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Existing robust Capon beamformers achieve robustness against steering vector errors at a high cost in terms of computational
complexity. Computationally efficient robust Capon beamforming approach based on the reduced-rank technique is proposed in
this paper.The proposedmethod projects the received data snapshots onto a lower dimensional subspace consisting of thematched
filters of the multistageWiener filter (MSWF).The subsequent adaptive beamforming will then be performed within this subspace.
The combination of the benefit of the robust adaptive beamforming and the reduced-rank technique improves the performance on
combating steering vector errors and lowering the computational complexity.

1. Introduction

The Capon beamformer chooses the weight vector by min-
imizing the array output power subject to a look direction
constraint [1, 2]. The standard Capon beamformer (SCB) has
a high resolution and good interference suppression ability
if the steering vector of the signal of interest (SOI) is known
accurately [3]. However, the knowledge of the steering vector
corresponding to the SOI may be imprecise because of some
factors, such as DOA error, array calibration error, local scat-
tering, near-far spatial signature mismatch, and finite sample
effect [3–10]. Whenever this happens, the output SINR of the
SCB degrades dramatically [6].This effect is called signal self-
nulling [9, 10].

Based on the uncertainty set of the steering vector, some
robust beamformers were recently proposed [3, 4]. Using
worst-case performance optimization, a novel method based
on the second-order cone programming (SOCP) problem
was proposed [4]. However, the SOCP problem has to rely on
some specific optimization toolboxes such as [11, 12] to obtain
its solution, which have a high computational cost and limit
its practical implementation.The basic idea behind the robust
Capon beamforming (RCB) approach of [3] is to estimate the

desired steering vector in an uncertainty set by maximizing
the array output power. The RCB approach needs to perform
eigendecomposition on the sample covariance matrix, which
also hits the wall of computational complexity.

In this paper, we devise a computationally efficient imple-
mentation of the RCB approach using the reduced-rank
technique. A framework has been proposed for combining
reduced-dimension and RCB methods, producing rapidly
converging, low complexity reduced-dimension RCBs [13].
However, the author was not explicitly concerned with
projection matrix design. Here, we propose to employ the
matched filters of the MSWF as the projection matrix for
reduced-rank processing. It can be proved that 𝐷 ≥ 𝑃

matched filters can form an orthogonal subspace containing
the signal-plus-interference subspace, where𝐷 and 𝑃 are the
number of calculated matched filters of the MSWF and the
number of signals, respectively. Thus, the matched filters of
the MSWF can be used as the projection matrix. Moreover,
the projected covariance matrix is tridiagonal, which can be
directly calculated bymeans of the recursion procedure of the
MSWF.Therefore, the proposedmethod has the advantage of
computational simplicity to obtain its projection matrix and
the projected covariance matrix. Furthermore, the matched
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filters are orthogonal with each other; thus the white noise
property at the output of the projection preprocessor is
preserved, thereby facilitating subsequent processing stages.

This paper is organized as follows. In Section 2, the signal
model and a review of the RCB approach are given. The pro-
posed method is introduced in Section 3. Simulation results
are presented in Section 4 and conclusions are drawn in
Section 5.

2. Background

2.1. SignalModel and Standard Capon Beamformer. Consider
an𝑀-sensor uniform linear array (ULA). The received data
of the ULA at the 𝑛th snapshot can be expressed as

x [𝑛] = [𝑥
1 [𝑛] , 𝑥2 [𝑛] , . . . , 𝑥𝑀 [𝑛]]

𝑇

=

𝑃

∑

𝑖=1

a (𝜃
𝑖
) 𝑠
𝑖 [𝑛] + n [𝑛] ,

(1)

where 𝑥
𝑖
[𝑛] is the received data at the 𝑖th sensor, [⋅]𝑇 denotes

the transpose operation, 𝑠
𝑖
[𝑛] is the 𝑖th source, the 𝑀 × 1

vector n[𝑛] is the noise with a power 𝜎2, and

a (𝜃
𝑖
) = [1, 𝑒

−𝑗2𝜋𝑑 sin(𝜃𝑖)/𝜆, . . . , 𝑒−𝑗2𝜋(𝑀−1)𝑑 sin(𝜃𝑖)/𝜆]
𝑇 (2)

is the 𝑀 × 1 steering vector of the 𝑖th signal in direction 𝜃
𝑖
,

with 𝑑 being the adjacent sensor spacing and 𝜆 denoting the
signal wavelength.

Assume that all impinging signals and noise are uncor-
related with each other. Then the covariance matrix can be
expressed as

R
𝑥𝑥
= 𝐸 [x [𝑛] x [𝑛]𝐻] =

𝑃

∑

𝑖=1

𝜎
2

𝑖
a (𝜃
𝑖
) a (𝜃
𝑖
)
𝐻

+ 𝜎
2I, (3)

where 𝐸[⋅] denotes the expectation operation, [⋅]𝐻 represents
the Hermitian transpose, 𝜎2

𝑖
is the 𝑖th source power, and I is

the𝑀×𝑀 identity matrix. In practice, R
𝑥𝑥

is replaced by the
sample covariance matrix

R̂
𝑥𝑥
=

1

𝑁

𝑁

∑

𝑛=1

x [𝑛] x𝐻 [𝑛] , (4)

where𝑁 is the number of snapshots.
Without loss of generality, we assume that the first signal

is the SOI.Then theCaponbeamformer is obtained by solving
the following optimization problem:

minw w𝐻R̂
𝑥𝑥
w

subject to w𝐻a (𝜃
1
) = 1,

(5)

where w is the 𝑀 × 1 complex weight vector and 𝜃
1
is the

presumed steering direction.
The solution to (5) is given by

w =

R̂−1
𝑥𝑥
a (𝜃
1
)

a𝐻 (𝜃
1
) R̂−1
𝑥𝑥
a (𝜃
1
)

. (6)

So the beamformer output power is given by

𝑃
𝑜
=

1

a𝐻 (𝜃
1
) R̂−1
𝑥𝑥
a (𝜃
1
)

. (7)

2.2. RCB Approach. Based on the uncertainty set of the steer-
ing vector, the RCB approach can be formulated as follows
[3]:

mina a𝐻R̂−1
𝑥𝑥
a

subject to 
a − a (𝜃

1
)


2

≤ 𝛽,

(8)

where ‖⋅‖ denotes the Euclidean norm, a is the estimate of the
desired steering vector, and𝛽 is the uncertainty level. In order
to prevent the solution a = 0, we assume that 𝛽 < ‖a(𝜃

1
)‖
2.

The problem (8) can be reformulated as the following
quadratic problem with a quadratic equality constraint:

mina a𝐻R̂−1
𝑥𝑥
a

subject to 
a − a(𝜃

1
)


2

= 𝛽

(9)

which can be solved using the Lagrangemethod.The solution
is

a = a (𝜃
1
) − (I + 𝜆R̂

𝑥𝑥
)
−1

a (𝜃
1
) , (10)

where 𝜆 is the Lagrange multiplier, which can be obtained as
the solution to the spherical constraint equation

𝑔 (𝜆) =

(I + 𝜆R̂

𝑥𝑥
)
−1

a(𝜃
1
)


2

= 𝛽. (11)

As noted in [3], the problem in (11) can be efficiently solved
by applying a Newton-type iterative algorithm.Then the RCB
weight vector is obtained by using (6) with a(𝜃

1
) replaced by

a.

3. Proposed Method

In this section, we first calculate the projection matrix using
the matched filters of the MSWF, and then the adaptive
reduced-rank beamforming is performed.

3.1. Calculating ProjectionMatrix. Let us define the reference
signal and the observation data of theMSWFas𝑑

0
[𝑛] = 𝑥

1
[𝑛]

and x
0
[𝑛] = x[𝑛], respectively. Let h

𝑚
and B

𝑚
denote the𝑚th

matched filter and the𝑚th blocking matrix, respectively. The
rank𝐷MSWF is given by the following set of recursions [14].

For 𝑖 = 1, . . . , 𝐷 (forward recursion),

h
𝑖
=

𝐸 [x
𝑖−1 [𝑛] 𝑑

∗

𝑖−1
[𝑛]]

𝐸 [x𝑖−1 [𝑛] 𝑑∗𝑖−1 [𝑛]]


;

𝑑
𝑖 [𝑛] = h𝐻

𝑖
x
𝑖−1 [𝑛] ;

B
𝑖
= I − h

𝑖
h𝐻
𝑖
;

x
𝑖 [𝑛] = B𝐻

𝑖
x
𝑖−1 [𝑛] .

(12)
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Decrement 𝑖 = 𝐷, . . . , 1 (backward recursion):

𝑤
𝑖
=
𝐸 [𝑑
∗

𝑖−1
[𝑛] 𝑒𝑖 [𝑛]]

𝐸 [
𝑒𝑖 [𝑛]



2

]

;

𝑒
𝑖−1 [𝑛] = 𝑑

𝑖−1 [𝑛] − 𝑤
∗

𝑖
𝑒
𝑖 [𝑛] ,

(13)

where 𝑒
𝐷
[𝑛] = 𝑑

𝐷
[𝑛].

We now form a matrixH, given by

H = [h
1
,B
1
h
2
, . . . ,

𝐷−1

∏

𝑖=1

B
𝑖
h
𝐷
]

= [h
1
, h
2
, . . . , h

𝐷
] .

(14)

It is shown in [15] that thematrixH forms an orthogonal basis
for the Krylov subspace; namely,

span {h
1
, h
2
, . . . , h

𝐷
} = span {r,R

𝑥𝑥
r, . . . ,R𝐷−1

𝑥𝑥
r} , (15)

where r = 𝐸[x
0
[𝑛]𝑑
∗

0
[𝑛]] is the cross-correlation between the

reference signal and the observation data. Since all impinging
signals and noise are uncorrelated with each other, r can also
be written as

r =
𝑃

∑

𝑖=1

𝜎
2

𝑖
a (𝜃
𝑖
) + 𝜎
2e, (16)

where e = [1, 0, . . . , 0]
𝑇. It is easily shown that, for any 𝑘 > 0,

R𝑘
𝑥𝑥
r contains all the array steering vectors a(𝜃

𝑖
) (𝑖 = 1, . . . ,

𝑃). Thus, the signal-plus-interference subspace is contained
inH if𝐷 ≥ 𝑃. Hence, an orthogonal basis

H = [h
1
, . . . , h

𝐷
] (𝐷 ≥ 𝑃) (17)

can be employed as the projection matrix for projecting the
full-dimension received snapshots onto a lower dimensional
subspace, and the adaptive beamforming then occurs within
this subspace.

3.2. Performing Adaptive Beamforming. Using (17) as the
projection matrix, the reduced-rank beamforming problem
can be formulated as follows:

minw𝑟
w𝐻
𝑟
R̂
𝑟
w
𝑟

subject to w𝐻
𝑟
a
𝑟
(𝜃
1
) = 1,

(18)

where w
𝑟
is the 𝐷 × 1 complex reduced-rank weight vector

and R̂
𝑟
= H𝐻R̂

𝑥𝑥
H and a

𝑟
(𝜃
1
) = H𝐻a(𝜃

1
) are the projected

sample covariance matrix and the projected presumed steer-
ing vector, respectively. It should be noted that H𝐻R̂

𝑥𝑥
H

is tridiagonal, which can be directly calculated by applying
the recursion procedure of the MSWF (see [14] for details),
avoiding estimating the full-rank sample covariance matrix
defined in (4). The solution to (18) is given by

w
𝑟
=

R̂−1
𝑟
a
𝑟
(𝜃
1
)

a
𝑟
(𝜃
1
)
𝐻

R̂−1
𝑟
a
𝑟
(𝜃
1
)

. (19)

Then the output power is

𝑃
𝑟
=

1

a
𝑟
(𝜃
1
)
𝐻

R̂−1
𝑟
a
𝑟
(𝜃
1
)

. (20)

Following the classic RCB approach, the proposed
reduced-rank RCB approach can be expressed as

mina𝑟
a𝐻
𝑟
R̂−1
𝑟
a
𝑟

subject to 
a
𝑟
− a
𝑟
(𝜃
1
)


2

= 𝛽
𝑟
,

(21)

where 𝛽
𝑟
denotes the uncertainty level for the reduced-rank

RCB and a
𝑟
is the estimate of the projected desired steering

vector, given by

a
𝑟
= a
𝑟
(𝜃
1
) − (I + 𝜂R̂

𝑟
)
−1

a
𝑟
(𝜃
1
) , (22)

where 𝜂 is the Lagrange multiplier, which can be obtained by
solving the following problem:

𝑔 (𝜂) =

(I + 𝜂R̂

𝑟
)
−1

a
𝑟
(𝜃
1
)


2

= 𝛽
𝑟
. (23)

Similarly, the solution to (23) can be obtained using the same
Newton-type iterative algorithm as in [3]. The reduced-rank
weight vector is then obtained using (19) with a

𝑟
(𝜃
1
) replaced

by a
𝑟
. Finally, the weight vector of the proposed approach is

expressed as

w = H
R̂−1
𝑟
a
𝑟

a𝐻
𝑟
R̂−1
𝑟
a
𝑟

. (24)

3.3. Selection of 𝛽
𝑟
. In this section, the selection of 𝛽

𝑟
is inves-

tigated. It has been shown in [16] that the uncertainty level
𝛽 for the traditional RCB method should be chosen as small
as possible such that

𝛽 ≥ min
𝛾


a𝑒𝑗𝛾 − a (𝜃

1
)


2

, (25)

where a is the actual steering vector. Therefore, for the
proposed method, we choose the value of 𝛽

𝑟
as

𝛽
𝑟
≥ min
𝛾


a
𝑟
𝑒
𝑗𝛾
− a
𝑟
(𝜃
1
)


2

, (26)

where a
𝑟
= H𝐻a is the projected actual steering vector. How-

ever, the actual steering vector is an unknown vector.Thus,we
assume that the SOI comes from a DOA uncertainty region
with a high probability, while no interference comes from this
region. It should be noted that this assumption is also imple-
mented in the beamformers of [7, 17, 18]. Suppose that the
uncertainty region is defined asΦ = [𝜃

1
−Δ𝜃, 𝜃

1
+Δ𝜃], where

Δ𝜃 is the DOA uncertainty range [18]. Therefore, the values
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of 𝛽 and 𝛽
𝑟
for the traditional RCBmethod and the proposed

method, respectively, can be defined as

𝛽 ≥ max (min
𝛾


a(𝜃
1
− Δ𝜃)𝑒

𝑗𝛾
− a(𝜃
1
)


2

,

min
𝛾


a (𝜃
1
+ Δ𝜃) 𝑒

𝑗𝛾
− a (𝜃

1
)


2

) ,

(27)

𝛽
𝑟
≥ max (min

𝛾


a
𝑟
(𝜃
1
− Δ𝜃)𝑒

𝑗𝛾
− a
𝑟
(𝜃
1
)


2

,

min
𝛾


a
𝑟
(𝜃
1
+ Δ𝜃) 𝑒

𝑗𝛾
− a
𝑟
(𝜃
1
)


2

) .

(28)

3.4. Computational Complexity. To estimate the sample cova-
riance matrix, a computational complexity of 𝑂(𝑀2𝑁) is
needed.The eigendecomposition operation needs a computa-
tional complexity of𝑂(𝑀3).Thus the full-rankRCBapproach
requires a complexity of𝑂(𝑀3)+𝑂(𝑀2𝑁). The SOCP-based
methods of [4, 5] have at least complexity of 𝑂(𝑀3.5) +
𝑂(𝑀
2
𝑁), and the SOCP-basedmethods of [7, 8] that attempt

to further improve the robustnesswith respect to themethods
of [3, 4] have much more computational complexity. The
dominant computational cost of the proposed method is
the calculation of the matched filters and the reduced-rank
weight vector. The calculation for each matched filter needs
around a computational complexity of 𝑂(𝑀𝑁). To calculate
the reduced-rank weight vector, a computational complexity
of 𝑂(𝐷3) is required. Thus, the proposed approach needs
a computational complexity of 𝑂(𝐷𝑀𝑁) + 𝑂(𝐷

3
). Conse-

quently, the proposed approach has a lower computational
cost than the existing robust beamforming methods.

4. Simulations

In this section, simulations are carried out to investigate the
performance of the proposed method compared with the
SCB and the RCB. Since the signal subspace based methods
will not work if the signal-plus-interference subspace is
underestimated, that is, 𝐷 < 𝑃, we only consider the cases
of 𝐷 ≥ 𝑃. We consider a ULA with 𝑀 = 10 sensors and
half-wavelength spacing between adjacent sensors. The SOI
arrives from direction 𝜃

1
= 0
∘. Two interfering signals with

interference-to-noise ratio (INR) of 30 dB impinge on the
array from the directions−40∘ and 50∘, respectively.The array
is steered toward the direction 𝜃

1
= 𝜃
1
+ Δ
1
, where Δ

1
is

the DOAmismatch. Here, both the gain and phase errors are
considered. In this case, the actual steering vector can bewrit-
ten as a(𝜃) = Γa(𝜃), where Γ = diag[𝛼

1
𝑒
−𝑗𝜓1 , . . . , 𝛼

𝑀
𝑒
−𝑗𝜓𝑀] is

the diagonal matrix of the calibration errors, with 𝛼
𝑘
and 𝜓

𝑘

standing for the amplitude and phase errors, respectively. We
assume that the amplitude and phase errors have a uniform
distribution: 𝛼

𝑘
∈ [0.8, 1.2] and 𝜓

𝑘
∈ [−𝜋/100, 𝜋/100]. Note

that Γ changes from run to run while remaining constant for
all snapshots. The DOA uncertainty range is set to Δ𝜃 = 4

∘.
The uncertainty level 𝛽 for the traditional RCB method and
the value of 𝛽

𝑟
for the proposed method are calculated using

(27) and (28), respectively. All results are averaged based on
100 independent simulation runs.
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Figure 1: Output SINR versus the number of snapshots.

4.1. Output SINR versus the Number of Snapshots. In the first
example, we consider the effect of the number of snapshots
on the output SINR of the beamformers. The input signal-
to-noise ratio (SNR) of the SOI is set to 5 dB and the DOA
mismatch is Δ

1
= 2
∘. Figure 1 shows the output SINR of the

beamformers versus the number of snapshots. As shown, the
output SINR of the SCB degrades significantly with a DOA
mismatch of 2∘; however, both the proposed method and
the traditional RCB approach can provide sufficient robust-
ness against steering vector errors. Moreover, the proposed
method can achieve a fast convergence rate due to the
reduced-rank processing, leading to a much better perfor-
mance than the traditional RCB approach when the number
of snapshots is very small. Additionally, it can be seen that the
proposed method can still achieve a good performance when
the rank𝐷 is larger than 𝑃.

4.2. Output SINR versus SNR. In the second example, we
investigate the effect of the input SNR on the performance of
the beamformers.Thenumber of snapshots is fixed at𝑁 = 50.
Other parameters remain the same as in the first example.
Figure 2 shows the output SINR of the beamformers as a
function of the input SNR. It can be clearly seen from this
figure that the proposed method has a good performance in
the high SNR region; however, the performance of the pro-
posed method of𝐷 = 3 is much worse than that of the other
methods considered in the low SNR region due to the
problem of possible subspace swap.

4.3. Output SINR versus DOA Mismatch. In the third exam-
ple, the DOA mismatch is uniformly distributed on [0, 6

∘
]

while the actual DOA of the SOI is 0
∘. The number of

snapshots is 𝑁 = 50 and other parameters remain the same
as in the first example.The result of output SINR versus DOA
mismatch is shown in Figure 3. It can be observed that when
the DOA mismatch increases, the performance of the tra-
ditional RCB approach degrades dramatically; however, the
proposed method still achieves a higher output SINR than



Journal of Electrical and Computer Engineering 5

0 5 10

0

5

10

15

20

O
ut

pu
t S

IN
R 

(d
B)

SNR (dB)

Optimal beamformer
RCB

SCBProposed method (D = 3)

Proposed method (D = 4)
Proposed method (D = 5)

−5

−10

−5−10

−15

−20

−25

Figure 2: Output SINR of the beamformers versus input SNR.

0 1 2 3 4 5 6

0

5

10

15

SI
N

R 
(d

B)

DOA mismatch (deg)

Optimal beamformer
RCB

SCBProposed method (D = 3)

Proposed method (D = 4)
Proposed method (D = 5)

−5

−10

−15

−20

Figure 3: Output SINR of the beamformers versus DOAmismatch.

the traditional RCB approach. In addition, as the rank 𝐷

increases the performance of the proposedmethod degrades.
This is because more noise components are included in
the projection matrix which, in turn, degrades its ability of
accommodating the increased DOA mismatch.

5. Conclusions

A low complexity RCB approach based on reduced-rank
technique has been proposed for improving the robustness of
the SCB against steering vector errors. Unlike the traditional
full-rank RCB approach, the proposed method performs the
adaptive beamforming within a lower dimensional subspace
that consists of the matched filters of the MSWF, thereby
reducing its computational complexity and the finite-sample
effect. Simulation results have been presented to demonstrate
the effectiveness of the proposed method.
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