26,491 research outputs found

    Robust Encryption, Extended

    Get PDF
    Robustness is a notion often tacitly assumed while working with encrypted data. Roughly speaking, it states that a ciphertext cannot be decrypted under different keys. Initially formalized in a public-key context, it has been further extended to key-encapsulation mechanisms, and more recently to pseudorandom functions, message authentication codes and authenticated encryption. In this work, we motivate the importance of establishing similar guarantees for functional encryption schemes, even under adversarially generated keys. Our main security notion is intended to capture the scenario where a ciphertext obtained under a master key (corresponding to Authority 1) is decrypted by functional keys issued under a different master key (Authority 2). Furthermore, we show there exist simple functional encryption schemes where robustness under adversarial key-generation is not achieved. As a secondary and independent result, we formalize robustness for digital signatures – a signature should not verify under multiple keys – and point out that certain signature schemes are not robust when the keys are adversarially generated. We present simple, generic transforms that turn a scheme into a robust one, while maintaining the original scheme’s security. For the case of public-key functional encryption, we look into ciphertext anonymity and provide a transform achieving it

    Groupoid Semantics for Thermal Computing

    Full text link
    A groupoid semantics is presented for systems with both logical and thermal degrees of freedom. We apply this to a syntactic model for encryption, and obtain an algebraic characterization of the heat produced by the encryption function, as predicted by Landauer's principle. Our model has a linear representation theory that reveals an underlying quantum semantics, giving for the first time a functorial classical model for quantum teleportation and other quantum phenomena.Comment: We describe a groupoid model for thermodynamic computation, and a quantization procedure that turns encrypted communication into quantum teleportation. Everything is done using higher category theor

    End-to-end security for video distribution

    Get PDF

    Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption

    Full text link
    Optical chaos is a topic of current research characterized by high-dimensional nonlinearity which is attributed to the delay-induced dynamics, high bandwidth and easy modular implementation of optical feedback. In light of these facts, which adds enough confusion and diffusion properties for secure communications, we explore the synchronization phenomena in spatiotemporal semiconductor laser systems. The novel system is used in a two-phase colored image encryption process. The high-dimensional chaotic attractor generated by the system produces a completely randomized chaotic time series, which is ideal in the secure encoding of messages. The scheme thus illustrated is a two-phase encryption method, which provides sufficiently high confusion and diffusion properties of chaotic cryptosystem employed with unique data sets of processed chaotic sequences. In this novel method of cryptography, the chaotic phase masks are represented as images using the chaotic sequences as the elements of the image. The scheme drastically permutes the positions of the picture elements. The next additional layer of security further alters the statistical information of the original image to a great extent along the three-color planes. The intermediate results during encryption demonstrate the infeasibility for an unauthorized user to decipher the cipher image. Exhaustive statistical tests conducted validate that the scheme is robust against noise and resistant to common attacks due to the double shield of encryption and the infinite dimensionality of the relevant system of partial differential equations.Comment: 20 pages, 11 figures; Article in press, Optics Communications (2011

    Making the Distribution Subsystem Secure

    Get PDF
    This report presents how the Distribution Subsystem is made secure. A set of different security threats to a shared data programming system are identifed. The report presents the extensions nessesary to the DSS in order to cope with the identified security threats by maintaining reference security. A reference to a shared data structure cannot be forged or guessed; only by proper delegation can a thread acquire access to data originating at remote processes. Referential security is a requirement for secure distributed applications. By programmatically restricting access to distributed data to trusted nodes, a distributed application can be made secure. However, for this to be true, referential security must be supported on the level of the implementation
    • …
    corecore