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Abstract

In the presence of the direction of arrival (DOA) mismatch, the performance of generalized sidelobe canceller (GSC)
may suffer severe degradation due to the gain loss of the desired signal in the main array and cancellation. In this
paper, one effective GSC algorithm is proposed to improve the robustness against the DOA mismatch of the desired
signal. Firstly, two subspaces, which contain the desired signal’s actual steering vectors of the main and auxiliary arrays,
can be obtained by using the range information of the angle which the desired signal may come from. By rotating
these two subspaces, the desired signal’s actual steering vectors of the main and auxiliary arrays can be estimated
based on the maximum output power criterion. Then, with the estimates of the steering vectors in the former step, the
gain loss of the desired signal in the main array can be alleviated. Moreover, one adaptive weight vector with the
ability to block the desired signal in the auxiliary array can be obtained simultaneously, which effectively avoids the
signal of interest cancellation consequently. Cycle iterative approach is also applied to guarantee the estimation
accuracy of a wide range of angle deviation. Numerical simulations demonstrate the effectiveness and applicability of
the proposed method.

Keywords: The generalized sidelobe canceller (GSC), DOA mismatch, Output power maximization, Steering vector
estimation

1 Introduction
The adaptive antenna has the ability to select a set of
amplitude and phase weights with which to combine the
outputs from the elements to consequently produce an
artificially controlled beampatttern that optimizes the re-
ception of a desired signal. This form of array processing
provides relevant improvements in anti-interference per-
formance which has been widely applied in numerous
fields, such as military radar, communication, medical
imaging, and navigation in decades [1–6]. A large scale
of adaptive array is commonly utilized to obtain better
resolution and interference cancellation performance,
which results to the consequence that the computational
load becomes the bottleneck in the implementation of
an adaptive beamforming algorithm. To save computational
cost, the generalized sidelobe canceller (GSC) is an effective
approach generally applied in radar and communication
systems where the desired signal is only presented in a
fraction of time or the amplitude of the desired signal

in the auxiliary array is generally very small [7, 8]. The
GSC can work as an adaptive beamformer that usually
improves the gain of the desired signal by forming a
mainlobe toward the direction of arrival (DOA) of the
desired signal and in the meanwhile suppresses the in-
terferences by nulling at the DOAs of the interference
signals. However, the low implementation complexity
makes the GSC more popular than the common adap-
tive beamformer in the practical application [9–11]. It
is well known that, in the presence of the desired signal
existing in the observation data received by the auxiliary
array, the GSC inclines to misread the desired signal as
interference and to cause a signal of interest (SOI)
cancellation consequently [12]. The blocking process is one
commonly applied technique to avoid the SOI cancellation
which blocks the desired components from the primary
data of the auxiliary array before the adaptive cancelling. As
long as the desired signal is effectively blocked from enter-
ing the interference cancelling filter, only interference
cancellation occurs, thus giving a higher overall output
SNR than with conventional beamforming alone. However,
this approach is very sensitive to the mismatch of the
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desired signal’s direction of arrival that can boil down to
the mismatch of the steering vector of interest (SVI). Add-
itionally, the uncertainty of SVI will induce the gain loss of
the desired signal in the main array which brings about the
dramatic degradation of the output signal-to-interference
and noise ratio (SINR).
In these years, improving the robustness of the beam-

former against the mismatch of the steering vector is
becoming an essential requirement and several contri-
butions have been proposed to work on it [13–19].
Against the DOA mismatch, the most common tech-
nique is to delimit one set of unity-gain constraints for
a small range of angles around the presumed look dir-
ection. Nevertheless, this technique critically sacrifices
the degrees of the auxiliary array freedom and may de-
grade the anti-interference performance. Consequently,
how to precisely estimate the actual steering vector has
attracted considerable attention. In [20], the joint max-
imum likelihood (ML) estimators of the useful signal
and interference vectors were derived and the estima-
tion problem was casted as a semidefinite program
(SDP) problem. In [21], the ML estimator was still ap-
plied which led the steering vector estimation problem
into a fractional quadratically constrained quadratic
problem (QCQP). Nevertheless, this method cannot be
straightforwardly applied in the GSC structure. In [22],
the maximum output power criterion was introduced. To-
gether with several novel constraints which prevented the
estimation converging to the interference subspace, the de-
sired signal’s actual steering vector was obtained by solving
the QCQP. However, the high computational burden
prevents it from practical usage. Furthermore, analytical
solution cannot be obtained. In [23], the constraints to
avoid the angle ambiguity were replaced by the subspace
projection. Ultimately, either the analytical solution or the
low calculation complexity was realized. This work made
a great motivation for the method proposed in this paper.
In our previous work [24], only SOI cancellation has

been worked out. However, the gain loss of the main array
may still cause the output SINR deterioration in the case
of the DOA mismatch. Hence, this paper is mainly con-
cerned with two basic issues caused by the desired signal’s
DOA mismatch: the SOI cancellation and the gain loss of
the desired signal in the main array. Firstly, one angular
sector expressed as Θ ¼ θ′0−Δθ; θ

′
0 þ Δθ

� �
has to be prop-

erly selected from which the desired signal may come. θ′0
denotes the assumed DOA of the desired signal. This
sector can be either obtained from the priori knowledge
or the low accuracy angle measurement. Hence, two sub-
spaces constructed from the steering vectors of DOAs
within Θ over the main and auxiliary arrays can be ob-
tained. It has been proved [23] that both SVIs (the
main and auxiliary arrays) can be expressed as linear com-
binations of the basis vectors of these two subspaces,

respectively. By utilizing the successive maximization of
the array output power while limiting the SVIs within
the according subspaces, we can iteratively obtain the
estimations of the actual SVIs. Ultimately, the optimum
weights of the auxiliary and main arrays can be worked
out thereafter.
The remainder of this paper is organized as follows. In

Section 2, the fundamental theory of GSC and the prob-
lem discussed in this paper are reviewed. In Section 3,
one novel robust GSC is proposed. In Section 4, the
computational complexity is analyzed. Simulation results
are shown in Section 5, while the last section gives some
concluding remarks.

2 Background
Considering the full investigation of the GSC, we briefly
recall it as a review. Without loss of generality, the typical
structure of the GSC with the auxiliary array separated
from the main array is considered. Nevertheless, the algo-
rithm proposed is still suitable for the collocated scenario.
Both the main array and the auxiliary one are considered
to be uniform linear arrays comprised of Nm and Na

omnidirectional elements with inter-element spacing d,
respectively. Hence, the basic output of GSC is given as

e tð Þ ¼ wH
mxm tð Þ−wH

a B θ′0
� �

xa tð Þ ð1Þ

where wm∈ℂNm�1 denotes the quiescent weights of the
main array commonly pointing to the desired signal’s
DOA. wa is the adaptive complex weight vector of the
auxiliary array that is usually obtained based on the cri-
terion of minimization of the array output power. xm(t)
and xa(t) are the complex vectors of the main and auxil-
iary array observations which are written, respectively, as

xm tð Þ ¼ am;0 θ0ð Þs0 tð Þ þ
XL
i¼1

am;isi θið Þ þ nm tð Þ
¼ am;0 θ0ð Þs0 tð Þ þ vm tð Þ

ð2Þ

xa tð Þ ¼ aa;0 θ0ð Þs0 tð Þ þ
XL
i¼1

aa;i θið Þsi tð Þ þ na tð Þ
¼ aa;0 θ0ð Þs0 tð Þ þ va tð Þ

ð3Þ

where [s0(t), s1(t),⋯, sL(t)] is the corresponding complex
envelops of the desired signal and the interferences and
am,i(θi) and aa,i(θi) denote the steering vectors corre-
sponding to the ith signal in two antenna arrays. nm(t)
and na(t) are the additive noise vectors whose compo-
nents are considered to be spatially and temporally

Gaussian processes. B θ′0
� �

∈ℂNa� Na−1ð Þ refers to the
blocking matrix relying on the assumed DOA of the de-
sired signal which has the property denoted as B θ′0

� �
aa;0

θ′0
� � ¼ 0 . θ0 is the desired signal’s DOA. Based on the
issue aforementioned, the blocking matrix is commonly
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introduced to the auxiliary array before the adaptive inter-
ference cancelling. Hence, the optimum complex weights
of the auxiliary array can be easily carried out by minimiz-
ing the residue output power ‖e(t)‖2 and given as follows

wa ¼ B θ′0
� �

RaB θ′0
� �Hh i−1

B θ′0
� �

Ramwm ð4Þ

where Ra ¼ E xa tð ÞxHa tð Þ� �
and Ram ¼ E xa tð ÞxHm tð Þ� �

. In
practice, they are usually substituted by the sample

covariance matrices R̂a ¼ 1=L
XL

l¼1
xa lð ÞxHa lð Þ and

R̂am ¼ 1=L
XL

l¼1
xa lð ÞxHm lð Þ with L training snapshots.

As the above content mentioned, the blocking matrix
is applied to preprocess the data received by the auxil-
iary array to exclude the desired signal components.
Under ideal circumstances (i.e., no mismatch exists and
θ′0 ¼ θ0), the SOI cancellation can be effectively avoided
through the blocking procedure. The residue output can
be expressed as follows

e tð Þ ¼ wH
mam;0 θ0ð Þ−wH

a B θ′0
� �

aa;0 θ0ð Þ� �
s0 tð Þ

− wH
mvm tð Þ−wH

a B θ′0
� �

va tð Þ� �
¼ wH

mam;0 θ0ð Þs0 tð Þ
− wH

mvm tð Þ−wH
a B θ′0

� �
va tð Þ� � ð5Þ

However, the performance of the blocking procedure
highly relies upon the accuracy of the desired signal’s
DOA. Once there exists a mismatch between the presumed
desired signal’s DOA and the actual one (i.e., θ′0≠θ0 ), two
major issues may be induced to the GSC system: (i) the
blocking process can not sufficiently eliminate the desired
signal received by the auxiliary array, which will lead to the
SVI cancellation (i.e., B θ′0

� �
aa;0 θ0ð Þ≠0) and (ii) the entire

gain of the desired signal in the main array will decrease as
a result of the main beam pointing deviation (i.e., by this
time, wH

mam;0 θ0ð Þ�� �� < jwH
mam;0 θ′0

� �j). Consequently, the ul-
timate output SINR of the GSC will significantly deteriorate
on the account of these two issues. Therefore, it is of great
importance to avoid the SVI cancellation and alleviate
the gain loss of the desired signal in the main array
simultaneously.

3 Proposed robust algorithm
In this section, one iterative robust GSC algorithm will
be presented. According to the fundamental theory of
GSC, it can be seen that the blocking process is equiva-
lent to force the auxiliary array output of the desired
signal to be zero. Therefore, the basic operation can be
cast as an optimization problem which is expressed as
follows

min
wa

E wH
mxm tð Þ−wH

a xa tð Þ�� ��2h i
subject to wH

a aa;0 θ′0
� � ¼ 0

ð6Þ

With the additional constraint, the desired signal can
keep off cancelling. By utilizing the Lagrange multiplier
method, the solution can be easily obtained and
expressed as follows

wa ¼ R̂−1
a R̂amwm

−
aHa;0 θ′0

� �
R̂−1

a R̂amwm

aHa;0 θ′0
� �

R̂−1
a aa;0 θ′0

� � R̂−1
a aa;0 θ′0

� � ð7Þ

By substituting (7) into the objective function of (6),
the residue output power of GSC can be written as

ΔP ¼ wH
mR̂mwm−wH

mR̂
H
amR̂

−1
a R̂amwm

þ aHa;0 θ′0
� �

R̂−1
a R̂amwmwH

mR̂
H
amR̂

−1
a aa;0 θ′0

� �
aHa;0 θ′0

� �
R̂−1

a aa;0 θ′0
� � ð8Þ

Therefore, by regarding the steering vector aa;0 θ′0
� �

as
a variable, the actual steering vector aa,0(θ0) may have
possibility to be estimated by maximizing the array out-
put power under the assumption of great capability in
anti-interference performance. Hence, a new optimization
problem to estimate the actual steering vector can be built
and given as follows

max
aa;0 θð Þ

ΔP

subject to aa;0 θð Þ�� ��2 ¼ Na

ð9Þ

or

max
aa;0 θð Þ

aHa;0 θð ÞR̂−1
a R̂amwmwH

mR̂
H
amR̂

−1
a aa;0 θð Þ

aHa;0 θð ÞR̂−1
a aa;0 θð Þ

subject to aa;0 θð Þ�� ��2 ¼ Na

ð10Þ

The optimization problem of (10) can become a typical
generalized eigenvalue problem. Hence, the analytical so-
lution can be straightforwardly carried out [25]. This
method is called generalize eigenvector GSC (GE-GSC).
However, it is highly possible to converge the estimation
of the actual steering vector to the interference subspace
that will lead to the anti-interference performance degrad-
ation. To avoid this phenomenon properly, constraints are
imposed in [15] while the solution is finally obtained using
sequential quadratic programming (QP) iteratively.
Nevertheless, this method cannot lead to a closed form
solution, and the high computational cost prevents it
from implementation.
In this paper, subspace rotating technique has been in-

troduced into the problem (10) which is inspired by the
methods contributed by [22, 23]. Firstly, we assume that
the DOA of the desired signal is located in a prior defined
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angular sector expressed as Θ ¼ θ′0−Δθ; θ
′
0 þ Δθ

� �
with-

out any exception, where Δθ denotes the DOA uncer-
tainty range. This angular sector is usually easy to obtain
in practice. Therefore, by integrating the steering vector
correlation, we can build a positive definite matrix given
as follows

Pa ¼
Z
Θ

sa θð ÞsHa θð Þdθ ð11Þ

where sa(θ) is the steering vector of the signal source
impinging on the auxiliary array from direction θ. After
eigenvalue decomposition, we can get

Pa ¼ U1Λ1UH
1 þU2Λ2UH

2 ð12Þ

where Λ1 is the diagonal matrix with its diagonal elements
given by K1-dominant eigenvalues. U1 is the column or-
thogonal matrix consisting of the corresponding eigen-
vectors. It has been proved by [22, 23] that the actual
steering vector of the desired signal definitely locates in
the subspace expanded by the column of U1. By rotating
this subspace with unsolved coefficient vector v, the steer-
ing vector ambiguity can be avoided. Hence, the additional
constraint can be simply given as aa,0(θ) =U1v. Conse-
quently, by substituting it into (10), we can translate the
estimation of the steering vector into estimating the rotat-
ing coefficient. Then, the modified optimization can be
given as

max
v

vHΜ1v
vHM2v

s:t: vHv ¼ Na

ð13Þ

where M1 ¼ UH
1 R̂

−1
a R̂amwmwH

mR̂
H
amR̂

−1
a U1 and M2 ¼ UH

1

R̂−1
a U1 . To solve the optimum solution of (13), we release

the constraint which can be straightforwardly satisfied by
normalization method. Firstly, one new variable is re-

quired to be defined as ~v ¼ M1=2
2 v , where M1=2

2 denotes

the square root of the M2. Substituting v ¼ M−1=2
2 ~v into

the objective function of (13), we can get

max
~v

~vH M−1=2
2

� 	H
M1 M−1=2

2

� 	
v

~vH~v
ð14Þ

Consequently, one typical Rayleigh quotient problem is
given, and the solution can be written as the eigenvector

of M−1=2
2

� 	H
M1 M−1=2

2

� 	
corresponding to the maximal

eigenvalue [25]. Then, the characteristic equation can be
expressed as

M−1=2
2

� 	H
M1 M−1=2

2

� 	
~v� ¼ λmax~v� ð15Þ

where λmax is the largest eigenvalue and ṽ* the eigenvector
correspondingly. Based on the eigenvalue decomposition

expressed asM2 ¼
XK1

i¼1
βiviv

H
i ,M

−1=2
2 can be constructed

as follows

M−1=2
2 ¼

XK1

i¼1

1ffiffiffiffi
βi

p viv
H
i ð16Þ

Hence, M−1=2
2 is the Hermitian matrix with the prop-

erty of M−1=2
2 ¼ M−1=2

2

� 	H
. By multiplying the left side

of the characteristic equation by M−1=2
2 , we can get

M−1
2 M1 M−1=2

2

� 	
~v� ¼ λmaxM

−1=2
2 ~v�

M−1
2 M1v� ¼ λmaxv�

ð17Þ

where v� ¼ M−1=2
2 ~v� . Consequently, the optimum solu-

tion of problem (13) can be given by

v̂ ¼ Eig M−1
2 M1

� � ð18Þ

where Eig[•] is the operator that yields the eigenvector
corresponding to the largest eigenvalue. In order to sat-
isfy the norm constraint of (13), normalization is ap-
plied. Ultimately, the estimate of the auxiliary steering
vector can be written as

âa;0 θ0ð Þ ¼
ffiffiffiffiffiffi
Na

p
v̂k k U1v̂ ð19Þ

It is worth mentioning that the operation above needs
to set the initial value of the complex weights as wm =
wpre, where wpre is the initial quiescent weights of the
main array constructed based on the presumed DOA of
the desired signal. By substituting (19) into (7) and util-
izing the initial quiescent weights wpre, the adaptive
weights of the auxiliary array can be obtained which
may achieve the goal to eliminate the SVI cancellation.
However, the beampattern of the main array still points
to the incorrect direction of the desired signal. As the
above content mentioned, it will lead to the gain loss in
the main array. Henceforth, we turn our attention to
solve this problem.
Based on the principle that the matched filtering

weights of the spatial domain are equal to the steering
vector of the desired signal over the main array, we can
update the initial complex weights wm with the estimate
of am,0(θ0). Similarly, one positive matrix needs to be
constructed and expressed as follows
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Pm ¼
Z
Θ

sm θð ÞsHm θð Þdθ ð20Þ

where sm(θ) is the steering vector of the main array lo-
cated in direction θ. Likewise, one column orthogonal
matrix U′

1 can be built from the principal eigenvectors
corresponding to the K2-dominant eigenvalues of Pm.
Therefore, one additional constraint to eliminate the
angle ambiguity can be introduced as am;0 θð Þ ¼ U′

1v
′ , or

equivalently wm ¼ U′
1v

′ , where v′ denotes the rotating
coefficient vector. By substituting the linear combination
together with (19) into (8) and regarding wm as a variable,
the update optimization problem can be established as

max
v′

v′
H
M3v′ subject to v′

H
v′ ¼ Nm ð21Þ

where

M3 ¼ U′H
1 M4U′ ð22Þ

and

M4 ¼ R̂m−R̂H
amR̂

−1
a R̂am

þ R̂H
amR̂

−1
a âa θ0ð ÞâHa θ0ð ÞR̂−1

a R̂am

âHa θ0ð ÞR̂−1
a âa θ0ð Þ

ð23Þ

Straightforwardly, the optimum solution of (21) can be
given by the eigenvector corresponding to the largest
eigenvalue of matrix M3. Hence, the proposed estimate of
the complex weights of the main array can be expressed
as follows

ŵm ¼
ffiffiffiffiffiffiffi
Nm

p
v′k k U′

1v
′ ð24Þ

Up to the present, this paper has estimated the steer-
ing vector of the desired signal toward the auxiliary array
and renovated the complex weights of the main array.
Utilizing these two renewal quantities, the optimum
weights of the auxiliary array can be calculated by (7).
Generally, the issues resulted from the DOA mismatch
mentioned above can be worked out through these oper-
ations. However, there is a possibility that the desired
signal may actually come from one of the nulls of the
initial main beampattern especially in the situations of a
large aperture array and fast moving target. When it oc-
curs, the performance of the estimation may significantly
degrade. To overcome this problem, one circulative it-
eration method is utilized in this paper. That is, by sub-
stituting the estimate of the complex weights obtained
by (24) into (13), we circulate the entire procedure till
the estimates meet the convergence condition which is
expressed as follows

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŵ i

m−ŵ i−1
m

�� ��2 þ âia;0 θð Þ−âi−1a;0 θð Þ
��� ���2

r
¼ δ≤ξ ð25Þ

where i is the iteration index at present. ξ denotes one
small positive constant artificially controlled, which can
be regarded as a trade-off between the computational
burden and the accuracy of the estimates. Once the esti-
mates satisfy the convergence criteria at the ith cycle it-
eration which are expressed as ŵ l

m and âla;0 θ0ð Þ , the
adaptive weights of the auxiliary array can be given as

ŵa ¼ R̂−1
a R̂amŵ l

m

−
âa;0lH

l θ0ð ÞR̂−1
a R̂amŵ l

m

âa;0lH
l θ0ð ÞR̂−1

a âa;0l
l θ0ð Þ R̂

−1
a âa;0l

l θ0ð Þ ð26Þ

To summarize, the proposed method consists of the
following steps.

Step 1: construct the subspaces U1 and U′
1 using (12)

and (20), respectively.
Step 2: initialize the complex weights wpre based on the
prior information of the presumed DOA of the desired
signal and let ŵ0

m ¼ wpre.
Step 3: based on the complex weights ŵ i−1

m obtained in
the former step, update the steering vector âia;0 θ′0

� �
using (19).
Step 4: based on the steering vector âia;0 θ′0

� �
, update

the complex weights ŵ i
m using (24).

Step 5: if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŵ i

m−ŵ
i−1
m

�� ��2 þ âia;0 θð Þ−âi−1a;0 θð Þ
��� ���2

r
≤ξ , go to

step 7; otherwise, go to step 6.
Step 6: update the cycle iteration index, i = i + 1, and
then, go to step 3.
Step 7: calculate the adaptive weights of the auxiliary
array using (26).

4 Complexity analysis
In this paper, we propose a robust GSC approach against
the desired signal’s DOA mismatch via estimating the
steering vectors of the main and auxiliary array simultan-
eously. Many of existing algorithms work on this issue via
imposing varied novel inequality constraints, which usually
cannot lead to a closet form solution and are difficult to be
implemented practically. Therefore, the subspace rotating
approach is imposed in our work to replace inequality con-
straints. Consequently, the closed form solution can be
obtained. Since the adaptive weights are calculated with
training snapshots in portion of the radar pulse repetition
period, the implementation complexity of the method
proposed above needs to be considered. In the meanwhile,
comparison with four approaches mentioned in the con-
tents is also presented.
In our work, the auxiliary weight vectors of all approaches

were calculated by employing the optimization problem
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presented in (6) resulting in a computational cost of O

N2
aNm

� �
. As the desired signal’s DOA mismatch exists,

the anti-interference performance of the traditional
GSC deteriorates due to both the signal cancellation
and the gain loss of the desired signal. Thus, in Eq. (10),
the auxiliary steering vector estimation can be obtained
via maximizing the residue output power of the GSC with
the computational cost of O N2

aNm
� �

. However, the un-
confined estimation has a high probability of converging
to the interference subspace. In [24], only the steering
vector of the desired signal over the auxiliary array was
estimated via maximization output criterion combined
with subspace projection. Though the signal cancellation
can be avoided by accurate estimation of the auxiliary
steering vector of the desired signal which results in a
computational cost of O(K1NmNa +K1Nm), the gain loss
of the desired signal resulted from the main beam devi-
ation still exists. In this paper, both the weight vector of
the main array and the steering vector of the auxiliary array
can be obtained. Consequently, the robustness against the
desired signal’s DOA mismatch turned out to be accom-
plished. The estimation procedure costs a computational
expense of O Na þ K 2ð ÞN2

m þ T−1ð ÞN2
m

� �
, where T de-

notes the iteration index. Since two steering vectors need
to be estimated, the implementation complexity raises a
large scale. Nevertheless, in the most common scenario, the
DOA mismatch stays in a small degree which is less
possible to exceed the beamwidth. In this situation, the
cycle iteration is no longer required (i.e., T = 1) and the
computational cost reduces to O Na þ K2ð ÞN2

m

� �
(seeing

example B for more details). Moreover, the major com-
putational burden of approach proposed in this paper is
occupied by two generalized eigenvalue decompositions
(GED). Therefore, by using many implementation algo-
rithms of GED, for instance, the method proposed in
[26], the computational cost can be reduced further
which makes our approach more available in practical
usage.

5 Numerical simulation
In the following, we present simulation results to prove
the effectiveness of the proposed method. In the mean-
while, comparison with four approaches is also made to
demonstrate the superiority denoted as (i) the conven-
tional GSC given by (7); (ii) the generalize eigenvector
GSC (GE-GSC) given by (10); (iii) the generalize eigen-
vector GSC with subspace projection (GE-SP-GSC) in
[14]; and (iv) the proposed method with only one cycle
iteration. In all cases, the GSC structure is composed of
the main array with 16 antenna elements and the auxil-
iary array with 5 antenna elements. All elements are pre-
sumed to be omnidirectional and spaced half of a wave
length apart. The additive noise in each antenna element

is modelled as spatially and temporally independent com-
plex Gaussian white stochastic process. Two interference
sources, both with interference-to-noise ratio (INR) of
30 dB, are assumed to plane impinge on the array from
the presumed direction of −30° and 25°. All signal sources
are independent from each other with fixed snapshot
observations of L = 1000 unless otherwise specified. The
convergence factor ξ is set to be 0.5 in all simulation
scenarios. To obtain each point in the simulation curves,
100 independent runs are utilized.

5.1 Simulation of beamforming
In the first example, the resultant beampattern of GSC
has been considered. The actual DOA of the desired sig-
nal is assumed to be −5° while the presumed one is 0°.
The angular sector in which the desired signal is located
equals to Θ = [−10°, 10°] and SNR = 0 dB. As shown in
Fig. 1, the beampattern of each method adaptively has
nulls over the interference directions. However, the con-
ventional GSC, GE-GSC, and GE-SP-GSC have their
main beams pointing to the presumed direction of the
desired signal rather than the actual one which will cause
the degradation of the output SINR. Moreover, it can be
seen that the performance of the conventional GSC is
worse than the others which has distortion of the main
beam and a high level of sidelobe in its beampattern. By
accurately estimating the steering vectors of the desired
signal, the proposed method achieves a great performance
of the beampattern with its main beam pointing to the
right direction. It is worth stressing that the proposed
method with one cycle iteration or multiple cycle itera-
tions leads to the similar performance in this scenario.

5.2 Simulation of output SINR versus DOA mismatch
In this section, the output SINR versus DOA mismatch
of the desired signal has been considered. The presumed
DOA of the desired signal is 0° while the actual one is
assumed to distribute from −9° to 9°. The rest of the pa-
rameters have no difference with those of the first ex-
ample. The simulation results are shown in Fig. 2. We
can clearly see that the cyclic iteration mentioned in the
content above is not always required for the proposed
method. With cycle index one, the proposed method
can provide sufficient robustness against most of the
angle deviation in the distribution range. However, if the
desired signal comes from one of the nulls of the initial
main beampattern, it may lead to an inaccurate estimate
which causes the output SINR degradation (i.e., seen from
Fig. 3). Therefore, multiple cyclic iterations utilizing the
convergence condition expressed as (25) can solve this
problem and improve the robustness of the GSC system
consequently. Likewise, the rest of the approaches suffer
dramatic performance degradation in varying degrees
as the DOA mismatch increases. We can see that the
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GE-GSC provides the worst SINR curve even when
no mismatch exists mainly because the estimate of
the desired signal’s steering vector over the auxiliary
array converges to one of the interference’s location.
Hence, the auxiliary array chooses to block the inter-
ference rather than the desired signal, which ultimately

fails to cancel the interference. The GE-SP-GSC pro-
vides robustness in some degree under the small de-
sired signal’s DOA mismatch. Nevertheless, as the
DOA mismatch increases, the gain loss of the desired
signal in the main array brings the output SINR
degradation.

Fig. 1 The beampattern of the GSC

Fig. 2 The output SINR versus DOA mismatch
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5.3 Simulation of output SINR versus snapshots
In this example, the experiment has been carried out to
demonstrate the output SINR versus the number of
sample snapshots. The random DOA mismatch of the
desired signal with uniform distribution from −8° to 8° is
considered. Moreover, the random DOA mismatch changes
from trial to trial but maintains fixed between snapshots.
The rest of the parameters involved are the same as the first

example except the number of snapshots changes from 5 to
300. From the results shown in Fig. 3, it can be seen that
the proposed method provides a faster convergence rate
and higher output SINR than the others. In the circum-
stance of random DOA mismatch, the proposed method
with multiple iterations outperforms the one with single it-
eration about 5 dB in terms of the output SINR, meanwhile
the curve is much more stable. Both of the conventional

Fig. 3 The output SINR versus number of snapshots

Fig. 4 The output SINR versus SNR
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GSC and the GE-SP-GSC have low convergence rate, and
because of stochastic averaging effect, these two methods
have similar performances in this scenario. The GE-GSC
still leads to the worst performance resulting from the in-
exact estimation of the actual steering vector.

5.4 Simulation of output SINR versus input SNR
In the fourth example, the effect caused by different in-
put SNR in the presence of DOA mismatch has been
presented. The input SNR of the desired signal changes

from −5 to 30 dB. The desired signal’s DOA mismatch is
assumed to be a random variable uniformly distributed
from −8° to 8°. The remaining simulation conditions are
the same as the first example. Figure 4 displays the output
SINR of all five methods versus the input SNR. It can be
seen from Fig. 4 that the proposed method with cyclic it-
eration outperforms the others in terms of the output
SINR due to its ability to accurately estimate the steering
vectors over the main and auxiliary arrays. The conven-
tional GSC outperforms the GE-GSC and GE-SP-GSC at

Fig. 5 The output SINR versus SNR in the presence of amplitude and phase errors
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Fig. 6 The numbers of cycle iterations in the scenarios of different SNRs
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low SNR. However, when the input SNR increases, the
performance of the conventional GSC degrades dramat-
ically mainly due to the SOI cancellation upgrading.
Moreover, we also perform the CR versus the input
SNR in the presence of amplitude and phase error. The
phase errors are subject to the uniform distribution
ranged from −90° to 90°. Meanwhile, the amplitude er-
rors are assumed to follow the Gaussian distribution
with variance of 0.09. The simulation results are shown
in Fig. 5. From the figure, we can see, as the amplitude
and phase errors exist, the anti-interference performance of
each approach deteriorates in varying degrees. Nevertheless,
the proposed algorithm still outperforms the others, which
presents a demonstration of validity in practical usage.

5.5 Simulation of convergence curve
In the last example, the simulation of the cycle iterative
convergence in different input SNR scenarios has been
made. The DOA mismatch of the desired signal is a ran-
dom variable with uniform distribution from −6° to 6°.
The rest of the parameters remain unchanged with the
first example. Without loss of generality, we define the
initial terms as â0a;0 θð Þ ¼ âa;0 θ0ð Þ and ŵ0

m ¼ wpre to calcu-
late the iterative error δ. For the sake of convenience to
observe, the result of the first iterative error has been
neglected which is commonly large due to the random
DOA mismatch. As shown in Fig. 6, the number of itera-
tions of the proposed method slightly changes along with
the input SNR. Although more cycle iterations may be re-
quired when the SNR descends, the entire numbers of
cycle iterations are still very small, which makes the pro-
posed method effective in terms of implementation.

6 Conclusions
In this paper, we present one effective robust form of GSC
against the desired signal’s steering vector caused by DOA
mismatch. With the orthogonal matrices properly con-
structed, the estimations of steering vectors over the main
and auxiliary arrays, which are prevented from converging
to interferences, have been achieved. Consequently, the SOI
cancellation and the gain loss of the desired signal in the
main array caused by the DOA mismatch can be sufficiently
solved simultaneously. Simulation results demonstrate the
effectiveness of the proposed method. Comparing with the
conventional GSC and some modified approaches, the
performance of the proposed method is nearly optimal
over a wide range of SNR and the complexity is accept-
able in terms of practical implementation.
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