53 research outputs found

    HRTF Sound Localization

    Get PDF

    Acoustic Space Learning for Sound Source Separation and Localization on Binaural Manifolds

    Get PDF
    In this paper we address the problems of modeling the acoustic space generated by a full-spectrum sound source and of using the learned model for the localization and separation of multiple sources that simultaneously emit sparse-spectrum sounds. We lay theoretical and methodological grounds in order to introduce the binaural manifold paradigm. We perform an in-depth study of the latent low-dimensional structure of the high-dimensional interaural spectral data, based on a corpus recorded with a human-like audiomotor robot head. A non-linear dimensionality reduction technique is used to show that these data lie on a two-dimensional (2D) smooth manifold parameterized by the motor states of the listener, or equivalently, the sound source directions. We propose a probabilistic piecewise affine mapping model (PPAM) specifically designed to deal with high-dimensional data exhibiting an intrinsic piecewise linear structure. We derive a closed-form expectation-maximization (EM) procedure for estimating the model parameters, followed by Bayes inversion for obtaining the full posterior density function of a sound source direction. We extend this solution to deal with missing data and redundancy in real world spectrograms, and hence for 2D localization of natural sound sources such as speech. We further generalize the model to the challenging case of multiple sound sources and we propose a variational EM framework. The associated algorithm, referred to as variational EM for source separation and localization (VESSL) yields a Bayesian estimation of the 2D locations and time-frequency masks of all the sources. Comparisons of the proposed approach with several existing methods reveal that the combination of acoustic-space learning with Bayesian inference enables our method to outperform state-of-the-art methods.Comment: 19 pages, 9 figures, 3 table

    Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression

    Get PDF
    This paper addresses the problem of localizing audio sources using binaural measurements. We propose a supervised formulation that simultaneously localizes multiple sources at different locations. The approach is intrinsically efficient because, contrary to prior work, it relies neither on source separation, nor on monaural segregation. The method starts with a training stage that establishes a locally-linear Gaussian regression model between the directional coordinates of all the sources and the auditory features extracted from binaural measurements. While fixed-length wide-spectrum sounds (white noise) are used for training to reliably estimate the model parameters, we show that the testing (localization) can be extended to variable-length sparse-spectrum sounds (such as speech), thus enabling a wide range of realistic applications. Indeed, we demonstrate that the method can be used for audio-visual fusion, namely to map speech signals onto images and hence to spatially align the audio and visual modalities, thus enabling to discriminate between speaking and non-speaking faces. We release a novel corpus of real-room recordings that allow quantitative evaluation of the co-localization method in the presence of one or two sound sources. Experiments demonstrate increased accuracy and speed relative to several state-of-the-art methods.Comment: 15 pages, 8 figure

    A Geometric Approach to Sound Source Localization from Time-Delay Estimates

    Get PDF
    This paper addresses the problem of sound-source localization from time-delay estimates using arbitrarily-shaped non-coplanar microphone arrays. A novel geometric formulation is proposed, together with a thorough algebraic analysis and a global optimization solver. The proposed model is thoroughly described and evaluated. The geometric analysis, stemming from the direct acoustic propagation model, leads to necessary and sufficient conditions for a set of time delays to correspond to a unique position in the source space. Such sets of time delays are referred to as feasible sets. We formally prove that every feasible set corresponds to exactly one position in the source space, whose value can be recovered using a closed-form localization mapping. Therefore we seek for the optimal feasible set of time delays given, as input, the received microphone signals. This time delay estimation problem is naturally cast into a programming task, constrained by the feasibility conditions derived from the geometric analysis. A global branch-and-bound optimization technique is proposed to solve the problem at hand, hence estimating the best set of feasible time delays and, subsequently, localizing the sound source. Extensive experiments with both simulated and real data are reported; we compare our methodology to four state-of-the-art techniques. This comparison clearly shows that the proposed method combined with the branch-and-bound algorithm outperforms existing methods. These in-depth geometric understanding, practical algorithms, and encouraging results, open several opportunities for future work.Comment: 13 pages, 2 figures, 3 table, journa

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Audio-Motor Integration for Robot Audition

    Get PDF
    International audienceIn the context of robotics, audio signal processing in the wild amounts to dealing with sounds recorded by a system that moves and whose actuators produce noise. This creates additional challenges in sound source localization, signal enhancement and recognition. But the speci-ficity of such platforms also brings interesting opportunities: can information about the robot actuators' states be meaningfully integrated in the audio processing pipeline to improve performance and efficiency? While robot audition grew to become an established field, methods that explicitly use motor-state information as a complementary modality to audio are scarcer. This chapter proposes a unified view of this endeavour, referred to as audio-motor integration. A literature review and two learning-based methods for audio-motor integration in robot audition are presented, with application to single-microphone sound source localization and ego-noise reduction on real data

    Design, modeling and analysis of object localization through acoustical signals for cognitive electronic travel aid for blind people

    Full text link
    El objetivo de la tesis consiste en el estudio y análisis de la localización de objetos en el entorno real mediante sonidos, así como la posterior integración y ensayo de un dispositivo real basado en tal técnica y destinado a personas con discapacidad visual. Con el propósito de poder comprender y analizar la localización de objetos se ha realizado un profundo estado de arte sobre los Sistemas de Navegación desarrollados durante las últimas décadas y orientados a personas con distintos grados de discapacidad visual. En el citado estado del arte, se han analizado y estructurado los dispositivos de navegación existentes, clasificándolos de acuerdo con los componentes de adquisición de datos del entorno utilizados. A este respecto, hay que señalar que, hasta el momento, se conocen tres clases de dispositivos de navegación: 'detectores de obstáculos', que se basan en dispositivos de ultrasonidos y sensores instalados en los dispositivos electrónicos de navegación con el objetivo de detectar los objetos que aparecen en el área de trabajo del sistema; 'sensores del entorno' - que tienen como objetivo la detección del objeto y del usuario. Esta clase de dispositivos se instalan en las estaciones de autobús, metro, tren, pasos de peatones etc., de forma que cuando el sensor del usuario penetra en el área de alcance de los sensores instalados en la estación, éstos informan al usuario sobre la presencia de la misma. Asimismo, el sensor del usuario detecta también los medios de transporte que tienen instalado el correspondiente dispositivo basado en láser o ultrasonidos, ofreciendo al usuario información relativa a número de autobús, ruta etc La tercera clase de sistemas electrónicos de navegación son los 'dispositivos de navegación'. Estos elementos se basan en dispositivos GPS, indicando al usuario tanto su locación, como la ruta que debe seguir para llegar a su punto de destino. Tras la primera etapa de elaboración del estaDunai ., L. (2010). Design, modeling and analysis of object localization through acoustical signals for cognitive electronic travel aid for blind people [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8441Palanci

    Mixed Structural Models for 3D Audio in Virtual Environments

    Get PDF
    In the world of ICT, strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of the new technology by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but a few. The concurrent presence of multimodal senses and activities make multimodal virtual environments potentially flexible and adaptive, allowing users to switch between modalities as needed during the continuously changing conditions of use situation. Augmentation through additional modalities and sensory substitution techniques are compelling ingredients for presenting information non-visually, when the visual bandwidth is overloaded, when data are visually occluded, or when the visual channel is not available to the user (e.g., for visually impaired people). Multimodal systems for the representation of spatial information will largely benefit from the implementation of audio engines that have extensive knowledge of spatial hearing and virtual acoustics. Models for spatial audio can provide accurate dynamic information about the relation between the sound source and the surrounding environment, including the listener and his/her body which acts as an additional filter. Indeed, this information cannot be substituted by any other modality (i.e., visual or tactile). Nevertheless, today's spatial representation of audio within sonification tends to be simplistic and with poor interaction capabilities, being multimedia systems currently focused on graphics processing mostly, and integrated with simple stereo or multi-channel surround-sound. On a much different level lie binaural rendering approaches based on headphone reproduction, taking into account that possible disadvantages (e.g. invasiveness, non-flat frequency responses) are counterbalanced by a number of desirable features. Indeed, these systems might control and/or eliminate reverberation and other acoustic effects of the real listening space, reduce background noise, and provide adaptable and portable audio displays, which are all relevant aspects especially in enhanced contexts. Most of the binaural sound rendering techniques currently exploited in research rely on the use of Head-Related Transfer Functions (HRTFs), i.e. peculiar filters that capture the acoustic effects of the human head and ears. HRTFs allow loyal simulation of the audio signal that arrives at the entrance of the ear canal as a function of the sound source's spatial position. HRTF filters are usually presented under the form of acoustic signals acquired on dummy heads built according to mean anthropometric measurements. Nevertheless, anthropometric features of the human body have a key role in HRTF shaping: several studies have attested how listening to non-individual binaural sounds results in evident localization errors. On the other hand, individual HRTF measurements on a significant number of subjects result both time- and resource-expensive. Several techniques for synthetic HRTF design have been proposed during the last two decades and the most promising one relies on structural HRTF models. In this revolutionary approach, the most important effects involved in spatial sound perception (acoustic delays and shadowing due to head diffraction, reflections on pinna contours and shoulders, resonances inside the ear cavities) are isolated and modeled separately with a corresponding filtering element. HRTF selection and modeling procedures can be determined by physical interpretation: parameters of each rendering blocks or selection criteria can be estimated from real and simulated data and related to anthropometric geometries. Effective personal auditory displays represent an innovative breakthrough for a plethora of applications and structural approach can also allow for effective scalability depending on the available computational resources or bandwidth. Scenes with multiple highly realistic audiovisual objects are easily managed exploiting parallelism of increasingly ubiquitous GPUs (Graphics Processing Units). Building individual headphone equalization with perceptually robust inverse filtering techniques represents a fundamental step towards the creation of personal virtual auditory displays (VADs). To this regard, several examples might benefit from these considerations: multi-channel downmix over headphones, personal cinema, spatial audio rendering in mobile devices, computer-game engines and individual binaural audio standards for movie and music production. This thesis presents a family of approaches that overcome the current limitations of headphone-based 3D audio systems, aiming at building personal auditory displays through structural binaural audio models for an immersive sound reproduction. The resulting models allow for an interesting form of content adaptation and personalization, since they include parameters related to the user's anthropometry in addition to those related to the sound sources and the environment. The covered research directions converge to a novel framework for synthetic HRTF design and customization that combines the structural modeling paradigm with other HRTF selection techniques (inspired by non-individualized HRTF selection procedures) and represents the main novel contribution of this thesis: the Mixed Structural Modeling (MSM) approach considers the global HRTF as a combination of structural components, which can be chosen to be either synthetic or recorded components. In both cases, customization is based on individual anthropometric data, which are used to either fit the model parameters or to select a measured/simulated component within a set of available responses. The definition and experimental validation of the MSM approach addresses several pivotal issues towards the acquisition and delivery of binaural sound scenes and designing guidelines for personalized 3D audio virtual environments holding the potential of novel forms of customized communication and interaction with sound and music content. The thesis also presents a multimodal interactive system which is used to conduct subjective test on multi-sensory integration in virtual environments. Four experimental scenarios are proposed in order to test the capabilities of auditory feedback jointly to tactile or visual modalities. 3D audio feedback related to user’s movements during simple target following tasks is tested as an applicative example of audio-visual rehabilitation system. Perception of direction of footstep sounds interactively generated during walking and provided through headphones highlights how spatial information can clarify the semantic congruence between movement and multimodal feedback. A real time, physically informed audio-tactile interactive system encodes spatial information in the context of virtual map presentation with particular attention to orientation and mobility (O&M) learning processes addressed to visually impaired people. Finally, an experiment analyzes the haptic estimation of size of a virtual 3D object (a stair-step) whereas the exploration is accompanied by a real-time generated auditory feedback whose parameters vary as a function of the height of the interaction point. The collected data from these experiments suggest that well-designed multimodal feedback, exploiting 3D audio models, can definitely be used to improve performance in virtual reality and learning processes in orientation and complex motor tasks, thanks to the high level of attention, engagement, and presence provided to the user. The research framework, based on the MSM approach, serves as an important evaluation tool with the aim of progressively determining the relevant spatial attributes of sound for each application domain. In this perspective, such studies represent a novelty in the current literature on virtual and augmented reality, especially concerning the use of sonification techniques in several aspects of spatial cognition and internal multisensory representation of the body. This thesis is organized as follows. An overview of spatial hearing and binaural technology through headphones is given in Chapter 1. Chapter 2 is devoted to the Mixed Structural Modeling formalism and philosophy. In Chapter 3, topics in structural modeling for each body component are studied, previous research and two new models, i.e. near-field distance dependency and external-ear spectral cue, are presented. Chapter 4 deals with a complete case study of the mixed structural modeling approach and provides insights about the main innovative aspects of such modus operandi. Chapter 5 gives an overview of number of a number of proposed tools for the analysis and synthesis of HRTFs. System architectural guidelines and constraints are discussed in terms of real-time issues, mobility requirements and customized audio delivery. In Chapter 6, two case studies investigate the behavioral importance of spatial attribute of sound and how continuous interaction with virtual environments can benefit from using spatial audio algorithms. Chapter 7 describes a set of experiments aimed at assessing the contribution of binaural audio through headphones in learning processes of spatial cognitive maps and exploration of virtual objects. Finally, conclusions are drawn and new research horizons for further work are exposed in Chapter 8

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments
    corecore