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Abstract 
 

Digital Eye Modification 

A Countermeasure to Automated Face Recognition 

Domenick Poster III 

This thesis describes and assesses a series of subtle digital eye modifica- 

tion techniques and their impact on automated face detection and recogni- 

tion. The techniques involve altering the relative positioning of a person’s 

eyes in a photograph using a variety of horizontal and vertical movements 

local to the eye regions. Testing with Eigenfaces, Fisherfaces, and Circular 

Local Binary Pattern face recognition algorithms on a database of 40 sub- 

jects and over 4000 modified images shows these subtle geometric changes to 

the eyes can degrade automated face recognition accuracy by 40% or more. 

Certain modifications even lower the chance a face is detected at all by about 

20%. The combined effect of particular eye modifications resulted in subjects 

being both detected and recognized less than 20% of time. These results indi- 

cate that nearly imperceptible modifications made to one or more key facial 

features may foil face recognition algorithms. 
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Chapter 1 

Introduction 

 

 

Our identities have long been associated with images of our faces, whether 

in the form of a portrait, a yearbook picture, a driver’s license photograph, 

or a police mugshot. The task of actually matching a face to an identity 

has traditionally been the purview of humans. In the last couple decades, 

however, computers have been programmed to not only detect a human face, 

but also to learn whose face it is. 

Face recognition technology has rapidly become the cornerstone of a di- 

verse array of applications spanning from police surveillance to biometric 

authentication and social media. We live in a world where our visual ap- 

pearance has been digitized, linked to our identity, and in some cases made 

publicly available, often with our own consent. Automated face recognition 

systems know what we look like and, if given a new, unseen image of a face, 

can reliably identify whose it is within certain constraints.  Furthermore, 

these algorithms are constantly being made more robust to the demands of 

real-life scenarios. 
 
 

1.1 Motivational Scenario 
 

Online programs like Facebook automatically identify individuals using fa- 

cial recognition. People also have access to photo-editing software allowing 

for morphing, embellishment, or estrangement of facial features. Yet, most 

literature on facial recognition seeks to examine the technology’s robustness 

to common challenges such as age, pose, expression, and illumination as op- 

posed to an algorithm’s resilience to digital facial modification. 
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In this study, a new technique to thwart facial recognition of online pho- 

tographs is introduced and assessed for its effectiveness. The countermeasure 

developed here addresses the scenario wherein an individual has pictures on- 

line associated with his or her identity but have digitally and perhaps subtly 

modified the facial features. 
 
 

1.2 Key Terms 
 

1.2.1 Face Detection and Recognition 
 

Subverting facial recognition involves hiding or altering features which make 

a face distinguishable and unique from others. Face recognition systems have 

various points of vulnerability to attack. Being successfully identified from a 

photograph typically requires multiple steps. For the purpose of this thesis, 

the two main steps are 1) face detection and 2) face recognition. 
 

 

Face Detection 
 

Face detection is simply the process of finding a face in an image. It is not 

concerned with determining whose face it is, only that it is a human face. 
 

 

Face Recognition 
 

Face recognition, however, is the process of determining whether two or more 

faces are of the same individual. If a face cannot be automatically detected 

in a photograph, then automated recognition is often impossible. 
 
 

1.2.2 Feature Extraction 
 

Even though face detection precedes face recognition, they both share some 

underlying cords. Face detection and recognition algorithms generally rely 

on extracting a set of (hopefully) discriminating features from a face image 

[1]. This process is known as feature extraction. The features extracted from 

the image form the ”facial representation.” There are many different existing 

facial representations and more continue to be developed. A facial recognition 

algorithm can partly be categorized by the facial representation it uses. From 

the widely-accepted taxonomy established by Zhao et al, ”Three types of 

feature extraction methods can be distinguished: (1) generic methods based 



3  

 
 
 
 
 

on edges, lines, and curves; (2) feature-template-based methods that are used 

to detect facial features such as eyes; (3) structural matching methods that 

take into consideration geometrical constraints on the features” [2]. 

 

 
 

Figure 1.1: High-Level Overview of Face Recognition Systems [2] 
 

 

When modifying an image, if the features used for face representation 

can be disturbed, then face detection and recognition should be affected. 

However, the wide variety of approaches make targeting any one type of 

feature set an unreliable tactic . 
 
 

1.2.3 Classification 
 

Classification is the final component of face detection and recognition. In the 

case of face detection, a classifier uses the feature set to determine whether 

an image contains a face, or for that matter, eyes, a nose, a mouth, and 

so on. For face recognition, the classifier attempts to match a face to other 

faces. Classification can be accomplished by employing a variety of statistical 

analysis methods, neural networks, or other machine learning techniques. 
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1.2.4 Approaches to Face Recognition 
 

Since a wide variety of feature extraction and classification techniques can 

be combined, many different approaches to face recognition exist. To help 

describe and organize the algorithms, Zhao et al has created the following 

high-level categorization: holistic matching methods, feature-based (struc- 

tural) matching methods, and hybrid methods [2]. A holistic method takes 

the entire face region as its input. Some algorithms which fall under this cat- 

egory include Eigenfaces, Fisherfaces, and Support Vector Machines (SVM). 

Alternatively, feature-based methods first detect facial features such as the 

eyes or nose, further perform feature extraction on the separate parts, then 

feed that information into a classifier. Some popular feature-based methods 

are pure Geomeotric Feature methods, Hidden Markov Models (HMM) and 

Convolutional Neural Networks (CNN). Hybrid approaches use some combi- 

nation of holistic and local feature matching methods. 
 
 

1.2.5 Measurements  of  Accuracy 
 

Different metrics can be used to describe an algorithm’s effectiveness. Certain 

measurements are more appropriate for certain tasks. 

In face verification trials, in which the task is to determine if a given face 

image is of a specific person, an algorithm computes a score or confidence of 

the match. When the confidence is above a certain operating threshold, then 

it is deemed to be a positive match. Tracking the number of false positives 

and false negatives of the matches is a popular method [1]. Usually, false 

positives and false negatives are plotted across varying confidence thresholds, 

creating the receiver operating characteristic (ROC). 

For closed-set identification, in which a face image is matched against a 

finite number of subjects, a straight-forward approach is to count success- 

ful matches versus unsuccessful matches. Another term for this is Rank-1 

Accuracy. More formally, Rank-1 Accuracy is the percentage of times the 

algorithm’s first choice is the correct choice. By extension, Rank-n accuracy 

is the percentage of times the correct choice is among the algorithm’s top 

n picks. Recognition accuracy plotted over varying values of n gives rise to 

the cumulative match characteristic (CMC). Closed-set identification tests, 

especially with larger datasets, often use CMC curves as a primary metric of 

evaluation. 
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1.3 Digital Modification 
 

Conceivably, a plethora of digital modifications can be applied to an im- 

age. Even so, modifications which are extremely obvious or detract from 

the human recognizability of the photo may not be desirable to share on- 

line. Instead, this study employs modifications that are more analogous to 

alterations produced by plastic surgery. 

These modifications would focus on altering the relative spacing, orien- 

tation, size and symmetry of key facial features. This thesis is limited to 

studying the effect of modifying inter-pupil distances and eye symmetry on 

face recognition and face detection accuracy. 
 
 

1.4 Problem Statement 
 

The hypothesis is that by changing the geometric arrangement of the eyes, 

automated face detection and recognition accuracy will be negatively im- 

pacted. 
 
 

1.5 Organization of Thesis 
 

A review of literature on face detection and face recognition relevant to dis- 

guise and deception will follow in Chapter 2. Chapter 3 describes the process 

and tools used to create and test the digital modifications. Chapter 4 dis- 

cusses the methodologies and results of the experiments. Chapter 5 concludes 

the findings, notes any threats to the validity of study, and offers recommen- 

dations on further research. 
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Chapter 2 

Literature Review 

 

 

Real-world face recognition scenarios, particularly regarding surveillance, are 

much more difficult than the highly controlled scenarios in which recognition 

algorithms are often benchmarked. Review of literature has shown little 

research examining the effects of deliberate digital modification as a coun- 

termeasure to face recognition. Hence, one must look at studies examining 

similar scenarios to provide some context and inspiration for this work. 
 
 

2.1 Disguises 
 

Singh et al identified and studied two major challenges to real world recog- 

nition scenarios - disguises and limited training data [3]. Disguises are a 

non-permanent modification made to mask one’s identity from both face de- 

tection and recognition. If certain types of disguises are effective, then it 

may be possible to mimic their effect on previously captured photographs. 

Singh et al developed a novel approach to address this scenario using a 

2d log polar Gabor transform in concert with a dynamic neural network. 

It is compared against Principal Component Analysis (PCA), Geometric 

Features, Local Features, Independent Gabor Features, and Local Binary 

Pattern (LBP) algorithms. The databases used were the AR database (a 

database containing 3000 images of 116 people) and the National Geographic 

database (originally containing only 46 images of a single individual) mod- 

ified to include 15 more individuals each with 10 variations of synthetically 

generated disguises including glasses, hats, facial hair, varied hairstyles, and 

makeup.  Of all the single disguises, Singh et al found alterations involv- 



 

 
 
 
 
 

ing glasses or facial hair to be the most detrimental to accuracy. Testing 

with the AR dataset where the individual is wearing dark glasses yielded a 

best-case Rank 1 identification accuracy of 71.7%. PCA’s performance was a 

dismal 28.6%. With the synthetic database, best-case performance increased 

to 85.2% with glasses while the worst algorithm achieved 70.9% accuracy. 

Unsurprisingly, a combination of disguises presented the greatest challenge - 

71.2% best-case and 19.7% worst-case [3]. A major limitation of this study 

is the limited size and synthetic nature of the databases. 

Makeup as a potential form of disguise is analyzed separately by Eckert 

et al [4]. In the study, a variety of makeup such as shadow, blush, eyeliner, 

and lipstick has been applied to the skin, mouth and eyes. The database 

contained 339 images with 50 reference photos and was manually assembled 

from makeup tutorial videos. Each image was categorized as either slight, 

intermediate, or heavy makeup. A Local Binary Pattern algorithm was used 

to match isolated features such as eyes or mouth and also faces as a whole. 

The images without makeup were used as the gallery. 

Eckert et al found slight and heavy eye makeup to decrease Rank 1 accu- 

racy to about 52% and 45% respectively from a baseline of 65% [4]. However, 

a spike in accuracy was observed with intermediate level makeup for all fea- 

tures. Eckert et al surmised this was because intermediate makeup “enhances 

characteristic features and contours, which leads to better distinguishable 

eye shapes” whereas heavy makeup has an “estranging” effect. Once again, 

recognition performed on the whole face with multiple modifications resulted 

in the lowest accuracy of 40%. 

One interesting finding was an increase in face recognition accuracy when 

images with intermediate makeup were used as the gallery. As Eckert et al 

explain, “intermediate makeup increases both interclass and intraclass vari- 

ation but the increase is higher for interclass variation therefore the impact 

is positive” [4]. In effect, the intermediate makeup photo when used as the 

reference acted as a “bridge” between photos with no makeup and photos 

with heavy makeup. Therefore, photos digitally modified for the purpose of 

camouflaging one’s identity could actually backfire if that camouflaged pho- 

tograph is correctly identified through other means and incorporated into a 

training set. 

While wearing glasses or makeup may not necessarily be done to deceive, 

the act of wearing masks is a far more deliberate tactic. In 2013, Kose and 

Dugelay studied the vulnerability of face recognition to these physical masks. 

They found face recognition algorithms, especially 3D recognition algorithms, 
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to be vulnerable to spoofing mask attacks [5]. For the problem defined in 

this thesis, these masks are not a realistic strategy for privacy preservation 

as they cannot be applied to a photograph after it’s been taken. In addition, 

producing a realistic mask is not a trivial process. 

Also worth noting is once a photograph has been taken the disguises may 

be difficult to convincingly overlay onto the face, as some of the synthetically 

generated databases demonstrated. A great deal of time, effort, and skill 

would be required to realistically recreate facial hair or add apparel, not to 

mention the need for commercial-grade photo editing software. 
 
 

2.2 Plastic Surgery 
 

There is one additional emerging domain within face recognition research 

which could prove insightful: plastic surgery. As far as could be determined, 

this area of research was first identified by Singh et al [6] in 2009. 

Singh et al created a database from before and after photos found on plas- 

tic surgery websites [6].  Using several different feature-based, appearance- 

based, and texture-based algorithms, they found before and after matching 

accuracy to be very low (38.8% in the best case). This is partly due to the 

inherently challenging nature of the manually curated database. The pho- 

tographs used in the database do not control for pose, expression, makeup, 

hairstyle, or illumination. This preliminary study concluded certain facial 

features played an important role in face recognition, particularly nose, chin, 

and eyes. What they termed ‘global surgery’ or a full-face lift had a par- 

ticularly negative effect on accuracy. Depending on the algorithm, Rank 1 

accuracy decreased to anywhere from 2.8% to 10.6% for subjects who under- 

went global surgery [6]. 

In 2010, Singh et al expanded on the preliminary study with a more 

thorough investigation involving an augmented database [7]. Unfortunately 

they had to employ a separate, non-surgery database to establish a baseline 

accuracy. Nevertheless, they observed similar results to their preliminary 

study. They found “ear surgery has the lowest effect on the performance” 

while “nose, chin, eyelids, cheek, lips, and forehead play an important role 

in face recognition.” Accuracies ranged from 18% to 61% depending on the 

severity of surgery and the algorithm employed [7]. 

The next step was taken by De Marisco et al in 2011 [8]. De Marisco 

et al first analyzed the contribution of different facial regions to recognition 
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performance by hiding regions and noting the change in accuracy. They 

found that among all the isolated regions, the eye region is the most helpful 

to recognition. 

By modeling the relative importance of each region, De Marisco et al 

then developed two integrative regions of interest (ROI) analysis methods 

termed FARO and FACE. Using the aforementioned database assembled by 

[7], FARO achieved a Rank 1 recognition rate (RR) of 50% for local surgeries 

and 28% RR on global surgeries. The FACE algorithm, which is more compu- 

tationally expensive, reached 59% RR for local surgeries and 35% for global 

surgeries. Comparatively, PCA scored 20% RR for local and global surgeries 

alike, whereas LDA scored about 35% RR. While their novel algorithms did 

substantially better than the common alternatives, face recognition on pa- 

tients of plastic surgery remained challenging and unreliable [8]. 

Aggarwal et al took a similar approach in 2012 by using a sparse repre- 

sentation (SR) of individual facial regions and integrating the results of each 

region into a final prediction [9]. Also using the Singh database, their algo- 

rithm achieved an overall accuracy of 77.9%, although accuracies for different 

surgeries are not separately measured. To reiterate, the Singh database has 

no pre-surgery baseline so a relative drop in accuracy cannot be computed. 

Also in 2012 Kose et al conducted a study focused on face recognition ro- 

bust to nose alterations [10]. They created a synthetic database from images 

of the Face Recognition Grand Challenge v1.0 database [11] where subjects’ 

nose regions are randomly swapped. This database has the advantage of hav- 

ing a baseline. Their approach was to break a pair of images into “blocks” 

and only incorporate the corresponding blocks with the most similarity for 

face recognition. This approach is similar to only analyzing the most in- 

formative facial regions. Once the most similar blocks are identified, they 

utilize PCA, LDA, and  Circular  Local  Binary  Pattern  (CLBP)  algorithms 

on the individual blocks. Without using the block-based approach, PCA’s 

accuracy on the synthetic database was 31%, having dropped 29% from the 

baseline, LDA scored 55% with a drop of 20%, and CLBP scored 70% with 

a drop of 9%. Using only the k most similar blocks, PCA scored 64% with a 

drop of 18% on the synthetic database, LDA scored 68% with a drop of 14%, 

and CLBP scored 76% with a drop of 6% [10]. Clearly their approach im- 

proved accuracy but the results cannot be compared to the previous studies 

because of the difference in datasets. Regardless, the commonality of being 

discriminative in which areas to incorporate into recognition persists. 

Bhatt et al [12] developed an approach that divided a photo into multiple 
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regions or “levels of granularity” and applied a multi-objective evolutionary 

algorithm (MOE) to determine which regions were the most useful to suc- 

cessful recognition. Using the Singh database, this approach achieved an 

impressive 87% accuracy. Performance regarding local surgeries related to or 

around the eyes was similarly high. The lowest performance, 71%, was for 

patients who underwent a global face lift. 

More recently in 2015, De Marisco et al [13] expanded on their earlier 

research by applying a region-based approach unified by multimodal super- 

vised collaborative architecture called Split Face Architecture (SFA) yielding 

results similar to [12] except without the need for an extensive training set. 

 
Algorithm [6] [7] [8] [9] [12] [13] 

PCA 19% 27% 35% 29% 27% 80% 

FDA 20% 31%  33% 31% 64% 

GF 28%      

LFA 22% 48%  39% 38%  

LBP 30%     77% 

GNN 34% 54%  54% 54%  

CLBP 48%  48% 48%  

SURF 51%  51% 51%  

FARO 50%   59% 

FACE 70%   85% 

LDA 40%   

SR 78%  

MOE 87% 
 

Table 2.1:  Summary of average Rank-1 Accuracy for all photos in Singh 

plastic surgery database per algorithm per study 
 

 

Table 2.1 summarizes the results of all the studies which used the Singh 

plastic surgery database. These accuracies represent the overall Rank-1 ac- 

curacy across all the plastic surgery photos, from local operations to global 

procedures. The accuracies in bold represent the best-performing algorithm 

for each study. As the studies have been arranged in chronological order, one 

can observe an increasing trend in performance over time. 

Even though newer approaches have achieved major improvements in ac- 

curacy, plastic surgery, especially on multiple key facial features, can still 

pose a major challenge to common face recognition algorithms.  Due to a 
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lack of alternative plastic surgery image databases, the more recently suc- 

cessful approaches have yet to be thoroughly validated. Also, by their very 

nature of separately analyzing and incorporating different facial regions, the 

more innovative algorithms can become very computationally expensive or 

require intensive training. Nevertheless, undergoing plastic surgery simply to 

hide from automated face recognition systems is an extreme and uncommon 

response. Furthermore, plastic surgery does not address the scenario wherein 

one wishes to camouflage a particular picture which has already been taken. 
 
 

2.3 Plastic Surgery Simulation Tools 
 

As plastic surgery has become increasingly popular, tools have been cre- 

ated to simulate plastic surgery operations in order to preview the changes. 

These software tools are primarily targeted towards surgeons and patients. 

They can be used, however, to modify photographs in a way subversive to 

automated face recognition. 

These tools have the advantage of removing the skill and experience neces- 

sary to create convincing modifications using commercial-grade photo editing 

software. Lee et al developed software which generates 3D models of a face 

from a photograph [14]. Once the model has been created, pre-programmed 

operations such as augmentation, cutting, and laceration can be executed on 

different facial features. 

Chou et al has also created a user-friendly plastic surgery simulation tool 

[15]. In it, there is also support for adding glasses or facial hair. One can 

swap out facial regions from a photograph with the corresponding regions of 

a celebrity, for example. In doing so, the program can be used to generate 

pictures which morph one’s face to look like someone else. 

These programs are limited to performing viable plastic surgery opera- 

tions. Since there is no cosmetic surgery to change inter-pupil distance, this 

cannot be simulated with software specific to plastic surgery. If one’s goal 

is to disguise a photograph, it is not necessary to limit oneself to physically 

possible modifications. 



12  

 

 
 
 
 

2.4 Digital Modifications 
 

Little research could be found directly studying the quantitative effects of 

digital modifications on face recognition accuracy. However, the relevant 

literature that does exist is insightful. 

Newton et al studied automated face recognition from the perspective 

of privacy and law enforcement [16]. Their goal was to protect individuals’ 

privacy by de-identifying their facial features so that video surveillance im- 

ages can be shared with police without violating the privacy of innocents. 

This allows law enforcement to investigate footage without requiring a war- 

rant. Once the suspicious persons are determined, specific warrants can be 

obtained for those individuals. Simply blacking out faces could hide impor- 

tant information such as pose and expression. Therefore, an approach was 

needed which preserved some information about the face but made the in- 

dividual unidentifiable. Newton’s solution was to create a new, composite 

face from the k-nearest similar faces. This approach successfully prevented 

individuals from being identified by an automated recognition system but 

also made them unrecognizable by humans [16]. Yet, if an appropriately 

small number of k similar faces are employed in the face averaging process, 

a balance could potentially be struck between maintaining human recogniz- 

ability and degrading automated recognition accuracy. Whether or not the 

modifications would look realistic is less certain. 

Ferrara et al conducted a study in 2013 on the effects to face recognition 

accuracy of digital modifications to photographs by using plastic surgery sim- 

ulation software as well as basic geometric transforms on the image [17]. The 

geometric transforms performed were a barrel distortion, a vertical contrac- 

tion, and a vertical expansion on the entire image. The geometric alterations 

were intended to simulate an unintentional warping of the image due to the 

photo capture device (ie camera) or scanning device. LiftMagic is a free plas- 

tic surgery simulation tool that was used to simulate intentional modifications 

of the face image. Three commercial-grade face recognition algorithms were 

used: Verilook, Luxand, and a SIFT-based algorithm. They used the AR 

face database to test the results. Ferrara et al found that barrel distortion 

had little to no impact on face recognition accuracy for all three of the algo- 

rithms. However, for all but Verilook, vertical expansion and contraction of 

the image resulted in a moderate drop in performance. Face images which 

underwent several simulated plastic surgery operations resulted in a decrease 

in performance for all three algorithms [17]. 
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Szegedy et al were actually able to make imperceptible alterations to im- 

ages in such a way that would cause an image classification neural network 

to misclassify 100% of the time [18]. For example, an image of a school bus 

which was normally correctly classified would always become unrecognizable 

to the neural network once the image was distorted. The study only experi- 

mented with images of objects and handwriting. Their distortions relied on 

being able to probe the neural network and undermine feature detection at 

the hidden layers [18]. However, without access to the neural network, it may 

not be possible to analyze and identify the necessary distortions required to 

trick the network. Someone trying to camouflage their face in a photograph 

probably does not have the luxury of knowing which algorithms will be used 

to recognize him or her. An adequate camouflage technique must be effec- 

tive against a variety of algorithms. Nevertheless, the study by Szegedy et 

al highlights a worthy avenue for further research. 
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Chapter 3 

Experiment Setup 

 

 

This Chapter outlines the steps taken to systematically measure the effective- 

ness of different geometric eye modifications at confounding face recognition 

technology. A major shortcoming of existing research is the lack of precise 

quantitative measurements of the strength of different types of facial morph- 

ing. For example, plastic surgery related studies only categorize the type of 

the surgical operation. Along the same lines, [4] broadly categorizes makeup 

as “light,” ”intermediate,” or “heavy.” The approach taken in this thesis pro- 

vides a means to measure the magnitude of the eye modifications in order to 

formulate expectations of impact on face recognition accuracy. 
 
 

3.1 Modification Technique 
 

In order to create a sufficiently large dataset, image modification could not 

be done manually. Furthermore, the modifications need to be replicated 

in a standardized and precise fashion across all subjects. To that end, a 

combination of tools were used. OpenCV is used for eye detection [19]. 

ImageMagick, an open-source image editing program, is used to perform the 

actual morphing of the eye regions. 

Finding the eyes in the image is the first step in the process. OpenCV’s 

feature detection is based off the Viola-Jones algorithm and uses a feature- 

template-based Haar cascade architecture. OpenCV’s Haar cascade eye clas- 

sifiers locate the pixel coordinates describing rectangular eye regions. If ex- 

actly two eyes are not found, the process is aborted. As a result, not every 

unmodified image has a corresponding modified counterpart. Eye regions are 
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manually verified to ensure the correct areas were selected. 

For each image where two eyes are successfully located, a distance d is 

computed representing the number of pixels between the two eye boxes. At 

this point, ImageMagick is employed to perform a “Linear Displacement” 

operation on the pixels within the eye regions. Linear Displacement shifts 

each pixel in a specified direction by a certain number of pixels. The dis- 

tance, or magnitude, the pixels are displaced is a function of the previously 

computed inter-eye distance d and a variable percentage p. The equation for 

this magnitude (pixel distance) is m = (p/2) ∗ d where p is a value between 
10% and 100% on 10% intervals. As an example, a 50% modification would 

perform a 25% displacement in one eye region and another 25% displacement 

in the other. Each eye modification is therefore proportionate to the distance 

between the subject’s eye regions. An additional step is taken to make the 

modified photo appear more realistic. Pixels located near the borders of each 

eye region are moved at a gradually decreasing fraction of the displacement 

distance, resulting in a smoothing effect around the modified region. Source 

code for the eye modification process in included in Appendix B. 
 

 

(a) Positive  Horizontal  Displacement (b) Negative Horizontal Displacement 
 

Figure 3.1: Horizontal Displacement Technique 
 

 

Two similar but opposite horizontal displacement operations are per- 

formed: one where the distance between the eyes is increased and another 
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(a) Positive Vertical Displacement (b) Negative Vertical Displacement 
 

Figure 3.2: Vertical Displacement Technique 
 
 

where the distance is decreased. The pixels are shifted both outwards from 

the nose and inwards respectively, expanding and shrinking the amount of 

space between the eyes. 

Vertical displacement is similarly performed by moving the pixels of the 

eye regions in opposite vertical directions, creating asymmetry. The inter- 

eye distance d is still used as a referential distance for computing vertical 

displacement. Figures 3.1 and 3.2 illustrate the inter-eye distance d and the 

directional movements of the pixels within the eye region. As can be seen 

from Figure 3.2, the terms ”positive” and ”negative” in the context of verti- 

cal displacement are arbitrary and only used as a convention to distinguish 

between two mirrored operations. 

Bilateral displacement is done by performing a 40% positive vertical 

displacement paired with horizontal displacements ranging from -100% to 

+100%. A constant 40% vertical displacement was chosen as it represented 

a modification within the limits of visual believability as well as to avoid 

creating massive permutations of modifications. 

Figures 3.3, 3.4, and 3.5 on page 17 illustrate the different modifications 

at varying levels of change. The believability of any given modification is 

different for each individual and photo but 100% modifications generally look 
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obviously distorted. However, Figure 3.5 shows the viability of the technique 

on subjects with glasses. Ultimately, the believability of any modified photo is 

subjective; users must decide for themselves what level of change is acceptable 

for the application. 
 

 

(a) -100% (b) -50% (c) Original (d) +50% (e) +100% 
 

Figure 3.3: Horizontal Displacement Examples 
 
 
 

 

(a) -100% (b) -50% (c) Original (d) +50% (e) +100% 
 

Figure 3.4: Vertical Displacement Examples 
 
 
 

 

(a) -100% (b) -50% (c) Original (d) +50% (e) +100% 
 

Figure 3.5: Bilateral Displacement Examples 
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3.2 Face Database 
 

This study uses the AT&T Database of Faces courtesy AT&T Laboratories 

Cambridge [20]. The database contains 40 subjects each with 10 front-facing 

images.. The images vary with respect to changes in expression as well as 

slight changes in pose.  There  is  also  very  slight  variation  with  illumina- 

tion. The size of each image is 92x112 pixels with 8-bit gray levels. Using 

the modification techniques mentioned in Section 3.1, we create several syn- 

thetic databases. Since successfully detecting the eye regions in the images 

is a prerequisite for eye modification, the modified databases are a subset of 

the original database. Of the images where the eye regions were successfully 

detected, three databases are generated corresponding to horizontal, vertical, 

and bilateral displacements, designated as DBOH , DBOV , and DBOB respec- 

tively. Of the original 400 images, 235 underwent successful eye detection. 

As such, every degree of eye modification has 235 images, for a total of 4,700 

modified images. Since each of these databases contains the same number of 

modified images, for  the  sake  of  simplicity,  they  are  referred  to  collectively 

as DBO∗  in Table 3.1 on page 19. 
 

 

3.2.1    Normalization 
 

The AT&T Database of Faces represents a ”cooperative” face image database, 

meaning the images are all taken in a consistent, standardized manner. Face 

recognition is a much easier task in these situations as a great deal of vari- 

ability is removed from the data. Many real-world scenarios do not have the 

luxury of the face images being captured in a homogeneous way. ”Faces in 

the wild” is a term used for face images taken in an unconstrained manner. 

In order to perform face recognition on faces in the wild, a data preprocess- 

ing step known as normalization must occur. To simulate the conditions of a 

real-world example where normalization of photos is necessary, an additional 

set of databases have been created in which the images have been normalized. 

The normalization algorithm was developed by Philipp Wagner and is 

available in OpenCV’s online documentation and included in Appendix B. 

It utilizes OpenCV to perform a basic normalization technique wherein the 

face image is cropped, scaled, and rotated so that the eyes are horizontally 

aligned. To determine the amount of the face to include in the crop, 25% hor- 

izontal and vertical offset values were used. The resulting images are re-sized 

to 70x70 pixels. Photometric normalization (i.e., adjustments to brightness 
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or contrast) is not necessary as the images are already in gray scale and con- 

trolled for illumination. Normalization is performed on all 400 unmodified 

images as well as all horizontally, vertically, and bilaterally modified images. 
More formally, DBOH is normalized to produce DBN H , DBOV is normalized 

to produce DBN V , etc. The normalization process requires successful detec- 

tion of both the face and the eyes. Consequently, the normalized databases 

are smaller than their non-normalized counterparts, as shown in Table 3.1. 

See Figures 3.6, 3.7, and 3.8 on page 20 for examples of normalization. The 

process of normalization is not perfect. Figure 3.8d on shows an example 

where the mouth was presumably classified as an eye. Both unmodified and 

modified images suffer from this misclassification. These mistakes are kept 

in the database in order to judge the impact of eye modifications. 
 

Modification DBO∗ DBN H DBN V DBN B 

0% 400 229 229 229 

+10% 235 145 146 140 

+20% 235 141 144 136 

+30% 235 136 143 133 

+40% 235 128 143 125 

+50% 235 116 137 120 

+60% 235 114 134 111 

+70% 235 110 128 102 

+80% 235 107 121 99 

+90% 235 102 113 97 

+100% 235 82 102 80 

-10% 235 160 154 151 

-20% 235 166 157 155 

-30% 235 163 147 160 

-40% 235 167 141 168 

-50% 235 167 137 169 

-60% 235 176 139 171 

-70% 235 177 130 170 

-80% 235 175 127 173 

-90% 235 175 126 172 

-100% 235 172 112 165 

Total Mods 4700 3108 2910 2926 
 

Table 3.1: Number of images for each modification and database 



20  

 
 
 
 

 

 

(a) Normalized (c) Normalized (d) Normalized 

(a) Original Original -50% Mod -100% Mod 
 

Figure 3.6: Original vs Normalized: Horizontal Displacement 
 
 
 

 

(b) Normalized (c) Normalized (d) Normalized 

(a) Original Original -80% Mod +80% Mod 
 

Figure 3.7: Original vs Normalized: Vertical Displacement 
 
 
 

 

(b) Normalized (c) Normalized (d) Normalized 

(a) Original Original -100% Mod +100% Mod 
 

Figure 3.8: Original vs Normalized: Bilateral Displacement 
 

 
 

3.3 OpenCV Face Recognition Algorithms 
 

This study relies on the OpenCV suite of face recognition algorithms. The 

three algorithms included in the OpenCV library are Eigenfaces, Fisherfaces, 

and Local Binary Pattern Histograms (LBPH). Unfortunately, as the litera- 

ture review indicates, there are many other types of algorithms which are not 

tested in this study. Although the algorithms packaged with OpenCV are 
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not as sophisticated as expensive commercial-grade products, they are still 

popular and commonly used for benchmarking purposes. They also hone in 

on different features in an image and represent different statistical approaches 

to face recognition. Eigenfaces, Fisherfaces and LBPH act as different facial 

representations. Classification is performed using Euclidean distances and 

the 1st-Nearest Neighbor. 

Philipp Wagner, whose face recognition library was merged into OpenCV 

as of version 2.4, has also written his own implementations of Eigenfaces, 

Fisherfaces, and LBPH [21]. His implementations have the advantage of ex- 

posing the top n predicted classes and Euclidean distances, whereas OpenCV 

only returns the information of the 1st-Nearest Neighbor. As such, his algo- 

rithms are used when calculating Rank-n Accuracy and CMC curves. For 

reference, a comparison of OpenCV and Wagner’s algorithms is included in 

Appendix A Figure A.3. 
 
 

3.3.1 Eigenfaces and Fisherfaces 
 

Eigenfaces and Fisherfaces are the applications of Principal Component Anal- 

ysis (PCA) and Linear Discriminate Analysis (LDA), respectively, to the 

domain of face recognition. In face recognition literature, PCA and LDA 

are often used interchangeably with Eigenfaces and Fisherfaces. LDA is also 

sometimes referred to as Fisher Discriminant Analysis (FDA). Both Eigen- 

faces and Fisherfaces take holistic, appearance-based approaches [1]. In sim- 

pler terms, an ”appearance-based” approach is one whose chosen features 

are the intensity values of the pixels; a ”holistic” approach extracts these 

features from the entire image. 

The main difference between Eigenfaces and Fisherfaces derives from the 

fundamental difference between PCA and LDA. PCA attempts to identify 

the ”principal components” responsible for the most variation among all the 

images without concern for class (in this case, the identity of the subject) 

[1]. Alternatively, LDA builds from principal components but adds class 

information. In doing so, LDA maximizes interclass variance (the differences 

between subjects) while minimizing intraclass variance (the uniqueness of an 

individual’s face) [1]. In this way, LDA works to mitigate non-discriminating 

natural variances such as illumination and expression. 
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3.3.2 Local Binary Pattern Histograms 
 

Alternatively, LBPH encodes regional, or ”local”, information such as lines, 

edges, and corners and is said to be texture or generic-based [2][1]. This is 

done by inspecting the intensity value of a central pixel and comparing it 

with the intensity values of all the pixels in a surrounding neighborhood of a 

predefined size. The original LBP operator looks at a square x by y region 

around the central pixel. All the pixels within the sampling region are then 

encoded as a 0 or 1 based on meeting a threshold difference in value [1]. 

This operator has been enhanced by using a circular neighborhood instead 

of a square region, coined a Circular Local Binary Pattern (CLBP) [1]. A 

radius is chosen for the circle, establishing the size of the neighborhood. A 

number of sampling points are chosen along its circumference. These points 

assume the intensity values of the pixels at those coordinates. Points along 

the circumference which do not exactly correspond with a pixel coordinate 

have their values interpolated from its surroundings [1]. OpenCV implements 

CLPB with a linear interpolation strategy [19]. 

The binary encoding of each subregion then corresponds to a ”texture 

primitive” such as an edge, a corner, or a spot. Histograms are then built 

based on the numbers of each texture primitive and used to compare face 

images. As Jain summarizes, ”The success of LBP in face description is due 

to the discriminative power and computational simplicity of the operator, 

and its robustness to monotonic gray scale changes caused by, for example, 

illumination variations. The use of histograms as features also makes the 

LBP approach robust to face misalignment and pose variations. [1].” 
 
 

3.4   Overview of Experiments 
 

Using the aforementioned images and algorithms, four distinct experiments 

were designed to measure the disruptiveness of the eye modifications on face 

detection and recognition. First, a measure is needed of the eye modifica- 

tions’ impact in constrained and cooperative face recognition scenarios. To 

address this, Experiment 1 scores Rank-1 accuracy for each of the three face 

recognition algorithms on the original and modified images prior to under- 

going normalization. 

Experiment 2 analyzes the performance of the face and eye detection 

algorithms employed during the normalization process.  By doing so, face 
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and eye detection can be evaluated separately from face recognition. 

Experiment 3 reassesses the face recognition algorithms on the normalized 

images using both Rank-1 and Rank-n accuracy. Using the Rank-n accura- 

cies, CMC curves are graphed and discussed. Additional analysis is provided 

by combining these face recognition results with the results from Experi- 

ment 2 to yield a holistic, start-to-finish performance assessment. Overall, 

Experiment 3 simulates a more unconstrained, real-world face recognition 

scenario. 

To anticipate the event of the face recognition system having access to 

positively identified modified images, a final experiment is conducted. Exper- 

iment 4 studies the change in face recognition Rank-1 accuracy when using 

modified images for the training data instead of unmodified images. 

All accuracy plots are generated using the matplotlib Python library [22]. 

See Figure 3.9 on page 24 for a visual summary of the processes involved 

in creating the modified and normalized image data. This diagram also 

indicates from where each experiment derives its data. 
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Figure 3.9: Transformation and Experimentation of Image Data 
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Chapter 4 
 
 

Results and Analysis 
 

 
 
 

The main goal of this research was to ascertain the effectiveness of the 

eye modification techniques in undermining the accuracy of automated face 

recognition systems. Using the data and technology described above, four 

experiments were designed to evaluate different aspects of the problem space. 
 
 

4.1 Experiment 1:  Without Normalization 
 

The first experiment utilizes the non-normalized set of original and modified 

images, DBO∗. This set includes the database of horizontally displaced im- 

ages (DBOH ), vertically displaced images (DBOV ), and bilaterally displaced 

images (DBOB ). DBO∗ represents photos in highly controlled and cooper- 

ative face recognition scenarios. Examples of this domain include driver’s 

license, passport, or mugshot photos. 

The training images, or ”gallery,” are taken entirely from the original, 

unmodified AT&T database. All 40 classes (subjects) are represented in the 

training set. Both modified and unmodified images are used as the testing 

images, or ”probe” images. A 10-fold cross-validation scheme with random 

sampling is used to validate the results. Each subject contributes one image 

to the gallery for each fold. Additionally, the folds are created in such a way 

that no modified image is ever tested on a training set containing the corre- 

sponding unmodified version of that image. Similarly, no unmodified images 

are ever tested on a fold containing their exact duplicate. The unmodified 

probe images establish a baseline Rank-1 Accuracy. Rank-1 Accuracies are 

then computed for each degree of modification. 
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Figure 4.1: Bilateral Modification Rank-1 Accuracy (1 Training Image per 

Subject) 
 
 

The results of this experiment are clear. Simple eye modifications are not 

enough to confound face recognition when image collection is undergone in a 

controlled environment. Even at the extreme levels of modification, Rank-1 

accuracies remain almost completely unphased for every type of directional 

displacement. Figure 4.1 showcases this fact for bilateral modifications. Ex- 

act accuracies are included in Appendix A in Table A.1. The results for 

horizontal and vertical displacement are nearly identical and are included 

in Appendix A as Figures A.1 and A.2. Since a fully cooperative dataset 

is unlikely in online face recognition scenarios, these results should not be 

disparaging from a social media privacy perspective. 
 
 

4.2 Experiment 2: Face & Eye Detection 
 

As emphasized in Section 1.2.1, if a face cannot be correctly detected in a 

photograph, then face recognition becomes a major issue. In the case of the 



 

 
 
 
 
 

constrained face recognition scenario with a cooperative face database, some 

algorithms can get away with simply assuming a face is there and performing 

classification on the holistic features of the image (as done in Experiment 

1). More real-world scenarios and sophisticated algorithms do not have that 

luxury. A face, and often specific facial features, must be detected in order 

for recognition to work appropriately. 

If privacy is the ultimate goal, then the impact of eye modifications on 

face detection accuracy is also a vital concern. After all, it is difficult to 

identify someone who is invisible. 

Since face and eye detection both occur during the process used to create 
the normalized set of original and modified images (DBN ∗), the rate of suc- 

cessful feature detection can be tracked. The resulting number of normalized 

unmodified photos can be compared with the number of normalized modified 

photos to measure the effect of varying magnitudes of modification on feature 

detection. 

Of the original 400 unmodified images from the original AT&T database, 

229 underwent successful face and eye detection, yielding a baseline accuracy 

of 57.25%. This is compared to the detection rates for the 235 modified 

images. Face and eye detection rates were not separately analyzed. Figure 

4.2 on page 28 shows the change in detection rates on the modified images. 

The relative drop in accuracy around the baseline is likely due to the fact 

that the 235 modified images only exist because eye detection was already 

successful. On the other hand, the baseline represents the detection rate 

for all 400 unmodified images. Baseline accuracy would be much higher if 

only the original images which led to successful eye modification were used 

to calculate the baseline detection rate. Therefore, the comparison with the 

baseline is not entirely fair due to selection bias favoring detection of modified 

photos. 

Nevertheless, the results are still informative. Positive and negative ver- 
tical displacements from DBN V reduced detection rates equally. This is 

expected as these are essentially mirrored operations. 

More interestingly, positive horizontal displacement (increases in inter- 

pupil distance) were more likely to trick the Haar cascade classifiers into 

believing no faces or eyes were there. This is likely due to geometric and 

structural constraints ingrained in the feature-template-based Viola Jones 

algorithm. A similar success rate carries over into DBN B , as its main varia- 

tion was horizontal displacement. 

The same is not true for negative horizontal displacements. The classifiers 
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Figure 4.2: Face & Eye Detection Accuracy 
 
 

are actually more likely to detect the face and eyes for negative horizontal 

and bilateral. In fact, as the modifications increase in magnitude from -10% 

to -100%, it actually becomes easier to distinguish the face and eyes. 
 
 

4.3    Experiment 3:  With Normalization 
 

The third experiment operates on the normalized set of original and mod- 

ified images (DBN ∗). In this dataset are the horizontally displaced images 

(DBN H ), vertically displaced images (DBN V ), and bilaterally displaced im- 

ages (DBN B ). The collection of normalized images approximates the photo 

variability found in unconstrained face recognition scenarios. The intention 

is to simulate photos collected from online sources or casually captured in 

person. This experiment more closely resembles the motivational scenario of 

protecting the privacy of online identities as presented in Section 1.1. 

Training and testing is performed in the same manner as Experiment 

1. However, as the initial results for this experiment were more interesting, 
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the experiment was expanded to vary the number of photos each subject 

contributes to the gallery. Training sizes of one and three images per subject 

are tested. If a subject does not have three images to provide for training, 

it will provide as many as are available. Only 38 subjects have enough 

normalized images to be part of the experiment. 

The impact of eye modification on face recognition is compounded by the 

image normalization process, specifically with regards to face cropping and 

eye alignment. Geometric features such as eye locations and inter-eye dis- 

tance are inputs into the normalization algorithm. Referring back to Figure 

3.6 on page 20, as the eyes move closer together, the face cropping becomes 

tighter. This is also displayed by contrasting Figures 3.8b and 3.8c on page 

20. Another phenomenon occurs with vertical eye displacement. By intro- 

ducing asymmetry, attempting to align the eyes generates improperly rotated 

images. This effect is exhibited on page 20 in Figure 3.7. This kind of vari- 

ability in the images acts directly against the purpose of normalization. In 

turn, face recognition becomes more difficult. 

Figures 4.3, 4.4, and 4.5 on page 30 show the performance of the three 

algorithms on the normalized image sets. Horizontal, vertical, and bilat- 

eral displacements generally share similar trends in accuracy. Additional 

training images boost overall accuracy, but give way to steeper declines in 

performance. Vertical eye modifications have the least singular impact on 

accuracy. The algorithms are more robust to positive horizontal displace- 

ments than negative. Bilateral modifications produce the sharpest drop-offs 

in accuracy, building credence for the strategy of ”the more modifications, 

the better.” Of all the modifications, negative bilateral displacement is the 

most detrimental. At -50% bilateral modification, Rank-1 accuracies are be- 

tween 42% and 46% compared to a baseline success of 75% to 83%. Exact 

Rank-1 accuracies for the experiment can be found in Appendix A. 
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(a) 1 Training Image Per Subject (b) 3 Training Images Per Subject 
 

Figure 4.3: Normalized Horizontal Rank-1 Accuracy 
 

 
 

(a) 1 Training Image Per Subject (b) 3 Training Images Per Subject 
 

Figure 4.4: Normalized Vertical Rank-1 Accuracy 
 
 

 
 

(a) 1 Training Image Per Subject (b) 3 Training Images Per Subject 
 

Figure 4.5: Normalized Bilateral Rank-1 Accuracy 
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While LBPH performs consistently well on unmodified photos, the algo- 

rithm is especially vulnerable to modifications, especially vertical displace- 

ments. This is surprising as the algorithm has been shown to be robust to 

face misalignment [1]. Less surprising is how LDA benefits the most from 

additional training images given its incorporation of class information. 
 

 
 

Figure 4.6: Combined Face/Eye Detection & Face Recognition Accuracy of 

Bilaterally Modified Images 
 

 

To reiterate, face recognition is typically impossible if a face cannot be 

found in an image. Since the primary concern is to assess the modifica- 

tions’ ability to prevent an individual from being identified, it is helpful to 

look at the face recognition process as a whole. Using Experiment 2’s re- 

sults on face detection accuracy, it is possible to make a prediction of the 

likelihood someone is both detected and recognized. If P (D) is the prob- 

ability of successful face and eye detection and P (R) is the probability of 

successful recognition,  then P (D) ∗ P (R) is simply the chance that both 
necessary steps succeed.  Figure 4.6 is the plot of these probabilities.  The 

poor performance of the Haar cascade classifiers in feature detection result 
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in an overall end-to-end baseline recognition accuracy of about 60%. The 

chance of both detecting and recognizing the face of a subject is about 30% 

with a -50% bilateral eye displacement and about 20% for a +50% bilateral 

eye displacement. Even though negative bilateral displacement lowered face 

recognition accuracy more than positive bilateral displacement, positive bi- 

lateral displacements are a stronger overall countermeasure when factoring 

in the significant impact positive horizontal modifications have on feature 

detection. 

Face recognition systems are often evaluated beyond the accuracy of just 

their top prediction. Rank-n accuracy reveals if the individual in the test 

image is among the top n results. The more suspects a face recognition sys- 

tem is willing to provide, the greater the chance that the disguised individual 

is among them. In order to judge the countermeasure’s robustness to an ex- 

haustive search, CMC curves for Rank 1 through Rank 10 are calculated for 

all three algorithms using the DBN B image set. Three training images are 

used per subject. These accuracies are calculated using Wagner’s face recog- 

nition library [21]. Figures 4.7, 4.8, and 4.9 on page 33 chart the CMC curves 

for moderate and extreme negative and positive bilateral modifications for 

each algorithm. 

Moderate modifications (+/-50%)  gradually  fail  to  hide  the  individual 

as more ranks are inspected. Nevertheless, the moderate modifications still 

reduce accuracy by 20% to 30% from the baseline at each rank for PCA 

(Eigenfaces) and LDA (Fisherfaces). LBPH is more robust to the eye mod- 

ifications at higher ranks. However, it is important to note that Wagner’s 

LBPH implementation was shown to outperform OpenCV’s (see Figure A.3), 

thus explaining the higher LBPH performance seen here. 

Generally, it is much harder to go unnoticed in a database of 40 sub- 

jects compared to a database of hundreds or thousands of individuals. How- 

ever, Rank-10 accuracy is only about 50% and 65% when using PCA and 

LDA respectively on photos with positive 100% bilateral modifications com- 

pared to 95% and 99% baseline performance. If one is prepared to sacrifice 

some believability of the modified photo, he or she is rewarded with greater 

anonymity. 
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(a) Negative Displacements (b) Positive Displacements 
 

Figure 4.7: Rank-n Accuracy using PCA on DBN B (3 Training Images) 
 

 
 

(a) Negative Displacements (b) Positive Displacements 
 

Figure 4.8: Rank-n Accuracy using LDA on DBN B (3 Training Images) 
 

 

 

(a) Negative Displacements (b) Positive Displacements 
 

Figure 4.9: Rank-n Accuracy using LBPH on DBN B (3 Training Images) 
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4.4 Experiment 4: Modified Training Photos 
 

Experiment 4 covers the possibility of the automated face recognition system 

having access to a set of modified and correctly identified face images. This 

experiment resembles the experiment performed by Eckert et al [4] where 

faces with intermediate levels of makeup were used as the gallery. Another 

possibility giving rise to this same scenario is if face recognition systems an- 

ticipate an eye modification countermeasure by building their own database 

of modified images to use in training. In [4], an overall increase in accuracy 

was observed due to the ”enhancing” effect of the makeup on facial features. 

While the eye modifications performed in this thesis should not serve to en- 

hance the distinguishability of subjects, it is a possibility worth exploring. 

This scenario is assessed by conducting an experiment similar to Experiment 

3 in methodology but instead training on images modified by +/-50% and 

using three training images per subject. 

Training on images which underwent a mid-range magnitude of modifi- 

cation allowed the algorithms to accurately recognize the subjects in probe 

images undergoing a similar modification (see Figures 4.10, 4.11, and 4.12 on 

page 35). However, accuracies plummeted to 20% or below on images with 

the extreme opposite level of modification. If this technique was deployed to 

anticipate and counter the digital disguises developed in this thesis, success 

would depend on being able to guess the correct configuration of modifica- 

tions. More precisely, four configurations of eye displacement modifications 

would have to be correctly guessed. In face recognition trials where the mod- 

ified training image was incorrectly configured, accuracies would likely be 

worse than training on an unmodified image. 
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(a) Training on -50% Modifications (b) Training on +50% Modifications 
 

Figure 4.10: Rank-1 Accuracy with Horizontally Modified Training Images 
 

 
 

(a) Training on -50% Modifications (b) Training on +50% Modifications 
 

Figure 4.11:  Rank-1 Accuracy with Vertically Modified Training Images 
 
 

 
 

(a) Training on -50% Modifications (b) Training on +50% Modifications 
 

Figure 4.12:  Rank-1 Accuracy with Bilaterally Modified Training Images 
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Another possibility would be to train on all potential dimensions and 

magnitudes of displacement. Unfortunately, this is not explicitly tested in 

this thesis. Given the trends, however, one might expect recognition rates to 

become averaged out as the varied modifications simply add noise to the data. 

Since many types of facial feature modifications could be developed beyond 

just alterations to eye locations, anticipating all possible facial modification 

configurations could quickly become impractical. 
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Chapter  5 

Conclusion 

 
 

5.1 Summar
y 

 
In this thesis, a digital modification technique applied to the eye regions of 

a face image is assessed as a countermeasure to automated face recognition. 

Experimental results show face recognition on images captured in a con- 

trolled and cooperative environment achieves high performance despite any 

modifications. Yet, images found on the Internet have much more variation. 

Accurate recognition of these images requires proper feature detection and 

image normalization strategies. This research shows face recognition in this 

context to be far more susceptible to the variabilities introduced by digital 

modifications. 

While face recognition accuracy at the extremes of modification is desir- 

ably low, many of the resulting images appear unrealistic. However, modifi- 

cations in a more moderate range are believable and still significantly impact 

accuracy. Also important to point out is the negative effect modifications 

have on facial feature detection. Subtle modifications to the eyes (especially 

increasing the space between a subject’s eyes) caused many images to fail 

face and eye detection, rendering recognition impossible. The overall chance 

that an individual is both detected and recognized was lower than 20% on 

images where the eyes had been spread apart both horizontally and vertically, 

compared to a baseline of 60%. 

Using the relatively small AT&T database of 40 subjects, moderate mag- 

nitude countermeasures show some weakness when viewed against Rank-n 

accuracy  as  n  approaches  10.   But,  even  in  these  cases,  the  modification 
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technique still had a noticeable impact on accuracy when compared with the 

baseline. Therefore, this technique alone may still be effective in real-world 

scenarios involving massive face image databases. 
 
 

5.2 Threats to Validity 
 

The major threat to the validity of this thesis is its generalizability to a more 

real-world scenario. The AT&T database, while popular, is relatively small 

and highly cooperative with consistent illumination and image resolutions. 

Another drawback to the work herein is that only three face recognition 

algorithms and one normalization technique are tested. It is difficult to sep- 

arate the effect the modifications have on proper image normalization from 

their impact on face recognition. Finally, the modifications performed on 

this database may not translate well to images of different resolutions. Even 

though the modifications are designed to be a function of image resolution 

and inter-eye distance, without further experimentation one cannot be sure 

the same degree of modification will translate similarly to photos of different 

sizes and qualities. 
 
 

5.3 Future Work 
 

Further research needs to address the threats to validity mentioned above. 

Experimentation on a larger database of faces in the wild would more accu- 

rately reflect a real-world scenario. The modifications should be tested on 

a broader variety of face recognition algorithms, including commercial-grade 

systems. Along the same lines, more sophisticated image normalization and 

facial feature detection algorithms need to be tested. Experiments involving 

Facebook or other social media sites employing face recognition technology 

could also present a realistic case study. 

While this thesis analyzes countermeasure performance from a closed-set 

identification perspective, it should also be viewed as a 1:1 or 1:n verification 

problem. Verification tests using confidence thresholds, false accept rates, 

false reject rates, and ROC curves could prove insightful. Even social exper- 

iments where human observers attempt to discern whether an image appears 

legitimate or modified would help to objectively bound acceptable degrees of 

modification. 
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Despite these potential threats to validity, the results of this project en- 

courage further exploration. The literature indicates multiple modifications 

to the entire face can significantly affect face recognition performance. A 

plethora of modifications should be developed and analyzed. The modifica- 

tions could target various features such as the forehead, cheeks, nose, mouth, 

or chin. A variety of operations could be performed on these features to 

change their size, shape, orientation, and relative distance.  By deploying a 

full salvo of modifications, even sophisticated face recognition systems may 

be confounded. 
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Appendix A 

Additional Data 

 
 

A.1 Experiment 1 
 

 
 

 
 

Figure A.1:  Horizontal Modification Rank-1 Accuracy of Non-Normalized 

Images (1 Training Image per Subject) 
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Figure A.2:  Vertical Modification Rank-1 Accuracy of Non-Normalized Im- 

ages (1 Training Image per Subject) 
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Modification PCA LDA LBPH 

-100% .706 .689 .591 

-90% .706 .689 .587 

-80% .702 .685 .613 

-70% .702 .689 .617 

-60% .702 .685 .604 

-50% .702 .685 .596 

-40% .698 .672 .609 

-30% .698 .668 .6 

-20% .698 .668 .596 

-10% .698 .668 .613 

0% .69 .652 .63 

+10% .698 .668 .626 

+20% .698 .668 .609 

+30% .698 .672 .609 

+40% .698 .672 .609 

+50% .698 .677 .609 

+60% .698 .677 .609 

+70% .698 .672 .613 

+80% .698 .672 .609 

+90% .698 .668 .609 

+100% .698 .668 .604 
 

Table A.1:  Bilateral Modification Rank 1 Accuracy of Non-Normalized Im- 

ages (1 Training Image per Subject) 



46  

 

 
 
 
 

A.2 Experiment 3 
 

 
 

 
 

(a) Wagner (b) OpenCV 
 

Figure A.3:  OpenCV/Wagner Performance Comparison (Bilateral Modifica- 

tion Rank 1 Accuracy Normalized Images 3 Training Images per Subject) 
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Modification PCA LDA LBPH 

-100% .239 .179 .212 

-90% .251 .193 .232 

-80% .262 .201 .262 

-70% .279 .225 .285 

-60% .316 .254 .319 

-50% .362 .293 .359 

-40% .399 .341 .389 

-30% .426 .368 .436 

-20% .453 .414 .5 

-10% .474 .472 .553 

0% .536 .527 .615 

+10% .498 .513 .538 

+20% .49 .501 .518 

+30% .45 .467 .481 

+40% .397 .421 .445 

+50% .366 .371 .42 

+60% .315 .326 .355 

+70% .271 .277 .292 

+80% .236 .236 .234 

+90% .197 .2 .179 

+100% .202 .202 .171 
 

Table A.2: Horizontal Modification Rank 1 Accuracy of Normalized Images 

(1 Training Image per Subject) 
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Modification PCA LDA LBPH 

-100% .317 .272 .31 

-90% .342 .33 .339 

-80% .356 .362 .395 

-70% .371 .379 .438 

-60% .421 .434 .486 

-50% .48 .508 .539 

-40% .553 .603 .618 

-30% .607 .689 .666 

-20% .648 .739 .712 

-10% .714 .803 .772 

0% .756 .84 .851 

+10% .737 .862 .767 

+20% .718 .859 .738 

+30% .67 .798 .709 

+40% .599 .754 .671 

+50% .549 .673 .577 

+60% .469 .586 .498 

+70% .381 .52 .413 

+80% .312 .478 .342 

+90% .273 .416 .26 

+100% .287 .387 .267 
 

Table A.3: Horizontal Modification Rank 1 Accuracy of Normalized Images 

(3 Training Images per Subject) 
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Modification PCA LDA LBPH 

-100% .341 .29 .156 

-90% .39 .35 .194 

-80% .416 .363 .219 

-70% .429 .373 .262 

-60% .445 .418 .314 

-50% .458 .438 .336 

-40% .495 .454 .427 

-30% .499 .473 .466 

-20% .513 .514 .518 

-10% .521 .526 .532 

0% .542 .513 .618 

+10% .506 .504 .546 

+20% .501 .476 .512 

+30% .485 .46 .468 

+40% .459 .458 .45 

+50% .431 .423 .391 

+60% .431 .409 .358 

+70% .381 .362 .305 

+80% .347 .326 .241 

+90% .351 .326 .216 

+100% .335 .284 .186 
 

Table A.4: Vertical Modification Rank 1 Accuracy of Normalized Images (1 

Training Image per Subject) 
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Modification PCA LDA LBPH 

-100% .443 .393 .232 

-90% .515 .455 .293 

-80% .561 .485 .336 

-70% .576 .545 .408 

-60% .621 .6 .475 

-50% .651 .643 .523 

-40% .701 .72 .643 

-30% .702 .753 .707 

-20% .737 .814 .769 

-10% .749 .842 .787 

0% .754 .37 .849 

+10% .747 .818 .773 

+20% .727 .798 .736 

+30% .686 .749 .709 

+40% .655 .692 .684 

+50% .627 .643 .58 

+60% .623 .593 .528 

+70% .563 .54 .463 

+80% .515 .460 .362 

+90% .499 .416 .277 

+100% .423 .364 .216 
 

Table A.5: Vertical Modification Rank 1 Accuracy of Normalized Images (3 

Training Images per Subject) 
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Modification PCA LDA LBPH 

-100% .234 .202 .165 

-90% .22 .208 .211 

-80% .231 .214 .231 

-70% .234 .24 .236 

-60% .265 .27 .269 

-50% .287 .28 .295 

-40% .337 .33 .329 

-30% .382 .351 .383 

-20% .407 .403 .408 

-10% .428 .408 .398 

0% .51 .509 .623 

+10% .433 .395 .4 

+20% .408 .378 .399 

+30% .374 .367 .368 

+40% .328 .348 .32 

+50% .297 .303 .286 

+60% .267 .267 .26 

+70% .252 .233 .23 

+80% .234 .21 .196 

+90% .19 .186 .157 

+100% .173 .163 .134 
 

Table A.6: Bilateral Modification Rank 1 Accuracy of Normalized Images (1 

Training Image per Subject) 
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Modification PCA LDA LBPH 

-100% .334 .288 .225 

-90% .328 .297 .287 

-80% .343 .33 .295 

-70% .363 .385 .346 

-60% .397 .424 .429 

-50% .42 .479 .463 

-40% .493 .553 .488 

-30% .562 .605 .558 

-20% .618 .663 .605 

-10% .648 .673 .584 

0% .753 .839 .837 

+10% .673 .699 .597 

+20% .678 .714 .623 

+30% .613 .708 .595 

+40% .537 .659 .532 

+50% .48 .526 .421 

+60% .432 .492 .389 

+70% .377 .452 .353 

+80% .328 .372 .302 

+90% .283 .342 .225 

+100% .248 .305 .214 
 

Table A.7: Bilateral Modification Rank 1 Accuracy of Normalized Images (3 

Training Images per Subject) 
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A.3 Experiment 4 
 

 
 

Modification PCA LDA LBPH 

-100% .591 .547 .422 

-90% .607 .616 .518 

-80% .661 .675 .601 

-70% .701 .722 .637 

-60% .756 .745 .671 

-50% .749 .748 .664 

-40% .716 .76 .631 

-30% .669 .715 .614 

-20% .66 .702 .552 

-10% .564 .629 .49 

0% .447 .481 .323 

+10% .414 .474 .352 

+20% .345 .399 .253 

+30% .291 .387 .217 

+40% .23 .35 .176 

+50% .189 .272 .157 

+60% .169 .236 .123 

+70% .169 .223 .111 

+80% .137 .205 .097 

+90% .111 .179 .082 

+100% .093 .172 .091 
 

Table A.8:  Rank-1 Accuracy of Bilateral Modifications when Training on 

-50% Bilaterally Modified Images (3 Training Images per Subject) 
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Modification PCA LDA LBPH 

-100% .205 .172 .174 

-90% .206 .174 .18 

-80% .232 .208 .199 

-70% .248 .225 .26 

-60% .244 .221 .252 

-50% .226 .221 .236 

-40% .255 .257 .335 

-30% .307 .345 .419 

-20% .319 .383 .461 

-10% .394 .458 .532 

0% .405 .474 .535 

+10% .576 .621 .652 

+20% .646 .727 .746 

+30% .649 .75 .757 

+40% .669 .78 .759 

+50% .666 .788 .749 

+60% .635 .767 .715 

+70% .644 .737 .701 

+80% .647 .748 .655 

+90% .641 .743 .64 

+100% .633 .716 .655 
 

Table A.9:  Rank-1 Accuracy of Bilateral Modifications when Training on 

+50% Bilaterally Modified Images (3 Training Images per Subject) 



55  

 
 
 
 
 
 
 
 
 
 
 
 

Appendix B 

Source Code 

 
 

B.1 Batch Eye Modifier 
 

# −∗− c o d i n g : u t f −8 −∗− 

””” 

C r e a t e d  on  Mon May  11  1 1 : 4 6 : 2 0  2015 
 

 

@author : Domenick P o s t e r 

””” 

 
i m p o r t o s  

i m p o r t cv2 

i m p o r t  r e 

 
wd = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ R e s e a r c h \ p o s t e r ” 

o r i g i n a l s  = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ R e s e a r c h \ 

p o s t e r \ a t t  f a c e s ” 

maps = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ R e s e a r c h \ p o s t e r 

\ d i s p l a c e  m a p s ” 

c o m p o s i t e s = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ R e s e a r c h \ 
p o s t e r \ c o m p o s i t e s ” 

e y e  c l a s s i f i e r 1  f p = r ”E : \ opencv \ b u i l d \ s h a r e \OpenCV\ 
h a a r c a s c a d e s \ h a a r c a s c a d e  e y e . xml ” 

e y e  c l a s s i f i e r 2  f p = r ”E : \ opencv \ b u i l d \ s h a r e \OpenCV\ 
h a a r c a s c a d e s \ h a a r c a s c a d e  e y e  t r e e  e y e g l a s s e s . xml ” 
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e y e  c l a s s i f i e r 1 = cv2 . C a s c a d e C l a s s i f i e r ( 

e y e  c l a s s i f i e r 1  f p ) 

e y e  c l a s s i f i e r 2 = cv2 . C a s c a d e C l a s s i f i e r ( 

e y e  c l a s s i f i e r 2  f p ) 

r e g e x = r e . c o m p i l e ( r ” ( \ d+) \ . pgm” ) 
o s . c h d i r (wd) 

 
 
 

i f n o t  o s . path . e x i s t s ( maps ) : 

o s . mkdir ( maps ) 

i f n o t  o s . path . e x i s t s ( c o m p o s i t e s ) : 

o s . mkdir ( c o m p o s i t e s ) 

 
d e f  createMap ( map fp , e y e s , o r i g i n a l i m a g e ) :      

h e i g h t ,  width ,  depth = o r i g i n a l i m a g e . s h a p e 

b l u r  =  ( ( h e i g h t + width )  / 2 )  ∗  0 . 0 3 
e y e 1 = s t r ( e y e s [ 0 ] [ 0 ] )  + ” , ” + s t r ( e y e s [ 0 ] [ 1 ] )  + ” 

” + s t r ( e y e s [ 0 ] [ 0 ]  + e y e s [ 0 ] [ 2 ] )  + ” , ” + s t r ( 

e y e s [ 0 ] [ 1 ]  + e y e s [ 0 ] [ 3 ] ) 

e y e 2 = s t r ( e y e s [ 1 ] [ 0 ] )  + ” , ” + s t r ( e y e s [ 1 ] [ 1 ] )  + ” 

” + s t r ( e y e s [ 1 ] [ 0 ]  + e y e s [ 1 ] [ 2 ] )  + ” , ” + s t r ( 

e y e s [ 1 ] [ 1 ]  + e y e s [ 1 ] [ 3 ] ) 
cmd = ” c o n v e r t − s i z e  ” +  s t r ( width ) + ”x” +  s t r ( 

h e i g h t ) + ””” xc : g r a y 5 0 − f i l l w h i t e −draw ” 

r e c t a n g l e  ””” +  e y e 1  +  ”””” − f i l l b l a c k −draw ” 

r e c t a n g l e  ””” +  e y e 2  +  ”””” −b l u r  0x ””” +  s t r ( 

b l u r )  + ””” ””” + map fp 

o s . system ( cmd ) 
 

 

d e f  c r e a t e H o r i z o n t a l C o m p o s i t e ( o r i g i n a l  f p ,  map fp , 

c o m p o s i t e i m a g e f p , d i s p l a c e ) : 

cmd = ” c o m p o s i t e  ” + map fp + ” ” + o r i g i n a l  f p  + ” 

−d i s p l a c e  ” + s t r ( d i s p l a c e )  + ” x0  ” + 
c o m p o s i t e i m a g e f p 

o s . system ( cmd ) 
 

 

d e f  c r e a t e V e r t i c a l C o m p o s i t e ( o r i g i n a l  f p ,  map fp , 

c o m p o s i t e i m a g e f p , d i s p l a c e ) : 
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cmd = ” c o m p o s i t e  ” + map fp + ” ” + o r i g i n a l  f p  + ” 

−d i s p l a c e  0x” + s t r ( d i s p l a c e )  + ” ” + 
c o m p o s i t e i m a g e f p 

o s . system ( cmd ) 
 

 

d e f  c r e a t e B i l a t e r a l C o m p o s i t e ( o r i g i n a l  f p ,  map fp , 

c o m p o s i t e i m a g e f p , d i s p l a c e  x , d i s p l a c e  y ) : 

cmd = ” c o m p o s i t e  ” + map fp + ” ” + o r i g i n a l  f p  + ” 

−d i s p l a c e  ” + s t r ( d i s p l a c e  x ) +”x” + s t r ( 
d i s p l a c e  y ) + ” ” + c o m p o s i t e  i m a g e  f p 

o s . system ( cmd ) 
 

 

d e f  c r e a t e C o m p o s i t e s ( o r i g i n a l  f p ,  map fp , c o m p o s i t e f p , 

e y e s , d i r e c t i o n ) : 

s t e p  = [ 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 

0 . 9 , 1 . 0 ] 

i f n o t  o s . path . e x i s t s ( c o m p o s i t e f p ) : 

o s . mkdir ( c o m p o s i t e f p ) 

f o r i i n  s t e p : 
f i l e n a m e 1 = s t r ( i n t ( i ∗ 1 0 0 ) ) + ” . j p g ”         

f i l e n a m e 2 = ”n” + s t r ( i n t ( i ∗ 1 0 0 ) ) + ” . j p g ” 

f p 1 = o s . path . j o i n ( c o m p o s i t e f p , f i l e n a m e 1 ) 

f p 2 = o s . path . j o i n ( c o m p o s i t e f p , f i l e n a m e 2 ) 

d = d i s t a n c e b e t w e e n ( e y e s ) 

d i s p l a c e 1  = round ( d  ∗  ( i  / 2 . 0 ) ) 

d i s p l a c e 2  = round ( 0 − ( d  ∗  ( i  / 2 . 0 ) ) ) 
i f d i r e c t i o n  == ” b i l a t e r a l ” : 

d i s p l a c e  y  = round ( 0 − ( d  ∗  ( 0 . 4  / 2 . 0 ) ) )  # 
Hardcoded  +40%  d i s p l a c e m e n t 

c r e a t e B i l a t e r a l C o m p o s i t e ( o r i g i n a l  f p , 

map fp ,  fp1 , d i s p l a c e 1 , d i s p l a c e y ) 

c r e a t e B i l a t e r a l C o m p o s i t e ( o r i g i n a l  f p , 

map fp ,  fp2 , d i s p l a c e 2 , d i s p l a c e y ) 

e l i f  d i r e c t i o n  == ” h o r i z o n t a l ” :                       

c r e a t e H o r i z o n t a l C o m p o s i t e ( o r i g i n a l f p , 

map fp ,  fp1 , d i s p l a c e 1 )                      

c r e a t e H o r i z o n t a l C o m p o s i t e ( o r i g i n a l  f p , 

map fp ,  fp2 , d i s p l a c e 2 ) 
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e l s e : 

c r e a t e V e r t i c a l C o m p o s i t e ( o r i g i n a l  f p ,  map fp 

,  fp1 , d i s p l a c e 1 ) 

c r e a t e V e r t i c a l C o m p o s i t e ( o r i g i n a l  f p ,  map fp 

,  fp2 , d i s p l a c e 2 ) 
 

 

d e f  d i s t a n c e b e t w e e n ( e y e s ) : 

r e t u r n  e y e s [ 1 ] [ 0 ]  − ( e y e s [ 0 ] [ 0 ]  + e y e s [ 0 ] [ 2 ] ) 
 

d e f  modify ( e y e s , d i r e c t i o n =” h o r i z o n t a l ” ) : 

m = r e g e x . match ( f i l e n a m e ) 

f  = m. group ( 1 )  + ” . j p g ” 

map fp = o s . path . j o i n ( s u b j e c t m a p f p , f ) 

createMap ( map fp , e y e s , o r i g i n a l  i m a g e )              

c o m p o s i t e f p  = o s . path . j o i n ( s u b j e c t c o m p f p ,  m. 

group ( 1 ) ) 

c r e a t e C o m p o s i t e s ( o r i g i n a l i m a g e f p ,  map fp , 

c o m p o s i t e f p , e y e s , d i r e c t i o n ) 

 
f o r d i r p a t h ,  dirnames , f i l e n a m e s i n  o s . walk ( o r i g i n a l s ) : 

f o r  subdirname  i n  d i r n a m e s : 

s u b j e c t p a t h = o s . path . j o i n ( d i r p a t h ,  subdirname 

) 

s u b j e c t m a p f p = o s . path . j o i n ( maps ,  subdirname ) 

s u b j e c t c o m p f p = o s . path . j o i n ( c o m p o s i t e s , 

subdirname ) 

f o r f i l e n a m e  i n  o s . l i s t d i r ( s u b j e c t p a t h ) : 

o r i g i n a l i m a g e  f p  = o s . path . j o i n ( 

s u b j e c t p a t h , f i l e n a m e ) 

o r i g i n a l  i m a g e  = cv2 . imread ( 

o r i g i n a l  i m a g e  f p ) 

e y e s  = e y e  c l a s s i f i e r 1 . d e t e c t M u l t i S c a l e ( 

o r i g i n a l  i m a g e ) 

i f l e n ( e y e s )  !=  2 : 

e y e s  = e y e  c l a s s i f i e r 2 . d e t e c t M u l t i S c a l e 

( o r i g i n a l  i m a g e ) 

i f l e n ( e y e s ) == 2 : 

e y e s  = e y e s . t o l i s t ( ) 
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e y e s = s o r t e d ( e y e s ,  key=lambda  x :  x [ 0 ] ) 

i f d i s t a n c e b e t w e e n ( e y e s ) > 0 : 

i f  n o t  o s . path . e x i s t s ( 

s u b j e c t m a p f p ) : 

o s . mkdir ( s u b j e c t m a p f p ) 

i f n o t  o s . path . e x i s t s ( 

s u b j e c t c o m p f p ) : 

o s . mkdir ( s u b j e c t  c o m p  f p ) 

modify ( e y e s ) 
 

B.2 Recognition Testing Framework 
 

# −∗− c o d i n g : u t f −8 −∗− 

””” 

C r e a t e d   on  Tue  Jun  16   1 2 : 4 4 : 3 1   2015 
 

 

@author : Domenick P o s t e r 

””” 

 
i m p o r t random 

i m p o r t cv2 

i m p o r t  numpy  a s  np 

i m p o r t  r e 

i m p o r t  o s  

i m p o r t  s y s 
 

s y s . path . i n s e r t ( 0 ,  r ’ C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ 

R e s e a r c h \ f a c e r e c \py ’ ) 
from  f a c e r e c  i m p o r t  model 
from f a c e r e c i m p o r t c l a s s i f i e r 

from f a c e r e c i m p o r t f e a t u r e 

from f a c e r e c i m p o r t d i s t a n c e 
 

c l a s s D a t a s e t : 

d e f  i n i t ( s e l f ,   name ) 

: s e l f . name =  name 

s e l f . s u b j e c t s  = {} 
s e l f . t o t a l O r i g i n a l s  = 0 
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s e l f . t o t a l M o d s  = {} 
s e l f . s c o r e s = S c o r e s ( s e l f . name ) 

 

 

d e f  l o a d  o r i g i n a l s ( s e l f , o r i g i n a l s  p a t h ) : 

p r i n t  ” Loading  O r i g i n a l  Images ” 

s u b j e c t r e g e x  = r e . c o m p i l e ( r ” s ( \ d+) ” ) 

o r i g i n a l i m a g e r e g e x = r e . c o m p i l e ( r ” ( n ?\ d+) \ . 
pgm” ) 

f o r  dirname ,  dirnames , f i l e n a m e s i n  o s . walk ( 

o r i g i n a l s  p a t h ) : 

f o r  subdirname  i n  d i r n a m e s : 

s u b j e c t p a t h  = o s . path . j o i n ( dirname 

,  subdirname ) 

m = s u b j e c t r e g e x . match ( subdirname ) 

c = i n t (m. group ( 1 ) ) 

s u b j e c t = S u b j e c t ( c ) 

s e l f . s u b j e c t s [ c ]  = s u b j e c t 

f o r  i m a g e  f i l e i n  o s . l i s t d i r ( 

s u b j e c t p a t h ) : 

m =  o r i g i n a l  i m a g e  r e g e x . match ( 

i m a g e  f i l e ) 

key = i n t (m. group ( 1 ) ) 

image = Image ( key , s u b j e c t ) 

i m a g e  f i l e  p a t h  = o s . path . j o i n ( 

s u b j e c t p a t h , i m a g e  f i l e ) 

im = cv2 . imread ( i m a g e  f i l e  p a t h 

,   cv2 .IMREAD GRAYSCALE) 

im = np . a s a r r a y ( im ,   dty pe=np . 

u i n t 8 ) 

o r i g i n a l = M o d i f i e d I m a g e ( im , 

i m a g e  f i l e  p a t h ,  s u b j e c t , 

’ 0 ’ ) 

image . mods [ ’ 0 ’ ]  =  o r i g i n a l  

s u b j e c t . i m a g e s [ key ] = image 

 
d e f  l o a d m o d s ( s e l f , c o m p o s i t e s p a t h ) : 

p r i n t  ” Loading  M o d i f i e d  Images ” 

s u b j e c t r e g e x  = r e . c o m p i l e ( r ” s ( \ d+) ” ) 
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c o m p o s i t e i m a g e r e g e x = r e . c o m p i l e ( r ” ( n ?\ d+) \ . 
j p g ” ) 

f o r  s u b j e c t f o l d e r i n  o s . l i s t d i r ( 

c o m p o s i t e s  p a t h ) : 

s u b j e c t  f o l d e r  p a t h  = o s . path . j o i n ( 

c o m p o s i t e s p a t h , s u b j e c t f o l d e r ) 

m = s u b j e c t r e g e x . match ( s u b j e c t  f o l d e r ) 

s u b j e c t n u m b e r  =  i n t (m. group ( 1 ) ) 

s u b j e c t = s e l f . s u b j e c t s [ s u b j e c t n u m b e r ] 

f o r i m a g e  f o l d e r i n  o s . l i s t d i r ( 

s u b j e c t f o l d e r  p a t h ) : 

i m a g e  f o l d e r  p a t h  = o s . path . j o i n ( 

s u b j e c t f o l d e r  p a t h , i m a g e  f o l d e r ) 

i f i n t ( i m a g e  f o l d e r )  n o t  i n s u b j e c t . 

i m a g e s : 

image = Image ( i n t ( i m a g e  f o l d e r ) , 

s u b j e c t . name ) 

s e l f . s u b j e c t s [ s u b j e c t n u m b e r ] . 

i m a g e s [ i n t ( i m a g e f o l d e r ) ] = 

image 

image = s u b j e c t . i m a g e s [ i n t ( i m a g e f o l d e r 

) ] 

f o r  m o d  f i l e i n  o s . l i s t d i r ( 

i m a g e  f o l d e r  p a t h ) : 

m = c o m p o s i t e i m a g e r e g e x . match ( 

m o d  f i l e ) 

key = m. group ( 1 ) 

m o d  f i l e  p a t h  = o s . path . j o i n ( 

i m a g e  f o l d e r p a t h , m o d  f i l e ) 

im = cv2 . imread ( m o d f i l e p a t h ,  cv2 . 

IMREAD GRAYSCALE) 

im = np . a s a r r a y ( im ,  dt ype=np . u i n t 8 ) 

mod = M o d i f i e d I m a g e ( im , 

m o d  f i l e  p a t h , s u b j e c t ,  key ) 

image . mods [ key ] = mod 

 
d e f  s c o r e ( s e l f , r e c o g n i z e r , t r a i n  s i z e , f o l d s 

, t r a i n  o n = ’ 0 ’ ) : 
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f o r s u b j e c t i n s e l f . s u b j e c t s . i t e r v a l u e s ( ) : 

s u b j e c t . a s s e m b l e F o l d s ( t r a i n  s i z e , f o l d s 

, t r a i n  o n ) 

f o r s u b j e c t i n s e l f . s u b j e c t s . i t e r v a l u e s ( ) : 

p r i n t  ” T r a i n i n g  S u b j e c t :  ” + s t r ( s u b j e c t . 

name ) 

s u b j e c t . t r a i n ( s e l f , r e c o g n i z e r , t r a i n  s i z e , 

f o l d s , t r a i n  o n ) 

p r i n t  ” T e s t i n g  S u b j e c t :  ” + s t r ( s u b j e c t . 

name ) 

s e l f . s c o r e s . u p d a t e S c o r e s ( s u b j e c t . t e s t ( ) ) 
 
 
 

d e f  g e t O t h e r S u b j e c t s ( s e l f , s u b j e c t ) : 

o t h e r s u b j e c t s  =  [ ] 

f o r s  i n s e l f . s u b j e c t s . i t e r v a l u e s ( ) : 

i f s u b j e c t . name !=  s . name : 

o t h e r s u b j e c t s . append ( s ) 

r e t u r n o t h e r s u b j e c t s 

 
d e f c l e a r S c o r e s ( s e l f ) : 

s e l f . s c o r e s  = S c o r e s ( ) 

f o r s u b j e c t i n s e l f . s u b j e c t s . i t e r v a l u e s ( ) : 

s u b j e c t . c l e a r S c o r e s ( ) 

 
c l a s s  Fold : 

d e f  i n i t ( s e l f ,  x ,   y ) : 

s e l f . x = x 

s e l f . y  = y 
 

 

d e f  merge ( s e l f , f o l d ) :  

i f l e n ( f o l d . x )  >  0 : 

f o r i i n  r a n g e ( 0 , l e n ( f o l d . x ) ) : 

s e l f . x . append ( f o l d . x [ i ] ) 

s e l f . y . append ( f o l d . y [ i ] ) 
 

 

c l a s s S c o r e : 

d e f i n i t ( s e l f ,  name ) : 
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s e l f . name = name 

s e l f . rank  =  d i c t ( ( key , 0 ) f o r  key  i n  r a n g e ( 1 , 1 1 ) 

) 

s e l f . a t t e m p t s = 0 
 

 

d e f  s c o r e ( s e l f , c l a s s i f i e r ,  image , s u b j e c t ) 

: p =  c l a s s i f i e r . p r e d i c t ( image ) 

l a b e l s  = p [ 1 ] [ ’ l a b e l s ’ ] 

f o r  i i n  r a n g e ( 0 , l e n ( s e l f . rank ) ) : 

r a n k s  =  l a b e l s [ 0 : i +1] 

i f s u b j e c t i n  r a n k s : 

s e l f . rank [ i +1] =  s e l f . rank [ i +1] + 1 

s e l f . a t t e m p t s =  s e l f . a t t e m p t s + 1 

 
d e f  update ( s e l f , n e w s c o r e ) : 

f o r i i n  r a n g e ( 0 , l e n ( s e l f . rank ) ) : 

s e l f . rank [ i +1] =  s e l f . rank [ i +1] +  n e w s c o r e 

. rank [ i +1] 

s e l f . a t t e m p t s  = s e l f . a t t e m p t s  + n e w s c o r e . 

a t t e m p t s 

 
d e f  g e t A c c u r a c y ( s e l f ,  n ) : 

r e t u r n f l o a t ( s e l f . rank [ n ] ) / f l o a t ( s e l f . a t t e m p t s ) 
 

 

d e f  s t r ( s e l f ) : 

r e t u r n 

 
c l a s s S c o r e s : 

 

d e f  i n i t ( s e l f ,   name ) 
: s e l f . s c o r e s =  {} 

s e l f . name = name 
 

 

d e f  u p d a t e S c o r e ( s e l f , n e w  s c o r e ) : 

i f n e w s c o r e . name  i n s e l f . s c o r e s : 

s e l f . s c o r e s [ n e w s c o r e . name ] . update ( 

n e w s c o r e ) 

e l s e : 

s e l f . s c o r e s [ n e w s c o r e . name ] = n e w s c o r e 
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d e f  u p d a t e S c o r e s ( s e l f , n e w  s c o r e s ) : 

f o r n e w s c o r e  i n  n e w s c o r e s . s c o r e s . i t e r v a l u e s ( ) 

: 

s e l f . u p d a t e S c o r e ( n e w  s c o r e ) 
 
 

d e f  s t r ( s e l f ) : 
d  = {} 

f o r s c o r e i n s e l f . s c o r e s . i t e r v a l u e s ( ) : 

d [ s c o r e . name ] = [ s c o r e . rank , s c o r e . a t t e m p t s 

] 

r e t u r n  d 
 

 

c l a s s S u b j e c t : 

d e f  i n i t ( s e l f ,   name ) 

: s e l f . name =  name 

s e l f . i m a g e s = {} 
s e l f . s c o r e s = S c o r e s ( s e l f . name ) 
s e l f . p u b l i c  f o l d s  =  [ ] 

 

 

d e f  a s s e m b l e F o l d s ( s e l f , t r a i n  s i z e , f o l d s , t r a i n  o n 

) : 

f o r i i n  r a n g e ( 0 , f o l d s ) : 

s e l f . p u b l i c f o l d s . append ( s e l f .                       

g e t T r a i n i n g F o l d ( t r a i n s i z e , t r a i n  o n ) ) 

 
d e f  g e t T r a i n i n g F o l d ( s e l f , t r a i n  s i z e , t r a i n  o n , 

l e a v e o u t=None ) : 

#p r i n t  ” R e t r i e v i n g  T r a i n i n g  Images  f o r S u b j e c t 

#” +  s t r ( s e l f . name ) 

k e y s =  s e l f . i m a g e s . k e y s ( ) 

#p r i n t  ” Image  L i s t :  ” + s t r ( k e y s ) 

f o r  key  i n l i s t ( k e y s ) : 

i f t r a i n  o n  n o t  i n s e l f . i m a g e s [ key ] . mods : 

k e y s . pop ( k e y s . i n d e x ( key ) ) 

i f l e a v e o u t i s n o t None  and  l e a v e o u t i n  k e y s : 

#p r i n t  ” L e a v i n g  o u t  ” + s t r ( l e a v e  o u t ) 

k e y s . pop ( k e y s . i n d e x ( l e a v e o u t ) ) 



65  

 
 
 
 
 

#p r i n t  ” C l e a n e d  L i s t :  ” + s t r ( k e y s ) 

X =  [ ] 

y =  [ ] 

s a m p l e k e y s = random . sample ( keys ,  min ( 

t r a i n  s i z e , l e n ( k e y s ) ) ) 

#p r i n t  ” F i n a l L i s t :  ” + s t r ( s a m p l e k e y s ) 

f o r  k  i n  s a m p l e k e y s : 

X. append ( s e l f . i m a g e s [ k ] . mods [ t r a i n o n ] . img ) 

y . append ( s e l f . name ) 

r e t u r n  Fold (X, y ) 
 

 

d e f  t r a i n ( s e l f ,  db , r e c o g n i z e r , t r a i n  s i z e , 

f o l d  s i z e , t r a i n  o n = ’ 0 ’ ) : 

o t h e r  s u b j e c t s  = db . g e t O t h e r S u b j e c t s ( s e l f ) 

f o l d s  =  [ ] 

f o r i i n  r a n g e ( 0 , f o l d  s i z e ) :  

f o l d s . append ( Fold ( [ ] , [ ] ) ) 

 
f o r s u b j e c t i n o t h e r s u b j e c t s : 

f o r i i n  r a n g e ( 0 , l e n ( f o l d s ) ) : 

f o l d s [ i ] . merge ( s u b j e c t . p u b l i c  f o l d s [ i ] ) 
 

 

f o r  image  i n s e l f . i m a g e s . i t e r v a l u e s ( ) : 

image . t r a i n C l a s s i f i e r s ( s e l f , r e c o g n i z e r , 

f o l d s , t r a i n  s i z e , t r a i n  o n ) 

 
d e f t e s t ( s e l f ) : 

f o r  image  i n s e l f . i m a g e s . i t e r v a l u e s ( ) : 

s e l f . s c o r e s . u p d a t e S c o r e s ( image . t e s t ( ) ) 

r e t u r n s e l f . s c o r e s 

 
d e f c l e a r S c o r e s ( s e l f ) : 

s e l f . s c o r e s  = S c o r e s ( ) 

f o r  image  i n s e l f . i m a g e s . i t e r v a l u e s ( ) : 

image . c l e a r S c o r e s ( ) 

 
d e f s t r ( s e l f ) : 

r e t u r n s t r ( s e l f . name ) 
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d e f  r e p r ( s e l f ) :    r e t u r 

n s t r ( s e l f . name ) 

 
c l a s s   Image : 

d e f  i n i t ( s e l f ,   name , s u b j e c t ) : 

s e l f . name =  name 

s e l f . s u b j e c t = s u b j e c t 
s e l f . mods = {} 

s e l f . c l a s s i f i e r s  =  [ ] 

s e l f . s c o r e s = S c o r e s ( s e l f . name ) 
 

 

d e f  t r a i n C l a s s i f i e r s ( s e l f , s u b j e c t , r e c o g n i z e r 

, f o l d s , t r a i n  s i z e , t r a i n  o n ) : 

f i n a l  f o l d s  =  [ ] 

f o r i i n  r a n g e ( 0 , l e n ( f o l d s ) ) : 

m y f o l d  = s u b j e c t . g e t T r a i n i n g F o l d ( t 

r a i n  s i z e , t r a i n  o n , s e l f . name ) 

i f l e n ( m y f o l d . x ) == 0 : 

r e t u r n 

f i n a l  f o l d s . append ( Fold ( [ ] , [ ] ) ) 

f i n a l  f o l d s [ i ] . merge ( f o l d s [ i ] )  

f i n a l  f o l d s [ i ] . merge ( m y f o l d ) 

c l a s s i f i e r  = c r e a t e C l a s s i f i e r ( r e c o g n i z e r , 

l e n ( f i n a l  f o l d s [ i ] . y ) ) 

c l a s s i f i e r . compute ( f i n a l  f o l d s [ i ] . x ,  np .     

a s a r r a y ( f i n a l  f o l d s [ i ] . y ,  dtype=np . i n t 3 2 

) ) 

s e l f . c l a s s i f i e r s . append ( c l a s s i f i e r ) 
 

 

d e f t e s t ( s e l f ) : 

f o r  mod  i n s e l f . mods . i t e r v a l u e s ( ) : 

s e l f . s c o r e s . u p d a t e S c o r e (mod . t e s t ( s e l f . 

c l a s s i f i e r s ) ) 

s e l f . c l a s s i f i e r s  =  [ ] 

r e t u r n s e l f . s c o r e s 

 
d e f c l e a r S c o r e s ( s e l f ) : 

s e l f . s c o r e s  = S c o r e s ( ) 
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f o r  mod  i n s e l f . mods . i t e r v a l u e s ( ) : 

mod . c l e a r S c o r e ( ) 

 
d e f s t r ( s e l f ) : 

r e t u r n s t r ( s e l f . name ) 

d e f r e p r ( s e l f ) : 

r e t u r n s t r ( s e l f . name ) 
 

 

c l a s s M o d i f i e d I m a g e : 

d e f  i n i t ( s e l f ,  img ,  path , s u b j e c t ,  change ) 

: s e l f . img = img 

s e l f . path  =  path 

s e l f . s u b j e c t = s u b j e c t 

s e l f . change = change 

 
d e f t e s t ( s e l f , c l a s s i f i e r s ) : 

s c o r e = S c o r e ( s e l f . change ) 

f o r  c  i n c l a s s i f i e r s : 

s c o r e . s c o r e ( c , s e l f . img , s e l f . s u b j e c t . name ) 

r e t u r n s c o r e 

 
d e f c l e a r S c o r e ( s e l f ) : 

s e l f . s c o r e = S c o r e ( s e l f . change ) 
 

 

d e f  s t r ( s e l f ) :   r e t 

u r n s e l f . change 

d e f  r e p r ( s e l f ) : r e t 

u r n s e l f . change 

 
d e f c r e a t e C l a s s i f i e r ( a l g o r i t h m ,  k ) : 

c = c l a s s i f i e r . N e a r e s t N e i g h b o r ( d i s t m e t r i c  = 

d i s t a n c e . E u c l i d e a n D i s t a n c e ( ) ,  k=k ) 

i f a l g o r i t h m == ”PCA” : 

r e t u r n  model . P r e d i c t a b l e M o d e l ( f e a t u r e  = f e a t u r e 

.PCA( ) , c l a s s i f i e r  = c ) 

e l i f a l g o r i t h m == ”LDA” : 

r e t u r n  model . P r e d i c t a b l e M o d e l ( f e a t u r e  = f e a t u r e 

. F i s h e r f a c e s ( ) , c l a s s i f i e r  = c ) 
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e l i f a l g o r i t h m == ”LBPH” : 

r e t u r n  model . P r e d i c t a b l e M o d e l ( f e a t u r e  = f e a t u r e 

. S p a t i a l H i s t o g r a m ( ) , c l a s s i f i e r  = c ) 
 

B.3 Batch Image Normalizer 
 

# −∗− c o d i n g : u t f −8 −∗− 

””” 

C r e a t e d  on  Sun  Sep  20   1 6 : 2 1 : 2 7   2015 
 

 

@author : Domenick P o s t e r 

””” 

 
i m p o r t o s 

i m p o r t  r e 

i m p o r t  c v 2 a l i g n 

from PIL i m p o r t Image 
 

s u b j e c t r e g e x  = r e . c o m p i l e ( r ” s ( \ d+) ” ) 

o r i g i n a l i m a g e r e g e x = r e . c o m p i l e ( r ” ( n ?\ d+) \ . pgm” ) 
 

o r i g i n a l s p a t h = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ 

R e s e a r c h \ p o s t e r \ a t t f a c e s ” 

o r i g i n a l s n o r m a l i z e d p a t h = r ”C: \ U s e r s \ u s e r \ Documents \ 
S c h o o l \ R e s e a r c h \ p o s t e r \ o r i g i n a l s  n o r m a l i z e d ” 

i f n o t  o s . path . e x i s t s ( o r i g i n a l s  n o r m a l i z e d  p a t h ) : 
o s . mkdir ( o r i g i n a l s  n o r m a l i z e d  p a t h ) 

 
 
 

f o r  d i r p a t h ,  dirnames , f i l e n a m e s i n  o s . walk ( 

o r i g i n a l s  p a t h ) : 

f o r  subdirname  i n  d i r n a m e s : 

s u b j e c t p a t h = o s . path . j o i n ( d i r p a t h ,  subdirname 

) 

n o r m a l i z e d  s u b j e c t f p  = o s . path . j o i n ( 

o r i g i n a l s n o r m a l i z e d p a t h ,  subdirname ) 

i f n o t  o s . path . e x i s t s ( n o r m a l i z e d  s u b j e c t f p ) : 

o s . mkdir ( n o r m a l i z e d  s u b j e c t f p ) 
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f o r f i l e n a m e  i n  o s . l i s t d i r ( s u b j e c t p a t h ) : 

o r i g i n a l i m a g e  f p  = o s . path . j o i n ( 

s u b j e c t p a t h , f i l e n a m e )                  

n o r m a l i z e d i m a g e f p = o s . path . j o i n ( 

n o r m a l i z e d  s u b j e c t f p , f i l e n a m e ) 

n o r m a l i z e d i m a g e  a r r a y  = c v 2  a l i g n . 

a l i g n  f a c e ( o r i g i n a l  i m a g e  f p ) 

i f n o r m a l i z e d i m a g e a r r a y i s n o t None : 

n o r m a l i z e d i m a g e = Image . f r o m a r r a y ( 

n o r m a l i z e d i m a g e a r r a y ) 

n o r m a l i z e d i m a g e . s a v e ( 

n o r m a l i z e d i m a g e f p ) 
 
 

mods path = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ R e s e a r c h \ 

p o s t e r \ c o m p o s i t e s ” 

m o d s n o r m a l i z e d p a t h  = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l 

\ R e s e a r c h \ p o s t e r \ c o m p o s i t e s  n o r m a l i z e d ” 
i f n o t  o s . path . e x i s t s ( m o d s n o r m a l i z e d p a t h ) : 

o s . mkdir ( m o d s n o r m a l i z e d p a t h ) 
 

 

f o r d i r p a t h ,  dirnames , f i l e n a m e s i n  o s . walk ( mods path ) : 

f o r  subdirname  i n  d i r n a m e s : 

s u b j e c t p a t h = o s . path . j o i n ( d i r p a t h ,  subdirname 

) 

n o r m a l i z e d  s u b j e c t  f p  = o s . path . j o i n ( 

m o d s n o r m a l i z e d p a t h ,  subdirname ) 

i f n o t  o s . path . e x i s t s ( n o r m a l i z e d  s u b j e c t f p ) : 

o s . mkdir ( n o r m a l i z e d  s u b j e c t f p ) 

f o r i m a g e  f o l d e r i n  o s . l i s t d i r ( s u b j e c t p a t h ) : 

i m a g e  f o l d e r  f p  = o s . path . j o i n ( s u b j e c t p a t h 

, i m a g e  f o l d e r ) 

p r i n t i m a g e  f o l d e r  f p 

n o r m a l i z e d  i m a g e  f o l d e r  f p  = o s . path . j o i n ( 

n o r m a l i z e d s u b j e c t f p , i m a g e f o l d e r ) 

i f l e n ( o s . l i s t d i r ( i m a g e  f o l d e r  f p ) ) >  1 : 

i f n o t  o s . path . e x i s t s ( 

n o r m a l i z e d  i m a g e  f o l d e r  f p ) : 
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o s . mkdir ( n o r m a l i z e d  i m a g e  f o l d e r  f p 

) 

f o r  mod i n  o s . l i s t d i r ( i m a g e f o l d e r f p ) : 

mod fp = o s . path . j o i n ( 

i m a g e f o l d e r f p ,  mod)                

n o r m a l i z e d m o d f p  = o s . path . j o i n ( 

n o r m a l i z e d i m a g e f o l d e r f p ,  mod) 

n o r m a l i z e d i m a g e a r r a y  =  c v 2  a l i g n . 

a l i g n  f a c e ( mod fp ) 

i f  n o r m a l i z e d  i m a g e  a r r a y i s n o t 

None : 

n o r m a l i z e d i m a g e = Image . 

f r o m a r r a y ( 

n o r m a l i z e d i m a g e a r r a y ) 

n o r m a l i z e d i m a g e . s a v e ( 

n o r m a l i z e d m o d f p ) 
 

B.4 Normalization  Algorithm 
 

 

#! / u s r / b i n / env  p y t h o n 

# S o f t w a r e  L i c e n s e  Agreement  (BSD L i c e n s e ) 

# 

# C o p y r i g h t  ( c )  2 0 1 2 ,  P h i l i p p  Wagner 

# A l l r i g h t s r e s e r v e d . 

# 

# R e d i s t r i b u t i o n  and  u s e  i n  s o u r c e  and  b i n a r y  forms , 

w i t h  o r  w i t h o u t 

# m o d i f i c a t i o n ,  a r e  p e r m i t t e d  p r o v i d e d t h a t t h e 

f o l l o w i n g c o n d i t i o n s 

# a r e  met : 

# 

# ∗ R e d i s t r i b u t i o n s o f  s o u r c e  c o d e  must  r e t a i n t h e 
a b o v e   c o p y r i g h t 

#  n o t i c e , t h i s l i s t o f c o n d i t i o n s  and  t h e f o l l o w i n g 

d i s c l a i m e r . 

# ∗  R e d i s t r i b u t i o n s i n  b i n a r y  form  must  r e p r o d u c e  t h e 
a b o v e 

# c o p y r i g h t n o t i c e , t h i s l i s t o f c o n d i t i o n s  and  t h e 
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# w i t h  t h e d i s t r i b u t i o n .  

# · N e i t h e r  t h e  name  o f  t h e  a u t h o r  nor  t h e 
i t s 

names  o f 

# c o n t r i b u t o r s  may  b e  u s e d  t o  e n d o r s e  or promote 

 

 
 
 
 
 

f o l l o w i n g 

#  d i s c l a i m e r  i n  t h e  d o c u m e n t a t i o n  and / or  o t h e r 

m a t e r i a l s p r o v i d e d 
 

 
 
 
 
 

p r o d u c t s d e r i v e d 

#  from  t h i s s o f t w a r e w i t h o u t s p e c i f i c p r i o r w r i t t e n 

p e r m i s s i o n . 

# 

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS 

AND CONTRIBUTORS 

# ”AS IS ” AND ANY EXPRESS OR IMPLIED WARRANTIES, 

INCLUDING, BUT NOT 

# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 

AND FITNESS 

# FOR A PARTICULAR PURPOSE ARE DISCLAIMED .  IN NO EVENT 

SHALL THE 

# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY 

DIRECT,  INDIRECT, 

# INCIDENTAL,  SPECIAL , EXEMPLARY, OR CONSEQUENTIAL 

DAMAGES (INCLUDING, 

# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 

OR SERVICES ; 

# LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS 

INTERRUPTION) HOWEVER 

# CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN 

CONTRACT, STRICT 

# LIABILITY ,  OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE 

)  ARISING  IN 

# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 

ADVISED OF THE 

# POSSIBILITY OF SUCH DAMAGE. 
 

 

i m p o r t  s y s ,  math 

i m p o r t  PIL . Image  a s  Image 

i m p o r t  f e a t u r e  d e t e c t 
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i m p o r t  numpy  a s  np 
 
 

d e f D i s t a n c e ( p1 , p2 ) : 
dx = p2 [ 0 ] − p1 [ 0 ] 
dy = p2 [ 1 ]  − p1 [ 1 ] 

r e t u r n  math . s q r t ( dx∗dx+dy∗dy ) 
 

d e f  S c a l e R o t a t e T r a n s l a t e ( image , a n g l e , c e n t e r = None , 

n e w c e n t e r = None , s c a l e  = None , r e s a m p l e=Image . 

BICUBIC) : 

i f ( s c a l e i s  None )  and  ( c e n t e r i s  None ) : 

r e t u r n  image . r o t a t e ( a n g l e=a n g l e , r e s a m p l e=r e s a m p l e ) 

nx , ny = x , y =  c e n t e r 

s x=s y =1.0 

i f n e w c e n t e r : 

( nx , ny )  = n e w  c e n t e r 

i f s c a l e : 

( sx , s y )  =  ( s c a l e , s c a l e ) 

c o s i n e = math . c o s ( a n g l e ) 

s i n e  = math . s i n ( a n g l e ) 

a = c o s i n e / s x 

b = s i n e / s x 
c  =  
x−nx∗a−ny∗b d  

= −s i n e / s y 

e  = c o s i n e / s y 

f  =  y−nx∗d−ny∗ e 
r e t u r n  image . t r a n s f o r m ( image . s i z e ,  Image . AFFINE , ( a , b 

, c , d , e , f ) ,  r e s a m p l e=r e s a m p l e ) 
 

 

d e f  CropFace ( image , e y e  l e f t = ( 0 , 0 ) , e y e  r i g h t = ( 0 , 0 ) , 

o f f s e t  p c t = ( 0 . 2 , 0 . 2 ) , d e s t s z  = ( 7 0 , 7 0 ) ) : 

# c a l c u l a t e o f f s e t s i n o r i g i n a l  image 

o f f s e t h  = math . f l o o r ( f l o a t ( o f f s e t  p c t [ 0 ] ) ∗ d e s t s z 
[ 0 ] ) 

o f f s e t  v  = math . f l o o r ( f l o a t ( o f f s e t  p c t [ 1 ] ) ∗ d e s t s z 
[ 1 ] ) 

# g e t t h e d i r e c t i o n 

e y e  d i r e c t i o n  = ( e y e  r i g h t [ 0 ]  − e y e  l e f t [ 0 ] , 
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e y e  r i g h t [ 1 ]  − e y e  l e f t [ 1 ] ) 
# c a l c r o t a t i o n a n g l e  i n  r a d i a n s 

r o t a t i o n  = −math . a t a n 2 ( f l o a t ( e y e  d i r e c t i o n [ 1 ] ) , f l o a t ( 
e y e  d i r e c t i o n [ 0 ] ) ) 

# d i s t a n c e  b e t w e e n  them 

d i s t = D i s t a n c e ( e y e  l e f t , e y e  r i g h t ) 

# c a l c u l a t e t h e r e f e r e n c e eye−w i d t h 

r e f e r e n c e  = d e s t s z [ 0 ]  − 2 . 0 ∗ o f f s e t h 
# s c a l e f a c t o r 

s c a l e  = f l o a t ( d i s t ) / f l o a t ( r e f e r e n c e ) 

# r o t a t e o r i g i n a l  around  t h e l e f t e y e 

image = S c a l e R o t a t e T r a n s l a t e ( image , c e n t e r=e y e  l e f t , 

a n g l e=r o t a t i o n ) 

# c r o p  t h e r o t a t e d  image 

c r o p x y  = ( e y e  l e f t [ 0 ]  − s c a l e ∗ o f f s e t h , e y e  l e f t [ 1 ] 

− s c a l e ∗ o f f s e t v ) 

c r o p  s i z e  = ( d e s t s z [ 0 ] ∗ s c a l e , d e s t s z [ 1 ] ∗ s c a l e ) 
image = image . c r o p ( ( i n t ( c r o p x y [ 0 ] ) ,  i n t ( c r o p x y [ 1 ] ) , 

i n t ( c r o p x y [ 0 ] + c r o p  s i z e [ 0 ] ) ,  i n t ( c r o p x y [ 1 ] + 

c r o p  s i z e [ 1 ] ) ) ) 

# r e s i z e i t 

image = image . r e s i z e ( d e s t s z ,  Image . ANTIALIAS) 

r e t u r n  image 

 
d e f  e y e c e n t e r ( e y e c o o r d = [ ] ) : 

ex ,  ey ,  ew ,  eh = e y e c o o r d 

x  =  i n t ( ex+(ew / 2 ) ) 

y = i n t ( ey+(eh / 2 ) ) 

r e t u r n  ( x , y ) 

 
d e f  a l i g n  f a c e ( i m g f p , r e s  i z e  d i m =(70 ,  7 0 ) ) 

: a l i g n e d  i m g  = None 

f d  = f e a t u r e  d e t e c t . f e a t u r e  d e t e c t ( i m g f p ) 

f a c e  = f d . f i n d  f a c e ( ) 

i f l e n ( f a c e ) == 1 : 

e = f d . f i n d e y e s ( d e t e c t e d f a c e s=f a c e ) 

i f l e n ( e ) == 2 : 

s u b j i m g = Image . open ( i m g f p ) 
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e l e f t , e r i g h t  = min ( e [ 0 ] ,  e [ 1 ] ,  key=lambda 

x :  x [ 0 ] ) ,  max ( e [ 0 ] ,  e [ 1 ] ,  key=lambda  x : 

x [ 0 ] ) 

s u b j i m g = CropFace ( s u b j i m g , e y e  l e f t = 

e y e c e n t e r ( e l e f t ) , e y e  r i g h t=e y e c e n t e r ( 

e r i g h t ) , o f f s e t p c t = ( 0 . 2 5 ,  0 . 2 5 ) , 

d e s t s z=r e s i z e  d i m ) 

s u b j i m g  = s u b j i m g . c o n v e r t ( mode=”L ” ) # 

c o n v e r t s  from RGB mode  t o  G r a y S c a l e 

a l i g n e d  i m g  = np . a s a r r a y ( s u b j i m g ,  dtype=np 

. u i n t 8 ) 

s u b j i m g . c l o s e ( ) 

r e t u r n  a l i g n e d  i m g 
 

B.5 Feature Detection 
 

 

# T h i s w i l l d e t e c t t h e  f a c e ,  and  t h e i r f e a t u r e s 

# S o u r c e  was  m o d i f i e d  from : h t t p : / / opencv−python− 
t u t r o a l s . r e a d t h e d o c s . o r g / en / l a t e s t / p y  t u t o r i a l s / 
p y  o b j d e t e c t / p y  f a c e  d e t e c t i o n / p y  f a c e  d e t e c t i o n . 

h t m l 

#  and #from  h t t p s : / / g i t h u b . com/ s h a n t n u / F a c e D e t e c t / 

b l o b / m a s t e r / f a c e d e t e c t . py 

 
#i m p o r t  numpy  a s  np 

i m p o r t cv2 

i m p o r t o s 

 
c l a s s f e a t u r e  d e t e c t : 

d e f i n i t ( s e l f , i m a g e  f i l e ) : 

s e l f . img = cv2 . imread ( i m a g e  f i l e ,  cv2 . 

IMREAD GRAYSCALE) 
 

 

d e f f i n d  f a c e ( s e l f ) : 

’ ’ ’  Us ing  t h e  h a a r c a s c a d e ,  by  d e f a u l t , 

f i n d  f a c e w i l l s e e i f a  f a c e i s fou nd  i n  t h e 

image  p r o v i d e d  when  t h e f e a t u r e  d e t e c t c l a s s 

was  i n i t i a l i z e d . 
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r e t u r n s  a  t u p l e  i n  t h e  form  ( x ,  y ,  w,  h ) 

where x  i s t h e  x  c o o r d i n a t e o f  t h e  f a c e 

y  i s t h e  y  c o o r d i n a t e o f  t h e  f a c e 

w  i s t h e  width  o f  t h e  f a c e 

h  i s t h e  h e i g h t o f  t h e  f a c e 

’ ’ ’ 

c l f h o m e = r ’ E : \ opencv \ b u i l d \ s h a r e \OpenCV\ 
h a a r c a s c a d e s ’ 

c l f  l s t  = [ ’ h a a r c a s c a d e  f r o n t a l f a c e  d e f a u l t . xml 

’ , ’ h a a r c a s c a d e  f r o n t a l f a c e  a l t . xml ’ , ’ 

h a a r c a s c a d e  f r o n t a l f a c e  a l t 2 . xml ’ , ’ 

h a a r c a s c a d e  f r o n t a l f a c e  a l t t r e e . xml ’ ] 

c l f  l s t  =  [ o s . path . j o i n ( c l f h o m e , c l f ) f o r c l f 

i n c l f  l s t ] 

f o u n d  f a c e  =  [ ] 

f o r c l a s s i f i e r i n c l f  l s t : 

f a c e c a s c a d e = cv2 . C a s c a d e C l a s s i f i e r ( 

c l a s s i f i e r ) 

f o u n d f a c e = f a c e c a s c a d e . d e t e c t M u l t i S c a l e ( 

s e l f . img , s c a l e F a c t o r = 1 . 3 ,  m i n N e i g h b o r s 

=5) 

i f l e n ( f o u n d  f a c e )  !=  0 : 

b r e a k 

r e t u r n f o u n d f a c e 
 

d e f f i n d  e y e s ( s e l f , e y e  c l a s s i f i e r =r ’ E : \ opencv \ 

b u i l d \ s h a r e \OpenCV\ h a a r c a s c a d e s \ h h a r c a s c a d e  e y e . 
xml ’ , d e t e c t e d f a c e s = [ [ 0 , 0 , 0 , 0 ] ] ) : 

’ ’ ’  Us ing  t h e  Eye  H a a r c a s c a d e C l a s s i f i e r ,  by 

d e f a u l t , f i n d  e y e s w i l l s e a r c h  t h e 

p r o v i d e d   d e t e c t e d f a c e f o r e y e s . 
 

 

I n p u t : e y e  c l a s s i f i e r :  an XML document  o f  an 

e y e c l a s s i f i e r f i l e f o r d e t e c t i n g e y e s 

d e t e c t e d f a c e s : p r e v i o u s l y  fo und  f a c e ( 

s ) , i f m u l t i p l e f a c e s a r e i n  t h e       

a r r a y 
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t h e n  a l i s t o f l i s t s i s            

e x p e c t e d  i n  t h e  f o r m a t  o f 

[ [ l i s t 1 ] [ l i s t 2 ] . . . ]  −>  [ 
l i s t 1 ]  = ( x ,  y ,  w,  h ) 

Where x : t h e  upper l e f t  most 

x  c o o r d i n a t e o f  a  d e t e c t e d  

f a c e  ( i n p i x e l s ) 

y :  t h e  upper  l e f t  most 

y  c o o r d i n a  t e o f  a d 

e t e c t e d f a c e  ( i n 

p i x e l s ) 

w : t h e width ( i n p i x e l s 

from t h e  upper  l e f t 

c o r n e r )  o f  t h e  f a c e 

h :  t h e  h e i g h t  ( i n 

p i x e l s  from  t h e 

upper l e f t c o r n e r ) 

o f  t h e  f a c e 

Output :  a  n e s t e d l i s t o f c o o r d i n a t e s f o r  e a c h 

e y e  d e t e c t e d  i n  t h e  image . 

e a c h  s e t o f c o o r d i n a t e s i s i n  t h e  f o r m a t 

( e y e  c o o r d  x , e y e  c o o r d  y , e y e c o o r d w , 
 e y e  c o o r d h )  

Where e y e  c o o r d  x : t h e upper l e f t  most x 
 
 
 
 
 
 
 
 
 
 

’ ’ ’ 

c o o r d i n a t e o f  t h e  e y e 

e y e c o o r d y : t h e  upper l e f t  most  y 

c o o r d i n a t e o f  t h e  e y e 

e y e c o o r d w : t h e  width  ( i n p i x e l s  from 

e y e c o o r d x )  t h e  e y e i s 

e y e c o o r d h : t h e  h e i g h t  ( i n  p i x e l s 

from  e y e c o o r d x )  t h e  e y e i s 

c a s c a d e h o m e = r ’ E : \ opencv \ b u i l d \ s h a r e \OpenCV\ 
h a a r c a s c a d e s ’ 

 

 

e y e  c a s c a d e  l i s t  =  [ ’ h a a r c a s c a d e  e y e . xml ’ , ’ 

h a a r c a s c a d e  e y e  t r e e  e y e g l a s s e s . xml ’ , ’ 

h a a r c a s c a d e  m c s  l e f t e y e . xml ’ , ’ 
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h a a r c a s c a d e  m c s  r i g h t e y e . xml ’ ] 

c l f  l s t  =  [ o s . path . j o i n ( cascade home , c l f ) f o r 

c l f i n e y e  c a s c a d e  l i s t ] 

e y e s  f o u n d  =  [ ] 

f o r c a s  i n c l f  l s t : 

e y e s f o u n d = [ ] 

e y e c a s c a d e = cv2 . C a s c a d e C l a s s i f i e r ( c a s )   

e y e s f o u n d  = e y e  c a s c a d e . d e t e c t M u l t i S c a l e ( 

s e l f . g r a y ) 

i f l e n ( e y e s f o u n d ) == 2 : 

e y e s  f o u n d  = e y e s  f o u n d . t o l i s t ( ) 

b r e a k 

e l s e : 

e y e s  f o u n d  =  [ ] 
 

 

i f n o t l e n ( e y e s f o u n d ) == 2 : 

# l a s t e f f o r t 

r i g h t e y e  c a s c a d e  = cv2 . C a s c a d e C l a s s i f i e r ( 

o s . path . j o i n ( cascade home , ’ 

h a a r c a s c a d e  r i g h t e y e  2 s p l i t s . xml ’ ) ) 

l e f t  e y e  c a s c a d e = cv2 . C a s c a d e C l a s s i f i e r ( 

o s . path . j o i n ( cascade home , ’ 

h a a r c a s c a d e  l e f t e y e  2 s p l i t s . xml ’ ) ) 

i f  l e n ( r i g h t e y e c a s c a d e . d e t e c t M u l t i S c a l e ( 

s e l f . g r a y ) ) == 1  and  l e n ( 

l e f t e y e c a s c a d e . d e t e c t M u l t i S c a l e ( s e l f . 

g r a y ) ) == 1 : 

e y e s f o u n d . append ( r i g h t e y e  c a s c a d e . 

d e t e c t M u l t i S c a l e ( s e l f . g r a y ) . t o l i s t ( ) 

[ 0 ] ) 

e y e s f o u n d . append ( l e f t e y e  c a s c a d e . 

d e t e c t M u l t i S c a l e ( s e l f . g r a y ) . t o l i s t ( ) 

[ 0 ] ) 

 
i f l e n ( e y e s f o u n d ) == 0 : 

e y e s f o u n d = [ ] 

r e t u r n   e y e s  f o u n d 
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