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Abstract An enhanced eigenspace-based beamformer (ESB) derived using the
minimum sensitivity criterion is proposed with significantly improved robustness
against steering vector errors. The sensitivity function is defined as the squared
norm of the appropriately scaled weight vector and since the sensitivity function
of an array to perturbations becomes very large in the presence of steering vector
errors, it can be used to find the best projection for the ESB, irrespective of the
distribution of additive noises. As demonstrated by simulation results, the pro-
posed method has a better performance than the classic ESBs and the previously
proposed uncertainty set based approach.

Keywords Eigenspace · robust beamformer · minimum sensitivity.

1 Introduction

The standard Capon beamformer (SCB) chooses the weight vector by minimis-
ing the array output power subject to a look direction constraint [1,2], assuming
that the steering vector of the signal of interest (SOI) is known exactly [3]. How-
ever, this assumption may not be valid due to factors such as direction-of-arrival
(DOA) mismatch error, array calibration error, local scattering, near-far spatial
signature mismatch and finite sample effect [3–17]. Whenever this happens, the
output signal-to-interference-plus-noise ratio (SINR) of the SCB degrades signifi-
cantly.
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In order to improve the robustness of the SCB against steering vector errors,
many methods have been proposed, such as diagonal loading (DL) [18] and norm-
constrained Capon beamforming (NCCB) [9,19]. Based on the uncertainty set of
the steering vector, several robust beamformers were recently proposed [3–5,7,12].

As a classic beamforming method, the eigenspace-based beamformer (ESB)
can be used for robust beamforming in the presence of steering vector errors and
finite sample effect [8]. Since the actual steering vector lies within the signal-plus-
interference (SI) subspace, the idea of ESB is to project the presumed steering
vector onto the SI subspace to give a better estimation of the real steering vector
of the SOI. However, the ESB suffers from severe performance degradation if the
dimension of the SI subspace, i.e., the number of sources, can not be estimated
correctly [11,12]. Two well-known methods for estimating the number of sources
are the Akaike information criterion (AIC) and the minimum description length
(MDL). However, experimental evidence shows that either the AIC or the MDL
can not give satisfactory estimation results for situations with a small sample size
and a low signal-to-noise ratio (SNR) [20].

When the dimension of the SI subspace is obtained correctly, the resultant
steering vector will lead to minimum sensitivity of the ESB to steering vector er-
rors. However, if the SI subspace is overestimated or underestimated, there will
be a large error in the projected steering vector. In such a case, the beamformer’s
sensitivity can become very large [1,9,12]. Based on the minimum sensitivity crite-
rion, we here develop a novel method to estimate the dimension of the SI subspace
to improve the robustness of the ESB. For an M -sensor array, M steering vectors
can be obtained by projecting the presumed steering vector onto M estimates
of the SI subspace. Then, the corresponding M weight vectors can be calculated
using the M different steering vectors. We then compare the sensitivity values of
the M weight vectors, and choose the weight vector with the minimum value for
robust adaptive beamforming.

This paper is organized as follows. In Section 2, a review of the Capon beam-
former and the eigenspace-based beamformer is provided.The proposed method is
introduced in Section 3. Simulation results are presented in Section 4 and conclu-
sions are drawn in Section 5.

2 Background

Consider anM -sensor uniform linear array (ULA) with an adjacent sensor spacing
d. The received data at the nth snapshot can be expressed as

x[n] = [x1[n], · · · , xM [n]]T =

P∑

i=1

a(θi)si[n] + n[n] (1)

where [·]T denotes the transpose operation, xm[n] is the received data at the mth
sensor, si[n] is the ith source, n[n] is the additive noise with a covariance matrix
Rn, P is the number of impinging signals, and

a(θi) = [1, e−j2πd sin(θi)/λ, · · · , e−j2π(M−1)d sin(θi)/λ]T (2)

is the M × 1 steering vector of the ith signal with a direction θi, with λ denoting
the signal wavelength.
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Assume that all impinging signals and noise are uncorrelated with each other.
Then the covariance matrix can be expressed as

Rxx = E[x[n]x[n]H ]

=

P∑

i=1

σ2
i a(θi)a(θi)

H +Rn =

M∑

m=1

γmumu
H
m (3)

where E[·] is expectation, [·]H represents the Hermitian transpose, σ2
i is the power

of si[n], γm denotes the mth eigenvalue corresponding to the mth eigenvector um
of Rxx. Note that γ1 ≥ γ2 ≥ · · · γP > γP+1 ≥ · · · ≥ γM . In practice, Rxx is
replaced by the sample covariance matrix

R̂xx =
1

N

N∑

n=1

x[n]xH [n] (4)

where N is the number of snapshots.
Without loss of generality, we assume that the first signal is the SOI. Then the

Capon beamformer is obtained by solving the following optimisation problem:

min
w

w
H
R̂xxw subject to w

H
â = 1 (5)

where w is the M × 1 complex weight vector and â is the presumed SOI steering
vector. The solution is given by [1]

w =
R̂

−1
xx â

âHR̂
−1
xx â

. (6)

Since the actual steering vector lies within the SI subspace, we can project
the presumed steering vector onto the SI subspace, resulting in the following ESB
estimate

a = UsU
H
s â (7)

where Us = [u1, · · · ,uD] is the estimate of the SI subspace, with D being the
estimated number of sources. Since a is the projection of â onto the SI subspace,
it is straightforward that the distance between the estimated a and the actual
steering vector ā is shorter than that between â and ā. Based on (6) and (7), the
weight vector of the ESB can be expressed as

w =
Usdiag[γ1, · · · , γD]−1UH

s â

âHUsdiag[γ1, · · · , γD]−1UH
s â

. (8)

3 Proposed Method

In the presence of steering vector errors, we have the following relationship between
the presumed steering vector â and the true steering vector ā

ā = â+ δδδ (9)
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where δδδ is an unknown complex vector that describes the effect of steering vector
distortions. We assume that the norm of the steering vector distortion δδδ can be
bounded by a known constant:

‖δδδ‖ ≤ ε (10)

where ‖ · ‖ denotes the Euclidean norm and ε is the upper bound on the norm
of the steering vector distortion δδδ. Define the array response for the presumed
steering vector as wH â, then the maximum deviation of the array response from
wH â for ā is

max
‖δδδ‖≤ε

|wH
ā−w

H
â| = ε‖w‖. (11)

Clearly, (11) increases with the norm of the beamformer weight vector w. So we
can define the sensitivity function of an array to perturbations by the squared
norm of the weight vector [1,9]

T̂se = ‖w‖2. (12)

As the norm of the weight vector increases, the beamformer’s sensitivity increases,
leading to a high sidelobe level and possible cancellation of the desired signal.
To mitigate this problem, the NCCB method imposes a norm constraint on the
weight vector, and [12] proposes to calculate the Capon beamformer with the
minimum sensitivity to model errors by minimising the norm of the adaptive
weights, considering the uncertainty set for the signal steering vector.

In order to avoid an arbitrarily low sensitivity achieved by scaling the beam-
former’s weight vector without changing the output SINR performance, it is im-
portant to define the beamformer’s sensitivity as the squared norm of the scaled
weight vector w̃ = w/(âHw), which satisfies w̃H â = 1 [12]. This leads to the
definition of the beamformer’s sensitivity as [1,9,12]

Tse =
‖w‖2

|wH â|2
. (13)

Here, we employ the beamformer’s sensitivity defined in (13) instead of the
one in (12) to develop the proposed method. The idea is to find the SI subspace
which gives the lowest sensitivity, which corresponds to an ESB with the highest
robustness to steering vector errors compared to the ESBs computed by the wrong
SI subspace.

Let us define M estimates of the SI subspace as

Uk = [u1, · · · ,uk], k = 1, · · · ,M. (14)

We then obtainM estimated steering vectors by projecting the presumed steering
vector â onto the M different estimates of the SI subspace {Uk}

M
k=1 as

ak = UkU
H
k â, k = 1, · · · ,M. (15)

Using (8) with â replaced by ak, the correspondingM weight vectors are given by

wk =
Ukdiag[γ1, · · · , γk]

−1UH
k ak

aHk Ukdiag[γ1, · · · , γk]−1UH
k ak

, k = 1, · · · ,M. (16)
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Then the M resultant beamformers’ sensitivity value can be obtained by

Tse(k) =
‖wk‖

2

|wH
k â|2

, k = 1, · · · ,M. (17)

Note that if the exact information of the dimension of the SI subspace can be
obtained, the calculated steering vector by projecting the presumed steering vector
onto the estimate of the SI subspace will be very close to the actual steering vector.
That is, even if there is a large steering vector error, the projected one is still a
good estimate of the true steering vector and the calculated optimum weight vector
will give an effective beamforming result, with its response to the desired signal
very close to the desired response, which means the norm of the resultant weight
vector will be small according to (11) and therefore, such a beamformer will have a
very low sensitivity. Hence, the one with the minimum value Tse(k) will be chosen
as the final solution to the robust beamforming problem.

4 Simulations

In this section, simulations are performed to study the performance of the proposed
method compared with the SCB, the uncertainty set based robust Capon beam-
forming (RCB) method in [3], the maximally robust Capon beamformer (MRCB)
of [12], and two cases of the ESB, which use the AIC and MDL algorithms for
estimating the number of sources, respectively. Note that the MRCB employs a
Newton-like algorithm to search for the optimum solution and therefore has a
higher complexity than the proposed method.

We consider a ULA with M = 10 sensors and half-wavelength spacing be-
tween adjacent sensors. The SOI arrives from θ1 = 0◦. Two interfering signals
with interference-to-noise ratio (INR) of 30 dB impinge on the array from the
directions −40◦ and 30◦, respectively. The array is steered toward the direction
θ̄1 = θ1 +∆θ, where ∆θ is the DOA mismatch error. Both gain and phase errors
are also considered and the actual steering vector can be written as ā(θ) = Γa(θ),
where Γ = diag[1, α1e

−jψ1 , · · · , αM−1e
−jψM−1 ] is the diagonal matrix holding the

calibration errors, with αk and ψk standing for the amplitude and phase errors,
respectively. We further assume that the amplitude and phase errors have a uni-
form distribution: αk ∈ [0.8,1.2] and ψk ∈ [−π/100, π/100]. Note that Γ changes
from run to run while remaining constant for all snapshots. The uncertainty level
for the RCB method is set to ε = 4. The SNR and INR at each sensor are defined
by

SNR = 10 log10(σ
2
1/σ

2) (18)

INRi = 10 log10(σ
2
i /σ

2), i = 2, 3 (19)

where the power level σ2 is adjusted to give the desired SNR and INR. The output
SINR is defined by

SINR = 10 log10
σ2
1 |w

H ā(θ1)|
2

wHRi+nw
(20)

where Ri+n is the interference-plus-noise covariance matrix. All results are aver-
aged over 100 independent simulation runs.
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4.1 Example 1

In the first example, the additive noises are spatially and temporally white with
variance σ2 = 1. The DOA mismatch is ∆θ = 3◦. With SNR = 5 dB and N = 100,
we first show the change of the sensitivity value of (17) in Fig. 1. Clearly the
minimum value of the sensitivity function has been obtained when the estimated
dimension of the SI subspace is correct.

In Fig. 2, we consider the resultant beam pattern of the beamformers. Two
cases of ESB with the estimated dimension of the SI subspace β = 2 and β = 4
are considered. We can see that the SOI is considered to be an interference by the
SCB, and hence, the SOI is cancelled by the SCB. When the dimension of the SI
subspace is underestimated (β = 2) or overestimated (β = 4), the main beams of
the ESBs of β = 2 and β = 4 are distorted, which means they do not work at all
in these scenarios. On the other hand, the SOI is preserved by the RCB, MRCB
and the proposed method. Moreover, the proposed method and the MRCB point
their main beam to the desired look direction rather than the presumed one, while
the RCB method has its main beam towards the presumed look direction.

Fig. 3 shows the output SINR of the beamformers versus the number of snap-
shots N for SNR = 5 dB, where the proposed method, the RCB, and the MRCB
have all provided sufficient robustness and achieved a high output SINR. As shown,
the output SINR of the SCB degrades significantly with a DOA mismatch of 3◦.
With a lower sample size, neither the AIC-based nor the MDL-based ESBs can
give a good result. This is because the estimated dimensions of the SI subspace
based on the MDL and AIC algorithms are not correct due to the finite sample
effect. As the number of snapshots increases, the MDL algorithm can give a correct
estimation result, while the MDL-based ESB has achieved the same performance
as the proposed one and better than that of the AIC-based ESB.

Fig. 4 shows the output SINR of the beamformers versus input SNR when the
number of snapshots is N = 50 and N = 200, respectively. With the same set of
parameters as in Fig. 4, Fig. 5 shows the corresponding source number estimation
result of the MDL-based, AIC-based and the proposed methods. It can be seen
from Fig. 4 that neither of the AIC-based and MDL-based ESBs can give a satis-
factory result when the number of snapshots is N = 50, because they tend to give
a wrong dimension estimation of the SI subspace for a small sample size, as shown
in Fig. 5. Additionally, at a low SNR, unlike the source number overestimation
case, which has less impact on the performance of the ESB (this could be explained
as follows: when the SNR is very low, the Capon beamformer would become less
sensitive to steering vector errors as this equivalent to a large diagonal loading
factor; so an overestimation of the SI subspace can at least reduce the steering
vector error by some degree and therefore have less impact on the performance
of the beamformer.), the underestimation of sources significantly degrades its per-
formance. This can be observed for the case with N = 200, where the number of
sources is underestimated by the AIC and MDL algorithms at low SNR, leading
to severely degraded performance for both beamformers.
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Fig. 1 Sensitivity function versus the estimated dimension of the SI subspace.
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(a) N=50
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Fig. 4 Output SINR of the beamformers versus input SNR.

4.2 Example 2

In the second example, two noise scenarios are considered: 1) spatially correlated
noise; 2) spatially nonuniform white noise. The covariance matrix of the correlated
noise is assumed to have its ijth element given by

[Rn]i,j = σ20.5|i−j|, 1 ≤ i, j ≤M , (21)

while the spatially nonuniform white noise is assumed to have its covariance matrix
given by Rn = σ2diag(1, 2, 0.8,5, 3, 4, 1, 1, 7, 3). The other parameters remain the
same as in the first example.

In source number estimation, the additive noise is usually assumed to be white
and have a uniform power distribution over the sensors. However, in practice, this
assumption is rarely true. As a result, the performance of most source number
estimation algorithms will degrade significantly in the presence of spatially cor-
related or nonuniform noise. Fig. 6 shows the output SINR of the beamformers
versus the number of snapshots for SNR = 5 dB. Clearly, unlike the spatially white
noise environment, as shown in Fig. 3, the performance of both the MDL-based
and AIC-based ESBs has not improved much as the number of snapshots increases
under either spatially correlated noise or spatially nonuniform white noise.
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Fig. 5 Source number estimation versus input SNR.

Figs. 7 and 8 show the output SINR of the beamformers as a function of input
SNR for N = 50 and N = 200, respectively. With the same parameters as in
Figs. 7 and 8, Figs. 9 and 10 show the corresponding source number estimation
result of the MDL-based, AIC-based and the proposed methods. It can be clearly
seen from Figs. 7 and 8 that the beamformers considered have similar performance
when the input SNR is small; however, the performance of the SCB, the AIC-based
and MDL-based ESBs degrade dramatically as the input SNR increases. On the
other hand, the performance of the proposed method, the RCB, and the MRCB
remain satisfactory for the whole range of input SNR. As shown in Figs. 9 and
10, the MDL-based and AIC-based algorithms can not give a correct result for the
full range of input SNR considered, while the proposed method has provided the
right result when input SNR is larger than about -5 dB for the first scenario and
about 2.5 dB for the second scenario. Therefore, we see clearly from Figs. 7 and 8
that both the AIC-based and the MDL-based ESBs have failed to give a sensible
performance in terms of output SINR; on the other hand, the proposed method
consistently outperforms the other methods for moderate or high input SNR.
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Fig. 6 Output SINR of the beamformers versus the number of snapshots.

5 Conclusions

To improve the robustness of the classic eigenspace-based adaptive beamformer,
a minimum sensitivity criterion has been introduced to aid the selection of the
required signal subspace for projecting the presumed steering vector, leading to a
beamformer with maximum robustness among all of the M SI subspace choices.
Simulation results have shown that the proposed method consistently outperforms
the existing MDL-based and AIC-based ESBs and the previously proposed RCB
method. In particular, it does not rely on the usual assumption for the additive
noise being white and uniform across all sensors, and gives a satisfactory result
when both the AIC-based and the MDL-based ESBs fail.
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(a) Noise scenario 1)
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(b) Noise scenario 2)

Fig. 9 Source number estimation versus input SNR for N=50.
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(b) Noise scenario 2)

Fig. 10 Source number estimation versus input SNR for N=200.


