
Graduate Theses, Dissertations, and Problem Reports

2015

Digital Eye Modification A Countermeasure to Automated Face Digital Eye Modification A Countermeasure to Automated Face

Recognition Recognition

Domenick Poster III

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Poster III, Domenick, "Digital Eye Modification A Countermeasure to Automated Face Recognition" (2015).
Graduate Theses, Dissertations, and Problem Reports. 6438.
https://researchrepository.wvu.edu/etd/6438

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F6438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/6438?utm_source=researchrepository.wvu.edu%2Fetd%2F6438&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Digital Eye Modification

A Countermeasure to Automated Face Recognition

Domenick Poster III

Thesis submitted to the

Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science in

Computer Science

Roy Nutter, Ph.D., Chair

Afzel Noore, Ph.D.

Katerina Goseva-Popstojanova, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, WV

2015

Keywords: Face recognition, Face detection, Face alteration, Eye

modification

Copyright 2015 Domenick Poster III

Abstract

Digital Eye Modification

A Countermeasure to Automated Face Recognition

Domenick Poster III

This thesis describes and assesses a series of subtle digital eye modifica-

tion techniques and their impact on automated face detection and recogni-

tion. The techniques involve altering the relative positioning of a person’s

eyes in a photograph using a variety of horizontal and vertical movements

local to the eye regions. Testing with Eigenfaces, Fisherfaces, and Circular

Local Binary Pattern face recognition algorithms on a database of 40 sub-

jects and over 4000 modified images shows these subtle geometric changes to

the eyes can degrade automated face recognition accuracy by 40% or more.

Certain modifications even lower the chance a face is detected at all by about

20%. The combined effect of particular eye modifications resulted in subjects

being both detected and recognized less than 20% of time. These results indi-

cate that nearly imperceptible modifications made to one or more key facial

features may foil face recognition algorithms.

iii

Acknowledgements

I want to thank my advisor Dr. Nutter for his guidance and feedback through-

out my entire graduate career and for giving me the opportunity to work on

his projects. I am also in great appreciation of Dr. Noore and Dr. Goseva-

Popstojanova for taking time out of their busy schedules to advise my thesis

work. In addition, I would like to extend a huge thank you to my colleague

Jacob Wolen who greatly helped pave the way for my research.

Finally, I owe a debt of gratitude I can never repay to my parents for

supporting me mentally, physically, and financially.

iv

Contents

1 Introduction 1

1.1 Motivational Scenario ... 1

1.2 Key Terms .. 2

1.2.1 Face Detection and Recognition ... 2

1.2.2 Feature Extraction .. 2

1.2.3 Classification .. 3

1.2.4 Approaches to Face Recognition... 4

1.2.5 Measurements of Accuracy ... 4

1.3 Digital Modification ... 5

1.4 Problem Statement .. 5

1.5 Organization of Thesis ... 5

2 Literature Review 6

2.1 Disguises .. 6

2.2 Plastic Surgery ... 8

2.3 Plastic Surgery Simulation Tools ...11

2.4 Digital Modifications ... 12

3 Experiment Setup 14

3.1 Modification Technique ..14

3.2 Face Database ... 18

3.2.1 Normalization ...18

3.3 OpenCV Face Recognition Algorithms..20

3.3.1 Eigenfaces and Fisherfaces .. 21

3.3.2 Local Binary Pattern Histograms ...22

3.4 Overview of Experiments ...22

v

4 Results and Analysis 25

4.1 Experiment 1: Without Normalization ...25

4.2 Experiment 2: Face & Eye Detection ..26

4.3 Experiment 3: With Normalization ... 28

4.4 Experiment 4: Modified Training Photos ..34

5 Conclusion 37

5.1 Summary .. 37

5.2 Threats to Validity ... 38

5.3 Future Work .. 38

A Additional Data 43

A.1 Experiment 1 ..43

A.2 Experiment 3 ..46

A.3 Experiment 4 ..53

B Source Code 55

B.1 Batch Eye Modifier ...55

B.2 Recognition Testing Framework ..59

B.3 Batch Image Normalizer ..68

B.4 Normalization Algorithm ... 70

B.5 Feature Detection ...74

vi

List of Figures

1.1 High-Level Overview of Face Recognition Systems [2] 3

3.1 Horizontal Displacement Technique .. 15

3.2 Vertical Displacement Technique ... 16

3.3 Horizontal Displacement Examples ... 17

3.4 Vertical Displacement Examples ... 17

3.5 Bilateral Displacement Examples .. 17

3.6 Original vs Normalized: Horizontal Displacement 20

3.7 Original vs Normalized: Vertical Displacement 20

3.8 Original vs Normalized: Bilateral Displacement 20

3.9 Transformation and Experimentation of Image Data 24

4.1 Bilateral Modification Rank-1 Accuracy (1 Training Image per

Subject) ... 26

4.2 Face & Eye Detection Accuracy .. 28

4.3 Normalized Horizontal Rank-1 Accuracy .. 30

4.4 Normalized Vertical Rank-1 Accuracy ... 30

4.5 Normalized Bilateral Rank-1 Accuracy ... 30

4.6 Combined Face/Eye Detection & Face Recognition Accuracy

of Bilaterally Modified Images ... 31

4.7 Rank-n Accuracy using PCA on DBN B (3 Training Images) . 33

4.8 Rank-n Accuracy using LDA on DBN B (3 Training Images) . 33

4.9 Rank-n Accuracy using LBPH on DBN B (3 Training Images) 33
4.10 Rank-1 Accuracy with Horizontally Modified Training Images 35

4.11 Rank-1 Accuracy with Vertically Modified Training Images . . 35

4.12 Rank-1 Accuracy with Bilaterally Modified Training Images . 35

A.1 Horizontal Modification Rank-1 Accuracy of Non-Normalized

Images (1 Training Image per Subject) .. 4

vii

A.2 Vertical Modification Rank-1 Accuracy of Non-Normalized Im-

ages (1 Training Image per Subject) ..44

A.3 OpenCV/Wagner Performance Comparison (Bilateral Modifi-

cation Rank 1 Accuracy Normalized Images 3 Training Images

per Subject)..46

viii

List of Tables

2.1 Summary of average Rank-1 Accuracy for all photos in Singh

plastic surgery database per algorithm per study 10

3.1 Number of images for each modification and database 19

A.1 Bilateral Modification Rank 1 Accuracy of Non-Normalized

Images (1 Training Image per Subject)

 .. 4

5

A.2 Horizontal Modification Rank 1 Accuracy of Normalized Im-

ages (1 Training Image per Subject) .. 47

A.3 Horizontal Modification Rank 1 Accuracy of Normalized Im-

ages (3 Training Images per Subject)... 48

A.4 Vertical Modification Rank 1 Accuracy of Normalized Images

(1 Training Image per Subject) ... 49

A.5 Vertical Modification Rank 1 Accuracy of Normalized Images

(3 Training Images per Subject) .. 50

A.6 Bilateral Modification Rank 1 Accuracy of Normalized Images

(1 Training Image per Subject) ... 51

A.7 Bilateral Modification Rank 1 Accuracy of Normalized Images

(3 Training Images per Subject) .. 52

A.8 Rank-1 Accuracy of Bilateral Modifications when Training on -

50% Bilaterally Modified Images (3 Training Images per Subject) 53

A.9 Rank-1 Accuracy of Bilateral Modifications when Training

on +50% Bilaterally Modified Images (3 Training Images per

Subject) .. 54

1

Chapter 1

Introduction

Our identities have long been associated with images of our faces, whether

in the form of a portrait, a yearbook picture, a driver’s license photograph,

or a police mugshot. The task of actually matching a face to an identity

has traditionally been the purview of humans. In the last couple decades,

however, computers have been programmed to not only detect a human face,

but also to learn whose face it is.

Face recognition technology has rapidly become the cornerstone of a di-

verse array of applications spanning from police surveillance to biometric

authentication and social media. We live in a world where our visual ap-

pearance has been digitized, linked to our identity, and in some cases made

publicly available, often with our own consent. Automated face recognition

systems know what we look like and, if given a new, unseen image of a face,

can reliably identify whose it is within certain constraints. Furthermore,

these algorithms are constantly being made more robust to the demands of

real-life scenarios.

1.1 Motivational Scenario

Online programs like Facebook automatically identify individuals using fa-

cial recognition. People also have access to photo-editing software allowing

for morphing, embellishment, or estrangement of facial features. Yet, most

literature on facial recognition seeks to examine the technology’s robustness

to common challenges such as age, pose, expression, and illumination as op-

posed to an algorithm’s resilience to digital facial modification.

2

In this study, a new technique to thwart facial recognition of online pho-

tographs is introduced and assessed for its effectiveness. The countermeasure

developed here addresses the scenario wherein an individual has pictures on-

line associated with his or her identity but have digitally and perhaps subtly

modified the facial features.

1.2 Key Terms

1.2.1 Face Detection and Recognition

Subverting facial recognition involves hiding or altering features which make

a face distinguishable and unique from others. Face recognition systems have

various points of vulnerability to attack. Being successfully identified from a

photograph typically requires multiple steps. For the purpose of this thesis,

the two main steps are 1) face detection and 2) face recognition.

Face Detection

Face detection is simply the process of finding a face in an image. It is not

concerned with determining whose face it is, only that it is a human face.

Face Recognition

Face recognition, however, is the process of determining whether two or more

faces are of the same individual. If a face cannot be automatically detected

in a photograph, then automated recognition is often impossible.

1.2.2 Feature Extraction

Even though face detection precedes face recognition, they both share some

underlying cords. Face detection and recognition algorithms generally rely

on extracting a set of (hopefully) discriminating features from a face image

[1]. This process is known as feature extraction. The features extracted from

the image form the ”facial representation.” There are many different existing

facial representations and more continue to be developed. A facial recognition

algorithm can partly be categorized by the facial representation it uses. From

the widely-accepted taxonomy established by Zhao et al, ”Three types of

feature extraction methods can be distinguished: (1) generic methods based

3

on edges, lines, and curves; (2) feature-template-based methods that are used

to detect facial features such as eyes; (3) structural matching methods that

take into consideration geometrical constraints on the features” [2].

Figure 1.1: High-Level Overview of Face Recognition Systems [2]

When modifying an image, if the features used for face representation

can be disturbed, then face detection and recognition should be affected.

However, the wide variety of approaches make targeting any one type of

feature set an unreliable tactic .

1.2.3 Classification

Classification is the final component of face detection and recognition. In the

case of face detection, a classifier uses the feature set to determine whether

an image contains a face, or for that matter, eyes, a nose, a mouth, and

so on. For face recognition, the classifier attempts to match a face to other

faces. Classification can be accomplished by employing a variety of statistical

analysis methods, neural networks, or other machine learning techniques.

4

1.2.4 Approaches to Face Recognition

Since a wide variety of feature extraction and classification techniques can

be combined, many different approaches to face recognition exist. To help

describe and organize the algorithms, Zhao et al has created the following

high-level categorization: holistic matching methods, feature-based (struc-

tural) matching methods, and hybrid methods [2]. A holistic method takes

the entire face region as its input. Some algorithms which fall under this cat-

egory include Eigenfaces, Fisherfaces, and Support Vector Machines (SVM).

Alternatively, feature-based methods first detect facial features such as the

eyes or nose, further perform feature extraction on the separate parts, then

feed that information into a classifier. Some popular feature-based methods

are pure Geomeotric Feature methods, Hidden Markov Models (HMM) and

Convolutional Neural Networks (CNN). Hybrid approaches use some combi-

nation of holistic and local feature matching methods.

1.2.5 Measurements of Accuracy

Different metrics can be used to describe an algorithm’s effectiveness. Certain

measurements are more appropriate for certain tasks.

In face verification trials, in which the task is to determine if a given face

image is of a specific person, an algorithm computes a score or confidence of

the match. When the confidence is above a certain operating threshold, then

it is deemed to be a positive match. Tracking the number of false positives

and false negatives of the matches is a popular method [1]. Usually, false

positives and false negatives are plotted across varying confidence thresholds,

creating the receiver operating characteristic (ROC).

For closed-set identification, in which a face image is matched against a

finite number of subjects, a straight-forward approach is to count success-

ful matches versus unsuccessful matches. Another term for this is Rank-1

Accuracy. More formally, Rank-1 Accuracy is the percentage of times the

algorithm’s first choice is the correct choice. By extension, Rank-n accuracy

is the percentage of times the correct choice is among the algorithm’s top

n picks. Recognition accuracy plotted over varying values of n gives rise to

the cumulative match characteristic (CMC). Closed-set identification tests,

especially with larger datasets, often use CMC curves as a primary metric of

evaluation.

5

1.3 Digital Modification

Conceivably, a plethora of digital modifications can be applied to an im-

age. Even so, modifications which are extremely obvious or detract from

the human recognizability of the photo may not be desirable to share on-

line. Instead, this study employs modifications that are more analogous to

alterations produced by plastic surgery.

These modifications would focus on altering the relative spacing, orien-

tation, size and symmetry of key facial features. This thesis is limited to

studying the effect of modifying inter-pupil distances and eye symmetry on

face recognition and face detection accuracy.

1.4 Problem Statement

The hypothesis is that by changing the geometric arrangement of the eyes,

automated face detection and recognition accuracy will be negatively im-

pacted.

1.5 Organization of Thesis

A review of literature on face detection and face recognition relevant to dis-

guise and deception will follow in Chapter 2. Chapter 3 describes the process

and tools used to create and test the digital modifications. Chapter 4 dis-

cusses the methodologies and results of the experiments. Chapter 5 concludes

the findings, notes any threats to the validity of study, and offers recommen-

dations on further research.

6

Chapter 2

Literature Review

Real-world face recognition scenarios, particularly regarding surveillance, are

much more difficult than the highly controlled scenarios in which recognition

algorithms are often benchmarked. Review of literature has shown little

research examining the effects of deliberate digital modification as a coun-

termeasure to face recognition. Hence, one must look at studies examining

similar scenarios to provide some context and inspiration for this work.

2.1 Disguises

Singh et al identified and studied two major challenges to real world recog-

nition scenarios - disguises and limited training data [3]. Disguises are a

non-permanent modification made to mask one’s identity from both face de-

tection and recognition. If certain types of disguises are effective, then it

may be possible to mimic their effect on previously captured photographs.

Singh et al developed a novel approach to address this scenario using a

2d log polar Gabor transform in concert with a dynamic neural network.

It is compared against Principal Component Analysis (PCA), Geometric

Features, Local Features, Independent Gabor Features, and Local Binary

Pattern (LBP) algorithms. The databases used were the AR database (a

database containing 3000 images of 116 people) and the National Geographic

database (originally containing only 46 images of a single individual) mod-

ified to include 15 more individuals each with 10 variations of synthetically

generated disguises including glasses, hats, facial hair, varied hairstyles, and

makeup. Of all the single disguises, Singh et al found alterations involv-

ing glasses or facial hair to be the most detrimental to accuracy. Testing

with the AR dataset where the individual is wearing dark glasses yielded a

best-case Rank 1 identification accuracy of 71.7%. PCA’s performance was a

dismal 28.6%. With the synthetic database, best-case performance increased

to 85.2% with glasses while the worst algorithm achieved 70.9% accuracy.

Unsurprisingly, a combination of disguises presented the greatest challenge -

71.2% best-case and 19.7% worst-case [3]. A major limitation of this study

is the limited size and synthetic nature of the databases.

Makeup as a potential form of disguise is analyzed separately by Eckert

et al [4]. In the study, a variety of makeup such as shadow, blush, eyeliner,

and lipstick has been applied to the skin, mouth and eyes. The database

contained 339 images with 50 reference photos and was manually assembled

from makeup tutorial videos. Each image was categorized as either slight,

intermediate, or heavy makeup. A Local Binary Pattern algorithm was used

to match isolated features such as eyes or mouth and also faces as a whole.

The images without makeup were used as the gallery.

Eckert et al found slight and heavy eye makeup to decrease Rank 1 accu-

racy to about 52% and 45% respectively from a baseline of 65% [4]. However,

a spike in accuracy was observed with intermediate level makeup for all fea-

tures. Eckert et al surmised this was because intermediate makeup “enhances

characteristic features and contours, which leads to better distinguishable

eye shapes” whereas heavy makeup has an “estranging” effect. Once again,

recognition performed on the whole face with multiple modifications resulted

in the lowest accuracy of 40%.

One interesting finding was an increase in face recognition accuracy when

images with intermediate makeup were used as the gallery. As Eckert et al

explain, “intermediate makeup increases both interclass and intraclass vari-

ation but the increase is higher for interclass variation therefore the impact

is positive” [4]. In effect, the intermediate makeup photo when used as the

reference acted as a “bridge” between photos with no makeup and photos

with heavy makeup. Therefore, photos digitally modified for the purpose of

camouflaging one’s identity could actually backfire if that camouflaged pho-

tograph is correctly identified through other means and incorporated into a

training set.

While wearing glasses or makeup may not necessarily be done to deceive,

the act of wearing masks is a far more deliberate tactic. In 2013, Kose and

Dugelay studied the vulnerability of face recognition to these physical masks.

They found face recognition algorithms, especially 3D recognition algorithms,

7

to be vulnerable to spoofing mask attacks [5]. For the problem defined in

this thesis, these masks are not a realistic strategy for privacy preservation

as they cannot be applied to a photograph after it’s been taken. In addition,

producing a realistic mask is not a trivial process.

Also worth noting is once a photograph has been taken the disguises may

be difficult to convincingly overlay onto the face, as some of the synthetically

generated databases demonstrated. A great deal of time, effort, and skill

would be required to realistically recreate facial hair or add apparel, not to

mention the need for commercial-grade photo editing software.

2.2 Plastic Surgery

There is one additional emerging domain within face recognition research

which could prove insightful: plastic surgery. As far as could be determined,

this area of research was first identified by Singh et al [6] in 2009.

Singh et al created a database from before and after photos found on plas-

tic surgery websites [6]. Using several different feature-based, appearance-

based, and texture-based algorithms, they found before and after matching

accuracy to be very low (38.8% in the best case). This is partly due to the

inherently challenging nature of the manually curated database. The pho-

tographs used in the database do not control for pose, expression, makeup,

hairstyle, or illumination. This preliminary study concluded certain facial

features played an important role in face recognition, particularly nose, chin,

and eyes. What they termed ‘global surgery’ or a full-face lift had a par-

ticularly negative effect on accuracy. Depending on the algorithm, Rank 1

accuracy decreased to anywhere from 2.8% to 10.6% for subjects who under-

went global surgery [6].

In 2010, Singh et al expanded on the preliminary study with a more

thorough investigation involving an augmented database [7]. Unfortunately

they had to employ a separate, non-surgery database to establish a baseline

accuracy. Nevertheless, they observed similar results to their preliminary

study. They found “ear surgery has the lowest effect on the performance”

while “nose, chin, eyelids, cheek, lips, and forehead play an important role

in face recognition.” Accuracies ranged from 18% to 61% depending on the

severity of surgery and the algorithm employed [7].

The next step was taken by De Marisco et al in 2011 [8]. De Marisco

et al first analyzed the contribution of different facial regions to recognition

8

performance by hiding regions and noting the change in accuracy. They

found that among all the isolated regions, the eye region is the most helpful

to recognition.

By modeling the relative importance of each region, De Marisco et al

then developed two integrative regions of interest (ROI) analysis methods

termed FARO and FACE. Using the aforementioned database assembled by

[7], FARO achieved a Rank 1 recognition rate (RR) of 50% for local surgeries

and 28% RR on global surgeries. The FACE algorithm, which is more compu-

tationally expensive, reached 59% RR for local surgeries and 35% for global

surgeries. Comparatively, PCA scored 20% RR for local and global surgeries

alike, whereas LDA scored about 35% RR. While their novel algorithms did

substantially better than the common alternatives, face recognition on pa-

tients of plastic surgery remained challenging and unreliable [8].

Aggarwal et al took a similar approach in 2012 by using a sparse repre-

sentation (SR) of individual facial regions and integrating the results of each

region into a final prediction [9]. Also using the Singh database, their algo-

rithm achieved an overall accuracy of 77.9%, although accuracies for different

surgeries are not separately measured. To reiterate, the Singh database has

no pre-surgery baseline so a relative drop in accuracy cannot be computed.

Also in 2012 Kose et al conducted a study focused on face recognition ro-

bust to nose alterations [10]. They created a synthetic database from images

of the Face Recognition Grand Challenge v1.0 database [11] where subjects’

nose regions are randomly swapped. This database has the advantage of hav-

ing a baseline. Their approach was to break a pair of images into “blocks”

and only incorporate the corresponding blocks with the most similarity for

face recognition. This approach is similar to only analyzing the most in-

formative facial regions. Once the most similar blocks are identified, they

utilize PCA, LDA, and Circular Local Binary Pattern (CLBP) algorithms

on the individual blocks. Without using the block-based approach, PCA’s

accuracy on the synthetic database was 31%, having dropped 29% from the

baseline, LDA scored 55% with a drop of 20%, and CLBP scored 70% with

a drop of 9%. Using only the k most similar blocks, PCA scored 64% with a

drop of 18% on the synthetic database, LDA scored 68% with a drop of 14%,

and CLBP scored 76% with a drop of 6% [10]. Clearly their approach im-

proved accuracy but the results cannot be compared to the previous studies

because of the difference in datasets. Regardless, the commonality of being

discriminative in which areas to incorporate into recognition persists.

Bhatt et al [12] developed an approach that divided a photo into multiple

9

10

regions or “levels of granularity” and applied a multi-objective evolutionary

algorithm (MOE) to determine which regions were the most useful to suc-

cessful recognition. Using the Singh database, this approach achieved an

impressive 87% accuracy. Performance regarding local surgeries related to or

around the eyes was similarly high. The lowest performance, 71%, was for

patients who underwent a global face lift.

More recently in 2015, De Marisco et al [13] expanded on their earlier

research by applying a region-based approach unified by multimodal super-

vised collaborative architecture called Split Face Architecture (SFA) yielding

results similar to [12] except without the need for an extensive training set.

Algorithm [6] [7] [8] [9] [12] [13]

PCA 19% 27% 35% 29% 27% 80%

FDA 20% 31% 33% 31% 64%

GF 28%

LFA 22% 48% 39% 38%

LBP 30% 77%

GNN 34% 54% 54% 54%

CLBP 48% 48% 48%

SURF 51% 51% 51%

FARO 50% 59%

FACE 70% 85%

LDA 40%

SR 78%

MOE 87%

Table 2.1: Summary of average Rank-1 Accuracy for all photos in Singh

plastic surgery database per algorithm per study

Table 2.1 summarizes the results of all the studies which used the Singh

plastic surgery database. These accuracies represent the overall Rank-1 ac-

curacy across all the plastic surgery photos, from local operations to global

procedures. The accuracies in bold represent the best-performing algorithm

for each study. As the studies have been arranged in chronological order, one

can observe an increasing trend in performance over time.

Even though newer approaches have achieved major improvements in ac-

curacy, plastic surgery, especially on multiple key facial features, can still

pose a major challenge to common face recognition algorithms. Due to a

11

lack of alternative plastic surgery image databases, the more recently suc-

cessful approaches have yet to be thoroughly validated. Also, by their very

nature of separately analyzing and incorporating different facial regions, the

more innovative algorithms can become very computationally expensive or

require intensive training. Nevertheless, undergoing plastic surgery simply to

hide from automated face recognition systems is an extreme and uncommon

response. Furthermore, plastic surgery does not address the scenario wherein

one wishes to camouflage a particular picture which has already been taken.

2.3 Plastic Surgery Simulation Tools

As plastic surgery has become increasingly popular, tools have been cre-

ated to simulate plastic surgery operations in order to preview the changes.

These software tools are primarily targeted towards surgeons and patients.

They can be used, however, to modify photographs in a way subversive to

automated face recognition.

These tools have the advantage of removing the skill and experience neces-

sary to create convincing modifications using commercial-grade photo editing

software. Lee et al developed software which generates 3D models of a face

from a photograph [14]. Once the model has been created, pre-programmed

operations such as augmentation, cutting, and laceration can be executed on

different facial features.

Chou et al has also created a user-friendly plastic surgery simulation tool

[15]. In it, there is also support for adding glasses or facial hair. One can

swap out facial regions from a photograph with the corresponding regions of

a celebrity, for example. In doing so, the program can be used to generate

pictures which morph one’s face to look like someone else.

These programs are limited to performing viable plastic surgery opera-

tions. Since there is no cosmetic surgery to change inter-pupil distance, this

cannot be simulated with software specific to plastic surgery. If one’s goal

is to disguise a photograph, it is not necessary to limit oneself to physically

possible modifications.

12

2.4 Digital Modifications

Little research could be found directly studying the quantitative effects of

digital modifications on face recognition accuracy. However, the relevant

literature that does exist is insightful.

Newton et al studied automated face recognition from the perspective

of privacy and law enforcement [16]. Their goal was to protect individuals’

privacy by de-identifying their facial features so that video surveillance im-

ages can be shared with police without violating the privacy of innocents.

This allows law enforcement to investigate footage without requiring a war-

rant. Once the suspicious persons are determined, specific warrants can be

obtained for those individuals. Simply blacking out faces could hide impor-

tant information such as pose and expression. Therefore, an approach was

needed which preserved some information about the face but made the in-

dividual unidentifiable. Newton’s solution was to create a new, composite

face from the k-nearest similar faces. This approach successfully prevented

individuals from being identified by an automated recognition system but

also made them unrecognizable by humans [16]. Yet, if an appropriately

small number of k similar faces are employed in the face averaging process,

a balance could potentially be struck between maintaining human recogniz-

ability and degrading automated recognition accuracy. Whether or not the

modifications would look realistic is less certain.

Ferrara et al conducted a study in 2013 on the effects to face recognition

accuracy of digital modifications to photographs by using plastic surgery sim-

ulation software as well as basic geometric transforms on the image [17]. The

geometric transforms performed were a barrel distortion, a vertical contrac-

tion, and a vertical expansion on the entire image. The geometric alterations

were intended to simulate an unintentional warping of the image due to the

photo capture device (ie camera) or scanning device. LiftMagic is a free plas-

tic surgery simulation tool that was used to simulate intentional modifications

of the face image. Three commercial-grade face recognition algorithms were

used: Verilook, Luxand, and a SIFT-based algorithm. They used the AR

face database to test the results. Ferrara et al found that barrel distortion

had little to no impact on face recognition accuracy for all three of the algo-

rithms. However, for all but Verilook, vertical expansion and contraction of

the image resulted in a moderate drop in performance. Face images which

underwent several simulated plastic surgery operations resulted in a decrease

in performance for all three algorithms [17].

13

Szegedy et al were actually able to make imperceptible alterations to im-

ages in such a way that would cause an image classification neural network

to misclassify 100% of the time [18]. For example, an image of a school bus

which was normally correctly classified would always become unrecognizable

to the neural network once the image was distorted. The study only experi-

mented with images of objects and handwriting. Their distortions relied on

being able to probe the neural network and undermine feature detection at

the hidden layers [18]. However, without access to the neural network, it may

not be possible to analyze and identify the necessary distortions required to

trick the network. Someone trying to camouflage their face in a photograph

probably does not have the luxury of knowing which algorithms will be used

to recognize him or her. An adequate camouflage technique must be effec-

tive against a variety of algorithms. Nevertheless, the study by Szegedy et

al highlights a worthy avenue for further research.

14

Chapter 3

Experiment Setup

This Chapter outlines the steps taken to systematically measure the effective-

ness of different geometric eye modifications at confounding face recognition

technology. A major shortcoming of existing research is the lack of precise

quantitative measurements of the strength of different types of facial morph-

ing. For example, plastic surgery related studies only categorize the type of

the surgical operation. Along the same lines, [4] broadly categorizes makeup

as “light,” ”intermediate,” or “heavy.” The approach taken in this thesis pro-

vides a means to measure the magnitude of the eye modifications in order to

formulate expectations of impact on face recognition accuracy.

3.1 Modification Technique

In order to create a sufficiently large dataset, image modification could not

be done manually. Furthermore, the modifications need to be replicated

in a standardized and precise fashion across all subjects. To that end, a

combination of tools were used. OpenCV is used for eye detection [19].

ImageMagick, an open-source image editing program, is used to perform the

actual morphing of the eye regions.

Finding the eyes in the image is the first step in the process. OpenCV’s

feature detection is based off the Viola-Jones algorithm and uses a feature-

template-based Haar cascade architecture. OpenCV’s Haar cascade eye clas-

sifiers locate the pixel coordinates describing rectangular eye regions. If ex-

actly two eyes are not found, the process is aborted. As a result, not every

unmodified image has a corresponding modified counterpart. Eye regions are

15

manually verified to ensure the correct areas were selected.

For each image where two eyes are successfully located, a distance d is

computed representing the number of pixels between the two eye boxes. At

this point, ImageMagick is employed to perform a “Linear Displacement”

operation on the pixels within the eye regions. Linear Displacement shifts

each pixel in a specified direction by a certain number of pixels. The dis-

tance, or magnitude, the pixels are displaced is a function of the previously

computed inter-eye distance d and a variable percentage p. The equation for

this magnitude (pixel distance) is m = (p/2) ∗ d where p is a value between
10% and 100% on 10% intervals. As an example, a 50% modification would

perform a 25% displacement in one eye region and another 25% displacement

in the other. Each eye modification is therefore proportionate to the distance

between the subject’s eye regions. An additional step is taken to make the

modified photo appear more realistic. Pixels located near the borders of each

eye region are moved at a gradually decreasing fraction of the displacement

distance, resulting in a smoothing effect around the modified region. Source

code for the eye modification process in included in Appendix B.

(a) Positive Horizontal Displacement (b) Negative Horizontal Displacement

Figure 3.1: Horizontal Displacement Technique

Two similar but opposite horizontal displacement operations are per-

formed: one where the distance between the eyes is increased and another

16

(a) Positive Vertical Displacement (b) Negative Vertical Displacement

Figure 3.2: Vertical Displacement Technique

where the distance is decreased. The pixels are shifted both outwards from

the nose and inwards respectively, expanding and shrinking the amount of

space between the eyes.

Vertical displacement is similarly performed by moving the pixels of the

eye regions in opposite vertical directions, creating asymmetry. The inter-

eye distance d is still used as a referential distance for computing vertical

displacement. Figures 3.1 and 3.2 illustrate the inter-eye distance d and the

directional movements of the pixels within the eye region. As can be seen

from Figure 3.2, the terms ”positive” and ”negative” in the context of verti-

cal displacement are arbitrary and only used as a convention to distinguish

between two mirrored operations.

Bilateral displacement is done by performing a 40% positive vertical

displacement paired with horizontal displacements ranging from -100% to

+100%. A constant 40% vertical displacement was chosen as it represented

a modification within the limits of visual believability as well as to avoid

creating massive permutations of modifications.

Figures 3.3, 3.4, and 3.5 on page 17 illustrate the different modifications

at varying levels of change. The believability of any given modification is

different for each individual and photo but 100% modifications generally look

17

obviously distorted. However, Figure 3.5 shows the viability of the technique

on subjects with glasses. Ultimately, the believability of any modified photo is

subjective; users must decide for themselves what level of change is acceptable

for the application.

(a) -100% (b) -50% (c) Original (d) +50% (e) +100%

Figure 3.3: Horizontal Displacement Examples

(a) -100% (b) -50% (c) Original (d) +50% (e) +100%

Figure 3.4: Vertical Displacement Examples

(a) -100% (b) -50% (c) Original (d) +50% (e) +100%

Figure 3.5: Bilateral Displacement Examples

18

3.2 Face Database

This study uses the AT&T Database of Faces courtesy AT&T Laboratories

Cambridge [20]. The database contains 40 subjects each with 10 front-facing

images.. The images vary with respect to changes in expression as well as

slight changes in pose. There is also very slight variation with illumina-

tion. The size of each image is 92x112 pixels with 8-bit gray levels. Using

the modification techniques mentioned in Section 3.1, we create several syn-

thetic databases. Since successfully detecting the eye regions in the images

is a prerequisite for eye modification, the modified databases are a subset of

the original database. Of the images where the eye regions were successfully

detected, three databases are generated corresponding to horizontal, vertical,

and bilateral displacements, designated as DBOH , DBOV , and DBOB respec-

tively. Of the original 400 images, 235 underwent successful eye detection.

As such, every degree of eye modification has 235 images, for a total of 4,700

modified images. Since each of these databases contains the same number of

modified images, for the sake of simplicity, they are referred to collectively

as DBO∗ in Table 3.1 on page 19.

3.2.1 Normalization

The AT&T Database of Faces represents a ”cooperative” face image database,

meaning the images are all taken in a consistent, standardized manner. Face

recognition is a much easier task in these situations as a great deal of vari-

ability is removed from the data. Many real-world scenarios do not have the

luxury of the face images being captured in a homogeneous way. ”Faces in

the wild” is a term used for face images taken in an unconstrained manner.

In order to perform face recognition on faces in the wild, a data preprocess-

ing step known as normalization must occur. To simulate the conditions of a

real-world example where normalization of photos is necessary, an additional

set of databases have been created in which the images have been normalized.

The normalization algorithm was developed by Philipp Wagner and is

available in OpenCV’s online documentation and included in Appendix B.

It utilizes OpenCV to perform a basic normalization technique wherein the

face image is cropped, scaled, and rotated so that the eyes are horizontally

aligned. To determine the amount of the face to include in the crop, 25% hor-

izontal and vertical offset values were used. The resulting images are re-sized

to 70x70 pixels. Photometric normalization (i.e., adjustments to brightness

19

or contrast) is not necessary as the images are already in gray scale and con-

trolled for illumination. Normalization is performed on all 400 unmodified

images as well as all horizontally, vertically, and bilaterally modified images.
More formally, DBOH is normalized to produce DBN H , DBOV is normalized

to produce DBN V , etc. The normalization process requires successful detec-

tion of both the face and the eyes. Consequently, the normalized databases

are smaller than their non-normalized counterparts, as shown in Table 3.1.

See Figures 3.6, 3.7, and 3.8 on page 20 for examples of normalization. The

process of normalization is not perfect. Figure 3.8d on shows an example

where the mouth was presumably classified as an eye. Both unmodified and

modified images suffer from this misclassification. These mistakes are kept

in the database in order to judge the impact of eye modifications.

Modification DBO∗ DBN H DBN V DBN B

0% 400 229 229 229

+10% 235 145 146 140

+20% 235 141 144 136

+30% 235 136 143 133

+40% 235 128 143 125

+50% 235 116 137 120

+60% 235 114 134 111

+70% 235 110 128 102

+80% 235 107 121 99

+90% 235 102 113 97

+100% 235 82 102 80

-10% 235 160 154 151

-20% 235 166 157 155

-30% 235 163 147 160

-40% 235 167 141 168

-50% 235 167 137 169

-60% 235 176 139 171

-70% 235 177 130 170

-80% 235 175 127 173

-90% 235 175 126 172

-100% 235 172 112 165

Total Mods 4700 3108 2910 2926

Table 3.1: Number of images for each modification and database

20

(a) Normalized (c) Normalized (d) Normalized

(a) Original Original -50% Mod -100% Mod

Figure 3.6: Original vs Normalized: Horizontal Displacement

(b) Normalized (c) Normalized (d) Normalized

(a) Original Original -80% Mod +80% Mod

Figure 3.7: Original vs Normalized: Vertical Displacement

(b) Normalized (c) Normalized (d) Normalized

(a) Original Original -100% Mod +100% Mod

Figure 3.8: Original vs Normalized: Bilateral Displacement

3.3 OpenCV Face Recognition Algorithms

This study relies on the OpenCV suite of face recognition algorithms. The

three algorithms included in the OpenCV library are Eigenfaces, Fisherfaces,

and Local Binary Pattern Histograms (LBPH). Unfortunately, as the litera-

ture review indicates, there are many other types of algorithms which are not

tested in this study. Although the algorithms packaged with OpenCV are

21

not as sophisticated as expensive commercial-grade products, they are still

popular and commonly used for benchmarking purposes. They also hone in

on different features in an image and represent different statistical approaches

to face recognition. Eigenfaces, Fisherfaces and LBPH act as different facial

representations. Classification is performed using Euclidean distances and

the 1st-Nearest Neighbor.

Philipp Wagner, whose face recognition library was merged into OpenCV

as of version 2.4, has also written his own implementations of Eigenfaces,

Fisherfaces, and LBPH [21]. His implementations have the advantage of ex-

posing the top n predicted classes and Euclidean distances, whereas OpenCV

only returns the information of the 1st-Nearest Neighbor. As such, his algo-

rithms are used when calculating Rank-n Accuracy and CMC curves. For

reference, a comparison of OpenCV and Wagner’s algorithms is included in

Appendix A Figure A.3.

3.3.1 Eigenfaces and Fisherfaces

Eigenfaces and Fisherfaces are the applications of Principal Component Anal-

ysis (PCA) and Linear Discriminate Analysis (LDA), respectively, to the

domain of face recognition. In face recognition literature, PCA and LDA

are often used interchangeably with Eigenfaces and Fisherfaces. LDA is also

sometimes referred to as Fisher Discriminant Analysis (FDA). Both Eigen-

faces and Fisherfaces take holistic, appearance-based approaches [1]. In sim-

pler terms, an ”appearance-based” approach is one whose chosen features

are the intensity values of the pixels; a ”holistic” approach extracts these

features from the entire image.

The main difference between Eigenfaces and Fisherfaces derives from the

fundamental difference between PCA and LDA. PCA attempts to identify

the ”principal components” responsible for the most variation among all the

images without concern for class (in this case, the identity of the subject)

[1]. Alternatively, LDA builds from principal components but adds class

information. In doing so, LDA maximizes interclass variance (the differences

between subjects) while minimizing intraclass variance (the uniqueness of an

individual’s face) [1]. In this way, LDA works to mitigate non-discriminating

natural variances such as illumination and expression.

22

3.3.2 Local Binary Pattern Histograms

Alternatively, LBPH encodes regional, or ”local”, information such as lines,

edges, and corners and is said to be texture or generic-based [2][1]. This is

done by inspecting the intensity value of a central pixel and comparing it

with the intensity values of all the pixels in a surrounding neighborhood of a

predefined size. The original LBP operator looks at a square x by y region

around the central pixel. All the pixels within the sampling region are then

encoded as a 0 or 1 based on meeting a threshold difference in value [1].

This operator has been enhanced by using a circular neighborhood instead

of a square region, coined a Circular Local Binary Pattern (CLBP) [1]. A

radius is chosen for the circle, establishing the size of the neighborhood. A

number of sampling points are chosen along its circumference. These points

assume the intensity values of the pixels at those coordinates. Points along

the circumference which do not exactly correspond with a pixel coordinate

have their values interpolated from its surroundings [1]. OpenCV implements

CLPB with a linear interpolation strategy [19].

The binary encoding of each subregion then corresponds to a ”texture

primitive” such as an edge, a corner, or a spot. Histograms are then built

based on the numbers of each texture primitive and used to compare face

images. As Jain summarizes, ”The success of LBP in face description is due

to the discriminative power and computational simplicity of the operator,

and its robustness to monotonic gray scale changes caused by, for example,

illumination variations. The use of histograms as features also makes the

LBP approach robust to face misalignment and pose variations. [1].”

3.4 Overview of Experiments

Using the aforementioned images and algorithms, four distinct experiments

were designed to measure the disruptiveness of the eye modifications on face

detection and recognition. First, a measure is needed of the eye modifica-

tions’ impact in constrained and cooperative face recognition scenarios. To

address this, Experiment 1 scores Rank-1 accuracy for each of the three face

recognition algorithms on the original and modified images prior to under-

going normalization.

Experiment 2 analyzes the performance of the face and eye detection

algorithms employed during the normalization process. By doing so, face

23

and eye detection can be evaluated separately from face recognition.

Experiment 3 reassesses the face recognition algorithms on the normalized

images using both Rank-1 and Rank-n accuracy. Using the Rank-n accura-

cies, CMC curves are graphed and discussed. Additional analysis is provided

by combining these face recognition results with the results from Experi-

ment 2 to yield a holistic, start-to-finish performance assessment. Overall,

Experiment 3 simulates a more unconstrained, real-world face recognition

scenario.

To anticipate the event of the face recognition system having access to

positively identified modified images, a final experiment is conducted. Exper-

iment 4 studies the change in face recognition Rank-1 accuracy when using

modified images for the training data instead of unmodified images.

All accuracy plots are generated using the matplotlib Python library [22].

See Figure 3.9 on page 24 for a visual summary of the processes involved

in creating the modified and normalized image data. This diagram also

indicates from where each experiment derives its data.

24

Figure 3.9: Transformation and Experimentation of Image Data

25

Chapter 4

Results and Analysis

The main goal of this research was to ascertain the effectiveness of the

eye modification techniques in undermining the accuracy of automated face

recognition systems. Using the data and technology described above, four

experiments were designed to evaluate different aspects of the problem space.

4.1 Experiment 1: Without Normalization

The first experiment utilizes the non-normalized set of original and modified

images, DBO∗. This set includes the database of horizontally displaced im-

ages (DBOH), vertically displaced images (DBOV), and bilaterally displaced

images (DBOB). DBO∗ represents photos in highly controlled and cooper-

ative face recognition scenarios. Examples of this domain include driver’s

license, passport, or mugshot photos.

The training images, or ”gallery,” are taken entirely from the original,

unmodified AT&T database. All 40 classes (subjects) are represented in the

training set. Both modified and unmodified images are used as the testing

images, or ”probe” images. A 10-fold cross-validation scheme with random

sampling is used to validate the results. Each subject contributes one image

to the gallery for each fold. Additionally, the folds are created in such a way

that no modified image is ever tested on a training set containing the corre-

sponding unmodified version of that image. Similarly, no unmodified images

are ever tested on a fold containing their exact duplicate. The unmodified

probe images establish a baseline Rank-1 Accuracy. Rank-1 Accuracies are

then computed for each degree of modification.

26

Figure 4.1: Bilateral Modification Rank-1 Accuracy (1 Training Image per

Subject)

The results of this experiment are clear. Simple eye modifications are not

enough to confound face recognition when image collection is undergone in a

controlled environment. Even at the extreme levels of modification, Rank-1

accuracies remain almost completely unphased for every type of directional

displacement. Figure 4.1 showcases this fact for bilateral modifications. Ex-

act accuracies are included in Appendix A in Table A.1. The results for

horizontal and vertical displacement are nearly identical and are included

in Appendix A as Figures A.1 and A.2. Since a fully cooperative dataset

is unlikely in online face recognition scenarios, these results should not be

disparaging from a social media privacy perspective.

4.2 Experiment 2: Face & Eye Detection

As emphasized in Section 1.2.1, if a face cannot be correctly detected in a

photograph, then face recognition becomes a major issue. In the case of the

constrained face recognition scenario with a cooperative face database, some

algorithms can get away with simply assuming a face is there and performing

classification on the holistic features of the image (as done in Experiment

1). More real-world scenarios and sophisticated algorithms do not have that

luxury. A face, and often specific facial features, must be detected in order

for recognition to work appropriately.

If privacy is the ultimate goal, then the impact of eye modifications on

face detection accuracy is also a vital concern. After all, it is difficult to

identify someone who is invisible.

Since face and eye detection both occur during the process used to create
the normalized set of original and modified images (DBN ∗), the rate of suc-

cessful feature detection can be tracked. The resulting number of normalized

unmodified photos can be compared with the number of normalized modified

photos to measure the effect of varying magnitudes of modification on feature

detection.

Of the original 400 unmodified images from the original AT&T database,

229 underwent successful face and eye detection, yielding a baseline accuracy

of 57.25%. This is compared to the detection rates for the 235 modified

images. Face and eye detection rates were not separately analyzed. Figure

4.2 on page 28 shows the change in detection rates on the modified images.

The relative drop in accuracy around the baseline is likely due to the fact

that the 235 modified images only exist because eye detection was already

successful. On the other hand, the baseline represents the detection rate

for all 400 unmodified images. Baseline accuracy would be much higher if

only the original images which led to successful eye modification were used

to calculate the baseline detection rate. Therefore, the comparison with the

baseline is not entirely fair due to selection bias favoring detection of modified

photos.

Nevertheless, the results are still informative. Positive and negative ver-
tical displacements from DBN V reduced detection rates equally. This is

expected as these are essentially mirrored operations.

More interestingly, positive horizontal displacement (increases in inter-

pupil distance) were more likely to trick the Haar cascade classifiers into

believing no faces or eyes were there. This is likely due to geometric and

structural constraints ingrained in the feature-template-based Viola Jones

algorithm. A similar success rate carries over into DBN B , as its main varia-

tion was horizontal displacement.

The same is not true for negative horizontal displacements. The classifiers

27

28

Figure 4.2: Face & Eye Detection Accuracy

are actually more likely to detect the face and eyes for negative horizontal

and bilateral. In fact, as the modifications increase in magnitude from -10%

to -100%, it actually becomes easier to distinguish the face and eyes.

4.3 Experiment 3: With Normalization

The third experiment operates on the normalized set of original and mod-

ified images (DBN ∗). In this dataset are the horizontally displaced images

(DBN H), vertically displaced images (DBN V), and bilaterally displaced im-

ages (DBN B). The collection of normalized images approximates the photo

variability found in unconstrained face recognition scenarios. The intention

is to simulate photos collected from online sources or casually captured in

person. This experiment more closely resembles the motivational scenario of

protecting the privacy of online identities as presented in Section 1.1.

Training and testing is performed in the same manner as Experiment

1. However, as the initial results for this experiment were more interesting,

29

the experiment was expanded to vary the number of photos each subject

contributes to the gallery. Training sizes of one and three images per subject

are tested. If a subject does not have three images to provide for training,

it will provide as many as are available. Only 38 subjects have enough

normalized images to be part of the experiment.

The impact of eye modification on face recognition is compounded by the

image normalization process, specifically with regards to face cropping and

eye alignment. Geometric features such as eye locations and inter-eye dis-

tance are inputs into the normalization algorithm. Referring back to Figure

3.6 on page 20, as the eyes move closer together, the face cropping becomes

tighter. This is also displayed by contrasting Figures 3.8b and 3.8c on page

20. Another phenomenon occurs with vertical eye displacement. By intro-

ducing asymmetry, attempting to align the eyes generates improperly rotated

images. This effect is exhibited on page 20 in Figure 3.7. This kind of vari-

ability in the images acts directly against the purpose of normalization. In

turn, face recognition becomes more difficult.

Figures 4.3, 4.4, and 4.5 on page 30 show the performance of the three

algorithms on the normalized image sets. Horizontal, vertical, and bilat-

eral displacements generally share similar trends in accuracy. Additional

training images boost overall accuracy, but give way to steeper declines in

performance. Vertical eye modifications have the least singular impact on

accuracy. The algorithms are more robust to positive horizontal displace-

ments than negative. Bilateral modifications produce the sharpest drop-offs

in accuracy, building credence for the strategy of ”the more modifications,

the better.” Of all the modifications, negative bilateral displacement is the

most detrimental. At -50% bilateral modification, Rank-1 accuracies are be-

tween 42% and 46% compared to a baseline success of 75% to 83%. Exact

Rank-1 accuracies for the experiment can be found in Appendix A.

30

(a) 1 Training Image Per Subject (b) 3 Training Images Per Subject

Figure 4.3: Normalized Horizontal Rank-1 Accuracy

(a) 1 Training Image Per Subject (b) 3 Training Images Per Subject

Figure 4.4: Normalized Vertical Rank-1 Accuracy

(a) 1 Training Image Per Subject (b) 3 Training Images Per Subject

Figure 4.5: Normalized Bilateral Rank-1 Accuracy

31

While LBPH performs consistently well on unmodified photos, the algo-

rithm is especially vulnerable to modifications, especially vertical displace-

ments. This is surprising as the algorithm has been shown to be robust to

face misalignment [1]. Less surprising is how LDA benefits the most from

additional training images given its incorporation of class information.

Figure 4.6: Combined Face/Eye Detection & Face Recognition Accuracy of

Bilaterally Modified Images

To reiterate, face recognition is typically impossible if a face cannot be

found in an image. Since the primary concern is to assess the modifica-

tions’ ability to prevent an individual from being identified, it is helpful to

look at the face recognition process as a whole. Using Experiment 2’s re-

sults on face detection accuracy, it is possible to make a prediction of the

likelihood someone is both detected and recognized. If P (D) is the prob-

ability of successful face and eye detection and P (R) is the probability of

successful recognition, then P (D) ∗ P (R) is simply the chance that both
necessary steps succeed. Figure 4.6 is the plot of these probabilities. The

poor performance of the Haar cascade classifiers in feature detection result

32

in an overall end-to-end baseline recognition accuracy of about 60%. The

chance of both detecting and recognizing the face of a subject is about 30%

with a -50% bilateral eye displacement and about 20% for a +50% bilateral

eye displacement. Even though negative bilateral displacement lowered face

recognition accuracy more than positive bilateral displacement, positive bi-

lateral displacements are a stronger overall countermeasure when factoring

in the significant impact positive horizontal modifications have on feature

detection.

Face recognition systems are often evaluated beyond the accuracy of just

their top prediction. Rank-n accuracy reveals if the individual in the test

image is among the top n results. The more suspects a face recognition sys-

tem is willing to provide, the greater the chance that the disguised individual

is among them. In order to judge the countermeasure’s robustness to an ex-

haustive search, CMC curves for Rank 1 through Rank 10 are calculated for

all three algorithms using the DBN B image set. Three training images are

used per subject. These accuracies are calculated using Wagner’s face recog-

nition library [21]. Figures 4.7, 4.8, and 4.9 on page 33 chart the CMC curves

for moderate and extreme negative and positive bilateral modifications for

each algorithm.

Moderate modifications (+/-50%) gradually fail to hide the individual

as more ranks are inspected. Nevertheless, the moderate modifications still

reduce accuracy by 20% to 30% from the baseline at each rank for PCA

(Eigenfaces) and LDA (Fisherfaces). LBPH is more robust to the eye mod-

ifications at higher ranks. However, it is important to note that Wagner’s

LBPH implementation was shown to outperform OpenCV’s (see Figure A.3),

thus explaining the higher LBPH performance seen here.

Generally, it is much harder to go unnoticed in a database of 40 sub-

jects compared to a database of hundreds or thousands of individuals. How-

ever, Rank-10 accuracy is only about 50% and 65% when using PCA and

LDA respectively on photos with positive 100% bilateral modifications com-

pared to 95% and 99% baseline performance. If one is prepared to sacrifice

some believability of the modified photo, he or she is rewarded with greater

anonymity.

33

(a) Negative Displacements (b) Positive Displacements

Figure 4.7: Rank-n Accuracy using PCA on DBN B (3 Training Images)

(a) Negative Displacements (b) Positive Displacements

Figure 4.8: Rank-n Accuracy using LDA on DBN B (3 Training Images)

(a) Negative Displacements (b) Positive Displacements

Figure 4.9: Rank-n Accuracy using LBPH on DBN B (3 Training Images)

34

4.4 Experiment 4: Modified Training Photos

Experiment 4 covers the possibility of the automated face recognition system

having access to a set of modified and correctly identified face images. This

experiment resembles the experiment performed by Eckert et al [4] where

faces with intermediate levels of makeup were used as the gallery. Another

possibility giving rise to this same scenario is if face recognition systems an-

ticipate an eye modification countermeasure by building their own database

of modified images to use in training. In [4], an overall increase in accuracy

was observed due to the ”enhancing” effect of the makeup on facial features.

While the eye modifications performed in this thesis should not serve to en-

hance the distinguishability of subjects, it is a possibility worth exploring.

This scenario is assessed by conducting an experiment similar to Experiment

3 in methodology but instead training on images modified by +/-50% and

using three training images per subject.

Training on images which underwent a mid-range magnitude of modifi-

cation allowed the algorithms to accurately recognize the subjects in probe

images undergoing a similar modification (see Figures 4.10, 4.11, and 4.12 on

page 35). However, accuracies plummeted to 20% or below on images with

the extreme opposite level of modification. If this technique was deployed to

anticipate and counter the digital disguises developed in this thesis, success

would depend on being able to guess the correct configuration of modifica-

tions. More precisely, four configurations of eye displacement modifications

would have to be correctly guessed. In face recognition trials where the mod-

ified training image was incorrectly configured, accuracies would likely be

worse than training on an unmodified image.

35

(a) Training on -50% Modifications (b) Training on +50% Modifications

Figure 4.10: Rank-1 Accuracy with Horizontally Modified Training Images

(a) Training on -50% Modifications (b) Training on +50% Modifications

Figure 4.11: Rank-1 Accuracy with Vertically Modified Training Images

(a) Training on -50% Modifications (b) Training on +50% Modifications

Figure 4.12: Rank-1 Accuracy with Bilaterally Modified Training Images

36

Another possibility would be to train on all potential dimensions and

magnitudes of displacement. Unfortunately, this is not explicitly tested in

this thesis. Given the trends, however, one might expect recognition rates to

become averaged out as the varied modifications simply add noise to the data.

Since many types of facial feature modifications could be developed beyond

just alterations to eye locations, anticipating all possible facial modification

configurations could quickly become impractical.

37

Chapter 5

Conclusion

5.1 Summar
y

In this thesis, a digital modification technique applied to the eye regions of

a face image is assessed as a countermeasure to automated face recognition.

Experimental results show face recognition on images captured in a con-

trolled and cooperative environment achieves high performance despite any

modifications. Yet, images found on the Internet have much more variation.

Accurate recognition of these images requires proper feature detection and

image normalization strategies. This research shows face recognition in this

context to be far more susceptible to the variabilities introduced by digital

modifications.

While face recognition accuracy at the extremes of modification is desir-

ably low, many of the resulting images appear unrealistic. However, modifi-

cations in a more moderate range are believable and still significantly impact

accuracy. Also important to point out is the negative effect modifications

have on facial feature detection. Subtle modifications to the eyes (especially

increasing the space between a subject’s eyes) caused many images to fail

face and eye detection, rendering recognition impossible. The overall chance

that an individual is both detected and recognized was lower than 20% on

images where the eyes had been spread apart both horizontally and vertically,

compared to a baseline of 60%.

Using the relatively small AT&T database of 40 subjects, moderate mag-

nitude countermeasures show some weakness when viewed against Rank-n

accuracy as n approaches 10. But, even in these cases, the modification

38

technique still had a noticeable impact on accuracy when compared with the

baseline. Therefore, this technique alone may still be effective in real-world

scenarios involving massive face image databases.

5.2 Threats to Validity

The major threat to the validity of this thesis is its generalizability to a more

real-world scenario. The AT&T database, while popular, is relatively small

and highly cooperative with consistent illumination and image resolutions.

Another drawback to the work herein is that only three face recognition

algorithms and one normalization technique are tested. It is difficult to sep-

arate the effect the modifications have on proper image normalization from

their impact on face recognition. Finally, the modifications performed on

this database may not translate well to images of different resolutions. Even

though the modifications are designed to be a function of image resolution

and inter-eye distance, without further experimentation one cannot be sure

the same degree of modification will translate similarly to photos of different

sizes and qualities.

5.3 Future Work

Further research needs to address the threats to validity mentioned above.

Experimentation on a larger database of faces in the wild would more accu-

rately reflect a real-world scenario. The modifications should be tested on

a broader variety of face recognition algorithms, including commercial-grade

systems. Along the same lines, more sophisticated image normalization and

facial feature detection algorithms need to be tested. Experiments involving

Facebook or other social media sites employing face recognition technology

could also present a realistic case study.

While this thesis analyzes countermeasure performance from a closed-set

identification perspective, it should also be viewed as a 1:1 or 1:n verification

problem. Verification tests using confidence thresholds, false accept rates,

false reject rates, and ROC curves could prove insightful. Even social exper-

iments where human observers attempt to discern whether an image appears

legitimate or modified would help to objectively bound acceptable degrees of

modification.

39

Despite these potential threats to validity, the results of this project en-

courage further exploration. The literature indicates multiple modifications

to the entire face can significantly affect face recognition performance. A

plethora of modifications should be developed and analyzed. The modifica-

tions could target various features such as the forehead, cheeks, nose, mouth,

or chin. A variety of operations could be performed on these features to

change their size, shape, orientation, and relative distance. By deploying a

full salvo of modifications, even sophisticated face recognition systems may

be confounded.

40

Bibliography

[1] A. K. Jain and S. Z. Li, Handbook of Face Recognition. Secaucus, NJ,

USA: Springer-Verlag New York, Inc., 2005.

[2] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recog-

nition: A literature survey,” ACM Comput. Surv., vol. 35, pp. 399–458,

Dec. 2003.

[3] R. Singh, M. Vatsa, and A. Noore, “Face recognition with disguise and

single gallery images,” vol. 27, no. 3, pp. 245–257, 2009.

[4] M.-L. Eckert, N. Kose, and J.-L. Dugelay, “Facial cosmetics database

and impact analysis on automatic face recognition,” in 2013 IEEE 15th

International Workshop on Multimedia Signal Processing, pp. 434–439,

IEEE, 2013.

[5] N. Kose and J.-L. Dugelay, “On the vulnerability of face recognition sys-

tems to spoofing mask attacks,” in 2013 IEEE International Conference

on Acoustics, Speech and Signal Processing, pp. 2357–2361, IEEE, 2013.

[6] R. Singh, M. Vatsa, and A. Noore, “Effect of plastic surgery on face

recognition: A preliminary study,” in IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition Workshops, pp. 72–

77, IEEE, 2009.

[7] M. D. Marisco, M. Nappi, D. Riccio, and H. Weschler, “Plastic surgery:

A new dimension to face recognition,” in IEEE Transactions on Infor-

mation Forensics and Security, vol. 5, pp. 441–448, IEEE, 2010.

[8] M. D. Marisco, M. Nappi, D. Riccio, and H. Weschler, “Robust face

recognition after plastic surgery using local region analysis,” pp. 191–

200, 2011.

41

[9] G. Aggarwal, S. Biswas, P. Flynn, and K. Bowyer, “A sparse represen-

tation approach to face matching across plastic surgery,” in 2012 IEEE

Workshop on Applications of Computer Vision, pp. 113–119, IEEE,

2012.

[10] N. Kose, N. Erdogamus, and J.-L. Dugelay, “Block based face recog-

nition approach robust to nose alterations,” in 2012 IEEE Fifth Inter-

national Conference on Biometrics: Theory, Applications and Systems,

pp. 121–126, IEEE, 2012.

[11] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,

K. Hoffman, J. Marques, J. Min, and W. Worek, “Overview of the face

recognition grand challenge,” in Proceedings of the 2005 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition

(CVPR’05) - Volume 1 - Volume 01, CVPR ’05, (Washington, DC,

USA), pp. 947–954, IEEE Computer Society, 2005.

[12] H. Bhatt, S. Bharadwaj, R. Singh, and M. Vatsa, “Recognizing surgi-

cally altered face images using multiobjective evolutionary algorithm,”

in IEEE Transactions on Information Forensics and Security, vol. 8,

pp. 89–100, IEEE, 2013.

[13] M. D. Marisco, M. Nappi, D. Riccio, and H. Weschler, “Robust face

recognition after plastic surgery using region-based approaches,” vol. 48,

no. 4, pp. 1261–1276, 2015.

[14] T.-Y. Lee, Y.-N. Sun, Y.-C. Lin, L. Lin, and C. Lee, “Three-dimensional

facial model reconstruction and plastic surgery simulation,” in IEEE

Transactions on Information Technology in Biomedicine, vol. 3, pp. 214–

220, IEEE, 1999.

[15] J.-K. Chou, C.-K. Yang, and S.-D. Gong, “Face-off: automatic alteration

of facial features,” vol. 56, no. 3, pp. 569–596, 2012.

[16] E. Newton, L. Sweeney, and B. Malin, “Preserving privacy by de-

identifying face images,” in IEEE Transactions on Knowledge and Data

Engineering, vol. 17, pp. 232–243, IEEE, 2005.

[17] M. Ferrara, A. Franco, D. Maltoni, and Y. Sun, “On the impact of

alterations on face photo recognition accuracy,” pp. 743–751, 2013.

42

[18] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-

low, and R. Fergus, “Intriguing properties of neural networks,” arXiv

preprint arXiv:1312.6199, 2013.

[19] G. Bradski Dr. Dobb’s Journal of Software Tools.

[20] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic

model for human face identification,” in Applications of Computer Vi-

sion, 1994., Proceedings of the Second IEEE Workshop on, pp. 138–142,

IEEE, 1994.

[21] P. Wagner, “facerec.” https://github.com/bytefish/facerec.git, 2015.

[22] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In

Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

43

Appendix A

Additional Data

A.1 Experiment 1

Figure A.1: Horizontal Modification Rank-1 Accuracy of Non-Normalized

Images (1 Training Image per Subject)

44

Figure A.2: Vertical Modification Rank-1 Accuracy of Non-Normalized Im-

ages (1 Training Image per Subject)

45

Modification PCA LDA LBPH

-100% .706 .689 .591

-90% .706 .689 .587

-80% .702 .685 .613

-70% .702 .689 .617

-60% .702 .685 .604

-50% .702 .685 .596

-40% .698 .672 .609

-30% .698 .668 .6

-20% .698 .668 .596

-10% .698 .668 .613

0% .69 .652 .63

+10% .698 .668 .626

+20% .698 .668 .609

+30% .698 .672 .609

+40% .698 .672 .609

+50% .698 .677 .609

+60% .698 .677 .609

+70% .698 .672 .613

+80% .698 .672 .609

+90% .698 .668 .609

+100% .698 .668 .604

Table A.1: Bilateral Modification Rank 1 Accuracy of Non-Normalized Im-

ages (1 Training Image per Subject)

46

A.2 Experiment 3

(a) Wagner (b) OpenCV

Figure A.3: OpenCV/Wagner Performance Comparison (Bilateral Modifica-

tion Rank 1 Accuracy Normalized Images 3 Training Images per Subject)

47

Modification PCA LDA LBPH

-100% .239 .179 .212

-90% .251 .193 .232

-80% .262 .201 .262

-70% .279 .225 .285

-60% .316 .254 .319

-50% .362 .293 .359

-40% .399 .341 .389

-30% .426 .368 .436

-20% .453 .414 .5

-10% .474 .472 .553

0% .536 .527 .615

+10% .498 .513 .538

+20% .49 .501 .518

+30% .45 .467 .481

+40% .397 .421 .445

+50% .366 .371 .42

+60% .315 .326 .355

+70% .271 .277 .292

+80% .236 .236 .234

+90% .197 .2 .179

+100% .202 .202 .171

Table A.2: Horizontal Modification Rank 1 Accuracy of Normalized Images

(1 Training Image per Subject)

48

Modification PCA LDA LBPH

-100% .317 .272 .31

-90% .342 .33 .339

-80% .356 .362 .395

-70% .371 .379 .438

-60% .421 .434 .486

-50% .48 .508 .539

-40% .553 .603 .618

-30% .607 .689 .666

-20% .648 .739 .712

-10% .714 .803 .772

0% .756 .84 .851

+10% .737 .862 .767

+20% .718 .859 .738

+30% .67 .798 .709

+40% .599 .754 .671

+50% .549 .673 .577

+60% .469 .586 .498

+70% .381 .52 .413

+80% .312 .478 .342

+90% .273 .416 .26

+100% .287 .387 .267

Table A.3: Horizontal Modification Rank 1 Accuracy of Normalized Images

(3 Training Images per Subject)

49

Modification PCA LDA LBPH

-100% .341 .29 .156

-90% .39 .35 .194

-80% .416 .363 .219

-70% .429 .373 .262

-60% .445 .418 .314

-50% .458 .438 .336

-40% .495 .454 .427

-30% .499 .473 .466

-20% .513 .514 .518

-10% .521 .526 .532

0% .542 .513 .618

+10% .506 .504 .546

+20% .501 .476 .512

+30% .485 .46 .468

+40% .459 .458 .45

+50% .431 .423 .391

+60% .431 .409 .358

+70% .381 .362 .305

+80% .347 .326 .241

+90% .351 .326 .216

+100% .335 .284 .186

Table A.4: Vertical Modification Rank 1 Accuracy of Normalized Images (1

Training Image per Subject)

50

Modification PCA LDA LBPH

-100% .443 .393 .232

-90% .515 .455 .293

-80% .561 .485 .336

-70% .576 .545 .408

-60% .621 .6 .475

-50% .651 .643 .523

-40% .701 .72 .643

-30% .702 .753 .707

-20% .737 .814 .769

-10% .749 .842 .787

0% .754 .37 .849

+10% .747 .818 .773

+20% .727 .798 .736

+30% .686 .749 .709

+40% .655 .692 .684

+50% .627 .643 .58

+60% .623 .593 .528

+70% .563 .54 .463

+80% .515 .460 .362

+90% .499 .416 .277

+100% .423 .364 .216

Table A.5: Vertical Modification Rank 1 Accuracy of Normalized Images (3

Training Images per Subject)

51

Modification PCA LDA LBPH

-100% .234 .202 .165

-90% .22 .208 .211

-80% .231 .214 .231

-70% .234 .24 .236

-60% .265 .27 .269

-50% .287 .28 .295

-40% .337 .33 .329

-30% .382 .351 .383

-20% .407 .403 .408

-10% .428 .408 .398

0% .51 .509 .623

+10% .433 .395 .4

+20% .408 .378 .399

+30% .374 .367 .368

+40% .328 .348 .32

+50% .297 .303 .286

+60% .267 .267 .26

+70% .252 .233 .23

+80% .234 .21 .196

+90% .19 .186 .157

+100% .173 .163 .134

Table A.6: Bilateral Modification Rank 1 Accuracy of Normalized Images (1

Training Image per Subject)

52

Modification PCA LDA LBPH

-100% .334 .288 .225

-90% .328 .297 .287

-80% .343 .33 .295

-70% .363 .385 .346

-60% .397 .424 .429

-50% .42 .479 .463

-40% .493 .553 .488

-30% .562 .605 .558

-20% .618 .663 .605

-10% .648 .673 .584

0% .753 .839 .837

+10% .673 .699 .597

+20% .678 .714 .623

+30% .613 .708 .595

+40% .537 .659 .532

+50% .48 .526 .421

+60% .432 .492 .389

+70% .377 .452 .353

+80% .328 .372 .302

+90% .283 .342 .225

+100% .248 .305 .214

Table A.7: Bilateral Modification Rank 1 Accuracy of Normalized Images (3

Training Images per Subject)

53

A.3 Experiment 4

Modification PCA LDA LBPH

-100% .591 .547 .422

-90% .607 .616 .518

-80% .661 .675 .601

-70% .701 .722 .637

-60% .756 .745 .671

-50% .749 .748 .664

-40% .716 .76 .631

-30% .669 .715 .614

-20% .66 .702 .552

-10% .564 .629 .49

0% .447 .481 .323

+10% .414 .474 .352

+20% .345 .399 .253

+30% .291 .387 .217

+40% .23 .35 .176

+50% .189 .272 .157

+60% .169 .236 .123

+70% .169 .223 .111

+80% .137 .205 .097

+90% .111 .179 .082

+100% .093 .172 .091

Table A.8: Rank-1 Accuracy of Bilateral Modifications when Training on

-50% Bilaterally Modified Images (3 Training Images per Subject)

54

Modification PCA LDA LBPH

-100% .205 .172 .174

-90% .206 .174 .18

-80% .232 .208 .199

-70% .248 .225 .26

-60% .244 .221 .252

-50% .226 .221 .236

-40% .255 .257 .335

-30% .307 .345 .419

-20% .319 .383 .461

-10% .394 .458 .532

0% .405 .474 .535

+10% .576 .621 .652

+20% .646 .727 .746

+30% .649 .75 .757

+40% .669 .78 .759

+50% .666 .788 .749

+60% .635 .767 .715

+70% .644 .737 .701

+80% .647 .748 .655

+90% .641 .743 .64

+100% .633 .716 .655

Table A.9: Rank-1 Accuracy of Bilateral Modifications when Training on

+50% Bilaterally Modified Images (3 Training Images per Subject)

55

Appendix B

Source Code

B.1 Batch Eye Modifier

−∗− c o d i n g : u t f −8 −∗−

”””

C r e a t e d on Mon May 11 1 1 : 4 6 : 2 0 2015

@author : Domenick P o s t e r

”””

i m p o r t o s

i m p o r t cv2

i m p o r t r e

wd = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ R e s e a r c h \ p o s t e r ”

o r i g i n a l s = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ R e s e a r c h \

p o s t e r \ a t t f a c e s ”

maps = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ R e s e a r c h \ p o s t e r

\ d i s p l a c e m a p s ”

c o m p o s i t e s = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ R e s e a r c h \
p o s t e r \ c o m p o s i t e s ”

e y e c l a s s i f i e r 1 f p = r ”E : \ opencv \ b u i l d \ s h a r e \OpenCV\
h a a r c a s c a d e s \ h a a r c a s c a d e e y e . xml ”

e y e c l a s s i f i e r 2 f p = r ”E : \ opencv \ b u i l d \ s h a r e \OpenCV\
h a a r c a s c a d e s \ h a a r c a s c a d e e y e t r e e e y e g l a s s e s . xml ”

56

e y e c l a s s i f i e r 1 = cv2 . C a s c a d e C l a s s i f i e r (

e y e c l a s s i f i e r 1 f p)

e y e c l a s s i f i e r 2 = cv2 . C a s c a d e C l a s s i f i e r (

e y e c l a s s i f i e r 2 f p)

r e g e x = r e . c o m p i l e (r ” (\ d+) \ . pgm”)
o s . c h d i r (wd)

i f n o t o s . path . e x i s t s (maps) :

o s . mkdir (maps)

i f n o t o s . path . e x i s t s (c o m p o s i t e s) :

o s . mkdir (c o m p o s i t e s)

d e f createMap (map fp , e y e s , o r i g i n a l i m a g e) :

h e i g h t , width , depth = o r i g i n a l i m a g e . s h a p e

b l u r = ((h e i g h t + width) / 2) ∗ 0 . 0 3
e y e 1 = s t r (e y e s [0] [0]) + ” , ” + s t r (e y e s [0] [1]) + ”

” + s t r (e y e s [0] [0] + e y e s [0] [2]) + ” , ” + s t r (

e y e s [0] [1] + e y e s [0] [3])

e y e 2 = s t r (e y e s [1] [0]) + ” , ” + s t r (e y e s [1] [1]) + ”

” + s t r (e y e s [1] [0] + e y e s [1] [2]) + ” , ” + s t r (

e y e s [1] [1] + e y e s [1] [3])
cmd = ” c o n v e r t − s i z e ” + s t r (width) + ”x” + s t r (

h e i g h t) + ””” xc : g r a y 5 0 − f i l l w h i t e −draw ”

r e c t a n g l e ””” + e y e 1 + ”””” − f i l l b l a c k −draw ”

r e c t a n g l e ””” + e y e 2 + ”””” −b l u r 0x ””” + s t r (

b l u r) + ””” ””” + map fp

o s . system (cmd)

d e f c r e a t e H o r i z o n t a l C o m p o s i t e (o r i g i n a l f p , map fp ,

c o m p o s i t e i m a g e f p , d i s p l a c e) :

cmd = ” c o m p o s i t e ” + map fp + ” ” + o r i g i n a l f p + ”

−d i s p l a c e ” + s t r (d i s p l a c e) + ” x0 ” +
c o m p o s i t e i m a g e f p

o s . system (cmd)

d e f c r e a t e V e r t i c a l C o m p o s i t e (o r i g i n a l f p , map fp ,

c o m p o s i t e i m a g e f p , d i s p l a c e) :

57

cmd = ” c o m p o s i t e ” + map fp + ” ” + o r i g i n a l f p + ”

−d i s p l a c e 0x” + s t r (d i s p l a c e) + ” ” +
c o m p o s i t e i m a g e f p

o s . system (cmd)

d e f c r e a t e B i l a t e r a l C o m p o s i t e (o r i g i n a l f p , map fp ,

c o m p o s i t e i m a g e f p , d i s p l a c e x , d i s p l a c e y) :

cmd = ” c o m p o s i t e ” + map fp + ” ” + o r i g i n a l f p + ”

−d i s p l a c e ” + s t r (d i s p l a c e x) +”x” + s t r (
d i s p l a c e y) + ” ” + c o m p o s i t e i m a g e f p

o s . system (cmd)

d e f c r e a t e C o m p o s i t e s (o r i g i n a l f p , map fp , c o m p o s i t e f p ,

e y e s , d i r e c t i o n) :

s t e p = [0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 ,

0 . 9 , 1 . 0]

i f n o t o s . path . e x i s t s (c o m p o s i t e f p) :

o s . mkdir (c o m p o s i t e f p)

f o r i i n s t e p :
f i l e n a m e 1 = s t r (i n t (i ∗ 1 0 0)) + ” . j p g ”

f i l e n a m e 2 = ”n” + s t r (i n t (i ∗ 1 0 0)) + ” . j p g ”

f p 1 = o s . path . j o i n (c o m p o s i t e f p , f i l e n a m e 1)

f p 2 = o s . path . j o i n (c o m p o s i t e f p , f i l e n a m e 2)

d = d i s t a n c e b e t w e e n (e y e s)

d i s p l a c e 1 = round (d ∗ (i / 2 . 0))

d i s p l a c e 2 = round (0 − (d ∗ (i / 2 . 0)))
i f d i r e c t i o n == ” b i l a t e r a l ” :

d i s p l a c e y = round (0 − (d ∗ (0 . 4 / 2 . 0))) #
Hardcoded +40% d i s p l a c e m e n t

c r e a t e B i l a t e r a l C o m p o s i t e (o r i g i n a l f p ,

map fp , fp1 , d i s p l a c e 1 , d i s p l a c e y)

c r e a t e B i l a t e r a l C o m p o s i t e (o r i g i n a l f p ,

map fp , fp2 , d i s p l a c e 2 , d i s p l a c e y)

e l i f d i r e c t i o n == ” h o r i z o n t a l ” :

c r e a t e H o r i z o n t a l C o m p o s i t e (o r i g i n a l f p ,

map fp , fp1 , d i s p l a c e 1)

c r e a t e H o r i z o n t a l C o m p o s i t e (o r i g i n a l f p ,

map fp , fp2 , d i s p l a c e 2)

58

e l s e :

c r e a t e V e r t i c a l C o m p o s i t e (o r i g i n a l f p , map fp

, fp1 , d i s p l a c e 1)

c r e a t e V e r t i c a l C o m p o s i t e (o r i g i n a l f p , map fp

, fp2 , d i s p l a c e 2)

d e f d i s t a n c e b e t w e e n (e y e s) :

r e t u r n e y e s [1] [0] − (e y e s [0] [0] + e y e s [0] [2])

d e f modify (e y e s , d i r e c t i o n =” h o r i z o n t a l ”) :

m = r e g e x . match (f i l e n a m e)

f = m. group (1) + ” . j p g ”

map fp = o s . path . j o i n (s u b j e c t m a p f p , f)

createMap (map fp , e y e s , o r i g i n a l i m a g e)

c o m p o s i t e f p = o s . path . j o i n (s u b j e c t c o m p f p , m.

group (1))

c r e a t e C o m p o s i t e s (o r i g i n a l i m a g e f p , map fp ,

c o m p o s i t e f p , e y e s , d i r e c t i o n)

f o r d i r p a t h , dirnames , f i l e n a m e s i n o s . walk (o r i g i n a l s) :

f o r subdirname i n d i r n a m e s :

s u b j e c t p a t h = o s . path . j o i n (d i r p a t h , subdirname

)

s u b j e c t m a p f p = o s . path . j o i n (maps , subdirname)

s u b j e c t c o m p f p = o s . path . j o i n (c o m p o s i t e s ,

subdirname)

f o r f i l e n a m e i n o s . l i s t d i r (s u b j e c t p a t h) :

o r i g i n a l i m a g e f p = o s . path . j o i n (

s u b j e c t p a t h , f i l e n a m e)

o r i g i n a l i m a g e = cv2 . imread (

o r i g i n a l i m a g e f p)

e y e s = e y e c l a s s i f i e r 1 . d e t e c t M u l t i S c a l e (

o r i g i n a l i m a g e)

i f l e n (e y e s) != 2 :

e y e s = e y e c l a s s i f i e r 2 . d e t e c t M u l t i S c a l e

(o r i g i n a l i m a g e)

i f l e n (e y e s) == 2 :

e y e s = e y e s . t o l i s t ()

59

e y e s = s o r t e d (e y e s , key=lambda x : x [0])

i f d i s t a n c e b e t w e e n (e y e s) > 0 :

i f n o t o s . path . e x i s t s (

s u b j e c t m a p f p) :

o s . mkdir (s u b j e c t m a p f p)

i f n o t o s . path . e x i s t s (

s u b j e c t c o m p f p) :

o s . mkdir (s u b j e c t c o m p f p)

modify (e y e s)

B.2 Recognition Testing Framework

−∗− c o d i n g : u t f −8 −∗−

”””

C r e a t e d on Tue Jun 16 1 2 : 4 4 : 3 1 2015

@author : Domenick P o s t e r

”””

i m p o r t random

i m p o r t cv2

i m p o r t numpy a s np

i m p o r t r e

i m p o r t o s

i m p o r t s y s

s y s . path . i n s e r t (0 , r ’ C: \ U s e r s \ u s e r \ Documents \ S c h o o l \

R e s e a r c h \ f a c e r e c \py ’)
from f a c e r e c i m p o r t model
from f a c e r e c i m p o r t c l a s s i f i e r

from f a c e r e c i m p o r t f e a t u r e

from f a c e r e c i m p o r t d i s t a n c e

c l a s s D a t a s e t :

d e f i n i t (s e l f , name)

: s e l f . name = name

s e l f . s u b j e c t s = {}
s e l f . t o t a l O r i g i n a l s = 0

60

s e l f . t o t a l M o d s = {}
s e l f . s c o r e s = S c o r e s (s e l f . name)

d e f l o a d o r i g i n a l s (s e l f , o r i g i n a l s p a t h) :

p r i n t ” Loading O r i g i n a l Images ”

s u b j e c t r e g e x = r e . c o m p i l e (r ” s (\ d+) ”)

o r i g i n a l i m a g e r e g e x = r e . c o m p i l e (r ” (n ?\ d+) \ .
pgm”)

f o r dirname , dirnames , f i l e n a m e s i n o s . walk (

o r i g i n a l s p a t h) :

f o r subdirname i n d i r n a m e s :

s u b j e c t p a t h = o s . path . j o i n (dirname

, subdirname)

m = s u b j e c t r e g e x . match (subdirname)

c = i n t (m. group (1))

s u b j e c t = S u b j e c t (c)

s e l f . s u b j e c t s [c] = s u b j e c t

f o r i m a g e f i l e i n o s . l i s t d i r (

s u b j e c t p a t h) :

m = o r i g i n a l i m a g e r e g e x . match (

i m a g e f i l e)

key = i n t (m. group (1))

image = Image (key , s u b j e c t)

i m a g e f i l e p a t h = o s . path . j o i n (

s u b j e c t p a t h , i m a g e f i l e)

im = cv2 . imread (i m a g e f i l e p a t h

, cv2 .IMREAD GRAYSCALE)

im = np . a s a r r a y (im , dty pe=np .

u i n t 8)

o r i g i n a l = M o d i f i e d I m a g e (im ,

i m a g e f i l e p a t h , s u b j e c t ,

’ 0 ’)

image . mods [’ 0 ’] = o r i g i n a l

s u b j e c t . i m a g e s [key] = image

d e f l o a d m o d s (s e l f , c o m p o s i t e s p a t h) :

p r i n t ” Loading M o d i f i e d Images ”

s u b j e c t r e g e x = r e . c o m p i l e (r ” s (\ d+) ”)

61

c o m p o s i t e i m a g e r e g e x = r e . c o m p i l e (r ” (n ?\ d+) \ .
j p g ”)

f o r s u b j e c t f o l d e r i n o s . l i s t d i r (

c o m p o s i t e s p a t h) :

s u b j e c t f o l d e r p a t h = o s . path . j o i n (

c o m p o s i t e s p a t h , s u b j e c t f o l d e r)

m = s u b j e c t r e g e x . match (s u b j e c t f o l d e r)

s u b j e c t n u m b e r = i n t (m. group (1))

s u b j e c t = s e l f . s u b j e c t s [s u b j e c t n u m b e r]

f o r i m a g e f o l d e r i n o s . l i s t d i r (

s u b j e c t f o l d e r p a t h) :

i m a g e f o l d e r p a t h = o s . path . j o i n (

s u b j e c t f o l d e r p a t h , i m a g e f o l d e r)

i f i n t (i m a g e f o l d e r) n o t i n s u b j e c t .

i m a g e s :

image = Image (i n t (i m a g e f o l d e r) ,

s u b j e c t . name)

s e l f . s u b j e c t s [s u b j e c t n u m b e r] .

i m a g e s [i n t (i m a g e f o l d e r)] =

image

image = s u b j e c t . i m a g e s [i n t (i m a g e f o l d e r

)]

f o r m o d f i l e i n o s . l i s t d i r (

i m a g e f o l d e r p a t h) :

m = c o m p o s i t e i m a g e r e g e x . match (

m o d f i l e)

key = m. group (1)

m o d f i l e p a t h = o s . path . j o i n (

i m a g e f o l d e r p a t h , m o d f i l e)

im = cv2 . imread (m o d f i l e p a t h , cv2 .

IMREAD GRAYSCALE)

im = np . a s a r r a y (im , dt ype=np . u i n t 8)

mod = M o d i f i e d I m a g e (im ,

m o d f i l e p a t h , s u b j e c t , key)

image . mods [key] = mod

d e f s c o r e (s e l f , r e c o g n i z e r , t r a i n s i z e , f o l d s

, t r a i n o n = ’ 0 ’) :

62

f o r s u b j e c t i n s e l f . s u b j e c t s . i t e r v a l u e s () :

s u b j e c t . a s s e m b l e F o l d s (t r a i n s i z e , f o l d s

, t r a i n o n)

f o r s u b j e c t i n s e l f . s u b j e c t s . i t e r v a l u e s () :

p r i n t ” T r a i n i n g S u b j e c t : ” + s t r (s u b j e c t .

name)

s u b j e c t . t r a i n (s e l f , r e c o g n i z e r , t r a i n s i z e ,

f o l d s , t r a i n o n)

p r i n t ” T e s t i n g S u b j e c t : ” + s t r (s u b j e c t .

name)

s e l f . s c o r e s . u p d a t e S c o r e s (s u b j e c t . t e s t ())

d e f g e t O t h e r S u b j e c t s (s e l f , s u b j e c t) :

o t h e r s u b j e c t s = []

f o r s i n s e l f . s u b j e c t s . i t e r v a l u e s () :

i f s u b j e c t . name != s . name :

o t h e r s u b j e c t s . append (s)

r e t u r n o t h e r s u b j e c t s

d e f c l e a r S c o r e s (s e l f) :

s e l f . s c o r e s = S c o r e s ()

f o r s u b j e c t i n s e l f . s u b j e c t s . i t e r v a l u e s () :

s u b j e c t . c l e a r S c o r e s ()

c l a s s Fold :

d e f i n i t (s e l f , x , y) :

s e l f . x = x

s e l f . y = y

d e f merge (s e l f , f o l d) :

i f l e n (f o l d . x) > 0 :

f o r i i n r a n g e (0 , l e n (f o l d . x)) :

s e l f . x . append (f o l d . x [i])

s e l f . y . append (f o l d . y [i])

c l a s s S c o r e :

d e f i n i t (s e l f , name) :

63

s e l f . name = name

s e l f . rank = d i c t ((key , 0) f o r key i n r a n g e (1 , 1 1)

)

s e l f . a t t e m p t s = 0

d e f s c o r e (s e l f , c l a s s i f i e r , image , s u b j e c t)

: p = c l a s s i f i e r . p r e d i c t (image)

l a b e l s = p [1] [’ l a b e l s ’]

f o r i i n r a n g e (0 , l e n (s e l f . rank)) :

r a n k s = l a b e l s [0 : i +1]

i f s u b j e c t i n r a n k s :

s e l f . rank [i +1] = s e l f . rank [i +1] + 1

s e l f . a t t e m p t s = s e l f . a t t e m p t s + 1

d e f update (s e l f , n e w s c o r e) :

f o r i i n r a n g e (0 , l e n (s e l f . rank)) :

s e l f . rank [i +1] = s e l f . rank [i +1] + n e w s c o r e

. rank [i +1]

s e l f . a t t e m p t s = s e l f . a t t e m p t s + n e w s c o r e .

a t t e m p t s

d e f g e t A c c u r a c y (s e l f , n) :

r e t u r n f l o a t (s e l f . rank [n]) / f l o a t (s e l f . a t t e m p t s)

d e f s t r (s e l f) :

r e t u r n

c l a s s S c o r e s :

d e f i n i t (s e l f , name)
: s e l f . s c o r e s = {}

s e l f . name = name

d e f u p d a t e S c o r e (s e l f , n e w s c o r e) :

i f n e w s c o r e . name i n s e l f . s c o r e s :

s e l f . s c o r e s [n e w s c o r e . name] . update (

n e w s c o r e)

e l s e :

s e l f . s c o r e s [n e w s c o r e . name] = n e w s c o r e

64

d e f u p d a t e S c o r e s (s e l f , n e w s c o r e s) :

f o r n e w s c o r e i n n e w s c o r e s . s c o r e s . i t e r v a l u e s ()

:

s e l f . u p d a t e S c o r e (n e w s c o r e)

d e f s t r (s e l f) :
d = {}

f o r s c o r e i n s e l f . s c o r e s . i t e r v a l u e s () :

d [s c o r e . name] = [s c o r e . rank , s c o r e . a t t e m p t s

]

r e t u r n d

c l a s s S u b j e c t :

d e f i n i t (s e l f , name)

: s e l f . name = name

s e l f . i m a g e s = {}
s e l f . s c o r e s = S c o r e s (s e l f . name)
s e l f . p u b l i c f o l d s = []

d e f a s s e m b l e F o l d s (s e l f , t r a i n s i z e , f o l d s , t r a i n o n

) :

f o r i i n r a n g e (0 , f o l d s) :

s e l f . p u b l i c f o l d s . append (s e l f .

g e t T r a i n i n g F o l d (t r a i n s i z e , t r a i n o n))

d e f g e t T r a i n i n g F o l d (s e l f , t r a i n s i z e , t r a i n o n ,

l e a v e o u t=None) :

#p r i n t ” R e t r i e v i n g T r a i n i n g Images f o r S u b j e c t

#” + s t r (s e l f . name)

k e y s = s e l f . i m a g e s . k e y s ()

#p r i n t ” Image L i s t : ” + s t r (k e y s)

f o r key i n l i s t (k e y s) :

i f t r a i n o n n o t i n s e l f . i m a g e s [key] . mods :

k e y s . pop (k e y s . i n d e x (key))

i f l e a v e o u t i s n o t None and l e a v e o u t i n k e y s :

#p r i n t ” L e a v i n g o u t ” + s t r (l e a v e o u t)

k e y s . pop (k e y s . i n d e x (l e a v e o u t))

65

#p r i n t ” C l e a n e d L i s t : ” + s t r (k e y s)

X = []

y = []

s a m p l e k e y s = random . sample (keys , min (

t r a i n s i z e , l e n (k e y s)))

#p r i n t ” F i n a l L i s t : ” + s t r (s a m p l e k e y s)

f o r k i n s a m p l e k e y s :

X. append (s e l f . i m a g e s [k] . mods [t r a i n o n] . img)

y . append (s e l f . name)

r e t u r n Fold (X, y)

d e f t r a i n (s e l f , db , r e c o g n i z e r , t r a i n s i z e ,

f o l d s i z e , t r a i n o n = ’ 0 ’) :

o t h e r s u b j e c t s = db . g e t O t h e r S u b j e c t s (s e l f)

f o l d s = []

f o r i i n r a n g e (0 , f o l d s i z e) :

f o l d s . append (Fold ([] , []))

f o r s u b j e c t i n o t h e r s u b j e c t s :

f o r i i n r a n g e (0 , l e n (f o l d s)) :

f o l d s [i] . merge (s u b j e c t . p u b l i c f o l d s [i])

f o r image i n s e l f . i m a g e s . i t e r v a l u e s () :

image . t r a i n C l a s s i f i e r s (s e l f , r e c o g n i z e r ,

f o l d s , t r a i n s i z e , t r a i n o n)

d e f t e s t (s e l f) :

f o r image i n s e l f . i m a g e s . i t e r v a l u e s () :

s e l f . s c o r e s . u p d a t e S c o r e s (image . t e s t ())

r e t u r n s e l f . s c o r e s

d e f c l e a r S c o r e s (s e l f) :

s e l f . s c o r e s = S c o r e s ()

f o r image i n s e l f . i m a g e s . i t e r v a l u e s () :

image . c l e a r S c o r e s ()

d e f s t r (s e l f) :

r e t u r n s t r (s e l f . name)

66

d e f r e p r (s e l f) : r e t u r

n s t r (s e l f . name)

c l a s s Image :

d e f i n i t (s e l f , name , s u b j e c t) :

s e l f . name = name

s e l f . s u b j e c t = s u b j e c t
s e l f . mods = {}

s e l f . c l a s s i f i e r s = []

s e l f . s c o r e s = S c o r e s (s e l f . name)

d e f t r a i n C l a s s i f i e r s (s e l f , s u b j e c t , r e c o g n i z e r

, f o l d s , t r a i n s i z e , t r a i n o n) :

f i n a l f o l d s = []

f o r i i n r a n g e (0 , l e n (f o l d s)) :

m y f o l d = s u b j e c t . g e t T r a i n i n g F o l d (t

r a i n s i z e , t r a i n o n , s e l f . name)

i f l e n (m y f o l d . x) == 0 :

r e t u r n

f i n a l f o l d s . append (Fold ([] , []))

f i n a l f o l d s [i] . merge (f o l d s [i])

f i n a l f o l d s [i] . merge (m y f o l d)

c l a s s i f i e r = c r e a t e C l a s s i f i e r (r e c o g n i z e r ,

l e n (f i n a l f o l d s [i] . y))

c l a s s i f i e r . compute (f i n a l f o l d s [i] . x , np .

a s a r r a y (f i n a l f o l d s [i] . y , dtype=np . i n t 3 2

))

s e l f . c l a s s i f i e r s . append (c l a s s i f i e r)

d e f t e s t (s e l f) :

f o r mod i n s e l f . mods . i t e r v a l u e s () :

s e l f . s c o r e s . u p d a t e S c o r e (mod . t e s t (s e l f .

c l a s s i f i e r s))

s e l f . c l a s s i f i e r s = []

r e t u r n s e l f . s c o r e s

d e f c l e a r S c o r e s (s e l f) :

s e l f . s c o r e s = S c o r e s ()

67

f o r mod i n s e l f . mods . i t e r v a l u e s () :

mod . c l e a r S c o r e ()

d e f s t r (s e l f) :

r e t u r n s t r (s e l f . name)

d e f r e p r (s e l f) :

r e t u r n s t r (s e l f . name)

c l a s s M o d i f i e d I m a g e :

d e f i n i t (s e l f , img , path , s u b j e c t , change)

: s e l f . img = img

s e l f . path = path

s e l f . s u b j e c t = s u b j e c t

s e l f . change = change

d e f t e s t (s e l f , c l a s s i f i e r s) :

s c o r e = S c o r e (s e l f . change)

f o r c i n c l a s s i f i e r s :

s c o r e . s c o r e (c , s e l f . img , s e l f . s u b j e c t . name)

r e t u r n s c o r e

d e f c l e a r S c o r e (s e l f) :

s e l f . s c o r e = S c o r e (s e l f . change)

d e f s t r (s e l f) : r e t

u r n s e l f . change

d e f r e p r (s e l f) : r e t

u r n s e l f . change

d e f c r e a t e C l a s s i f i e r (a l g o r i t h m , k) :

c = c l a s s i f i e r . N e a r e s t N e i g h b o r (d i s t m e t r i c =

d i s t a n c e . E u c l i d e a n D i s t a n c e () , k=k)

i f a l g o r i t h m == ”PCA” :

r e t u r n model . P r e d i c t a b l e M o d e l (f e a t u r e = f e a t u r e

.PCA() , c l a s s i f i e r = c)

e l i f a l g o r i t h m == ”LDA” :

r e t u r n model . P r e d i c t a b l e M o d e l (f e a t u r e = f e a t u r e

. F i s h e r f a c e s () , c l a s s i f i e r = c)

68

e l i f a l g o r i t h m == ”LBPH” :

r e t u r n model . P r e d i c t a b l e M o d e l (f e a t u r e = f e a t u r e

. S p a t i a l H i s t o g r a m () , c l a s s i f i e r = c)

B.3 Batch Image Normalizer

−∗− c o d i n g : u t f −8 −∗−

”””

C r e a t e d on Sun Sep 20 1 6 : 2 1 : 2 7 2015

@author : Domenick P o s t e r

”””

i m p o r t o s

i m p o r t r e

i m p o r t c v 2 a l i g n

from PIL i m p o r t Image

s u b j e c t r e g e x = r e . c o m p i l e (r ” s (\ d+) ”)

o r i g i n a l i m a g e r e g e x = r e . c o m p i l e (r ” (n ?\ d+) \ . pgm”)

o r i g i n a l s p a t h = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \

R e s e a r c h \ p o s t e r \ a t t f a c e s ”

o r i g i n a l s n o r m a l i z e d p a t h = r ”C: \ U s e r s \ u s e r \ Documents \
S c h o o l \ R e s e a r c h \ p o s t e r \ o r i g i n a l s n o r m a l i z e d ”

i f n o t o s . path . e x i s t s (o r i g i n a l s n o r m a l i z e d p a t h) :
o s . mkdir (o r i g i n a l s n o r m a l i z e d p a t h)

f o r d i r p a t h , dirnames , f i l e n a m e s i n o s . walk (

o r i g i n a l s p a t h) :

f o r subdirname i n d i r n a m e s :

s u b j e c t p a t h = o s . path . j o i n (d i r p a t h , subdirname

)

n o r m a l i z e d s u b j e c t f p = o s . path . j o i n (

o r i g i n a l s n o r m a l i z e d p a t h , subdirname)

i f n o t o s . path . e x i s t s (n o r m a l i z e d s u b j e c t f p) :

o s . mkdir (n o r m a l i z e d s u b j e c t f p)

69

f o r f i l e n a m e i n o s . l i s t d i r (s u b j e c t p a t h) :

o r i g i n a l i m a g e f p = o s . path . j o i n (

s u b j e c t p a t h , f i l e n a m e)

n o r m a l i z e d i m a g e f p = o s . path . j o i n (

n o r m a l i z e d s u b j e c t f p , f i l e n a m e)

n o r m a l i z e d i m a g e a r r a y = c v 2 a l i g n .

a l i g n f a c e (o r i g i n a l i m a g e f p)

i f n o r m a l i z e d i m a g e a r r a y i s n o t None :

n o r m a l i z e d i m a g e = Image . f r o m a r r a y (

n o r m a l i z e d i m a g e a r r a y)

n o r m a l i z e d i m a g e . s a v e (

n o r m a l i z e d i m a g e f p)

mods path = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l \ R e s e a r c h \

p o s t e r \ c o m p o s i t e s ”

m o d s n o r m a l i z e d p a t h = r ”C: \ U s e r s \ u s e r \ Documents \ S c h o o l

\ R e s e a r c h \ p o s t e r \ c o m p o s i t e s n o r m a l i z e d ”
i f n o t o s . path . e x i s t s (m o d s n o r m a l i z e d p a t h) :

o s . mkdir (m o d s n o r m a l i z e d p a t h)

f o r d i r p a t h , dirnames , f i l e n a m e s i n o s . walk (mods path) :

f o r subdirname i n d i r n a m e s :

s u b j e c t p a t h = o s . path . j o i n (d i r p a t h , subdirname

)

n o r m a l i z e d s u b j e c t f p = o s . path . j o i n (

m o d s n o r m a l i z e d p a t h , subdirname)

i f n o t o s . path . e x i s t s (n o r m a l i z e d s u b j e c t f p) :

o s . mkdir (n o r m a l i z e d s u b j e c t f p)

f o r i m a g e f o l d e r i n o s . l i s t d i r (s u b j e c t p a t h) :

i m a g e f o l d e r f p = o s . path . j o i n (s u b j e c t p a t h

, i m a g e f o l d e r)

p r i n t i m a g e f o l d e r f p

n o r m a l i z e d i m a g e f o l d e r f p = o s . path . j o i n (

n o r m a l i z e d s u b j e c t f p , i m a g e f o l d e r)

i f l e n (o s . l i s t d i r (i m a g e f o l d e r f p)) > 1 :

i f n o t o s . path . e x i s t s (

n o r m a l i z e d i m a g e f o l d e r f p) :

70

o s . mkdir (n o r m a l i z e d i m a g e f o l d e r f p

)

f o r mod i n o s . l i s t d i r (i m a g e f o l d e r f p) :

mod fp = o s . path . j o i n (

i m a g e f o l d e r f p , mod)

n o r m a l i z e d m o d f p = o s . path . j o i n (

n o r m a l i z e d i m a g e f o l d e r f p , mod)

n o r m a l i z e d i m a g e a r r a y = c v 2 a l i g n .

a l i g n f a c e (mod fp)

i f n o r m a l i z e d i m a g e a r r a y i s n o t

None :

n o r m a l i z e d i m a g e = Image .

f r o m a r r a y (

n o r m a l i z e d i m a g e a r r a y)

n o r m a l i z e d i m a g e . s a v e (

n o r m a l i z e d m o d f p)

B.4 Normalization Algorithm

#! / u s r / b i n / env p y t h o n

S o f t w a r e L i c e n s e Agreement (BSD L i c e n s e)

C o p y r i g h t (c) 2 0 1 2 , P h i l i p p Wagner

A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and u s e i n s o u r c e and b i n a r y forms ,

w i t h o r w i t h o u t

m o d i f i c a t i o n , a r e p e r m i t t e d p r o v i d e d t h a t t h e

f o l l o w i n g c o n d i t i o n s

a r e met :

∗ R e d i s t r i b u t i o n s o f s o u r c e c o d e must r e t a i n t h e
a b o v e c o p y r i g h t

n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g

d i s c l a i m e r .

∗ R e d i s t r i b u t i o n s i n b i n a r y form must r e p r o d u c e t h e
a b o v e

c o p y r i g h t n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e

71

w i t h t h e d i s t r i b u t i o n .

· N e i t h e r t h e name o f t h e a u t h o r nor t h e
i t s

names o f

c o n t r i b u t o r s may b e u s e d t o e n d o r s e or promote

f o l l o w i n g

d i s c l a i m e r i n t h e d o c u m e n t a t i o n and / or o t h e r

m a t e r i a l s p r o v i d e d

p r o d u c t s d e r i v e d

from t h i s s o f t w a r e w i t h o u t s p e c i f i c p r i o r w r i t t e n

p e r m i s s i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS

AND CONTRIBUTORS

”AS IS ” AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT

SHALL THE

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT,

INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES ;

LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS

INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN

CONTRACT, STRICT

LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE

) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

i m p o r t s y s , math

i m p o r t PIL . Image a s Image

i m p o r t f e a t u r e d e t e c t

72

i m p o r t numpy a s np

d e f D i s t a n c e (p1 , p2) :
dx = p2 [0] − p1 [0]
dy = p2 [1] − p1 [1]

r e t u r n math . s q r t (dx∗dx+dy∗dy)

d e f S c a l e R o t a t e T r a n s l a t e (image , a n g l e , c e n t e r = None ,

n e w c e n t e r = None , s c a l e = None , r e s a m p l e=Image .

BICUBIC) :

i f (s c a l e i s None) and (c e n t e r i s None) :

r e t u r n image . r o t a t e (a n g l e=a n g l e , r e s a m p l e=r e s a m p l e)

nx , ny = x , y = c e n t e r

s x=s y =1.0

i f n e w c e n t e r :

(nx , ny) = n e w c e n t e r

i f s c a l e :

(sx , s y) = (s c a l e , s c a l e)

c o s i n e = math . c o s (a n g l e)

s i n e = math . s i n (a n g l e)

a = c o s i n e / s x

b = s i n e / s x
c =
x−nx∗a−ny∗b d

= −s i n e / s y

e = c o s i n e / s y

f = y−nx∗d−ny∗ e
r e t u r n image . t r a n s f o r m (image . s i z e , Image . AFFINE , (a , b

, c , d , e , f) , r e s a m p l e=r e s a m p l e)

d e f CropFace (image , e y e l e f t = (0 , 0) , e y e r i g h t = (0 , 0) ,

o f f s e t p c t = (0 . 2 , 0 . 2) , d e s t s z = (7 0 , 7 0)) :

c a l c u l a t e o f f s e t s i n o r i g i n a l image

o f f s e t h = math . f l o o r (f l o a t (o f f s e t p c t [0]) ∗ d e s t s z
[0])

o f f s e t v = math . f l o o r (f l o a t (o f f s e t p c t [1]) ∗ d e s t s z
[1])

g e t t h e d i r e c t i o n

e y e d i r e c t i o n = (e y e r i g h t [0] − e y e l e f t [0] ,

73

e y e r i g h t [1] − e y e l e f t [1])
c a l c r o t a t i o n a n g l e i n r a d i a n s

r o t a t i o n = −math . a t a n 2 (f l o a t (e y e d i r e c t i o n [1]) , f l o a t (
e y e d i r e c t i o n [0]))

d i s t a n c e b e t w e e n them

d i s t = D i s t a n c e (e y e l e f t , e y e r i g h t)

c a l c u l a t e t h e r e f e r e n c e eye−w i d t h

r e f e r e n c e = d e s t s z [0] − 2 . 0 ∗ o f f s e t h
s c a l e f a c t o r

s c a l e = f l o a t (d i s t) / f l o a t (r e f e r e n c e)

r o t a t e o r i g i n a l around t h e l e f t e y e

image = S c a l e R o t a t e T r a n s l a t e (image , c e n t e r=e y e l e f t ,

a n g l e=r o t a t i o n)

c r o p t h e r o t a t e d image

c r o p x y = (e y e l e f t [0] − s c a l e ∗ o f f s e t h , e y e l e f t [1]

− s c a l e ∗ o f f s e t v)

c r o p s i z e = (d e s t s z [0] ∗ s c a l e , d e s t s z [1] ∗ s c a l e)
image = image . c r o p ((i n t (c r o p x y [0]) , i n t (c r o p x y [1]) ,

i n t (c r o p x y [0] + c r o p s i z e [0]) , i n t (c r o p x y [1] +

c r o p s i z e [1])))

r e s i z e i t

image = image . r e s i z e (d e s t s z , Image . ANTIALIAS)

r e t u r n image

d e f e y e c e n t e r (e y e c o o r d = []) :

ex , ey , ew , eh = e y e c o o r d

x = i n t (ex+(ew / 2))

y = i n t (ey+(eh / 2))

r e t u r n (x , y)

d e f a l i g n f a c e (i m g f p , r e s i z e d i m =(70 , 7 0))

: a l i g n e d i m g = None

f d = f e a t u r e d e t e c t . f e a t u r e d e t e c t (i m g f p)

f a c e = f d . f i n d f a c e ()

i f l e n (f a c e) == 1 :

e = f d . f i n d e y e s (d e t e c t e d f a c e s=f a c e)

i f l e n (e) == 2 :

s u b j i m g = Image . open (i m g f p)

74

e l e f t , e r i g h t = min (e [0] , e [1] , key=lambda

x : x [0]) , max (e [0] , e [1] , key=lambda x :

x [0])

s u b j i m g = CropFace (s u b j i m g , e y e l e f t =

e y e c e n t e r (e l e f t) , e y e r i g h t=e y e c e n t e r (

e r i g h t) , o f f s e t p c t = (0 . 2 5 , 0 . 2 5) ,

d e s t s z=r e s i z e d i m)

s u b j i m g = s u b j i m g . c o n v e r t (mode=”L ”) #

c o n v e r t s from RGB mode t o G r a y S c a l e

a l i g n e d i m g = np . a s a r r a y (s u b j i m g , dtype=np

. u i n t 8)

s u b j i m g . c l o s e ()

r e t u r n a l i g n e d i m g

B.5 Feature Detection

T h i s w i l l d e t e c t t h e f a c e , and t h e i r f e a t u r e s

S o u r c e was m o d i f i e d from : h t t p : / / opencv−python−
t u t r o a l s . r e a d t h e d o c s . o r g / en / l a t e s t / p y t u t o r i a l s /
p y o b j d e t e c t / p y f a c e d e t e c t i o n / p y f a c e d e t e c t i o n .

h t m l

and #from h t t p s : / / g i t h u b . com/ s h a n t n u / F a c e D e t e c t /

b l o b / m a s t e r / f a c e d e t e c t . py

#i m p o r t numpy a s np

i m p o r t cv2

i m p o r t o s

c l a s s f e a t u r e d e t e c t :

d e f i n i t (s e l f , i m a g e f i l e) :

s e l f . img = cv2 . imread (i m a g e f i l e , cv2 .

IMREAD GRAYSCALE)

d e f f i n d f a c e (s e l f) :

’ ’ ’ Us ing t h e h a a r c a s c a d e , by d e f a u l t ,

f i n d f a c e w i l l s e e i f a f a c e i s fou nd i n t h e

image p r o v i d e d when t h e f e a t u r e d e t e c t c l a s s

was i n i t i a l i z e d .

75

r e t u r n s a t u p l e i n t h e form (x , y , w, h)

where x i s t h e x c o o r d i n a t e o f t h e f a c e

y i s t h e y c o o r d i n a t e o f t h e f a c e

w i s t h e width o f t h e f a c e

h i s t h e h e i g h t o f t h e f a c e

’ ’ ’

c l f h o m e = r ’ E : \ opencv \ b u i l d \ s h a r e \OpenCV\
h a a r c a s c a d e s ’

c l f l s t = [’ h a a r c a s c a d e f r o n t a l f a c e d e f a u l t . xml

’ , ’ h a a r c a s c a d e f r o n t a l f a c e a l t . xml ’ , ’

h a a r c a s c a d e f r o n t a l f a c e a l t 2 . xml ’ , ’

h a a r c a s c a d e f r o n t a l f a c e a l t t r e e . xml ’]

c l f l s t = [o s . path . j o i n (c l f h o m e , c l f) f o r c l f

i n c l f l s t]

f o u n d f a c e = []

f o r c l a s s i f i e r i n c l f l s t :

f a c e c a s c a d e = cv2 . C a s c a d e C l a s s i f i e r (

c l a s s i f i e r)

f o u n d f a c e = f a c e c a s c a d e . d e t e c t M u l t i S c a l e (

s e l f . img , s c a l e F a c t o r = 1 . 3 , m i n N e i g h b o r s

=5)

i f l e n (f o u n d f a c e) != 0 :

b r e a k

r e t u r n f o u n d f a c e

d e f f i n d e y e s (s e l f , e y e c l a s s i f i e r =r ’ E : \ opencv \

b u i l d \ s h a r e \OpenCV\ h a a r c a s c a d e s \ h h a r c a s c a d e e y e .
xml ’ , d e t e c t e d f a c e s = [[0 , 0 , 0 , 0]]) :

’ ’ ’ Us ing t h e Eye H a a r c a s c a d e C l a s s i f i e r , by

d e f a u l t , f i n d e y e s w i l l s e a r c h t h e

p r o v i d e d d e t e c t e d f a c e f o r e y e s .

I n p u t : e y e c l a s s i f i e r : an XML document o f an

e y e c l a s s i f i e r f i l e f o r d e t e c t i n g e y e s

d e t e c t e d f a c e s : p r e v i o u s l y fo und f a c e (

s) , i f m u l t i p l e f a c e s a r e i n t h e

a r r a y

76

t h e n a l i s t o f l i s t s i s

e x p e c t e d i n t h e f o r m a t o f

[[l i s t 1] [l i s t 2] . . .] −> [
l i s t 1] = (x , y , w, h)

Where x : t h e upper l e f t most

x c o o r d i n a t e o f a d e t e c t e d

f a c e (i n p i x e l s)

y : t h e upper l e f t most

y c o o r d i n a t e o f a d

e t e c t e d f a c e (i n

p i x e l s)

w : t h e width (i n p i x e l s

from t h e upper l e f t

c o r n e r) o f t h e f a c e

h : t h e h e i g h t (i n

p i x e l s from t h e

upper l e f t c o r n e r)

o f t h e f a c e

Output : a n e s t e d l i s t o f c o o r d i n a t e s f o r e a c h

e y e d e t e c t e d i n t h e image .

e a c h s e t o f c o o r d i n a t e s i s i n t h e f o r m a t

(e y e c o o r d x , e y e c o o r d y , e y e c o o r d w ,
 e y e c o o r d h)

Where e y e c o o r d x : t h e upper l e f t most x

’ ’ ’

c o o r d i n a t e o f t h e e y e

e y e c o o r d y : t h e upper l e f t most y

c o o r d i n a t e o f t h e e y e

e y e c o o r d w : t h e width (i n p i x e l s from

e y e c o o r d x) t h e e y e i s

e y e c o o r d h : t h e h e i g h t (i n p i x e l s

from e y e c o o r d x) t h e e y e i s

c a s c a d e h o m e = r ’ E : \ opencv \ b u i l d \ s h a r e \OpenCV\
h a a r c a s c a d e s ’

e y e c a s c a d e l i s t = [’ h a a r c a s c a d e e y e . xml ’ , ’

h a a r c a s c a d e e y e t r e e e y e g l a s s e s . xml ’ , ’

h a a r c a s c a d e m c s l e f t e y e . xml ’ , ’

77

h a a r c a s c a d e m c s r i g h t e y e . xml ’]

c l f l s t = [o s . path . j o i n (cascade home , c l f) f o r

c l f i n e y e c a s c a d e l i s t]

e y e s f o u n d = []

f o r c a s i n c l f l s t :

e y e s f o u n d = []

e y e c a s c a d e = cv2 . C a s c a d e C l a s s i f i e r (c a s)

e y e s f o u n d = e y e c a s c a d e . d e t e c t M u l t i S c a l e (

s e l f . g r a y)

i f l e n (e y e s f o u n d) == 2 :

e y e s f o u n d = e y e s f o u n d . t o l i s t ()

b r e a k

e l s e :

e y e s f o u n d = []

i f n o t l e n (e y e s f o u n d) == 2 :

l a s t e f f o r t

r i g h t e y e c a s c a d e = cv2 . C a s c a d e C l a s s i f i e r (

o s . path . j o i n (cascade home , ’

h a a r c a s c a d e r i g h t e y e 2 s p l i t s . xml ’))

l e f t e y e c a s c a d e = cv2 . C a s c a d e C l a s s i f i e r (

o s . path . j o i n (cascade home , ’

h a a r c a s c a d e l e f t e y e 2 s p l i t s . xml ’))

i f l e n (r i g h t e y e c a s c a d e . d e t e c t M u l t i S c a l e (

s e l f . g r a y)) == 1 and l e n (

l e f t e y e c a s c a d e . d e t e c t M u l t i S c a l e (s e l f .

g r a y)) == 1 :

e y e s f o u n d . append (r i g h t e y e c a s c a d e .

d e t e c t M u l t i S c a l e (s e l f . g r a y) . t o l i s t ()

[0])

e y e s f o u n d . append (l e f t e y e c a s c a d e .

d e t e c t M u l t i S c a l e (s e l f . g r a y) . t o l i s t ()

[0])

i f l e n (e y e s f o u n d) == 0 :

e y e s f o u n d = []

r e t u r n e y e s f o u n d

	Digital Eye Modification A Countermeasure to Automated Face Recognition
	Recommended Citation

	tmp.1568233084.pdf.UJzNy

