3 Raised Cosine Pulse Shaping (LRC)  

Likewise, the LRC filter was created in the same way as the previous two filter types.  

The frequency pulse function g(t), from which the impulse response of the required 

LRC filters with various modulation pulse time widths (LT) have been created, is 

 

𝑔(𝑡) = {
1

2𝐿𝑇
[1 − cos (

2𝜋𝑡

𝐿𝑇
)]

0                                    

                                          (4.24) 

0 t LT        ; otherwise 

 

Where L is the pulse length, e.g., 3RC has L=3.  1RC, 2RC, and 3RC have been 

modelled and examined in relation to the energy percentage bandwidth criterion and 

BER performance. Consequently, 2RC has been found to be the optimum pulse in this 

case. Fig. 4.19 shows the generated spectrum of the CP-QFSK when 2RC was used. 

 

 

Fig.4.19 Power spectrum of 2RC modulation type 
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The above power spectrum demonstrates the 2RC supremacy over others presented so 

far, as the first side lobe is at 40 dB below the main lobe and the remaining side lobes 

containing insignificant energy diminish off in fairly fast rate, hence the LRC case 

outweighs LSRC and Gaussian cases in spectral containment, thus out of band radiation 

power.  Also, the 2RC spectral occupancy matches that of the DECT case presented in 

chapter 3 (Fig. 3.5). 

Fig.4.20. shows the eye diagram of 2RC shaped received quaternary data. 

 

 

Fig.4.20 Eye diagram of the received signal 

 

The simulation was run to evaluate the BER performance for this case having set the 

simulation parameters to the values of L from 1 to 3, h taking the values of 0.2, 0.25, 

0.3 at a time, and IF filter bandwidth BT=1.5.  In order to obtain reasonable BER 

measures, accurately evaluate the channel effects, and to simulate an average call 

duration of 2 minutes the simulation was carried out for 12000 DECT’s frame time each 

simulation test run.  For each frame duration (10ms), one of the 24 time slots was 

simulated to assess the quality of the link for a single user.  Table 4.3 summarizes the 

main simulation parameter values. 
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Parameter Value 

Pre-modulation filter 2RC 

Modulation index 0.3 

IF BT product  1.5 

Post-detection BT product  1.1 

Simulation run time 12000 frames 

Fig 4.3 Simulation parameters values 

 

The simulation output shown in Fig.4.21 reveals that h=0.3 is the optimum value of 

modulation index when Raised Cosine filter with pulse length, L=2 is used as pre-

modulation filter. 

 

 

 

Fig.4.21. Measured BER performance for 2RC-shaped CP-QFSK 

 

Fig. 4.21. above demonstrates an improvement of 1.5 dB over the Gaussian case and a 

slight degradation of 1 dB in performance compared to LSRC.  However, considering 
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the partial response spectral compactness and ACI supremacy of LRC over others 

studied so far, it is concluded that 2RC is the optimum filter for shaping the quaternary 

data prior to modulation in the proposed CP-QFSK system.  Comparing this measured 

performance to that of the conventional binary GMSK system reported in chapter 3 

Fig.3.11, an average degradation of about 7 dB has been noticed. 

Using a closed form expression for the probability of error of digital FM perturbed by 

AWGN with discriminator detection [1, 25], a theoretical bit error rate was computed 

by means of a program [appendix A], output of which was called into a MATLAB 

subroutine to plot the BER against  as shown in figure 4.22 below.  This 

calculated results agree well with the results obtained by computer simulation presented 

in Fig.4.21. 

 

 

Fig.4.22. Theoretical BER performance for CP-QFSK 

 

SUMMARY: 

In this chapter, an overview of the CP-QFSK modulation scheme including theoretical 

background and rationale for proposing it as a dual data rate alternative system for the 

b oE N/
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current binary GMSK modulation system was given at the very outset.  On those 

grounds, a system model was designed.  Simulation tests were carried out in order to 

assess system performance in the presence of noise when varying the RF spectrum 

through baseband shaping, and also to define the role of channel filtering in the 

obtainable performance and determine optimum system parameter values that are 

necessary to maintain a power spectrum that fits within the DECT spectral mask.  To 

that end a simulation investigation into a range of pulse shaping functions, channel 

filtering has led to 2RC pre-modulation pulse shaping with h=0.3, pre-detection filter 

normalized equivalent noise bandwidth B=1.5 were found to be the optimum system 

parameter values.  These obtained simulation results have been verified by theoretical 

computations result of which are presented in fig. 4.22.  

BER performance results presented in this chapter revealed that the proposed CP-QFSK 

system quality is inferior to the binary GMSK system by almost 7dB on average.  This 

degradation in system quality was shown to be primarily due to the domination of the 

ISI. 

So far the system performance evaluation has been carried out under static channel 

conditions i.e. in the presence of AWGN conditions only.  Thus, the system 

performance under the indoor propagation channel conditions would have to be 

investigated in the following chapter. 
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CHAPTER 5 

 

Performance of CP-QFSK System under different channel 

conditions 

 

5.1 CP-QFSK System Performance in non-fading environments  

There are many sources of interference to mobile communications systems.  The effect 

of multipath-free i.e. Gaussian noise channel only has already been investigated so far 

which serves as an optimum media.  In mobile radio communications systems where a 

frequency re-use strategy is employed, the receiver in any cell operating on any channel 

is subjected to Co-Channel Interference (CCI) from the equivalent cells in surrounding 

clusters, and to Adjacent Channel Interference (ACI) from utilization of the adjacent 

channels within its own cluster and the adverse effects of the multipath channel will all 

be the focus of this chapter. 

 

5.1.1 Adjacent Channel Interference (ACI) 

This type of interference is characterised by unwanted signals from other frequency 

channels “spilling over” or injecting energy into the channel of interest.  The proximity 

with which channels can be located in frequency is determined by the modulation 

spectral roll-off and the width and shape of the main spectral lobe [1]. In multicarrier 

systems such as the cellular mobile/personal communications networks, channel 

spacing (and in turn spectral efficiency) is determined by the maximum level of 

adjacent channel interference that can be tolerated by the modulation scheme.  In 

DECT, the adjacent channel requirements are dictated by the adjacent channel re-use.  

With the spectrum currently available (120 duplex timeslots) and the geographical re-
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use of physical channels, there should be no need for a given RFP to use an adjacent 

channel in the same timeslot, and hence, no requirement for high isolation between 

adjacent channels.  The isolation need only be sufficient to cover the use of adjacent 

channels in adjacent cells [2]. 

With a limiter discriminator detector receiver, an isolation of only 25-30 dB would 

therefore be required yielding a moderate constraints on out-of-band radiation, and 

modest IF filter requirements [3, 4].  Moreover, while operating on different carriers, 

each call connected to the same base station always uses different time slots.  This 

greatly reduces the in-system interference risk due to intermodulation or poor adjacent 

channel attenuation [5]. 

In simulating the ACI, as regards the propagation media, it has been assumed, in order 

to emphasize the interference effects, an ideal multipath-free situation, as regards both 

the useful channel and the interfering ones.  Besides, the interfering signal 

characteristics are assumed to be of the same kind as the useful one, and also the 

adjacent channels are symmetrically placed around the useful channel having the same 

amplitudes.   The relative ACI as shown in Fig. 5.1 below is the ratio between the 

Signal to Interference (S/I) power values before and after the IF filter for an adjacent 

channel interferer. 
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Fig. 5.1 Relative ACI vs channel spacing 
 

With a receiver IF filter having BW=1.5, an adjacent rejection factor of around 40 dB 

has been achieved at a channel spacing of 1.5 times the symbol rate.  The results shown 

in Fig.5.1 above confirm that the proposed CP-QFSK modulation causes significantly 

less ACI than the conventional (binary) GMSK, and hence is more spectrally efficient 

in a multichannel system. 

 

5.1.2 Co-Channel Interference (CCI)  

Another common source of distortion is that of co-channel interference from mobile 

systems using the same frequencies.  This interference is caused by an interfering 

waveform appearing within the signal bandwidth.  It can be introduced by a variety of 

ways, such as accidental transmissions, insufficient vertical and horizontal polarization 

discrimination, or by radiation spill over from an antenna sidelobe (low-energy beam 
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surrounding the main antenna beam).  It can be brought about by other authorised users 

of the same spectrum [1].  It is quite important to attempt to quantify and assess the 

effects of such interference as this is potentially destructive source of distortion in a 

mobile system.  A cellular system is the most sophisticated technique currently in use 

for area coverage.  It is as mentioned in the first chapter based upon the principle of 

frequency re-use, whereby if a fixed number of radio channels are available for use for a 

given mobile communications system, they are divided into a number of sets.  Each set 

being allocated for use in a small area called cell which is usually served by a single 

base station.  For planning purposes, the service area is divided into cells in a regular 

fashion, often the hexagon is used.  The distance between the centres of the nearest two 

cells which have the same frequency assignment is known as the re-use distance.  The 

larger the re-use distance, the lower the interference due to common use of the same 

channel (CCI) [6]. 

It should be noted at this point, that a protection ratio can be defined.  This is the 

minimum ratio of wanted to interfering signal power at which acceptable reception can 

be obtained.  Digital schemes require less protection, since they are inherently binary by 

nature and errors are correctable.  Cell size is determined by the coverage which is in 

turn decided upon by the signal strength in each cell, and if all cells are approximately 

the same size and each base station transmits the same power, then the co-channel 

interference is independent of the transmitter power.  Co-channel interference can be 

experienced by both the base station and the mobile receivers in the centre cell.  The 

interference is the sum of the interference from the individual cells surrounding the 

centre cell. 

In the simulation , six interfering sources were combined with a transmission in the 

centre cell.  The interference to the centre cell transmission was then measured by the 
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use of bit error rates.  It was assumed that the transmission was from a base station at 

the centre of the cell to a mobile on the cell boundary.  This effectively meant that the 

main transmission levels were minimised, whilst the co-channel interference was 

maximised, i.e., a worst case scenario was being considered. 

The first step towards simulating this scenario was to use the CP-QFSK modem that has 

already been designed and used in the measurement of BER under AWGN channel in 

the previous chapter, as the system which transmits the desired useful signal.  Blocks 

were then designed to simulate the interfering transmitters themselves.  These were 

essentially based on the transmitting parts of the aforementioned CP-QFSK system 

from which the wanted useful signal is generated.  To simulate the propagation path 

loss, an attenuator was introduced at the output of each interfering transmitter to 

account for the propagation loss between the transmitter and the receiving mobile 

handset.  This configuration is shown below in the top-level block diagram of Fig.5.2. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Block diagram of the simulated CCI 
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In the above diagram, I, I1, I2 . . ., Im = digital signal inputs of the interfered and 

interfering transmitters, TX, TX1, TX2, . . ., TXm = interfered and interfering CP-QFSK 

transmitters, Ft, Ft1, Ft2 . . ., Ftm = transmit filters, A1, A2,. . ., Am = attenuators, Fr = 

receive filter of the interfered system, RX = interfered CP-QFSK receiver. 

All blocks were thoroughly tested prior to implementation in the main system.  In this 

simulation scenario the attenuated interfering signals were then added to the wanted 

signal and AWGN by a process of simple addition.  The combined signal was then 

demodulated and the regenerated data signal was input to the BER counter together 

with the source user data to have a measure of BER.  

It is worth mentioning here that the integer seed of the user data of the wanted and 

interfering signals ( I,I1,...., Im) were set to different large odd numbers to represent the 

variability in the data pattern being sent, and the parameters of all the modulators and 

the demodulator are the same as those which have been optimised in the last chapter. 

BER against S/I has been plotted in Fig.5.3 where at each Eb/No level, the S/I was 

varied in the range of 0-40 dB, and in each case the error rate was measured. This has 

been experimented having Eb/No as a parameter in each case. 
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Fig.5.3 CP-QFSK system Performance under co-channel interference 

 
The first point to note here is that the received signal suffers from significant level of 

interference i.e., the curves level off at high values of S/I, causing BER to rise over the 

tolerable value.  Comparing these results with those obtained from the AWGN case 

reported in Fig.4.21 of the last chapter, it is obvious that to achieve a certain level of 

BER, a higher S/I ratio is required than the equivalent level of Eb/N. 

  

5.2 CP-QFSK system performance in fading environments 

Determination of the optimum system requires knowledge and modelling of the 

propagation environment as the mobile radio propagation channel places fundamental 

limitations on the performance of radio communications systems.  So far we have 

examined the performance of the system under investigation in non-fading 

environments.  The system performance under fading conditions is investigated next. 
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5.2.1 The Multipath Fading Channel   

An inherent characteristic of a radio system is that it is difficult to restrict the radio 

signal to a single route.  Often, significant signals are received by reflection and 

scattering from buildings, etc.: there are multiple paths from transmitter to receiver.  

Indeed in many systems, and especially in personal and mobile radio systems, it is rare 

for there to exist one strong line-of-sight path between transmitter and receiver.  Usually 

all signals on these paths are subject to different delays, phase shifts and Doppler shifts, 

and arrive at the receiver in random phase relation to one another.  The interference 

between these signals gives rise to a number of deleterious effects which are the most 

serious problems of the mobile and many other radio channels, and which are 

collectively known as multipath.  The most important of these problems are fading and 

dispersion.  

Fading is due to the interference of multiple signals with random relative phase.  

Constructive and destructive interference between them cause random variations in the 

amplitude of the received signal.  This will in turn increase the error rate in digital 

systems, since errors will occur when the signal-to-noise-ratio drops below a certain 

threshold.  If the transmitter or receiver is in motion, as is the case of a mobile radio 

system, then the relative phase shifts of the different paths will change with time, 

potentially quite rapidly.  

The in-building environment is subject to an extremely harsh multipath conditions that 

may sometimes exceed the symbol length.  A multipath propagation medium contains 

several paths by which energy travels from the transmitter to the receiver.  There is a 

propagation delay and an attenuation factor associated with each path.  In the invariant 

environment, the multipath components are static and arrive sequentially at the receiver, 
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where there are constructive or destructive interferences depending on the differential 

time delays, and on the differential phase.  However, in real life we have a dynamic 

phenomenon in which both attenuation factors and propagation delays are continuously 

changing as a result of variations in the structure of the medium, giving rise to a highly 

complex time-varying transmission channel.  When a signal with a finite bandwidth is 

radiated, the effects of multipath propagation will be different for each frequency 

component.  If two frequencies are close, then the different propagation paths have 

approximately the same electrical length for both components, and their amplitude and 

phase variations will be very similar.  As the frequency separation increases, the 

differential phase shifts along various paths are quite different at the two frequencies.  

Signals with a bandwidth greater than that over which the spectral components are 

affected in a similar way will consequently become distorted.  The phenomenon is 

known as frequency-selective fading [7], and the bandwidth over which the spectral 

components are affected in a similar manner is known as the coherence bandwidth. 

Since the wavelength is very short in the microwave frequencies, small variations in 

path length results in significant changes in the RF phase.  These phases may be 

considered to be uniformly distributed between (0,2 ).  Hence, the movement of the 

receiver antenna can cause rapid fluctuations in the signal level.  These rapid 

fluctuations in the signal level of the received signal are termed signal fading.  The short 

term variation in the signal level, referred to as rapid fading, is due to the obstacles in 

close proximity to the receiver [8-11].  On the other hand, the long term variation, 

referred to as slow fading are due to movements over large distances that produce large 

variations in the overall path length between the mobile terminal and the base station.  

Multipath propagation creates some of the most difficult problems associated with the 

mobile radio environments [12, 13], namely: 



Chapter 5                                                                        Performance of CP-QFSK in indoor environment 

157 

 

- delay spread 

- phase and amplitude variations 

  

5.2.1.1 Delay Spread  

In a digital system the delay spread due to reflections and scattering of electromagnetic 

waves causes each symbol to overlap with preceding and following symbols, producing 

ISI.  The degree of ISI due to delay spread is dependent upon the bit rate, modulation 

level and transmission frequency.  The bit rate and modulation levels set the symbol 

duration while transmission frequency sets the amount reflected power and the shape of 

the impulse response of the channel.  The square of the impulse response of the channel 

is referred to as power delay profile (PDP).  At high bit rates where the symbol duration 

is similar to delay spread in magnitude, the ISI due to multipath can be quiet severe.  

Hence, delay spread sets the limit on the symbol rate in mobile radio channel.  An 

estimation of the delay spread for wireless communication systems is provided in [14]. 

 

5.2.1.2 Rayleigh Fading  

In indoor environments, because of the surrounding obstacles there is often no line-of-

sight between the transmitter and the receiver.  Communication is, therefore, mainly by 

means of multipath reflections and scattering of the electromagnetic waves from the 

surrounding obstacles.  In the absence of the line-of-sight, the receiving signal is made 

up of a large number of component waves arriving at the receiver.  Assuming that the 

reflections components and scattering consist of independent, randomly phased vectors 

with a random angle of arrival, then the probability density function of the envelope, 

from the central limit theorem [15] is 
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𝑃𝑟(𝑟) =
𝑟

𝜎2
𝑒

−
𝑟2

2𝜎2  
                                                        (5.1) 

 

Which is a Rayleigh distributed with a mean power  and r2/2 is the short term fading 

power. 

 

5.2.1.3 Rician Fading  

When there are fixed scatters or signal reflectors in the medium or a direct line-of-sight 

in addition to the randomly moving scatters, the received signal no longer has a zero 

mean.  The envelope of such a signal is Rician distributed and the channel is said to be 

Rician fading channel.  The steady, non-random component alter the nature of the 

fading envelope and its statistics [16], and such envelopes can be represented as 

 

𝑃𝑅(𝑟) = 𝑒−(𝑟2+𝑠2)/(2𝜎2)𝐼0 (
𝑟𝑠

𝜎2
) ;       𝑟 ≥ 0                                    (5.2) 

 

The probability of a deep fade in Rician fading channels with a relatively large K-factor 

(the ratio of line-of-sight power to the echo power oftenly quoted in dB) i.e. mild 

multipath conditions, is extremely small, virtually non-existent [17]. 

 

5.3 Characterisation of the Multipath Fading Channel  

Several studies have been reported on propagation channels, some based on propagation 

simulations [18, 19] and others reporting measurements [9, 20].  In modelling the 

channel, the propagation medium is assumed to act as a linear filter [21, 22] such that if 

s(t) is the transmitted signal, the received signal x(t) is equal to 
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𝑥(𝑡) = ∑ 𝛼𝑖

𝑚

𝑖=1

(𝑡)𝑠(𝑡 − 𝜏𝑖(𝑡))                                                    (5.3) 

 

Where, )(ti  is a time-varying propagation delay, and )(ti  is the attenuation factor.  

If xi  is the path length difference between the shortest path and the ith path at time 

instant t, we get ct xii /)(  , where c is the velocity of light.  The path length 

spread Xs is the largest value of x  of paths with non-negligible responses. 

Assuming that s(t) is a carrier signal with frequency fc without any information signal 

modulated on it.  If Es is the average symbol energy, then 

 

𝑠(𝑡) = √𝐸𝑠 . 𝑒𝑗2𝜋𝑓𝑐 𝑡                                                                  (5.4) 

                                             

so, x(t) can be written as 

 

𝑥(𝑡) = √𝐸𝑠 [∑ 𝛼𝑖(𝑡)𝑒−𝑗2𝜋𝑓𝑐𝜏𝑖(𝑡)

𝑚

𝑖=1

] 𝑒𝑗2𝜋𝑓𝑐𝑡                                        (5.5) 

 

Now the equivalent low-pass received signal r(t) after demodulation is 

 

𝑟(𝑡) = √𝐸𝑠 ∑ 𝛼𝑖(𝑡)𝑒−𝑗2𝜋𝑓𝑐𝜏𝑖(𝑡)

𝑚

𝑖=1

                                                   (5.6) 
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The argument of r(t) can be considered to be uniformly distributed over ]2,0[  .  

Because  i (t) is identically distributed for all i and does not depend on e
tj icf )(2  , 

the mean value of the complex signal r(t) is 0. 

The central limit theorem states that if m approaches  , then r(t) is a complex-valued 

variable with Gaussian probability distribution function.  More specifically, both the 

imaginary and the real component of r(t) are independent zero-mean Gaussian 

distributed variables, so, at any instant t, the envelope 

 

|𝑟(𝑡)| = √𝑅{𝑟(𝑡)}2 + 𝐼{𝑟(𝑡)}2                                                (5.7) 

 

is Rayleigh-distributed.  In this model, s(t) is transmitted and a complex AWGN 

component n(t) is added, so the received signal can be described as 

 

𝑟(𝑡) = 𝛼(𝑡)𝑒−𝑗𝜑(𝑡)𝑠(𝑡) + 𝑛(𝑡)                                                  (5.8) 

 

The functions )(t  and )(t  are called the Rayleigh fading envelope and the 

random phase fluctuation respectively and they form together the channel state of a 

Rayleigh fading channel at which the signal component is multiplied with a Rayleigh 

distributed variable )(t  with variance 1)}({
2

tE  , with white Gaussian noise 

with variance 2/0

2

N  is added.  Typical parameters of the multipath propagation 

are, the multipath intensity profile )(
c

 and the multipath spread Tm (the maximum 

delay   over which )(
c

 is essentially non-zero).  The reciprocal of multipath 

spread Tm is the coherence bandwidth [8]. 
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(∆𝑓)𝑐 =
1

𝑇𝑚
                                                               (5.9) 

 

The coherence bandwidth is a measure for the frequency selectivity of the channel.  

Since )( f
c

  is directly related to Tm, the frequency selectivity is closely connected to 

the multipath propagation phenomenon.  A frequency selective channel is a channel for 

which )( f
c

  is small in comparison to the bandwidth B of the transmitting channel.  

Conversely, a flat fading channel (or frequency non-selective channel) is a channel for 

which )( f
c

  is large compared to B. 

 

5.4 The Multipath Fading channel Modelling and Simulation 

The indoor propagation measurements and results at and around 1.8 GHz performed in 

indoor environments, particularly in typical DECT environments such as an office type 

have indicated that delay spreads  in the range of 100ns to 200ns (0.2 of the symbol 

duration) are likely to be encountered in such environments [22-25] yielding the 

channel coherence bandwidth being larger than that of the transmission bandwidth of 

the designed CP-QFSK system, and consequently the received signal envelopes for 

different frequency components would vary similarly due to the frequency separation 

being smaller than the coherence bandwidth of the propagation channel giving rise to 

the channel being frequency non-selective channel i.e. flat fading channel.  Another 

aspect of such narrowband channel concerns the phase rotation introduced as a result of 

the very close arrivals (almost instantly) of the multipath components and in turn the 

resultant phasor is having almost a constant phase.  However, a small phase rotation 

will appear in practice, but it varies very slowly.  This slow varying characteristics of 
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the phase in the narrowband channel permits the assumption that the phase remains 

constant during the signal transmission (or at least for a very large part of it).  Hence in 

modelling the narrowband channel only the magnitude variations are considered. 

 

5.4.1 Rayleigh Fading Simulator 

The fading simulator employed here is based on the principle presented in [1, 26].  The 

multipath channel is simulated by 6-tapped-delay-line FIR filter as shown in Fig. 5.4.  

The excess delays and magnitudes of echoes are defined relative to the line of sight 

(LOS).  The amount of multipath interference in total is adjusted by choosing the 

maximum echo amplitude.  

 

 

 

 

 

 

 

 

 

 

The minimum echo amplitude is set to -40dB.  The phases of all components are 

normalized, hence, the amplitudes of echoes are kept constant in the simulation and the 

resultant phasor varies in magnitude and phase according to a Rayleigh or Rician 

distribution.  The echo phases are defined by random numbers drawn from a uniform 

random number generator between 0 and 1 and multiplied by 2π.  The channel consists 

Fig. 5.4 PDP model 
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of multipath components combining at the receiver and resulting in fading.  The signal 

strength at the receiver obeys Rayleigh or Rician statistics since the sum of Rayleigh 

variants is another Rayleigh variant (central limit theorem). 

The generated output of the fading simulator is shown in figure 5.6 and it closely 

follows a Rayleigh probability density function. 

 

 

Fig.5.5 Measured Rayleigh PDF 

 

5.4.2 Performance of CP-QFSK in Rayleigh Fading Channel 

In order to obtain reasonable BER measures, accurately evaluate the channel effects, 

and to simulate an average call duration of 2 minutes the simulation was carried out for 

12000 DECT’s frame time each simulation test run.  For each frame duration, i.e. 10 

ms, one of the 24 time slots was simulated to assess the quality of the link for a single 

user.  The BER was recorded for various b oE N/  and plotted as shown in fig.5.7 for a 

channel with single and two Rayleigh fading path models.  A high irreducible error rate 

caused by the Rayleigh fading conditions especially in the case of 2-path Rayleigh 

fading case can be seen from Fig.5.7.  It is apparent from these simulation results that at 

typical delay spreads, between 100ns to 200ns, the introduction of some adaptive 

scheme such as diversity reception would be inevitable. 
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Fig.5.7 Q-CP-FSK performance in static and Rayleigh fading channels 

 

Summary 

This chapter has evaluated the CP-QFSK system performance in the portable 

communications channel.  It started by assessing the adverse effects of non-fading 

conditions, such as adjacent channel interference and co-channel interference, and then 

the fading effects.  Simulation output results demonstrated that an adjacent channel 

rejection factor of around 40 dB has been achieved at channel spacing of 1.5 times the 

symbol rate when the DECT system standards stipulate far less rejection limit criterion 

(25-30 dB), yielding, CP-QFSK modulation system outperforms the conventional 

GMSK system as it causes less ACI and hence is more spectrally efficient in a multi-

channel system.  However, this system has proved to be not co-existing well with other 

interferers when it was tested under CCI conditions, as can be seen from Fig. 5.3. 

When the system was put to test under  fading conditions, the simulation output results 

showed that there has been a severe degradation in system performance caused by 
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Rayleigh fading particularly in the case of 2-path compared to the static case, leading to 

a high irreducible error rate.  This could be perceived from Fig. 5.7 as it reveals that 

there exists a noise floor of about 40 dB, i.e. irreducible error rat of less than 6.10-3 

when more than 1-path fading exist. 

Thus far, it is concluded that the CP-QFSK system is rather an interference limited than 

noise limited.  Hence, some measures have to be undertaken in order to alleviate these 

impairing effects and improve the system performance quality.  Such measures would 

be looked at in the next chapter. 
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CHAPTER 6 
  

Adaptive and Non-Adaptive Techniques 

 

6.1 The Need for Adaptive Techniques  

In a multi-path fading channel such as the DECT indoor channel, delay spread due to 

the variation of the path lengths of echoes arriving at the receiver causes inter symbol 

interference and puts an upper limit on the maximum available bit rate.  The simulation 

results presented in the last chapter showed an excessive signal fading and intolerable 

amount of distortion into the signal-band that led to significant deterioration in the CP-

QFSK system performance.  This necessitates that these impairments need be mitigated 

or minimised.  Simply increasing the transmitter power does not overcome the channel 

effects.  Simulation and analytical results carried out by Sexton, Chaung, and Hummels 

[1-3] also have shown that without the use of adaptive techniques, the maximum 

available bit rate is limited by /1.0Rb
, where   is the rms delay spread.  Also, 

analysis and simulation presented in [4,5] have shown that applying high bit rate 

constant envelope modulation schemes to digital land-mobile radio, without the use of 

adaptive techniques, makes such systems capable of tolerating rms delay spreads only 

of the order of 100ns, which is equivalent to a delay spread in extremely small rooms. 

A particular advantage of multilevel modulation scheme accrues if the TDMA 

multilevel signal has a symbol rate sufficiently low that the mobile radio channel 

exhibits flat fading rather than frequency selective fading.  Thus by ensuring that the 

modulation bandwidth is less than the coherence bandwidth delay dispersion of the 

spectral components in the received signal is avoided and the flat fading can be 

combated by means of diversity techniques [6].  



Chapter 6                                                                                           Adaptive and non-adaptive techniques 

170 

 

From previous DECT indoor radio channel investigations, it has been found that 

antenna diversity not only reduces the fading probability, but it also mitigates the effects 

of time dispersion for a Quasi-narrow-band radio channel.  This is due to the correlation 

between instantaneous power and instantaneous rms delay spread [7]. 

Among the most effective and perhaps the simplest adaptive techniques used to combat 

fading effects and to enhance the system performance up to a required level is the 

diversity reception The theoretical diversity gain in terms of signal distribution is 

thoroughly investigated and analysed in [8].  Antenna diversity is a well-known method 

used to reduce the short-term fading probability and consequently the required fading 

margin.  Hence, this part of the research work focuses on implementing diversity 

techniques for the CP-QFSK system and assessing the gain acquired in order to 

maintain an acceptable system performance. 

 

6.1.1 Diversity Reception Techniques   

The salient feature of wireless transmission is the randomness of the communications 

channel, which leads to random fluctuations in the received signal commonly known as 

fading.  This randomness can be exploited to enhance performance through diversity.  

Diversity is broadly defined as the method of conveying information through multible 

independent instantiations of these random fades.  There are several forms of diversity, 

however, in this chapter we focus our attention on spatial diversity. 

The advantages of diversity reception in high bit rate digital communications systems 

operating over multi path fading channels have been investigated extensively in [9, 10], 

and a variety of techniques have been reported for a variety of applications.  It has been 

reported in the literature that the performance of FSK can be considerably improved by 

using diversity technique.  The ability of diversity systems to reduce the duration of 



Chapter 6                                                                                           Adaptive and non-adaptive techniques 

171 

 

fades implies that another advantage to be gained from the use of diversity is a 

significant reduction in the lengths of error bursts.  Rayleigh fading tends to cause a 

burst of errors when the signal enters a deep fade, and since diversity tends to smooth 

out these deep fades, it not only reduces the error rate, but also affects the error pattern 

by causing the errors to be distributed more evenly throughout the data stream.  This is 

in turn makes the error easier to cope with, and if error correcting codes are used to 

improve error rate, much shorter codes can be used in conjunction with diversity than 

would be necessary without it [11-13]. 

The envelope of a single-frequency radio wave propagation through a multi path 

channel fluctuates in time.  These random fluctuations in time may result in very low 

signal power at the receiver, sometimes below the minimum useful level.  When the 

signal power is below a minimum useful level, the channel is said to be in a deep fade, 

resulting in very large errors at the receiver.  The basic idea behind diversity reception 

is that if two or more radio signals are created sufficiently separated in space, 

frequency, time or polarisation, then fading in these channels will virtually be 

uncorrelated, and the diversity technique makes use of such received signals to improve 

the realised SNR or other performance criterion.  If the same information is received 

redundantly over two or more statistically independent fading channels, then the 

probability of all of the channels being in fade simultaneously is much smaller than the 

probability of a single channel being in fade.  With intelligent processing each symbol 

decision can be based primarily on the version received at high SNR, thereby greatly 

reducing the overall error rate.  For L
th  order diversity with equal mean SNR in each 

branch, the probability of error is the L
th  power of the probability of error for a single 

non-diversity fading channel [14,15].  
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Diversity techniques can be categorised by at least six methods:  Angle diversity, Time 

diversity, Frequency diversity, Polarisation diversity, Space diversity and Multipath 

diversity.  Frequency diversity uses the fact that the fading signals associated with 

different frequencies are uncorrelated.  However, frequency diversity is not a viable 

proposition for conventional mobile radio, since the coherence bandwidth is quite large 

(several MHz in some circumstances), and the frequency spectrum can not be used 

efficiently. 

Other such possibilities are polarisation diversity which rely on the scatterer to polarise 

the transmitted signal, and Field diversity which use the fact that the electrical and 

magnetic components of the field at any receiving location are uncorrelated.  Both these 

methods have their difficulties with the antenna design.  Space diversity methods are 

relatively simple to implement and most convenient to use with mobile radio systems, 

and do not require additional frequency spectrum.  The basic requirement is that the 

spacing of the receiving antennas is chosen so as to individual signals are uncorrelated 

at any time [16].  This can take place at the base station or at the mobile unit as with 

isotropic scattering, the autocorrelation coefficient of the signal envelope falls to a low 

value at distances greater than about a quarter wavelength, and so almost independent 

samples can be obtained at a mobile from antennas sited this far.  At VHF and UHF the 

spatial separation is less than a meter.  At 900 MHz and above, it may be feasible even 

on hand held equipment [17]. 

The received signal at a portable terminal moving through a scattered field fluctuates 

both in amplitude and phase.  For a receiver using an FM limiter-discriminator detector, 

the amplitude fluctuations cause fluctuations in the noisy output from the discriminator 

which can be reduced by implementing diversity scheme [8]. 
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6.1.2 Diversity Combining Methods  

The method of combining the n received signals is important and has an effect on the 

performance improvement.  The most often used diversity combining techniques which 

can be applied to indoor portable radio communications systems are scanning 

combining, Selection Combining, Equal Gain Combining (EGC) and Maximum Ratio 

Combining (MRC).  These methods are listed in increasing order of performance 

improvements.  Among these different combining schemes, there is a trade-off between 

performance and complexity. 

Selection diversity is the simplest of all diversity systems.  It works by selecting the 

strongest incoming signal (the best available diversity path) among n diversity branches.  

This nevertheless requires the estimation and comparison of the quality indicators of all 

available ones, and in ideal system, the signal with the highest instantaneous SNR is 

selected.  However, practical systems usually select the branch with the highest signal 

plus noise. 

The EGC and MRC methods use all the outputs of the receiver then combining them to 

produce an overall output [18-20].  However, the EGC weighs all the channels equally 

prior to combining them, whereas MRC weighs each channel in terms of its SNR before 

combining.  This process of combining may be implemented at different points at the 

receiver producing different levels of complexity and requiring different amounts of 

circuitry repetition in the channel.  If combining takes place after detection, the system 

is known as “post-detection combiner”, otherwise it is known as “pre-detection 

combiner”.  For the former method, more hardware repetition is required but it is 

simpler as co-phasing of the receiver input signals is not necessary, since after 

demodulation all the baseband signals are in phase.  For the latter, there is less hardware 
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repetition of circuitry.  However, the complexity is greater as signals must be co-phased 

before combining [17].  Hence, post-detection MRC diversity technique will be 

employed in the CP-QFSK system to mitigate the effects of fading and time dispersion 

as it provides the largest improvement in signal to noise ratio and BER reduction over 

the other diversity schemes. 

 

6.1.2.1 Maximal Ratio Diversity Receiver  

The MRC diversity reception technique simulated here is performed using post-

detection combining.  Figure 6.1 below shows a block diagram of post-detection MRC 

combiner: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The simplest diversity receiver is a system with two branches, and further 

improvements in system performance can be achieved by increasing the number of 

branches.  However, the largest improvement in performance is achieved by increasing 

the number of branches from 1 (no diversity) to 2.  With more than 2 branches, the 

complexity of receiver design increases significantly with a diminishing return in 

Fig.6.1 Block diagram of post detection MRC combiner 
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receiver performance improvement.  For this reason only 2-branch system is simulated 

here. 

A maximal ratio combining receiver has been constructed using the basic CP-QFSK 

receiver previously designed and the maximal ratio combiner.  The MRC receiver 

consists of 2 receiving branches with the combining being performed after the limiter 

discriminator detection as shown in fig.6.2.  In the simulation, The SNR is measured 

directly after the receiver filter by switching on and off the noise generator and 

switching on and off the transmitter output and hence the signal.  It is also necessary to 

set up the test system for 0dB SNR as a reference level for all other measurements, this 

is achieved as follows : 

The average signal power is 

 

𝑃𝑠̅ =
1

𝐾
. ∑ 𝑆𝑚

2

𝐾

𝑚=1

                                                             (6.1) 

 

Where K is the total number of discrete samples, and S is the discrete signal sample 

level.  The noise power is found out similarly but the noise only is passed to the receiver 

filter.  The average noise power is 

 

𝑃𝑠̅ =
1

𝐾
. ∑ 𝑁𝑚

2

𝐾

𝑚=1

                                                            (6.2) 

                                   

N is the discrete noise sample level.  Therefore, the SNR in dB of the system is 

 

𝑆𝑁𝑅 = 10 log10

𝑃𝑠̅

𝑃𝑛̅

                                                           (6.3) 
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In order to relate the value of Eb/N0 in dB to that of the measured SNR as measured in 

the simulation the following equation is used 

 

10 log10

𝐸𝑏

𝑁0
= 10 log10

𝑃𝑠̅

𝑃𝑛̅

+ 10 log10 𝐵𝑁. 𝑇𝑏                                  (6.4) 

 

Where BN is the equivalent noise bandwidth of the receiver filter and Tb is the bit 

period.  The Rayleigh fading channel previously designed, where the time variant 

fading nature of the channel is realised by uniformly distributed random phases, has 

been used by employing two versions of this channel with different seed values of the 

random number generators that update the set of random phases in each channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.2 Block diagram of post-detection MRC receiver 
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With maximal ratio combining each receiver signal is weighed in proportion to its own 

signal voltage to noise power ratio before summation.  Figure 6.3 shows the block 

diagram of the 2-branch MRC implementation: 

 

 

 

 

 

 

 

 

 

 

The combined MRC output signal envelope is equal to: 

 

𝑟𝑚𝑟𝑐 = ∑ 𝑎𝑘. 𝑟𝑘

𝑚

𝑘=1

                                                          (6.5) 

 

Where ak
, is the branch weighting factor, rk

 is the branch signal envelope and rmrc
 is 

the output of the combiner.  The total output noise can be written as: 

 

𝑁𝑡𝑜𝑡 = 𝑁 ∑ 𝑎𝑘
2

𝑚

𝑘=1

                                                              (6.6) 

 

Where N is the noise power of an individual branch.  The resulting SNR is: 
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𝛾𝑚𝑟𝑐 =
𝑟𝑡𝑜𝑡

2

2𝑁𝑡𝑜𝑡
                                                                (6.7) 

 

The weighting factor Nra kk
/ . 

The output SNR is equal to the sum of the SNR’s of the branch signals and is the best 

that can be achieved by any linear combiner. The simulation of the above 2-branch 

post-detection MRC system was run for quite sufficient length of time to ensure enough 

number of errors was accumulated to obtain at least a BER of 10-5.  The output of the 

simulation is exhibited graphically in Fig. 6.4 below 

        

 

Fig 6.4. Performance of MRC diversity CP-QFSK receiver 

 

Fig. 6.4 reveals that there is a significant performance improvement obtained when a 2 

branch maximal ratio diversity CP-QFSK receiver was employed.  This system provides 

a diversity gain of about 5 dB on average. 
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6.2 The Need for Non-adaptive Techniques  

When digital data is transmitted over a noisy channel, there is always a chance that the 

received data will contain errors due to mobile terminals having small antennas and are 

usually not provided with adequate RF sensitivity, and the power is limited because of 

the use of handheld terminals it is difficult to achieve the desired carrier to noise ratio.  

Clearly an extra gain must be provided.  The user generally establishes an error rate 

above which the received data are not usable.  If the received data will not meet such 

requirement, one solution is the use of error-correction coding to overcome signal 

degradation due to channel characteristics and hence reduce errors to a level at which 

they can be tolerated.  In mobile applications, coding is often used. 

The use of coding will introduce a gain, which is essential to achieve a link margin that 

will provide good quality links.  This coding gain can be expressed in decibels in the 

required Eb/No to achieve a specified error performance of an error correcting coded 

system over an un-encoded one with the same modulation scheme [21].  

 

6.2.1 Error Control Coding in Communications Systems  

Error Control coding is concerned with methods of delivering information from a 

source to a destination with a minimum of errors.  A coding technique in general is of 

two types: source coding and channel coding.  The source coding technique refers to the 

encoding procedure of the source information signal into digital form.  On the other 

hand, channel coding is applied to ensure adequate transmission quality of the signals.  

Channel coding is a systematic approach for the replacement of the original information 

symbol sequence by a sequence of code symbols in such a way as to permit its 

reconstruction.  Here, attention is focused on the channel encoding technique.  Channel 
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coding can be classified into two major areas: waveform coding and structured 

sequences.  The objective of waveform coding such as M-ary signalling, antipodal, 

orthogonal, bi-orthogonal, and trans-orthogonal signalling is to provide an improved 

waveform set so that the detection process is less subject to errors.  Structured sequence 

coding, such as the block and convolutional coding schemes, deal with transforming 

data sequences into better sequences having ordered redundancy in bits.  The redundant 

bits can then be used for the detection and correction of errors.  Here our focus would 

only be on the structured sequences coding [6]. 

The early theoretical work demonstrated in a landmark paper of Shannon stated that by 

proper encoding of the information, errors induced by a noisy channel or storage 

medium can be reduced to any desired level without sacrificing the rate of information 

transmission or storage [22].  Essentially, he proved that if the data source rate (Rm) is 

less than the channel capacity (C), communication over a noisy channel with an error 

probability as small as desired is possible with proper encoding and decoding.  The 

price paid for reducing the error rate is increased complexity and bandwidth (B).  In the 

AWGN channel the channel capacity is 

 

𝐶 = 𝐵. log2 (1 +
𝑃

𝑁0𝐵
)                                                       (6.8) 

 

Where P is the received signal power and N0 is the single-sided noise power spectral 

density.  Substituting P=Eb.Rm and normalizing by the bandwidth B in the above 

formula results in  

𝐶

𝐵
= log2 [1 +

𝐸𝑏

𝑁0
(

𝑅𝑚

𝐵
)]                                                       (6.9) 
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Since Shannon’s work, a great deal of effort has been expended on the problem of 

devising efficient encoding and decoding methods for error control in a noisy 

environment.  The entire field of error control is devoted to the development of 

techniques to achieve the performance that Shannon proved possible [23]. 

Recent developments have contributed toward achieving the reliability required by 

today’s high-speed digital systems, and the use of coding for error control has become 

an integral part in the design of modern communication systems and digital computers 

[24]. 

Error control can be provided by introducing redundancy into transmissions.  This 

means that more symbols are included in the message than are strictly needed just to 

convey the information, with the result that only certain patterns at the receiver 

correspond to valid transmissions.  Once an adequate degree of error control has been 

introduced, the error rates can be made as low as required by extending the length of the 

code, thus averaging the effects of noise over a long period.  Experience has shown that 

to find good long codes is more easily said than done.  Present-day practice is not to use 

codes as a way of obtaining the theoretical channel capacity but to concentrate on the 

improvements that can be obtained compared with uncoded communications.  Thus the 

use of coding may increase the operational range of a communications system, reduce 

the error rates, reduce the transmitted power requirements or obtain a blend of all these 

benefits [25].  Apart from the variety of codes that are available, there are several 

general techniques for the control of errors and the choice will depend on the nature of 

the data and the user’s requirements for error-free reception. 

The most complex techniques fall into the category of forward error correction, where it 

is assumed that errors will occur and a code capable of correcting the assumed errors is 

applied to the messages.  Alternatives are to detect errors and request retransmission, 
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which is known as retransmission error control, or to use inherent redundancy to 

process the erroneous data in a way that will make the errors subjectively unimportant.  

The latter technique is not considered here, rather, this chapter focuses on forward error 

correction, and in particular, the BCH codes, which are among the most important block 

codes available, since they can achieve significant coding gain and also the complexity 

of their decoders is such that they are implementable even at high speeds [23]. 

The subjects of information and coding theory are extensively treated in literature.  The 

discussion here is brief and is intended to be introductory.  References [26] through [30] 

provide excellent exposition of the subject.  

Error-correction coding is essentially a signal processing technique that is used to 

improve the reliability of communication on digital channels.  There exists many 

different forms of coding schemes, but they all share the following two common 

features : 

1. Use of redundancy.  Coded digital messages always contain extra or redundant 

symbols.  These symbols are used to accentuate the uniqueness of each 

message.  They are always chosen so as to make it very unlikely that the 

channel disturbance will corrupt enough of the symbols in a message to destroy 

its uniqueness.  In order to correct errors in a message represented by sequence 

of n binary symbols, then it is absolutely essential not to allow the use of 2
n

 

possible sequences as being legitimate messages.  Thus, to correct all patterns 

of t or fewer errors, it is necessary for every legitimate message sequence to 

differ from every other legitimate message sequence in at least 2t + 1 positions.  

The number of positions in which any two sequences differ from each other is 

referred to as Hamming distance, d, between the two sequences.  The smallest 
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value of d for all pairs of code sequences is called the minimum distance of the 

code and is designated as dmin. 

2. Noise averaging.  This averaging effect is obtained by making the redundant 

symbols depend on a span of several information symbols.  It has been proven 

in [19] that for a fixed block error rate, the fraction of errors that must be 

corrected decrease with increasing block length, which indicates the potential 

for performance improvement that is obtained through noise averaging.  

The function of the two new elements i.e. the encoder and the decoder will be discussed 

in the succeeding sections:  

 

 

   

 

 

 

 

 

Figure 6.5 Block diagram of a coding system 

 

There are two different types of codes in common use today, block codes and 
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codes is the presence or absence of memory.  Conceptually, the encoder for a block 
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output sequence that contain more symbols than the input, i.e. redundancy has been 

added.  The term “memoryless” indicates that each n-symbol block depends only upon a 
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contain memory elements.  This type of encoder can be implemented with a 
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combinational logic circuit.  A commonly used description of a code is the code rate 

(R), which is the ratio of input to output symbols in one frame (R = k/n).  A low code 

rate indicates a high degree of redundancy, which is likely to provide more effective 

error control than a higher rate at the expense of reducing the information throughput. 

The encoder for a convolution code is a device with memory that accepts binary 

symbols in sets of k0 and outputs binary symbols in sets of n0.  Each set of n0 output 

symbols is determined by the current input set and a span of v of the proceeding input 

symbols.  The memory span of the encoder is, therefore, v + k0 input symbols.  The 

parameter v + k0 is often referred to as the constraint length of the code.  A general 

block diagram of an encoder is presented in figure 6.6 below: 

 

 

 

 

 

 

 

 

 

Fig.6.6 Block diagram of an Encoder 

 

The decoder is a device that inverts the operation of the encoder, and its job is to decide 

what the transmitted information was.  It is able to do this because only certain 

transmitted sequences (codewords) are possible and any errors are likely to result in 

reception of a noncode sequence.  On a memoryless channel, the best strategy for the 

decoder is to compare the received sequence with all the codewords, taking into account 

the confidence in the received symbols, and select the codeword that is closest to the 
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received sequence.  The measure of difference between sequences is known as distance, 

and this method is called minimum distance decoding. 

Regardless of the code and the decoding method, there are a number of common 

characteristics of coding systems.  The first is that they aim to correct the most likely 

errors, but have to accept that less likely errors will not be handled correctly.  The other 

main point is that when error correction is being carried out, if the decoder does not get 

it completely right, then it will make several errors and may well make things worse.  

For a thorough mathematical treatment of these issues of coding, see references [30-33]. 

 

6.2.2 Simulation of BCH-Encoded CP-QFSK System 

Bose-Chaudhuri-Hocquengham (BCH) codes form a large class of powerful random 

error-correction cyclic codes and are among the most important block codes available 

since they exist for a wide range of rates, they can achieve significant coding gain, and 

the complexity of their decoders is such that they are implementable even at high 

speeds, and they also are widely applied in a variety of modern communications 

systems particularly in cellular mobile telephony.  The BCH codes are linear cyclic 

codes which are always defined by their code generator polynomial.  This class of 

binary codes provides the communications system designer with a large selection of 

block lengths and code rates.  Specific values for t and k can be found using algebraic 

techniques for determining code polynomials, however, there exists tables like the one 

presented in [23] which gives all of the known values for n, k, and t for BCH codes with 

block lengths up to n = 1023, see [appendix B].  It is noted that the code rate R = k/n 

varies over a wide range and that the number of errors which can be corrected increases 

as the code rate decreases.  The code polynomials which generate such codes can be 

found in reference [28]. 
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The coding gain achievable using BCH codes varies as the code parameters n and k 

vary, but in all cases the performance improves as the block length n increases.   The 

function of the BCH decoder, on the other hand, is to produce an estimate of the error 

polynomial which was most likely to have occurred given the received polynomial.  

BCH decoders are commercially available and are widely used. 

Scanning through the table of the possible BCH code parameters given in appendix B, 

several standard BCH code values were examined and the (63 , 36) BCH code was 

found to be quite adequate as this code yields a reasonable degree of redundancy for 

effective error correction at the expense of minimum reduction in the information 

throughput.  This code length and ability to correct large number of errors in code block 

does not allow an expansion of the bandwidth beyond the channel bandwidth. 

The BCH encoder was introduced in the CP-QFSK system after the random binary data 

source i.e. before the DAC (Digital to Analogue Converter) circuit and the BCH 

decoder was introduced after the ADC (Analogue to Digital Converter) circuit and 

before the BER meter.  The internal structure of the modelled BCH coder and decoder 

circuits are presented in appendix [C].  The simulation was carried out with the same 

CP-QFSK system parameters defined in chapter 4.  Figure 6.7 shows the input data 

applied to the encoder 

 

 
Fig. 6.7 BCH encoder input data stream 
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The encoded data coming out of the BCH encoder is shown in Fig. 6.8.  

 

Fig. 6.8 BCH encoder output data stream 

 

Fig.6.9 displays the detected data input to the decoder with 5 errors encountered 

compared to fig. 6.8. 

 

Fig.6.9. Detected data 

 

When the above detected data was input to the BCH decoder, these 5 errors were 

corrected as shown in figure 6.10 below.  Clearly system delay has been created and 

this is evident from the above figures. 
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Fig. 6.10.  Decoded data 

 

To assess the coding gain achieved using coding, a simulation test was carried out 

output of which is graphically displayed in Fig. 6.11.  For reference the un-coded CP-

QFSK and the binary GMSK results are included.   

 

 

Fig. 6.11.  BCH-encoded-CP-QFSK performance. 
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Fig. 6.11 demonstrates that the overall system performance in terms of BER is still 

insufficient for the data link quality specified by the DECT system standard. It is 

inferior to that of un-coded system by about 3dB margin due to substantial effects of 

channel interference. 

 

SUMMARY: 

 
In this chapter, a number of adaptive and non-adaptive techniques were explored and 

from the theoretical background presented at the outset, two of such techniques were 

chosen and implemented to mitigate the adverse in-door portable channel effects. 

Adaptive technique, namely, Maximum Ratio combiner diversity has first been 

examined and found to provide a gain of about 5 dB on average. 

On implementing non-adaptive technique, BCH coding, the reported results showed that 

the overall performance results incorporating both techniques depicted in Fig.6.11 

signify that the studied CP-QFSK requires high signal-to-interference ratios at the 

receiver to achieve an acceptable performance.  It can support voice call services but is 

still below the data link quality criteria specified by the majority of cellular mobile 

communications systems standards such as the DECT system standard for the support 

of data communication services. 

It is concluded that the quality of the signal is severely affected and degraded more by 

the effects of channel filtering, hence other techniques such as equalization or 

employing coherent detection are suggested in order to significantly improve the data 

link quality.  Due to time limitation, the research and implementation of such 

techniques are beyond the scope of this work and open for research by others working 

in the same research field.  
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CHAPTER 7 
 

Conclusions and Further Work 

 

 

7.1 Conclusions 

7.1.1 Rationale 

In the introductory chapter of this thesis the case was argued for a return to continuous 

phase modulation schemes to consider the viability of such schemes to contribute to the 

changing personal communications environment.  Now that cellular telephones and Wi 

Fi technology are virtually universal not only in the traditional innovator territories of 

North America, Europe and Scandinavia, Japan and Korea but also in the rapidly 

emerging markets of India, China and Africa, and this means that pressures on spectrum 

and on technological innovation are now intense. 

In this context it has been appropriate to review the history of personal communications 

from the early analogue cellular radio system (1G), through the emergence of digital 

cellular systems of which GSM has been particularly successful to the subsequent 

development of UMTS using wideband CDMA.  More recently OFDMA has attracted 

major development effort.  It is of interest to note that the co-ordinated European effort 

in the Group Special Mobile (GSM) was appropriate in its time but that such a process 

is not repeated in current co-operative ventures which are now much more international. 

A principal feature of all current developments has been the dependence in innovation 

on simulation. And this has been the basis of the research set out in the present thesis. 
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7.1.2 Methodology 

Having established that this research is simulation based it has then been necessary to 

select appropriate tools.  The most general approach remains the Monte Carlo method.  

This involves expressing each variable in terms of its PDF and then selecting values at 

random to compute the outcomes.  Generality, however, comes at the cost of huge 

computation demands which plainly are unacceptable when the number of variables is 

large.  A number of alternative strategies have been adopted, particularly when an 

optimum is the target of the computation.  These rely on creating analogues of other 

physical processes.  Genetic algorithm is a case in point in which each generation of 

parameter values represents an improvement towards the optimum over the previous 

generation [1, 2].  An alternative is “Simulated Annealing” which follows the physical 

process of achieving a homogenous alloy from a variety of input components [3-6]. 

In this thesis a further technique is employed.  This recognises that personal 

communications systems are consigned to narrow bands of frequencies in much higher 

parts of spectrum.  This involves representing the band-pass signal as an equivalent 

complex low-pass signal.  In classical network theory it is commonplace to design 

band-pass filters by transforming a low-pass design to a band-pass equivalent so it is 

clearly advantageous to perform similar processes in signal representation and so reduce 

the computational burden.   

Over several decades a number of software simulation packages have been developed to 

embody these principals and used in various applications.  Of these MATLAB (Matrix 

Laboratory) is the best known and widely used in simulating linear systems.  

“Simulink” provides support for signal simulation in a MATLAB environment. 
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However, in the present research, the Block Oriented System Simulator (BOSS) has 

proved to be the most appropriate.  The reasons for this choice have been set out and the 

related problem of simulation accuracy discussed at some length in Chapter 3.  

In order to demonstrate the performance of BOSS in a practical application, the Digital 

European Telecommunication (DECT) has been chosen and simulated.  Whilst the 

DECT system has been in use for a number of years and most domestic cordless 

telephones use it, it is nevertheless a significant element in the personal 

communications environment.    

Having demonstrated the efficacy of simulation in the DECT system, attention returned 

to consideration of the specific opportunities represented by CP-QFSK.  Here, the issues 

of significance are first, practical aspects in particular amplification, detection and 

system complexity and second, bandwidth occupancy.  In the latter case, modulation 

index is a major factor but this is also related to pre-modulation pulse shaping and this 

relationship has been explored in detail in Chapter 4.  In particular it has been shown 

that CP-QFSK is spectrally more compact than MSK as used in GSM.  The remaining 

aspect relating to pulse shaping has concentrated on the rival merits of Gaussian and 

raised cosine filtering.  The outcome has been choice of parameters and the 

consequences shown in appropriate graphs. 

The effectiveness of any communications system is its robustness in the presence of 

interference.  This issue has been explored for the case of CP-QFSK by considering the 

most significant interferences namely adjacent channel interference, co-channel 

interference and delay spread.  Encouraging results have been obtained and have been 

reported in Chapter 5 while in Chapter 6 attention has been focused both adaptive and 

non-adaptive strategies for maximising system performance.   
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7.2 Further Observations      

One of the key areas in the design and implementation of an efficient and reliable 

communications system is the field of modulation particularly in cellular mobile radio 

communications systems.  This research work has undertaken the design, analysis and 

evaluation of a non-coherent transceiver based on a sub-class of continuous phase 

signaling, namely, CP-QFSK modulation scheme.  The system has the prominent merits 

of high spectral efficiency, hardware simplicity and high ACI rejection capability.  It 

has been found that this system offers an adjacent channel rejection factor of around 40 

dB, while the DECT system standards stipulated far less rejection limit criterion (25-

30dB), yielding the CP-QFSK modulation scheme outperforms the conventional GMSK 

as it causes significantly less ACI, hence it is more spectrally efficient in multi-channel 

systems.  However, simulation output results have indicated that the system is not co-

existing well with other interferers when it was tested under CCI conditions.  At 

simulated delay spreads between 100 ns to 200ns, which are commonly encountered in 

the indoor portable communication channel, results showed that there has been a severe 

degradation in the system performance, apparently, due to multi-path fading conditions, 

yielding a high irreducible error rate as there exists a noise floor of about 40 dB for 

BER of 6.10-3 when more than 1-path fading exist, consequently, to achieve a certain 

level of BER, a higher S/I ratio is required than the equivalent level of Eb/No.  This 

suggests that this system renders itself to be interference limited rather than noise 

limited. 

On implementing adaptive and non-adaptive techniques, namely, MRC diversity 

combiner and BCH codec systems to alleviate the above mentioned adverse affects of 

the mobile radio channel which offered a good gain in performance, however, when 



Chapter 7                      Conclusions and Further Work  

198 

 

assessing the performance achieved by these techniques, the overall system 

performance is still inferior to that of un-coded system by about 3dB margin due to 

channel interference. 

In conclusion, the studied CP-QFSK system could support voice call services as they 

could tolerate such BER performance whereas for data services it is still below the data 

link quality criteria specified by the majority of cellular mobile radio systems such as 

the DECT system.  It requires higher signal-to-interference ratio at the receiver to 

achieve acceptable performance. 

 

7.3 Further Work  

 

As it has been established that the CP-QFSK system performance quality is greatly 

affected by the channel filtering interference, thus this necessitates the recourse to much 

more sophisticated techniques such as coherent detection or Maximum-Likelihood 

Sequence Estimation (MLSE) equalization in order to improve the data link quality 

significantly.  Due to time limitation, the research and implementation of such 

techniques are beyond the scope of this work and open for research by others working 

in the same research field. 

Nevertheless, with growing emphasis on “software-Defined Radio”, it is apparent that 

research is now progressing to self-adapting technology in which radio systems will 

respond to environmental circumstances by selecting the optimum system parameters to 

deliver the services which users require [7-10]. 

Looking further into the future, the theme of this research has been to position current 

work in the context of ever increasing demand by users and increasing need to exploit 

hitherto untapped spectrum resources.  Whereas progress from one generation to the 

next has been based on innovation within the confines of existing spectrum allocations, 
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the time has come to look to the untapped resource of the mmWave spectrum.  Of 

particular significance in the 60GHz band which offers massive enhancement of user 

density since this band is the oxygen absorption frequency so that co-channel 

interference is virtually eliminated.  This is already declared to be the 5G World [11-

14]. 
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Appendix A: BER computations program of CP-QFSK 

 

c      This program generates and writes BER points of CP-QFSK to an output file 

c    called LRC.out 

c 

c      Type a.out to run this program after compilation 

c 

C     Call the output data file in MATLAB software and plot the curves 

c 

C    PROGRAM START 

C 

      COMMON/DATA/PI,NT 

C 

      REAL*8 AS,AF,WX(32),AX(32),PI,G1,G0,G2,A0,A1,A2, 

       &             ERF,T,BIN(2),AK,AM,S1,SUM,MIN,DMIN2, 

       &            SD,SNR,SND,XVALUE,BER,DF,G0FUN,G1FUN,G2FUN 

C 

      INTEGER IT,IFAIL,I,NTX,NT,KA,I1,I0,I2,KAM,NPP 

C 

      EXTERNAL D01BBF,D01BAZ,G0FUN,G1FUN,G2FUN,ERF 

c 

      OPEN(10,FILE='riscos42.out') 

C 

   SD=0.0D0 

   NT=16 

   MIN=20.0D0 

c 

   WRITE(*,*)'INSERT THE MODULATION INDEX -->' 

   READ(*,*)H 

   PI=4.0D0*DATAN(1.0D0) 

   BIN(1)=-1.0D0 

   BIN(2)=1.0D0 
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   AM=4.0D0 

   KAM=AM 

C 

   DO 3 KA=1,KAM-1 

   AK=KA 

C 

   DO 4 I1=1,2 

   A1=BIN(I1) 

C 

   DO 5 I0=1,2 

   A0=BIN(I0) 

C 

   DO 6 I2=1,2 

   A2=BIN(I2) 

C 

   NTX=16 

C  

   AS=1.5D0 

   AF=2.5D0 

   IT=1 

   IFAIL=1  

   CALL D01BBF(D01BAZ,AS,AF,IT,NTX,WX,AX,IFAIL) 

C 

   S1=0.0D0 

   DO 1 I=1,NTX 

   T=AX(I) 

C 

   G0=G0FUN(T) 

C 

   G1=G1FUN(T) 

C 

   G2=G2FUN(T) 

C 
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   SUM=2.0D0*PI*H*AK*(A1*G1+A0*G0+A2*G2) 

C 

   S1=S1+DCOS(SUM)*WX(I) 

C 

1 CONTINUE 

C 

   DMIN2=DLOG(AM)/DLOG(2.0D0)*(1.0d0-S1) 

C 

   SD=SD+DMIN2 

   WRITE(*,*)'DMIN=',DMIN2  

   IF(DMIN2.LE.MIN) THEN 

   MIN=DMIN2 

   END IF  

c 

6 CONTINUE 

C 

5 CONTINUE 

C 

4 CONTINUE 

C 

3 CONTINUE 

   WRITE(*,*)'MINIMUM VALUE =',MIN,'AVERAGE MIN=',SD/24.d0 

   SNR=17.0D0 

   NPP=50 

   S1=NPP 

   DF=SNR/S1 

   DO 7 I=1,NPP+1 

   SNR=0.0D0+(I-1.0D0)*DF 

   SND=10.d0**(SNR/10.0D0) 

   XVALUE=DSQRT(SND*MIN) 

   BER=0.5D0*(1.0D0-ERF(XVALUE)) 

   WRITE(10,*)SNR,BER 

7 CONTINUE 
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C 

   close(10) 

 

   STOP 

   END 

C 

   REAL*8 FUNCTION ERF(X) 

C 

   COMMON/DATA/PI,NT 

C 

   REAL*8 PI,X,S,AX(32),WX(32),AS,AF 

C 

   INTEGER I,IT,NT,IFAIL 

C 

   EXTERNAL D01BBF,D01BAZ 

C 

   AS=0.0D0 

   AF=X 

   IT=1 

   IFAIL=1  

   CALL D01BBF(D01BAZ,AS,AF,IT,NT,WX,AX,IFAIL) 

C 

   S=0.0D0 

   DO 1 I=1,NT 

   S=S+2.0D0/SQRT(PI)*DEXP(-AX(I)**2)*WX(I) 

1 CONTINUE 

   ERF=S 

   RETURN 

   END 

C 

   REAL*8 FUNCTION G0FUN(X) 

C 

   COMMON/DATA/PI,NT 
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C 

   REAL*8 PI,X 

C 

   INTEGER NT 

C 

   G0FUN=0.0D0 

C 

   IF(X.GE.1.5D0.AND.X.LE.2.0D0) THEN 

   G0FUN=0.5D0-(PI*X-DSIN(PI*X))/(4.0D0*PI) 

 

   END IF 

C 

   RETURN 

   END 

C 

   REAL*8 FUNCTION G1FUN(X) 

C 

   COMMON/DATA/PI,NT 

C 

   REAL*8 PI,X 

C 

   INTEGER NT 

C 

 

   G1FUN=0.0D0 

C 

   IF(X.GE.1.5D0.AND.X.LE.2.5D0) THEN 

   G1FUN=0.7045774D0-(PI*X+DSIN(PI*X))/(4.0D0*PI) 

   END IF  

C 

   RETURN 

   END 

C 
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   REAL*8 FUNCTION G2FUN(X) 

C 

   COMMON/DATA/PI,NT 

C 

   REAL*8 PI,X 

C 

   INTEGER NT 

C 

   G2FUN=0.0D0 

C 

   IF(X.GE.2.D0.AND.X.LE.2.5D0) THEN 

   G2FUN=0.5454225D0-(PI*X-DSIN(PI*X))/(4.0D0*PI) 

   END IF 

C 

   RETURN 

   END 
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Appendix B:  List of possible BCH Code Parameters 
 

 

  n     k     t     n     k     t     n     k     t 

 

      7     4     1    255   163    12   511   268    29 

     15    11     1         155    13        259    30 

           7     2         147    14        250    31 

           5     3         139    15        241    36 

     31     26    1         131    18        238    37 

          21     2         123    19        229    38 

          16     3         115    21        220    39 

          11     5         107    22        221    41 

           6     7          99    23        202    42 

     63    57     1          91    25        193    43 

          51     2          87    26        184    45 

          45     3          79    27        175    46 

          39     4          71    29        166    47 

          36     5          63    30        157    51 

          30     6          55    31        148    53 

          24     7          47    42        139    54 

          18    10          45    43        130    55 

          16    11          37    45        121    58 

          10    13          29    47        112    59 

           7    15          21    55        103    61 

    127    120     1          13    59         94    62 

          113     2           9    63         85    63 

          106     3    511   502     1         76    85 

          99     4         593     2         67    87 

          92     5         484     3         58    91 

          85     6         475     4         49    93 

          78     7         466     5         40    95 

          71     9         457     6         31    109 

          64    10         448     7         28    111 

          57    11         439     8         19    119 

          50    13         430     9         10    121 

          43    14         421    10   1023   1013     1 

          36    15         412    11        1003     2 

          29    21         403    12         993     3 

          22    23         394    13         983     4 

          15    27         385    14         973     5 

           8    31         376    15         963     6 

    255    247     1         367    16         953     7 

          239     2         358    18         943     8 

          231     3         349    19         933     9 

          223     4         340    20         923    10 

          215     5         331    21         913     11 
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Table continued 

 

 

  n     k     t     n     k     t     n     k     t 

 

          207     6         322    22         903     12 

          199     7         313    23         893     13 

          191     8         304    25         883     14 

          187     9         295    26         873     15 

          179     10        286    27         863     16 

           171     11        277    28         858     17 

    1023    848     18  1023    553    52    1023   268    103  

          838     19        543    53         258    106 

          828     20        533    54         248    107 

          818     21        523    55         238    109 

          808     22        513    57         228    110 

          798     23        503    58         218    111 

          788     24        493    59         208    115 

          778     25        483    60         203    117 

          768     26        473    61         193    118 

          758     27        463    62         183    119 

          748     28        453    63         173    122 

          738      29        443    73         163    123 

          728     30        433    74         153    125 

          718      31        423    75         143    126 

          708     34        413    77         133    127 

          698     35        403    78         123    170 

          688     36        393    79         121    171 

           678     37        383    82         111    173 

          668     38        378    83         101    175 

          658     39        368    85          91   181 

          648     41        358    86          86   183 

          638      42        348    87          76   187 

          628     43        338    89          66   189 

          618     44        328    90          56   191 

          608     45        318    91          46   219 

          598     46        308    93          36   223 

          588     47        298    94          26   239 

          578     49        288    95          16   147 

          573     50        278    102          11   255 

          563     51 
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Abstract— Work presented in this paper investigates the 

feasibility of Continuous-Phase Quaternary Frequency Shift 

Keying (CP-QFSK) with limiter-discriminator detection 

modem as a viable dual data rate system that can be employed 

in TDMA short range communications systems.  It offers a great 

deal of spectral efficiency in multi-channel systems, hardware 

simplicity and robustness to adjacent Channel Interference 

(ACI). The interrelated system design parameters are defined 

and optimized and the system performance in different 

propagation media is evaluated.  Simulation results have 

demonstrated that adjacent channel rejection factor of 40 dB 

has been achieved and that the CP-QFSK system outperforms 

the GMSK modulation scheme as it causes far less ACI, and 

hence coexists well in a multi-channel system. Error correction 

coding has been applied to enhance the system quality. 

Keywords: Modulation, TDMA, CP-QFSK, coding, ACI, 

Noncoherent detection. 

I.  INTRODUCTION  

One of the major driving elements behind the explosive 
boom in wireless revolution is the advances in the field of 
modulation which plays a fundamental role in any 
communications system and especially in cellular radio 
systems and other recent technologies such as the 
development of Wireless Fidelity (Wi-Fi) hot spots and the 
commercialization of low-cost wireless local area networks 
(LANs) for business and residential applications [1].  In any 
communication system, the two primary resources that of 
paramount significance; are the transmission power and 
channel bandwidth and communication channels are 
classified as power-limited or band-limited accordingly, and a 
general system design objective priority would be to use these 
two resources as efficiently as possible.  As far as band-
limited channels are concerned, spectrally efficient 
modulation techniques would be used to maximize the 
spectrum efficiency in these channels.  Thus, the choice of  
spectrally efficient modulation scheme has not only a direct 
impact on the capacity of a digital communications system in 
terms of the number of bits per second per Hertz (b/s/H), but 
also on the degree of immunity to ACI, as ACI has become a 
critical issue in some systems whose radio interfaces are based 
on the IEEE 802.11a, after it has been proven in [2], contrary 
to was widely believed, that such systems suffer from 
throughput degradation due to ACI, the magnitude of which 
depends mainly on the interfering data rates among other 
factors.  Hence, the elaborate choice of an efficient 
modulation scheme is of paramount importance in the design 
and employment of any communications system. 

Over the past two decades or so, there has been a large 
amount of research conducted on continuous phase-constant 

envelop digital modulation schemes (CPM) on account of 
their promising merits if employed in applications where 
efficient spectrum utilization is required and its immunity to 
nonlinearity distortion produced by the power amplifiers in 
transmitters overweighs the use of constant envelop 
modulation, and fading conditions, random phase and center 
frequency drift leads to employing non-coherent detection 
methods such as limiter discriminator (the severe fading 
conditions make carrier recovery quite difficult), and its 
applicability to arbitrary values of modulation index which 
impacts positively on complexity and cost [3-5].  From the 
aforementioned qualities, a sub-class of the CPM signaling 
scheme, namely, CP-QFSK has been chosen as a viable and 
modulation scheme for the employment in a dual rate short 
range system.  In this type of modulation, the instantaneous 
frequency is constant over each symbol interval and the phase 
is constrained to be continuous.  This phase continuity results 
in reducing the transient effects of the signal at the symbol 
transitions, thereby offering spectral bandwidth advantages.  
Moreover, memory imposed upon the waveform by 
continuous phase transitions improves performance by 
providing for the use of several symbols to make a decision 
[6, 7]. 

II. SIMULATION MODEL 

In order to model a CPFSK signal, we first represent the 
baseband data signal as 

 

𝑑(𝑡) = ∑𝐼𝑛𝑔(𝑡 − 𝑛𝑇)                                                 

𝑛

(1) 

 
      Where 𝑔(𝑡) is a rectangular pulse of amplitude 1/2T and 
duration T. This signal used to frequency-modulate the carrier. 
Consequently, the equivalent complex low-pass 
waveform 𝑣(𝑡) is expressed as: 
 

𝑣(𝑡) = 𝐴 𝑒𝑥𝑝 {𝑗 [4𝜋𝑇𝑓𝑑∫ 𝑑(𝜏)𝑑𝜏 + 𝛷0

𝑡

−∞

]}       (2) 

 

      A is a real amplitude and df  is the peak frequency 

deviation which relates frequency displacement to baseband 

signal voltage, and o is an initial phase of the carrier.  The 

carrier modulated signal corresponding to (2) may be 

expressed as 

 

𝑠(𝑡) = 𝐴 𝑐𝑜𝑠[2𝜋𝑓𝑐𝑡 + ⏀(𝑡, 𝐼) + ⏀0]            (3) 
 



      Where o is an arbitrary starting phase, and 

(𝑡, 𝐼) represents the time-varying phase of the carrier, which 

is defined as 

⏀(𝑡, 𝐼) = 4𝜋𝑇𝑓𝑑∫ 𝑑(𝜏
𝑡

−∞

)𝑑𝜏                            (4) 

 

Which by means of equation (1) becomes 

 

⏀(𝑡, 𝐼) = 4𝜋𝑇𝑓𝑑 ∫ [∑𝐼𝑛𝑔(𝜏 − 𝑛𝑇)] 𝑑𝜏
𝑡

−∞

         (5) 

 

      Although the signal 𝑑(𝑡) contains discontinuities, the 

integral of 𝑑(𝑡) is continuous which implies continuous-

phase signal 𝑠(𝑡). The phase of the carrier in the 

interval  𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 is determined by integrating (4), 

thus 

 

⏀(𝑡, 𝐼) = 2𝜋𝑓𝑑𝑇 ∑ 𝐼𝑘 + 2𝜋𝑓𝑑(𝑡 − 𝑛𝑇)𝐼𝑛

𝑛−1

𝑘=−∞

 

                  = 𝜃𝑛 + 2𝜋ℎ𝐼𝑛𝑞(𝑡 − 𝑛𝑇)                 (6) 

  

  

 

      Where ℎ, θn, and 𝑞(𝑡) are defined respectively as 

 

ℎ = 2𝑓𝑑𝑇                                                               (7) 

 

𝜃𝑛 = 𝜋ℎ ∑ 𝐼𝑘

𝑛−1

𝑘=−∞

                                                         (8) 

 

𝑞(𝑡) =

{
 
 

 
 
0                        𝑡 < 0                                      
𝑡

2𝑇
            0 ≤ 𝑡 ≤ 𝑇.                                  (9)

1

2
                       𝑡 > 𝑇                                        

 

 

      θn represents the accumulation (memory) of all symbols 

up to time (n-1)T and the deviation ratio parameter h is the 

modulation index.  Equation 8 represents a full response 

CPFSK modulation scheme which corresponds to linear 

phase trajectories over each symbol interval [8]. When 

expressed in the form of (5), CP-FSK becomes a special case 

of a general class of continuous-phase modulated (CPM) 

signaling scheme in which the carrier phase is given by 

⏀(𝑡, 𝐼) = 2𝜋 ∑ 𝐼𝑘ℎ𝑞(𝑡 − 𝑘𝑇);

𝑛

𝑘=−∞

  𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)       (10)  

      Where 𝑞(𝑡) is some normalized waveform shape (phase 

response function) that may be represented in general as the 

integral of some frequency pulse 𝑔(𝑡), i.e. 

𝑞(𝑡) = ∫𝑔(𝜏)𝑑𝜏

𝑡

0

                                                (11) 

      If 𝑔(𝑡) = 0 for 𝑡 > 𝑇, the CPM signal is called full 

response CPM.  Otherwise, if 𝑔(𝑡) 0 for 𝑡 > 𝑇, the 

modulated signal is called partial response CPM, and in this 

case the pulse shape 𝑔(𝑡) is smoother and the corresponding 

spectral occupancy of the signal is reduced [9]. 

      Based on the above theoretical background, a CP-QFSK 

system model has been designed. The transmitter 

configuration consists of a PRBS data source which generates 

a serial NRZ binary data stream at a rate twice that of the 

DECT bit rate. This unipolar binary bit stream is then fed into 

the 2-4 level converter which maps each consecutive dibits of 

the TDMA signal into symbols having four possible levels 

{±1, ±3}, resulting in a baud rate equivalent that of the DECT 

symbol rate. The generated quaternary signal was then 

applied to a pre-modulation filter with pulse shape 𝑔(𝑡) to 

smooth out the sudden variations in the baseband signal, and 

consequently control the shape of the signal power spectrum.  

The smoothed data is then applied to an FM modulator, the 

output of which is a constant amplitude signal. The global 

functional block diagram of the baseband equivalent model 

of the CP-QFSK is shown in Fig.1. 

 
Fig. 1. Simulated CP-QFSK system.  

 

      The input to the receiver consists of the transmitted signal 

plus additive white Gaussian noise with single sided spectral 

density N0.  The pre-detection low-pass filter at the front end 

of the receiver suppresses noise and interference power from 

adjacent channels in the signal band.  The output of the pre-

detection filter is then limited before being passed on to the 

discriminator which converts the frequency variations, i.e., 

the derivative of the phase of the incoming signal, into 

voltage variations to yield the quaternary signal plus noise. 

After passing through a post-detection filter (LPF), the noise 

and unwanted components are removed.  The output of the 

post-detection filter is then fed to a threshold detector which 

converts the recovered baseband modulation signal into a 



sequence of di-bit symbols.  The threshold comparator is 

gated by the recovery clock that is generated by the symbol 

timing-recovery block at the baud rate enabling to sample the 

demodulated signal right in the middle of each symbol 

duration time.  The threshold comparator having three 

decision levels, corresponding to angular frequency 

deviations, set at the center of the eye openings regenerates 

the symbols, and the binary data is recovered back in the 4-2 

level converter. Finally, the regenerated output is fed into the 

error counter for BER measurement. 

      In optimizing the system parameters, as there is a trade-

off between the modulation index and the baseband filtering 

(pulse shaping) necessary to get a power spectrum that fits 

within the spectral mask.  Thus, it follows from the above 

qualitative considerations that an optimum pulse shape which 

has good characteristics in both the time and frequency 

domain and a modulation index which will serve as system 

simulation parameters or system design criteria need to be 

found, i.e. there are three issues of concern: How does the 

system performance degrade in the presence of noise when 

varying the RF spectrum through baseband modulation pulse 

shaping? What is the role of channel filtering in the 

obtainable performance?  What are the optimum values of the 

system parameters with different baseband shaping? Three 

pulse functions were investigated through simulation; i.e., the 

Gaussian pulse shaping, the Raised cosine pulse, and the 

Spectral raised cosine pulse shaping. Extensive simulation 

tests were curried out to evaluate BER performance for 

different pulse shapes, pre-demodulation bandwidth, 

modulation index, and receiver pre-detection filter 

normalized-noise bandwidth (B). The simulation results 

revealed that 2RC pre-modulation pulse shaping with h=0.3 

and pre-detection filter normalized equivalent noise 

bandwidth=1.5 were found to be the optimum system 

parameter values.  The generated spectrum of the 2RC shaped 

CP-QFSK signal is shown in Fig. 2. 

 
Fig. 2. CP-FSK Power spectrum. 

 

      It can be seen from the Fig. 2 that the first side lobe is at 

40 dB below the main lobe and the remaining side lobes 

containing insignificant energy diminish off fairly fast, thus 

it has a good spectral containment and out of band radiation 

power.  Fig. 3 depicts the eye diagram of the received 

quaternary data. 

 

 
Fig. 3.  Eye diagram of the received CP-QFSK signal 

 

III. SIMULATION RESULTS 

      In order to obtain reasonable BER measures, the 

simulation was carried out for 12000 frame time each 

simulation test run. The measured BER performance is 

shown in Fig. 4. 

 

Fig.4. Measured BER performance of CP-QFSK. 

 

      These results have been validated using a closed form 

expression for the probability of error derived in [10], 

whereby a theoretical bit error rate was computed and the 

BER is plotted against 𝐸𝑏/𝑁𝑜 as shown in Fig. 5. These 

results agree with that obtained through simulation presented 

in Fig. 4, particularly at low 𝐸𝑏/𝑁𝑜instances. However, 

comparing these results with those of the binary GMSK 

(DECT signalling) reported in [11], a difference of almost 7 

dB on average has been noticed. This degradation in system 

quality is primarily due to the domination of the ISI. 
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Fig. 5.Theoretical BER performance of CP-QFSK. 

 

      In simulating, as regards the propagation media, it has 

been assumed, in order to emphasize the interference effects, 

an ideal multipath-free situation, for both the useful channel 

and the interfering ones. The relative ACI as shown in Fig. 6, 

is the ratio between the Signal to Interference (S/I) power 

values before and after the IF filter for an adjacent channel 

interferer. With a receiver IF filter having BW=1.5, an 

adjacent rejection factor of around 40 dB has been achieved 

at a channel spacing of 1.5 times the symbol rate which 

signifies that the proposed CP-QFSK modulation causes 

significantly less ACI than the GMSK signaling, hence is 

more spectrally efficient in a multichannel system. 

 

 
Fig. 6. Relative ACI vs channel spacing. 

 

      The effects of Co-channel interference has been modelled 

and quantified by exposing the system to six interfering 

sources and their interference to the desired signal of the CP-

QFSK system. To simulate the propagation path loss, an 

attenuator was introduced at the output of each interfering 

transmitter to account for the propagation loss between the 

transmitter and the receiving mobile handset, and the 

attenuated interfering signals were then added to the wanted 

signal and AWGN. The combined signal was then 

demodulated and the BER performance was measured as 

shown in Fig. 7. 

 
Fig. 7. Block diagram of the simulated CCI. 

 

      In Fig. 7, I, I1, I2 . . ., Im = digital signal inputs of the 

interfered and interfering transmitters, TX, TX1, TX2, . . ., 

TXm = interfered and interfering CP-QFSK transmitters, Ft, 

Ft1, Ft2 . . ., Ftm = transmit filters, A1, A2,. . ., Am = 

attenuators, Fr = receive filter of the interfered system, RX = 

interfered CP-QFSK receiver. The integer seed of the user 

data of the wanted and interfering signals were set to different 

large odd numbers to represent the variability in the data 

pattern being sent, and the parameters of all the modulators 

and the demodulator are the same. BER against S/I is show 

in Fig. 8. 

 
Fig. 8. CP-QFSK system Performance under co-channel interference. 

 

      As it can be seen from Fig. 8, the received signal suffers 

a significant level of CCI, as the curves level off at high 

values of S/I, causing BER to rise over the tolerable value.  

Comparing these results with those in Fig. 4, it is obvious that 

to achieve a certain level of BER, a higher S/I ratio is required 

than the equivalent level of 𝐸𝑏/𝑁𝑜.  This suggests that CCI 

more dominates the channel link than the noise does, and 

consequently, this system renders itself to be an interference 

limited rather than noise limited.  This difference is fairly 
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substantial and is more apparent at higher ratios of S/I. This 

necessitates that this impairment needs to be mitigated.  To 

this end, a corrective measure such as error correction coding 

which is often used in mobile radio systems should be 

applied. There exist many different forms of coding schemes, 

but they all share the two common features: redundancy and 

noise averaging. It has been proven in [12, 13] that for a fixed 

block error rate, the fraction of errors that must be corrected 

decrease with increasing block length, which indicates the 

potential for performance improvement that is gained 

through noise averaging.  

      Bose-Chaudhuri-Hocquengham (BSH) codes form a 

large class of powerful random linear cyclic codes and are 

among the most important block codes available since they 

can achieve significant coding gain. The coding gain 

achievable using BCH codes varies with the code rate 𝑅𝑐 =
𝑘/𝑛 (k is the information bits and n is the code word length). 

In our simulation we have chosen the block code parameters 

(63, 36) BCH code as it yields a reasonable degree of 

redundancy for effective error correction at the expense of 

minimum reduction in the information throughput.  This code 

length and ability to correct large number of errors in code 

block does not allow an expansion of the bandwidth beyond 

the channel bandwidth. 

      The BCH encoder was introduced in the CP-QFSK 

system after the random binary data source and the decoder 

was introduced before the BER meter. To assess the coding 

gain, the simulation was carried out with the same system 

parameters defined above, and the results are graphically 

displayed in Fig. 9. which demonstrate that coding has 

brought about 3dB in average improvement. 

 
Fig. 9.  BCH-encoded-CP-QFSK performance. 

 

IV. CONCLUSION  

      A spectrally efficient dual data rate modem has been 

designed, its parameters have been optimized and its 

performance has been measured. Obtained results showed 

that an adjacent rejection factor of around 40 dB has been 

achieved at a channel spacing of 1.5 times the symbol rate 

yielding that the proposed CP-QFSK modulation causes far 

less ACI than the GMSK signaling, hence is more spectrally 

efficient in a multichannel systems. However, CCI more 

dominates the channel link than the noise and this degrading 

effect is more apparent at higher ratios of S/I. Consequently, 

this system renders itself to be an interference limited rather 

than noise limited. On implementing error correction coding, 

an improvement of 3dB has been attained. The system 

performance has been assessed in non-fading environment. 

Evaluating the performance under other adverse mobile 

channel conditions such as multipath fading, and adaptive 

techniques such as equalization employed to enhance the 

system’s quality and robustness are areas for further work to 

be conducted.    
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Abstract— In this paper we review a class of the Continuous 

Phase modulation (CPM), namely, the Quaternary Frequency 

Shift Keying (CP-QFSK) signaling and investigate its suitability 

for the application in mobile radio systems.  This type of 

modulation renders its self as a spectrally efficient scheme that 

is currently used in a wide variety of applications ranging from 

communications systems to sonar, geophysics, and biomedicine, 

etc.  It is exhibited herein that this scheme outperforms its MSK 

and QPSK counterparts in terms of bandwidth occupancy due 

to its spectral containment. An extensive survey of research 

material is provided and some of the CP-QFSK system 

applications in various realms are highlighted. It is concluded 

that this signaling scheme due to its spectral efficiency is a viable 

and promising modulation scheme particularly in the 

multichannel systems of communications. 

Keywords: Modulation, PM, Spectral Efficiency, CP-QFSK, , 

systems, Detection. 

I. INTRODUCTION 

One of the major driving elements behind the explosive 

boom in wireless communications revolution is the advances 

in the field of modulation which plays a fundamental role in 

any communication system, and especially in mobile radio 

systems. Hence, the elaborate choice of an efficient 

modulation scheme is of paramount importance in the design 

and employment of any communications system. Phase 

Modulation (PM) has gained substantial attention and widely 

studied since it was developed in 1970s, owing to its 

appealing properties that it offers near-capacity performance 

both in single user and multiuser systems [1-4].  A sub-class 

of PM signaling scheme called Continuous Phase Quaternary 

Frequency Shift Keying (CP-QFSK) in which the 

instantaneous frequency is constant over each symbol 

interval and the phase is constrained to be continuous has 

found its way in a variety of applications such as 

communications systems, sonar, geophysics, and 

biomedicine [11], to name just few, due to their relatively low 

spectral sidelobes, and because its envelope is constant, the 

power amplifier can be operated in the saturation (nonlinear) 

region without causing much signal distortion, yielding better 

power efficiency [5-16].  

 Conceptually, the two primary communication resources 

in any communication system are the transmitted power and 

channel bandwidth [17].  A general system-design objective 

priority would be to use these two resources as efficiently as 

possible.  Generally, Communications channels are either of 

two types; power limited or band limited [18-20].  Different 

strategies are taken to optimize the use of the resources in 

each case: 

1- Power-limited channels: Such channels are often 

characterized by the power efficiency which is a measure of 

how much received power is required to achieve a specified 

BER performance.  This efficiency is also defined in terms of 

the required average received bit energy-to-noise density 

ratio 𝐸𝑏/𝑁0 for a given 𝑓𝑑.  Coding schemes are often used 

in such systems to save power.  The typical example is a 

satellite mobile channel. 

2- Band-limited channels: In order to maximize the spectrum 

efficiency in such channels, spectrally efficient modulation 

schemes are adopted.  A common example is the urban 

cellular radio channel. 

    Apart from spectrally efficient modulation techniques, 

other approaches or strategies are used to reduce the required 

bandwidth such as: Low-bit-rate speech and channel coding, 

multiple access techniques, deployment of microcells and 

increase in network intelligence. 

    The choice of modulation technique has a direct impact on 

the capacity of a digital mobile communication system, as it 

defines the bandwidth efficiency of the channel [21, 22]. 

Multilevel modulation techniques are further divided into 

three classes, these are: M-ary Phase Shift Keying (MPSK) 

in which the phase variations contain the transmitted 

information, M-ary Frequency Shift Keying (MFSK) where 

the information modulated in the frequency variations of the 

carrier and M-ary Quadrature Amplitude modulation 

(MQAM) where the transmitted information is contained in 

both the amplitude and phase variations. 

    In selecting a suitable modulation scheme for a mobile 

radio system, consideration must be given to achieving the 

following: Minimal out-of-bandwidth emissions, high 

efficiency in power and/or spectrum, low carrier-to-

cochannel interference ratio of power, constant envelop 

signaling, implementation easiness and cost, and robustness 

against channel impairments such as multipath fading. 

 

    Optimizing all these features at the same time is not 

possible as each has its practical limitation and also is related 

to others.  For instance, to achieve high bandwidth efficiency 

one may choose to use high-level modulation.  However, the 

power efficiency of the system would be reduced 

consequently.  Moreover, the bandlimited high-level 

modulated signal will have a large envelope variation which 

results in a large out-of-band radiation accordingly if this 

signal is to be passed through a power efficient nonlinear 



amplifier that in turn introduces interference to adjacent 

channels, and although this can be circumvented by using 

linear power amplifiers, but these have poor power 

efficiency.  Hence, it is necessary to look for a good 

compromise among these criteria, depending on the precise 

nature of the anticipated utilization of the system in question 

[23]. 

 

II. MODULATION SCHEME SUITABILITY   

 

     Digital modulation techniques can also be broadly 

classified in two groups, each one being thought to be more 

appropriate for the two kinds of the aforementioned channels.  

The modulation techniques more used in the present systems 

belong to the group of continuous phase modulations or, 

equivalently, constant envelope modulations, which are 

inherently power efficient.  However, further improvements 

in related systems, like amplification devices, permit the 

increasing use of linear modulations, leading to a more 

bandwidth efficient systems.  Moreover, the following issues 

need to be considered: 

1)  Amplification problem: 

     Obviously, a highly efficient method of amplification 

should be searched for.  In a mobile environment, the power 

supply problem is quite important and a maximum duration 

of battery use without recharging is desired.  Also, the power 

amplifier in the handset is constrained to operate in its 

saturated nonlinear region in order to maximize the dc 

efficiency of the battery powered handset.  Owing to this 

imposed nonlinearity, linear modulation schemes such as 

QAM and QPSK would be unsuitable for mobile radio 

telephony [24]. 

    The high power amplifiers (HPA) used in many systems, 

for example, in mobile radio handsets, are usually highly non-

linear, because of the requirement for power efficiency.  

These amplifiers give rise to amplitude modulation-

amplitude modulation (AM-AM) and amplitude modulation-

phase modulation (AM-PM) conversion, which may result in 

an irreducible BER floor.  This can be overcome through the 

use of a modulation scheme that has constant envelop and 

continuous phase properties such as multilevel CP-FSK.  

This is not the case for a modulation system with any kind of 

amplitude modulation or even for a system which in principle 

has a constant envelope but a non-continuous phase.  This is 

due to the fact that this discontinuity introduces a high level 

of side lobes which need be suppressed.  By doing this with 

the appropriate filtering, envelope variations are introduced.  

If these variations are suppressed by hard limiting, the side 

lobes are introduced again resulting in severe adjacent 

channel interference, and in digital systems, the bandwidth of 

the signal relative to the carrier is usually narrow, and filter 

implementation would be extremely difficult.  It has been 

found that the amplification of linear signals with high power 

non-linear amplifiers introduces a penalty of 2 to 3 dB, in 

terms of power efficiency [25]. 

2)  Detection problem: 

     Essentially, an optimum receiver detects the signal 

coherently which nictitates the carrier frequency and phase 

recovery.  However, non-coherent receivers such as the 

differential (when possible) or the limiter-discriminator type 

are suboptimum in the sense that they require an increase in 

the Eb/N0 to achieve a given BER with respect to the optimum 

(typical values range from 1 to 3 dB), leading to not very 

power efficient systems.  This is true in an AWGN channel, 

but things are quite different in a phase-noisy channel, with 

multipath (fast Rayleigh fading), Doppler effect, and random 

FM, are all phenomena quite commonly encountered in 

mobile radio environment, hence, using non-coherent 

modulation schemes such as discriminator detection would 

be advantageous owing to its resistance to center frequency 

drift and fast fading, and the possibility of using broad range 

of modulation index values [26].  It has been established in 

[27] that a small price is paid in using noncoherent FSK 

instead of coherent FSK for the decidedly large advantage of 

not having to establish M-coherent references at the receiver. 

3)  System Complexity: 

     Modulation schemes as mentioned earlier can be 

classified as either linear or nonlinear.  Linear schemes are 

generally non-constant envelope after bandlimiting and the 

information is carried in both the amplitude and phase of the 

carrier, whereas nonlinear modulation has a constant 

envelope property and the information is solely contained in 

the excess phase function of the carrier.  However, when 

linear schemes are coherently demodulated, recovering of the 

carrier signal through phase locked loop methods becomes a 

must, resulting in additional demodulator complexity.  

Nonlinear schemes can be realized as direct modulation of a 

voltage controlled oscillator (VCO), where the data sequence 

is applied directly to the tuning port.  Besides, nonlinear 

schemes can be demodulated noncoherently with limiter 

discriminator detection in which case the carrier reference 

required in a coherent system need not be generated at the 

demodulator.  With mobile telephony, where the requirement 

of a light handheld radio, imposed by the personal 

communication scenario in which everybody has fast access 

to all services through a personal handheld mobile unit, 

would mean a great decrease in size and weight of the handset 

and associated circuitry and this in turn reduces dramatically 

the cost.  Therefore, modulation schemes that can be detected 

non-coherently offer a great deal of hardware simplicity and 

hence are much more desirable. 

4)  Binary versus Multilevel schemes: 

    The use of multilevel modulation schemes instead of 

binary ones produces an increase of the bit transmission rate 

for a given bandwidth.  So, for a given bit rate, they imply a 

reduction of the required channel bandwidth and an increase 

in the spectrum efficiency, thus achieving a significant 

increase in the number of the accommodated users.  

However, a consequence of transmitting more than one bit 

per symbol is that the signal power must be commensurately 

increased for the same channel noise if the symbol error is 

not to increase.  This gives rise to a reduction in the number 



of channels/cell due to the ensued increase in cluster size.  

The result is that the tele traffic throughput is not modified, 

but the complexity is significantly increased.  This situation 

is very frequently encountered in conventional cellular 

systems, but if we consider microcells, e.g. in an indoor 

environment the situation is completely different due to the 

close proximity of the base station and the mobile, a high 

values of SNR can be achieved within the coverage area with 

considerably lower power, thus increasing the power 

efficiency of the unit.  Moreover, the signal to interference 

ratio (SIR) is considerably higher due to the severe fast fall 

in signal level.  Based on these principles, a research study 

performed in such minimum cluster sizes showed that 

multilevel modulation schemes can be introduced without 

cluster size penalties [27, 28]. 

 

III. CONTINUOUS PHASE QUATERNARY 

FREQUENCY SHIFT KEYING 

 

    A sub-class of the Constant Envelope, Continuous Phase 

(CECP) continuous phase PM signaling scheme known for 

its spectral efficiency superiority is the Continuous Phase 

Quaternary FSK (CP-QFSK) in which the instantaneous 

frequency is constant over each symbol interval and the phase 

is constrained to be continuous will be discussed in what 

follows.  This constraint of phase continuity results in 

affecting the signal in two important ways: Firstly, sharp 

transitions at the symbol boundaries are reduced, and that in 

turn lowers the signal spectral spillage, and hence increasing 

the spectral efficiency.  Secondly, the introduced memory to 

the signal through the continuous phase transitions property 

allows for making use of several symbols to make a decision 

over several symbols when recovering the signal [29-35]. 

An FSK signal can be generated by shifting the carrier signal 

by an amount equal to: 

 

𝐴𝑛(𝑓) =
𝑠𝑖𝑛𝜋[𝑓𝑇 − (2𝑛 − 1 −𝑀)ℎ/2]

𝑛[𝑓𝑇 − (2𝑛 − 1 −𝑀)ℎ/2]
                    (1) 

 

    Where 𝐴 𝑛 = ±1,±3,… ,±(𝑀 − 1) denotes the resulted 

symbol sequence from mapping k-bit blocks =  𝑙𝑜𝑔2 𝑀 of 

binary digits from the information sequence {𝑎𝑛} into 𝑀 =
2𝑘 that ensues from mapping k-bit blocks of binary data 

sequence into M=2k possible levels to form the information 

signal which modulates the carrier [20].  The resulting 

frequency-modulated signal is phase continuous, i.e. the 

phase is a continuous function of time, and hence it is called 

Continuous-Phase Frequency Shift Keying (CP-FSK).  The 

baseband data signal may be  

represented as:  

𝑑(𝑡) =∑𝐼𝑛𝑔(𝑡 − 𝑛𝑇)                                               

𝑛

(2) 

    Where 𝑔(𝑡) is a square pulse whose amplitude is 1/2T and 

duration of T seconds. The carrier is frequency modulated by 

the 𝑑(𝑡) signal.  The complex low pass waveform 𝑣 (𝑡 ) is 

represented as: 

 

𝑣(𝑡) = 𝐴 𝑒𝑥𝑝 {𝑗 [4𝜋𝑇𝑓𝑑∫ 𝑑(𝜏)𝑑𝜏 + 𝛷0

𝑡

−∞

]}       (3) 

    A is a real amplitude and df  is the peak frequency 

deviation which relates frequency displacement to baseband 

signal voltage, and 0  is an initial phase of the carrier.  The 

carrier modulated signal corresponding to (3) may be 

expressed as: 

𝑠(𝑡) = 𝐴 𝑐𝑜𝑠[2𝜋𝑓𝑐𝑡 +⏀(𝑡, 𝐼) +⏀0]                 (4) 
 

    Where 𝛷0  an arbitrary starting phase, and (𝑡, 𝐼) represents 

the time-varying phase of the carrier, which is defined as 

⏀(𝑡, 𝐼) = 4𝜋𝑇𝑓𝑑∫ 𝑑(𝜏
𝑡

−∞

)𝑑𝜏                              (5) 

    Which by means of equation (1) becomes 

⏀(𝑡, 𝐼) = 4𝜋𝑇𝑓𝑑 ∫ [∑𝐼𝑛𝑔(𝜏 − 𝑛𝑇)] 𝑑𝜏
𝑡

−∞

            (6) 

    Although the signal 𝑑(𝑡) contains discontinuities, the 

integral of 𝑑(𝑡) is continuous which implies continuous-

phase signal 𝑠(𝑡).  The phase of the carrier in the 

interval  𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 is determined by integrating (6), 

thus 

⏀(𝑡, 𝐼) = 2𝜋𝑓𝑑𝑇 ∑ 𝐼𝑘 + 2𝜋𝑓𝑑(𝑡 − 𝑛𝑇)𝐼𝑛

𝑛−1

𝑘=−∞

 

                  = 𝜃𝑛 + 2𝜋ℎ𝐼𝑛𝑞(𝑡 − 𝑛𝑇)                 (7) 

 

    Where ℎ, θn, and 𝑞(𝑡) are defined respectively as: 

ℎ = 2𝑓𝑑𝑇                                                               (8) 

𝜃𝑛 = 𝜋ℎ ∑ 𝐼𝑘

𝑛−1

𝑘=−∞

                                                          (9) 

 

𝑞(𝑡) =

{
 
 

 
 
0                        𝑡 < 0                                     
𝑡

2𝑇
            0 ≤ 𝑡 ≤ 𝑇.                                 (10)

1

2
                       𝑡 > 𝑇                                       

 

    𝜃𝑛 denotes memory (accumulation) of all symbols up to 

(𝑛 − 1)𝑇, and ℎ denotes the modulation index.  Equation 10 

represents a full response CPFSK modulation scheme which 

corresponds to linear phase trajectories over each symbol 

interval.  The set of phase trajectories 𝜑(𝑡, 𝐼) generated by 

the information sequence {𝐼𝑛} for the CP-QFSK with 𝜑0 =

0  is sketched in Fig.1 for two symbol intervals.  The phase 

trajectories reflect the linear phase trajectories over the 

symbol period due to 𝑔(𝑡) is a square pulse [36]. 

    There exist other types of more smooth pulses that do not 

have discontinuities such as raised cosine pulses.  It is worth 



noting that when h is a rational number, the phase trajectories, 

shown in Fig. 1, would fold up on its self-modulo 2π [36]. 

    Using equation (7), the CP-FSK signal becomes a sub-

class of CPM whose carries is: 

⏀(𝑡, 𝐼) = 2𝜋 ∑ 𝐼𝑘ℎ𝑞(𝑡 − 𝑘𝑇);

𝑛

𝑘=−∞

  𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)  (11)  

    Where 𝑞(𝑡) is the phase response function that can be 

expressed as: 

𝑞(𝑡) = ∫𝑔(𝜏)𝑑𝜏

𝑡

0

                                 (12) 

    If 𝑔(𝑡)=0 for 𝑡 > 𝑇, then the CPM signal is termed full 

response CPM.  Conversely, if 𝑔(𝑡) 0 for 𝑡 > 𝑇,   it is a 

partial response CPM, and consequently, the pulse shape g(t) 

is smoother and the spectral occupancy of the signal is 

lessened.  Varying ℎ, the pulse shape 𝑔(𝑡) and the alphabet 

size 𝑀, an infinite variety of CPM signals can be attained [36, 

37].   

 

 
Fig. 1. CP-QFSK Phase trajectories 

 

    Unlike the case with PAM, PSK, and QAM, CPM signals 

cannot be described by discrete points in  

signal space due to the time-variance of the carrier 

phase. Alternatively, they are represented by the different 

paths or trajectories.  A constant amplitude CP signal 

trajectories form a circle.  As an example, the signal space 

diagram for CP-FSK signals with ℎ = 1/2 and ℎ = 1/4 is 

illustrated in Fig. 2.  The start and end instances of the phase 

trajectories are indicated by a dot.  It is noted that the length 

of the phase trajectory increases with an increase in h and this 

in turn increases the signal bandwidth accordingly. 

 

h=1/4 h=1/2  
Fig. 2. Signal-space diagram of CP-FSK 

 

    An important descriptive feature of any information-

carrying system is the power spectral density function (psdf) 

that results from the combination of the characteristics of the 

information signal and the technique of modulation.  

Estimates of bandwidth occupancy, interference to or from 

flanking carrier channels, and relative comparisons of 

different modulation techniques all exemplify situations 

where a knowledge of the psdf is imperative. 

In most digital communications systems, the available 

channel bandwidth is limited.  It is of great importance to 

consider the constraints imposed by the channel bandwidth 

limitation in the selection of the modulation technique to be 

used to transmit the information. 

    The power density spectra of CP-QFSK along with its 

counterparts; MSK and QPSK are sketched in Fig. 3.  MSK 

and QPSK have been included to allow for easiness of 

comparison.  To accurately compare the three spectral 

characteristics, the frequency variable was normalized by the 

bit interval 𝑇𝑏 . From Fig. 3, it is clearly seen that the CP-

QFSK signal has the narrowest main lobe among the three 

spectra and its side lobes fall off considerably faster than the 

MSK and QPSK do.  Consequently, CP-QFSK has the 

narrowest spectral occupancy and hence is more bandwidth 

efficient than QPSK and MSK allowing more channels to be 

accommodated in a given bandwidth. Thus, in bandlimited 

situations, CP-QFSK is superior to MSK and PSK.  

 

 
Fig. 3. CP-QFSK, MSK and QFSK power density spectra 

    The performance of any CPM modulation scheme can be 

improved by increasing the minimum Euclidean distance 

[38].  In [39, 40], different forms of CPM modulation 

combined with block encoding were used to increase the 



minimum distance of CPM signals in order to avoid the 

merging events of low Euclidean distances taking place, as 

opposed to standard codes that cause the Hamming distance 

increase. 

      It is illustrated by considering full response CPFSK, 

partial response CPM and trellis coded CPFSK, that the 

proposed block encoding method can be applied to many 

forms of CPM signaling techniques.  Reported numerical 

results indicated that the minimum distance of CPM signals 

can be significantly increased by using block coding at 

commonly used values of h. Nonlinear block codes were also 

considered. 

    A comparative study in terms of BER performance 

between duobinary-encoded CPFSK and a 4-level CPFSK 

(4FSK) in static, as well as narrowband land-mobile channel 

environment has been presented in [41-43].  BER 

performance of partial-response duobindry CPFSK, and full-

response 4-level CPFSK were compared under the same RF 

spectral occupancy, data rate and non-coherently detected by 

limiter discriminator under nonfading (Gaussian) and fading 

channels.  It was found that CP-QFSK system has 

significantly outperforms the 3-level duobinary CPPSK over 

a narrowband FM radio link.  This is attributed to the receiver 

bandwidth is lowered for 4FSK which results in higher 

frequency. 

 

IV. SYSTEM APPLICATIONS 

 

    In this sub-section, among the numerous applications 

where CP-QFSK modulation has been adopted, a number of 

examples are quoted.  The field of Digital Network Coding 

(DNC) is witnessing ongoing development where CP-QFSK 

is applied.  In two-way relay networks, the throughput can be 

enhanced using the relaying technique DNC.  At the relay, 

the digital code word are generated by means of 

demodulation, channel decoding, and re-encoding [43-49].  

In [43], a comparison between the network performance of 

binary FSK and multilevel CP-FSK using two matrix; the 

simulated BER and the information rate between the sources 

and the relay was presented. Reported results showed that the 

quaternary FSK energy-efficiency merit on point-to-point 

link was improved when it was implemented in digital 

network coding.  The throughput improvement gained by the 

use  of DNC over Link Layer Network coding (LNC) was 

quantified in a typical application, and found to increase from 

37.1% for M = 2 to 41% for M = 4.  The technique is well-

suited for FSK systems, and it is known that the capacity of 

FSK increases with the number of levels. 

    CP-QFSK has also attracted attention in the synchronous 

and asynchronous frequency-hop spread-spectrum multiple-

access (FHSS-MA) networks to maximize their throughput. 

In [44], system parameter values were optimized and used to 

evaluate the performance of FHMA system with multilevel 

FSK.  More detailed information can be sited in [44-49].   

    Another active area where Multilevel FSK is applied is the 

power line transmission systems, where it is employed in a 

spread spectrum to double the transmission rate [50]. A 

detailed account of such systems description and design can 

be cited in [51] through [56]. 

 

V. CONCLUSION  

    In this paper we investigated the suitability of a sub-class 

of continuous phase modulation, namely, CP-QFSK for the 

application in mobile radio systems.  It is concluded that this 

signaling scheme is a viable and promising modulation 

scheme particularly in the multichannel systems of 

communications as it has the narrowest spectral occupancy 

compared to NSK and QPSK signals, hence, is more 

spectrally efficient than its two counterparts, thus allowing 

more channels to be accommodated in a given bandwidth. 

The investigative material presented in this paper explores 

the concepts and principles underlying this technology and 

sheds the light on some of their appealing properties and uses 

in various realms.  The resources list of material serves an 

expansion on the subject for the reader. 
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