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A Geometric Approach to Sound Source Localization

from Time-Delay Estimates
Xavier Alameda-Pineda and Radu Horaud

Abstract—This paper addresses the problem of sound-source
localization from time-delay estimates using arbitrarily-shaped non-
coplanar microphone arrays. A novel geometric formulation is
proposed, together with a thorough algebraic analysis and a global
optimization solver. The proposed model is thoroughly described and
evaluated. The geometric analysis, stemming from the direct acoustic
propagation model, leads to necessary and sufficient conditions
for a set of time delays to correspond to a unique position in
the source space. Such sets of time delays are referred to as
feasible sets. We formally prove that every feasible set corresponds
to exactly one position in the source space, whose value can be
recovered using a closed-form localization mapping. Therefore we
seek for the optimal feasible set of time delays given, as input, the
received microphone signals. This time delay estimation problem is
naturally cast into a programming task, constrained by the feasibility
conditions derived from the geometric analysis. A global branch-
and-bound optimization technique is proposed to solve the problem
at hand, hence estimating the best set of feasible time delays and,
subsequently, localizing the sound source. Extensive experiments
with both simulated and real data are reported; we compare our
methodology to four state-of-the-art techniques. This comparison
shows that the proposed method combined with the branch-and-
bound algorithm outperforms existing methods. These in-depth
geometric understanding, practical algorithms, and encouraging
results, open several opportunities for future work.

I. INTRODUCTION

For the past decades, source localization has been a fruitful

research topic. Sound source localization (SSL) in particular, has

become an important application, because many speech, voice

and event recognition systems assume the knowledge of the sound

source position. Time delay estimation (TDE) has proven to be a

high-performance methodological framework for SSL, especially

when it is combined with training [15], statistics [48] or geometry

[8], [1]. We are interested in the development of a general-

purpose TDE-based method for SSL, i.e., TDE-SSL, and we are

particularly interested in indoor environments. This is extremely

challenging for several reasons: (i) there may be several sound

sources and their number varies over time, (ii) regular rooms are

echoic, thus leading to reverberations, and (iii) the microphones

are often embedded in devices (for example: robot heads and

smart phones) generating high-level noise.

In this context, we focus on arbitrarily shaped non-coplanar

microphone arrays, because of three main reasons. First, mi-

crophone arrays working on real (mobile) platforms may need

to accommodate very restrictive design criteria, for which ar-

ray geometries that have been traditionally studied, e.g., linear,

circular, or spherical, are not well suited. We are particularly

interested in embedding microphones into a robot head, such as
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the humanoid robot NAO1 which possesses four microphones in

a tetrahedron-like shape. There are robot design constraints that

are not compatible with a particular type of microphone array.

Moreover, solving for the most general non-coplanar microphone

configuration opens the door to dynamically reconfigurable mi-

crophone arrays in arbitrary layouts. Such methods have been

already studied in the specific case of spherical arrays [31].

Nevertheless, the most general case is worthwhile to be studied,

since non-coplanar arrays include an extremely wide range of

specific configurations.

This paper has the following original contributions:

• The geometric analysis of the microphone array. We are

able to characterize those time delays that correspond to a

position in the source space. Such time delays will be called

feasible and the derived necessary and sufficient conditions

will be called feasibility conditions.

• A closed-form solution for SSL. Indeed, we formally prove

that every feasible set corresponds to exactly one position in

the source space. Moreover, a localization mapping is built

to recover, unambiguously, the sound source position from

any set of feasible time delays.

• A programming framework in which the TDE-SSL problem

is cast. More precisely, we propose a criterion for mul-

tichannel TDE designed to deal with microphone arrays

in general configuration. The feasibility conditions derived

from the geometric analysis constrain the optimization of

the criterion, ensuring that the final TDEs correspond to a

position in the source space.

• A branch-and-boundglobal optimization method solving the

TDE-SSL task. Once the algorithm converges, the close-

form localization mapping is used to recover the sound

source position. We state and prove that the sound source

position is unique.

• An extensive set of experiments benchmarking the proposed

technique to the state-of-the-art. Our method is compared to

four existing methods using both simulated and real data.

The remaining part of the paper is organized as follows. Sec-

tion II describes the related work. Section III briefly summarizes

the signal and propagation models. Section IV presents the full

geometric analysis, together with the formal proofs. Section V

casts the TDE-SSL task into a constrained optimization task.

Section VI describes the branch-and-bound global optimization

technique. The proposed SSL-TDE method is evaluated and com-

pared to the state-of-the-art in Section VII. Finally, conclusions

and a discussion for future work are provided in Section VIII.

1http://www.aldebaran-robotics.com/
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II. RELATED WORK

The task of localizing a sound source from time delay estimates

has received a lot of attention in the past; recent reviews can be

found in [45], [39], [12].

One group of approaches (referred to as bichannel SSL) re-

quires one pair of microphones. For example [33], [34], [53], [54]

estimate the azimuth from the interaural time difference. These

methods assume that the sound source is placed in front of the

microphones and it lies in a horizontal plane. Consequently, they

are intrinsically limited to one-dimensional localization. Other

methods either guess both the azimuth and elevation [27], [14]

or track them [24], [23]. These methods are based on estimating

the impulse response function, which is a combination of the head

related transfer function (HRTF) and the room impulse response

(RIR). In order to guarantee the adaptability of the system, the

intrinsic properties of the recording device encompassed in the

HRTF must be estimated separately from the acoustic properties

of the environment, modeled by the RIR. Furthermore, these

methods lead to localization techniques which do not yield closed

form expressions, thus increasing the computational complexity.

Moreover, the dependency on both HRTF and RIR of the source

position is extremely complex, hence, it is difficult to model or

to estimate this dependency. In conclusion, these methods suffer

from two main drawbacks. On one side, large training sets and

complex learning procedures are required. On the other side, the

estimated parameters correspond to one particular combination of

environment and microphone-pair position and orientation. Since

estimating the parameters for all such possible combinations is

unaffordable, these methods are hardly adaptable to unknown

environments.

A second group of methods (referred to as multilateration) per-

forms SSL from TDE with more than two microphones, by first

estimating pairwise time delays, followed by localizing the source

from these estimates. We note that the time delays are estimated

independently of the location. In other words, the two steps are

decoupled. Moreover, the TDEs do not incorporate the geometry

of the array, that is, the estimates are computed regardless of the

microphones’ position. This is problematic because the existence

of a source point consistent with all TDEs is not guaranteed.

In order to illustrate this potential conflict, we consider a three-

microphone linear array. Let tm be the time-of-arrival at the mth

microphone, and tm,n = tn − tm be the time delay associated

to the microphone pair (m, n). In the particular set up of a

three-microphone linear array, the case t1,2 > 0 and t3,2 > 0
is not physically possible. Indeed, this is equivalent to say that

the acoustic wave reaches the first and the third microphones

before reaching the middle one, which is inconsistent with the

propagation path of the acoustic wave. In order to overcome this

issue, multilateration is formulated either as maximum likelihood

(ML) [10], [46], [48], [51], [49], [56], [55], as least squares (LS)

[47], [4], [5], [17], [22], [8] or as global coherence fields (CFG)

[37], [35], [6], [7]. Multilateration methods posses the advantage

of being able to evaluate different TDE and SSL techniques. This

allows for a better understanding of the interactions between TDE

and SSL. Unfortunately, even if the ML/LS/GCF frameworks are

able to discard TDE outliers, they can neither prevent nor reduce

their occurrence. Consequently, the performance of these methods

drops dramatically when used in highly reverberant environments.

A third group of methods (referred to as multichannel SSL) es-

timates all time delays at once, thus ensuring their mutual consis-

tency. Multichannel SSL can be further split into two sub-groups.

The first sub-group performs SSL using the TDEs extracted from

the acoustic impulse responses [16], [42], [21], [32], [36]. These

responses are directly estimated from the raw data, which is

very challenging. As with bichannel SSL, large training sets

and complex learning procedures are necessary. Moreover, the

estimated impulse responses correspond to the acoustic signature

of the environment associated with one particular microphone-

array position and orientation. Therefore, such methods suffer

from low adaptability to a changing environment. The second

sub-group exploits the redundancy among the received signals.

In [11] a multichannel criterion based on cross-correlation is pro-

posed. Even if the method is based on pair-wise cross-correlation

functions, the estimation of the time delays is performed at

once. [11] has been extended using temporal prediction [20] and

has also proven to be equivalent to two information-theoretic

criteria [19], [2], under some statistical assumptions. However, all

these methods were specifically designed for linear microphone

arrays. Indeed, the line geometry is directly embedded in the

proposed criterion and in the associated algorithms. Likewise,

some methods were designed for other array geometries, such

as circular [38] or spherical [43], [41], [40], [50] arrays. Again,

the geometry is directly embedded in the methods in both cases.

Hence, all these methods cannot be generalized to microphone

arrays owing a general geometric configuration.

Recently, we addressed multichannel TDE-SSL in the case

of arbitrary arrays, thus guaranteeing the system’s adaptability

[1]. TDE-SSL was modelled as a non-linear programming task,

for which a gradient-based local optimization technique was

proposed. However, this method has several drawbacks. First,

the geometric analysis is incomplete. Indeed, the reported model

is not valid for arrays with more than four microphones, thus

limiting its generality. Second, the local optimization algorithm

needed to be initialized on a grid. Consequently, the resulting

procedure is prohibitively slow. Third, the evaluation was carried

out in scenarios with almost no reverberations and only on

simulated data. Last, no complexity analysis was performed.

Unlike most of the existing approaches on multichannel TDE,

we did not embed the geometry of the array in the criterion.

Instead, the geometry of the array is incorporated as two feasibil-

ity constraints. Furthermore, our approach has several interesting

features: (i) generality, since it is not designed for a particular

array geometry and it may accommodate several microphones, (ii)

adaptability, because the method neither constrains nor estimates

the acoustic signature of the environment, (iii) intuitiveness, since

the entire approach is built on a simple signal model and the

geometry is derived from the direct-path propagation model,

(iv) soundness, due to the thorough mathematical formalism

underpinning the approach and (v) robustness and reliability, as

shown by the extensive experiments and comparisons with state-

of-the-art methods on both simulated and real data.

III. SIGNAL AND PROPAGATION MODELS

In this Section we describe the sound propagation model and

the signal model. While the first one is exploited to geometri-

cally relate the time delays to the sound source position (see
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Fig. 1: The geometry associated with the two microphones case, located
at M m and M n (see Lemma 1). Hm,n is the mid-point of the
microphones (in red) and Vm,n designates the vector M m − M n (in
dashed-blue). LMAX

m,n and LMIN
m,n are the two half lines drawn in green and

yellow respectively.

Section IV), the second one is used to derive a multichannel SSL

criterion (see Section V). We introduce the following notations:

the position of the sound source S ∈ R
N , the number of

microphones M , as well as their positions, {Mm}m=M
m=1 ∈ R

N .

Let x(t) be the signal emitted by the source. The signal received

at the mth microphone writes:

xm(t) = x(t − tm) + nm(t), (1)

where nm is the noise associated with the mth microphone and

tm is the time-of-arrival from the source to that microphone.

The microphones’ noise signals are assumed to be zero-mean

independent Gaussian random processes. Throughout the article,

constant sound propagation speed, ν, and direct propagation path

are assumed. Hence we write tm = ‖S − Mm‖/ν. Using this

model, the expression for the time delay between the mth and the

nth microphones, tm,n, is expressed as:

tm,n = tn − tm =
‖S − Mn‖ − ‖S − Mm‖

ν
. (2)

IV. GEOMETRIC SOUND SOURCE LOCALIZATION

We recall that the task is to localize the sound source from

the TDE. In this Section we state the main theoretical results.

Firstly, we describe under which conditions a set of time delays

correspond to a sound source position – when a sound source can

be localized. Such sets will be called feasible and the conditions,

feasibility constraints. Secondly, we prove the uniqueness of the

sound source positions for any feasible time delay set. Finally,

we provide a closed-formula for sound source localization from

any feasible set of time delays. Even if, in practice the problem

is set in the source space, R
3, the theory presented here is

valid in R
N , N ≥ 2. In the following, Section IV-A describes

the geometry of the problem for the two microphones case,

and Section IV-B delineates the geometry associated to the M -

microphone case in general position.

A. The Two-Microphone Case

We start by characterizing the locus of sound-source locations

corresponding to a particular time delay estimate t̂m,n, namely

S satisfying tm,n(S) = t̂m,n. Since (2) defines a hyperboloid

in R
N , this equation embeds the hyperbolic geometry of the

problem. For completeness, we state the following lemma:

Lemma 1: The space of sound-source locations S ∈ R
N

satisfying tm,n(S) = t̂m,n is:

(i) the empty set if |t̂m,n| > t∗m,n, where t∗m,n = ‖Mm −
Mn‖/ν;

(ii) the half line LMAX
m,n (or LMIN

m,n), if t̂m,n = t∗m,n (or if t̂m,n =
−t∗m,n), where

LMAX
m,n = {Hm,n + µV m,n}µ≥1/2,

LMIN
m,n = {Hm,n − µV m,n}µ≥1/2,

Hm,n = (Mm+Mn)/2 is the microphones’ middle point

and V m,n = Mm − Mn is the microphones’ vectorial

baseline (see Figure 1);

(iii) the hyperplane passing through Hm,n and perpendicular to

V m,n, if t̂m,n = 0; or

(iv) one sheet of a two-sheet hyperboloid with foci Mm and

Mn for other values of t̂m,n.

Proof: Using the triangular inequality, it is easy to see

−t∗m,n ≤ tm,n(S) ≤ t∗m,n, ∀S ∈ R
N , which proves (i). (ii)

is proven by rewriting S = Hm,n + µ1V m,n +
∑N

k=2 µkW k,

where (V m,n,W 2, . . . ,W N ) is an orthogonal basis of R
N , and

then taking the derivatives with respect to the µi’s. In order to

prove (iii) and (iv) and without loss of generality, we can assume

Mm = e1, Mn = −e1 and ν = 1, where e1 is the first element

of the canonical basis of R
N . Hence, t∗m,n = 4. Equation (2)

rewrites:

(t̂m,n)2 + 4x1 = −2t̂m,n

(

(x1 + 1)2 +

N
∑

k=2

x2
k

)

1

2

, (3)

where (x1, . . . , xN )T are the coordinates of S. By squaring the

previous equation we obtain:

a(4 − a) + 4a

N
∑

k=2

x2
k − 4(4 − a)x2

1 = 0, (4)

where a =
(

t̂m,n

)2
. Notice that if t̂m,n = 0, (4) is equivalent to

x1 = 0, which corresponds to the statement in (iii). For the rest of

values of a, that is 0 < a < (t∗m,n)2 = 4, equation (4) represents

a two-sheet hyperboloid because all the coefficients are strictly

positive except the coefficient of x2
1, which is strictly negative.

In addition, we can rewrite (4) as:

x2
1 =

a(4 − a) + 4a
∑N

k=2 x2
k

4(4 − a)
(5)

and notice that x2
1 > 0. We observe that the solution space of (4)

can be split into two subspaces S+
m,n and S−

m,n parametrized by

(x2, . . . , xN ), corresponding to the two solutions of (5). These

two subspaces are the two sheets of the hyperboloid defined

in (4). Moreover, one can easily verify that tm,n

(

S+
m,n

)

=

−tm,n

(

S−
m,n

)

, so either tm,n

(

S+
m,n

)

= t̂m,n or tm,n

(

S−
m,n

)

=

t̂m,n, but both equalities cannot hold simultaneously. Hence the

set of points S satisfying tm,n(S) = t̂m,n is either S+
m,n or S−

m,n:

one sheet of a two-sheet hyperboloid.

We remark that the solutions of (4) are S+
m,n∪S−

m,n. However,

the solutions of (3) are either S+
m,n or S−

m,n. This occurs because

(4) depends only on a = (t̂m,n)2, and not on t̂m,n. Consequently,

changing the sign of t̂m,n does not modify the solutions of (4).

In other words, the solutions of (4) contain not only the genuine

solutions (those of (3)), but also a set of artifact solutions. More

precisely, this set corresponds to the solutions of (3), replacing

t̂m,n by −t̂m,n. Geometrically, the solutions of (3) are one sheet
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Fig. 2: Localization of the source using four microphones. Their position
is shown in black (M 1), blue (M 2), red (M 3) and green (M 4). The
blue hyperboloid corresponds to t̂1,2, the red to t̂1,3 and the green to t̂1,4.
The intersection of the hyperboloids corresponds to the sound source
position (white marker).

of a two-sheet hyperboloid, and the solutions of (4) are the entire

hyperboloid. Notice that, because tm,n(S+
m,n) = −tm,n(S−

m,n),
we are always able to disambiguate the genuine solutions from

the artifact ones.

B. The Case of M Microphones in General Position

We now consider the case of M microphones in general

position, i.e., the microphones do not lie in a hyperplane of

R
N. Firstly, we remark that, if a set of time delays t̂ =

{t̂m,n}m=M,n=M
m=1,n=1 ⊂ R

M2

satisfies (2) ∀m, n, then these time

delays also satisfy the following constraints:

t̂m,m = 0 ∀m,

t̂m,n = −t̂n,m ∀m, n,

t̂m,n = t̂m,k + t̂k,n ∀m, n, k.

As a consequence of these three equations we can rewrite any

t̂m,n in terms of (t̂1,2, . . . , t̂1,M ):

t̂m,n = −t̂1,m + t̂1,n ∀m, n. (6)

This can be written as a vector t̂ = (t̂1,2 . . . t̂1,M )⊤ that lies

in an (M − 1)-dimensional vector subspace W ⊂ R
M2

. In other

words, there are only M − 1 linearly independent equations of

the form (2). We remark that these M − 1 linearly independent

equations are still coupled by the sound source position S.

Geometrically, this is equivalent to seek the intersection of

M − 1 hyperboloids in R
N (see Figure 2). Algebraically, this

is equivalent to solve a system of M − 1 non-linear equations

in N unknowns. In general, this leads to finding the roots of a

high-degree polynomial. However, in our case the hyperboloids

share one focus, namely M1. As it will be shown below, in this

case the problem reduces to solving a second-degree polynomial

plus a linear system of equations. The M −1 equations (2) write:










νt̂1,2 = ‖S − M2‖ − ‖S − M1‖
...

νt̂1,M = ‖S − MM‖ − ‖S − M1‖
(7)

Because the M microphones are in general position (they do not

lie in a hyperplane of R
N ), M ≥ N + 1 and the number of

equations is greater or equal than the number of unknowns.

We now provide the conditions on t̂ under which (7) yields a

real and unique solution for S. More precisely, firstly, we provide

a necessary condition on t̂ for (7) to have real solutions, secondly,

we prove the uniqueness of the solution and build a mapping to

recover the solution S, and thirdly, we provide a necessary and

sufficient condition on t̂ for (7) to have a real and unique solution.

Notice that each equation in (7) is equivalent to (νt̂1,m +
‖S −M1‖)2 = ‖S −Mm‖2, from which we obtain −2(M1 −
Mm)TS + p1,m‖S − M1‖ + q1,m = 0, where p1,m = 2νt̂1,m

and q1,m = ν2(t̂1,m)2 + ‖M1‖2 −‖Mm‖2. Hence, (7) can now

be written in matrix form:

MS + P ‖S − M1‖ + Q = 0, (8)

where M ∈ R
(M−1)×N is a matrix with its mth row, 2 ≤ m ≤

M , equal to (Mm − M1)
T, P = (p1,2, . . . , p1,M )T and Q =

(q1,2, . . . , q1,M )T. Notice that P and Q depend on t̂.

Without loss of generality and because the points

M1, . . . ,MM do not lie in the same hyperplane, we assume

that M can be written as a concatenation of an invertible matrix

ML ∈ R
N×N and a matrix ME ∈ R

(M−N−1)×N such that

M =

(

ML

ME

)

. We can easily accomplish this by renumbering

the microphones such that the first N + 1 microphones do not

lie in the same hyperplane. This implies that the first N rows

of M are linearly independent, and therefore ML is invertible.

Similarly we have P =

(

P L

P E

)

and Q =

(

QL

QE

)

. Thus,

(8) rewrites:

MLS + P L‖S − M1‖ + QL = 0, (9)

MES + P E‖S − M1‖ + QE = 0, (10)

where P L, QL are vectors in R
N and P E , QE are vectors in

R
M−N−1. If we also decompose t̂ into t̂L and t̂E , we observe

that P L and QL depend only on t̂L and that P E and QE depend

only on t̂E . Notice that (7) is strictly equivalent to (9)-(10). In the

following, (9) will be used for defining the necessary conditions

on t̂ as well as localizing the sound source. The study of (10) is

reported further on. By introducing a scalar variable w, (9) can

be written as:

MLS + wP L + QL = 0, (11)

‖S − M1‖2 − w2 = 0. (12)

We remark that the system (11)-(12) is defined in the (S, w)
space. Notice that (11) a straight line and (12) represents a two-

sheet hyperboloid. Because two-sheet hyperboloids are not ruled

surfaces, (12) cannot contain the straight line in (11). Hence (11)

and (12) intersect in two (maybe complex) points.

In order to solve (11)-(12), we first rewrite (11) as

S = Aw + B, (13)
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where A = −M−1
L P L and B = −M−1

L QL, and then substitute

S from (13) into (12) obtaining:

(‖A‖2 − 1)w2 + 2 〈A,B − M1〉w + ‖B − M1‖2 = 0. (14)

We are interested in the real solutions, that is, S ∈ R
N .

Because A,B ∈ R
N , the solutions of (11)-(12) are real, if

and only if, the solutions to (14) are real too. Equivalently, the

discriminant of (14) has to be non-negative. Hence the solutions

to (11)-(12) are real if and only if t̂ satisfies:

∆(t̂) := 〈A,B − M1〉2 − ‖B − M1‖2(‖A‖2 − 1) ≥ 0. (15)

The previous equation is a necessary condition for (11)-(12) to

have real solutions. Albeit, we are interested in the solutions

of (9). Obviously, if S is a solution of (9), then (S, ‖S−M1‖) is

a solution of (11)-(12). However, the reciprocal is not true; these

two systems are not equivalent. Indeed, since ∆(t̂) = ∆(−t̂),
one of the solutions of (11)-(12) is the solution of (9) and the

other is the solution of (9) replacing t̂ by −t̂. In other words,

the two solutions of (11)-(12), namely (S+, w+) and (S−, w−),
satisfy

either

{

t(S+) = t̂

t(S−) = −t̂
or

{

t(S+) = −t̂

t(S−) = t̂
.

Notice that this situation has been already encountered on equa-

tions (3) and (4), where the same disambiguation reasoning has

been used. To summarize, the solution to (9) is unique. Moreover,

we can use (13) to define the following localization mapping,

which retrieves the sound-source position from a feasible t̂:

L(t̂) :=

{

S+ = Aw+ + B if t(S+) = t̂

S− = Aw− + B otherwise.
(16)

Until now we provided the condition under which equation (9)

yields real solutions, the uniqueness of the solution and a lo-

calization mapping. However, the original system includes also

equation (10). In fact, (10) adds M − N − 1 constraints onto t̂.

Indeed, if L(t̂) is a solution of (9), then in order to be a solution

of (9)-(10), it has to satisfy:

E(t̂) := MEL(t̂) + P E‖L(t̂) − M1‖ + QE = 0. (17)

Moreover, the reciprocal is true. Summarizing, the system (9)-

(10) has a unique real solution L(t̂) if and only if ∆(t̂) ≥ 0 and

E(t̂) = 0.

It is interesting to discuss these findings from three different

perspectives: geometric, algebraic, and computational:

1) The differential geometry point of vew. The set of feasible

time delays,

T =
{

t̂ ∈ W,∆(t̂) ≥ 0 and E(t̂) = 0
}

,

is a bounded N -dimensional manifold with boundary lying

in a (M −1)-dimensional vector subspace of R
M2

, Indeed,

because E is a (M − N − 1)-dimensional vector-valued

function, T has dimension N . The boundary of T is the

set

∂T =
{

t̂ ∈ W
∣

∣∆(t̂) ≥ 0 and E(t̂) = 0
}

.

In this context, the localization mapping must be seen as

a smooth bijection from T to R
N , i.e., an isomorphism

between the manifolds.

2) The algebraic point of view. ∆ and E characterize the time

delays corresponding to a position in the source space,

R
N . That is to say that ∆ and E represent the feasibility

constraints, the necessary and sufficient conditions for the

existence of S. Under this conditions S is unique and given

by the closed-form localization mapping L.

3) The computational point of view. The mappings ∆(t̂), E(t̂)
and L(t̂) which are computed from (15), (17), and (16)

are expressed in closed-form and they only depend on

the microphone locations. The most time-consuming part

of these computations is the inversion of the microphone

matrix ML, which can be performed off-line. Consequently,

the use of these three mappings is intrinsically efficient.

To conclude, we highlight that ∆(t̂) and E(t̂), i.e., (15) and

(17), provide the conditions under which the M − 1 time delays

correspond to a valid point in R
N . If these conditions are

satisfied, the problem yields a unique location for the source S.

Moreover, the mapping L(t̂) defined by (16) is a closed-form

sound-source localization solution for any set of feasible time

delays t̂:

S = L(t̂). (18)

V. TIME DELAY ESTIMATION

In the previous section we described how to characterize

the feasible sets of time delays and how to localize a sound

source from them. We now address the problem of how to

obtain an optimal set of time delays given the perceived acoustic

signals. In the following, we delineate a criterion for multichannel

time delay estimation (Section V-A), which will subsequently

be used in Section V-B to cast the TDE-SSL problem into a

non-linear multivariate constrained optimization task. Indeed, the

multichannel TDE criterion is a non-linear cost function allowing

to choose the best value for t̂. The feasibility constraints derived

in the previous section are used to constrain the optimization

problem, thus seeking the optimal feasible value for t̂.

A. A Criterion for Multichannel TDE

The criterion proposed in [11] is built from the theory of linear

predictors and presented in the framework of linear microphone

arrays. Following a similar approach, we propose to generalize

this criterion to arrays owing a general microphone configuration.

Given the M perceived signals {xm(t)}m=M
m=1 , we would like to

estimate the time delays between them. As explained before (see

(6) and after), only M −1 of the delays are linearly independent.

Without loss of generality we choose, as above, the delays

t1,2, . . . , t1,m, . . . , t1,M . We select x1(t) as the reference signal

and set the following prediction error:

ec,t(t) = x1(t) −
M
∑

m=2

c1,m xm(t + t1,m), (19)

where c = (c1,2, . . . , c1,m, . . . , c1,M )
T

is the vector of the

prediction coefficients and t = (t1,2, . . . , t1,m, . . . , t1,M )
T

is the

vector of the prediction time delays. Notice also that, when t

takes the true value, the signals xm(t + t1,m) and xn(t + t1,n)
are on phase. The criterion to minimize is the expected energy of
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the prediction error (19), leading to an unconstrained optimization

problem:

(c∗, t∗) = arg min
c,t

E
{

e2
c,t(t)

}

.

In addition, it can be shown (see [11]) that this problem is

equivalent to:

t∗ = arg min
t

J(t), (20)

with

J(t) = det (R(t)) , (21)

R(t) ∈ R
M×M being the real matrix of normalized

cross-correlation functions evaluated at t. That is R(t) =
[ρm,n(tm,n)]m,n with:

ρm,n(tm,n) =
E {xm(t + t1,m)xn(t + t1,n)}√

EmEn

, (22)

where Em = Rm,m(0) = E
{

x2
m(t)

}

is the energy of the mth

signal.

Importantly, the criterion J in (21) is designed to deal with

microphones in a general configuration and not for a specific

microphone-array geometry. Hence, this guarantees the generality

of the proposed approach. Because the array’s geometry is not

embedded in J (as it is done in [11]), J is a multivariate function.

In the next Section, the feasibility constraints previously de-

rived are combined with this cost function to set up a constrained

multivariate optimization task.

B. The Constrained Optimization Formulation

So far we characterized the feasible values of t, i.e., those

corresponding to a sound source position (Section IV) and

introduced a criterion to choose the best value for t̂ (Section V-A).

The next step is to look for the best value among the feasible ones.

This will be referred to as the geometrically-constrained time

delay estimation problem, which naturally casts into the following

non-linear multivariate constrained optimization problem:






min
t

J(t),

s.t. t ∈ W ∩ B, ∆ (t) ≥ 0, E (t) = 0,
(23)

where W , ∆ and E are defined in Section IV and B is a compact

set defined as:

B =
{

t ∈ R
M2

∣

∣

∣
|tm,n| ≤ t∗m,n,∀m, n = 1, . . . ,M

}

. (24)

It is worth noticing that, in practice, the dimension of the

optimization task is M − 1. Indeed, since all time delays can

be expressed as a function of (t1,2, . . . , t1,M ), the optimization

is done with respect to these M−1 variables. We also remark that

the optimization variables lay in a bounded space (as described in

Section IV-A). The equality constraint is trivial when M = N+1.

In other words, in a real world scenario, this constraint does not

exist when the array consists on 4 = 3 + 1 microphones. When

using five or more microphones, the condition could be relaxed

to ‖E(t)‖2 ≤ ǫ, which is often more adapted to the existing

optimization algorithms.

Notice that it is possible to use a redundant set of TDOAs,

namely all the M2 TDOAs available with M microphones. This

implies that the dimension of the minimizer t in (20) is M2,

instead of M −1, and that the minimization (23) must be carried

out under the presence of M2−M+1 additional linear constraints

(6).

We would like to highlight that all M microphone signals are

used in the estimation procedure. In a sense, all received signals

affect the estimation of all the time delays. This is why there is

one (M − 1)-dimensional optimization task and not several one-

dimensional optimization tasks. The localization is carried out

immediately after the time delay estimation thanks to a closed-

form solution (18), thus with no other estimation procedure. The

power of the proposed method relies on the intrinsic relation

between signals and time delay estimates combined with the use

of the geometric constraints given by the microphones position.

By adding these constraints to the estimation procedure, we

do not discard any infeasible sets, but we prevent them to be

the outcome of our algorithm. In other words, the estimation

procedure will always provide a set of time delays corresponding

to a position in the sound source space. Next Section describes

the branch & bound global optimization technique proposed to

solve (23).

VI. BRANCH & BOUND OPTIMIZATION

Global optimization is, in most cases, an extremely challenging

task. Nevertheless, the optimization of (23) is well suited for a

global optimizer. Indeed, J is continuously differentiable on B,

therefore ∇J is continuous. This implies that ∇J is bounded on

any compact set, in particular on B. Hence, by means of theorem

9.5.1 in [44], J is Lipschitz on B. Subsequently, a branch &

bound (B&B) type of algorithm is well suited.

Such optimization techniques were initially proposed for linear

mixed-integer programming [13] and extended later on to the non-

linear case [30]. They alternate between the branch and bound

procedures in order to recursively seek the potential regions where

the global minimum is. While the branch step splits the potential

regions into smaller pieces, the bound step estimates the lower

and upper bounds of each potential region. After the bounding,

the discarding threshold is set to the minimum of the upper

bounds. Then, all regions whose lower bound is bigger than the

discarding threshold are discarded (since they cannot contain the

global minimum).

The B&B algorithm that we propose maintains two lists of

regions: P containing the potential regions and D containing

the discarded regions (see Algorithm 1). The B&B inputs are

the initial list of potential regions and the Lipschitz constant

L. The outputs are the two maintained lists, P and D after

convergence. Each of the regions in P and in D represents a

(M − 1)-dimensional cube (t, s), where t is the cube’s centre

and s is its side’s length. The Branch routine splits each of the

cubes in P into 2M−1 smaller cubes of size s/2. Next, the bound

routine (see Algorithm 2) estimates the upper (u) and the lower

(l) bounds of all regions in P . The discarding threshold τ is

then set to the minimum of all upper bounds. All sets in P with

lower bound higher than τ are moved to the discarded list D.

One prominent feature of the optimization task in (23) us that

we seek for the minimum on the set B. The set of potential sets,

P is naturally initialized to the set B. Consequently, the B&B

procedure does not require a grid-based optimization.



7

Algorithm 1 Branch and Bound

1: Input: The Lipschitz constant L and the initial list of

potential regions P .

2: Output: The list of potential solutions P and the list of

discarded regions D.

3: repeat

4: (a) P = Branch(P)

5: (b) [P , RD] = Bound(P ,L)

6: (c) D = D ∪RD
7: until Convergence

Algorithm 2 Bound routine of Algorithm 1

1: Input: The Lipschitz constant L and the list of potential

regions P .

2: Output: The list of potential regions updated P and the list

of recently discarded regions RD.

3: for i = 1, . . . , |P| do

4: (a) l(i) = J(t(i)) − s(i)L.

5: (b) u(i) = J(t(i)) + s(i)L.

6: (c) τ = mini=1,...,|P| u
(i).

7: end for

8: for i = 1, . . . , |P| do

9: if l(i) > τ then

10: Move (t(i), s(i)) from P to RD.

11: end if

12: end for

The branch and bound routines are alternated until conver-

gence. Many criteria could be used to stop the algorithm. In order

to guarantee an accurate solution, we may force a maximum size

for the potential regions. Also, in case we would like to guarantee

the stability of the solution, we may track the variation of the

smallest of the lower bounds. Either way, once the algorithm has

converged, we select the best region in P among those satisfying

the constraints ∆ and E . If there is no such region in P2, the

B&B algorithm is run again providing D as the initial list of

potential regions.

VII. EXPERIMENTAL VALIDATION

A. Experimental Setup

In order to validate the proposed model and the associated

estimation technique, we used an evaluation protocol with simu-

lated and real data. In both cases, the environment was a room of

approximately 4×4×4 meters (N = 3), with an array of M = 4
microphones placed at (in meters) M1 = (2.0, 2.1, 1.83)T,

M2 = (1.8, 2.1, 1.83)T, M3 = (1.9, 2.2, 1.97)T and M4 =
(1.9, 2.0, 1.97)T. The microphones are the vertices of a tetra-

hedron, resulting in a non-coplanar configuration. The sound

source was placed on a sphere of 1.7 m radius centred at the

microphone array. More precisely, the source was placed at 21
different azimuth values, between −160◦ and 160◦, and at 9
different elevation values between −60◦ and 60◦, hence at 189
different directions. The speech fragments emitted by the source

2In order to decide whether a region satisfies the constraints or not, we test
its centre. This approximation is justified by the fact that, at this stage of the
algorithm, the regions are extremely small (since we force a maximum region
size).

were randomly chosen from a publicly available data set [18].

One hundred millisecond cuts of these sounds were used as input

of the evaluated methods.

In the simulated case, we controlled two parameters. Firstly, the

value of T60, which is a parameter of the image-source model [29]

(available at [28]), controlling the amount of reverberations. More

precisely, T60 measures the time needed for the emitted signal

to decay 60 dB. The higher the T60, the larger the amount of

reverberations and their energy. In our simulations, T60 took the

following values (in seconds): 0, 0.1, 0.2, 0.4 and 0.6. Secondly,

we controlled the amount of white noise added to the received

signals by setting the signal-to-noise ratio (SNR) to −10, −5,

or 0 dB.

In the real case, we used a slightly modified version of the

acquisition protocol defined in [15]. This protocol was designed

to automatically gather sound signals coming from different

directions, using the motor system of a robotic platform placed

in a regular indoor room. Such realistic environment inherently

limits the quality of the recordings. First of all, the noise of the

acquisition device (the computer’s fans) is also recorded. Second,

ambient noise associated with the room’s location (between

a corridor and a server room) has also a negative, but very

realistic effect on the data. We roughly estimated the acoustic

characteristics of the real recordings, namely T60 ≈ 0.5 s and

SNR ≈ 0 dB. In our case, we replaced the dummy head used

in [15], by a tetrahedron-shaped microphone array. The motor

platform has two degrees of freedom (pan and tilt), and was

designed to guarantee the repeatability of the movements. A

loud-speaker was placed 1.7 m away from the array to emulate

the sound source. We recorded sound waves coming from 189
different directions. Consequently, the performed tests cover an

extensive range of realistic situations.

B. Implementation

We implemented several methods and compared them within

the previously described set up. b&b stands for the branch &

bound method proposed in this paper. unc, d-lb and s-lb, stemmed

from [1], represent the state-of-the-art in multichannel TDE-SSL

for arbitrarily shaped microphone arrays. dm stands for “direct

multichannel”, which is the generalization of [11] to arrays with

arbitrary configuration. n-mult, t-mult, and f-mult are variants

of [8], which represent the state-of-the-art in multilateration

methods. pi is a straightforward multilateration algorithm. We

have chosen to implement all nine methods to (i) compare the

proposed algorithm to the state-of-the-art and (ii) push the limits

of existing TDE-SSL algorithms of both multilateration and

multichannel SSL disciplines.

• b&b corresponds to the branch & bound algorithm described

in Section VI. The list of potential regions is naturally initial-

ized as P = {B}. The Lipschitz constant L is estimated by

computing the maximum slope among one thousand point

pairs randomly drawn inside the feasibility domain.

• unc, d-lb and s-lb are directly derived from the procedure

described in [1]. All of them perform multichannel TDE to

further localize the sound source. unc and s-lb are proposed

here to push the limits of the base method, d-lb. These local

optimization techniques are initialized on the unconstrained
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(Gu), constrained (Gc) and sparse (Gs) grids respectively. The

details are given in Section VII-B1.

• dm is the straightforward generalization of [11] to arbitrarily-

shaped microphone arrays. J , defined in (21) is evaluated

on Gc, and the minimum over the grid is selected. The

difference between dm and d-lb is that in the former no

local minimization is carried out.

• n-mult, t-mult and f-mult are implementations of the method

described in [8]. In this case the time delay estimates, t̂

are computed independently (using [26]), and the sound

source position, S, is chosen to be as close as possible to

the hyperboloids associated with t̂. Because the algorithm

was designed for distributed sensor networks and not for

egocentric arrays, we had to modify it. Further explanations

are given in Section VII-B2.

• pi corresponds to pair-wise independent time delay estima-

tion based on cross-correlation [26]. That is, t1,j is the

maximum of the function ρ1,j(τ); This is the simplest

multilateration algorithm one can think of.

Except for n-mult, t-mult, and f-mult, which provide S directly,

all other algorithms provide a time delay estimate. If this estimate

is feasible, S is recovered using (18).

1) Methods unc, d-lb and s-lb: In [1], the constrained problem

is converted into an unconstrained problem with a different cost

function. The intuition is that the cost function is modified to

penalize those points that are closer to the feasibility border. In

practice, the inequality constraint is added to the cost by means

of a log-barrier function






min
t

J(t) − µ log(∆(t)),

s.t. t ∈ W ∩ B, E (t) = 0,
(25)

where µ ≥ 0 is a regularizing parameter.

Consequently, the original task (23) is converted into a se-

quence of tasks indexed by µ. Each of the problems has an

optimal solution t̂µ. It can be proven (see [3]) that t̂µ → t̂ when

µ → 0. Log-barrier methods are gradient-based techniques, which

decrease the value of µ with the iterations, thus converging to

the closest feasible local minimum of J . Therefore, it is recom-

mended to provide the analytic derivatives in order to increase

both the convergence speed and the accuracy (see Appendices A

and B for the expressions of the gradients and Hessians of the

cost function and the constraints, respectively).

Unfortunately, log-barrier methods are designed for convex

problems. In other words, these methods find the local minimum

closest to the initialization point. Hence, in order to find the global

minimum, the algorithm must be multiply initialized from points

lying on a grid G. After convergence, the minimum among all

the local minima found is assumed to be the global solution of

the problem. d-lb (dense-log-barrier) corresponds to the method

in [1], hence solving for (23), initialized on a grid Gc of 352

feasible points. unc solves for the unconstrained problem, i.e.,

(20), and it is initialized on a grid Gu. The difference between

the two grids is that while Gc contains just feasible points, Gu

contains unfeasible points as well. In practice, Gu contains 456

points. The rationale of implementing unc is to better assess and

quantify the role played by the feasibility constraints, ∆ and

E . s-lb (sparse-log-barrier) corresponds to the same log-barrier

method initialized on a sparse grid Gs. We conjecture that the

global minimum of J corresponds to one of the local maxima

of ρ1,m in (22) for m = 2, . . . ,M . For each microphone pair

(1, m) we extract K = 3 local maxima of ρ1,m. Gs consists

of all possible combinations of these values, thus containing

KM−1 = 27 points (in the case of M = 4 microphones). s-

lb is implemented to assess the robustness towards initialization

of the local optimization technique. Both, d-lb and s-lb are

reimplementations of the publicly available MATLAB log-barrier

dual interior-point method [9].

2) Methods n-mult, t-mult and f-mult: As already mentioned,

we implemented [8] with some modifications. Indeed, the method

was designed for distributed microphone arrays. With such a

setup, the sound source position lies inside the volume defined by

the microphone positions in the room. In the case of an egocentric

array the sound source is necessarily located outside the volume

delimited by the microphone array. The method described in

[8] seeks the locations the closest to the hyperboloids given by

the independently estimated time delays t̂. More precisely, the

following criterion is minimized:

H(S) =
∑

1≤m<n≤M

(hm,n(S))
2
, (26)

where hm,n is the equation of a two-sheet hyperboloid (i.e.,

equation (4)) with foci Mm and Mn and differential value t̂m,n.

We will call H the multilateration cost function, to distinguish

is from the cost function J . If the estimated time delays are

feasible, the minimization of (26) is equivalent to solve the system

{hm,n(S) = 0}1≤m<n≤M or to compute L(t̂), otherwise the

methods seeks the value of S that best explains the TDE. We have

experimentally observed that, in most of the cases, one solution is

“inside” the microphone array and the other one is “outside” the

array. However, the cost function behaves differently around these

two solutions. Indeed, H is much sharper around the solution

inside the microphone array. Hence, this is usually the one found

by the optimization procedure. That is why we had to modify the

cost function in order to bias the optimization:

H̃(S) = H(S) + λ
(

‖S‖2 − r
)2

, (27)

where r is the desired radius of the solution and λ is a regulariza-

tion parameter. This way of constraining the optimization problem

is justified by the well-known fact that the distance to the source

is very difficult to estimate with egocentric arrays. We tested three

different values for r: n-mult (near-multilateration) corresponds

to r = 0.9, t-mult (true-multilateration) corresponds to r = 1.7
(which is the actual distance from the array to the source), and f-

mult (far-multilateration) corresponds to r = 2.5 (all measures are

in meters). In all cases the optimization procedure was initialised

on a grid of 200 directions, Gd, and, in order to increase the

accuracy and convergence speed, the analytic derivatives were

computed (see Appendix C).

C. Results and Discussion

Table I summarizes the results obtained with the evaluated

methods on simulated as well as on real data. While columns 2

to 16 correspond to simulated data, the last column corresponds

to real data. In the simulated case, the first row displays the

SNR in dB and the second row displays T60 in seconds. The

next rows display the performance of the evaluated methods,
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TABLE I: Results obtained with both simulated data and real data (last column). The first row shows the SNR ratio in dB. The second row shows
the values of T60 in seconds. The remaining rows show the results with the methods outlined in Section VII-B. For each SNR–T60 combination
and for each method, we display three values: (i) the proportion of inliers (the angular error is less than 30◦), (ii) the mean angular error of inliers,
and (iii) their standard deviation. Column wise, the best results are shown in bold. Notice that x-mult methods often yield the best mean angular
error of inliers. However, x-mult requires an estimate of the array-to-source distance.

SNR 0 −5 −10 Real data

T60 0 0.1 0.2 0.4 0.6 0 0.1 0.2 0.4 0.6 0 0.1 0.2 0.4 0.6 0.5

b&b

82.1% 82.8% 73.8% 48.3% 35.7% 84.1% 82.7% 68.6% 41.1% 29.8% 77.5% 66.6% 44.5% 24.8% 19.0% 27.5%

9.59 10.49 12.65 14.99 16.10 10.46 11.58 13.91 16.07 16.97 13.45 14.35 16.53 18.29 18.63 16.04

3.66 4.47 6.14 7.09 7.30 4.64 5.45 6.75 7.44 7.35 6.56 6.85 7.36 7.29 7.26 7.55

unc

38.3% 36.2% 33.3% 23.3% 19.2% 37.5% 37.0% 31.5% 21.4% 16.7% 33.4% 29.2% 21.6% 14.3% 11.6% 14.1%

15.89 16.15 17.01 17.94 18.60 16.76 16.92 17.71 18.48 18.74 17.28 17.75 18.67 18.95 19.54 18.93

7.47 7.30 7.46 7.30 7.69 7.38 7.36 7.41 7.30 7.26 7.51 7.62 7.34 7.21 7.03 7.13

d-lb

75.3% 75.4% 67.5% 44.6% 33.4% 80.4% 77.9% 61.9% 36.8% 28.0% 66.6% 56.5% 36.3% 20.6% 15.8% 22.3%

10.54 11.55 13.54 15.53 16.25 11.74 12.99 14.74 16.54 17.11 14.69 16.01 17.27 18.28 18.61 17.51

4.57 5.26 6.51 7.21 7.22 5.52 6.35 6.91 7.63 7.38 6.90 7.19 7.37 7.30 7.20 7.53

s-lb

46.9% 46.7% 40.9% 27.9% 22.2% 39.3% 40.8% 34.4% 23.6% 18.7% 31.0% 29.7% 22.1% 14.5% 13.2% 13.2%

11.63 12.58 14.79 17.05 17.67 13.41 14.58 16.60 17.76 18.19 17.13 17.85 18.46 19.17 19.65 18.80

5.54 6.17 6.98 7.33 7.13 6.41 6.74 7.21 7.33 7.28 7.36 7.31 7.00 7.41 7.26 7.09

dm

80.3% 77.4% 62.4% 41.2% 30.2% 78.3% 74.0% 57.7% 34.8% 26.9% 60.4% 51.3% 35.6% 21.4% 16.3% 16.7%

15.75 15.94 16.49 17.04 17.76 15.80 16.09 16.48 17.53 17.82 16.65 16.90 17.86 18.76 19.03 19.34

7.11 7.18 7.38 7.50 7.48 7.12 7.15 7.35 7.55 7.45 7.30 7.31 7.33 7.29 7.34 7.00

n-mult

60.8% 54.6% 40.5% 22.6% 16.0% 49.7% 46.3% 35.1% 18.6% 13.7% 41.9% 36.0% 23.0% 12.8% 10.1% 13.2%

7.99 9.00 11.18 14.11 15.46 9.23 10.56 13.18 15.82 16.79 13.11 14.28 16.26 17.84 18.23 17.54

5.45 6.23 7.43 8.11 7.97 6.30 6.98 7.51 7.93 7.51 7.32 7.46 7.68 7.40 7.01 7.27

t-mult

61.0% 53.1% 39.4% 22.0% 15.5% 50.0% 45.5% 34.1% 18.3% 13.6% 41.3% 35.1% 22.4% 12.3% 9.9% 17.38%

7.81 8.75 11.06 14.14 15.41 9.42 10.72 13.09 16.02 16.52 13.65 14.50 16.22 18.15 18.17 16.1

5.09 6.03 7.22 8.10 7.74 6.14 7.00 7.43 7.88 7.36 7.34 7.38 7.39 7.45 7.22 7.80

f-mult

59.6% 52.5% 38.6% 21.7% 15.0% 48.8% 44.5% 34.0% 17.9% 13.5% 40.6% 34.7% 21.9% 12.0% 9.8% 17.91%

8.38 9.31 11.51 14.27 15.69 9.92 11.22 13.54 16.21 16.92 13.87 14.75 16.34 17.87 18.31 15.3

5.35 6.16 7.21 7.90 7.66 6.24 7.03 7.33 7.70 7.37 7.27 7.41 7.36 7.41 7.21 7.78

pi

53.7% 53.3% 44.3% 30.3% 23.6% 41.4% 41.5% 32.7% 21.9% 16.9% 29.6% 28.9% 20.8% 14.7% 12.5% 12.9%

11.31 12.47 14.60 16.81 17.67 13.24 14.23 16.50 18.12 18.08 17.04 17.76 18.92 18.98 19.25 19.03

5.55 6.17 6.92 7.33 7.60 6.11 6.71 7.09 7.15 7.43 7.19 7.17 7.49 7.58 7.22 6.88

random

7.04%

19.63

7.1491

and are split into three groups by double lines: the proposed

b&b method (top), state-of-the-art multichannel TDE methods

(middle), and state-of-the-art multilateration methods (bottom).

For each SNR–T60 combination and for each method we provide

three numbers: (i) the percentage of inliers (angular error < 30◦),

(ii) the average and (iii) the standard deviation of the angular error

over the inliers. These quantities are computed on 100 ms long

signals received from the 189 different sound source positions,

and the best values are shown in bold. On an average, each

entry of the table roughly corresponds to 3, 000 localization trials.

Overall, we performed more than 400, 000 localizations. The

error of the random localizer follows an unimodal distribution

symmetric with respect to its mean, 90◦, with a standard deviation

of approximately 40◦. Last row of Table I (random) characterizes

the random localizer in terms of inliers, inlier mean and standard

deviation.

Roughly speaking, multichannel algorithms yield better results

than multilateration. Among the algorithms belonging to the

latter class, n-mult, n-mult , and n-mult (jointly referred to as

x-mult) perform better than pi in low-reverberant environments,

independently of the level of noise. However, in high reverberant

environments, x-mult performs slightly worse than pi. It is worth

noticing that, the value of the parameter r (in the constrained op-

timization formulation (27)) has a small impact onto the method’s

performance. Indeed, the variation of the inlier percentage is

not greater than 2% and the variation of the mean and standard

deviation is less than 1◦.

All the multichannel TDE algorithms perform as expected

with respect to the environmental parameters: The performance

decreases as T60 is increased. However, the SNR and T60 have

different effects on the objective function, J . On one side, the

sensor noise decorrelates the microphone signals leading to many

randomly spread local minima and increasing the value of the true

minimum. If this effect is extreme, the hope for a good estimate

decreases fast. On the other side, the reverberations produce only

a few strong local minima. This perturbation is systematic given

the source position in the room. Hence, there is hope to learn

the effect of such reverberations in order to improve the quality

of the estimates. Clearly, these perturbation types (noise and

reverberations) have different effects on the results.

Concerning the methods themselves, we noticed that unc

achieves a very low percentage of inliers. This fully justifies the

need of the geometric constraint introduced in this paper. In other

words, the cost function (21) suffers from a lot of local minima

outside the feasible domain. Thus, the naive idea of estimating

the time delays without adding information about the geometry

of the microphone array, does not really work. We also remark

that, except for the two first cases (the easiest ones), the d-lb

method outperforms the dm method, since the former carries

out a local minimization. Regarding the two easiest cases, it is

not clear which of the two methods shows a better performance.

On one side, dm captures more inliers. On the other side, both

the mean angular error and standard deviation over the set of

inliers are significantly lower with d-lb than with dm. The sparse
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TABLE II: This table displays the histograms associated with the localization error, organized in the same way as Table I. The histogram abscissae
start at 0◦ (no error) and span to 180◦ (maximum error).

SNR 0 −5 −10 Real data

T60 0 0.1 0.2 0.4 0.6 0 0.1 0.2 0.4 0.6 0 0.1 0.2 0.4 0.6 0.5

b&b

unc

d-lb

s-lb

dm

n-mult

t-mult

f-mult

pi

random

initialization strategy does not show a remarkable performance.

Indeed, the localization quality is comparable to d-lb, but the

percentage of inliers is much lower. Thus, a method able to deal

with large amounts of outliers should be added in order to clean

up the localization results provided by s-lb. More importantly, we

highlight the performance of b&b. This method yields the highest

percentage of inliers in all the tests. Moreover, the quality of the

localization is comparable, if not better, with d-lb or with x-mult.

Regarding the percentage of outliers and the standard deviation,

the b&b methods proves to obtain the best results. Notice that

multilateration methods often yield the best mean angular error

of inliers. However, these methods must be provided an estimate

of the distance to the source: t-mult was provided with the true

array-to-source distance. We conclude that b&b is the method of

choice in the presence of noise and outliers.

The behaviour of the methods described above on simulated

data is similar on real data. The proposed multichannel method

outperforms the state-of-the-art on both multichannel TDE and

multilateration. Among the multichannel algorithms, unc and s-

lb show very bad performance. Even if dm, and specially d-lb

prove to work to some extent, the best method is b&b since it

has the highest percentage of inliers and the localization quality is

comparable to the one of d-lb and of x-mult. Finally, we noticed

that the results on real data roughly correspond to the simulated

case with T60 = 0.6 s and SNR = −5 dB, which is a very

challenging scenario.

The results of Table I are complemented by error histograms

displayed in Table II. This table has a row-column structure

that is strictly identical with Table I. The histograms count all

localization trials, contrary to Table I where only the inliers were

used to compute the mean and the standard deviation. Table II is

meant to provide a qualitative evaluation of the error distribution.

An ideal localization situation would show a histogram with a

full leftmost bin (0◦ error) and all the other bins being empty.

One can see that the results of both tables are correlated. On

TABLE III: Average execution times and standard deviations for each
method on 400 trials. All quantities are expressed in seconds, except for
those with *, which are expressed in milliseconds.

Method b&b unc d-lb s-lb dm x-mult pi

Mean 9.17 25.13 10.34 0.958 0.103 2.02 0.014
Std 1.082 2.759 1.316 0.810 0.004 0.265 0.0003

one hand, good localization results correspond to histograms

whose mass is mainly concentrated to the left. On the other

hand, bad localization results correspond to histograms whose

mass is evenly distributed over the histogram bins. However, we

observe three different histogram patterns among the methods

reporting low performance. First, in some cases, a very rough

estimate of the position could be extracted, namely the mass is

concentrated on the left half of the histogram (but not close to 0◦),

e.g., (b&b,−10,0.2), (dm,−5,0.4) or (pi,0,0.6). Second, in some

cases a fairly accurate estimate is obtained, but only in 50% of the

trials. This translates into a histogram with two large peaks, one

of them close to 0◦ and the other far apart. Consequently, some

rough estimate of the source position would allow to discard most

of the outliers. Examples of this are the x-mult methods. Third, the

worst case scenario, in which the error is uniformly distributed,

do not provide any meaningful result, namely for SNR = −10
dB and T60 = 0.6 s.

Finally, we performed a statistical analysis of the execution

times. Table III shows the average and standard deviation of

the execution times for each one of the tested methods and on

400 trials. All the methods were implemented in MATLAB and

the code was run on the very same computer. The methods n-

mult, t-mult and f-mult were not evaluated separately because the

parameter r does not have any effect on the execution time. We

first observe that methods with low computational complexity

correspond to methods that are not robust (pi, x-mult, dm and s-

lb). There are some methods that are neither robust nor fast (unc).

A couple of methods present high robustness but high complexity
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(d-lb and b&b). However, optimization techniques and smart

approximations will lead to b&b-based localization algorithms

that are both efficient and robust. Indeed, platform-dedicated

algorithm optimization will reduce the computational time of

the proposed sound source localization procedure. Moreover,

the accuracy of the localization results may be adjusted to the

desired application/environment. For example, we could use the

proposed framework to obtain a rough estimate of the sound

source position. The semantic context of the ongoing social

interplay will help us select the location of interest among the

rough estimates. This coarse location of interest could be then

refined with the very same algorithm, but with a much smaller

search space.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the problem of sound source

localization from time delay estimates using non-coplanar micro-

phone arrays. Starting from the direct path propagation model,

we derived the full geometric analysis associated with an ar-

bitrarily shaped non-coplanar microphone array. The necessary

and sufficient conditions for the time delays to correspond to

a position in the source space are expressed by means of two

feasibility conditions. If they are satisfied, the position of the

sound source can be recovered in closed-form, from the TDEs.

Remarkably, the only knowledge required to build the feasibility

conditions and the localization mapping is the microphones’

position. A multichannel criterion for TDE allows us to cast the

problem into an optimization task, which is constrained by the

feasibility conditions. A branch-and-bound global optimization

technique is proposed to solve the programming task, and hence

to estimate the time delays and to localize the sound source. An

extensive set of experiments is performed on simulated and real

data. The experiments clearly show that the global optimization

technique that we proposed outperforms existing methods in both

the multilateration and the multichannel SSL literatures.

This work could be extended in several ways. First of all,

considering the multiple source case. This could be achieved

using a frequency filter bank, that would also discard empty

frequency bands as in [52]. Second, a different set of experiments

could be performed on distributed microphone arrays, to evaluate

the behaviour of the proposed methods in such settings. Other

TDOA estimators, possibly more accurate than [26], could be

used in our benchmark, such that f-mult, t-mult, and n-mult yield

better results. Third, the method could also be used in calibration

applications. Indeed, the positions of the microphones could be

estimated if they were free parameters in our current formulation.

In that case, measures from many different source positions

would certainly be required, e.g., [25]. Fourth, by testing the

proposed model and algorithms in the case of dynamic sources,

and subsequently extending the framework to perform tracking.

Finally, experiments with higher number of microphones should

be performed, and the influence of the microphones’ positions

should be evaluated.

APPENDIX A

THE DERIVATIVES OF THE COST FUNCTION

The log-barrier algorithm relies on the use of the gradient and

the Hessian of both, the objective function and the constraint(s).

Providing the analytic expression for them would lead to a much

more efficient and precise algorithm than estimating them using

finite differences. Hence, this Section is devoted to the derivation

of both the gradient and the Hessian of J , the cost function of

(23).

We will use three formulas from matrix calculus. Let Y :
R → R

M×M , be a matrix function depending on y, the following

formulas hold:

∂ det(Y)

∂y
= det(Y)trace

(

Y−1 ∂Y

∂y

)

∂ trace(Y)

∂y
= trace

(

∂ Y

∂y

)

∂ Y−1

∂y
= −Y−1 ∂Y

∂y
Y−1

Recall that the function we want to derivative is J = det (R).
From the rules of matrix calculus we have:

∂J

∂t1,m
=

∂ det (R)

∂t1,m
= det (R) trace

(

R−1 ∂ R

∂t1,m

)

. (28)

In addition we can compute the second derivative:

∂2J

∂t1,n∂t1,m
=

∂

∂t1,n

[

det (R) trace

(

R−1 ∂ R

∂t1,m

)]

, (29)

whose full expression can be found in (30). Hence, in order to
compute the first and second derivatives of the criterion J , we
need the first and second derivatives of the matrix R. We recall
its expression:

R =

0

B

B

@

1 ρ1,2(t1,2) ρ1,3(t1,3) · · ·
ρ1,2(t1,2) 1 ρ2,3(−t1,2 + t1,3) · · ·
ρ1,3(t1,3) ρ2,3(−t1,2 + t1,3) 1 · · ·

...
...

...
. . .

1

C

C

A

.

We notice that only the m − 1th row and column depend on
t1,m. Since R is symmetric, we do not need to take derivative
of the m− 1th row and column separately, but compute only the
derivative of:

rm =

0

B

B

B

B

B

B

B

B

B

B

B

@

ρ1,m(t1,m)
ρ2,m(−t1,2 + t1,m)

...
ρm−1,m(−t1,m−1 + t1,m)

1
ρm,m+1(−t1,m + t1,m+1)

...
ρm,M (−t1,m + t1,M )

1

C

C

C

C

C

C

C

C

C

C

C

A

,

which is

∂rm

∂t1,m

=

0

B

B

B

B

B

B

B

B

B

B

B

@

ρ′

1,m(t1,m)
ρ′

2,m(−t1,2 + t1,m)
...

ρ′

m−1,m(−t1,m−1 + t1,m)
0

−ρ′

m,m+1(−t1,m + t1,m+1)
...

−ρ′

m,M (−t1,m + t1,M )

1

C

C

C

C

C

C

C

C

C

C

C

A

.

When computing the second derivative of R with respect to

t1,m and t1,n we need to differentiate two cases:
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∂2 J̃

∂t1,j∂t1,k
= det (R)

[

trace

(

R−1 ∂ R

∂t1,j

)

trace

(

R−1 ∂ R

∂t1,k

)

+ trace

(

−R−1 ∂ R

∂t1,j
R−1 ∂ R

∂t1,k
+ R−1 ∂2 R

∂t1,j∂t1,k

)]

. (30)

m = n This fills the diagonal of the Hessian. Notice that:

∂2rm

∂t21,m

=

0

B

B

B

B

B

B

B

B

B

B

B

@

ρ′′

1,m(t1,m)
ρ′′

2,m(−t1,2 + t1,m)
...

ρ′′

m−1,m(−t1,m−1 + t1,m)
0

ρ′′

m,m+1(−t1,m + t1,m+1)
...

ρ′′

m,M (−t1,m + t1,M )

1

C

C

C

C

C

C

C

C

C

C

C

A

.

m > n This fills the lower triangular matrix of the Hessian

(and the upper triangular part since the Hessian is symmetric,

i.e., that J̃ is twice continuously differentiable). Only the n− 1th

position of the vector
∂2rm

∂t1,n∂t1,m
is not null, taking the value:

−ρ′′m,n(t1,m − t1,n).

APPENDIX B

THE DERIVATIVES OF THE CONSTRAINTS

In this Section we compute the formulae for the first and

the second derivatives of the non-linear constraint ∆. Recall the

expression from (15):

∆ = 〈A,B − M1〉2 − ‖B − M1‖2
(

‖A‖2 − 1
)

,

where A = −M−1
L P L and B = −M−1

L QL. It is easy to show
that:

∇∆ = 2
“

〈A, B − M 1〉
“

J
T

A(B − M 1) + J
T

BA
”

−

− (‖A‖2 − 1)J
T

B (B − M 1) − ‖B − M 1‖
2
J

T

AA
”

where JA = −2νM−1
L and JB = −2ν2M−1

L diag(t̂). We can
also compute the Hessian of ∆:

H∆ = 2

„

“

J
T

A(B − M 1) + J
T

BA
” “

J
T

A(B − M 1) + J
T

BA
”

T

+

+ 〈A, B − M 1〉
“

J
T

AJB + D + J
T

BJA

”

−

−
h

2(J
T

B (B − M 1))(J
T

AA)T + (‖A‖2 − 1)(E + J
T

BJB ) +

+ 2(J
T

AA)(J
T

B (B − M 1))
T + ‖B − M 1‖

2
J

T

AJA

i”

where D = −2ν2 diag(M−1
L A) and E = −2ν2 diag(M−1

L (B −
M1)).

Similarly, we can compute the derivatives of the equality

constraint E .

APPENDIX C

THE DERIVATIVES OF THE MULTILATERATION COST

FUNCTION

In this Section we provide the first and second derivatives of

the cost function used by the methods n-mult, t-mult and f-mult.

Denoted by H , the cost function has the following expression:

H(S) =
∑

1≤m<n≤M

(hm,n(S))
2
, (31)

where hm,n are the equivalent of (4) with foci Mm and Mn

and differential value t̂m,n. In all, hm,n takes the following

expression:

hm,n(S) = q2
m,n + 4 〈S,Mn − Mm〉2 −
−4qm,n 〈S,Mn − Mm〉 − p2

m,n‖S − Mn‖2.

The gradient of H writes:

∇H = 2
∑

1≤m<n≤M

hm,n∇hm,n,

where

∇hm,n = 8 〈S,Mn − Mm〉 (Mn − Mm) −
−4qm,n (Mn − Mm) − 2p2

m,n (S − Mn) .

Similarly, the Hessian of H can be computed as:

HH = 2
∑

1≤m<n≤M

∇hm,n (∇hm,n)
T

+ hm,nHhm,n,

where the Hessian of hm,n has the following expression:

Hhm,n = 8 (Mn − Mm) (Mn − Mm)T − 2p2
m,nIN .
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