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Abstract

Techniques for Ocular Biometric Recognition Under Non-ideal Conditions

Raghavender Reddy Jillela
Electrical Engineering, West Virginia University

Dr. Arun Ross, West Virginia University, Chair

The use of the ocular region as a biometric cue has gained considerable traction due
to recent advances in automated iris recognition. However, a multitude of factors can neg-
atively impact ocular recognition performance under unconstrained conditions (e.g., non-
uniform illumination, occlusions, motion blur, image resolution, etc.). This dissertation
develops techniques to perform iris and ocular recognition under challenging conditions.
The first contribution is an image-level fusion scheme to improve iris recognition perfor-
mance in low-resolution videos. Information fusion is facilitated by the use of Principal
Components Transform (PCT), thereby requiring modest computational efforts. The pro-
posed approach provides improved recognition accuracy when low-resolution iris images are
compared against high-resolution iris images. The second contribution is a study demon-
strating the effectiveness of the ocular region in improving face recognition under plastic
surgery. A score-level fusion approach that combines information from the face and ocular
regions is proposed. The proposed approach, unlike other previous methods in this appli-
cation, is not learning-based, and has modest computational requirements while resulting
in better recognition performance. The third contribution is a study on matching ocular
regions extracted from RGB face images against that of near-infrared iris images. Face
and iris images are typically acquired using sensors operating in visible and near-infrared
wavelengths of light, respectively. To this end, a sparse representation approach which
generates a joint dictionary from corresponding pairs of face and iris images is designed.
The proposed joint dictionary approach is observed to outperform classical ocular recogni-
tion techniques. In summary, the techniques presented in this dissertation can be used to
improve iris and ocular recognition in practical, unconstrained environments.
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Chapter 1

Introduction

sarvēndriyānām nayanam praDhānam
Translated from Sanskrit: Of all the senses, vision
- imparted by the eyes - is the most important.

1.1 Ocular Biometrics

The term ocular, derived from its Latin root oculus, broadly refers to the anatomical

regions and structures related to the eye. Ocular biometrics refers to the recognition (iden-

tification or verification) of individuals using the information offered by ocular modalities.

The public perception of ocular biometrics has been largely limited to iris recognition.

However, research suggests that several other ocular modalities could serve as biometric

indicators. Following is a list of ocular modalities that have been used as biometric traits:

1. Retina: The fractal-like growth of the retinal vascular pattern can be used as a

reliable biometric trait [20]. Such unique blood vessel patterns can be captured

using an image acquisition system comprising of a retina illuminator and a suitable

camera. A sample image obtained using such system is shown in Figure 1.1(a). A

major limitation of retinal recognition is that it requires a significant amount of user

cooperation during image acquisition to achieve reliable recognition accuracy.

2. Iris: The multi-layered nature of the iris provides it with complex textural patterns

on its surface. These textural variations are very distinctive [21], and render iris a

very reliable biometric in general. A sample iris image showing its complex texture
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pattern is provided in Figure 1.1(b). Currently, iris recognition is one of the most

active areas of biometric research.

3. Conjunctival vasculature: The blood vessel patterns observed in the sclera (white)

of the eye have been proven to be a biometric trait under constrained conditions [22].

Similar to retina, imaging the conjunctival vasculature patterns requires considerable

user cooperation. Figure 1.1(c) shows a sample conjunctival vasculature pattern

observed in an eye.

4. Ocular region: Ocular region∗ refers to a rectangular region of fixed size, immedi-

ately surrounding the eye globe (or, eye socket). Depending on the area of the region

considered, ocular images typically contain anatomical features such as the iris, con-

junctiva (white of the eye), eyelashes and the eyelids (if the eye is closed), eyebrows

and moles/scars around the eye (if present). Research indicates that the information

extracted from the ocular region can serve as a soft biometric trait [24]. The utility

of this trait is especially pronounced when the eye is closed and the iris information

cannot be acquired. A sample ocular image is shown in Figure 1.1(d).

5. Oculomotor Plant Characteristics: The oculomotor plant consists of the non-

visible, internal eye globe, its surrounding tissues, ligaments, muscles and tendon-like

components [1]. Research indicates that the dynamics of an oculomotor plant, in

response to a controlled visual stimulation, can serve as a biometric trait [25]. How-

ever, acquiring such information is feasible only under highly constrained conditions.

A diagram of the internal muscles of the eye that contribute to the oculomotor plant

characteristics is provided in Figure 1.1(e).

6. Complex Eye Movements: The fixation and saccadic movement information of

an eye can be quantized by various features, and used for identification purposes [26].

Examples of such features include fixation count, saccade velocity, saccade ampli-

tude, scanpath length, etc. Much like oculomotor plant characteristics, complex eye

movement information can be acquired only under highly constrained conditions.

Figure 1.1(f) shows a sample visual stimuli overlaid with some of the CEM features.

∗In some existing research [23], this region is also referred as the periocular region.
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Ocular biometric traits: (a) retinal vasculature pattern, (b) iris texture, (c)
conjunctival vasculature pattern, (d) ocular region, (e) oculomotor characteristics, and (f)
complex eye movements. Image in panel (e) taken from [1].

It has to be noted that the first four modalities in the above list (i.e. retina, iris,

conjunctival vasculature and ocular) are considered as anatomical traits. In contrast, the

latter two are considered to be combination of physiological and behavioral traits [25].

1.2 Iris Recognition

Of all the ocular biometric traits listed in Section 1.1, iris is considered to be the most

reliable. This is based on its uniqueness, performance and circumvention properties. In the

following subsections, the fundamentals of iris recognition are discussed in detail.

1.2.1 Anatomy of the Human Iris

The word iris (pl. irides) is derived from the Greek word for mythological goddess of

rainbow, iris [27]. The word was used for any brightly colored circle [28], and therefore,
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was also used to describe the colored portion of the exterior eye. From an anatomical

perspective, iris refers to the annular region within the eye, that is located just behind the

cornea and in front of the lens [29]. The structure of the iris is that of a thin diaphragm,

in the shape of a 3D truncated cone. Such structure is imparted by its alignment with the

lens of the eye [30]. A diagram showing the location of the iris in an eye is provided in

Figure 1.2(a).

The anterior surface of the iris is divided into two regions: the pupillary zone, and the

ciliary zone. The pupillary zone is the inner region, that is located closer to the pupil.

The ciliary zone is the outer region, that comprises the rest of the iris. These two regions

are separated by the collarette. The iris is at its thickest at the collarette, and thins away

radially from the pupil. The average radius of the human iris is approximately 6mm, with

an average thickness of about 0.5mm. The functionality of the iris is to regulate the amount

of light that enters the eye, by controlling the size of the pupil. The size of the pupil is

controlled using the dilator and sphincter muscles, that are connected by stroma. The

stroma is a pigmented fibrovascular tissue. A sample image showing the external structure

of the iris is provided in Figure 1.2(b).

In most of the iris recognition literature, iris boundaries are considered to be perfectly

circular, or elliptic. This assumption helps in easily discarding non-iris regions, when

performing automatic iris recognition. However, the iris is not always perfectly circular,

or elliptic in nature. An image showing a non-circular iris is shown in Figure 1.3(a).

Furthermore, it has to be noted that the pupil exhibits a slight nasal inclination. Therefore,

it is not necessary that the center of the pupillary boundary always coincides with that

of the limbic boundary. An image showing the nasal inclination of the iris is shown in

Figure 1.3(b).

1.2.2 Significance of the Iris Texture

The iris begins to form during the third month of the gestation, and develops a dis-

tinctive structure by the eighth month [31]. The distinctiveness is caused by the presence

of fibrous and cellular structures such as ligaments, furrows, crypts, rings, frills, corona,

collarette, and sometimes moles, freckles, nevi, and other macro-features [32]. The overall

appearance of the iris can be roughly described as a multilayered, tangled mesh-like struc-
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(a)

(b)

Figure 1.2: Schematics showing (a) the anatomy of the eye, and (b) the external structure
of the iris. Image in (a) taken from [2].

ture, which imparts a highly complex texture to its surface. Figure 1.4 provides a close-up

view of texture of a sample iris. It is such highly complicated texture that makes the iris

a unique biometric.

1.2.3 Iris as a Biometric

The assumed uniqueness of the iris has paved for its usage as a biometric trait for human

recognition. A majority of the research in iris recognition literature cites the research by

Daugman [33] as a fundamental work in establishing iris as a biometric. However, numerous

prior research efforts exist, that allude to the usability of iris for biometric purposes. The
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(a) (b)

Figure 1.3: Images showing (a) the non-circularity, and (b) nasal inclination of the iris.
Notice that in (b), the pupil is slightly inclined towards the subjects nose (on the right side
of the image). The distance from the pupillary boundary to the limbus boundary on the
left side of the image, d1, is greater than the distance on the right side, d2.

Figure 1.4: Close-up view of an iris, showing its complex texture. Image taken from [3].

first recorded usage of information related to the eye for identification purposes is associated

with Alphonse Bertillon. In his work [34, 35], Bertillon describes the usage of eye color

patterns to distinguish criminals. Such analysis was based on the notable difference between

the eye colors, and their subtle sub-divisions. Davenport and Davenport [36] discussed the

ethnographic diversity of the iris, along with its heritability property. Mann’s work [37]

suggests that the iris is a unique anatomical entity, and its general structure is determined

genetically. Rohen and Unger [38] studied the mesh-like structure of the iris, and discussed

the stability of iris texture over time. Adler’s work [29] in ophthalmology describes that
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the texture of the iris is highly detailed and unique. Based on his observations from clinical

photographs of irides spanning decades of time span, Adler also suggested that the texture

of the iris is very stable.

Wasserman’s research [39] suggests that the pigmentation of the iris continues until

adolescence, and varies little after that. Research by Worrall [40] and Berggren [41] dis-

card the claims that iris texture varies with changes in health (a theory often referred as

iridology). Flom and Safir’s patent [21] describes an automatic iris identification system,

and is often regarded as a significant contribution in the area of iris biometrics. Davson’s

work [30] on the physiology of the eye describes that the phenotypic expressions even of two

irises with same genetic genotype (e.g., identical twins, or the left and right pair possessed

by one individual) are uncorrelated. Newell’s work [42] confirms that after adolescence, a

healthy iris varies little for the rest of a person’s life.

The first prototype iris recognition system was described by Johnson [43]. Later in

1993, Daugman’s landmark paper [33] described a method to perform rapid, automatic iris

recognition. Johnston and Grace [44] list the benefits of using iris, over other biometric

traits, for identification of individuals. A recognition performance analysis by Bouchier et

al. [45] suggests that iris can serve as a high-confidence biometric identifier.

1.2.4 Steps involved in Iris Recognition

The function of an automatic iris recognition system is to extract, represent, and com-

pare the textural intricacy of the surface of the iris. The key steps involved in a generic

iris recognition system can be listed as follows:

1. Image acquisition: The input raw data (images or videos) is usually acquired

using a sensor of adequate resolution to capture the iris texture. Such data is either

processed immediately, or stored in a database for later processing. The usefulness

of an acquired iris image mainly depends on the quality, and the spatial extent of the

iris present in the captured image. Both these factors can be regulated at the image

acquisition stage to achieve reliable accuracy. Most iris recognition systems require

a considerable level of user cooperation. Current research is progressing towards

successful acquisition of iris images in less constrained environments [9].
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2. Iris segmentation: Depending on the field of view of the sensor, the acquired im-

ages can potentially include other regions of the eye (e.g., the sclera, eyelashes, eyelid,

eyebrow, surrounding skin regions, etc.). Given such image, the annular region encom-

passed between the pupillary and limbic boundaries has to be identified to perform

feature extraction. Furthermore, anatomical features that usually occlude the iris

texture (e.g., eyelashes and eyelids) have to be excluded from the consideration. This

process of automatically locating the iris boundaries, and excluding the noisy regions

is called as iris segmentation. This step is often considered critical, as an incorrect

segmentation can negatively impact the iris recognition performance [46].

3. Normalization: The size of an iris can vary significantly due to its dilation, contrac-

tion, resolution of the sensor and the imaging distance [47]. To address such variations

in size, the segmented iris is usually unwrapped to a normalized coordinate system.

This normalization operation is performed by representing the segmented iris as a

rectangular image, the rows of which correspond to the concentric regions of the un-

segmented iris. A widely popular technique for iris normalization, Daugman’s rubber

sheet model [48], re-maps every point in the segmented iris region to a pair of polar

coordinates. While it is a popularly used step before performing matching, certain

approaches exist that do not require iris normalization. Such approaches are referred

as segmentation-free approaches [49].

4. Feature extraction and matching: Feature extraction refers to the process of

encoding the discriminatory information obtained from the segmented (or, normal-

ized) iris, into a feature vector. In the matching stage, the feature vector obtained

from a probe image is compared with the other feature vectors in the gallery to per-

form recognition. Various techniques have been proposed in literature [47] to perform

feature extraction and matching. The focus of all such techniques is to reduce the

computational time and complexity, while improving the recognition performance.

The basic modules of an iris recognition system are shown in Figure 1.5.

Within the past decade, a wide variety of research has emerged in the field of iris

recognition [47]. While very few improvements have been suggested towards image acqui-

sition [9,50], a majority of the research has been focussed on improving the segmentation,
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Figure 1.5: A block diagram of an iris recognition system.

encoding and matching schemes.

1.3 Existing Iris Recognition Research

1.3.1 Image Acquisition

Various types of image sensors have been used for iris image acquisition. Based on their

portability and the convenience offered to the users, iris sensors can be divided into the

following categories:

1. Portable, or hand-held sensors : These sensors offer portability, and can be designed

to be functional in rugged situations. However, such sensors could require effort from

two individuals (subject, and an operator) to acquire a good quality iris image. An

operator is required to align the sensor with the subject’s eye. Examples of this type

of sensors include Datastrip Easy Verify and Retica Mobile-Eyes.

2. Fixed, or wall-mounted sensors : These sensors are some of the most widely used, and

can be deployed in both covert and overt situations. Such sensors can eliminate the

requirement of an additional operator during image acquisition (given the subject is
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acquainted with the imaging system). Examples of this type of sensors include LG

IrisAccess 4000 and Oki IrisPass.

3. Portals, or walk-through sensors : These sensors are typically used in situations in-

volving rapid iris recognition for a large volume of users (e.g., airports). Images of

the iris are captured when the user passes through a portal like structure. The illu-

mination sources and image sensors are usually mounted on the walls of the portal.

An example of such imaging system includes Iris on the Move Passport setup [9].

A sample image from each type of sensor is provided in Figure 1.6.

(a) (b)

(c)

Figure 1.6: Examples of the three different types of iris sensors: (a) Retica Mobile-Eyes,
(b) Oki IrisPass and (c) Iris on the Move (IOM) Passport system.
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A detailed description of a traditional iris image acquisition system was first provided by

Wildes [51]. Negin et al. [16] proposed an image acquisition system that partially relaxes

the requirement of controlled user interaction. Matey et al. [9] describe a walk-through

image acquisition system that provides complete relaxation of the constraints on the users.

Recent improvements in iris image acquisition include the usage of wavefront coding [52,53],

and hyper-spectral imaging systems [54].

1.3.2 Imaging Wavelengths

Iris images are typically acquired using sensors that operate in the near-infrared (NIR)

spectrum. The wavelength of the illuminating sources range between 700-900nm. The

usage of NIR spectrum for iris recognition provides two critical benefits:

1. It is observed that the effect of melanin, a color inducing compound, is negligible

at longer wavelengths. Using NIR spectrum ensures that the acquired image reveals

information related to the texture of the iris, rather than its pigmentation.

2. Compared to the visible spectrum, the texture of dark colored irides can be well

observed using NIR.

Despite the benefits offered by the NIR spectrum, it is critically important to study

iris recognition using images acquired under the visible spectrum. Some of the reasons to

support such research can be listed as follows:

1. Most surveillance cameras work in visible wavelength. When iris recognition has to

be performed on the images acquired using such systems, the iris data would be in

visible wavelength.

2. The current sensor and illuminator technology makes it difficult to acquire iris images

from a distance using sensors that operate in the near infra-red wavelength.

3. Iris images acquired under visible spectrum reveal a high level of information related

to its pigmentation. Such information can be used for iris classification purposes.

Considering the above listed benefits, iris recognition has been studied under near-infra

red, visible, and multi-spectral wavelengths. Boyce et al. [55] performed a comparison of
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iris recognition performance under visible and near-infra red spectrum. A study of the iris

recognition performance using NIR wavelengths ranging between 900-1450nm was carried

out by Ross et al. [56]. More recently, Ives et al. [57] discussed the performance of iris

recognition using illumination sources of wavelengths ranging between 405-1070nm.

1.3.3 Iris Image Quality

The quality of an iris image is a critical component in obtaining a high recognition

performance. Iris image quality can be assessed at two different stages, with each stage

offering a unique benefit:

• Image acquisition stage: Allows the system to prompt for re-acquisition, if the image

quality is poor.

• Matching stage: Helps in weighting the match score with the quality score, to mini-

mize the impact of a poor quality image on the matching performance.

Chen et al. use 2D wavelets to assess the quality of a localized iris image [58]. Kalka

et al. [59, 60] compute the quality of an iris image by examining seven different factors:

defocus blur, motion blur, deviated gaze, occlusions, lighting, specular reflection, and pixel

counts. A likelihood ratio based fusion scheme to combine the quality scores obtained by

evaluating the defocus, motion blur, and deviated gaze was used by Li et al. [61].

1.3.4 Iris Segmentation

Typically, the variation in image intensities across the pupillary boundary is much

stronger than the variation across the limbus boundary. This property lends to the fact

that, in most cases, the pupillary boundary can be detected using simple intensity thresh-

olding operation. On the other hand, determining the limbus boundary can be a com-

paratively difficult task. One of the earliest works on iris segmentation was performed by

Daugman [62]. An integro-differential operator is used to detect the iris boundaries, that

are approximated as perfect circles. Given an iris image I(x, y), it is first convolved with

an image smoothing function (e.g., a Gaussian filter). The smoothening step helps in (a)

attenuating the effect of noise (e.g., sensor noise) in the image, and (b) eliminating unde-

sired weak edges (e.g., boundaries within the iris), while retaining the desired strong edges
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(e.g., iris boundaries, eyelid boundaries, etc.). An integro-differential operator (IDO) is

then used to search for the maximum value of a normalized integral along circular contours

of varying radii and center coordinates. The search process over the image domain (x, y),

using an IDO, can be mathematically expressed as:

max(r, x0, y0)

∣∣∣∣Gσ(r) ∗
∂

∂r

∮

r,x0,y0

I(x, y)

2πr
ds

∣∣∣∣, (1.1)

where

Gσ(r) =
1√
2πσ

exp−
(

(r−r0)
2

2σ2

)
(1.2)

represents the radial Gaussian with a center r0 and standard deviation (scale) σ, which

is used for image smoothing. The symbol ∗ denotes the convolution operation, and r

represents the radius of the circular arc ds, centered at the location (x0, y0). The division by

a factor of 2πr normalizes the circular integral with respect to its perimeter. In other words,

the IDO behaves as a circular edge detector, that searches iteratively for the maximum

response of a contour path defined by the parameters (x0, y0, r). Depending on the values

of the radii considered, the optimal parameters of the IDO are treated as either the pupillary

or limbus boundaries. Once both the iris boundaries are detected, the boundaries of the

eyelids can be detected by changing the integration path of the operator from circular to

arcuate. Figure A.2 shows the output of an IDO when used to detect the iris and eyelid

boundaries.

Figure 1.7: Output obtained by applying an integro-differential operator to detect both
the iris and eyebrow boundaries.

Another widely popular approach for performing iris segmentation [51] uses Hough



Raghavender R. Jillela INTRODUCTION 14

transforms. Similar to IDO, this technique also approximates iris boundaries as perfect

circles, and the eyelid boundaries ellipses. A wide number of iris segmentation approaches

improve on the idea of Hough transform [63–66].

The approximation of the iris boundaries as perfect circles can be accepted when an

iris image is acquired under near-ideal conditions from a cooperative subject. In an image

acquired under non-ideal conditions, the limbus boundary may not be completely circular

(due to the occlusions, gaze deviations, etc.). Some of the significant approaches that can

perform segmentation of non-circular irides use Geodesic Active Contours (GAC) [67], vari-

ational level sets [14], Fourier-based approximations [62], Active Shape Models (ASM) [68],

graph cuts [69], iterative directional ray based segmentation [70]. Some of the segmentation

free approaches include the usage of SIFT features [49, 71]. A fairly detailed survey of iris

segmentation approaches is presented in [72, 73]. Research on improving iris segmentation

includes techniques for eyelash detection and removal [17, 64, 74], segmentation error pre-

diction [75], modifications [76] to existing open-source segmentation implementations [77]

and segmentation techniques for images acquired under visible wavelength [78–80].

1.3.5 Iris Encoding and Matching

Several iris encoding algorithms have been proposed in the literature. One of the most

widely used scheme was proposed by Daugman [62], that uses a multi-scale 2D Gabor

wavelet transforms to encode a normalized iris. Given a normalized iris image in polar

coordinates, a 2D Gabor wavelet (in polar coordinates) can be expressed as:

H(r, θ) = e−iω(θ−θ0)e−(r−r0)
2/α2

e−i(θ−θ0)
2/β2

, (1.3)

where (r0, θ0) denote the center frequency, (α, β) denote the effective width and length, and

ω denotes the spatial frequency of the wavelet. The output of the Gabor wavelets is then

demodulated to compress the data into a feature vector. This is performed by quantizing

the phase information into four different levels, one for each quadrant of the complex plane.

The modulation and phase quantization process can be mathematically represented by the

following equation:

hRe,Im = signRe,Im

∫

r

∫

θ

I(r, θ)e−iω(θ0−θ)e−(r0−r)
2/α2

e−(θ0−θ)
2/β2

rdrdθ, (1.4)
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where hRe,Im is the complex valued bit whose real and imaginary components are dependent

on the sign of the integral. The response of this operation is a binary output, usually called

an IrisCode. The normalized Hamming Distance (HD) between two IrisCodes is used as

a measure of dissimilarity between two irides. This value is computed by masking every

IrisCode with its respective mask, to disregard the noisy regions. The Hamming Distance

between two IrisCodes is computed by:

HD =
‖ (IrisCodeA⊕ IrisCodeB) ∩MaskA ∩MaskB ‖

‖MaskA ∩MaskB ‖ (1.5)

The XOR operator detects the bits that disagree between the two IrisCodes, while the AND

operator masks the noisy regions. The denominator helps in normalizing the total number

of bits that disagree to a value between [0, 1]. A perfect match between two IrisCodes

would result in a HD of 0.

Another popular approach to encode iris include the usage of a Laplacian-of-a-Gaussian

(LOG) filter [51]. Matching is performed using the normalized correlation between the

test and training images. Other encoding approaches use multi resolution Independent

Component Analysis (ICA) [81], PCA and ICA [82], ordinal features [83, 84], correlation

filters [65], 2D phase congruency method [85], local key variations of the iris [64], and SIFT

(after normalization [86], and without normalization [49]).

1.3.6 Iris Recognition under Near-Ideal Conditions

The iris is considered to be a robust and unique biometric with a very low False Ac-

cept Rate (FAR). Daugman [87] suggests that the iris pattern has almost 250 independent

degrees-of-freedom of textural variation. Very high recognition performances can be ob-

tained using iris images acquired under controlled conditions, with cooperative subjects.

This claim is supported by some large scale performance evaluations such as Daugman’s

observations from 200 billion iris pair comparisons [48] and NIST Iris Exchange (IREX)

evaluations [88].

1.4 Ocular Recognition

Depending on their field-of-view, most iris sensors capture the surrounding region of

the eye, without additional requirements. As mentioned in Section 1.1, such ocular region
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can serve as a soft biometric trait and could be used to improve the overall recognition

performance. Some of the anatomical characteristics and features that contribute to the

uniqueness of ocular region are shown in Figure 1.8.

Figure 1.8: Anatomical characteristics and features that contribute to the uniqueness of
ocular region.

The benefits of using ocular region for recognition can be listed as follows:

1. Minimal imaging requirements : The designing, or requirement, of a newer sensor is

eliminated as the ocular regions can be easily captured using an iris or face sensor.

2. Distance trade-off : The ocular region represents a good trade-off between using the

entire face region or using only the iris texture for recognition. When the entire face

is imaged from a distance, the iris information could be of low resolution. On the

other hand, when the iris is imaged very closely, the recognition system is forced to

rely only on the iris. However, the ocular biometric can be useful over a wide range

of distances.

3. Supplementary information: The ocular region can offer information about the eye

shape, skin color, etc., that could be used to further improve the overall recognition

performance [89].

4. Challenging conditions : Ocular information can be of significant importance in chal-

lenging conditions involving:

(a) Occlusions: Face recognition performance can be negatively impacted due to

occlusions (e.g., presence of scarves, facial hair, etc.). Similarly, iris recognition
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performance is also reduced when the iris is occluded due to deviated gaze,

eyeglasses or blinking eyelids. In such cases, the ocular information could be

reliably used (see Figure 1.9).

(a)

(b)

Figure 1.9: Sample situations where ocular information can be used to improve (a) face,
and (b) iris recognition performance, respectively.

(b) Spoofing or alterations: In cases where an iris is spoofed using, for example,

texture imprinted on a contact lens, the ocular information could be used to

confirm or refute an identity. Similarly, ocular information can be used improve

the recognition performance when the facial appearance is altered due to plastic

surgery (this is explained later, in Chapter 3).

5. Privacy concerns : From a social perspective, ocular region could potentially be used

to resolve some biometric privacy concerns. Unlike face recognition, ocular region

information could be obtained without violating some societal considerations (see

Figure 1.10).

Ocular recognition may not be robust to some variations:

• Expressions: Variation in human expression (smiling, neutral, etc.) can cause non-

linear deformation around the eye, thereby reducing the ocular recognition perfor-

mance.

• Aging: Under a larger time frame consideration, wrinkles and folds around the eye

caused by aging could change the overall appearance of the ocular region.
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Figure 1.10: Ocular information could be acquired with minimal privacy violation.

1.4.1 Existing Ocular Recognition Research

Park et al. [90] first introduced the concept of ocular recognition using images acquired

in the visible spectrum. The recognition process consists of: localizing the ocular region,

image alignment, feature extraction, and matching. Typically, the iris location and radius

information is used for localization, alignment and scale normalization of the ocular region.

Many feature extraction techniques have been proposed in the existing literature to per-

form ocular recognition. Depending on the region of interest from which the features are

extracted, a majority of the existing techniques can be classified into two categories: global

(e.g., GOH [90], GIST [91], etc.) or local (e.g., SIFT [90,92]). While global feature extrac-

tion techniques summarize features from the entire image (e.g., shape, color, texture, etc.),

local feature extraction techniques gather information around a set of detected key points.

Examples of images showing the sampling point patterns for global and local feature ex-

traction schemes are shown in Figure 1.11. The extracted information is summarized using

histograms, and matched by computing the corresponding Euclidean distances. Existing

studies report reasonably good ocular recognition performance when using just one type

of feature extraction scheme. Such a performance can be mainly attributed to the high

quality of the input images.

Currently, less research exists in the area of ocular recognition as it is a relatively new

topic in biometrics. Woodard et al. [23] and Bhatt et al. [91] show that ocular information

can aid iris recognition under non-ideal image acquisition conditions. Work by Park et

al. [24] suggests that ocular information can be used in situations where face recognition

may fail (e.g., facial occlusions caused by scarves). It has also been observed that the

ocular information can provide a reasonable gender identification performance [93]. Studies

by Hollingsworth et al. [94, 95] provide a benchmark for comparing human and machine
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(a) (b)

Figure 1.11: Sampling point patterns for (a) local (e.g., SIFT) and (b) global (e.g., GOH)
ocular feature extraction schemes.

performance using ocular information. More recent studies have indicated that the ocular

region can provide significantly higher performance than the iris, when imaged under highly

non-ideal conditions [4, 96].

1.5 Factors that affect Iris and Ocular Recognition

Various factors that can render iris and ocular recognition challenging, are listed as

follows:

1. Poor illumination: An iris image acquired under poor illumination may not reveal

the richness of the iris texture. Furthermore, performing iris segmentation would be

extremely difficult, as the image may offer minimal or no information about the iris

boundaries. Similarly, an ocular image acquired under low illumination may not offer

enough information regarding the iris radius or location, thereby rendering ocular

recognition very challenging. Figure 1.12 shows an iris, and an ocular image acquired

under poor illumination conditions.

2. Specular reflections : Specular reflections are small regions in an iris image character-

ized by pixels of high intensity values, that are typically caused by improper focusing

of the light source. If specular reflections are present on (or even close to) the iris

boundaries, iris segmentation becomes difficult. Specular reflections that overlap

with the iris texture can induce noise, thereby lowering the recognition performance.

Figure 1.15 shows an iris image with specular reflections.

3. Stand-off distance: Stand-off distance refers to the distance of the camera from the
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(a) (b)

Figure 1.12: (a) Iris, and (b) ocular image acquired under poor illumination conditions. Al-
though the iris boundaries or location can be determined by humans, automatic recognition
using such images is extremely difficult [4].

Figure 1.13: An iris image containing specular reflections on the pupillary boundary.

subject. If the stand-off distance is large, the resolution (number of pixels occupied by

the iris region in an image) can be low. In such cases, the textural richness of the iris

observed in the image could be reduced, leading to a lower recognition performance.

Figure 1.14 shows an iris image acquired at a large stand-off distance.

Figure 1.14: Closeup of an iris image acquired at a large stand-off distance.

4. Image sensors : The following factors related to image sensors play a significant role

in acquiring a good quality iris or ocular image:

(a) Type of sensor: Iris sensors that acquire images in the Near-Infra Red (NIR)
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spectrum are preferred over sensors that operate in the visible spectrum. This

is based on the fact that even dark colored irides can reveal detailed texture

information when imaged in the NIR spectrum.

(b) Resolution of the sensor: A high resolution sensor that can capture iris images

with a minimum diameter of 200 pixels are preferred over other low resolution

sensors.

(c) Positioning of the sensor: The positioning of the sensor plays an important role

in acquiring an iris image of good quality. For example, if the iris sensor is placed

above or below the eye level of a subject, the iris region may not be captured in

its entirety.

(d) Sensor noise: Although not seen as a major factor, sensor noise can produce

artifacts in an image, thereby affecting iris and ocular recognition. Sample iris

and ocular images containing sensor noise are shown in Figure 1.15.

(a) (b)

Figure 1.15: Sensor noise in an (a) iris and (b) ocular image.

5. Eyelids : Eyelids are thin folds of skin that cover and protect the eye from foreign

bodies and extreme lighting. The movement of eyelids can be both voluntary (e.g.,

closing eyelids when tired), or involuntary (e.g., blink caused by a reflex). To obtain

an un-occluded image of the iris, the user is required to hold the eyelids wide open for

a brief period of time during image acquisition. However, under normal conditions,

a minor portion of the human eye is typically occluded on the top and the bottom,

by the upper and the lower eyelid, respectively. Such occlusions can reduce the area

of iris image that can be captured in an image. Figure 1.16 shows an iris image

exhibiting eyelid occlusion.
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Figure 1.16: An iris image showing occlusions caused by the eyelids.

6. Eyelashes : Eyelashes are the hair at the end of the eyelids. Like eyelids, eyelashes also

provide protection to the eye from external debris. Although the occlusions caused

by eyelashes are minimal, they can impact the process of iris segmentation. This is

due to the fact that eyelashes can cause uneven interruptions at the limbus boundary.

Empirical observations reveal that eyelash occlusion is typically more pronounced in

Asian subjects, due to the presence of the epicanthic fold. Figure 1.17 shows an iris

image with eyelash occlusions.

Figure 1.17: An iris image showing occlusions due to eyelashes.

7. Nature of the interacting population: To acquire a good quality iris or ocular image,

it is required for the target population to be cooperative and habituated with the

image acquisition system.

8. Outliers : In rare cases, diseases and abnormalities of the iris can impact the segmen-

tation and recognition performance (e.g., congenital abnormalities). A sample image

of such case is shown in Figure 1.18.

9. Eye glasses or contact lenses : If a user wears eye glasses or contact lens, the ac-

quired iris or ocular images may suffer from additional reflection artifacts due to
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Figure 1.18: Iris image of a subject suffering from congenital iris abnormality. Notice that
the pupil boundary is neither circular nor elliptical. Image taken from [5].

these entities. In recognition system involving cooperative subjects, this problem

can be minimized by requesting the user to avoid wearing eye glasses during image

acquisition. However, if a subject wears contact lenses (cosmetic/non-cosmetic), it

may not be convenient for the user to remove them, even in a cooperative image ac-

quisition setup. Research has shown that contact lenses can impact the performance

of iris segmentation and recognition [6]. Figure 1.19 shows iris and ocular images of

two different users wearing contact lens (non-cosmetic, hard lens) and eye glasses,

respectively.

(a) (b)

Figure 1.19: (a) An iris image of a subject wearing contact lens. (b) Ocular image of a
subject wearing eye glasses. Image in (a) taken from [6] c©Elsevier.

10. Motion blur : Motion blur in iris and ocular images can occur mainly due to three

reasons: (a) when the image is acquired from a moving subject, (b) movement of

the camera, and (c) movement of the subject’s eye while adjusting to the device

and the environment. In iris images containing motion blur, the texture of the iris

is blurred, thereby impacting the iris encoding. On the other hand, motion blur

in ocular images can impact the feature encoding, thereby reducing the recognition
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performance. Figure 1.20 shows iris and ocular images containing motion blur.

(a) (b)

Figure 1.20: An (a) iris and (b) ocular image containing motion blur.

11. Deviated gaze: Iris images containing deviated gaze are observed when the sensor is

not orthogonal to the plane of the iris. In such cases, the surface area of the iris region

captured is reduced than normal. Deviated gaze iris images are typically caused in

situations where the image acquisition is non-ideal, i.e., when the subject is in motion,

or not aware of the image acquisition process. Figure 1.21 shows an example of a

deviated gaze iris image.

Figure 1.21: An off-angled iris image.

12. Aging : Flom and Safir [21] have postulated that the basic, significant features of the

iris remain extremely stable and do not change over a period of many years. However,

the claim regarding the permanence of the iris has been challenged in the recent

literature [6]. This effect is also shown to slightly reduce the recognition performance.

Similarly, aging can cause significant variations within the ocular regions. While

research in this area is still pending, a drop in ocular recognition performance could

be expected due to the variation in the overall appearance.
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13. Deformation: The ocular region appearance can significantly vary due to the defor-

mations occurring around the eye. Such deformations are non-linear, non-rigid, and

are quite difficult to model using the existing techniques. Ocular recognition using

such images is a challenging task. Figure 1.22 shows the variation in the appearance

of ocular region due to deformations, caused by eye-blinking.

(a) (b)

Figure 1.22: Images showing the variation in appearance of ocular region: (a) without, and
(b) with deformations, respectively. Image source: 04233d1632-08-l.jpg and 04233d1649-
03-l.jpg from [7].

14. Image compression: Under practical considerations involving large number of users,

iris images could be compressed before storing in a database to reduce the stor-

age requirements. Daugman [97] suggests that the recognition performance can be

impacted by such image compression process. Several recommendations have been

proposed to limit the image compression factor for iris images [88]. An example of a

compressed iris image is provided in Figure 1.23.

Figure 1.23: An iris image with artifacts caused by severe image compression. Image taken
from [8].
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1.6 Motivation

Given good quality iris or ocular images (i.e., images that do not exhibit the non-

ideal factors listed in Section 1.5), the recognition performance can be expected to be

nearly perfect. However, obtaining such images is a very controlled process. The users are

typically required to be stationary (or walking at a very slow pace), and maintain a fixed

gaze at a specified location for a short period of time. Such constraints have generated an

increasing amount of interest to advance ocular biometrics under challenging conditions.

The most invested effort in this regard is towards minimizing the user constraints, while

improving the recognition performance. Following is a list of sample scenarios that render

ocular recognition challenging, thereby motivating the need for extensive research in this

area:

1. Recognition at longer distances : When performing ocular recognition involving large

stand-off distances, the quality of the captured image could be significantly reduced

(even with cooperative subjects). An example of such scenario, as shown in Fig-

ure 1.24(a), could be an access point involving subjects walking through a portal.

2. Surveillance under covert conditions : In some cases, surveillance could be carried out

under covert conditions where the subjects are unaware of the recognition process.

Therefore, a large number of images could suffer from a combination of non-ideal

factors, thereby negatively impacting the recognition performance. Figure 1.24(b)

shows a practical example of such situation involving watch-list screening at an access

point.

3. Limited control over image acquisition process : Three major factors contribute to the

quality of an image acquired during image acquisition: (a) cooperation of the users,

(b) ambient conditions, and (c) sensor limitations. While it is desired to optimize all

the factors during image acquisition, such control may not be practically feasible in

every situation. Example scenarios of this consideration include availability of only a

particular type of sensors (e.g., visible), involvement of users that are unacquainted

with the system, and poor ambient conditions (e.g., low illumination).

4. Cross-source matching : In many practical applications, it is possible to encounter the
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problem of matching ocular images obtained from different sources. Some examples

of this consideration include:

• Cross-sensor matching - Matching scenarios in which the sensor used for ac-

quiring the probe images is different from that used during enrollment. The

probe and gallery images could exhibit variations in resolution, image formats

and sensor parameters (e.g., depth of field, field of view, illumination source,

etc.), thereby impacting the recognition performance. A sample pair of ocular

images acquired using two different sensors are shown in Figure 1.24(c).

• Cross-modality matching - Matching scenarios involving probe and gallery im-

ages that differ with regards to the biometric modality captured (e.g., face, iris,

and ocular). Such scenarios could arise when the availability of the iris images is

limited (e.g., forensic application where the iris region in a face image acquired

using a surveillance camera, has to be matched with the iris images stored in a

database). Cross-modality ocular recognition can present significant challenges

during the automatic localization, feature extraction and matching stages. An

example of cross-modality matching is shown in Figure 1.24(d).

5. Spoofing : An iris recognition system is vulnerable to a spoof attacks if a fake iris

sample (e.g., contact lens printed with artificial patterns) is presented. Detection of

spoofed iris images is a significant challenge, and is currently an active research topic.

As shown in Figure 1.24(e), using the additional information from the surrounding

ocular information could potentially remedy this problem.

1.7 Contributions

The main scope of this thesis is in improving performance of iris and ocular recognition

systems under unconstrained conditions. The major contributions of this thesis are:

• Improving low-resolution iris recognition: A technique for improving iris recog-

nition involving low-resolution images is proposed. The proposed approach performs

image-level using Principal Components Transform (PCT) and image averaging. The
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(a) (b)

(c)

(d)

(e)

Figure 1.24: Sample scenarios that motivate the need for rigorous research in ocular recogni-
tion: (a) recognition at a distance (image from [9]), (b) covert surveillance (image from [10]),
(c) cross-sensor matching (image from [11]), (d) cross-source matching (author’s personal
images), and (e) spoofing (image from [12]).

proposed approach is observed to outperform the existing image-level fusion schemes

related to this problem.
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• Mitigating effects of plastic surgery using ocular information: The feasibility

of improving overall recognition performance in plastic surgery images by combining

face and ocular information is demonstrated. It is shown that such fusion leads to

improved recognition performance, when compared to using face recognition only.

• Matching ocular regions in face-iris image pairs: The advantage of using ocular

region in matching RGB face and NIR iris images is demonstrated. A sparse repre-

sentation approach is proposed which generates a joint dictionary from corresponding

pairs of face and iris images. The proposed approach is observed to outperform ex-

isting ocular recognition techniques. Additionally, it is observed that ocular region

provides better recognition performance when compared to iris, in the considered

challenging database.

1.8 Thesis Organization

This thesis focusses on improving iris and ocular recognition under non-ideal conditions.

Chapter 2 describes a technique for improving iris recognition performance in low-resolution

images. Chapter 3 deals with improving face recognition performance after plastic surgery,

using ocular region information. Chapter 4 describes the ocular matching problem in RGB

face and NIR iris image pairs.
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Chapter 2

Low Resolution Iris Recognition

2.1 Introduction

There has been a steady increase in attention towards achieving reliable iris recogni-

tion from a distance. However, a good recognition performance can be guaranteed only

when cooperative subjects, within a short distance from the sensor, are involved. Under

unconstrained conditions, the images may be of poor quality, thereby reducing the recog-

nition performance. The present chapter discusses iris recognition involving low-resolution

imagery.

A wide number of factors can impact the resolution of an iris image. Some of such

factors include: (a) stand-off distance (i.e., distance of the subject from the sensor), (b)

resolution of the sensor, (c) ambient conditions (e.g., atmospheric turbulence), and (d)

moving subjects in an unconstrained image acquisition environment. While the effects of

other factors can be mitigated by using a high resolution sensor, it is difficult to handle

the stand-off distance problem. An increase in the stand-off distance can reduce the size

(or pixel resolution) of the eye recorded in an image, when a fixed zoom-factor sensor is

used. Such a resolution reduction can lower the textural quality of the iris in the image,

which can in turn affect the performance of the recognition system. Figure 2.1 illustrates

this effect.

When the input images are of poor quality, fusion methods can be used to enhance the

recognition performance. Biometric fusion refers to the process of aggregating the informa-

tion needed for reliable recognition from multiple sources of evidence [98]. Depending on

the type of information available, fusion can be performed at various levels in a biometric

system (e.g., image-level, feature-level, score-level, etc.). In this chapter, an image-level
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(a) (d)

(b) (e)

(c) (f)

Figure 2.1: Panels (a), (b), and (c), respectively, show the face, the eye, and the normal-
ized iris regions (in the visible spectrum) of a subject standing close to the sensor. The
corresponding regions for a subject with larger stand-off distance are shown in panels (d),
(e), and (f), respectively.

fusion scheme is presented that uses the information contained in the multiple frames of

an iris video. The use of multi-frame iris fusion has several benefits:

1. In many image-level fusion techniques, registration (or alignment) of the input images

into a single coordinate system of reference is very important. Registration of images

obtained at different time instances or from different sensors, is a challenging task.

However, the frames extracted from a given iris video are likely to be aligned. As a

result, the errors caused by improper image registration can be greatly reduced.

2. The frames within an iris video contain information related to the spatio-temporal

activity of the iris and its surrounding region over a short period of time. As this

information is continuous, good quality frames can be selectively chosen for fusion

while avoiding poor quality frames.

The proposed technique performs image-level fusion in two stages: (i) by first applying

Principal Components Transform (PCT) to the individual frames, and (ii) then averaging
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the resulting images. The performance of image-level fusion is compared against that of

score-level fusion. Experimental results, in both cases, indicate that the fused outputs pro-

vide better recognition performance than their corresponding low-resolution source images.

2.2 Image-level Fusion

2.2.1 Existing Work

Super-resolution techniques may be used to perform image-level fusion. Super-resolution

is the process of generating an image with a higher resolution than the corresponding source

images. The information from individual frames can be fused into a single composite image

with higher resolution, resulting in better recognition performance. Although much work

has been done in the face recognition domain, super-resolution of iris images has not been

widely discussed in the literature. This is due to the stochastic nature of the iris texture

which does not lend itself to traditional super-resolution schemes. Fahmy [99] describes

an interleaving process to generate a high resolution iris image from a low resolution face

video. Iris regions of equal sizes are segmented from the low-resolution frames of a face

video. These iris regions are registered using a cross correlation model, and interleaved

with each other to form an image of higher resolution. This process is iterated multiple

times to generate a high resolution iris image.

Huang et al. [100] propose a learning based algorithm to improve the resolution of

normalized iris images. The algorithm is trained using a large number of image pairs

consisting of low-resolution normalized iris images and their corresponding high-resolution

versions. In the training stage, each low-resolution normalized iris image is tessellated into

multiple blocks, and the relation of each block with its corresponding high-resolution pair is

modeled using Markov networks. In the testing stage, a high-resolution output is generated

by upsampling the input low-resolution image and restoring the lost frequency information

based on the best matching training blocks from the database.

2.2.2 Fusion in Iris Videos

While the input in the above mentioned approaches is a static set of individual images,

Hollingsworth et al. [101] use a set of frames extracted from an iris video. A set of 10

good quality frames are chosen automatically and the iris is segmented and normalized in
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each of them. These normalized irides are then fused on a pixel-by-pixel basis, by using an

operator (e.g., mean, median, etc.). Consider a set of n images {I1, I2, . . . In} each of size

M × N . The intensity of the final fused image Ifused at a location (i, j) can be obtained

via the mean operator as

Ifused(i, j) =
1

n

n∑

p=1

Ip(i, j), (2.1)

where 1 ≤ i ≤ M and 1 ≤ j ≤ N . This technique can be viewed as a pixel-level fusion

scheme, where the pixel intensity at a given location of the output is dependent only on

the corresponding pixel intensities of the input images. Although the technique is simple,

the recognition performance of the resulting output is greatly improved [101]. However,

such an output strongly depends on the following factors:

1. Number of observations : The output is typically more reliable if the number of the

input samples, n, is large. If n is small, the output can be a weak estimate.

2. Accuracy of observations : If a majority of the input images contain noise, the quality

of the output image cannot be expected to improve over the input images. For

example, if a large number of input images are blurred at a specific region, it cannot

be rectified in the resulting output.

Furthermore, the input images should be perfectly registered. If the registration is inac-

curate, the output would be an approximate or a smoothed representation of the actual

scene. Perfect registration of iris images obtained in non-ideal environments is a challenging

problem. In iris images, imperfect registration can perturb the texture of the output and

reduce the matching performance of the system. Thus, it has to be ensured that the fusion

scheme does not alter the textural richness of the iris.

The approach proposed in this thesis performs image-level fusion in two stages. In the

first stage, an image reconstruction scheme based on the Principal Components Transform

is used to re-estimate the input images. In the second stage, the reconstructed input

images are fused by an image averaging scheme using the mean operator. The recognition

performance obtained using the output generated by the two-stage approach is observed to

be higher than the performances obtained after applying either of the stages.
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2.3 Principal Components Transform

2.3.1 PCT versus PCA

Principal Components Analysis (PCA) has been widely used in the field of automatic

face recognition. Turk and Pentland [102] view each face image as a point in a high-

dimensional sub-space whose coordinates correspond to the pixel intensities. Based on a

large set of registered training face images, PCA is used to determine a set of orthogonal ba-

sis vectors, referred to as eigenfaces or principal components, that correspond to directions

of maximum variance in the original sub-space. Subsequently, any given face image can be

represented as a weighted sum of such eigenfaces. In the field of iris recognition, Dorairaj

et. al. [82] use PCA to determine a set of basis vectors for iris images. However, in the

absence of a common morphology in normalized iris (unlike face which has some common

landmarks across images), the basis vectors do not have a trivial physical interpretation.

In this thesis, PCA is used in a different manner than what has been typically used in

the biometrics literature. To avoid confusion, the PCA technique used in [102] (and other

publications) is referred to as the conventional PCA, while the technique used in this work

is referred to as Principal Components Transform (PCT). The major differences between

the conventional PCA, and the PCT approach used in this work are listed below:

1. Given a set of n images, each having a spatial resolution ofM×N , conventional PCA

represents every image as a point in the MN dimensional space. In this work, an n

dimensional space is considered in which each pixel intensity vector is a point. The

pixel intensity vector, ~Vpq, that contains pixel intensity values across all given images

at a location (p, q), is defined as:

~Vpq = [I1(p, q), I2(p, q), . . . , In(p, q)]
T , (2.2)

where Ij(p, q) denotes the pixel intensity value of an image Ij at a location (p, q), and

j = {1, . . . n}, p = {1, . . . ,M}, q = {1, . . . , N}. This variation in representation can

be easily obtained by considering a different scheme for stacking (or arranging) the

pixel values of the images, as shown in Figure 2.2.

2. Conventional PCA is typically applied on multiple images of different subjects, to

highlight the variance information among the images. On the other hand, PCT is
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(a) (b)

Figure 2.2: Difference between PCA and PCT: (a) In an MN dimensional space, the
conventional PCA approach considers each image as a point (denoted by a circle). (b) In
an n dimensional space, the PCT approach considers every pixel intensity vector as a point
(denoted by a diamond).

applied on multiple images of the same subject, to highlight the variance information

among the pixel intensity vectors. Consequently, PCT seeks to extract discriminatory

pixels from the iris frames.

2.3.2 Mathematical Formulation

Consider a set of n images {I1, I2, . . . In}, each having a spatial resolution of M × N
pixels. Every image Ij, is transformed to a row vector, ~Ij , of size 1 × MN where j =

{1, 2, . . . n}. An image data matrix X is obtained by stacking∗ the n row vectors, one per

row, as shown below:

X =




~I1
~I2
.
.
~In



. (2.3)

∗The major difference between the conventional PCA and the PCT approach lies in the stacking process
used to generate the image data matrix. Turk and Pentland [102] stack the images as column vectors into
X, whereas PCT considers the images as row vectors. See Figure 2.3 for a better understanding of the
stacking process.
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Figure 2.3: The process of stacking image pixels used to generate image data matrix X for
the PCT approach.

The size ofX will be n×MN . In other words, every column of the image data matrixX is a

pixel intensity vector at a particular location. This process is illustrated in Figure 2.3. For

this data, the empirical mean vector ~mX is computed along each dimension. The resulting

row vector of size 1×MN is given by the following equation:

~mX =

∑n
p=1

~Ip

n
. (2.4)

The covariance matrix CX for the image data can be computed by the equation:

CX =
1

n
(X − I ~mX)(X − I ~mX)

T (2.5)

where I is an identity matrix of size n × 1. The size of the covariance matrix CX will be

n× n.
The eigenvectors of the covariance matrix CX are obtained by decomposing it into its

canonical form. Using this information, the input data can be transformed into a new

feature space by the equation:

Y = A(X− I ~mX), (2.6)

where A is an n × n matrix, whose rows contain the normalized eigenvectors of CX. At

any point of time, the original data X can be recovered by performing a simple inverse
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 2.4: Left column: Normalized input iris images. Middle column: principal com-
ponents of the input data arranged in the decreasing order of magnitude. Right column:
reconstructed output obtained by using the PCT approach with q = 2. Images have been
scaled to fit the document.

transformation given by:

X = A−1Y + I ~mX. (2.7)

As the rows of A are ortho-normal vectors, A−1 = AT . Hence the above equation becomes:

X = ATY + I ~mX. (2.8)

If only the most significant q principal components of the data are retained, A becomes

a q × n matrix, denoted as Aq. The transformed data obtained by using only the selected

q principal components is given by the following equation:

Ỹ = Aq(X− I ~mx), (2.9)

where the size of Ỹ is q ×MN . Even though some of the eigenvectors are discarded, it is

still possible to recover the initial input data by considering the following approximation:

X̃ = AT
q Ỹ + I ~mx, (2.10)
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Consider an input of 6 normalized iris images, as shown in the left panel of Figure 2.4.

The principal components of this data, arranged in the descending order of magnitude, are

shown in the central panel of Figure 2.4. It can be noticed that the principal components of

higher magnitude account for the maximum variability in the input data. If all the principal

components are used, the original data can be reconstructed. The images reconstructed

using only the top q (in this case, q = 2) principal components are shown in the right panel

of Figure 2.4. The above process results in an approximation of the initial data, since all

the eigenvectors are not used during reconstruction. However, the impact of dropping the

lowest-valued eigenvectors is less significant on the reconstructed data.

2.4 Proposed Approach

The following steps describe the process by which the proposed image-level information

fusion scheme is applied to low resolution iris video frames:

1. Let V be a low-resolution iris video containing n frames denoted by F = {f1, f2, . . . fn}.

2. A set of k good quality frames are manually selected from the available frame set. It

is not necessary for the selected frames to be successive in the video stream.

3. The selected frames are processed to segment and normalize (un-wrap) the iris to

equal sized rectangular entities.

4. PCT is applied on these normalized frames to obtain the reconstructed frames †.

5. The reconstructed frames, are further fused by image averaging process, yielding a

single output image. This output, instead of the original input, is used during the

recognition process.

By using the evidence of multiple frames, the PCT based on pixel intensity vectors,

projects the iris image onto a lower manifold where its discriminatory information is opti-

mized. This optimization is accomplished using the eigenvectors of the covariance matrix

of pixel intensities. While other types of manifold analysis techniques can be used, in the

†The transformation alters the content of the input frames but does not change their spatial resolution.
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interest of computational complexity, the PCT scheme is adopted in this work. By re-

constructing the frames based on the eigenvectors, the salient information is extracted. A

schematic of the technique is shown in Figure 3.6.

Figure 2.5: Proposed image-level fusion scheme.

2.5 Experiments and Results

2.5.1 Database

A subset of the Multi-Biometric Grand Challenge (MBGC) database [103] containing

Near Infrared (NIR) iris videos was used for the experiments. The iris video streams of

multiple subjects are recorded in MPEG-4 format under varying illumination. A set of

110 right iris videos were selected for the study by considering 1 video each of 110 unique

subjects. Frames are extracted from the videos and saved in BMP format without any

compression. Each video contained 300 frames on an average, with every frame having a

spatial resolution of 640× 480 pixels.

A gallery set comprising a total of 440 images was formed by selecting 4 frames per

subject. The value of k, which represents the number of low-resolution probe frames, was

chosen as 6. This provides for a direct comparison of the recognition performances obtained

by the proposed approach and the image averaging approach. [101]. Therefore, a set of 660
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frames (6 frames each, for 110 videos) were chosen as the probe set. The frame selection

process was performed manually, based on factors that impact the amount of information

useful for recognition (e.g., percentage of iris visible in the frame, specular reflection, blur,

occlusion due to eyelashes and eyelids, etc.).

2.5.2 Pre-processing

To simulate the low-resolution imagery, the original probe set of 640 × 480 pixel res-

olution (referred to as ProbeSet L1) is sub-sampled. Sub-sampling was performed by an

averaging operator to reduce the size of a frame by a factor of 4: 1/2 the length and 1/2 the

width. The sub-sampling operation was performed on every frame of the ProbeSet L1 to

obtain a lower-resolution frameset. This process was used iteratively to generate multiple

framesets of the following resolutions: 320 × 240, 160 × 120, and 80 × 60 (referred to as

ProbeSet L2, ProbeSet L3, and ProbeSet L4, respectively). Any resolution below 80× 60

pixels (ProbeSet L4) was considered too low to work with. The average diameter of the

iris in ProbeSet 1, ProbeSet 2, ProbeSet 3, and ProbeSet 4 was approximately 220, 110,

50, and 20 pixels, respectively. Figure 2.6 shows a sample frame at various resolutions.

Figure 2.6: A sample right iris frame of resolution 640 × 480 down-sampled to resolutions
of 320×240, 160×120, and 80×60 using the image averaging operator. Images have been
scaled to fit the document.

2.5.3 Iris Segmentation

Three different approaches were used to perform automatic iris segmentation‡: (a)

Hough transform, (b) Integro-differential operator, and (c) Geodesic Active Contours.

‡A detailed description of the three considered approaches is provided in Appendix A.
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Segmentation technique Number
of input
images

Number of
correctly
segmented
images

Segmentation
accuracy

Integro-differential opera-
tor

660 353 53.4%

Hough transform 660 371 56.2%

Geodesic Active Contours
(GAC)

660 427 64.6%

Table 2.1: Segmentation accuracies of the three techniques using ProbeSet L4.

The segmentation accuracies§ of the three approaches using ProbeSet L4 are listed in

Table 2.5.3. It can be observed that the segmentation performance of all the considered

approaches is low. Segmenting the iris becomes increasingly difficult with the decreasing

resolution of the image. This is due to the reduced quality of a low-resolution image,

thereby impacting the iris boundary information.

To avoid the effect of incorrect iris segmentation on the recognition performance, a

semi-automated segmentation scheme is adopted. Iris segmentation was performed inde-

pendently on each frame for the various probe sets. This is performed by a human observer

by marking the boundaries of the iris in a frame. Simultaneously, a noise mask is created,

which records the locations of eyelids and eyelashes that occlude the segmented iris. Both

the segmented iris region and the noise masks are normalized using Daugman’s rubber

sheet model [62]. For the experiments, the segmented irides in all probe sets (varying res-

olution) are normalized to a fixed size: 32× 180 pixels. Usually, the most suitable size for

normalizing an iris image is based on the radii of the pupil and iris. However, matching nor-

malized irides of different sizes is not possible using the existing Daugman’s approach [62].

In general, matching iris images of different resolutions is still an open problem. The loss

of textural information caused by normalizing frames of varying resolutions to a fixed size

can be noticed in Figure 2.7.

To extract the textural features of the iris, a two dimensional Gabor filter is convolved

with the unwrapped iris image. The output of this convolution operation contains both

the real and imaginary responses. A phase demodulation process is used to encode these

responses to a binary biometric template, often called as an IrisCode. Hamming distance

§Segmentation accuracy = Number of correctly segmented images
Number of input images

× 100
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(a)

(b)

(c)

(d)

Figure 2.7: Normalized probe images corresponding to an iris frame at multiple resolutions:
(a) 640 × 480, (b) 320 × 240, (c) 160 × 120, and (d) 80 × 60. Images have been scaled to
fit the document.

is used to measure the dissimilarity between two IrisCodes while masking the correspond-

ing noisy regions. An open source MATLAB implementation [77] was used with minor

modifications to perform above mentioned operations.

2.5.4 Recognition Accuracy

Two iris recognition software packages, IrisBEE [104] and VeriEye [105], were initially

used to observe the matching performance at various image resolutions. However, neither

package could generate the iris templates or perform matching on probe images below a

resolution of 320× 240. Thus, the performance evaluation in this work is conducted using

an open source MATLAB implementation [77] for iris encoding and matching. Receiver

Operating Characteristic (ROC) curves are used to evaluate and compare recognition per-

formance. Every frame in the probe set is matched against all the gallery frames. A total of

2, 640 genuine scores and 287, 760 impostor scores were obtained by the matching process

for each probe set. The performances obtained by matching the probe sets with the gallery

are shown in Figure 2.8.

From Figure 2.8, it is observed that the recognition performance drops significantly
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ProbeSet L1: EER = 3.90%
ProbeSet L2: EER = 3.95%
ProbeSet L3: EER = 4.21%
ProbeSet L4: EER = 6.09%

Figure 2.8: ROC curves for the right iris data, obtained by matching probe sets with the
gallery.

for ProbeSet L4. Therefore, the proposed algorithm is used on this set to improve its

performance. As interpolation is a commonly used technique to upsample low-resolution

images, the matching performance obtained after interpolation is used as the baseline.

Hence, the recognition performance obtained by interpolating ProbeSet L4 to a resolution

of 160 × 120 is used as a baseline. Figure 2.9 shows the recognition performances of the

new framesets obtained by applying (a) only PCT, (b) only image averaging, and (c)

the proposed approach, on normalized frames of ProbeSet L4. From the figure, it can

be noticed that the Equal Error Rate of ProbeSet L4 is reduced from 6.09% to 1.76%.

This suggests that the recognition performance of the proposed approach is better than

performances obtained by the individual stages involved (PCT and averaging).

The genuine and impostor match score distributions of ProbeSet L4 before and after

applying the proposed technique are shown in Figure 2.10. From the results, it is observed

that the genuine match score distribution shifts toward zero, indicating a reduction in false

reject rate (FRR).

To further evaluate the performance of the proposed technique, the above experiment

was repeated with the same setup using the left iris videos of 100 subjects. The perfor-
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ProbeSet L4: EER = 6.09%
Using interpolation: EER = 5.70%
Using image averaging: EER = 3.34%
Using only PCT: EER = 4.44%
Proposed approach (PCT + averaging): EER = 1.76%

Figure 2.9: ROC curves for the right iris data, obtained before and after applying the
proposed technique. Note that by applying the proposed approach, the Equal Error Rate
of ProbeSet L4 is reduced from 6.09% to 1.76%.

mances obtained using this data are summarized in Table 2.2. From the results obtained

using both left and right iris videos, it can be stated that the recognition performance of

low resolution frames can be significantly improved using the proposed technique. Addi-

tionally, it is observed from Table 2.2 that the recognition performance is slightly improved

when images are down-sampled from a resolution of 640 × 480 to 320 × 240. One of the

reasons for such effect could be the reduction of noise by the down-sampling process. Sim-

ilar observations were made in studies related to the impact of fingerprint resolution on

recognition performance [106].

Table 2.2: Equal Error Rates obtained using the left iris video data.

Probe Set EER

ProbeSet L1 3.16%

ProbeSet L2 2.96%
ProbeSet L3 3.10%

ProbeSet L4 5.45%
On interpolating ProbeSet L4 3.38%

On applying PCT on ProbeSet L4 2.03%
On applying averaging on ProbeSet L4 2.58%

On applying the proposed approach (PCT + averaging) on ProbeSet L4 1.48%
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Figure 2.10: Genuine and impostor match score distributions for the right iris data: (a)
before, and (b) after applying the proposed technique.

2.5.5 Proposed Approach on High-Resolution Images

From Figures 2.8, 2.9, and Table 2.2, it can be observed that the performance obtained

by applying the proposed approach on ProbeSet L4, is better than that of ProbeSet L1.
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This observation can lead to an assumption that fusing the low-resolution images by the

proposed approach can provide better performance than the high-resolution images. How-

ever, it has to be noted that the significant improvement in the performance of ProbeSet L4

is caused mainly by the image averaging process. This is because the image averaging step

yields a significantly lower number of images for ProbeSet L4 upon applying the proposed

approach (110 and 100 images for right and left sides, respectively), when compared to the

number of images in ProbeSet L1 (660 and 600 images for right and left sides, respectively).

To validate this argument, the proposed approach (PCT + averaging) is also applied on

ProbeSet L1. The Equal Error Rates obtained using left and right iris ProbeSet L1 data

are listed in Table 2.3. The corresponding ROC curves for right iris data are shown in Fig-

ure 2.11. From the results, it can be observed that the proposed approach greatly improves

the performance of ProbeSet L1, in comparison to that of ProbeSet L4. The contribution

of image averaging in improving the recognition performance can be clearly observed from

Table 2.3. These results suggest that the proposed approach can improve the performance

of any given set of iris video frames.
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ProbeSet L1: EER = 3.90%
ProbeSet L4: EER = 6.09%
Proposed approach (PCT + Averaging) on ProbeSet L1: EER = 0.69%
Proposed approach (PCT + Averaging) on ProbeSet L4: EER = 1.76%

Figure 2.11: ROC curves for right iris ProbeSet L1 and ProbeSet L4, before and after
applying the proposed approach.
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Table 2.3: Equal Error Rates obtained before and after applying the proposed
approach on right and left iris ProbeSet L1 data.

Probe Set
Right
Iris

Left
Iris

ProbeSet L1 3.90% 3.16%
On applying image averaging on
ProbeSet L1

1.30% 1.56%

On applying PCT on ProbeSet L1 1.75% 1.89%

On applying the proposed approach
(PCT + averaging) on ProbeSet L1

0.69% 0.82%

2.5.6 Effect of Down-sampling Methods

As described in Section 2.5.2, the low-resolution probe frames used in this work were

generated by an image averaging operator. The averaging operator sub-samples a given

frame by a fixed factor of 4: 1/2 the length and 1/2 the width. A potential concern

with this approach is whether the output obtained by such a process accurately represents

low-resolution imagery encountered in practical scenarios (e.g., when using low-resolution

optics or sensors, or when large stand-off distances are involved). The most accurate

approach to address this concern would be by using the exact transfer function (or, down-

sampling method) that relates the high- and low-resolution images. However, the process of

learning the actual transfer function is very complicated, and an area of research by itself.

Furthermore, sensor parameters for biometric images are not always known (e.g., when

using surveillance data). In this regard, a Gaussian filtering approach was used to down-

sample the images. The Gaussian filter, due to its anti-aliasing property, is considered to

provide an output that is closer to real-world low-resolution imagery [107]. Gaussian filters

are the only class of functions whose point spread function (PSF) and optical transfer

function (OTF) belong to the same class. This is because the Fourier Transform of a

Gaussian function is still a Gaussian.

The experiments described in Section 2.5.4 were repeated by simulating the low-resolution

images using a Gaussian filter. The images obtained by Gaussian down-sampling are shown

in Figure 2.12. Note that the images are scaled to fit the document and it is difficult to

assess the variations in image quality by comparing Figure 2.12 with Figure 2.6. To provide

a visual comparison of the two down-sampling techniques, normalized images obtained by

Gaussian and averaging filters are shown in Figure 2.13. From the figure, it can be observed
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that the visual variations between the images are very minimal. The recognition perfor-

mances obtained using images down-sampled by Gaussian filtering are listed in Table 2.4.

From the results, it can be observed that the Equal Error Rates obtained using images

down-sampled by the Gaussian approach are not significantly different from those obtained

using averaging filter. In most cases, the EERs corresponding to Gaussian down-sampled

images are slightly higher. This is because the anti-aliasing property of the Gaussian in-

duces blur in the images, which impacts the recognition performance. From the results, it

can be observed that the proposed approach improves the recognition performance even in

the considered case.

Figure 2.12: A sample right iris frame of resolution 640× 480 down-sampled to resolutions
of 320 × 240, 160 × 120, and 80 × 60 using the Gaussian filtering approach. Images have
been scaled to fit the document. Note that the same image was used in Figure 2.6.

Table 2.4: Equal Error Rates obtained before and after applying the proposed
technique on right and left iris ProbeSet L1 data downsampled by the Gaussian
operator.

Probe Set
Right
Iris

Left
Iris

ProbeSet L1 3.90% 3.16%

ProbeSet L2 3.99% 3.00%
ProbeSet L3 4.32% 2.38%

ProbeSet L4 6.24% 5.38%
On applying the proposed approach
(PCT + averaging) on ProbeSet L4

1.80% 1.56%
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.13: Normalized images obtained from ProbeSet L1 to L4 that are downsampled
using Gaussian ((a), (c), (e), and (g)), and averaging ((b), (d), (f), and (h)) operators.
Images have been scaled to fit the document.

2.6 Score-Level Fusion

The match scores generated by comparing a gallery image against a multi-frame probe

set can be fused by employing a score-level fusion scheme [98]. In the current frame-

work, score-level fusion is applied to (a) ProbeSet L4 and (b) the corresponding frame

set obtained after applying PCT. Given a set of match scores {S1, S2, . . . Sn} obtained by

matching n probe frames {f1, f2, . . . fn} against a gallery image, a new score is generated

by the sum rule that merely takes the average of these scores. The EERs obtained by in-

voking score-level fusion on the right and left iris video data are summarized in Table 2.5.

The score-level fusion of the PCT output reduces the Equal Error Rate of ProbeSet L4

from 6.09% to 1.45% for the right iris videos, and from 5.45% to 1.46% for the left iris

videos, respectively. The results indicate that the recognition performance can be further

improved by using score-level fusion.



Raghavender R. Jillela LOW-RESOLUTION IRIS RECOGNITION 50

Table 2.5: Equal Error Rates obtained before and after applying score-level
fusion on the right and left iris video data.

Right Iris
(110 subjects)

Left Iris
(100 subjects)

Before After Before After
ProbeSet L4 6.09% 2.59% 5.45% 2.25%

PCT frameset 4.44% 1.45% 2.03% 1.46%

2.7 Effect of Image Registration

The image frames used in this work were extracted from continuous iris videos. All the

videos were acquired in a controlled environment with minimal eye movements and illumi-

nation variation. As a result, the need for a computationally expensive image registration

step can be reduced. Under unconstrained conditions, however, it cannot be expected

that the input images are well registered. Occlusions, eye movements, and contraction

or dilation of the pupil caused by illumination variations, can introduce significant image

registration errors. A robust image level fusion scheme should successfully handle such

variations to provide a reliable recognition performance. In this regard, the effectiveness

of the proposed approach is tested using misaligned images. To this end, each of the 6

unwrapped iris images corresponding to every subject within ProbeSet L4 is subjected to

a random shift¶ of: (a) 10 pixels and (b) 15 pixels. Sample images containing such shifts

are shown in Figure 2.14. The choice of image shifts of 10 or more pixels is based on the

fact that Libor Masek’s implementation of Daugman’s algorithm compensates for image

shifts of up to 8 pixels. The corresponding noise masks are also shifted accordingly, and

recognition performance is computed.

The EERs obtained after shifting the individual frames, and after applying the proposed

approach are listed in Table 2.6. The EERs obtained after applying the image averaging

approach [101] are also provided for reference. From the results, it can be observed that

both the techniques provide poor performance when images are misaligned. This indicates

the need for robust image registration before applying both the approaches.

¶A random shift refers to any one of the following image shifts: up, down, left, and right.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 2.14: Normalized images corresponding to a single subject from ProbeSet L4 before
(left column) and after (right column) applying a random 10 pixel shift. Images have been
scaled to fit the document.

Table 2.6: Equal Error Rates obtained after image shifting and after applying
the proposed technique on right iris ProbeSet L4 data.

Shift
After applying
shift

After image
averaging

After applying
the proposed
approach

10 pixels 11.0% 32.2% 31.0%

15 pixels 23.2% 36.2% 36.7%

2.8 Summary

An image-level fusion scheme is proposed which improves the recognition performance

of low-resolution iris images. By using the proposed approach on a low-resolution iris

database (average iris diameter of 20 pixels), the equal error rates are significantly reduced

(from 6.09% to 1.76% for the right iris and from 5.45% to 1.48% for the left iris, respec-

tively). The effect of using two different down-sampling methods is also investigated, and

the proposed approach provides an improved performance in both considerations. The use
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of complex routines to enhance low-resolution iris videos can be avoided using the proposed

approach. Possible extension of this work would include further improving the recognition

performance by considering other sub-space analysis techniques for fusion (such as Lin-

ear Discriminant Analysis, Independent Component Analysis, etc.). The performance of

the proposed technique when the input images are not properly registered could also be

investigated. A large scale evaluation on larger and more challenging databases can be

performed.
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Chapter 3

Plastic Surgeries: Face & Ocular
Biometric Fusion

3.1 Introduction

The field of automatic face recognition has been significantly researched over the past

20 years. Extensive research efforts in this area have helped in attaining high recognition

performances [108]. However, the problem of automatic face recognition is not completely

solved yet. This is because the face recognition performance is negatively impacted in

the presence of occlusions and pose, illumination, expression (PIE) variations [109]. More

recently, a broader range of problems have garnered the interest of face recognition re-

searchers. Some of these problems include: photo-to-sketch matching, caricature recogni-

tion, age invariant recognition, matching plastic surgery images, etc. [110].

The task of successfully matching face images obtained before and after plastic surgery

is a challenging problem. The degree to which a face is altered depends on the type and

number of plastic surgeries performed, and it is difficult to model such variations. In this

chapter, a fusion approach is proposed that combines information from the face and ocular

regions to enhance recognition performance in the identification mode. It is observed that

the proposed approach provides the highest reported recognition performance (at the time

this work was done) on a publicly accessible plastic surgery database. Compared to existing

approaches, the proposed approach is not learning based and this reduces computational

requirements. This chapter also presents a systematic study of the matching accuracies

corresponding to various types of surgeries.
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3.2 Facial Plastic Surgeries

Facial plastic surgery generally refers to a medical procedure that involves modifying

the appearance of external facial anatomical features using surgical methods [111]. Based

on their purpose, plastic surgeries can be broadly classified into two categories:

1. Reconstructive: These surgeries are performed mainly to reconstruct the generic ap-

pearance of a facial feature, so that its functionality is restored or improved. For

example, surgical treatment of ptosis (drooping of the upper eyelid due to weak mus-

cles, that can cause vision interference).

2. Aesthetic improvement: These surgeries are performed to alter the appearance of

a fully functional feature, solely with the purpose of aesthetic improvement. For

example, restoring damaged skin due to burn injuries or accidents.

Facial plastic surgeries have become increasingly popular in the recent past, especially

for aesthetic improvement purposes. A report from the American Society of Plastic Surgery

states that a total of 14.6 million cosmetic and reconstructive plastic surgeries were per-

formed just within USA in the year 2012 [112]. Three of the top five surgeries in this set

relate to the modification of facial features [113]. Some of the major facial plastic surgeries

include: rhinoplasty (nose surgery), blepharoplasty (eyelid surgery), brow lift (eyebrow

surgery), otoplasty (ear surgery), and rhytidectomy (face lift surgery) (see Figure 3.1). A

detailed, but non-exhaustive list of facial plastic surgeries is provided in [114].

The degree to which the appearance of a human face can be modified by plastic surgery,

depends on the number and the types of surgeries performed. Figure 3.2 shows two image

pairs containing modifications based on the number of surgeries. Humans can recognize

such variations in facial appearance with very low, or moderate level of difficulty. How-

ever, plastic surgeries can negatively impact the performance of automatic face recognition

systems [115] because of the following reasons:

• Most face recognition algorithms take the holistic appearance of the face into ac-

count for feature extraction. A wide number of plastic surgeries can alter the overall

appearance of the face, thereby reducing the similarity between genuine image pairs.
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Figure 3.1: Some of the major facial plastic surgeries. Image taken from the FRGC
database [13].

• Depending on the type and number of surgeries performed, a multitude of variations

are possible in the appearance of the face. Such variations are difficult to be modeled

by existing face recognition algorithms.

(a) (b)

(c) (d)

Figure 3.2: Images showing the degree to which the appearance of a human face can be
modified by plastic surgeries. Top row: (a) before and (b) after a minor plastic surgery
(blepharoplasty). Bottom row: (c) before, and (d) after multiple plastic surgeries.

In some cases, facial plastic surgery can unintentionally serve as a method to circumvent

automatic face recognition systems. This can be a considerable security risk at locations

where automatic face recognition systems are actively employed (e.g., airports).
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Only recently, have researchers from the biometric community begun to investigate the

effect of plastic surgery on face recognition algorithms [114,116,117]. Prior to that, research

on this topic was stymied by the lack of databases containing pre- and post-surgery face

images. Singh et al. [114] assembled the first database that contains face images related to

various types of plastic surgeries. The low recognition accuracies that have been reported

on this database seem to suggest that the task of face recognition on plastic surgery images

is a challenging problem.

3.3 Existing Approaches

Singh et al. [114] reported recognition accuracies on the plastic surgery database using

six different face recognition algorithms: Principal Component Analysis (PCA), Fisher Dis-

criminant Analysis (FDA), Local Feature Analysis (LFA), Circular Local Binary Patterns

(CLBP), Speeded Up Robust Features (SURF), and Neural network Architecture based 2-D

Log Polar Gabor Transform (GNN). These algorithms were selected because they provide a

combination of appearance-based, feature-based, descriptor-based, and texture-based fea-

ture extraction and matching approaches. Despite combining local and global recognition

approaches, the matching performance obtained was rather low (see Table 3.1). Marsico

et al. [118] used correlation-based face recognition on pose and illumination normalized

images. Bhatt et al. [116] used an evolutionary granular approach with CLBP and SURF

features to process tessellated face images. Aggarwal et al. [117] used a combination of face

recognition by parts and sparse representation approach. The matching schemes used in

the literature, along with their rank-one recognition accuracies are listed in Table 3.1.

3.4 Motivation

A careful study of the existing research in this area reveals the following interesting

observations:

1. A majority of the algorithms that have been used are learning based which require

a carefully selected set of training images. Despite this, it can be observed that the

rank-one identification accuracy did not exceed 79%.

2. No commercial face recognition systems have been used for evaluating recognition
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Table 3.1: List of algorithms used for performing face recognition on plastic
surgery images and the corresponding rank-one accuracies.

Authors Algorithm used Rank-one
Accuracy

Singh et al. [114]

PCA 29.1%
FDA 32.5%
LFA 38.6%
CLBP 47.8%
SURF 50.9%
GNN 54.2%

Marsico et al. [118] Correlation based approach 70.6%
Bhatt et al. [116] Evolutionary granular approach 78.6%
Aggarwal et al. [117] Combination of recognition-by-parts &

sparse representation approaches
77.9%

performance.

3. No biometric fusion schemes have been explored in an attempt to improve recognition

accuracy.

Considering the rapid advancements in the area of face recognition, there is a need to

improve recognition accuracy on facial images exhibiting plastic surgeries. To this end, the

present chapter provides the following contributions:

1. The recognition performance of two commercial face recognition systems on plas-

tic surgery images is evaluated. It is demonstrated that these systems can provide

performance on par with the learning based methods.

2. An information fusion approach that combines independently processed ocular in-

formation with the face biometric is presented. The proposed approach is observed

to provide the current highest reported recognition performance on plastic surgery

images.

The usage of ocular information for this problem provides the following benefits:

1. An empirical analysis suggests that the number of plastic surgeries that affect the

appearance of the ocular region, compared to those that alter the holistic appearance

of the face, is very small. Table 3.2 shows a list of surgeries categorized based on the

primary facial region impacted by the surgery. It is apparent from this table that

only a few of the surgeries directly impact the ocular region. Thus, in post-surgery
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images, the ocular region is likely to be more stable than the global facial appearance.

Sample images demonstrating this observation are provided in Figure 3.3.

Table 3.2: List of major facial plastic surgeries separated by the corresponding
regions whose appearance can be potentially affected.

Primary region of impact Type of surgery
Entire face (10) Rhinoplasty, Genioplasty, Cheek implant, Otoplasty,

Liposhaving, Skin resurfacing, Rhytidectomy, Lip
augmentation, Craniofacial surgery, Dermabrasion

Only the ocular region (3) Blepharoplasty, Brow lift, Non-surgical local proce-
dures (e.g., BOTOX)

(a) (b)

(c) (d)

Figure 3.3: Facial images of a subject (a) before, and (b) after undergoing rhytidectomy.
(c) and (d): Corresponding ocular images of the same subject. Note that the variation in
the appearance of the face, from a visual perspective, is much larger than that of the ocular
region.

2. Existing research suggests that the fusion of ocular information with the face biomet-

ric can lead to improved recognition performance [24].

3.5 Ocular Recognition

The ocular region refers to a small region around the eye, containing the eye, the eye-

brows, and the surrounding skin. Recent research has shown that the ocular information

can be used as a soft biometric [24, 119]. It has been experimentally demonstrated that

the ocular information can be used in lieu, or to improve the matching accuracy, of the

iris [4] and face [24] under non-ideal conditions. While there are no specific guidelines for

the dimensions of the ocular region, Park et al. [24] suggest that including the eyebrows can
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result in higher matching accuracy. Most existing approaches use monocular information

from either the left or right side of an individual’s face. In this study, information corre-

sponding to both the eyes (bi-ocular [92]) is considered. The reasons for using bi-ocular

information are:

1. Park et al. [24] showed that the fusion of the left and right ocular region improves

matching accuracy.

2. The spatial resolution of the face images used in this work is very low (explained in

Section 3.7). Thus, utilizing the bi-ocular region ensures an effective use of informa-

tion.

Some examples of the bi-ocular images used in this work are shown in Figure 3.4.

(a) (b) (c)

Figure 3.4: Sample bi-ocular images used in this work. Note that the images have been
resized for the purpose of clarity.

3.6 Proposed Approach

Based on the initial hypothesis, the proposed approach combines the information from

the face and ocular regions at score level to improve the recognition performance. Two

commercial face recognition software, Verilook 3.2 [120] and PittPatt [121], were used in

this work. The use of these software helps in establishing baseline performances due to

commercial face recognition systems on plastic surgery images. This also helps in avoiding

computationally expensive training based methods.

To perform automatic cropping of ocular regions from face images, a face detector

based on the Viola-Jones Adaboost algorithm [122] was used. This step also serves as a

basic quality check, where challenging images that could cause Failure To Enroll (FTE)

error are discarded (e.g., images containing very small inter-ocular distances, partial faces,

etc.). Ocular regions extracted from low-resolution face images could be very noisy and
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impact the recognition performance. To perform feature extraction from ocular regions, two

techniques, viz., Scale Invariant Feature Transform (SIFT) [123] and Local Binary Patterns

(LBP) [124] were used. The combination of SIFT and LBP techniques allows for image

feature extraction at both local and global levels, respectively. Furthermore, SIFT and LBP

have been the most significantly used techniques∗ in the ocular recognition literature [4,24].

The use of these techniques helps in maintaining uniformity for performance comparisons.

3.6.1 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) technique works by detecting and encod-

ing information around local keypoints that are invariant to scale and orientation changes

of an image. Given an image I(x, y), the corresponding scale space image L(x, y, σ), at

a scale σ, is obtained as L(x, y, σ) = G(x, y, σ)) ∗ I(x, y), where G(x, y, σ) is a Gaus-

sian filter and the symbol ∗ represents a convolution operation. A set of Difference of

Gaussian (DoG) images, between scales separated by a multiplicative factor k, are ob-

tained by the equation DoG = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y). From this set of

images, extrema points are detected by choosing the local maxima or minima among

eight neighbors of a pixel in the current image, and nine neighbors each in the scales

above and below the current DoG image. These extrema points correspond to image

discontinuities and are further processed to exclude unstable extrema points. A 36 bin

orientation histogram covering the [0, 360] interval around each keypoint is then gener-

ated using the gradient magnitude m(x, y) and orientation θ(x, y) information, where

m(x, y) = [((L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2)]
1
2 , and θ(x, y) =

tan−1
(

(L(x,y+1)−L(x,y−1))
(L(x+1,y)−L(x−1,y))

)
. The orientation of the keypoint is computed as the highest peak

in the orientation histogram associated with it. The feature vector is obtained by sampling

the gradient magnitude and orientations within a descriptor window of size 16×16 around

a keypoint. The final keypoint descriptor of dimension 4×4×8 is generated by computing

an 8 bin orientation histogram over 4× 4 sample regions within the descriptor window. In

this work, a publicly available MATLAB implementation [125] of SIFT was used.

∗Gradient Orientation Histogram (GO), another global level feature extraction technique, has also been widely used in
ocular recognition literature. However, it was excluded in this study because LBP outperformed GO.
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3.6.2 Local Binary Patterns

Given an image I, sample points are first determined by uniformly sampling the image

at a fixed frequency. A block of size 8× 8 pixels around every sampling point is considered

as a region of interest (ROI). For each pixel p within the ROI, a neighborhood of size 3× 3

pixels is considered for LBP value generation, as shown in Figure 3.5.

p1 p2 p3
p0 p p4
p7 p6 p5

Figure 3.5: Neighborhood for computing the LBP of pixel p.

The mathematical equation for computing the LBP value at a pixel p is given by:

LBP (p) =

k=7∑

k=0

2kf(I(p)− I(pk)), (3.1)

where I(pk) represents the intensity value of pixel pk, and

f(x) =

{
1 if x ≥ 0,

0 if x < 0.
(3.2)

The LBP values of all the pixels within a given ROI are then quantized into an 8 bin

histogram. Histograms corresponding to all sampling points are then concatenated to form

a final feature vector. Euclidean distance was used to measure the similarity between two

feature vectors. In this work, to perform LBP feature extraction and matching, every RGB

ocular image was first decomposed into its individual R, G, and B channels. Each channel

was sampled at a frequency of 16 pixels, yielding a total of 465 sampling points. The final

LBP feature vectors for each channel were of size 1×3720 (concatenating 8 bin histograms

for 465 sampling points).

3.6.3 Score-level Fusion

For a given image, let SV L and SPP denote the face match scores obtained using Verilook

and PittPatt, respectively. SSIFT , represents the SIFT ocular score and SLBP−R, SLBP−G,

and SLBP−B represent the LBP ocular scores for each of the R, G, and B channels of an

ocular image, respectively. A final LBP ocular score, SLBP , was computed by considering

the average of SLBP−R, SLBP−G, and SLBP−B. The averaging operation was chosen because
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it provided relatively better performance, when compared to the other operators (e.g.,

min, max, etc.). Score-level fusion was then performed to combine the face and ocular

information. A schematic representation of the proposed score-level fusion approach is

shown in Figure 3.6.

Figure 3.6: A schematic representation of the proposed approach.

3.7 Database

Images from the plastic surgery database described in [114] are used in this work. Cur-

rently, this is the only publicly available database that contains images of subjects captured

before and after various types of plastic surgeries. Biometric databases are typically as-

sembled through a concerted data collection process by acquiring the required data from

the subjects directly. On the contrary, this database was generated by downloading facial

images from two different plastic surgery information websites†. This introduces significant

challenges in working with this database, such as: (a) low resolution, (b) variations in scale

and expression, and (c) duplicate entries. Figure 3.7 shows sample images illustrating these

challenges.

Three different datasets are considered in this work. The details of each dataset are

listed as follows:

†www.locateadoc.com and www.surgery.org
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Images exhibiting some of the challenges in the facial plastic surgery database.
(a) and (d): images with varying resolution, scale and inter-ocular distances corresponding
to the same subject. (b) and (e): variations in expressions of a subject. (c) and (f):
duplicate entries. The image in (c) is listed as ID #26300 and its duplicate image in (f) is
re-listed as ID #28519. Note the difference in identification labels, although they belong
to the same subject who has undergone multiple surgeries. This incorrect labeling can
negatively impact the perceived matching accuracy.

3.7.1 Face Dataset A

All the images contained in the plastic surgery database were used in this dataset.

This dataset contains frontal face images of 900 subjects. For each subject, there is 1 pre-

surgery facial image and 1 post-surgery facial image. The resolution of the images range

from 163 × 131 to 288 × 496 pixels, and the inter-ocular distance varies from 20 to 100

pixels. These images are divided into a gallery (containing 900 pre-surgery images), and

a probe set (containing the corresponding 900 post-surgery images). This dataset helps

in performing a direct comparison of recognition performances obtained by commercial

recognition systems, with those reported in the existing literature.



Raghavender R. Jillela PLASTIC SURGERIES ... FUSION 64

3.7.2 Face Dataset B

This dataset was obtained by discarding images from face dataset A corresponding

to: (a) failures in face detection using the Adaboost algorithm, and (b) very low image

resolution that can yield noisy ocular regions (as described in Section 3.6). As a result,

a total of 478 images corresponding to 239 subjects were selectively discarded from face

dataset A. The remaining 1322 images are divided into a gallery (containing 661 pre-surgery

images), and a probe set (containing the corresponding 661 post-surgery images). A set of

568 face images corresponding to 568 unique subjects from the FRGC database [13] were

added to the gallery. These images have a resolution of 1704×2272 pixels, with an average

inter-ocular distance of 260 pixels. These additional images help in (a) compensating for the

effect of discarded images, (b) observing the robustness of the proposed feature extraction

and matching techniques by increasing the number of impostor scores, and (c) providing a

heterogenous combination of surgically modified and unmodified face images.

3.7.3 Ocular Dataset

This dataset was generated by automatically cropping the bi-ocular regions from images

in face image dataset B. The average resolutions of the cropped bi-ocular regions range from

115× 54 to 842× 392 pixels. All the ocular images in both the gallery and probe sets were

resized to a fixed resolution of 500× 250 pixels. This helps in ensuring a fixed-size feature

vector when global feature extraction schemes are used.

The total number of images used in the face and ocular datasets, along with their spatial

resolutions are summarized in Table 3.3.

Table 3.3: Number of images used in each dataset, along with their spatial
resolutions.

Number of images Resolution (in pixels)

Face dataset A
Gallery 900 163× 131 to 334× 466
Probe 900 147× 226 to 288× 496

Face dataset B
Gallery 1229 (661 + 568) 288× 250 to 1704× 2272
Probe 661 288× 250 to 288× 485

Ocular dataset
Gallery 1229 500× 250
Probe 661 500× 250
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3.8 Experiments and Results

To determine the face recognition performance, every image in the probe set of the face

image dataset was matched against the gallery. The same protocol was used for the ocular

image dataset to generate the ocular match scores. When performing score-level fusion,

the score matrices corresponding to face dataset B and ocular dataset were normalized in

the [0, 1] range using min-max normalization.

3.8.1 Face recognition performance

Cumulative Match Characteristic (CMC) curves were used to summarize the obtained

identification performances. Figure 3.8 shows the CMC curves obtained using the com-

mercial face recognition systems on the considered face datasets. The rank-one recognition

accuracies obtained using Verilook and PittPatt on face dataset A were observed ‡ to be (a)

70.3% (b) 65.8%, respectively. Similarly, the corresponding rank-one recognition accura-

cies obtained on face dataset B were observed to be (a) 73.9% and (b) 81.4%, respectively.

From the figure, it can be observed that PittPatt provides better recognition performance

than VeriLook when low resolution images are discarded.

3.8.2 Ocular recognition performance

The rank-one accuracies obtained using LBP and SIFT on the ocular database were

observed to be 45.6% and 48.1%, respectively. The CMC curves for both the techniques

are shown in Figure 3.9. From the figure, it can be observed that SIFT provides better

ocular recognition performance compared to LBP. This is because SIFT depends on local

key-point information that is scale and rotation invariant. On the other hand, the LBP

match score is dependent on the similarity of global level information that is affected by

misalignment of gallery and probe images.

3.8.3 Score-level fusion performance

Weighted score-level fusion is used to combine the normalized scores from the following

scenarios: (a) face (VeriLook and PittPatt scores obtained using face dataset B), (b) ocular

‡Only these recognition performances should be considered when making a direct comparison with
results from existing literature.
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Figure 3.8: CMC curves showing the recognition performances of VeriLook and PittPatt
on face dataset A and face dataset B.

(LBP and SIFT scores obtained using ocular dataset), and (c) face and ocular (VeriLook and

PittPatt scores obtained using face dataset B, LBP and SIFT scores obtained using ocular

dataset). These normalized scores were combined using the simple sum rule with different

weights, with an objective of maximizing the rank-one accuracy. The rank-one recognition

accuracies obtained for the above mentioned scenarios are: (a) 85.3% , (b) 63.9% , and (c)

87.4%. Figure 3.10 shows the corresponding CMC curves, along with the weights used for

fusion in each case. From the results obtained, it can be observed that score-level fusion

clearly improves the recognition performances when combining both inter-modality scores

and intra-modality scores. The rank-one recognition performance obtained by the proposed

approach (87.4%) reflects the highest recognition accuracy observed in the literature for

this database. The rank-two recognition accuracy for the fusion scheme is observed to

be 94.4%. This significant increase (∼ 7%) in performance was due to the presence of

duplicate entries, as described in Section 3.7. In such cases, a probe image would first

match with the duplicate sample of the same subject (with different identification tag),

and then with the the corresponding sample with the same identification tag. Such an
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SIFT on ocular dataset

Figure 3.9: CMC curves showing the recognition performances of LBP and SIFT on ocular
dataset.

effect causes a reduction in performance at rank-one. Some of the duplicate images that

match at rank-two but not at rank-one are shown in Table 3.4. If such duplicate images

are accounted for (either removed, or given the same identification tags), a higher rank-one

recognition performance can be expected. The benefit of the proposed technique can be

observed in Table 3.5, showing example face and ocular images that were not correctly

matched at rank-1 by the face recognition systems, but were correctly matched at rank-1

after performing fusion.

3.8.4 Effect of individual surgeries

The effect of individual surgeries on the recognition performances was studied. Depend-

ing on the type of surgery performed, the images were categorized into two main groups:

global and local [114]. Images corresponding to global surgeries show variations in the over-

all appearance of the face (e.g., rhytidectomy). Local surgeries, however, typically modify

the appearance of a single facial feature, and may minimally impact the overall appearance

of the face (e.g., otoplasty, rhinoplasty, etc.).
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Table 3.4: Duplicate image pairs that reduce the recognition performance at
rank-one. Notice the difference in the identification tags, that causes the gen-
uine pairs to be reckoned as impostors.

Input probe image
Corresponding gallery
image that the probe
has to match with

Instead matches
with

ID # 03918 (after) ID # 03918 (before) ID # 13176 (before)

ID # 22517 (after) ID # 22517 (before) ID # 10228 (before)

Table 3.5: Example face and ocular image pairs (pre- and post-surgery) that
were not correctly matched at rank-1 by the face recognition systems, but were
correctly matched at rank-1 after performing fusion.
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Fusion of face dataset B scores: (0.3*VL) + (0.7*PP) 
Fusion of ocular dataset scores: (0.3*LBP) + (0.7*SIFT)
Fusion of face dataset B with ocular dataset scores: (0.2*VL)+(0.4*PP)+(0.3*LBP)+(0.1*SIFT)

Figure 3.10: CMC curve showing the recognition accuracies obtained using score-level
fusion of face scores, ocular scores, and a combination of the two.

For this experiment, images corresponding to only major surgeries are considered. Im-

ages related to surgeries that do not provide clear information about which facial region

they affect were excluded. For example, botox injections can be used to modify both local

(say, around the lips), as well as the global appearance. Since the database does not provide

meta-data that clearly explains these details, such images were excluded from this experi-

ment. The rank-one recognition accuracies corresponding to individual surgeries obtained

using face, ocular, and fusion schemes are provided in Table 3.6.

Table 3.6: Rank-one recognition accuracies corresponding to individual surgeries
obtained using the face, ocular, and fusion schemes on images from face dataset
B and the ocular dataset.

Type of surgery Face Ocular Proposed
(VL) (PP) (SIFT) (LBP)

Browlift 88.2% 100% 64.7% 58.8% 97.0%
Otoplasty 85.4% 90.9% 69.0% 65.4% 94.5%
Blepharoplasty 74.2% 92.8% 64.2% 45.7% 94.2%
Rhinoplasty 79.1% 85.9% 54.3% 54.3% 85.9%
Rhytidectomy 78.8% 90.0% 48.4% 46.7% 92.2%

From the table, it can be observed that PittPatt and SIFT provide comparatively better
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face and ocular recognition performances, respectively. Once again, the proposed approach

improves the recognition performance compared to individual techniques. Singh et al. [114]

performed a similar study and concluded that face recognition algorithms cannot handle

global facial plastic surgeries. Similar observation can be made from the results in this work.

The recognition performance is more negatively impacted by global surgeries (rhinoplasty

and rhytidectomy) than local surgeries (browlift, otoplasty, and blepharoplasty).

3.9 Summary

This chapter describes a fusion approach that combines the face and ocular information

to improve biometric identification using images corresponding to facial plastic surgeries.

The proposed approach yields a rank-one recognition accuracy of 87.4%, which quickly in-

creases to 94.4% at rank-two. The performance obtained using the proposed approach

reflects the current best rank-one accuracy reported on the considered plastic surgery

database. Compared to existing approaches, the proposed scheme presents a method to

improve recognition performance without using training-based methods. Based on the re-

sults, it is opined that the problem of face recognition using the publicly available plastic

surgery database could be further improved if the non-ideal factors (e.g., duplicate entries,

low image resolutions, etc.) of the database are accounted for.
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Chapter 4

Ocular Matching in Face and Iris
Images

4.1 Introduction

One of the significant challenges in biometric recognition is the process of matching

or fusing information obtained from multiple sources. Such sources of information often

vary with respect to the biometric modalities, sensors, samples, or matching algorithms

used [126]. Current research in biometrics is geared towards mitigating variance in infor-

mation prior to its usage. In the realm of iris biometrics, Chapter 2 of this thesis proposes

a technique to improve recognition performance by effectively fusing information obtained

from multiple samples of a subject. In this chapter, the problem of matching ocular infor-

mation from images corresponding to multiple modalities, viz., face and iris, is considered.

Face and iris images are typically acquired in the visible and near-infrared spectrum of

light, respectively. This presents a challenging problem for biometric matching using cross-

modality, cross-wavelength, cross-sensor, and cross-resolution images. Sample RGB face

and the corresponding NIR iris images are provided in Figure 4.1. A close up of the ocular

regions within the considered images is provided in Figure 4.2.

Owing to their common presence in both face and iris images, the current work proposes

the usage of iris and ocular region information to perform matching. This chapter aims to

address the following questions:

1. Can the iris information extracted from RGB face and NIR iris image be effectively

matched?

2. What is the role of ocular region information in improving the recognition perfor-
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(a) (b)

Figure 4.1: Sample images corresponding to (a) face, and (b) iris modalities, respectively.

(a) (b)

Figure 4.2: Closeup of the left-side ocular regions from (a) face, and (b) iris images shown
in Figure 4.1. The goal is to perform ocular matching using the regions observed in (a)
and (b). Notice the variations in scale, resolution, image acquisition wavelength, viewing
angle, and the level of detail. The average number of pixels across the irides in (a) and (b)
are 35 and 110 pixels, respectively.

mance?

3. What type of challenges are encountered when matching the ocular information in

face and iris images? How can they be mitigated?

4.1.1 Motivation

Ocular matching in face and iris images can be required when the acquisition or the

recognition stages are limited by: (a) modality of images available, and (b) type of sensor

used. Such requirements are typically encountered in the following scenarios:

• Matching legacy databases : Given the growing interest in biometric recognition, it is

increasingly possible to encounter situations when multiple databases corresponding

to the identities of same individuals are merged. In such situations, the biometric

modalities available in the independent databases may not always be the same. An
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example of such a situation is illustrated in Figure 4.3. The process of reliably as-

sociating the identities between constituent databases can be complicated if: (a) the

meta-data corresponding to the images in the individual databases are not compa-

rable, and (b) the organizations maintaining the databases do not allow complete

meta-data sharing. In such cases, cross-modality ocular matching in face and iris

images can be very useful.

Figure 4.3: An illustration depicting the different modalities in databases. Note that
relating the identities stored in Database C with those stored in other databases can be a
challenging process.

• Surveillance and law enforcement : In various law enforcement scenarios, it is possible

that a surveillance image has to be reliably matched with the entries in a watch-list.

When a false non-match occurs due to a single modality, cross-modality matching

could be beneficial. An example of such a situation is shown in Figure 4.4. When a

face image acquired using a surveillance camera retrieves no match within the face

database, ocular regions could be matched with an iris database.
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Figure 4.4: A sample scenario depicting the need for ocular matching in face-iris image
pairs.

4.2 Problem Significance

Currently, the problem of matching ocular regions in face images to those in iris images

(and vice-versa) has not been addressed in the literature. Some researchers have already

studied iris and ocular region matching under variations in image resolution [127], [91], or

variations in imaging wavelength [56]. However, the current work is significantly different

from such efforts because of the collective consideration of the following factors:

1. Cross-modality : Images corresponding to both face and iris traits are used in this

work.

2. Cross-wavelength and cross-sensor∗: Face images are typically acquired using sensors

that operate in visible wavelength. On the other hand, iris images are acquired in

the near-infrared spectrum.

3. Cross-resolution: Owing to the variation in sensors used, ocular regions in face images

tend to be of lower resolution than those in iris images.

Table 4.1 lists the publications studying the impact of one or more of the above mentioned

factors on ocular recognition performance. The significance of the current work can be

∗Note that cross-sensor does not always mean cross-wavelength. For example, cross-sensor iris recog-
nition refers to the task of matching iris images acquired using different sensors, all operating in the
near-infrared spectrum.
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clearly seen from the table†.

Table 4.1: Publications studying the impact of varying imaging factors on iris
and ocular recognition (listed chronologically).

(Year) Authors Iris or
Ocular

Images matching

Cross res-
olution or
stand-off
distance

Cross-
sensor

Cross-
wavelength

Cross-
modality

(2009) Jillela and
Ross [127]

Iris Yes No No No

(2009) Ross et al. [56] Iris No No Yes No

(2010) Bharadwaj et
al. [91]

Ocular Yes No No No

(2011) Connaughton
et al. [128]

Iris No Yes No No

(2012) Xiao et al. [129] Both Yes Yes No No

(2013) Tan and Ku-
mar [130]

Both Yes No No No

Current work Both Yes Yes Yes Yes

4.3 Database

Face and iris images from the Biometric Collection of People (BioCoP) database [19]

were used in this work‡. Both the face and iris images were acquired in two different

sessions (viz., Set 1 and Set 2). Set 1 and Set 2 contain images corresponding to 704 and

654 subjects, respectively. All the 654 subjects of Set 2 overlap with those in Set 1. Both

sets contain 1 face, and 2 iris images (corresponding to the left and right sides) of a subject.

Face images were acquired using a Olympus C-8080 wide zoom camera, operating in the

visible spectrum with a resolution of 2448 × 3264 pixels. Iris images were acquired using

an Oki IrisPass M sensor in the NIR spectrum, with a resolution of 640× 480 pixels. The

average radius of the iris in the face and iris images was observed to be 35 pixels and 110

pixels, respectively. The variation in iris radii and spatial resolutions occur due to different

†Note that the table lists only those publications which study the impact on recognition performance
by varying one or more imaging factors. There is a considerable amount of work on iris segmentation in
visible wavelength (e.g., [78]). However, such publications are not listed in the table as they do not focus on
recognition performance. Multiple publications exist on some topics such as cross-sensor iris recognition.
Only the earliest of such attempts are listed.

‡A copy of the BioCoP database release agreement (consent form) is provided in Appendix B
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stand-off distances for the two sensors. The stand-off distances for face and iris images

was maintained to be 2 meters and 30-60 centimeters, respectively. Ocular regions of size

225× 169 pixels (approximately) were manually cropped from the face images. To ensure

uniformity in the region of interest (ROI) between iris and ocular images, the following two

criteria were imposed:

1. Center of the iris was maintained as the center of ocular region image.

2. The aspect ratio of the ocular region from the face image was maintained to be the

same as that of the iris image.

A summary of the database specifications is provided in Table 4.2. Sample images of

the face, cropped ocular region, and the corresponding iris are shown in Figure 4.5.

(a) (b) (c)

Figure 4.5: Sample images from the BioCoP database showing the (a) face, (b) cropped
ocular region, and (c) iris of a subject. Subject’s approval to use the images for illustration
purposes is on file.

Table 4.2: Specifications of the considered BioCoP database [19].

Modalities Sensor
used

Imaging
spec-
trum

Image reso-
lution (pix-
els)

# of subjects Average
iris ra-
dius
(pixels)

Stand-
off dis-
tance

Set 1 Set 2
Iris Oki

IrisPass
M

NIR 640× 480 704 654 110 30-60 cm

Face Olympus
C-8080
wide zoom

VIS 2448× 3264 704 654 35 2m

Ocular
(cropped
from face)

Olympus
C-8080
wide zoom

VIS 2448× 3264 704 654 35 2m
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4.3.1 Challenges

Variations in the following factors are considered to render the database challenging:

• Sensors and imaging wavelengths: The appearance of iris texture in face and iris

images is significantly different due to variations in sensors, and imaging wavelengths

(see Figure 4.6).

• Iris radius: The stand-off distances and resolution of the face and iris sensors were

different. This causes a difference in the radii of the irides within the corresponding

pair of face and iris images. Figure 4.6 illustrates this effect.

(a) (b)

Figure 4.6: Corresponding ocular regions from (a) a face image and (b) an iris image
acquired under visible and NIR spectra, respectively. Notice the variation in textural
appearance of the iris within the images.

• Viewing angle: The face and iris sensors were placed at different heights from

the ground level, causing appearance variations within the corresponding pairs of

ocular regions. Figures 4.7(a) and (b) illustrate the described effect. Notice that the

folds between the upper eyelid and the eyebrow seen in (a), do not have the same

appearance in (b).

• Illumination: Images obtained by the iris sensors were observed to exhibit significant

illumination variations, as shown in Figure 4.8. Such variations render the task of

iris segmentation and ocular feature extraction very challenging.
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(a) (b)

Figure 4.7: Images showing variations in the viewing angle between corresponding ocular
regions obtained from (a) a face image and (b) an iris image, respectively.

(a) (b) (c)

Figure 4.8: Variations in illumination observed in images acquired by the NIR iris sensor.

• Occlusions: A large number of images were observed to contain occlusions of the

iris and ocular regions, caused by the eyelids, eyelashes and the hair. Sample images

showing such occlusions are provided in Figure 4.9.

(a) (b) (c)

Figure 4.9: Occlusions of the iris and ocular regions caused by (a) eyelids, (b) eyelashes
and (c) hair, as observed in the images acquired by the iris sensor.

• Sensor-noise and non-uniformity in acquisition: The Oki IrisPass M sensor

depended on its in-built automatic face detection output for localizing and imaging

the iris regions. Errors in such process resulted in non-uniform imaging. Furthermore,

sensor noise was also observed in some images. Sample images of such cases are
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provided in Figure 4.10.

(a) (b) (c)

Figure 4.10: Images depicting the sensor noise and non-uniformity in imaging.

4.4 Outline of Experiments

Given the NIR iris and visible (VIS) ocular images, the following six different matching

scenarios are possible:

1. Iris matching - NIR iris images with NIR iris images

2. Iris matching - VIS ocular images with VIS ocular images

3. Iris matching - VIS ocular images with NIR iris images (cross-modality)

4. Ocular region matching - NIR iris images with NIR iris images

5. Ocular region matching - VIS ocular images with VIS ocular images

6. Ocular region matching - VIS ocular images with NIR iris images (cross-modality)

The goal of this chapter is to develop techniques that can reliably perform cross-modality

matching (i.e., cases 3 and 6, respectively). Section 4.5 deals with iris recognition exper-

iments using open-source and commercial algorithms. Ocular region matching techniques

are discussed in Section 4.6.

4.5 Iris Recognition

Two separate iris recognition algorithms were considered in this work:

1. Open-source: Libor Masek’s [77] implementation of Daugman’s algorithm [62], and
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2. Commercial : VeriEye iris recognition system from Neurotechnology [105].

It was expected that VeriEye would provide better performance than Libor-Masek’s im-

plementation. This is because the latter is a rudimentary implementation of Daugman’s

algorithm. Utilizing both the algorithms allows for a comparison of the widely popular

open-source implementation with one of the many available commercial systems. Com-

pared to the commercial system, the open-source implementation allows more control on

various factors that impact iris recognition performance (e.g., segmentation methods, fea-

ture template size, etc.).

4.5.1 Open Source Algorithm

Iris Segmentation

Libor Masek’s implementation utilizes Hough transforms to perform iris segmenta-

tion [51]. Two additional iris segmentation algorithms based on Integro-Differential Op-

erators [62] and Geodesic Active Contours [67] were also used. All the three techniques

were tested on a sample set of 100 iris images and their corresponding 100 ocular images

selected from the BioCoP database. The purpose of this experiment is to choose the best

performing iris segmentation algorithm that can be used with Libor Masek’s feature ex-

traction and matching scheme. The segmentation accuracies § of all the three techniques

were observed to be around 76% ¶. The main reasons for poor segmentation performance

were observed to be:

1. non-uniform illumination and occlusions in NIR iris images, and

2. low resolution and presence of dark colored irides in VIS ocular images.

The pupillary boundary in a dark colored VIS image is often difficult to distinguish, even

for a human expert. Sample images showing correct and incorrect segmentation outputs

obtained using the considered algorithms are shown in Figure 4.11 and 4.12, respectively.

The poor segmentation performances highlight the need for robust segmentation algo-

rithms that can operate on both NIR and VIS images. As the focus of this work is on

§Segmentation accuracy =
Number of correctly segmented images

Number of input images provided
× 100

¶Reported using the considered sample set containing 100 NIR iris, and 100 VIS ocular images
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Sample NIR iris (top row) and VIS ocular region (bottom row) images showing
correct iris segmentation output obtained using: Integro-Differential Operator [(a) and (d)],
Hough transform [(b) and (e)], and Geodesic Active Contours [(c) and (f)] based algorithms.

(a) (b) (c)

(d) (e) (f)

Figure 4.12: Sample NIR iris (top row) and VIS ocular region (bottom row) images showing
incorrect iris segmentation output obtained using: Integro-Differential Operator [(a) and
(d)], Hough transform [(b) and (e)], and Geodesic Active Contours [(c) and (f)] based
algorithms, respectively..

matching, and not on segmentation, iris regions were manually segmented for further anal-

ysis. This process helps in having a reasonably reliable ground truth, while minimizing the
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impact of incorrect segmentation on the recognition performance. As manual segmentation

is a time consuming process‖, the open source algorithm was tested only on the sample

set containing 100 subjects. Using 1 sample per subject does not generate genuine scores

for intra-modality comparison. However, this experiment allows in observing the following

aspects of iris recognition:

1. Imaging wavelength: Boyce et al. [55] suggest that cross-spectral iris matching perfor-

mance depends on the difference of imaging wavelengths considered. In this regard,

iris regions extracted from the three separate channels of the VIS ocular images, viz.,

R, G, and B, were individually matched against those extracted from the NIR iris

images. An NIR iris image, along with the corresponding R, G, and B channel images

extracted from a VIS ocular image are shown in Figure 4.13.

(a) (b)

(c) (d) (e)

Figure 4.13: (a) Sample NIR iris image. (b) Corresponding VIS ocular region cropped from
an RGB face image. (c), (d), and (e) are R, G, and B channel images extracted from the
VIS ocular image, respectively.

2. Resolution of the unwrapped iris : As mentioned in Section 1.3.4, Daugman’s rubber

sheet model unwraps the segmented iris into a rectangular entity of specific width and

height. Two different normalization resolutions were tested: 64× 360 and 32 × 180.

These resolutions were empirically chosen based on the pupillary and limbic radii

observed in the NIR and VIS images.

‖As the iris regions in VIS ocular images are of very small resolution
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It was observed that the R channel image unwrapped to a resolution of 64× 360, provided

the best recognition performance (EER = 29%). The ROC curves obtained using the above

matching considerations are shown in Figure 4.14. The low recognition performance, even

with accurate segmentation on a small dataset, indicates the need for a better cross-spectral

NIR-VIS iris matching algorithm.
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Figure 4.14: ROC curves obtained by matching iris regions extracted from R, G, and B
channels of the VIS ocular images with those extracted from the NIR iris images, using
Libor Masek’s open source implementation. Note that these curves correspond to matching
performance obtained using a subset of images (100 NIR iris and 100 VIS ocular images).

4.5.2 Commercial Algorithm

Owing to the poor performance of the open source implementation, a commercial iris

recognition system, VeriEye [105] was used. Both Set 1 and Set 2 were combined to generate

1358 VIS ocular and 1358 NIR iris images from 704 subjects. Based on the performances

observed in the previous experiment, only R channel images were considered. The ROC

curves, along with the EERs obtained using VeriEye on the left-side images, are shown in

Figure 4.15.
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VIS−VIS (EER = 49%)
VIS−NIR (EER = 50.2%)
x = y

Figure 4.15: ROC curves obtained using VeriEye to match irides from left-side NIR iris
images and left-side VIS ocular images.

It was observed that 74, out of the 1358 VIS ocular images, could not be processed by

VeriEye. From the ROC curve, it can be observed that VeriEye provides good recognition

performance only for the intra-spectral NIR-NIR iris matching. Iris matching performance

using VeriEye on cross-spectral NIR-VIS and intra-spectral VIS-VIS images was very poor.

The reasons for such poor performance could not be deduced as VeriEye does not provide

the intermediate details of segmentation and matching.

4.6 Ocular Recognition

Based on the results presented in Sections 4.5.1 and 4.5.2, it can be observed that the

iris biometric does not result in good recognition performance when cross-spectral NIR-

VIS images are used. Better performance could be expected if segmentation and matching

schemes are significantly improved. However, this can be a very challenging task due to the

presence of multiple non-ideal factors. Ross et al. [4] and Woodard et al. [23] suggest that

the ocular region can provide better recognition performance under non-ideal conditions. In
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this regard, the following sections present various techniques used to perform cross-spectral

NIR-VIS ocular region matching.

4.6.1 Baseline - Local Binary Patterns

From Table 4.3, it can be observed that the three most popular techniques used for

ocular image matching are: Gradient Orientation Histograms [138], Local Binary Pat-

terns [139], and Scale Invariant Feature Transform [123]. Based on an empirical evaluation

on a sample dataset∗∗, LBP was observed to provide better recognition performance on Bio-

CoP images, in comparison with GOH and SIFT. Therefore, LBP was chosen as a baseline

algorithm to perform ocular region recognition on the entire set of 1308 VIS and 1308 NIR

images. Both the NIR and VIS images were resized to a fixed resolution of (225×169) pix-

els. Such resizing helps in having: (a) rough localization of the regions of interest, and (b)

fixed size feature vectors. The EERs obtained using LBP on left-side images corresponding

to (a) NIR-NIR, (b) VIS-VIS, and (c) VIS-NIR ocular region matching were observed to

be 35%, 12%, and 50.4%, respectively. The corresponding ROC curves are provided in

Figure 4.16.

From the results, it can be observed that the cross-spectral VIS-NIR ocular region

recognition performance is no better than that of the iris biometric. Two main reasons for

the low performance of LBP were observed to be: (a) appearance variations of the ocular

regions, caused by different viewing angles of the sensors, and (b) reduced textural quality

of the ocular regions in VIS images.

4.6.2 Normalized Gradient Correlation

Correlation based approaches have been observed to provide better recognition perfor-

mance when compared to histogram based approaches (e.g., LBP, SIFT, GOH, etc.) on

non-ideal ocular images [4] [132]. To test this observation, the Normalized Gradient Corre-

lation (NGC) method proposed by Tzimiropoulos et al. [140] was used. NGC was initially

proposed for image registration and alignment. In this work, the technique is modified to

perform image matching by using the gradients within a considered region of interest. The

advantages offered by NGC are that (a) it can well handle illumination variations, and (b)

∗∗100 NIR iris and 100 VIS ocular images
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Table 4.3: List of major biometrics research publications focused on the ocular
region

Year Authors
Feature ex-
traction

Visible
or NIR

Major observation

2009 Park et al. [90]
SIFT, LBP,
GOH

Visible Serves as a soft biometric

2010
Woodard et
al. [23]

LBP NIR
Aids iris recognition under non-ideal
conditions

2010
Bharadwaj et
al. [91]

GIST,
CLBP,
SIFT

Visible
Alternative to iris recognition at a dis-
tance

2010
Merkow et
al. [93]

LBP with
SVM

Visible Can help in gender classification

2010
Hollingsworth
et al. [95]

Human
expertise

NIR
Identifying useful features in ocular
images, as discerned by humans

2011 Xu et al. [131] WLBP Visible
Improves face recognition performance
under aging

2011
Boddeti et
al. [132]

PDM NIR
Comparison of iris and ocular recogni-
tion performances

2011
Dong and
Woodard [133]

Manual seg-
mentation
with LDA
and SVM

Both
Analysis of eyebrow shape based fea-
tures for recognition and gender clas-
sification

2011 Park et al. [24]
SIFT, LBP,
GOH

Visible
Can improve face recognition when
faces are masked

2012
Jillela and
Ross [134]

SIFT, LBP Visible
Can improve face recognition under
plastic surgery

2012 Ross et al. [4]
SIFT, LBP,
PDM

NIR
Outperforms iris recognition under
highly non-ideal conditions

2012
Padole and
Proenca [135]

SIFT, LBP,
GOH

Visible
Analysis of various performance degra-
dation factors

2012
Hollingsworth
et al. [94]

SIFT, LBP,
GOH

Both
Comparison of human and machine
performances

2012 Oh et al. [136]
Variations of
PCA, LDA

Visible
Performance analysis of projection-
based methods

2013
Hollingsworth
et al. [137]

Active Shape
Models

Visible Automatic eyebrow segmentation
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Figure 4.16: ROC curves corresponding to the ocular region matching using LBP on left-
side images.

it does not require any learning.

Normalized Gradient Correlation computation between two images is similar to that of

the 2D normalized cross-correlation. The only difference is that it operates on the image

gradients instead of the raw pixel intensity values. Given two images I1 and I2 of the same

resolution, the normalized cross-correlation can be computed as

F−1
{

Î1Î
∗
2

|Î1||Î∗2 |

}
(4.1)

where Î1 = F{I1}, Î2 = F{I2}, and F denotes the Fourier transform operation. On the

other hand, the Normalized Gradient Correlation can be computed as

F−1
{

Ĝ1Ĝ
∗
2

|Ĝ1||Ĝ∗2|

}
(4.2)

where Ĝ1 = F{G1}, Ĝ2 = F{G2}, and G1 = G1x +G1y, G2 = G2x +G2y. The terms

Gix and Giy represent the gradients of the image I in x and y directions, respectively.

To perform ocular matching between two images using NGC, each image was first

tessellated into 12 non-overlapping patches of equal size. The NGC value between the



Raghavender R. Jillela FACE-IRIS 88

corresponding pairs of patches between NIR and VIS images was computed, yielding 12

different patch scores. The value obtained by the summation of all such patch scores was

used as the final match score between an image pair. The ROC curves corresponding to

NGC based ocular matching are provided in Figure 4.17. The EER values corresponding

to NIR-NIR, VIS-VIS, and VIS-NIR matching using left-side images were observed to be

20%, 8%, and 34%, respectively.
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Figure 4.17: ROC curves corresponding to ocular matching using the Normalized Gradient
Correlation technique on left-side images.

From the results, it can be observed that NGC provides better recognition performance

for cross-spectral VIS-NIR image matching compared to (a) iris recognition, and (b) LBP

based ocular region recognition. The reason for such improved performance is that the

process of comparing the patches on a one-to-one basis eliminates the need for having tight

correspondences between the sampling points of histogram based methods. Furthermore,

using the image gradients ensures that the edge information corresponding to the shapes

within the image are accounted for. It has to be noticed that the NIR-NIR ocular matching

performance is also improved by NGC.
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4.7 Ocular Matching using Joint Dictionary Approach

Sparse representation based approaches for image matching have been gaining signif-

icant attention in the recent past. Such approaches have been successfully applied in

biometrics for face [141], iris [142] and ear [143] recognition. Sparse coding approximates

a given image by a linear combination of a few atoms from a dictionary learned from a

training set of images. Sparse approaches allow encoding of images into sparse vectors even

under various challenging variations. Such methods have also been used in many image

processing problems such as denoising [144], restoration [145], and super-resolution [146].

4.7.1 Sparse Representation Framework

The basic framework for sparse representation based approaches for pattern classifica-

tion mainly depends on: (a) the dictionary formed using the training samples, and (b) the

conditions used for obtaining the sparse representation of a given test sample. Consider a

training dataset that contains k image samples corresponding to each of n different subjects

(i.e., classes). A data matrix, A, can be obtained by concatenating all the given training

images as column vectors as:

A = [I1,1, I1,2, . . . , I1,k, . . . In,1, In,2, . . . , In,k], (4.3)

where Ii,j denotes the ith image sample (i = 1, 2, . . . , k) of the jth subject (j = 1, 2, . . . , n),

represented as a column vector. Assume that a sufficient number of training images cor-

responding to each class are available. A new test image, y, can then be represented as

a linear representation of the data matrix entries. This process can be mathematically

represented as:

y = α1,1I1,1 + α1,2I1,2 + · · ·+ αn,kIn,k, (4.4)

where αi,j represents a scalar coefficient corresponding to ith image of the jth subject. The

above equation can be summarized as

y = Ax, (4.5)

where x = [α1,1, α1,2, . . . , αn,k].

In an identification scenario, the identity of y can be determined by solving the following
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minimization problem:

x̂ = argmin‖x‖1 subject to Ax = y. (4.6)

The coefficient vector, x̂, typically contains non-zero entries that correspond to the identity

of the test sample, and zeros everywhere else. The generic structure of x̂ can therefore be

given as

x̂ = [0, . . . , 0, αp,1, αp,2, . . . , αp,n, 0, . . . , 0], (4.7)

where p corresponds to the true identity of y. In the presence of noise, a stable solution

can be determined by rewriting Equation (4.6) as:

x̂ = argmin‖x‖1 subject to ‖Ax− y‖2 ≤ ǫ, (4.8)

where ǫ represents a desired threshold.

The above framework was modified by Guo et al. [147] to perform verification using

face images. Given a pair of face images Ip and Iq, their sparse representation vectors, x̂p

and x̂q, are first computed using Equation (4.8). The Euclidean distance between x̂p and

x̂q is then used to determine the similarity between the two images.

It has to be noted that the data matrix A is typically referred as an overcomplete

dictionary whose base elements are the training images themselves. This leads to a large

dimensionality of A, resulting in expensive computations. A large number of algorithms

have been proposed for learning a compact dictionary while ensuring sparsity [148] [149].

One such method [150] to determine a compact dictionary D, from a given training data

matrix A involves the following equation:

D = argmin
D,Z
‖A−DZ‖2 + λ‖Z‖1, (4.9)

where Z and λ represent the sparse coefficient matrix and the regularization parameter,

respectively,

4.7.2 Joint Dictionary Approach

It has to be noted that the above described sparse representation framework may not

be directly applicable to the current VIS-NIR ocular image matching problem. A vast ma-

jority of the existing approaches generate a single dictionary using the training images. To
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perform VIS-NIR ocular image matching, however, two different dictionaries are required.

This is because the sparse representations for even the genuine pairs of VIS and NIR images

can be significantly different due to variations in image acquisition.

Consider two different dictionaries DNIR, and DV IS, generated using NIR only, and

VIS only training images, respectively. Let INIR and IV IS represent a pair of NIR and

VIS ocular images that have to be matched. The sparse representation vector of IV IS,

represented by x̂V IS, can be computed as:

x̂V IS = argmin‖xV IS‖1 subject to ‖DV ISxV IS − IV IS‖2 ≤ ǫV IS. (4.10)

Similarly, the corresponding sparse representation vector of INIR, denoted by x̂NIR, can be

computed as:

x̂NIR = argmin‖xNIR‖1 subject to ‖DNIRxNIR − INIR‖2 ≤ ǫNIR. (4.11)

The similarity between x̂NIR and x̂V IS can not be directly used as a measure of the similarity

between the images due to the differences in DNIR and DV IS. If the relation between NIR

and VIS images could be modeled, DNIR and DV IS could then be related to each other.

However, such a modeling is very difficult due to a multitude of factors that cause variations

within NIR and VIS images. This problem can be mitigated by combining the dictionaries

DNIR and DV IS by a joint dictionary training approach. Such an approach ensures that

x̂NIR and x̂V IS have similar non-zero coefficients if INIR and IV IS correspond to the same

subject.

4.7.3 Dictionary Learning and Matching

Consider a data matrix, AV IS, generated from a set of VIS images, using Equation

(4.3):

AV IS = [IV IS
1,1 , IV IS

1,2 , . . . , IV IS
1,k , . . . IV IS

n,1 , IV IS
n,2 , . . . , IV IS

n,k ]. (4.12)

Let the corresponding NIR images be used to generate ANIR:

ANIR = [INIR
1,1 , INIR

1,2 , . . . , INIR
1,k , . . . INIR

n,1 , INIR
n,2 , . . . , INIR

n,k ]. (4.13)

A number of approaches have been proposed for effective dictionary learning [148]. The

formulation used in this work is inspired by the joint dictionary learning approach proposed
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by Yang et al. [151] for image super-resolution. The independent compact dictionaries for

VIS and NIR images, DV IS and DNIR, can be determined by:

DV IS = arg min
DV IS ,Z

‖AV IS −DV IS ∗ ZV IS‖2 + λV IS‖ZV IS‖1, (4.14)

and

DNIR = arg min
DNIR,Z

‖ANIR −DNIR ∗ ZV IS‖2 + λNIR‖ZNIR‖1, (4.15)

where Z and λ represent the sparse coefficient matrix and regularization parameter, re-

spectively, for the considered set of VIS or NIR test images.

The goal here is to learn a joint dictionary such that the sparse representation of an

NIR test image will be similar to that of its corresponding VIS image of the same subject.

Therefore, Equations (4.14) and (4.15) can be combined as:

arg min
DNIR,DV IS ,Z

‖AV IS −DV IS ∗ Z‖2 + ‖ANIR −DNIR ∗ Z‖2 + λ‖Z‖1. (4.16)

The above equation could be rewritten as:

arg min
DNIR,DV IS ,Z

‖Ajoint −Djoint ∗ Z‖2 + λ‖Z‖1, (4.17)

where Ajoint =
[
AV IS

ANIR

]
and Djoint =

[
DV IS

DNIR

]
.

Efficiently solving the above formulation using numerical methods is a challenge by

itself. To this end, multiple solutions have been proposed in the machine learning do-

main [148]. In this work, the approach suggested by [150] is used. Equation (4.17) is

considered to be non-convex in both D and Z collectively, but is convex in one of them if

the other is fixed. Therefore, the optimization is performed in an alternate manner over

Djoint and Z. The optimization algorithm is outlined in Algorithm 1. MATLAB packages

provided by [150] and [151] were used for solving the algorithm. A variation of the joint

dictionary approach has been used by Shekhar et al. [152]. However, such techniques have

been used for identification and not for verification.

The proposed VIS-NIR ocular image matching technique is outlined in Algorithm 2.

30% of the database was used for training and the remaining 70% was used for testing

(disjoint subjects). This results in considering 407 and 951 images for training and test-

ing, respectively. The obtained match scores are used as similarity measures between the

given images. The ROC curves obtained using the proposed joint dictionary based sparse
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Algorithm 1: Joint Dictionary Learning

Step 1

Use a Gaussian random matrix to initialize Djoint

Step 2

With Djoint fixed, update Z by solving the following formulation:
Z = argminZ‖Ajoint −Djoint ∗ Z‖2 + λ‖Z‖1

Step 3

With Z fixed, update Djoint by:
Djoint = argminDjoint

‖Ajoint −Djoint ∗ Z‖2 such that ‖Djoint‖2 ≤ 1
Step 4

Iterate between steps 2 and 3 until convergence.

Final Output : Djoint

Algorithm 2: Proposed VIS-NIR Ocular Image Matching Approach

Training

1. Input: VIS and corresponding NIR training image pairs

2. Obtain Djoint =
[ DV IS

DNIR

]
using Algorithm 1.

Testing

1. Input: Given VIS and NIR test images, IV IS and INIR

2. Compute the sparse representation vectors x̂V IS and x̂NIR (use Equations (4.10) & (4.11))
3. Compute the Euclidean distance, d, between x̂V IS and x̂NIR

4. Determine a vector K whose entries satisfy the condition:
{x̂V IS(k) > 0 and x̂NIR(k) > 0} or {x̂V IS(k) < 0 and x̂NIR(k) < 0}

5. Match score between IV IS and INIR is considered as d/size(K)

Final Output : d/size(K)

representation approach on the left-side images are provided in Figure 4.18. The EERs

obtained using all the ocular matching techniques considered in this work are listed in Ta-

ble 4.4. From the results it can be noticed that the proposed joint dictionary based sparse

representation approach improves the recognition performance in all the three matching

scenarios (i.e., NIR-NIR, VIS-VIS, and VIS-NIR).

Table 4.4: Equal Error Rates obtained using left-side images of the considered
BioCoP database.

NIR-NIR VIS-VIS VIS-NIR

Iris Recognition - VeriEye 0.2% 49% 50.2%

Ocular Recognition - Local Binary Patterns
(LBP)

35% 12% 50.4%

Ocular Recognition - Normalized Gradient
Correlation (NGC)

20% 8% 34%

Ocular Recognition - Joint Dictionary based
Sparse Representation (JDSR) approach

14% 7% 26%
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Figure 4.18: ROC curves corresponding to ocular matching using the joint dictionary based
sparse representation approach on left-side images.

4.8 Computational Details

The value of λ was set to 0.09 in this work. This was done based on observing the

recognition accuracies corresponding to different values of λ. The value corresponding to

minimal EER was chosen for experiments. It has to be noted that other methods exist

to choose the value of λ (e.g., based on the objective function, based on the sparsity of

the vector, etc.). However, since the focus of this work is on recognition performance, λ is

chosen empirically. The EERs obtained for various values of λ are listed in Table 4.5. The

time required for generating the sparse representation of a given image was observed to be

0.8 seconds using an Intel Core i7 processor with a 3.4 GHz processor and 8 GB RAM.

4.9 Score-level fusion

To study the impact of score-level fusion, match scores obtained by all the three con-

sidered ocular matching techniques were combined using a simple sum rule. LBP and
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Table 4.5: Equal Error Rates corresponding to different values of λ.

λ value EERs for
VIS-NIR
matching

0.01 36.5%

0.05 33.1%

0.09 26.0%

0.15 36.2%

NGC scores that correspond only to those image pairs used in the testing phase of the

joint dictionary based sparse approach were fused. The weights for fusion were determined

empirically with an objective of minimizing the EER. The ROC curves obtained using the

individual techniques and by the score-level fusion for VIS-NIR ocular matching are shown

in Figure 4.19. From the results, it can be observed that score-level fusion enhances the

recognition performance only by a small margin (EER = 23%). This is because of the low

recognition performances offered by LBP and NGC techniques.

4.10 Summary

The problem of matching ocular regions in RGB face images and NIR iris images is

studied. The variations in modalities, wavelengths, resolutions, and sensors render this

problem very challenging. A sparse representation based approach which generates a joint

dictionary from corresponding pairs of ocular regions in NIR and VIS images is proposed.

The proposed technique is observed to outperform some of the well known ocular matching

techniques. Additionally, this work highlights the potential of ocular region in non-ideal

conditions when iris information may not be reliable. Future work would include investigat-

ing the robustness of the proposed approach when accurate localization of the ocular regions

is not possible. Also, the current work does not account for geometric deformations that

can occur in the ocular region. A robust ocular matching model that can simultaneously

handle photometric and geometric variations has to be developed.
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VIS−NIR: LBP (EER = 50.4%)
VIS−NIR: NGC (EER = 34%)
VIS−NIR: Proposed (EER = 26%)
VIS−NIR: Score−level fusion (0.9*Proposed + 0.1*NGC) (EER = 23%)
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Figure 4.19: ROC curves for the cross-spectral ocular matching using (a) LBP, (b) NGC,
(c) proposed joint dictionary based sparse representation approach, and (d) weighted score-
level fusion of all the considered techniques.
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Chapter 5

Summary and Conclusions

Iris is considered to be one of the most accurate and reliable biometric traits. However,

high iris recognition performances are typically observed under constrained conditions.

Under unconstrained conditions, the surrounding ocular region information can be used

to improve the overall recognition performance. Ocular recognition research is still in its

incipient stages. Much like iris, ocular region performance can be negatively impacted by

several non-ideal factors. This thesis focused on improving iris and ocular region recognition

performances under non-ideal conditions.

5.1 Research Contributions

Chapter 2 considers the problem of low-resolution iris recognition and provides the

following research contributions:

• The impact of systematically lowering the image resolution on iris recognition per-

formance was studied.

• An image-level fusion technique based on Principal Components Transform was pro-

posed. It was demonstrated that the proposed technique can successfully fuse infor-

mation and improve recognition performance of low-resolution iris video frames.

• A comparison of image-level and score-level fusion in low-resolution iris imagery is

provided. Score-level fusion is observed to perform better than image-level fusion in

the considered scenario.

In Chapter 3, the impact of plastic surgeries on face recognition was studied and the

following contributions were made:
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• A score-level fusion scheme was proposed that combines information from both face

and ocular regions. The proposed technique improved the overall recognition perfor-

mance, thereby highlighting the usage of ocular region in challenging conditions.

• The effect of individual plastic surgeries on face recognition was studied. It was

demonstrated that the proposed fusion scheme improves the overall recognition per-

formance for all considered individual surgeries.

Chapter 4 presents the problem of matching ocular regions extracted from face and iris

images. The research contributions offered by this work can be listed as follows:

• The first study on ocular matching using RGB face and NIR iris images was presented.

• Ocular region was demonstrated to outperform iris recognition in the considered

database. This suggests the importance of ocular region in improving the recognition

performance under non-ideal conditions.

• An ocular image matching technique based on sparse representation approach was

proposed. The proposed technique is shown to provide better recognition performance

than the existing ocular recognition techniques.

5.2 Directions for Future Research

Based on the overall experience gained from all the chapters listed in this thesis, the

following directions could be used for future research∗ in ocular recognition:

• Iris unwrapping : In Chapter 2, all the iris regions extracted from images of varying

resolutions are unwrapped to rectangular entities of fixed dimension. Fixed resolution

sampling and unwrapping can induce significant levels of noise when low-resolution

iris images are used. This noise can be reduced by maintaining the dimensions of

the unwrapped iris proportional to the difference between limbic and pupillary radii.

However, such a setup does not allow for easy matching between unwrapped im-

ages extracted from varying resolution iris images. Further research is required to

investigate and mitigate this problem.

∗Please note that the potential improvements for the individual problems considered in this thesis are
provided at the end of their respective chapters.
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• Iris segmentation: As shown in Chapter 4, iris segmentation in images corresponding

to varying illumination, resolutions, and wavelengths is still a very challenging prob-

lem. Although a significant number of non-ideal iris segmentation approaches have

been proposed in the literature, their computational cost and processing times remain

high. In this regard, future research should be aimed towards developing robust iris

recognition techniques that are segmentation independent.

• Adaptive ocular trait selection: Ocular region has been proven to aid, or even outper-

form iris recognition in non-ideal scenarios. However, such observations have been

made only when iris information cannot be reliably acquired. In this regard, an

adaptive ocular trait selection scheme that automatically decides the region of inter-

est (e.g., iris, ocular region, and conjunctiva) can be of significant help in maintaining

a reliable performance.

• Cross-spectral matching : Performing ocular matching using images acquired under

varying spectra of light is still an unsolved problem. Modeling the photometric and

geometric variations between the images, rather than invoking simple photometric

correction techniques, is an attractive area of research.
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Appendix A

Methods for Iris Segmentation

A.1 Classical Iris Segmentation Algorithms

A.1.1 Integro-Differential Operator

The technique proposed by John Daugman [62] in the early 1990s is considered to be the

pioneering work in the field of automated iris recognition. A vast majority of commercial

iris recognition systems worldwide, employ Daugman’s approach. In this approach, iris

segmentation is carried out using an integro-differential operator. The segmentation process

is performed by approximating the iris boundaries as perfect circles.

Given an iris image I(x, y), it is first convolved with an image smoothing function (e.g.,

a Gaussian filter). This process of smoothening the image helps in (a) attenuating the effect

of noise (e.g., sensor noise) in the image, and (b) eliminating undesired weak edges (e.g.,

boundaries within the iris), while retaining the desired strong edges (e.g., iris boundaries,

eyelid boundaries, etc.). An integro-differential operator is then used to search for the

maximum value of a normalized integral along circular contours of varying radii and center

coordinates. The search process over the image domain (x, y) using an integro-differential

operator can be mathematically expressed as:

max(r, x0, y0)

∣∣∣∣Gσ(r) ∗
∂

∂r

∮

r,x0,y0

I(x, y)

2πr
ds

∣∣∣∣, (A.1)

where

Gσ(r) =
1√
2πσ

exp−
(

(r−r0)
2

2σ2

)
(A.2)

represents the radial Gaussian with a center r0 and standard deviation (scale) σ, which

is used for image smoothing. The symbol ∗ denotes the convolution operation, and r

represents the radius of the circular arc ds, centered at the location (x0, y0). The division
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by a factor of 2πr normalizes the circular integral with respect to its perimeter. In other

words, the integro-differential operator behaves as a circular edge detector, that searches

iteratively for the maximum response of a contour path defined by the parameters (x0, y0,

r). Depending on the values of the radii considered, the optimal parameters of the integro-

differential operator are treated as either the pupillary or limbus boundaries. Figure A.1

illustrates the search process using an integro-differential operator.

Figure A.1: Iris segmentation using the integro-differential operator.

The value of σ, which controls the amount of blurring of the iris image, can be varied

when searching for the pupillary and the limbus boundaries. As the pixel intensity variation

across the pupillary boundary is more pronounced, the σ value can be set for a coarse scale

of convolution. On the other hand, when the search process is carried out for the limbus

boundary, the σ value is set for a finer convolution scale. This is due to the nominal

variation of the pixel intensities across the limbus boundary.

In an iris image acquired under near-ideal conditions from a cooperative subject, both

the iris boundaries can be easily detected using the integro-differential operator. However,

in an image acquired under non-ideal conditions, the limbus boundary may not be com-

pletely circular due to the occlusions caused by the eyelids. Therefore, when searching for

the limbus boundary, the angular arc of integration, ds, is often restricted to the left and

right quadrants (i.e., near the vertical edges of the iris). When searching for the pupil-

lary boundary, this arc can be extended over a wider range, as the eyelid occlusions are

relatively small. Once both the iris boundaries are detected, the boundaries of the eyelids

can be detected by changing the integration path of the operator from circular to arcuate.

Figure A.2 shows the output of the integro-differential operator when used to detect both
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the iris boundaries and the eyebrows.

Figure A.2: Output obtained by applying an integro-differential operator to detect both
the iris and eyebrow boundaries.

Despite successfully determining the iris boundaries using an integro-differential oper-

ator, the localized iris may be further occluded by other noisy regions such as eyelashes,

shadows, or specular reflections. Therefore, a noise mask∗ that records the locations of

these undesired occlusions is correspondingly generated. This mask is later used during

the matching stage to mitigate the effect of noisy pixels.

A.1.2 Hough Transform

Another widely used classical iris segmentation algorithm was proposed by Wildes et.

al. [51, 153]. To detect each iris boundary, the algorithm relies on the Hough transform: a

histogram based model fitting approach. First, an edge map of the input image is generated

using a gradient-based edge detector. A voting procedure is then applied on the highlighted

edge map, to determine the parameter values for a contour that best fits a circle.

Given an iris image I(x, y), the edge map of an input image can be highlighted by

thresholding the magnitude of the image intensity gradient. This operation can be mathe-

matically expressed as:

| ▽G(x, y) ∗ I(x, y) | ≥ th, (A.3)

where ▽ ≡ (∂/∂x, ∂/∂y), and th denotes an empirically chosen intensity threshold. G(x, y)

represents a two dimensional Gaussian with center, (x0, y0), and standard deviation, σ, used

∗The process of generating a noise mask, and the subsequent schemes for iris normalization and match-
ing are very similar in a majority of iris recognition algorithms. However, as this work focuses only on
iris segmentation, these details are not discussed. The reader is directed to the original publication by
Daugman [62] for further information.
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for smoothing the image. The purpose of image smoothing is to (a) select the spatial scale

of edges under consideration, and (b) reduce the effect of noise on the thresholding process.

The mathematical expression for the Gaussian is:

G(x, y) =
1

2πσ2
exp−

(x−x0)
2+(y−y0)

2

2σ2 . (A.4)

The image thresholding operation yields an approximate edge map consisting of the

iris boundary (along with other prominent edges). In most cases, such an output would

consist of non-continuous, non-circular contours. Therefore, the edge map is thinned using

a morphological operation, and a voting procedure is used to determine the parameters of

the iris boundaries. Hough transform [154], a standard machine vision technique for fitting

simple contour models to images, is typically used during the voting process.

When searching for the limbus boundary contour, the image intensity derivatives cor-

responding to vertical edges are weighted more during the voting process. This directional

selectivity grants preference to the left and right portions of the limbus boundary over its

upper and lower portions. Therefore, even if the upper and lower portions of the limbus

boundary are occluded by eyelids, the left and right portions remain clearly visible and

oriented (assuming the head is in an upright position).

Consider a set of edge points (xj , yj), j = {1, 2, . . . , n}, obtained by the image thresh-

olding operation. The goal is to determine if a subset of these points are associated with

the contour of a circle. A circle can be parameterized as (xc, yc, r) where (xc, yc) denotes

its center and r denotes its radius. The Hough transform detects circular contours in the

edge image by defining an accumulator array, H , whose entries H(xc, yc, r) are computed

as follows:

H(xc, yc, r) =

n∑

j=1

h(xj , yj, xc, yc, r) (A.5)

where

h(xj , yj, xc, yc, r) =

{
1, if g(xj, yj, xc, yc, r) = 0

0, otherwise.
(A.6)

and

g(xj, yj, xc, yc, r) = (xj − xc)2 + (yj − y2c )− r2. (A.7)

For each edge point (xj , yj), g(xj, yj, xc, yc, r) is set to 0 if the parameter triplet (xc, yc, r)

represents a circle through that point. The parameter triplet that maximizes H is consid-
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ered to be a reasonable choice to represent the contour of interest. The maximizing param-

eter triplet is determined by first building H(xc, yc, r) as an array (indexed by discretized

values for xc, yc, and r), and then scanning for the triplet that corresponds to the largest

value in the array.

The same process (consisting of thresholding and voting) is used to determine the

pupillary boundary, but with the following minor modifications:

1. The image is filtered with a gradient-based edge detector that is not directionally

tuned. This is due to the fact that the pupillary boundary is less prone to occlusion

from the eyelids.

2. The permissible parameter values (xc, yc, r) are constrained to lie within the circle

that describes the limbus boundary.

Once both the iris boundaries are detected, it is necessary to determine the locations

of the upper and lower eyelids that may occlude the iris. To perform this operation, a

gradient-based edge detector that is tuned to favor horizontal edges is used. This is based

on the fact that the contour of the upper and lower eyelids within the limbus boundary

would be nearly horizontal (under the assumption that the subject’s head is in an upright

position). The upper and lower eyelids are modeled as two separate parabolic arcs of the

form x(t) = axt
2 + bxt + cx, and y(t) = ayt

2 + byt + cy with 0 ≤ t ≤ 1. The parameters

ax, bx, cx, ay, by, and cy, are once again determined using the same histogram-based model-

fitting approach.

A.2 Other Prominent Approaches

Both the aforementioned techniques approximate an iris boundary with a circle or

an ellipse. However, such an approximation may not be always suitable. Iris recognition

performance can be improved by determining the precise boundaries of the iris, rather than

their approximations. Determining the precise boundaries of the iris reduces the noise from

occlusions, especially those caused by eyelashes. Figure A.3 shows the difference between

an approximated and a precisely determined iris boundary.

Methods that use curve evolution processes (e.g., Geodesic Active Contours, level sets,

etc.) could be extremely beneficial in determining the precise boundaries of an iris. In this
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(a) (b) (c)

Figure A.3: (a) An eye image in which the limbus boundary is occluded by the eyelashes.
(b) Approximate limbus boundary obtained using Daugman’s integro-differential operator.
(c) Precise limbus boundary obtained by a curve evolution technique. Notice that the
precise segmentation helps in avoiding the noise caused by eyelash occlusion.

section, some such techniques are discussed.

A.2.1 Geodesic Active Contours

This approach, proposed by Shah and Ross [67], is based on the relation between active

contours and the computation of geodesics (minimal length curves). The strategy is to

evolve an arbitrarily initialized curve from within the iris under the influence of geometric

properties of the iris boundary. GACs combine the energy minimization approach of the

classical “snakes” and the geometric active contours based on curve evolution.

Let γ(t) be the curve, that has to gravitate toward the outer boundary of the iris, at

a particular time t. The time t corresponds to the iteration number. Let ψ be a function

measuring the signed distance from the curve γ(t). That is, ψ(x, y) = distance of point

(x, y) to the curve γ(t).

ψ(x, y) =





0 if (x,y) is on the curve;

< 0 if (x,y) is inside the curve;

> 0 if (x,y) is outside the curve.

(A.8)

Here, ψ is of the same dimension as that of the eye image I(x, y). The curve γ(t) is

called the level set of the function ψ. Level sets are the set of all points in ψ where ψ

is some constant. Thus ψ = 0 is the zeroth level set, ψ = 1 is the first level set, and so

on. ψ is the implicit representation of the curve γ(t) and is called the embedding function

since it embeds the evolution of γ(t). The embedding function evolves under the influence

of image gradients and the region’s characteristics so that the curve γ(t) approaches the

desired boundary of the iris. The initial curve γ(t) is assumed to be a circle of radius r just

beyond the pupillary boundary. Let the curve γ(t) be the zeroth-level set of the embedding



APPENDIX A. METHODS FOR IRIS SEGMENTATION 107

function. This implies that
dψ

dt
= 0.

By the chain rule,
dψ

dt
=
∂ψ

∂x

dx

dt
+
∂ψ

∂y

dy

dt
+
∂ψ

∂t
,

i.e.
∂ψ

∂t
= −∇ψ.γ′(t).

Splitting the γ′(t) in the normal (N(t)) and tangential (T (t)) directions,

∂ψ

∂t
= −∇ψ.(vNN(t) + vTT (t)).

Now, since ∇ψ is perpendicular to the tangent to γ(t),

∂ψ

∂t
= −∇ψ.(vNN(t)). (A.9)

The normal component is given by

N =
∇ψ
‖∇ψ‖ .

Substituting this in Equation (A.9),

∂ψ

∂t
= −vN‖∇ψ‖.

Let vN be a function of the curvature of the curve κ, stopping function K (to stop

the evolution of the curve) and the inflation force c (to evolve the curve in the outward

direction) such that,
∂ψ

∂t
= −(div(K ∇ψ

‖∇ψ‖) + cK)‖∇ψ‖.

Thus, the evolution equation for ψt
† such that γ(t) remains the zeroth level set is given

by

ψt = −K(c+ ǫκ)‖∇ψ‖ +∇ψ.∇K, (A.10)

where, K, the stopping term for the evolution, is an image dependant force and is used to

decelerate the evolution near the boundary; c is the velocity of the evolution; ǫ indicates

the degree of smoothness of the level sets; and κ is the curvature of the level sets computed

as

κ = −
ψxxψ

2
y − 2ψxψyψxy + ψyyψ

2
x

(ψ2
x + ψ2

y)
3
2

.

†The subscript t denotes the iteration number
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Here, ψx is the gradient of the image in the x direction; ψy is the gradient in the y

direction; ψxx is the 2nd order gradient in the x direction; ψyy is the 2nd order gradient in

the y direction; and ψxy is the 2nd order gradient, first in the x direction and then in the

y direction. Equation (A.10) is the level set representation of the geodesic active contour

model. This means that the level-set C of ψ is evolving according to

Ct = K(c + ǫκ) ~N − (∇K. ~N) ~N (A.11)

where ~N is the normal to the curve. The term κ ~N provides the smoothing constraints on

the level sets by reducing their total curvature. The term c ~N acts like a balloon force and it

pushes the curve outward towards the object boundary. The goal of the stopping function

is to slow down the evolution when it reaches the boundary. However, the evolution of the

curve will terminate only when K = 0, i.e., near an ideal edge. In most images, the gradient

values will be different along the edge, thus requiring the use of different K values. In order

to circumvent this issue, the third geodesic term ((∇K. ~N)) is necessary so that the curve

is attracted toward the boundary (∇K points toward the middle of the boundary). This

term makes it possible to terminate the evolution process even if (a) the stopping function

has different values along the edges, and (b) gaps are present in the stopping function.

The stopping term used for the evolution of level sets is given by

K(x, y) =
1

1 + (‖∇(G(x,y)⋆I(x,y))‖
k

)α
(A.12)

where I(x, y) is the image to be segmented, G(x,y) is a Gaussian filter, and k and α are

constants. As can be seen, K(x, y) is not a function of t.

(a) (b) (c)

Figure A.4: Stopping function for the geodesic active contours. (a) Original iris image, (b)
stopping function K, and (c) modified stopping function K ′.
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Consider an iris image to be segmented as shown in Figure A.4 (a). The stopping

function K obtained from this image is shown in Figure A.4 (b) (for k = 2.8 and α =

8). Assuming that the inner iris boundary (i.e., the pupillary boundary) has already been

detected, the stopping function K is modified by deleting the circular edges corresponding

to the pupillary boundary, resulting in a new stopping function K ′. This ensures that the

evolving level set is not terminated by the edges of the pupillary boundary (Figure A.4

(c)).

(a) (b)

Figure A.5: Contour initialization for iris segmentation using GAC. (a) Zeroth level set
(initial contour), (b) mesh plot denoting the signed distance function ψ.

A contour is first initialized near the pupil (Figure A.5 (a)). The embedding function

ψ is initialized as a signed distance function to γ(t = 0) which looks like a cone (Figure

A.5 (b)). Discretizing equation A.10 leads to the following equation:

ψt+1
i,j − ψt

i,j

∆t
= −cK ′i,j‖∇ψt‖ −K ′i,j(ǫκti,j‖∇ψt‖) +∇ψt

i,j .∇K
′t
i,j, (A.13)

where ∆t is the time step (e.g., ∆t can be set to 0.05). The first term (cK ′i,j‖∇ψt‖) on

the right hand side of the above equation is the velocity term (advection term) and, in the

case of iris segmentation, acts as an inflation force. This term can lead to singularities and

hence is discretized using upwind finite differences. The upwind scheme for approximating

‖∇ψ‖ is given by:

‖∇ψ‖ =
√
A,

A = min(D−x ψi,j , 0)
2 +max(D+

x ψi,j , 0)
2+

min(D−y ψi,j , 0)
2 +min(D+

y ψi,j, 0)
2.
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where D−x ψ is the first order backward difference of ψ in the x-direction; D+
x ψ is the

first order forward difference of ψ in the x-direction; D−y ψ is the first order backward

difference of ψ in the y-direction; and D+
y ψ is the first order forward difference of ψ in the

y-direction. The second term (K ′i,j(ǫκ
t
i,j‖∇ψt‖)) is a curvature based smoothing term and

can be discretized using central differences. In our implementation, c = 0.65 and ǫ = 1 for

all iris images. The third geodesic term (∇ψt
i,j.∇K

′t
i,j) is also discretized using the central

differences.

After evolving the embedding function ψ according to Equation (A.13), the curve begins

to grow until it satisfies the stopping criterion defined by the stopping function K ′. But

at times, the contour continues to evolve in a local region of the image where the stopping

criterion is not strong. This leads to over-evolution of the contour. This can be avoided

by minimizing the thin plate spline energy of the contour. By computing the difference

in energy between two successive contours, the evolution scheme can be regulated. If

the difference between the contours is less than a threshold (indicating that the contour

evolution has stopped at most places), then the contour evolution process is terminated.

The evolution of the curve and the corresponding embedding functions are illustrated in

Figure A.6.

Since the radial fibers may be thick in certain portions of the iris, or the crypts present

in the ciliary region may be unusually dark, this can lead to prominent edges in the stopping

function. If the segmentation technique is based on parametric curves, then the evolution

of the curve might terminate at these local minima. However, geodesic active contours are

able to split at such local minima and merge again. Thus, they are able to effectively deal

with the problems of local minima, thereby ensuring that the final contour corresponds to

the true limbus boundary (Figure A.7).

A.2.2 Variational Level Sets

Another approach that can be used to precisely determine the iris boundaries is based

on variational level sets [14]. This approach uses partial differential equations (PDE) to

numerically solve the evolution of the curves that define the iris boundaries. The iris

boundaries are first approximated using elliptical models, which are then refined using

geometric active contours with variational formulation.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.6: Evolution of the geodesic active contour during iris segmentation. (a) Iris
image with initial contour, (b) embedding function ψ (X and Y axes correspond to the
spatial extent of the eye image and the Z axis represents different level sets), (c,d,e,f)
contours after 600 and 1400 iterations, and their corresponding embedding functions, and
(g,h) Final contour after 1800 iterations (contours shown in white).
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(a) (b)

Figure A.7: The final contour obtained when segmenting the iris using the GAC scheme. (a)
Example of a geodesic contour splitting at various local minima, (b) final contour (contours
shown in white).

Given an iris image, first an elliptical model with parameters (p1, p2, r1, r2, ϕ) is used

to roughly determine the pupillary boundary. Here, (p1, p2) represents the center of the

ellipse; r1, r2, denote the semi-major axis and semi-minor axis, respectively; and ϕ denotes

the orientation of the ellipse. By limiting the values of the semi-major and semi-minor axes

to a specified range, the other parameters are iteratively varied with a small step size of

three pixels to increase the size of the ellipse. At every iteration, a fixed number of points

are randomly chosen on the circumference of the ellipse, and the total intensity difference

between the chosen points and the center of the ellipse is computed. The boundary with the

maximum intensity variation is chosen as the pupillary boundary. A rough contour of the

limbus boundary is also determined in the same manner, with a different set of parameters

for the semi-major and semi-minor axes. Figure A.8 shows an iris image with the rough

contours of the pupillary and limbus boundaries obtained using the elliptical model.

Figure A.8: Rough contours of the pupillary and limbus boundaries obtained using the ellip-
tical model. Notice that the rough contours do not precisely match the true iris boundaries.
Image source: Roy et. al. [14] c©Elsevier
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Once the rough contours of the iris boundaries are obtained, the level set approach is

applied to determine the precise contours. In the level set approach, the rough contour

determined using the elliptical model is used as an active contour C, which can be repre-

sented as the zero level set C(t) = {(x, y) | φ(t, x, y) = 0} of a level set function φ(t, x, y).

The objective of the level set approach is to determine a curve within the level set function,

such that the total energy of the curve is minimum. The total energy of the curve is defined

by the equation:

ε(φ) = µρ(φ) + εg,λ,ν(φ), (A.14)

where the parameters εg,λ,ν(φ) and ρ(φ) denote the external, and the internal energies of

the curve, respectively, and µ > 0. The external energy parameter depends on the image

data, and drives the zero level set towards the boundary of the desired contour. On the

other hand, the internal energy parameter helps in penalizing the deviation of the level set

function, φ, from the signed distance function during the evolution of the curve.

The internal energy term in the above equation is further defined as:

ρ(φ) =

∫

Ω

1

2
(| ∇φ | −1)2dxdy, (A.15)

where Ω represents the image domain.

Similarly, the external energy term εg,λ,ν(φ) can be further defined as:

εg,λ,ν(φ) = λLg(φ) + νAg(φ), (A.16)

where λ > 0, and ν are constants. The term g denotes an edge detector function, and is

defined as:

g =
1

1+ | ∇Gσ ∗ I |2
, (A.17)

where Gσ denotes the Gaussian kernel with a standard deviation of σ, and I denotes the

image. The term Lg(φ) is used to measure the length of the zero level set curve of φ, and

is given by:

Lg(φ) =

∫

Ω

gδ(φ) | ∇φ | dxdy, (A.18)

where δ is the univariate Dirac function. The term Ag(φ) is used to speed up the curve

evolution, and is defined as:

Ag(φ) =

∫

Ω

gH(−φ)dxdy, (A.19)
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where H is the Heaviside function.

The desired evolution equation of the level set function can be obtained by determining

the value of ∂φ
∂t
, using the following equation:

∂φ

∂t
= − ∂ε

∂φ
, (A.20)

where ∂ε
∂φ

represents the Gateaux derivative of ǫ. The value of φ that minimizes the total

energy function can be determined by satisfying the Euler-Lagrange equation, ∂ε
∂φ

= 0. The

Gateaux derivative of the functional ε can be written as follows:

∂ε

∂φ
= −µ

[
∆φ− div( ∇φ| ∇φ |)

]
− λδ(φ)div(g ∇φ| ∇φ |)− νgδ(φ)). (A.21)

Thus, the desired equation of the level set function can be defined as:

∂φ

∂t
= µ

[
∆φ− div( ∇φ| ∇φ |)

]
+ λδ(φ)div(g

∇φ
| ∇φ |) + νgδ(φ)). (A.22)

The last two terms on the right hand side of the above equation represent the gradient

flows of the energy functional. These terms help in driving the zero level curve towards

the boundaries of the required surface. The Dirac function δ(x) in the above equation is

defined as:

δε(x) =

{
0, | x |> ǫ
1
2ǫ

[
1 + cos(πx

ǫ
)
]
, | x |≤ ǫ.

(A.23)

For the active contour φ, the curve evolution process for the pupillary boundary is

carried out within a small range of ±10 pixels from the rough contour. For the limbus

boundary, this range is increased to ±20 pixels. The curve evolution process is carried out

from the outside of the approximated pupil boundary to avoid the effect of specular reflec-

tions. On the other hand, the process is carried out from the inside of the approximated

limbus boundary to reduce the effect of eyelids and the eyelashes. Figure A.9 shows the

final output obtained by the variational level set approach, in which both the iris bound-

aries are precisely detected. Figure A.10 shows the output of iris segmentation using the

variational level set approach on some non-ideal iris images.

A.2.3 Fourier-based Approximation

Daugman [15] suggested the use of the Fourier series approximation in order to deduce

the boundaries of the iris. The benefit of such an approximation is that the resulting output

satisfies the following expectations:
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Figure A.9: Final output obtained using the variational level set approach, where both the
iris boundaries are precisely determined. Image source: Roy et. al. [14] c©Elsevier

Figure A.10: Output of iris segmentation scheme using variational level set approach on
some non-ideal iris images from the UBIRIS Version 1 dataset. Notice that the segmenta-
tion results are fairly precise. Image source: Roy et. al. [14] c©Elsevier

1. Completeness : An iris image may exhibit interruptions in its boundaries (e.g., inter-

ruptions caused by the specular reflections and eyelids to the pupillary and limbus

boundaries, respectively). Therefore, the boundary detected by the segmentation

algorithm must be robust to such interruptions.

2. Closure: Both the iris boundaries detected by the segmentation algorithm are ex-

pected to continue their trajectory across the interruptions on a principled basis, and

form closed curves.

In this technique, given an image I, the coarse contour of the iris boundary is determined

using active contours. Let the coarse iris contour be represented by N regularly spaced

angular samples, given by {rθ}, θ = 0 to θ = N − 1. From this coarse contour, the

corresponding iris boundary {Rθ}, θ = 0 to θ = N − 1, that satisfies the above two

conditions has to be determined. This can be achieved by the Fourier series approximation
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of the coarse contour data, expressed as follows:

Rθ =
1

N

M−1∑

k=0

Ck exp
2πikθ/N , (A.24)

where {Ck} represents a set of M discrete Fourier coefficients, for k = 0 to k = M − 1,

determined by the following equation:

Ck =
N−1∑

θ=0

rθ exp
−2πikθ/N . (A.25)

Generally, the zeroth-order Fourier coefficient (or the DC term C0) describes the average

curvature of the obtained boundary. Since this technique is used for determining the iris

boundaries, the zeroth order coefficient determines the approximate radius of the output

contour.

The value of M represents the number of active Fourier coefficients that are used in

the approximation process. This value represents the number of degrees of freedom for the

shape model of the boundary. In the most simplest scenario, i.e., M = 1, the model of the

boundary will be circular. The value of M also acts as a tradeoff between the preciseness

of the shape versus the strictness of the constraints (which corresponds to the complexity

of the model). A strict set of constraints leads to a complex model, while a weak set of

constraints leads to a simple model. Daugman suggests that M = 17 is a good choice for

the pupillary boundary, and M = 5 for the limbus boundary. The two different choices for

M are supported by the computer vision principle that strong data may be modeled with

only weak constraints, while weak data should be modeled with strong constraints. The

limbus boundary is considered as weak data because the occlusions caused by the eyelids

and eyelashes are generally high. On the other hand, the pupillary boundary is considered

as stronger data because the interruptions caused by the specular reflections are relatively

minimal.

Figure A.11 shows the segmentation output obtained using the Fourier based approxi-

mation. The lower left corner of the image shows a snake that corresponds to the limbus

boundary. The snake on the lower right corner of the image corresponds to the pupillary

boundary. Both the snakes consist of two components: (a) a fuzzy ribbon-like data distri-

bution that corresponds to the coarse contour, rθ, and (b) a dotted curve that corresponds

to the Fourier series approximation, Rθ. The characteristics of these snakes can be listed

as follows:
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1. The endpoints for both the snakes meet at the six o’clock position.

2. The thickness of each snake roughly corresponds to the sharpness of the corresponding

edge.

3. The more un-interrupted an iris boundary is, the flatter and straighter the snake will

be.

Figure A.11: Iris segmentation using Daugman’s Fourier approximation approach. Image
source: Daugman [15] c©IEEE. Image has been edited for clarity.

From the lower right corner of the figure, it can be noticed that the curve rθ corre-

sponding to the limbus boundary exhibits interruptions caused by the eyelid. However, the

curve Rθ continues its trajectory even across the interruptions, proving the effectiveness of

the approach.

A.3 Role of Image Acquisition on Iris Segmentation

Image acquisition plays an important role in the performance of an iris recognition

system. Early iris recognition systems required significant cooperation from the subjects

during image acquisition. This helped in acquiring good quality iris images, with minimal

or no occlusions. As a trade-off, algorithms with low computational complexity [51, 62]

were sufficient for the task of iris segmentation. With an increased demand for accurate

iris recognition under practical scenarios (e.g., from a distance, under covert conditions,

etc.), the requirements imposed during image acquisition are being relaxed. While this

can impart flexibility to the image acquisition process, the quality of the acquired images

can reduce drastically. In such cases, complex algorithms may be required to perform
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segmentation while being robust to various non-ideal factors. This section discusses some

iris segmentation algorithms, grouped according to the image acquisition conditions they

are designed for.

Segmenting images acquired under highly constrained conditions

Images acquired under constrained conditions are often expected to be of high quality.

This is because the user is typically still and cooperatively offers the iris images. Figure A.12

shows an image acquisition system which requires significant user cooperation. In such

scenarios, the classical algorithms described in Section A.1 have been observed to provide

good segmentation performance.

Figure A.12: Conventional iris image acquisition system requiring considerable user coop-
eration. Image source: http://www.life.com/image/1668585

Segmenting images acquired under less constrained conditions

The public usage iris recognition system proposed by Negin et. al. [16] may be con-

sidered to be one of the first systems that attempted to relax the image acquisition con-

ditions. While other iris recognition systems prior to this work required the user to be in

close proximity to the sensor, the proposed system allowed a stand-off distance of up to

3 feet. Furthermore, the proposed system allowed for an easy public setup, compared to

its counterparts. An example of such a public setup could be the use of iris recognition

technology to access an Automated Teller Machine (ATM). Even if the user at the ATM

does not stand completely still, the system would be able to perform iris recognition during

the transaction.

To use the system, the user was required to be reasonably cooperative and focus their

gaze toward the system camera. The system would provide feedback to facilitate easy
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image acquisition of the user’s eye. A high-resolution video image of one eye of the user

would be captured and used for recognition purposes. The image acquisition setup of the

system is shown in Figure A.13.

Figure A.13: Image acquisition setup for the public use iris recognition system. Image
source: Negin et. al. [16] c©IEEE

The various steps involved in the working of this system, along with the functioning of

the individual components, are provided below:

1. The user stands in front of the system, with a maximum allowable stand-off distance

of 3 feet.

2. A wide field of view (WFOV) camera pair is used to capture an image of the user’s

torso, as shown in Figure A.14. The system then applies an image processing algo-

rithm to locate the eyes of the user.

Figure A.14: Image of a user’s torso acquired by the WFOV camera. Image source: Negin
et. al. [16] c©IEEE

3. A narrow field of view (NFOV) camera pair is separately used to focus on the eye

region. The system controls a gaze director to aid the user to look towards the
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camera. A pan-tilt mirror is simultaneously used to direct the optical axis of the

NFOV camera pair to ensure that the user’s eye is focussed properly. As infrared

illuminators are used during image acquisition, the system could operate even if the

subject wore eyeglasses, contact lenses, or in a nighttime environment. Figure A.15

shows a sample image acquired at this stage.

Figure A.15: Image of the user’s eye, acquired by the NFOV camera. Image source: Negin
et. al. [16] c©IEEE

4. A circular grid was used as a guide by the system to localize the iris region in the

image acquired by the NFOV camera. The use of a circular grid simultaneously

allowed for the exclusion of noisy regions such as the pupil, sclera, and the eyelids.

The region lying within the grid was used for encoding and recognition. A sample

image showing the circular grid for localizing the iris region is shown in Figure A.16.

Figure A.16: Left: Circular grid used for iris localization. Right: Iris image with the
circular grid overlaid. Image source: Negin et. al. [16] c©IEEE

While this system relaxed the acquisition conditions only moderately, it is considered

to be significant in the field of iris biometrics for the following reasons:

1. This is one of the earliest works related to successful iris recognition from a distance.
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2. This work highlights the dependency of iris segmentation on the eye detection scheme.

When iris images are acquired from a distance, it has to be noted that eye detection

has to be accurately performed to obtain good segmentation performance.

Segmenting images acquired using IOM (Iris On the Move) systems

The “Iris On the Move” (IOM) system developed by Matey et. al. [9] is considered

to be another major development in the field of iris recognition from a distance. The

IOM system significantly reduces the constraints on the position and the motion of a user

during image acquisition. Such a flexibility is made possible by using an improved image

acquisition system, that uses high-resolution cameras and video-synchronized illumination

mounted on a minimally confining portal.

The setup of the IOM system consists of a walk through portal, similar to a metal

detector. Near Infra-Red (NIR) illumination sources, and high-resolution image sensors are

fixed to the portal. Images are acquired when a user walks through the portal at a normal

walking speed (< 1ms). Stand-off distances up to 3 meters is possible, with a minimum

requirement that the user be moderately cooperative. The system can acquire images even

when a user wears eyeglasses or contact lenses, but cannot see through sunglasses. The

camera used in the IOM system was Securimetrics PIER 2.3, which can acquire iris images

with an approximate diameter of 200 pixels. As the heights of subjects can vary by a large

factor, the system uses a set of cameras instead of one single camera. The setup of an IOM

system is shown in Figure A.17.

Figure A.17: Image acquisition setup for the iris on the move system. Image source: Matey
et. al. [9] c©IEEE
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The raw data acquired by the IOM system is typically a set of high-resolution facial

images (2048× 2048 pixels). This is possible due to the high-resolution and wide field-of-

view of the cameras involved. The key requirement of the IOM system is that it should

perform image acquisition, segmentation, and recognition in real time. The IOM system

is considered to be an industrial application of the iris recognition technology that is ex-

pected to serve a large volume of people in short time. To reduce the computational time

and processing speed of the system, the authors suggest a segmentation routine which is

significantly different from the other segmentation schemes in the literature.

An iris image acquired by the IOM system typically exhibits a pattern of specular re-

flections on the iris. These specular reflections are caused by the Near Infra-Red (NIR)

illumination system used during image acquisition. The pattern of the specular reflections

are strongly dependent on the pattern in which the illuminators are arranged. Figure A.18

shows a sample NIR image exhibiting the specular reflections that correspond to the illu-

mination pattern.

Figure A.18: Image acquired using the IOM system, exhibiting a specular reflection pattern
that corresponds to the illuminator pattern. Image source: Matey et. al. [9] c©IEEE

Instead of ignoring specular reflections as noise, the segmentation scheme in the IOM

system, in fact makes effective use of the pattern. A match filter is applied to the captured

image producing the highest responses on the in-focus specularities. Once the specularities

are highlighted, a thresholding scheme is used to binarize the image. This process yields

an image showing only the locations of the specularities. The border, width, height and

center of each specularity is determined in the binary image. As the illuminator pattern is

pre-determined, specularity patterns that are inconsistent with the illuminator pattern (or
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those that are oddly shaped) are ignored. For the images that have strong correspondence

between the specular reflection and the illuminator patterns, the iris regions around the

specular reflections are extracted. Figure A.19 shows an iris image in which segmentation

is performed using the specular reflection patterns.

Figure A.19: Iris segmentation using the specular reflection pattern in the image. Once
the specular reflection pattern is detected, a specified area around the pattern is used for
unwrapping and feature extraction. Image source: Matey et. al. [9] c©IEEE

The contribution of the IOM system in the field of iris recognition is significant for the

following reasons:

1. IOM system is the first image acquisition and recognition system that can work on

iris images obtained from users walking at a normal pace.

2. The system allows for real-time recognition while relaxing the constraints imposed

on the user, compared to its predecessors.

A.4 Segmenting Visible Wavelength Iris Images

Most iris recognition systems acquire input images using sensors that operate in the

infra-red wavelength. This is due to the fact that the complex texture of the iris is more

easily discernible when imaged under infra-red lighting. However, it may not be possible to

acquire or operate with infra-red iris images at all times. Some of the reasons that support

iris image acquisition in visible wavelength are provided below:

1. The current sensor and illuminator technology makes it difficult to acquire iris images

from a distance using sensors that operate in the near infra-red wavelength.
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2. Surveillance cameras usually work in visible wavelength. When using face and iris

recognition systems on the data acquired from surveillance cameras, the iris data will

be in the visible wavelength.

A majority of existing segmentation techniques use near infra-red images as their input.

Such images typically exhibit higher contrast between the pupil and the iris regions, and

induce the usual option of determining the pupillary border. In contrast, visible wave-

length images usually exhibit less contrast between the pupil and the iris. This supports

the inversion of the order in which the iris boundaries are segmented for visible images.

An iris image acquired using a sensor that operates under visible wavelength is shown in

Figure A.20.

Figure A.20: An iris image acquired in the visible wavelength. Notice that the intensity
contrast between the pupil and the iris is low.

Proenca suggests an approach [78, 155] that performs automatic segmentation of the

iris images acquired in the visible wavelength. Furthermore, the approach can perform

iris segmentation on images that are acquired at a large imaging distance (4 to 8 meters),

on the move, and under varying lighting. From the input image, the proposed technique

first detects the sclera, as it is the most distinguishable region even under varying lighting

conditions. Then, the fact that sclera mandatorily lies next to the iris is taken into account,

and the iris regions are detected. A neural pattern recognition approach is later used to

perform the segmentation.

The entire process can be broken down into three stages: detection of the regions that

correspond to the iris; segmentation of the iris; and detection and elimination of the noisy

regions. Given an image I, the sclera region is first detected. This is because in some

images, iris detection is rather difficult. However, due to the naturally distinguishable

appearance (color) of the sclera, it can be detected first by an approach which analyzes the

color spaces of the image. Based on an empirical analysis, the author suggests three color
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components: hue (h), blue (cb), and red chroma (cr), that can characterize information

about the sclera. The contrast between the sclera and the remaining parts of the eye can

be maximized using these three color components.

Given an iris image I, a 20-dimensional feature vector is constructed for each pixel,

which can be denoted by the following expression:

{x, y, hµ,σ0,3,7(x, y), cb
µ,σ
0,3,7(x, y), cr

µ,σ
0,3,7(x, y)} (A.26)

where x and y denote the position of the pixel, and h(), cb(), and cr() denote the hue, blue,

and red chroma components of the image at that pixel. The subscript denotes the radii of

the circle that is centered at the pixel. The parameters µ, and σ, denote the mean, and the

standard deviation, respectively, of the set of pixels which fall within those circular regions.

For example, the term cbµ,σ0,3,7(x, y) means that six features were extracted from regions of

the blue color component: three averages and three standard deviations, computed locally

within regions of circles with radii 0, 3, and 7, centered at the considered pixel (x, y).

Once the feature vectors for all the image pixels are calculated for all the images, a neural

network classifier is used to obtain the sclera map. This map indicates the location of sclera

in the image.

To detect the iris, the information obtained using the sclera map is used. The author

suggests that a pixel which lies within iris boundaries, when frontally imaged, will have

similar number of sclera pixels on both sides. On the other hand, if the iris is off-angled,

then the number of pixels of sclera on one side will be more than the number of pixels

on the other side. To detect the iris pixels, another feature vector is generated. The data

obtained from the sclera detection stage is used to obtain a new feature, referred to as

“proportion of sclera” p(x, y), for each image pixel. This feature helps in measuring the

proportion of pixels that belong to the sclera in a direction d, with respect to the pixel at

location (x, y). The notation used for the directions are ↑ for north, ↓ for south, ← for east

and → for west. The feature vectors for each pixel are generated using the proportion of

sclera information as follows:

p←(x, y) = µ(sc((1, y − 1), (x, y))), (A.27)

p→(x, y) = µ(sc((x, y − 1), (w, y))), (A.28)

p↑(x, y) = µ(sc((x− 1, 1), (x, y))), (A.29)
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p↓(x, y) = µ(sc((x− 1, y), (x, h))), (A.30)

where sc((., .), (., .)) denotes the regions of the image cropped from the detected sclera,

delimited by the top-left and bottom-right corner coordinates. w and h denote the width

and height, respectively. The value of p() is set to 0 for all sclera pixels. The “proportion

of sclera” values, pixel positions, local image saturation, and blue chrominance are then

used to form a new feature vector represented as:

{x, y, sµ,σ0,3,7(x, y), cb
µ,σ
0,3,7(x, y), p←,→,↑,↓(x, y)} (A.31)

where s() and cb() denote saturation and blue chrominance. Once again, the choice of color

components is based on empirical evaluation.

Multilayered perceptron feed forward neural networks with one hidden layer are used by

both classification stages. The neural network is trained using sample images and its output

on a test image is considered to effectively decide the boundaries of the iris. Once the set

of image pixels that correspond to a noise-free iris are identified, the goal is to determine

the contours of the pupil and sclera of the iris. For this purpose, shape parameterization

techniques are used.

A.5 Performance Evaluation of a Few Iris Segmenta-

tion Techniques

To provide an understanding of the iris segmentation performance, 3 techniques were

chosen. The three algorithms are (a) integro-differential operator, (b) Hough transforma-

tion, and (c) Geodesic Active Contours. The segmentation performance is evaluated on

the ICE database [104], which contains a total of 2953 iris images corresponding to both

left and right eyes. The images are in the TIFF format, with a resolution of 640 × 480

pixels. The quality of the images is reasonably good, as they were collected from coopera-

tive users. However, some images exhibit eyelid or eyelash occlusions. The performance of

an iris segmentation technique was measured by computing the segmentation accuracy as

follows:

Segmentation accuracy =
Number of correctly segmented images

Number of input images
× 100 (A.32)

Table A.5 lists the segmentation accuracies of the three techniques. From the results, it

can be observed that Geodesic Active Contours provide better segmentation performance
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Segmentation technique Number
of input
images

Number of
correctly seg-
mented images

Segmentation
accuracy

Integro-differential oper-
ator

2953 2597 87.9%

Hough transform 2953 2632 89.1%

Geodesic Active Con-
tours (GAC)

2953 2699 91.3%

Table A.1: Segmentation accuracies of the three techniques evaluated in this
work.

when compared to the classical approaches. However, it has to be noted that the computa-

tional expense of the classical approaches is much lower than that of the Geodesic Active

Contours. Thus, it is necessary to understand the computational demands and operational

requirements of an application prior to engaging a specific iris segmentation algorithm. It

may be possible to dynamically determine which iris segmentation algorithm is appropriate

to be used based on characteristics of the image to be segmented. Further, the outputs of

multiple segmentation algorithms may be combined to generate a single hypothesis for the

boundaries of the iris.

A.6 Approaches to Refine Iris Segmentation

One of the major concerns in iris segmentation is the over- or under-segmentation of

the iris boundaries. Over segmentation refers to the situation where the radius of the

detected iris boundary is larger than that of the actual boundary. On the other hand,

under segmentation refers to the situation where the radius of the detected iris boundary

is smaller than the actual boundary. Figure A.21 shows a sample image for each case.

In both cases, the offset between the actual iris boundary and the detected iris bound-

ary is not large. However, such minor offsets can significantly lower iris recognition perfor-

mance. This is due to the inclusion of noise or regions that do not contain discriminatory

texture information (e.g., sclera, eyelashes, etc.). In this section, some approaches are dis-

cussed that attempt to refine segmentation by operating on finer details in the vicinity of

the iris.
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Figure A.21: Left: Over segmented limbus boundary. Right: Under segmented limbus
boundary.

Eyelash Removal in Iris Images

One of the many factors that affect iris recognition performance is the occlusion caused

by eyelashes. While some approaches ignore the iris regions occluded by eyelashes [64],

others detect the eyelashes and mask them while encoding [87]. On the contrary, the

technique proposed by Zhang et. al. [17] attempts to restore the iris regions that are

occluded by the eyelashes. A non-linear conditional directional filtering approach is used

to perform the restoration. The proposed technique is an iterative approach involving the

following steps: (a) detecting the pixels that correspond to eyelash occlusion, (b) detecting

the direction of the eyelash that causes the occlusion, (c) local filtering of occlusion region

in the direction that is perpendicular to the eyelash, (d) restoring the pixel intensity by

using a 1D median filter.

The proposed technique is more suited for unwrapped or normalized iris images, rather

than the original iris images. The unwrapped iris images in this work are of size 512× 80

pixels, and the top 48 rows of pixels nearest to the pupil are used by the eyelash removal

technique. Figure A.22 shows eyelash occlusion in an unwrapped iris image.

Figure A.22: Unwrapped iris images containing eyelash occlusion. Image source: Zhang et.
al. [17] c©IEEE

An eyelash is expected to cause a discontinuity along its edges. Therefore, given an
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unwrapped iris image I, an eyelash is detected, and its direction is estimated by using an

edge filter. For this purpose, a 3×3 Sobel edge filter is applied on the image. A Sobel edge

filter is shown in Figure A.23.

Figure A.23: Left: x derivative for a Sobel Edge filter. Center: image region under consid-
eration. Right: y derivative for a Sobel edge filter.

For each pixel, the gradients in the x and y directions [Gx, Gy] can be determined by

the following equations:

Gx = (z7 + 2z8 + z9)− (z1 + 2z2 + z3) (A.33)

Gy = (z3 + 2z6 + z9)− (z1 + 2z4 + z7) (A.34)

Similarly, the magnitude of the gradient at the center of the mask, Grad, is computed

as:

Grad =
√

(G2
x +G2

y). (A.35)

The local gradient direction that is perpendicular to the edge can then be determined by:

θ = arctan
(
Gy/Gx

)
. (A.36)

To determine if a pixel is occluded or not, a window of size m×n is centered at a pixel,

and the gradient direction variance for the r pixels that lie within the window and have a

Grad value above a specific threshold is computed as follows:

V ar Grad =
1

r − 1

r∑

i=1

(θi − θ)2. (A.37)

A strong edge is indicated if the gradient direction has a small variance, and the pixel

is classified as being affected by an eyelash. To restore such a pixel, a 1D median filter of

length L is applied along the direction θ. This process outputs an estimate of the value of

the image with the eyelash removed.
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To avoid incorrectly filtering non-eyelash pixels, pixel alteration is carried out only if

the change in the pixel exceeds a certain threshold, related to the total variance of the

image. For this purpose, a parameter Recover is computed as follows:

Recover = Diff − k ∗ V ar(Image) (A.38)

where Diff represents the difference in the intensity between the filtered and the unfiltered

pixel, V ar(Image) represents the intensity variance of the whole unfiltered image, k denotes

parameter used to tune the threshold. The pixel is replaced by the filtered value, only if

Recover is positive. By using this approach, the visual appearance is not significantly

changed, but the recognition performance is improved. Figure A.24 shows an unwrapped

iris image before and after applying the approach.

Figure A.24: Top: Image affected by eyelash occlusion. Bottom: Output obtained by
applying the eyelash removal technique. Image source: Zhang et. al. [17] c©IEEE

Improving Daugman’s Classical Segmentation Algorithm

Libor Masek’s MATLAB package [77] is one of the most widely used open source im-

plementation for iris segmentation. For good quality iris images acquired under regular

imaging conditions, Libor Masek’s implementation results in good segmentation perfor-

mance. However, Liu et. al. [18] showed that the segmentation performance can be further

improved by incorporating minor modifications to Libor Masek’s implementation. The two

most significant modifications that were used to improve the segmentation performance of

Libor Masek’s implementation are as follows:

1. Reversal of the detection order of the iris boundaries: In Masek’s implementation,

the limbus boundary is detected first, followed by the pupillary boundary. However,

by reversing the detection order, slightly better segmentation performance can be

observed. This is based on the fact that the pupillary boundary exhibits strong

intensity variation at its boundary, when compared to that of the limbus boundary.

By reversing the order, the dependency problem can be minimized.
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2. Eyelid detection: Libor Masek’s implementation models the eyelids as two horizontal

lines. As a result of such an approximation, some of the iris texture can be occluded.

The authors suggest splitting the top and bottom eyelid regions into two different

portions each as shown in Figure A.25, and then performing eyelid detection. As

a result of this, the eyelids will no longer be approximated as straight lines but will

appear curvy. This modification avoids unnecessary occlusion of the iris during eyelid

estimation. Figure A.26 shows the difference observed in eyelid detection using the

proposed modification.

Figure A.25: Splitting of the eyelid into four portions to allow better detection of eyelid.
Image source: Liu et. al. [18] c©IEEE

Figure A.26: Left: Eyelid detection using Libor Masek’s approach. Right: Improved eyelid
detection using the proposed modifications. Image source: Liu et. al. [18] c©IEEE

A.7 Predicting Errors in Iris Segmentation

The performance of an iris recognition system is highly dependent on the output of

iris segmentation. If an incorrectly segmented region is used for recognition, the lack of

rich distinctive texture can reduce recognition performance. Thus, designing an algorithm
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that can examine the input image and predict in advance if segmentation is likely to fail

or not would be beneficial. Such a scheme can be used to provide feedback during image

acquisition, requiring the user to provide a better, more useful image. When acquiring a

new image is not a possibility, the image can at least be flagged to avoid being used for

recognition purposes. Manual segmentation could then be used to further process such an

image. Another possibility is to design an algorithm that can evaluate the output of the

segmentation routine and determine if the segmentation has failed or not.

Some algorithms compute the quality of the iris region using local image analysis [58].

However, such algorithms require at least a coarsely segmented iris. If the segmentation

is improper, the quality estimate will be incorrect, thus defeating the motive for such an

exercise.

Kalka et. al. [75] propose an algorithm which evaluates the output of the pupil and iris

segmentation routines. The algorithm is based on combining probabilistic intensity features

with geometric features to generate scores that indicate the success of segmentation. A

decision tree-based machine learning approach is used to render a binary decision: success

or failure. The proposed method, therefore, predicts whether the output of segmentation

is good (both the pupil and iris boundaries were correctly estimated) or bad (at least one

of the boundaries was incorrectly estimated).

The following measures are taken into account:

1. Pupil segmentation measure: One of the major concerns here is related to the over- or

under-segmentation of the pupil. To take into account such problems, a probabilistic

model is used to fit the segmentation output for the pupil. The output of the model

is then used to generate an over-segmentation or under-segmentation score.

2. Geometric iris measure: This is based on the fact that the limbus and pupillary

boundaries are actually concentric (circles or ellipses) when they are frontally imaged.

Therefore, a measure based on eccentricity and concentricity of the boundaries is

taken into account.

Given an iris image segmentation output, the goal is to assign a score to that output,

which indicates the “goodness” of segmentation based on the above factors. First, the pupil

boundary is checked to establish whether it is over- or under-segmented. For this, consider
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an image I, and let its pupillary contour be represented as x̄. The task is to decide whether

the pixels lying within the boundary x̄ actually belong to the pupil or not. To this end, a

probabilistic model is associated with x̄, which formulates a likelihood ratio test, Λ(x̄), as

follows:

Λ(x̄) =
P (x̄ | H1)

P (x̄ | H0)
≥ η (A.39)

whereH1 : x̄ corresponds to a pupil pixel andH0 : x̄ corresponds to a non-pupil pixel. Based

on empirical evaluation, the authors use a Gamma distribution Γ(k,Θ), for P (x̄ | H1), and

a Gaussian distribution N(µ, σ2) for P (x̄ | H1), respectively. The value of the shape

parameter k is fixed to 1. To obtain the scale parameter value Θ, the spatial histogram of

the image intensities in the region of interest is computed. From the histogram, the scale

parameter is estimated as:

Θ̂ =

Bin(Pt)∑

i=0

xiwi (A.40)

where Pt) denotes the threshold used to constrain the size of the pupil region, xi is a gray

level bin from the histogram of the region of interest, and wi is the weight associated with

bin xi. In other words, Θ is obtained by summing the product of the gray level bins and

the associated weights until the bin corresponding to Pt is reached. The parameters of the

Gaussian are estimated using the following equations:

µ̂ =

Bin(It)∑

i=Bin(Pt)+1

xiwi (A.41)

σ̂2 =

Bin(It)∑

i=Bin(Pt)+1

wi(xi − µ̂)2 (A.42)

where It is a threshold used to constrain the size of the iris region, xi is the gray level bin in

the histogram corresponding to the region of interest, and wi is the weight associated with

bin xi. Thresholds Pt and It are determined experimentally. Every pixel within the pupil

boundary is assigned a 0 or 1, based on the likelihood ratio test. Once values are assigned

to all pixels in the region of interest, the over-segmentation measure Pover is computed as

the ratio of the number of 0’s to that of 1’s.

To measure the under-segmentation of the pupil boundary, an iterative approach is

employed where the estimated pupil radius (or major and minor axes in case of an ellipse)

is increased and it is determined whether the pixels inside the expanded region are pupil
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pixels by the same approach as above. This process is continued until the pupil radius

reaches the size of the iris radius, or the ratio of pupil to non-pupil pixels is less than

20%. The use of a threshold prevents the influence of heterogenous factors such as dark

eyelashes/eyelids and reduces unnecessary computations. The final under segmentation

score is defined as follows:

Punder =
Pover

Pover + Pest under

(A.43)

Pest under is the total number of estimated pupil pixels over all iterations.

To obtain yet another score value for the accuracy of segmentation, the concentricity

and eccentricity of the iris and pupil boundaries are used. These values are measured using

the following equations:

IC =
√

(px − ix)2 + (py − iy)2 (A.44)

IE =
√

(px − ix)2 + (py − iy)2 + arccos

(
bi
ai

)
∗ 100 + arccos

(
bp
ap

)
∗ 100 (A.45)

where (px, py) are the pupil center coordinates, (ix, iy) are the iris center coordinates, bi

and ai are the semi-minor and semi-major axes for the iris ellipse, respectively, and bp and

ap are the semi-minor and semi major axes for the pupil ellipse, respectively.

Once both the pupil segmentation score and the iris segmentation scores are available,

a Naive-Bayes Tree classifier is used to generate a final score. This final score is binarized

to indicate the performance of iris segmentation.
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