332 research outputs found

    Simulation and Planning of a 3D Spray Painting Robotic System

    Get PDF
    Nesta dissertação é proposto um sistema robótico 3D de pintura com spray. Este sistema inclui uma simulação realista do spray com precisão suficiente para imitar pintura com spray real. Também inclui um algoritmo otimizado para geração de caminhos que é capaz de pintar projetos 3D não triviais. A simulação parte de CAD 3D ou peças digitalizadas em 3D e produz um efeito visual realista que permite analisar qualitativamente o produto pintado. Também é apresentada uma métrica de avaliação que pontua trajetória de pintura baseada na espessura, uniformidade, tempo e desperdício de tinta.In this dissertation a 3D spray painting robotic system is proposed. This system has realistic spray simulation with sufficient accuracy to mimic real spray painting. It also includes an optimized algorithm for path generation that is capable of painting non trivial 3D designs. The simulation has 3D CAD or 3D scanned input pieces and produces a realistic visual effect that allows qualitative analyses of the painted product. It is also presented an evaluation metric that scores the painting trajectory based on thickness, uniformity, time and waste of paint

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    Machining-based coverage path planning for automated structural inspection

    Get PDF
    The automation of robotically delivered nondestructive evaluation inspection shares many aims with traditional manufacture machining. This paper presents a new hardware and software system for automated thickness mapping of large-scale areas, with multiple obstacles, by employing computer-aided drawing (CAD)/computer-aided manufacturing (CAM)-inspired path planning to implement control of a novel mobile robotic thickness mapping inspection vehicle. A custom postprocessor provides the necessary translation from CAM numeric code through robotic kinematic control to combine and automate the overall process. The generalized steps to implement this approach for any mobile robotic platform are presented herein and applied, in this instance, to a novel thickness mapping crawler. The inspection capabilities of the system were evaluated on an indoor mock-inspection scenario, within a motion tracking cell, to provide quantitative performance figures for positional accuracy. Multiple thickness defects simulating corrosion features on a steel sample plate were combined with obstacles to be avoided during the inspection. A minimum thickness mapping error of 0.21 mm and a mean path error of 4.41 mm were observed for a 2 m² carbon steel sample of 10-mm nominal thickness. The potential of this automated approach has benefits in terms of repeatability of area coverage, obstacle avoidance, and reduced path overlap, all of which directly lead to increased task efficiency and reduced inspection time of large structural assets

    Collaborative Robotic Path Planning for Industrial Spraying Operations on Complex Geometries

    Get PDF
    Implementation of automated robotic solutions for complex tasks currently faces a few major hurdles. For instance, lack of effective sensing and task variability – especially in high-mix/low-volume processes – creates too much uncertainty to reliably hard-code a robotic work cell. Current collaborative frameworks generally focus on integrating the sensing required for a physically collaborative implementation. While this paradigm has proven effective for mitigating uncertainty by mixing human cognitive function and fine motor skills with robotic strength and repeatability, there are many instances where physical interaction is impractical but human reasoning and task knowledge is still needed. The proposed framework consists of key modules such as a path planner, path simulator, and result simulator. An integrated user interface facilitates the operator to interact with these modules and edit the path plan before ultimately approving the task for automatic execution by a manipulator that need not be collaborative. Application of the collaborative framework is illustrated for a pressure washing task in a remanufacturing environment that requires one-off path planning for each part. The framework can also be applied to various other tasks, such as spray-painting, sandblasting, deburring, grinding, and shot peening. Specifically, automated path planning for industrial spraying operations offers the potential to automate surface preparation and coating in such environments. Autonomous spray path planners in the literature have been limited to generally continuous and convex surfaces, which is not true of most real parts. There is a need for planners that consistently handle concavities and discontinuities, such as sharp corners, holes, protrusions or other surface abnormalities when building a path. The path planner uses a slicing-based method to generate path trajectories. It identifies and quantifies the importance of concavities and surface abnormalities and whether they should be considered in the path plan by comparing the true part geometry to the convex hull path. If necessary, the path is then adapted by adjusting the movement speed or offset distance at individual points along the path. Which adaptive method is more effective and the trade-offs associated with adapting the path are also considered in the development of the path planner

    Development of discontinuous fibre preforming processes

    Get PDF
    Discontinuous fibre composites are under increasing investigation for structural and semi-structural components as they are easily automated, making it possible to remove costly hand labour based steps typically associated with advanced fibre reinforced composites. Directed fibre preforming (DFP) is one possible process which has several advantages when compared with competing techniques. Low material and process costs coupled with short cycle times means the process is suited to medium volume production (typically <10,000 ppa). Predicting mechanical performance remains a major obstacle to industrial adoption however, due to the stochastic nature of fibre distribution. This is of particular importance for structural applications where minimum property requirements and a greater certainty of performance must be achieved. This thesis employs a stochastic macroscale modelling approach to predict fibre locations during the reinforcement deposition stage. This is achieved through process characterisation studying the effects of key microstructural and process-specific parameters on fibre distribution and orientation. The proposed DFP simulation software can generate realistic fibre networks for complex three-dimensional component geometries providing feedback on preform quality. This information is used to optimise the preform structure via process input parameters such as robot trajectory and material properties with validation tests conducted to assess model accuracy. An interface between the simulation software and commercial finite element code facilitates mechanical property analysis for full-scale components using realistic load cases. The complete software package is intended to streamline the route to manufacture for DFP processes from a conceptual design stage

    Optimisation of surface coverage paths used by a non-contact robot painting system

    Get PDF
    This thesis proposes an efficient path planning technique for a non-contact optical “painting” system that produces surface images by moving a robot mounted laser across objects covered in photographic emulsion. In comparison to traditional 3D planning approaches (e.g. laminar slicing) the proposed algorithm dramatically reduces the overall path length by optimizing (i.e. minimizing) the amounts of movement between robot configurations required to position and orientate the laser. To do this the pixels of the image (i.e. points on the surface of the object) are sequenced using configuration space rather than Cartesian space. This technique extracts data from a CAD model and then calculates the configuration that the five degrees of freedom system needs to assume to expose individual pixels on the surface. The system then uses a closest point analysis on all the major joints to sequence the points and create an efficient path plan for the component. The implementation and testing of the algorithm demonstrates that sequencing points using a configuration based method tends to produce significantly shorter paths than other approaches to the sequencing problem. The path planner was tested with components ranging from simple to complex and the paths generated demonstrated both the versatility and feasibility of the approach

    Composite repair and remanufacturing.

    Get PDF
    For the reuse of components and structures made of fiber composite materials, a complete remanufacturing process chain is necessary to prepare the parts for a further life cycle. The first step is to dismantle the parts to be reused. Fiber composite components are mostly joined using adhesive technology, so that solution techniques are required for adhesive connections. One possibility is the separation of the adhesive layer by means of thermally expanding particles. Adhesive residues are removed by laser so that the components can be glued again after reprocessing. The decisive factor for which process is used for the remanufacturing of the components is the state at the end of the life cycle. Non-destructive testing methods offer a very good option for detecting damage, planning necessary repairs and direct reuse of damage-free components. Repairs to fiber composite structures have been carried out in aviation for a long time and are accordingly established. These processes can be transferred to the repair of automotive fiber composite components. Many technical solutions were developed and tested as part of the project. Future research work is aimed at further development, particularly with regard to the automation of the technologies in order to enable an industrial application of the recycling of automobile components made of fiber composites

    Development of discontinuous fibre preforming processes

    Get PDF
    Discontinuous fibre composites are under increasing investigation for structural and semi-structural components as they are easily automated, making it possible to remove costly hand labour based steps typically associated with advanced fibre reinforced composites. Directed fibre preforming (DFP) is one possible process which has several advantages when compared with competing techniques. Low material and process costs coupled with short cycle times means the process is suited to medium volume production (typically <10,000 ppa). Predicting mechanical performance remains a major obstacle to industrial adoption however, due to the stochastic nature of fibre distribution. This is of particular importance for structural applications where minimum property requirements and a greater certainty of performance must be achieved. This thesis employs a stochastic macroscale modelling approach to predict fibre locations during the reinforcement deposition stage. This is achieved through process characterisation studying the effects of key microstructural and process-specific parameters on fibre distribution and orientation. The proposed DFP simulation software can generate realistic fibre networks for complex three-dimensional component geometries providing feedback on preform quality. This information is used to optimise the preform structure via process input parameters such as robot trajectory and material properties with validation tests conducted to assess model accuracy. An interface between the simulation software and commercial finite element code facilitates mechanical property analysis for full-scale components using realistic load cases. The complete software package is intended to streamline the route to manufacture for DFP processes from a conceptual design stage

    Optimal field coverage path planning on 2D and 3D surfaces

    Get PDF
    With the rapid adoption of automatic guidance systems, automated path planning has great potential to further optimize field operations. Field operations should be done in a manner that minimizes time, travel over field surfaces and is coordinated with specific field operations, machine characteristics and topographical features of arable lands. To reach this goal, intelligent coverage path planning algorithm is key. This dissertation documents our innovative research in optimal field coverage path planning on both 2D and 3D surfaces. To determine the full coverage pattern of a given 2D planar field by using boustrophedon paths, it is necessary to know whether to and how to decompose a field into sub-regions and how to determine the travel direction within each sub-region. A geometric model was developed to represent this coverage path planning problem, and a path planning algorithm was developed based on this geometric model. The search mechanism of the algorithm was guided by a customized cost function resulting from the analysis of different headland turning types and implemented with a divide-and-conquer strategy. The complexity of the algorithm was analyzed, and methods for reducing the computational time were discussed. Field examples with complexity ranging from a simple convex shape to an irregular polygonal shape that has multiple obstacles within its interior were tested with this algorithm. The results were compared with other reported approaches or farmers\u27 actual driving patterns. These results indicated the proposed algorithm was effective in producing optimal field decomposition and coverage path direction in each sub-region. In real world, a great proportion of farms have rolling terrains, which have considerable influences to the design of coverage paths. Coverage path planning in 3D space has a great potential to further optimize field operations. To design optimal coverage paths on 3D terrain surfaces, there were five important steps: terrain modeling and representation, topography impacts analysis, terrain decomposition and classification, coverage cost analysis and the development of optimal path searching algorithm. Each of the topics was investigated in this dissertation research. The developed algorithms and methods were successfully implemented in software and tested with practical 3D terrain farm fields with various topographical features. Each field was decomposed into sub-regions based on terrain features. An optimal seed curve was found for each sub-region and parallel coverage paths were generated by offsetting the seed curve sideways until the whole sub-region was completely covered. Compared with the 2D planning results, the experimental results of 3D coverage path planning showed its superiority in reducing both headland turning cost and soil erosion cost

    Design and Development of Sensor Integrated Robotic Hand

    Get PDF
    Most of the automated systems using robots as agents do use few sensors according to the need. However, there are situations where the tasks carried out by the end-effector, or for that matter by the robot hand needs multiple sensors. The hand, to make the best use of these sensors, and behave autonomously, requires a set of appropriate types of sensors which could be integrated in proper manners. The present research work aims at developing a sensor integrated robot hand that can collect information related to the assigned tasks, assimilate there correctly and then do task action as appropriate. The process of development involves selection of sensors of right types and of right specification, locating then at proper places in the hand, checking their functionality individually and calibrating them for the envisaged process. Since the sensors need to be integrated so that they perform in the desired manner collectively, an integration platform is created using NI PXIe-1082. A set of algorithm is developed for achieving the integrated model. The entire process is first modelled and simulated off line for possible modification in order to ensure that all the sensors do contribute towards the autonomy of the hand for desired activity. This work also involves design of a two-fingered gripper. The design is made in such a way that it is capable of carrying out the desired tasks and can accommodate all the sensors within its fold. The developed sensor integrated hand has been put to work and its performance test has been carried out. This hand can be very useful for part assembly work in industries for any shape of part with a limit on the size of the part in mind. The broad aim is to design, model simulate and develop an advanced robotic hand. Sensors for pick up contacts pressure, force, torque, position, surface profile shape using suitable sensing elements in a robot hand are to be introduced. The hand is a complex structure with large number of degrees of freedom and has multiple sensing capabilities apart from the associated sensing assistance from other organs. The present work is envisaged to add multiple sensors to a two-fingered robotic hand having motion capabilities and constraints similar to the human hand. There has been a good amount of research and development in this field during the last two decades a lot remains to be explored and achieved. The objective of the proposed work is to design, simulate and develop a sensor integrated robotic hand. Its potential applications can be proposed for industrial environments and in healthcare field. The industrial applications include electronic assembly tasks, lighter inspection tasks, etc. Application in healthcare could be in the areas of rehabilitation and assistive techniques. The work also aims to establish the requirement of the robotic hand for the target application areas, to identify the suitable kinds and model of sensors that can be integrated on hand control system. Functioning of motors in the robotic hand and integration of appropriate sensors for the desired motion is explained for the control of the various elements of the hand. Additional sensors, capable of collecting external information and information about the object for manipulation is explored. Processes are designed using various software and hardware tools such as mathematical computation MATLAB, OpenCV library and LabVIEW 2013 DAQ system as applicable, validated theoretically and finally implemented to develop an intelligent robotic hand. The multiple smart sensors are installed on a standard six degree-of-freedom industrial robot KAWASAKI RS06L articulated manipulator, with the two-finger pneumatic SHUNK robotic hand or designed prototype and robot control programs are integrated in such a manner that allows easy application of grasping in an industrial pick-and-place operation where the characteristics of the object can vary or are unknown. The effectiveness of the actual recommended structure is usually proven simply by experiments using calibration involving sensors and manipulator. The dissertation concludes with a summary of the contribution and the scope of further work
    corecore