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Abstract

A novel adaptive beamforming algorithm against large direction-of-arrival (DOA) mismatch without using
optimization toolboxes is proposed. In contrast to previous works, this new beamformer employs two reconstructed
matrices, the interference-plus-noise covariance matrix and the desired signal-plus-noise covariance matrix, instead
of their real sample covariance matrix, respectively. These reconstructed covariance matrices are used to obtain an
orthogonal subspace, which is orthogonal to the interference subspace and contains the desired signal subspace.
Without estimating the desired signal steering vector, an optimal weight can finally be solved by rotating this
orthogonal subspace based on the output power of the desired signal maximization. This novel beamformer is able
to keep a steady and outstanding performance when DOA mismatch has a large uncertainty level. Moreover, this
algorithm overcomes the problem of the desired signal self-cancelation at high signal-to-noise ratio (SNR) while
maintaining the good performance at low SNR.
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1 Introduction
Adaptive beamforming is a classic problem in array signal
processing and has broad application prospects in military
and civilian applications. The conventional adaptive beam-
formers suppress the interference based on the exact know-
ledge of the desired signal steering vector. However, the
presence of the desired signal component in the training
data makes their performance very sensitive to the model
mismatch [1-3], which arises due to imprecisely known
wavefield propagation conditions, array perturbations, im-
perfectly calibrated arrays and finite sample effect. When-
ever a model mismatch exists, these beamformers will
suffer severe performance degradation. Therefore, the ro-
bust adaptive beamformer (RAB) has attracted more atten-
tion recently. Various RABs have been developed [4,5].
One popular RAB category, the eigenspace-based beam-

forming (ESB) techniques [6], is based on eigendecomposi-
tion and uses the signal subspace. It suffers a high
probability of subspace swap at low signal-to-noise ratio
(SNR). Another well-known RAB category is the one using
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the so-called diagonal loading technique [7,8], where a
scaled identity matrix is added to the sample covariance
matrix. The main disadvantage of this RAB category is that,
there is no reliable way to choose the optimal diagonal
loading factor in different scenarios. The third RAB cat-
egory is based on the principle of the worst-case perform-
ance optimization [9,10] and makes explicit use of an
uncertainty set of the desired signal steering vector. How-
ever, it has been proved that this RAB category is equivalent
to the second one [8]. Moreover, most beamformers of this
RAB category are based on the second-order cone pro-
gramming (SOCP) problem and needs to use some specific
optimization toolboxes [11] to obtain the solution. Thus,
their computation cost is high. This limits their practical
implementation. Recently, an approach, where the key is es-
timating the real desired signal steering vector by using the
region of the angular location of the desired signal steering
vector, has been an intensive research topic [12-18]. For this
RAB category technique, it chooses the weight vector
by maximizing the output power under some restric-
tions without considering the worst-case performance
optimization rule. However, most beamformers of this
RAB category are based on a quadratically constrained
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quadratic programming (QCQP) problem, whose solu-
tion is obtained by using the convex optimization tool-
boxes such as CVX [19]. This also hits the wall of the
computation complexity. In [17], Wei Zhang propose a
novel method where the problem of finding the desired
steering vector is an eigendecomposition problem that
can be easily solved without any specific optimization
software. However, they ignore the requirement that the
estimate does not converge to any of the interference
steering vectors and their linear combinations. This re-
sults in severe performance degradation when the SNR
of desired signal is very small.
Most of the above-mentioned RABs suffer severe per-

formance degradation when the desired signal has high
SNR. Even the first RAB category also would fail to pro-
vide complete suppression of unwanted interferences
when the power of desired signal is high. In [16], authors
have proposed a robust beamformer based on the
interference-plus-noise covariance matrix reconstruction
and steering vector estimation. This beamformer per-
forms well both at low and high SNRs. However, this
beamformer estimates the steering vector by using the
convex optimization software, which has a high compu-
tational cost. Furthermore, the inaccurate estimation
leads to the output SNR loss, especially for a large
direction-of-arrival (DOA) mismatch.
In this paper, we present a robust beamformer based

on the matrix reconstruction for a large DOA mismatch.
We reconstruct the interference-plus-noise covariance
matrix and the desired signal-plus-noise covariance
matrix, respectively, by using the Capon spectral estima-
tor integrated over regions where the interference and
desired signals are located, respectively. Based on these
two reconstructed matrices, we can get an orthogonal
subspace, which is orthogonal to the interference sub-
space and contains the desired signal subspace. We ro-
tate this orthogonal subspace to obtain the optimal
weight by maximizing the output power of desired sig-
nal. Numerical examples demonstrate that our beamfor-
mer has almost always equal value to the optimal value
when DOA mismatch has a large uncertainty level and
whenever the SNR level of the desired signal is low or
high.

2 The signal model
Assume that an array of M omni-directional antenna
elements receives signals from multiple narrowband
sources. The array observation x(k) at the time instant k
can be given by

x kð Þ ¼ xs kð Þ þ xi kð Þ þ n kð Þ ð1Þ

where xs(k), xi(k), and n(k) are the vectors of the desired
signal, the interference, and the noise, respectively. The
desired signal, the interference, and the noise components
of the array observation x(k) are assumed to be statistically
independent of each other. The desired signal can be
modeled as xs(k) = a0s(k), where s(k) is the desired signal
waveform and a0 is the associated steering vector.
The beamformer output can be written as

y kð Þ ¼ wHx kð Þ ð2Þ
where w is the complex weight vector for beamforming
and (●)H stands for the Hermitian transpose. If the steer-
ing vector a0 is known exactly, the optimal weight vector
w can be achieved via maximizing the beamformer out-
put signal-to-interference-plus-noise ratio (SINR)

SINR ¼ wHRsw
wHRiþnw

¼ σ2s w
Ha0j j

wHRiþnw
ð3Þ

where Rs ¼ E xs kð ÞxHs kð Þ� �
and Ri+n = E{(xi(k) + n(k))

(xi(k) + n(k))H} are the desired signal and the interference-
plus-noise covariance matrix, respectively. E{●} denotes
the statistical expectation and σ2s stands for the desired
signal power. Since the exact interference-plus-noise
covariance matrix Ri+n is hard to be separated from the
covariance matrix R = E{x(n)xH(n)} =Rs +Ri+n in practice,
it is replaced in (3) by the data sample covariance matrix

R̂ ¼ 1
K

Xk
k¼1

x kð ÞxH kð Þ ð4Þ

where K is the number of snapshots. Note that the sam-
ple covariance matrix contains the desired signal compo-
nent. Hence, the estimate result, obtained by using R̂ is
worse than the one using the interference-plus-noise co-
variance matrix Ri+n.
The maximization problem (3), where the sample esti-

mate R̂ is applied instead of Ri+n, is mathematically
equivalent to the MVDR sample matrix inversion (SMI)
beamforming [20], which can be expressed as the follow-
ing convex optimization problem:

min
w

wH R̂w subject towHa0 ¼ 1 ð5Þ

The solution of (5) is

w ¼ R̂−1a0

aH
0 R̂−1

a0 ð6Þ

The MVDR-SMI beamformer is known to be sensitive to
any model mismatch of the desired signal steering vector.
Mati Wax's researches [1,2] also have told us that both of
the snapshots K and the desired signal power affects the
performance of the MVDR-SMI beamformer. Small sample
size K and high desired signal power would cause the deg-
radation of the performance when there is DOA mismatch
of the desired signal. It is easy to find that small sample size
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K arouses a large gap between R̂ and R. The high desired
signal power leads to big difference between R̂ and Ri+n.
Yujie Gu and Leshem have improved the MVDR-SMI

beamformer by using a reconstructed matrix R̂iþn and an
estimate desired signal steering vector instead of the sample
estimate R̂ and the inexact desired signal steering vector,
respectively. This new beamformer can acquire a good per-
formance both at low and high SNRs. The interference-
plus-noise covariance matrix ~Riþn was reconstructed as

~Riþn ¼
Z
�Θ

1

aH θð ÞR̂−1a θð Þ

 !
a θð ÞaH θð Þdθ ð7Þ

where a(θ) is the steering vector associated with a hypo-
thetical direction θ based on the known array structure.
Θ is an angular sector in which the desired signal is lo-
cated and �Θ is the complement sector of Θ. The esti-
mate desired signal steering vector â is obtained by
solving the following problem

min
e⊥

�a þ e⊥ð ÞH ~R−1
iþn �a þ e⊥ð Þ

subject to �aHe⊥ ¼ 0

�a þ e⊥ð ÞH ~R−1
iþn �a þ e⊥ð Þ≤�aH ~R−1

iþn�a

ð8Þ
where the presumed steering vector �a is the inexact one
and the estimate steering vector â ¼ �a þ e⊥ . However, the
analysis in [15] has shown that �aH ~R−1

iþn�a may be the mini-
mum. Thus, the constraint �a þ e⊥ð ÞH ~R−1

iþn �a þ e⊥ð Þ≤�aH

~R−1
iþn�a would result to inaccurate estimation, which will

result in the output SNR loss, especially for a large DOA
mismatch.

3 The proposed beamformer
The proposed beamformer is based on the principle of
maximizing output SINR. Recalling Equation (3), the fol-
lowing equation can be established

RswSINRopt ¼ λRiþnwSINRopt ð9Þ
where wSINR_opt denotes the optimal weight vector of the
maximization problem (3) and λ is a scale value equal to
the maximum SINR. Owing to the existence of the
noise, the interference-plus-noise covariance matrix Ri+n

is always reversible. It is easy to be found that

R−1
iþnRswSINRopt ¼ λwSINRopt ð10Þ

Apparently, the solution to the problem (10) is given
by [3]

wSINRopt ¼ v R−1
iþnRs

� � ð11Þ
where v {•} stands for the principal eigenvector of a
matrix and λ is the corresponding principal eigenvalue.
Since both the desired signal covariance matrices Rs and
the interference-plus-noise covariance matrix Ri+n are
unavailable even in signal-free applications, they can be
replaced by two reconstructed matrices ~Rs and ~Riþn ,
respectively.
As assumed, �Θ is the complement sector of Θ. It is clear

that the DOAs of the interferences are located in the an-
gular sector �Θ . The reconstructed interference-plus-noise
covariance matrix ~Riþn can be obtained (see (7)) by using
the Capon spatial spectrum. Similarly, the desired signal-
plus-noise covariance matrix ~Rs can be given by

~Rs ¼
Z
Θ

1

aH θð ÞR̂−1a θð Þ

 !
a θð ÞaH θð Þdθ ð12Þ

~Riþn collects all information on interference and noise
in �Θ . Hence, the effect of the desired signal is removed
from the reconstructed covariance matrix ~Riþn . ~Rs

gathers all information on desired signal and noise in Θ.
Consequently, the influence of the interferences is elimi-
nated from the reconstructed covariance matrix ~Rs . It is
obvious that the steering vector of the desired signal and
the interference signal lies in the subspace spanned by
the columns of the principal eigenvectors of ~Rs and ~Riþn ,
respectively. Note that the Capon spatial spectrum peak
is not a Dirac delta function. Therefore, unlike the rank-
one matrix Rs in (3), ~Rs here is not rank-one matrix
anymore.
An eigendecomposition of ~Riþn results in a signal and

noise subspace

~Riþn ¼ ~Qs
~Ξ s ~Q

H
s þ ~Qn

~Ξn ~Q
H
n ð13Þ

where ~Qs and ~Qn represent the signal and noise sub-
space eigenvectors and the diagonal matrices ~Ξ s and ~Ξn

include the signal subspace and noise subspace eigen-
values, respectively. Assume that the number of the
interference signals is L and al(l = 1,2,3,⋯, L) is the
steering vector of the interference signal. It can be con-
cluded that

aH
l
~R−1
iþn

~Rs ¼ aH
l Q̃s Ξ̃

−1
s Q̃

H
s þQ̃n Ξ̃

−1
n Q̃

H
n

� �
R̃s

¼ aH
l Q̃s Ξ̃

−1
s Q̃

H
s R̃sþaH

l Q̃n Ξ̃
−1
n Q̃

H
n R̃s; l¼1; 2;⋯;L

ð14Þ

As discussed, it is clear that

aHl ~Qn ¼ 0; l ¼ 1; 2;⋯; L ð15Þ

Thus, the second term in (14) becomes aH
l
~Qn

~Ξ−1
n
~QH
n

~Rs ¼ 0 . When the power of the interference is strong,
~Ξ−1
s ≈0 leads to
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aHl ~Qs
~Ξ−1
s
~QH
s
~Rs≈0; l ¼ 1; 2;⋯; L ð16Þ

Combine Equations (14), (15) and (16), a final result is
obtained as

aHl ~R−1
iþn

~Rs≈0; l ¼ 1; 2;⋯; L ð17Þ

Perform the eigenvalue decomposition on the matrix
~R f ¼ ~R−1

iþn
~Rs as

~R f ¼U s Λs UH
s þUn Λn UH

n
≈U s Λs UH

s
ð18Þ

where Us and Un denote the signal and noise subspace
eigenvectors and the diagonal matrices Λs and Λn in-
clude the signal subspace and noise subspace eigen-
values, respectively. The finite sample snapshot number
leads to Λn ≠ 0 but Λn ≈ 0. Therefore, ~R f is approxi-
mately equal to U sΛsUH

s . As explained above, thanks to
the multiple-rank matrix ~Rs , the subspace Us is not
rank-one matrix yet. Due to Equation (17), the subspace
Us satisfies the following equation

aHl U s ¼ 0; l ¼ 1; 2;⋯; L ð19Þ

Moreover, the origin of Us indicates that this subspace
contains the desired signal subspace. The characters of
Us relating to the interference subspace and desired sig-
nal subspace allow the beamformer weight vector to be
constructed as

w ¼ U sr ð20Þ

where r is the rotating vector. Then, it is easy to find
that

wHal ¼ rHUH
s al≈0; l ¼ 1; 2;⋯; L ð21Þ

Rewriting Equation (3) by using ~Rs and ~Riþn instead of
Rs and Ri+n, respectively, another expression of SINR
can be written as

SINRRec ¼ wH ~Rsw

wH ~Riþnw
ð22Þ

Let us observe the denominator of Equation (22) first.
Recalling Equations (13) and (20), it can be concluded

wH ~Riþnw¼rHUH
s

~Qs
~Ξ s ~QH

s þ ~Qn
~Ξn ~QH

n

� �
U sr

¼ rHUH
s
~Qs

~Ξ s ~QH
s U srþrHUH

s
~Qn

~Ξn ~QH
n U sr

ð23Þ
It is known that

al ¼ ~Qsel; l ¼ 1; 2;⋯; L ð24Þ
where el is the rotating vector. According to (19), the
first term of (23) becomes rHUH

s
~Qs

~Ξ s ~QH
s U sr≈0 . The

second term of (23) can be expressed as

rHUH
s
~Qn

~Ξn ~QH
n U sr¼rHBH ~ΞnBr

¼
X

γir
HbHi bir

¼
X

γ iαi

ð25Þ

where B ¼ ~QH
n U s and bi is the ith column of the matrix B.

αi ¼ rHbHi bir≥0 and γi is the ith diagonal value of matrix
~Ξn and is very small. Thus, the second term of (23) can be
ignored. The derivation shows that wH ~Riþnw can achieve a
minimum value if we choose the beamformer vector in
Equation (20). Then, the SINRRec maximization problem is
transformed into the following optimization problem

max
w

wH ~Rsw ¼w¼Ur
max
r

rHUH
s
~RsU sr ð26Þ

Obviously, the solution to the above problem is

rRec ¼ Μ Ruf g ð27Þ
where Ru ¼ UH

s
~RsU s and M{•} stands for the eigen-

vector of a matrix corresponding to the maximum eigen-
value. Substituting (27) into (20), the final optimal
beamformer vector can be modelled as

wRec ¼ U srRec ð28Þ
The steps involved in the proposed beamformer can

be summarized below:

(1)Compute the sample covariance matrix R̂ by using (4).
(2)Reconstruct the interference-plus-noise covariance

matrix ~Riþn and desired signal-plus-noise covariance
matrix ~Rs according to Equations (7) and (12),
respectively.

(3)Estimate the orthogonal subspace Us via an
eigenvalue decomposition of ~R f ¼ ~R−1

iþn
~Rs (see(18)).

(4)Calculate the rotating vector rRec by using (27).
(5)Obtain the beamformer weight vector wRec with

Equation (28).

The computation complexity of the reconstruction of the
interference-plus-noise covariance matrix and the desired
signal-plus-noise covariance matrix is O(M2J), where J is
the number of sampled points in the DOA region. The
computation complexity of the solution the final weight
vector is dominated by the eigenvalue decomposition of ~Rf ,
which is O(M3). Therefore, the total computation complex-
ity of the proposed algorithm is O(M2J) +O(M3). The
SOCP- or QCQP-based beamformers also make the two-
step method equivalent to the proposed method. The
matrix inversion operation of the simplest SMI beamformer
has a complexity of O(M3). The solution of the SOCP or
QCQP problem to obtain the final optimal weight vector
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has at least the complexity of O(M3.5). Hence, the total
computation complexity of the SOCP/QCQP-based bem-
formers is not less than O(M3) +O(M3.5). If the SOCP- or
QCQP-based beamformers estimate the real desired signal
steering vector by using the region of the angular location
of the desired signal steering vector, their computation
complexity is not less than O(M2J) +O(M3.5). This compu-
tation complexity is more than our proposed beamformer.
Typically, J > >M. There is O(M2J) >O(M3). However, if
some priori information is used, the number of sampled
points in the DOA region J is able to be chosen to make O
(M2J) <O(M3.5). Overall, the proposed beamformer has a
slight advantage to the SOCP- or QCQP-based beamfor-
mers in the view of the computation complexity. However,
unlike the SOCP- or QCQP-based methods, the proposed
method has an important advantage for being more easily
implemented without any specific optimization software.
4 Simulation results
A uniform linear array of 10 sensors with half inter-
element spacing is employed. Additive noise in each an-
tenna element is modeled as spatially and temporally inde-
pendent complex Gaussian noise. Two interferences, which
have the same interference-to-noise ratio (INR) of 30 dB,
are impinging on the array from directions −30° and 50°, re-
spectively. The desired signal, assumed to be a plane wave
from the presumed direction θs = 5°, is always present in
the training data. The possible angular sector of the desired
signal is set to be Θ = [θs − 7°,θs + 7°]. All results are aver-
aged, based on 200 independent simulation runs.
The performance of the proposed algorithm is com-

pared with the sample matrix inversion (SMI) beam-
former, the eigenspace-based beamformer (ESB), the
reconstruction-estimation (Rec-est.) beamformer [16],
the Capon-estimation (Capon-est.) beamformer [17],
and the Capon-estimation based on little information
(Capon-est.-L) beamformer [15]. The dimension of the
signal-plus-interference subspace is assumed to be always
estimated correctly for the ESB. The CVX Matlab toolbox
is used for solving the optimization problem in [15] and
[16]. The number of the columns of the orthogonal sub-
space Us for Capon-estimation (Capon-est.) beamformer
in [17] is chosen as 4. Four principal eigenvectors of ~R f

corresponding to the four largest eigenvalues have been
used in the proposed method.
Example 1: The beampattern of beamformers In this
example, the resultant beampattern of the beamformers is
considered. The snapshots number is 200. A look direction
mismatch of −7° is assumed. This means that the real DOA
of the desired signal is −2°. The SNR of the desired signal is
15 dB. Array beampatterns of each beamformer are shown
in Figure 1. It can be seen from Figure 1 that all these
beamformers have deep nulls at DOAs of interferences.
However, only the proposed beamformer and ESB form the
main lobe in the correct look direction. For the SMI beam-
former, the high desired signal SNR and large DOA mis-
match together cause the appearance of the nulling in the
real DOA of the desired signal. For the Rec-est. beamfor-
mer, the inaccurate estimation of the desired signal steering
vector brings about an erroneous look direction. For the
Capon-est. beamformer and the Capon-est.-L beamformer,
the high desired signal SNR makes their main lobes point
to the incorrect look directions.

Example 2: The output SINR versus the number of
snapshots In the second example, the effect of the number
of snapshots on the output SINR of beamformers is stud-
ied. The random DOA mismatch of the desired signal are
uniformly distributed in [−7°,7°]. That is to say, the DOA of
the signal is uniformly distributed at [−2°,12°]. The SNR of
the desired signal is still 15 dB. Here, the random DOA of
the signal changes from run to run but remains fixed from
snapshot to snapshot. The output SINR of the aforemen-
tioned methods versus the number of snapshots is com-
pared in Figure 2. As shown, the proposed beamformer is
always the closest one to the optimal SINR and enjoys
much faster convergence rates rather than other beamfor-
mers except the Rec-est. beamformer. Although the Rec-
est. beamformer has the same convergence rates with the
proposed beamformer, its output SINR is always lower than
the proposed one. The ESB, whose convergence rate is
nearly same with the Capon-est. beamformer but lower
than the SMI beamformer and the Capon-est-L. beamfor-
mer, always provides a higher output SINR than others
except the proposed one and the Rec-est. beamformer.

Example 3: The output SINR versus the desired signal
SNR Recalling Equation (3), the following equation can
be established

SINR ¼ wHRsw
wHRiþnw

¼ σ2s w
Ha0j j=σ2

wHRiþnw=σ2
ð29Þ

where σ2 = E{n(k)nH(k)} is the power of the noise. Here,
the output SNR and output interference-to-noise ratio
(INR) are defined as

SNRoutput ¼ σ2
s wHa0

�� ��=σ2 ¼ wHa0

�� ��SNR ð30Þ

INRoutput ¼ wHRiþnw=σ2

¼
XL
l¼0

P2
l =σ

2
� �

wHalaH
l w þ wHw

¼
XL
l¼0

INRlwHalaHl w þ wHw

ð31Þ

Apparently, SINR = SNRoutput/INRoutput. In this ex-
ample, the output SINR, the output SNR and the output



Figure 1 The beampattern of beamformers.
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INR versus different SNR of the desired signal are all
given out. By observing these results, the process that
the desired signal SNR how to affect the performance of
each beamformer can be found out. Here, the look dir-
ection is still randomly and uniformly distributed at
[−2°,12°]. Hence, the random DOA mismatch of the
Figure 2 The output SINR versus the number of snapshots.
desired signal is still uniformly distributed in [−7°,7°].
The desired signal SNR varies from −20 to 50 dB. The
snapshot number is assumed to be 500.
As deduced in the part 3, the proposed beamformer sup-

presses the interference due to the fact that the steering
vector of the interference is approximately orthogonal to



Figure 3 Output SNR (a), output INR (b), and output SINR (c) versus input SNR of desired signal.
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Figure 4 Output SNR (a), output INR (b), and output SINR (c) versus DOA mismatch of desired signal.
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the reconstruction matrix ~R f ¼ ~R−1
iþn

~Rs . For the optimal
beamformer, the steering vector of the interference is ap-
proximately orthogonal to the matrix Rf ¼ R−1

iþnRs . It im-
plies that the proposed beamformer and the optimal
beamformer have nearly the same principle and ability of
the interference suppression. The results in Figure 3b inves-
tigate this saying. From Figure 3a, it can be found that the
output SNR of the proposed one is quite close to the opti-
mal beamformer in a large range from −20 to 50 dB. The
optimal weight maximizing the output SINR can be consid-
ered as a result of maximizing the output SNR under the
premise of its approximately orthogonal to the steering vec-
tor of the interference signal. The proposed weight is ob-
tained by using the same scheme. Therefore, the proposed
beamformer produce an output SNR quite close to the op-
timal beamformer. As we know, the reconstructed matrix
~Rs is constructed by using Capon spectral estimator inte-
grated over regions where desired signals are located.
Hence, when the SNR is very small, the spectral peak, ob-
tained by using reconstructed matrix ~Rs , corresponding to
the real DOA of the desired signal is quite flat. This causes
an inaccurate estimate of the rotating vector r, which leads
to a slight worse result than the optimal beamformer. The
joint action of the output SNR and the output INR results
in that the proposed beamformer is always the closest one
to the optimal SINR in a large range from −20 to 50 dB
(see Figure 3c).
Because of the removing of the desired signal component

from the covariance matrix, the output INR of the Rec-est.
beamformer is not much sensitive to the desired signal
SNR and can always follow the trend of the optimal beam-
former. Moreover, the constraint of wH â ¼ 1 makes the
value of wHw very small, which gives raise to that the out-
put INR is smaller than the optimal beamformer and the
proposed beamformer. However, due to the inaccurate esti-
mation of the steering vector, the output SNR of the Rec-
est. beamformer is inferior to the proposed one. Therefore,
the final output SINR of the Rec-est. beamformer is smaller
than the proposed one. The performance of the ESB, the
Capon-est. beamformer and the Capon-est-L. beamformer
can keep quite close to the optimal SINR in a range from
−15 to 10 dB but degrade when SNR is higher than 20 dB.
This is because their interference suppression becomes
worse versus the increase of the SNR. For the SMI beam-
former, as shown in Figure 3, the output SNR decreases
and the output INR increases when the high desired signal
SNR and large DOA mismatch appear at the same time.
Thus, the performance of the SMI beamformer would de-
grade versus the increase of the SNR.
Example 4: The output SINR versus DOA mismatch
In the last example, the output SINR of beamformers ver-
sus different DOA mismatches is considered. Same with
example 3, the output SNR results and output INR results
are also presented. SNR is assumed to be 10 dB and the
number of snapshots is chosen as 200. The DOA mismatch
is uniformly distributed at [−7°,7°]. Results are presented in
Figure 4. As explained in example 3, the principle of obtain-
ing the proposed beamformer imitates that of the optimal
beamformer. When SNR = 10 dB, the proposed beamfor-
mer has nearly the same output SNR and INR. Hence, it is
easy to find that the proposed algorithm always provides an
output SINR almost equal to the optimal value when DOA
mismatch has a large uncertainty level. The Rec-est. beam-
former is strongly affected by the DOA mismatch level and
so does the SMI beamformer. For the Rec-est. beamformer,
the imprecise estimation of the steering vector of the de-
sired signal makes the output SNR small when the DOA
mismatch level is large. For the SMI beamformer, the
wrong constraint of wH�a ¼ 1 brings out a nulling in the
real DOA of the desired signal. Thus, the output SNR is
quite small for large DOA mismatch level. The ESB,
Capoon-est. beamformer, and Capoon-est-L. beamformer
are not very sensitive to the DOA mismatch level. However,
due to the constraint between the weight and the estimate
steering vector of the desired signal, their output SNR is
smaller than the optimal one and the proposed one. There-
fore, their performance is inferior to the proposed
beamformer.
5 Conclusions
A robust beamforming method based on the matrix recon-
struction is proposed. In this beamformer, two recon-
structed matrices, the interference-plus-noise covariance
matrix and the desired signal-plus-noise covariance matrix
are used to replace their real sample covariance matrix, re-
spectively. Then, an orthogonal subspace, orthogonal to the
interference subspace and including the desired signal sub-
space, can be obtained based on the principle of the output
SINR maximization. Finally, an optimal weight vector can
be found by maximizing the output power of the desired
signal. This novel beamformer is able to always be a value
nearly equal to the optimal value when DOA mismatch has
a large uncertainty level and whenever the SNR level of the
desired signal is low or high. Moreover, it has an excellent
convergence rate. Numerical results demonstrate the effect-
iveness of the proposed beamfomer compared with some
of the existing ones.
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