6 research outputs found

    Experimental results of passive vibro-acoustic leak detection in SFR steam generator mock-up

    Get PDF
    International audience# N° 1121 Experimental results of passive vibro-acoustic leak detection in SFR steam generator mock-up 1 Abstract— Regarding to GEN 4 context, it is necessary to fulfil the high safety standards for sodium fast reactors (SFR), particularly against water-sodium reaction which may occur in the steam generator units (SGU) in case of leak. This reaction can cause severe damages in the component in a short time. Detecting such a leak by visual in-sodium inspection is impossible because of sodium opacity. Hydrogen detection is then used but the time response of this method can be high in certain operating conditions. Active and passive acoustic leak detection methods were studied before SUPERPHENIX plant shutdown in 1997 to detect a water-into-sodium leak with a short time response. In the context of the new R&D studies for SFR, an innovative passive vibro-acoustic method is developed in the framework of a Ph.D. thesis to match with GEN 4 safety requirements. The method consists in assuming that a small leak emits spherical acoustic waves in a broadband frequency domain, which propagate in the liquid sodium and excite the SGU cylindrical shell. These spatially coherent waves are supposed to be buried by a spatially incoherent background noise. The radial velocities of the shell is measured by an array of accelerometers positioned on the external envelop of the SGU and a beamforming treatment is applied to increase the signal-to-noise ratio (SNR) and to detect and localize the acoustic source. Previous numerical experiments were achieved and promising results were obtained. In this paper, experimental results of the proposed passive vibro-acoustic leak detection are presented. The experiment consists in a cylindrical water-filled steel pipe representing a model of SGU shell without tube bundle. A hydrophone emitting an acoustic signal is used to simulate an acoustic monopole. Spatially uncorrelated noise or water-flow induced shell vibrations are considered as the background noise. The beamforming method is applied to vibration signals measured by a linear array of accelerometers on the shell. Satisfying results are obtained regarding to detection and localization of the source smothered by the background noise. This research was carried in the framework of the LabEx CeLyA ("Centre Lyonnais d'Acoustique", ANR-10-LABX-60) by the LVA/ INSA de Lyon, in collaboration with AREVA and the CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) within the framework of a co-financing partnership. The authors are grateful for the interest and financial support received from these two entities. J. Moriot and O. Gastaldi are with DEN/STPA

    Minimum Sensitivity Based Robust Beamforming with Eigenspace Decomposition

    Get PDF
    An enhanced eigenspace-based beamformer (ESB) derived using the minimum sensitivity criterion is proposed with significantly improved robustness against steering vector errors. The sensitivity function is defined as the squared norm of the appropriately scaled weight vector and since the sensitivity function of an array to perturbations becomes very large in the presence of steering vector errors, it can be used to find the best projection for the ESB, irrespective of the distribution of additive noises. As demonstrated by simulation results, the proposed method has a better performance than the classic ESBs and the previously proposed uncertainty set based approach

    Low-Complexity Robust Capon Beamforming Based on Reduced-Rank Technique

    Get PDF

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas
    corecore