16,225 research outputs found

    EV-SIFT - An Extended Scale Invariant Face Recognition for Plastic Surgery Face Recognition

    Get PDF
    Automatic recognition of people faces many challenging problems which has experienced much attention due to many applications in different fields during recent years. Face recognition is one of those challenging problem which does not have much technique to solve all situations like pose, expression, and illumination changes, and/or ageing. Facial expression due to plastic surgery is one of the additional challenges which arise recently. This paper presents a new technique for accurate face recognition after the plastic surgery. This technique uses Entropy based SIFT (EV-SIFT) features for the recognition purpose. The corresponding feature extracts the key points and volume of the scale-space structure for which the information rate is determined. This provides least effect on uncertain variations in the face since the entropy is the higher order statistical feature. The corresponding EV-SIFT features are applied to the Support vector machine for classification. The normal SIFT feature extracts the key points based on the contrast of the image and the V- SIFT feature extracts the key points based on the volume of the structure. But the EV- SIFT method provides the contrast and volume information. This technique provides better performance when compare with PCA, normal SIFT and V-SIFT based feature extraction

    Techniques for Ocular Biometric Recognition Under Non-ideal Conditions

    Get PDF
    The use of the ocular region as a biometric cue has gained considerable traction due to recent advances in automated iris recognition. However, a multitude of factors can negatively impact ocular recognition performance under unconstrained conditions (e.g., non-uniform illumination, occlusions, motion blur, image resolution, etc.). This dissertation develops techniques to perform iris and ocular recognition under challenging conditions. The first contribution is an image-level fusion scheme to improve iris recognition performance in low-resolution videos. Information fusion is facilitated by the use of Principal Components Transform (PCT), thereby requiring modest computational efforts. The proposed approach provides improved recognition accuracy when low-resolution iris images are compared against high-resolution iris images. The second contribution is a study demonstrating the effectiveness of the ocular region in improving face recognition under plastic surgery. A score-level fusion approach that combines information from the face and ocular regions is proposed. The proposed approach, unlike other previous methods in this application, is not learning-based, and has modest computational requirements while resulting in better recognition performance. The third contribution is a study on matching ocular regions extracted from RGB face images against that of near-infrared iris images. Face and iris images are typically acquired using sensors operating in visible and near-infrared wavelengths of light, respectively. To this end, a sparse representation approach which generates a joint dictionary from corresponding pairs of face and iris images is designed. The proposed joint dictionary approach is observed to outperform classical ocular recognition techniques. In summary, the techniques presented in this dissertation can be used to improve iris and ocular recognition in practical, unconstrained environments

    Granular Approach for Recognizing Surgically Altered Face Images Using Keypoint Descriptors and Artificial Neural Network

    Get PDF
    This chapter presents a new technique called entropy volume-based scale-invariant feature transform for correct face recognition post cosmetic surgery. The comparable features taken are the key points and volume of the Difference of Gaussian (DOG) structure for those points the information rate is confirmed. The information extracted has a minimum effect on uncertain changes in the face since the entropy is the higher-order statistical feature. Then the extracted corresponding entropy volume-based scale-invariant feature transform features are applied and provided to the support vector machine for classification. The normal scale-invariant feature transform feature extracts the key points based on dissimilarity which is also known as the contrast of the image, and the volume-based scale-invariant feature transform (V-SIFT) feature extracts the key points based on the volume of the structure. However, the EV-SIFT method provides both the contrast and volume information. Thus, EV-SIFT provides better performance when compared with principal component analysis (PCA), normal scale-invariant feature transform (SIFT), and V-SIFT-based feature extraction. Since it is well known that the artificial neural network (ANN) with Levenberg-Marquardt (LM) is a powerful computation tool for accurate classification, it is further used in this technique for better classification results

    On the Robustness of Face Recognition Algorithms Against Attacks and Bias

    Full text link
    Face recognition algorithms have demonstrated very high recognition performance, suggesting suitability for real world applications. Despite the enhanced accuracies, robustness of these algorithms against attacks and bias has been challenged. This paper summarizes different ways in which the robustness of a face recognition algorithm is challenged, which can severely affect its intended working. Different types of attacks such as physical presentation attacks, disguise/makeup, digital adversarial attacks, and morphing/tampering using GANs have been discussed. We also present a discussion on the effect of bias on face recognition models and showcase that factors such as age and gender variations affect the performance of modern algorithms. The paper also presents the potential reasons for these challenges and some of the future research directions for increasing the robustness of face recognition models.Comment: Accepted in Senior Member Track, AAAI202

    3D reconstruction for plastic surgery simulation based on statistical shape models

    Get PDF
    This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa

    Pattern Recognition of Surgically Altered Face Images Using Multi-Objective Evolutionary Algorithm

    Get PDF
    Plastic surgery has been recently coming up with a new and important aspect of face recognition alongside pose, expression, illumination, aging and disguise. Plastic surgery procedures changes the texture, appearance and the shape of different facial regions. Therefore, it is difficult for conventional face recognition algorithms to match a post-surgery face image with a pre-surgery face image. The non-linear variations produced by plastic surgery procedures are hard to be addressed using current face recognition algorithms. The multi-objective evolutionary algorithm is a novel approach for pattern recognition of surgically altered face images. The algorithms starts with generating non-disjoint face granules and two feature extractors EUCLBP (Extended Uniform Circular Local Binary Pattern) and SIFT (Scale Invariant Feature Transform), are used to extract discriminating facial information from face granules. DOI: 10.17762/ijritcc2321-8169.150316

    Digital Eye Modification A Countermeasure to Automated Face Recognition

    Get PDF
    This thesis describes and assesses a series of subtle digital eye modification techniques and their impact on automated face detection and recognition. The techniques involve altering the relative positioning of a person\u27s eyes in a photograph using a variety of horizontal and vertical movements local to the eye regions. Testing with Eigenfaces, Fisherfaces, and Circular Local Binary Pattern face recognition algorithms on a database of 40 subjects and over 4000 modified images shows these subtle geometric changes to the eyes can degrade automated face recognition accuracy by 40% or more. Certain modifications even lower the chance a face is detected at all by about 20%. The combined effect of particular eye modifications resulted in subjects being both detected and recognized less than 20% of time. These results indicate that nearly imperceptible modifications made to one or more key facial features may foil face recognition algorithms
    corecore