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Abstract 

Discontinuous fibre composites are under increasing investigation for structural and 

semi-structural components as they are easily automated, making it possible to 

remove costly hand labour based steps typically associated with advanced fibre 

reinforced composites. Directed fibre preforming (DFP) is one possible process which 

has several advantages when compared with competing techniques. Low material and 

process costs coupled with short cycle times means the process is suited to medium 

volume production (typically <10,000 ppa). Predicting mechanical performance 

remains a major obstacle to industrial adoption however, due to the stochastic nature 

of fibre distribution. This is of particular importance for structural applications where 

minimum property requirements and a greater certainty of performance must be 

achieved. 

This thesis employs a stochastic macroscale modelling approach to predict fibre 

locations during the reinforcement deposition stage. This is achieved through process 

characterisation studying the effects of key microstructural and process-specific 

parameters on fibre distribution and orientation. The proposed DFP simulation 

software can generate realistic fibre networks for complex three-dimensional 

component geometries providing feedback on preform quality. This information is 

used to optimise the preform structure via process input parameters such as robot 

trajectory and material properties with validation tests conducted to assess model 

accuracy. 

An interface between the simulation software and commercial finite element code 

facilitates mechanical property analysis for full -scale components using realistic load 

cases. The complete software package is intended to streamline the route to 

manufacture for DFP processes from a conceptual design stage. 
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Chapter 1. Introducti on 

Fibre reinforced composite materials are continuing to find new applications in the 

transportation industry due to potential weight savings over traditional materials 

whilst maintaining mechanical performance requirements. Composite materials offer 

high stiffness and strength to weight ratios which are particularly attractive qualities to 

vehicle manufacturers where energy efficiency is of primary concern. Short fibre 

composites manufactured via injection moulding and compression moulding 

techniques have long been established for non-structural applications due to their short 

manufacturing cycle times and cost effectiveness. High performance structural 

composites are considerably more expensive to manufacture however, using 

expensive base materials and requiring longer production cycle times. Whilst 

continuous fibre materials currently dominate the high performance composite market 

there is increasing interest in using discontinuous fibre architectures for structural 

applications. These materials offer high levels of automation removing costly labour 

intensive steps typically associated with advanced fibre reinforced composites and are 

under increasing investigation for high volume production. The work presented in this 

thesis is primarily concerned with affordable technologies for high performance 

applications using discontinuous fibre composites. 

1.1. Composites in the transportation industry 

1.1.1. Market forces 

UK targets for the reduction in greenhouse gases (GHG) are split between the 

domestic Climate Change Act and the international Kyoto Protocol. By 2050 the UK 

is committed to reduce GHG emissions, of which carbon dioxide is the main 

constituent, by 80% from base year (1990) levels [1]. The transportation sector is 

currently the second largest contributor (~26%) with marginal year on year 

improvements compared with other sectors [2]. This means that emissions from the 

transportation sector are increasing in proportion to total domestic levels. Within the 
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Chapter 1. Introduction 

sector, road transport accounted for 68% of GHG emissions in 2009 with a dramatic 

increase experienced in international aviation contributing to 20% - twice the base 

year emissions levels [3]. 

Current UK trends in transport emissions are representative across most industrialised 

countries where similarly ambitious emissions targets exist. A concerted effort is 

being made to curtail environmental impact in transport; particularly with emerging 

markets such as China and India fuelling further demand for increased mobility. It is 

estimated that by 2050 the number of vehicles on roads worldwide could increase by 

300% to 3.5 billion [4]. A rapid increase in air travel is also anticipated with the 

International Civil Aviation Organisation (ICAO) projecting an increase in emissions 

of 70% by 2020; even after factoring in improvements in fuel efficiencies of 2% year 

on year [5]. Clearly the transportation industry will play a vital role in whether global 

emissions targets are achieved. Rising fuel costs is another important factor with 

consumers pressurising manufacturers to improve fuel economy. Using lightweight 

materials such as polymer composites to replace traditional metals has become a 

significant area of interest across all transport sectors for this reason. Reducing vehicle 

weight by 10% translates into an increase in fuel economy of ~6% providing a 

sustainable solution in reducing GHG emissions [6]. 

1.1.2. Current status 

With a greater understanding and steady technological advancement in processing 

techniques, advanced composite materials are growing in popularity for a wide range 

of applications. The role of composites has grown rapidly over the last two decades 

led by heavy investment in the aerospace industry. Large proportions (>50% by 

weight) of flagship commercial aircraft, such as the Boeing Dreamliner, now consist 

of advanced composite materials. The automotive industry is playing catch up with 

strong interest from high volume manufacturers exploring uses for composites in 

structural applications which can offer large weight savings of up to 60% over 

equivalent metallic parts [7, 8]. Polymer composites can take many forms with a 

myriad of processing techniques available offering flexibility in design and 

manufacture making them suitable for the majority of applications in the 
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Chapter 1. Introduction 

transportation industry. Many of the obstacles restricting the usage of composites to 

niche high performance applications are gradually being alleviated. 

Mid to high volume car manufacturers are at a particularly interesting juncture 

whereby technological advances in reducing fleet emissions are offset by increases in 

vehicle numbers globally [9]. To satisfy long term efficiency goals, major investment 

is required in adopting alternative propulsion technologies and lightweight designs. 

The use of composites not only fulfils weight requirements but also increases the 

viability of using smaller, less powerful engines and fledgling technologies such as 

electric powertrains; offsetting the increased component weight. For many years 

lightweight glass fibre reinforced polymer composites (GFRP) have found uses in 

non-structural applications using well-established high volume manufacturing 

processes. Carbon fibre reinforced polymer composites (CFRP) offer even higher 

specific properties suitable for structural applications where metals still dominate; 

therefore presenting an opportunity for large weight savings. Traditional carbon 

composite manufacture is labour intensive and costly however, due to the 

commercially available base material forms. This has restricted its usage to low 

volume industries such as motorsport, high end luxury cars and aerospace where 

performance takes precedence over costs and production throughput. Unless a 

commercially viable manufacturing process for CFRPs is found, the route to mass 

production in the transportation industry remains unclear. 

1.1.3. Production rates 

Part production rates are highly dependent on application and industry. The 

automotive sector represents the largest spread in production volumes ranging from 

high performance niche vehicles (<1000 units pa) to mass market vehicles (>200,000 

units pa). Aerospace and marine industries are generally considered low to mid 

volume with series production numbers less than 5000 units pa. Required production 

rates generally dictate the choice of manufacturing process – finding a compromise 

between cycle times, capital costs, material costs and part performance. The following 

is a brief overview of commonly deployed processes for different production scales. 

For low volume production (<1000 ppa) traditional techniques such as open mould 

wet lay-up are still used, requiring low initial investment in tooling and affording 
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Chapter 1. Introduction 

flexibility for limited runs. Pre-impregnated (prepregs) fabrics and unidirectional 

(UD) materials offer a convenient alternative leading to less material wastage and 

lower variation in mechanical performance between parts. Prepregs typically require 

the use of an autoclave to achieve the necessary compaction pressures to produce high 

quality, high fibre volume fraction (~60% Vf) components. Autoclave curing adds 

considerable capital investment and operational cost however. To overcome this, out-

of-autoclave (OoA) prepregs have been developed which can be cured at atmospheric 

pressure under vacuum bag thus reducing process costs but with the added caveat that 

a longer curing stage is generally required to remove interlaminar voids. 

Liquid composite moulding (LCM) processes are well suited to mid volume 

production (1000 – 30,000 ppa) with the benefit of short cycle times and the ability to 

mould near net-shape complex 3D components with good dimensional control. Resin 

transfer moulding (RTM) is a popular closed mould process requiring low resin 

injection pressures (<1 MPa) minimising tooling and plant costs. The fibrous 

reinforcement, called a preform, is pre-shaped to the final part geometry and placed 

into the mould prior to resin injection. Common material forms used for preforms 

include woven, random mat, stitched, knitted, braided and unidirectional materials. 

High fibre content is possible (>50% Vf) making the process suitable for structural and 

semi-structural components. Faster cycle times can be achieved using structural 

reaction injection moulding (SRIM) where injection rates are increased using higher 

pressures (10 - 20 MPa) and low viscosity resin systems [10]. This process is suited to 

mid to high volume production where the higher plant and tooling costs can be 

amortized over increased part production. 

Compression moulding techniques become attractive when production rates approach 

high volume (>30,000 ppa) and mechanical performance requirements are less 

demanding. Sheet moulding compounds (SMC) are popular due to their processability 

through the use of discontinuous glass fibres (~25 mm) finding applications for large 

single piece mouldings such as body panels and interior fixtures. Advanced SMCs (A-

SMC) replace glass with carbon fibre reinforcement offering improved mechanical 

properties suitable for semi-structural applications typically seen in the automotive 

industry. Tooling and plant costs for SMCs are much greater than for LCM processes 

due to the requirement of heavy duty presses (>500 tonnes), however, shorter cycle 

times permits production volumes of up to 250,000 ppa.  
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 For cosmetic and non-structural parts, thermoplastic injection moulding processes are 

capable of producing millions of parts per year with typical cycle times of less than 1 

minute. Short fibres (<5 mm) along with heated thermoplastic resin is injected at high 

pressure into a closed mould and cooled before de-moulding. Thermoset alternatives 

are also available with the requirement of a heated mould for the curing phase. 

1.1.4. Current applications 

1.1.4.1. Automotive 

The high costs and lengthy manufacturing cycle times associated with CFRPs have 

typically restricted their use to the high performance market. High specific mechanical 

properties are of primary importance for structural applications where materials with 

high reinforcement loadings are typically used (>50% Vf). It is now common for high 

performance cars to consist of large percentages of carbon fibre composites where low 

volumes and high price tags still make hand lay-up of prepreg materials cost-effective 

and sufficiently versatile for short production runs. McLaren sought higher production 

rates using RTM technology to series produce carbon fibre components for the 

Mercedes SLR creating up to 700 ppa. Similarly, BMW manufacture CFRP roofs for 

their M3 and M6 models as well as bumper supports for the M6 using preformed 

nonwoven fabrics and RTM achieving series production [11]. Further process 

development has facilitated the extensive use of carbon composites for the high 

strength passenger cell in the future BMW i-Car series. 

High volume manufacturers found non-structural uses for GFRP materials in body 

panels and interior fixtures due to their low cost, high processability and short cycle 

times. SMC has predominantly been used for skin panels, side and tail doors and in 

some cases, modular front ends with usage growing over the last couple of decades 

[10]. It is reported that the number of body panels on Ford vehicles using SMC grew 

from 250,000 in the 1990s to 2.5 million in 2002 [12]. Ford investigated the suitability 

of SMC for semi-structural applications on the Ford Explorer Sport Trac deeming the 

material suitable to replace steel. The SMC pickup box inner panel provided weight 

reductions, corrosion resistance, increased durability and a reduction in assembly parts 

[13]. GM explored applications for SMC to reduce the weight of a structural 
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transmission cross-member by increasing the materials glass composition to 50% wt. 

Mechanical design performance was met through modifying the geometric shape of 

the cross-member and a total weight saving of 56% was realised over a steel 

counterpart [14]. The 2003 Dodge Viper saw the first application of SMC using 

carbon fibre as reinforcement (A-SMC) in a body structure. With cure times between 

1-3 minutes the process produces high performance structural components with the 

potential to exceed production volumes of 100,000 ppa [15]. 

The main competition for the use of CFRPs in high volume applications comes from 

high strength steel and aluminium; both of which benefit from established processes 

and lower material costs. Deployment of advanced composites requires a change in 

design philosophy but at the same time offers an opportunity to optimise existing 

structures. For example the design and manufacture of complex componentry with 

increased integration leads to part consolidation – reducing part count and assembly 

times over metallic alternatives. It is suggested that optimally designed, continuous 

carbon fibre composites can result in parts as much as 75% lighter than steel [16], 

40% lighter than aluminium and 60% lighter than SMC equivalents [17]. In terms of 

raw material costs, for CFRPs to become viable for mass production in the automotive 

market, the price of carbon fibre needs to fall substantially from current levels (~$20 

/lb). Significant research into alternative precursor material is taking place to reduce 

the manufacturing costs of industrial grade carbon fibre towards $5 - 10 /lb [6]. 

Toray Industries, a leading supplier of advanced composites, regards entering the high 

volume automotive industry a top priority. Development of a proprietary RTM based 

solution for CFRP components has reduced moulding cycle times from >80 minutes 

to 10 minutes [18]. Their partnership with Mercedes-Benz targets series production 

figures of between 20,000 and 40,000 ppa [19]. Recently the prospect of increasing 

the use of advanced composites in high volume markets has seen many mainstream 

manufacturers follow suit engaging in partnerships with composite material suppliers 

[20]. Current initiatives such as the HIVOCOMP project brings together a consortium 

of companies from different facets of the automotive industry with the unified goal of 

producing cost effective CFRP components. Both thermoset and thermoplastic based 

materials are being developed to cater for different performance and process 

requirements [21]. The development of a commercial automated production process 
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for low-cost carbon fibre components remains a high priority and an essential barrier 

to mass market. 

1.1.4.2. Aerospace 

Full composite airplanes first appeared during the 1970s in the form of small 

recreational planes recognising the high specific properties exhibited by FRPs and the 

ability to produce efficient aerodynamic designs [22]. Uptake in commercial aircraft 

was slow however, due to the knowledge gap for material failure modes and impact 

damage response [23]. Rising fuel prices and pressure from airline operators 

motivated manufacturers to begin replacing metallic secondary structures in large 

civilian craft with advanced composites by the 1980’s; namely the Boeing 737 and 

Airbus A-320. The next decade gave rise to applications in primary structures 

including the empennage and main floor beams in the Boeing 777, and the centre 

wing-box and pressure bulkhead in the A-380.  

Significant investment was poured into advancing composite manufacturing 

technology with the development of automated tape layup (ATL) and automated fibre 

placement (AFP) providing high levels of automation and repeatability. This led to an 

abandoning of traditional prepreg fabrics in favour of unidirectional tapes/tows - 

around 70% of structural composite components in modern aircraft use UD materials 

[24]. Other structural applications include the use of HexMC, a commercially 

available high performance carbon fibre SMC, for the first composite window frame 

installed in a commercial craft resulting in significant weight saving and superior 

damage tolerance compared to existing aluminium frames [25]. A major step in terms 

of aircraft design was taken with the current Boeing 787 Dreamliner utilising 

composites for ~50% of the total weight of the structure; aluminium and titanium 

accounting for the rest. The previous 777 aircraft consisted of only 10 - 12% of 

composite materials with aluminium structures dominating [26]. Airbus is to follow 

suit with the A-350 XWB where the fuselage and wing assemblies are manufactured 

entirely using composite materials. 

Away from airframe componentry, advanced composites are increasingly finding 

applications within aero engines. Progress in manufacturing techniques means that 

engine fan blades can be made as aerodynamically efficient as titanium blades whilst 

7 

 



Chapter 1. Introduction 

providing weight benefits [27]. For less demanding roles glass fibre composites are 

still used for a wide variety of applications such as radomes, body panels, flooring, 

engine cowlings and cabin interiors [23]. 

1.1.4.3. Marine 

GFRP composites are used extensively in recreational, utility and commercial craft. 

Large scale structures and low volume production rates means that open mould wet 

lay-up is still common with little of the technological advancement seen in aerospace 

and automotive industries filtering through. Carbon fibre composites have found use 

in high end competition and military craft but are not generally used in commercial or 

leisure boats [28]. 

Even though the industry lags the automotive and aerospace in terms of composite 

technology, adoption of moulding techniques to streamline operations and reduce 

manufacturing costs is growing. For example, by switching to closed moulding 

processes the infusion of matrix for a 80 ft hull can be completed within an hour with 

the additional benefit of a significant reduction in consumables [29]. Economic 

pressures have also led to boat manufacturers reassessing their choice of base 

materials with examples of carbon fibre composite sandwich being used for primary 

structures in passenger ferries; replacing traditional glass fibre materials [30]. 

As was the case with aerospace and automotive industries, the niche and high 

performance part of the sector was the first to adopt CFRP, demanding high specific 

properties without the cost restraints that impair the transition to commercial 

applications. However, production boat builders such as Sunseeker are now using 

carbon fibre prepregs for primary structures observing 75% weight savings over 

GFRP versions through efficient design [31]. Fire safety regulations have so far 

restricted use of advanced composites in large boat and ship construction but advances 

in fire resistant epoxy resin systems are tackling this issue. There remains a large 

scope for adopting such materials for larger vessels in the future where fuel economy 

is an ever increasing concern for operators. 
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1.2. Automating production of composite parts 

1.2.1. Driving forces 

The benefits of automating manufacturing processes are clear; reduced manual labour, 

reduced intra-part and inter-part variability and the potential to significantly increase 

production rates. The aerospace industry has been instrumental in applying 

automation to advanced composite fabrication with commercial ATL machines being 

made available in the 1980s. This mature technology offers 70 - 85% reduction in 

personnel hours over hand lay-up and high deposition rates for large structures (over 

1000 kg per week) [32]. The automotive sector still uses labour intensive 

manufacturing techniques however, particularly for advanced composites, where 

automation is essential for these materials to break into the mass market. Robotic 

systems can be used for the fabrication of tool plugs and composite parts, finishing 

duties and quality control whilst providing scalability and process flexibility [33]. 

Advances in software control and the ability to perform off-line programming also 

increases productivity and reduces production down time [34, 35]. 

1.2.2. Established processes 

ATL and AFP technologies are used extensively in the aerospace industry for 

fabricating load bearing structures using UD prepreg materials. ATL is the more 

mature process best suited to relatively flat planar surfaces, such as wing skins and 

empennages, with difficulties arising from double curvature surfaces causing gap, 

over-lap and buckling issues weakening the laminate [32, 36]. UD tape (75 - 300 mm 

wide) is laid up as plies oriented to maximise material properties in the loaded 

direction with compaction and tape slitting operations controlled on-board the tape 

head enabling near net-shape panels to be formed. Once the charge is formed the 

composite panel is then cured in a separate process. 

To process more complex 3D geometries AFP machines were developed using narrow 

prepreg tows which can be steered over sharply curved surfaces without buckling. 

When used with a rotating tool or mandrel, AFP more closely resembles filament 

winding, though the use of tows tends to make it a faster process with significantly 
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less waste [37]. Current advanced AFP machines can lay up to 32 tows 

simultaneously via programmable 7-axis robotic systems. Applications include wing 

sections for the military F-35 joint strike fighter and monolithic fuselage sections for 

the Boeing 787 [38]. Tow laying speeds have increased substantially over the last 

decade with current manufacturers advertising speeds of up to 2000 inches/min. The 

increased deposition rates have necessitated integration with process modelling 

techniques to drive high-precision machine programming using products such as 

FibreSIM®. ‘Contact’ processes such as ATL and AFP involve complex robot 

kinematic path planning to ensure the pressure provided by the compaction roller 

always acts normal to the tooling surface. It has been shown that a non-linear 

relationship exists between part quality and compaction force requiring careful 

planning to stay within a ‘sweet’ spot [39].  High capital investments in equipment, 

including autoclave curing, and their applicability to relatively large simple 

component designs mean that these processes are confined to aerospace however. 

The potential for high speed, high performance composite manufacture necessary for 

the automotive market comes in the form of either Advanced SMCs or LCM 

processes using advanced preforming techniques. Cure times for A-SMCs are very 

low (1 - 3 minutes) but require large expensive presses and some form of automation 

for placing the charge, extraction and final trimming. The compression flow process 

also inherently suffers mechanical performance knockdowns compared to using 

preforms and LCM. 

Automated methods of preforming are generally achieved through directed fibre 

preforming (DFP). Programmable Powder Preforming Process (P4) is an early 

example of automated DFP using glass reinforcement; later derivatives adapted the 

process for use with carbon fibres. P4 utilises low cost raw material in the form of 

glass fibre rovings/tows (bundled filaments) providing a 40% reduction in raw 

material costs over preforms constructed with continuous strand mat (CSM) [40]. 

Rovings are chopped to length through an applicator head and sprayed onto a 

perforated tool along with a polymeric binder. The chopped segments are held in 

place under vacuum created by evacuating air from underneath the tool. Once the 

spray stage is complete the tool is placed into an oven to dry and activate the binder. 

Preforming can take 4 minutes for a full scale automotive structure and a further 4 

minutes for resin infusion using SRIM; opening up the possibility of production rates 
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close to 50,000 ppa [41]. Demonstrations investigating the potential of automated 

DFP processes reported 48% cost savings over a prepreg baseline [42]. A P4 

derivative, F3P, provides offline robotic programming and advanced chopper gun 

technology along with other machine and process improvements such as a robotic 

track adding a 7th axis. High deposition rates (4 kg/min) with scrap rates of less than 

1% are reported [43, 44]. 

A thermoplastic variant using commingled glass yarns, P4-TP, was demonstrated to 

compete with processes such as GMT and D-LFT [8, 45] where high deposition rates 

of around 12-15 kg/min were achieved using multiple tows and upgrading the 

processing speed of the deposition device. To achieve even higher mechanical 

properties suitable for structural applications in the automotive and aerospace 

industries, the P4 process was adapted to utilise carbon fibre reinforcements. Further 

details of discontinuous carbon fibre preforming (DCFP) and the current University of 

Nottingham DCFP facility is found in Section 1.3. 

Another carbon fibre preforming technology 3-DEP is aimed at high volume 

manufacture (~60,000 ppa) using vacuum extraction to retain fibres within a slurry 

(carbon fibre / water) [46]. Despite offering high levels of repeatability in terms of 

part-to-part mass variation, fibre volume fractions of only 17% are achievable making 

it unsuitable for structural components. 

1.2.3. Moulding developments 

Most of the recent technological advances in composite moulding have been 

concerned with reducing costs and cycle times. For low to mid volume production 

there has been significant development for OoA curing. Plasan has introduced a 

hybrid OoA process reducing the curing cycle time down to 10 minutes with an 

ultimate target of 2 minutes through the development of an advanced fast-curing resin 

matrix enabling production of CFRP parts in volumes of 30,000 – 50,000 ppa [47]. 

For higher volume production rates; compression and injection moulding processes 

dominate for non-structural components offering very short cycle times (<3 minutes) 

at the cost of mechanical performance. Flow orientation and skin-core reinforcement 

orientation distributions significantly affect mechanical properties, especially when 

substructures (ribs, bosses, fittings etc.) are present [7]. 
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For these reasons liquid moulding processes such as RTM, VaRTM and SRIM are 

commonly used for structural applications where a greater control of the 

reinforcement material in terms of orientation and mass distribution is necessary. 

Despite the popularity of using prepregs for demanding applications, liquid processes 

such as these are increasingly being investigated as an alternative [36]; particularly in 

the automotive sector. The lack of a high speed low-cost preforming process has 

generally inhibited their usage in high volume markets but advances towards net-

shape highly automated preforming means that they are being reconsidered [48]. 

SRIM commonly uses a polyurethane resin system offering fast cure times (1 - 3 

minutes) whereas epoxies are typically used for RTM providing higher mechanical 

properties with longer infusion times due to higher matrix viscosities [49]. A 

combination of P4/SRIM is already employed for fabricating pickup truck boxes at a 

rate of one every 4 minutes [50]. 

Other liquid moulding developments geared towards mass market automated 

manufacturing include Compression RTM and High Pressure RTM. In the former 

process, resin is introduced into a partially closed tool flowing over the preform 

before being compressed at high pressure to achieve through thickness impregnation 

[51]. The latter process, which has been adopted by BMW for the upcoming i3 

electric vehicles, upgrades the conventional RTM equipment with high pressure 

mixing (>120 bar) and dosing apparatus. The use of low viscosity resin systems can 

further reduce fill times. Both processes have produced high volume fraction (>45% 

Vf) laminates using non-crimp carbon fibre fabrics with total injection and cure times 

of ~5 minutes [52]. With current development towards low cycle time moulding 

techniques, the need for a high speed preforming process (such as DCFP) becomes 

ever more important to reduce overall cycle times for high volume manufacturing. 

1.3. Discontinuous carbon fibre preforming 

The DCFP process offers a solution for mid to high volume production of high 

performance structural composites parts. The process is an advanced automated 

preforming technology used in conjunction with LCM techniques such as RTM and 

SRIM. Chopping of carbon tows into short bundles of fibre (typically between 3 mm 

to 200 mm in length) facilitates various means of automation of the costly manual 
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layup stage typically required in advanced composite manufacture. Figure 1-1 shows 

the main stages of preform manufacture for DFP processes consisting of 

reinforcement deposition, preform consolidation, stabilisation and extraction to the 

moulding station. The work presented in this thesis is based around the development, 

characterisation and process modelling of the University of Nottingham DCFP 

facility. 

 
Figure 1-1: A schematic diagram showing the four main stages in directed fibre preforming. Image is taken 
from [53]. (A) Deposition stage involves applying reinforcing fibre with powdered binder to the preform 
screen whilst under vacuum. (B) The plenum is lowered applying pressure to the fibre stack with heated air 
cycled through the stack thickness to activate the binder. (C) Once the binder has cured, cool air is passed 
through the preform to stabilise prior to extraction (D).  

1.3.1. Summary of previous work 

Previous DCFP process development identified the need for an improved chopping 

device specifically designed for carbon tow forms instead of a modified apparatus 

used in glass fibre preforming (P4/F3P). Inter-preform variability was deemed 

excessively high (~15%) and additional features such as a tow filamentisation 

chamber (filamentisation is discussed in detail in Section 2.1.6) and a fibre alignment 

device were required to conduct a thorough investigation into the influence of 

microstructural process parameters on the mechanical properties of DCFP composites 

[53-55]. 

A) Deposition B) Consolidation 

C) Stabilisation D) Extraction 

Robot arm 
Vacuum fan 

Plenum 
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1.3.1.1. Factors influencing mechanical properties 

The following microstructural parameters were investigated: laminate thickness, tow 

filamentisation, fibre length and fibre orientation. Additionally, the effects of spray 

path design, chopping device standoff distance and linear robot speed were also 

examined. 

For random fibre architectures, laminate thickness (target areal density) was found to 

be the most significant variable with a dramatic improvement in mechanical properties 

as laminate thickness increased. High levels of tow filamentisation and short fibre 

lengths provided low areal density variation across preforms improving laminate 

performance; further aided by using slow robot speeds and high chopping apparatus 

standoff distances. A detailed review of the process and material parameters is 

provided in Chapter 2. 

1.3.2. Machine modifications 

1.3.2.1. Previous limitations 

Whilst the previous iteration of the DCFP deposition head overcame many of the 

issues experienced with processing carbon fibre, a number of limitations existed 

which were addressed in the current design developed for the work presented in this 

thesis. 

A process optimisation study concluded that a slow robot speed (~200 mm/s) and a 

high standoff distance (300 mm) were required for satisfactory fibre coverage. 

Preform areal density variation was also improved by up to 30% when processing a 

single tow of 24K fibre over two robot path layers rather than two tows over a single 

layer. These findings severely affected deposition rates (<0.5 kg/min). Whilst the UoN 

facility is a research-scale installation it is still desirable to achieve representative 

deposition rates (≥2 kg/min) which are scalable for commercial implementation. 

The previous deposition head passed chopped fibres through an airmover and diffuser 

(Figure 1-2) which gave rise to inherent filamentisation of tow segments which was 

seen to be beneficial for fibre coverage but detrimental in terms of preform loft and 

permeability [55]. Preform loft is the thickness of the unconsolidated preform where 
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increasing levels of loft require higher compaction pressures during the consolidation 

phase, potentially affecting press selection and process costs. Preform permeability, 

which determines the resin impregnation process, was also seen to noticeably decrease 

as tow segment diameter decreased (increase in filamentisation) which has a 

significant impact on moulding cycle times and repeatability. If automated DFP 

processes are to emerge in higher volume markets for structural component 

manufacture then increasing moulding cycle times must be avoided. 

 

 

 
Figure 1-2: CAD diagram and photograph of previous iteration of the UoN DCFP deposition head. Image 
taken from [56]. 

A method for aligning chopped segments was also developed to extend the 

mechanical performance envelope for DCFP [54]. An alignment concentrator was 

fitted below a revised air-curtain attachment with a narrow slot to align the ejected 

segments with the deposition head orientation (Figure 1-3). A significant increase in 

tensile properties was achieved but at the cost of deposition rate and cycle time. Tows 

passing through the deposition head prior to the airmover attachment have high levels 

of induced alignment which are then diminished by passing into an unconstrained 

region at the top of the concentrator before being later re-aligned at the rectangular 

exit slot. Allowing the fibres to rotate before reaching the bottom of the concentrator 

contributed to excessive fibre blockage, particularly at high fibre speeds. Because 

fibre speed is proportional to robot speed (to encourage homogenous fibre coverage) 

Pressure roller 

Driven cutting 
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only very slow robot speeds could be used (~100 mm/s) restricting the maximum 

deposition rate to 0.12 kg/min for reliable operation. 

 

Figure 1-3: Schematic diagram of the alignment concentrator design used in previous studies. 

1.3.2.2. Current DCFP deposition head 

The current deposition head developed during the course of this thesis is shown in 

Figure 1-4 with the principle design goals of increasing deposition rate for both 

random and aligned preforming whilst maintaining segment integrity. The following 

outlines the current deposition head features: 

• Ability to process 4 x 24 K tows individually. 

• Breaker bar introduced between feed rollers and chop rollers to constrain the 

motion of carbon tows prior to chopping. 

• Improved alignment concentrator constraining segments immediately after 

being chopped. 

• An increased chop roller diameter of 180 mm expanding the range of possible 

fibre lengths to 12 (previously 7). 

• Tool centre point (TCP) is located further away from robot wrist offering 

greater 3D spraying flexibility. 

Fibre centreline 

Feed rollers 

 

Knife roller 

Backing roller 

 

Air curtain 
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• Larger deposition device body to accommodate additional apparatus such as a 

veil chopper or an experimental resin spray system. 

• Self-constraining feed pressure roller to ensure positive clamping forces 

irrespective of how many tows are being simultaneously processed. 

 
Figure 1-4: CAD diagram of the current UoN DCFP deposition head with fibre alignment concentrator 
attached. 

The increased tow processing capacity ensures that a deposition rate of over 2 kg/min 

is achievable at fibre speeds of 5 m/s with an effective spray path width of ~50 mm. 

The alignment concentrator attachment constrains each fibre stream separately 

therefore reducing the risk of blockage and achieving deposition rates comparable 

with random spray (>600% improvement in deposition rate over the previous 

alignment method). The head is still required to pass over the tool surface as close as 

possible however to minimise the distance and therefore opportunity for tow segments 

to become misaligned for oriented fibre deposition. 

1.3.2.3. Preform heating 

The graphical user interface (GUI) and underlying programmable logic controller 

(PLC) code was redesigned to increase the functionality of the DCFP cell. One of the 

main improvements was the automation of the preform consolidation phase. An oven 

was installed to supply and circulate heated air within a closed system once the 

Fibre feed inlet 
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plenum is lowered to compact the deposited fibre stack. The lowering of the plenum 

and initiation of the preform consolidation stage is automatically triggered once the 

spray routine is complete. Gates in the heated air circuit open and hot air is circulated 

by fan through the compacted preform. Thermocouples located close to the preform 

monitor the air temperature feeding data to a time-temperature dependant function 

which ascertains whether the binder has cured. The time-temperature function is based 

on the curing characteristics of the powdered binder (Reichhold PRETEX 110) and 

optimised through experimental trials. Oven temperature is monitored using 

thermocouples located on the heater fins and close to the oven outlet and controlled to 

supply a constant temperature across the preform. Once the binder has activated, the 

consolidation phase is completed by closing the heated air circuit and using the 

vacuum fan to force ambient air through the preform to cool before transferring to the 

moulding station. 

1.4. Theme of work 

The flow of work presented in this thesis reflects the development of a realistic fibre 

network model which simulates key DCFP process operations. The intention of 

developing the proposed model is to facilitate the uptake in processes such as DCFP 

for mid-high volume applications. By simulating 3D fibre preforms and predicting the 

potential part performance; the model would fulfil the role as a design tool to optimise 

composite structures using DFP processes. 

Chapter 2 consists of a literature review exploring two key areas of research; the 

performance of DFP composites and current process modelling techniques. The wide 

array of process and material input parameters available in DFP processes offers 

manufacturing versatility with a compromise usually required between costs (material, 

initial capital), composite performance, production volume and component 

complexity. A detailed understanding of the effects of key parameters on 

processability and final composite performance is therefore essential. The current 

techniques for modelling random discontinuous fibre architectures are also addressed. 

A shift towards numerical based analysis away from traditional analytical methods 

means that true stochastic fibre networks created using DFP processes can be 

modelled to capture mesoscale interactions and macroscale variability. 
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Details of the base materials used to manufacture DCFP tensile specimens for 

experimental testing, specifically the carbon fibre tow specifications and resin system, 

are outlined in Chapter 3. Experimental methodology for preform manufacture and 

mechanical testing is also provided.  

Characterisation results from studies focussing on fibre spray are presented in Chapter 

4 along with a modelling methodology. The influence of the current UoN DCFP 

deposition head is examined along with key process parameters within typical 

operating ranges used for preforming. Fibre segment distribution and orientation 

relative to the deposition device is of particular interest. A further study aims to model 

fibre flight motion using a semi-empirical kinematic model. 

Preforming technologies typically hold material in place by means of vacuum 

retention until consolidated into the shape of the final part. However, little knowledge 

exists on the sizing of the vacuum installation and subsequent retention performance 

of preformed structures. The retention characteristics of DFP type materials are 

investigated in Chapter 5 along with other common preforming materials including 

woven and non-woven mats. 

Chapter 6 presents the proposed modelling approach to simulate DFP processes in 

order to recreate realistic macroscale fibre networks for three-dimensional component 

geometry. The process software draws upon characterisation data acquired in Chapter 

4 to accompany a robot kinematic model to simulate fibre spray based on the same 

input parameters required for the UoN DCFP facility. An example of the proposed 

iterative optimisation procedure is provided based on the quality of macroscale 

preform mass variation. A finite element analysis interface is also presented for 

mechanical property prediction of the final composite part. 

Validation of various model subsystems is performed in Chapter 7 using empirical 

data obtained via the UoN DCFP facility. The current alignment concentrator detailed 

in Section 1.3.2.2 is also characterised by mechanically testing manufactured 

specimens in order to assess the material properties resulting from high speed aligned 

deposition. The mechanical testing data is subsequently compared to FEA output for 

simulated aligned preforms created using the process model software. 
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Chapter 2. Literature review  

In this chapter, existing publications relating to discontinuous fibre composites and 

directed fibre preforming are discussed. The review is divided into two sections; a 

discussion of microstructural parameters affecting composite performance, and an 

overview of current modelling strategies concerning DFP processes in particular. 

Characterising discontinuous fibre composites is challenging due to complex 

interactions between material and process parameters, therefore a clear understanding 

of their effects on laminate performance and manufacturing processability is essential. 

2.1. Performance of DFP composites 

2.1.1. Effect of fibre length 

A considerable amount of research has been conducted into modelling the effects of 

fibre length in discontinuous fibre composites [57-61]; particularly for short fibres (<6 

mm) often used in flow moulding processes. Analytical models using shear-lag 

analysis and micro-mechanical based approaches have been adapted to account for 

varying fibre lengths in an attempt to accurately predict mechanical properties. To 

maximise tensile performance, fibre lengths are required to exceed a critical length (a 

function of fibre diameter) to achieve full stress transfer from matrix to reinforcement 

preventing interfacial shear failure. For a perfectly aligned discontinuous fibre 

laminate, 90% strength retention of a continuous fibre laminate can be achieved by 

utilising a fibre length 5 times greater than the critical length [62]. Calculating the 

critical length for fibre architectures created using DFP processes is non-trivial 

however due to the reinforcement taking the form of bundled filaments giving rise to a 

mesostructure within the laminate. Although chopped segments behave as large 

diameter single fibres, their cross-sections are usually non-circular meaning that 

bundle dimensions should be considered in determining critical lengths [63-65]. 

Harper et al. [66] experimentally observed critical length effects for 3 mm fibres using 

24 K carbon fibre tows which resides at the lower end of the DCFP operating range. 
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This correlated well with critical length values derived using slip-theory and through 

consideration of intrinsic segment fragmentation which occurs at short fibre lengths 

reducing bundle size.  

The strength of discontinuous fibre composites is strongly correlated to reinforcement 

length where a trade-off exists between fibre length and the number of fibre ends 

present in the laminate. Individual filament strength is dependent on the existence of 

fatal flaws along its length and can be described using a Weibull distribution where 

tensile fibre strength reduces with length [59]. This is due to the higher probability of 

containing a critical flaw as length increases. Attempting to negate this effect by 

utilising shorter fibres presents other problems however. For a constant global fibre 

volume fraction; decreasing fibre length results in a greater amount of fibres and fibre 

ends present in the laminate. This increases the number of stress concentrations and 

areas prone to matrix micro-cracking which can lead to the onset of component failure 

[67]. Wetherhold [68] developed a probabilistic strength model using the idea of a 

critical fracture zone where the composite strength is governed by the strength of fibre 

bundles bridging this failure zone; composite strength in this case increases 

asymptotically with fibre length. 

Masoumy et al. [67] isolated the effects of fibre length, expressed as bundle aspect 

ratio, on mechanical properties for highly aligned glass fibre specimens at 50% Vf. By 

increasing the bundle aspect ratio from 50 to 557, stiffness retention improved from 

82% to 99% of a UD continuous laminate. Tensile strength was found to be 

significantly lower than the continuous case however; retention increasing from 26% 

to 59%. Typically the strength of a discontinuous fibre composite reaches a plateau as 

the aspect ratio becomes sufficiently large. This has been observed both 

experimentally and through the use of analytical models [68-71].  

Feraboli et al. [25] investigated the effects of fibre length on a random discontinuous 

composite comprising of unidirectional carbon fibre prepreg tape cut into ‘chips’. 

Although only limited testing data was attained, significant gains in composite 

strength was achieved by increasing fibre length from 12.8 mm to 76.2 mm. Tensile 

strength increased linearly with chip aspect ratio - defined as chip length divided by 

chip width. No plateau in strength occurred over the dimensions tested suggesting that 

the critical chip length had not yet been reached. This was further supported after 

21 

 



Chapter 2. Literature review 

examining micrographs of failed specimens showing chip pull-out rather than filament 

fracture. Tensile modulus appeared to be insensitive to aspect ratio but in close 

agreement with calculated quasi-isotropic values suggesting that a critical fibre length 

for modulus exists below the tested range. Similar results were observed by Harper et 

al. [66] where tensile modulus was independent of fibre length through the range of 3 

mm to 115 mm. Segment fragmentation meant that fibre length effects could not be 

studied in true isolation however. 

An important consideration for liquid moulding processes such as RTM is preform 

permeability, which is entirely dependent on fibre architecture. Umer et al. [72] found 

that in-plane permeability consistently improved through the use of longer fibre 

lengths in chopped yarn preforms. Increasing lengths from 15 mm to 50 mm resulted 

in improvements in permeability of between 21% and 25% for different yarn 

diameters at 40% Vf. Dockum and Schell [73] suggested using a minimum length of 

50.8 mm for preforms consisting of low filament count glass tows to aid resin flow 

using the SRIM process. A limit does exist however, with large fibres (>90 mm) 

leading to undesirable effects such as folding and distortion during the preforming 

stage. Fibre distortion both in and out-of-plane is also more likely to occur for longer 

fibre lengths during resin transfer. This is particularly detrimental to compressive 

strength with a dramatic reduction in mechanical properties observed for excessive 

fibre waviness [74]. For processes such as P4-TP, which targets rapid cycle times 

using compression moulding, shorter fibre lengths are found to be beneficial in 

enhancing compression flow characteristics [75]. This could be desirable for instances 

where difficult-to-preform features (ribs, lips etc.) are required but only achievable by 

allowing reinforcement to flow during the moulding stage. Furthermore, process 

repeatability can be negatively affected using longer fibre lengths with  increased part-

to-part coefficient of variation (CV) in mechanical performance observed using the 3-

DEP slurry process [46]. 

Fibre length is also a prominent variable for random fibre structures investigated for 

crash applications. Jacob et al. [76] looked at the effect of three microstructural 

parameters (tow size, fibre length and volume fraction) on specific crash absorption. 

Although the effects of tow size and volume fraction were inconclusive (due to 

dependencies on the other process variables) a clear trend presented itself where 

shorter fibre lengths improved crash worthiness. The findings are supported by other 
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studies showing a similar trend for specific energy absorption performance over a 

broader range of fibre lengths (30 mm to 90 mm) [45, 77]. Varying fibre length can be 

a useful mechanism for increasing composite toughness through the use of sub-critical 

lengths to encourage fibre pull-out.  

It is clear that fibre length or aspect ratio should be chosen based upon design 

objectives with the challenge of optimising between preform processability and 

permeability, mechanical performance and crash worthiness. 

2.1.2. Effect of tow size 

Previous studies have focussed on utilising low cost, high filament count carbon fibre 

tows (12 K – 48 K) to increase the attractiveness of preforming technologies for 

structural applications [65, 78, 79]. In reality the cost of carbon fibre is highly 

sensitive to market forces making it difficult to distinguish the true long-term cost 

savings over the use of smaller tow sizes. It is believed that a significant financial 

benefit does still exist however. Commercial-grade large tow carbon fibres (48 K – 

320 K) are being made available which can be produced more cheaply than smaller 

form aerospace-grade tows – taking advantage of cost efficiencies during the 

manufacturing process [80]. Typical tow sizes used for carbon DFP processes reside 

within the smaller form range (0.5 K – 48 K) with the larger tow sizes carrying a 

distinct advantage for increasing potential fibre deposition rates – an attractive 

prospect for a technology aimed at high volume production. Unfortunately, larger tow 

forms are found to negatively impact composite performance [65, 81-83]. 

Early attempts to understand input parameters which influence the mechanical 

performance of discontinuous fibre composites have shown that processing lower 

filament count tows is beneficial. Schell and DiMario [81] attribute a ~20% increase 

in tensile strength to halving the glass roving filament count providing greater 

reinforcement surface area for matrix bonding. Preliminary adoption of carbon fibres 

for the P4 process used bundle sizes of 3 K and 6 K (several times larger than typical 

glass rovings) resulting in large variations in material distribution throughout the 

preform when compared to the equivalent glass fibre process. By analysing the light 

transmission characteristics of preforms at different areal densities it was found that 

the effect of reducing tow size improved fibre coverage and hence preform quality 
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[82]. A more comprehensive subsequent study using tow sizes ranging from 0.5 K to 

12 K concluded that low filament count bundles provided significant gains in both 

mechanical and thermal performance with an average increase in tensile strength of 

almost 200% [83, 84]. CV for tensile properties reduced by at least a factor of 3 

indicating improved preform homogeneity.  

Rondeau and Reeve [65] reasoned that the reduction in mechanical properties for 

architectures using larger tow forms is due to the increased occurrence of 

synchronised filament ends giving rise to greater stress concentrations. This 

significantly impacts tensile strength and is particularly apparent for directionally 

biased depositions where the probability of synchronised segment ends amplify stress 

concentrations even further. The study also reinforced concepts previously suggesting 

that a critical tow segment length exists as bundled fibres behave as large diameter 

single fibres. This phenomena can be observed where different failure modes existed 

depending on varying bundle size within the same coupon where larger bundles were 

prone to matrix pull-out [85].  

Efforts have been made to mitigate the apparent drawbacks of using larger tow forms 

whilst still retaining their cost-effectiveness. Dahl et al. [86] used tow splitting 

apparatus to reduce large tows (80 K) to multiple instances of low filament count tows 

(1.5 K, 2.5 K & 3 K) specifically for the P4 process. Using mechanical splitters and 

fibre sizing operations on an intermediary production line, sufficient amounts of fibre 

was converted for preforming and subsequent mechanical property analysis. Despite 

the smaller tow forms the mechanical performances for all three tow sizes were 

marginally inferior to a commercially available 3 K control roving. Whilst the 

findings were contradictory to popular consensus it was speculated that the sizing 

operation was sub-optimal and required further development. It is also not clear how 

the inclusion of this intermediary production phase would impact the cost-

effectiveness initially sought by using the 80 K tow. 

Harper et al. [55] presented a solution to reducing bundle size by pneumatically 

disrupting chopped segments prior to exiting the deposition head, known as fibre (or 

tow) filamentisation (the effects of which are further discussed in Section 2.1.6). Clear 

improvements in mechanical performance were realised but with undesirable effects 

such as increased preform loft (affecting achievable fibre volume fractions) and 
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reduced preform permeability. The latter is an important consideration for LCM 

processes affecting overall production cycle times. Permeability is determined via 

inter-tow and intra-tow porosities and despite the shortcomings of using larger tows 

they have been observed to be beneficial when moulding large structures [87]. 

Preforms using higher filament count bundles produce a more porous and open 

structure aiding resin impregnation.  

2.1.3. Fibre volume fraction 

The mechanical properties of a composite laminate are heavily influenced by the level 

of reinforcement content present. Random discontinuous fibre laminate stiffness has 

been experimentally proven to obey a linear relationship with fibre volume fraction up 

to values of 50% Vf which can be accurately predicted using simple statistical ROM 

models [56, 88, 89]. Tensile strength generally exhibits a similar relationship [56, 90, 

91], however micromechanical failure mechanisms can result in a more complex non-

linear relationship [88]. It is suggested that an upper limit of 40% - 50% Vf exists for 

random discontinuous fibre architectures and 55% - 60% Vf for highly aligned 

architectures (matching typical high performance continuous fibre composites) before 

processing difficulties begin to impair mechanical performance gains [65, 92, 93]. 

Increases in fibre content significantly impact preform permeability requiring elevated 

injection pressures for moulding processes which can have detrimental effects on final 

composite performance. For higher injection pressures fibres are susceptible to 

movement within the mould cavity causing variations in volume fraction and 

increasing the risk of inducing fibre waviness. A higher binder content could be used 

to maintain preform integrity but Dockum and Schell [73] found that this can 

negatively impact laminate performance. There is also an elevated risk of failing to 

achieve full preform wet-out leaving dry areas of reinforcement and increased void 

content; compromising the performance and repeatability of the moulded part. 

Dahl et al. [43] studied the compaction characteristics of random glass fibre preforms 

manufactured using the F3P process over a wide range of fibre volume fractions (15% 

- 45% Vf). Compaction pressure increased exponentially with fibre content for two 

distinct preform architectures. For structural preforms, a 900% increase in pressure 

was observed when increasing fibre volume fraction from 32% to 44% to achieve the 
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required 3 mm preform thickness. Harper [56] reported similar findings for DCFP 

manufactured preforms using a power law model to describe preform compaction 

characteristics.  

2.1.4. Preform homogeneity 

Arguably the most important characteristic influencing the mechanical performance of 

a discontinuous fibre composite is the degree of preform homogeneity [53, 65, 94-96]. 

By reducing intra-part mass variability, confidence in characterising and predicting 

the mechanical response of such fibre architectures increases. For DFP processes, 

preform homogeneity is governed by several process variables adding to the challenge 

of designing and manufacturing high quality parts. It is well documented that 

microstructural parameters such as tow size and fibre length have significant effects 

on areal mass variation [55, 66, 97]. By reducing tow size and fibre length an increase 

in fibre segment count is required to achieve a target volume fraction. The 

introduction of a greater amount of fibre segments encourages improved fibre 

distribution resulting in a lower intra-preform CV for reinforcement mass. The 

inclusion of more segments could also be beneficial to failure response from crack 

propagation. Han and Seigmund [98] presented simulation results using a 

discontinuous crack growth model to show an improvement in composite failure 

response for random fibre material. Interestingly, the macroscopic preform 

permeability is seen to be independent of filament count and bundle length for DCFP 

preforms [99]. These two material parameters do affect flow characteristics however 

with larger tow sizes and fibre lengths leading to increased flow unevenness.   

Individual segment location within the preform is dictated by the spray process, spray 

path trajectory, effectiveness of fibre retention and tool geometry. Previous DCFP 

simulation models have suggested significant improvements in mass distribution 

across the preform can be attained using orthogonal spray patterns as opposed to a 

parallel offset pattern [66]. A simulated reduction of 30% in mass variability for a 2D 

plaque shows the potential benefit of using such process models; particularly for 3D 

geometries where achieving homogenous coverage is challenging. Initial P4 design 

specifications set intra-part areal density variations of ±12% as limiting bounds for the 

26 

 



Chapter 2. Literature review 

preforming process [40, 97], however, a tighter tolerance is desirable for high 

performance structural applications where high fibre volume fractions are required. 

The intrinsic heterogeneity in discontinuous fibre architectures is highlighted by 

Feraboli et al. [25] where on average a 50% increase in tensile modulus and strength 

was achieved through increasing specimen thickness from 2 mm to 6 mm. The 

significant rise in mechanical performance is highly likely to be a result of improved 

fibre mass distribution. Thin laminates tend to exhibit inferior mechanical properties 

due to unreinforced resin rich areas as a consequence of poor fibre coverage. 

2.1.5. Fibre alignment 

A great deal of work has been conducted to identify fibre orientation distributions in 

discontinuous fibre architectures to incorporate into analytical models in an effort to 

improve mechanical property prediction [63, 100-102]. Significant gains in laminate 

performance are possible by aligning fibre reinforcement in the direction of applied 

load. For DFP processes the opportunity to tailor laminate performance through fibre 

alignment paves the way for adoption in semi-structural and structural applications. 

Aligning fibres is also conducive towards achieving higher fibre volume fractions due 

to increased packing efficiency compared with random fibre networks [42, 103]. 

Pneumatic methods adopted in glass mat-reinforced thermoplastics (GMT) used 

alignment plates to deflect glass strands from a delivery tube during preforming [104]. 

A relatively wide fibre orientation distribution was experienced however when 

compared with the much slower hydrodynamic method, once used for prepreg 

materials. A similar deflection technique along with various fibre orientation devices 

were developed for the P4-A process where 90% stiffness retention and 50% strength 

retention was achieved compared to an equivalent continuous fibre composite 

(normalised to 55% Vf) [42, 105]. Longer cycle times were required compared to 

random fibre deposition but specific design and performance details for the alignment 

device were not presented by Reeve [105]. The alignment technology was 

demonstrated by incorporating aligned fibres into a preform over a three-dimensional 

complex C-Channel tool. Maintaining levels of alignment proved to be challenging 

however, particularly on vertical surfaces and subsequently abandoned. 
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Previous DCFP machine developments for aligned deposition involved mechanically 

aligning chopped fibres through a concentrator (see Section 1.3.2.1). Harper et al. [54] 

achieved high levels of alignment particularly for long fibre lengths and high filament 

count tows (115 mm, 24 K) where 94% of the fibres were aligned within ±10º to the 

intended direction. The increased segment weight is thought to supress the likelihood 

for segments to become misaligned as they fall from the concentrator. Specimens 

containing 24 K reinforcement also showed the largest gain in mechanical properties 

over the equivalent random fibre benchmark, with increases of 206% and 234% for 

tensile stiffness and strength respectively. The highest attainable properties were 

achieved using 115 mm, 6 K tows with absolute tensile stiffness and strength values 

of 71 GPa and 444 MPa respectively. This represented an increase of 10% and 40% 

over the 24 K specimens. A major drawback of this method was a substantial increase 

in cycle time to ensure high levels of alignment. The linear fibre speed was reduced to 

match the robot travel velocity limiting the deposition rate to 0.15 kg/min for two 24 

K tows compared with >1 kg/min for random deposition. 

2.1.6. Fibre filamentisation 

Filamentisation of fibres, the segregation of fibre bundles into smaller bundle sizes, 

can occur naturally through the mechanical chopping action in DFP processes. It is 

particularly likely to occur for high filament count rovings (≥12 K) where bundle 

integrity diminishes once chopped to length leading to a distribution of bundle sizes 

[55]. The variation in bundle size within a composite mesostructure further 

complicates established property modelling techniques making prediction of final 

laminate performance challenging. Filamentisation can also be deliberately induced 

via additional processing techniques such as pneumatic interference [87] and 

mechanical separation via breaker bars or rollers [106]. 

The benefits of using small filament count tows have already been discussed in 

Section 2.1.2 which includes improved reinforcement mass distribution and lower 

intensity stress concentrations arising from synchronised filament ends. Harper et al. 

[55] investigated the feasibility of reducing large filament tows to smaller bundle sizes 

using a pneumatic device as a means of improving composite performance whilst 

retaining the cost-effectiveness associated with large tow sizes. Significant 
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improvements in mechanical properties for 24 K fibres was realised with gains of 13% 

and 55% in tensile stiffness and strength respectively. This was achieved using the 

maximum filamentisation processing available and supported findings from other 

studies [107]. 

An undesirable consequence of filamentising chopped fibres is the increase in preform 

loft. The presence of more single filaments and small fibre bundles results in thicker 

preforms which in some extreme cases lead to unacceptable levels of loft post-

compaction. Preforms made from highly fragmented 24 K segments also exhibited 

significant reductions in preform permeability for resin injection processes, increasing 

mould fill time [99] and leading to longer preforming cycle times [66]. This is 

particularly important for a technology aimed at mid-to-high volume production 

where low cycle times are necessary for both preforming and moulding stages. A 

compromise is clearly required between preform processability and the potential for 

improving mass variability. 

Highly filamentised fibres are also used in veil type mats to produce a ‘class A’ 

surface finish by encouraging a resin rich layer [44, 87]. There is evidence to suggest 

that the introduction of a surface veil in a non-filamentised preform decreases 

permeability and increases required compaction pressure [43] which correlates with 

experimental results for filamentised preforms. 

2.2. DFP process modelling 

Rapid cycle times and near-net shape preforming are attractive qualities of DFP 

processes yet adoption in industry remains subdued.  There is still very little published 

work investigating the physical process of fibre deposition and the effects of process 

parameters on the multiscale preform structure. These have been identified as clear 

areas of research in developing a process model for DFP technologies [108]. 

2.2.1. Fibre spray 

Automated DFP processes employ a robot-mounted fibre chopping system which 

ejects tow segments towards a perforated screen. Process parameters such as robot 
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path trajectory, reinforcement properties and deposition rate have significant influence 

during the spray process which in turn affects fibre distribution over the entire 

preforming domain. Areal mass heterogeneity leads to inconsistent local volume 

fractions resulting in variable mechanical properties. Clearly, a robust method for 

predicting fibre bundle locations and the resulting fibre distribution is required to 

reliably predict preform properties for DFP materials. 

Previous attempts to model DFP processes have generally been restricted to 

simulating simple 2D single layer architectures greatly limiting applicability to the 

physical process. The creation of process simulation software was part of the outcome 

for the Affordable Lightweight BOdy Structures (ALBOS) project alongside 

development of DCFP technology. Harper et al. [53] used kinematic mapping to 

evaluate the stochastic effects of key process parameters on areal density variation 

across 2D preforms. Fibre deposition was modelled to conform to a virtual spray cone 

which remained symmetrical irrespective of input parameters with the projected cone 

diameter dependant on deposition head height relative to the target plane (Figure 2-1). 

A simple robot program with parallel path offsets was divided into discrete deposition 

points defining the cone apex location as the program iterated along each fibre release 

point. Segment location relative to the cone base centre was generated randomly using 

values returned form a normal distribution where the standard deviation was 

determined experimentally using a 24 K tow. Segment orientation was also generated 

randomly using either a uniform distribution or according to a user-defined 

distribution for directionally biased deposition. 

Experimental tensile testing of specimens cut from the 0º and 90º directions (to robot 

direction) have shown that there is intrinsic directional bias applied for ‘random’ 

spray which needs to be accounted for to accurately model laminate mechanical 

response [66]. Figure 2-2 demonstrates the potential of process modelling software 

with simulated mass distribution correlating well with experimental results.  
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Figure 2-1: (Left) Virtual circular spray cone base used for DFP process simulation where Rij, șij and ׋ij 
define the location of the segment centre of mass and orientation. (Right) A simulated low areal density 
preform (0.5 kg/m2) with the horizontal lines representing spray paths. Images taken from [53]. 

 
Figure 2-2: (Left) Black and white photo of deposited fibres. (Centre) Simulated deposition using the DFP 
process model. (Right) ‘X-ray’ of the deposited fibres showing the amount of tows present in the third 
dimension. Images taken from [53]. 

Liakus et al. [109] adopted a similar modelling approach to simulate fibre spray. A 

discretised robot path was generated relative to a deposition plane where a projected 

spray radius was created for each fibre release site. The spray radius was a function of 

chopper head height, chopper nozzle geometry and fibre feedrate with random number 

generators used to locate the deposited segments within the projected spray domain 

and determine the in-plane orientation. It is unclear whether the random numbers were 

generated based upon a probability density function however. Spray processes often 

bias deposition to the centre of a virtual spray cone rather than uniformly distributing 

material within the prescribed outer spray boundary [110]. Determining final segment 

placement was further complicated due to the presence of a circular mould wall and 

the requirement to include tow-tow interactions. Protruding segments with their centre 

of gravity outside of the mould perimeter were reflected back inside the boundary and 

rotated until the full segment was completely contained within the mould. These 
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boundary interactions resulted in fibre alignment around the mould perimeter similar 

to experimental observations (Figure 2-3). Tow-mould and tow-tow interactions were 

considered under the assumptions that the tow segments are circular in cross section 

and abide to rigid body mechanics. 

 

 
Figure 2-3: (Left) A schematic for the geometry used in the deposition process simulation by Liakus et al. 
[109] showing the outer mould boundary radius ro and the virtual spray path radius rp. (Right) Simulation 
of the reinforcement deposition with fibres aligned with the mould boundary. Images taken from [109]. 

Gunnerson et al. [111] proposed an alternative solution to simulating mass distribution 

for spray processes. Instead of explicitly accounting for each fibre segment location, a 

similar procedure as used in paint spraying process models was adopted. The 

deposited fibre mass was represented statistically from empirical observations which 

in turn feeds a path-planning simulation tool. Computational intensity was given as a 

primary reason for choosing not to model each segment explicitly; however there is 

little evidence to support this view with the processing power available with modern 

computer hardware. 

The experimental apparatus used in the study delivers fibres in discrete packets held in 

a cartridge assembly and released through a focussing nozzle. The shape, size and 

height of the nozzle affect the segment distribution; all of which remained constant to 

characterise the fibre deposition. Characterisation was carried out by dropping a 

sparse amount of segments and using proprietary image analysis software [112] to 

extract segment location and orientation (Figure 2-4). The analysis software is 
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unsuitable for dense fibre stacks due to errors arising from overlapping fibres, 

therefore restricting its applicability for characterising high throughput processes such 

as DCFP. The experimentally determined mass distribution is compiled from repeated 

depositions using a Gaussian distribution function to replicate experimental 

observations. 

 
Figure 2-4: (Left) Picture of a discrete fibre deposition (coloured fibres) onto a surface already covered 
fibres. (Centre) A Digital image of the deposited fibres and (Right) the representative mass distribution after 
20 sparse depositions. Images taken from  [111]. 

The physical spray process used discrete sites to release material rather than the 

common approach of a continuous robot trajectory. A pattern of robot points were 

evenly distributed using a Coulomb law repulsion algorithm to attempt to achieve a 

homogenous fibre distribution inspired from similar applications by Drocco et al. 

[113]. Each point was assigned a constant charge with the algorithm resolving 

repulsion forces so that the system of charged points transition from a high energy 

state to a lower stable energy state (Figure 2-5). Whilst this method of distributing 

deposition sites is unsuitable for a continuous delivery process such as DCFP, it does 

offer an interesting solution to optimising the distribution of robot path offset points if 

the points are prescribed a charge proportional to spray cone geometry.  

 
Figure 2-5: (Left) Optimised deposition sites within a mould boundary for brake pad geometries. (Right) 
Picture of the mould populated with fibres using the optimised deposition sites. Images taken from [111]. 
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Similar processes such as automotive paint spraying, again requiring uniform material 

distribution, has received considerable attention from several authors to develop 

reliable process simulation software [35, 110, 114-117]. Paint spray is also modelled 

to conform to  a spray cone within which the paint mass flux distribution is non-

uniform resulting in heterogeneous coating thicknesses [114]. Gaussian [116], Beta 

[114] and parabolic [110, 115] distributions have been used to statistically represent 

the non-uniform surface distribution based upon empirical thickness measurements. 

The majority of paint spray models use circular cone geometries as in Figure 2-6, 

similar to the discontinuous fibre spray models, with Chen et al. [110, 118, 119] 

adapting their paint spray model to simulate a glass fibre spray forming process based 

upon the same principles.  

 
Figure 2-6: (Left) A typical paint gun model used in paint spray process models showing a virtual spray 
cone. (Right) A paint deposition rate profile with the axis origin representing the centre of the spray cone. 
Images taken from [120]. 

A significant proportion of published work with reference to paint spray modelling is 

predominantly interested in automating robot path planning to achieve macroscopic 

homogeneous material distribution, whilst also highlighting the necessity to accurately 

characterise the deposition process. 

2.2.2. Robot path planning 

The process models developed by Harper et al. [53] and Liakus et al. [109] prescribes 

the geometric robot path in a method analogous to programming an industrial robot 

using a teach-pendant. Optimisation of the deposition strategy occurs through trial-

and-error, usually by adjusting path offset distance after evaluating the subsequent 

mass variation. Paint spraying process models briefly mentioned in Section 2.2.1 have 
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been developed to automate robot path planning by considering the material 

distribution within the spray cone domain and minimising thickness variations 

between parallel passes where deposited material overlaps. Paint spraying processes 

have almost identical input parameters and requirements to DFP processes: part 

surface geometry, deposition/applicator head configuration, path trajectory and 

process outputs such as material distribution quality, cycle time, wastage etc. A great 

deal of work has been conducted in the area of path planning for robotic systems to 

achieve uniform coverage [121, 122] with some of the methods discussed in this 

section. 

Chen et al. [123] recognised that manual path planning is complex, time consuming 

and highly dependent on operator skill which is why there is significant interest in 

optimising and automating path planning duties. Heping et al. [118] simulated glass 

fibre deposition for a simple 2D rectangular shape showing the potential for off-line 

simulation techniques producing reasonable correlation between simulated and 

experimental mass variation results across the preform area. Path offset was based 

upon an optimised overlap distance using a golden section method [124], however, the 

applicator head was required to project in a direction normal to the target surface at all 

times in order to simulate a realistic mass distribution which can become unfeasible 

for complex 3D geometry. This could lead to complex robot programs and lengthen 

overall cycle time. 

Chen et al. [120] presented a patch forming technique in an effort to minimise the 

deviation angle between applicator and a target surface consisting of triangular mesh 

elements. This was achieved by creating a projection plane based on averaged surface 

element normal vectors contained within a given spray domain. If the deviation angle 

falls outside of a prescribed threshold then an additional patch is formed. The model 

generates realistic path lines for simple part geometries using this technique but 

produces high thickness deviations of up to 35% from the mean material thickness. 

Commercial software ROBCAD [125] was used to simulate the paint spray process 

for the generated robot trajectory. 

Subsequent development of the path generation software considered the effects of 

material distribution between multiple patches showing that an optimal trajectory 

pattern is achievable to minimise mass variation, but becomes increasingly complex 
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when multiple patches are required to discretise a free-form surface [126]. Again, only 

simple surface geometries were used questioning the applicability to a complex 3D 

component. It is anticipated that considerable difficulties would arise if features such 

as holes and irregular profiles are introduced and whether the optimisation routine 

would find a suitable solution at all.  The authors claim that the developed software 

decreased robot trajectory generation times from more than 8 weeks using traditional 

techniques to 4-5 days [119]. The car part shape used to test the algorithm with the 

resulting disjointed path profile is presented in Figure 2-7. 

 
Figure 2-7: Robot trajectory generated using a patch forming technique for an automotive part. Robot path 
lines are disjointed using this approach despite the relatively simple part geometry. Image taken from [119].  

Weihua et al. [127] advanced the process of decomposing surface geometry into 

patches to eradicate holes and achieve regular topology for each patch. Part of the 

initial criteria was to minimise cycle time by reducing the amount of deviations the 

applicator is required to make along a path. The resulting spray pattern for an 

automotive bonnet does not represent the most efficient path however (Figure 2-8). In 

reality a much simpler blanket path could be utilised with judicious use of gun 

operation instructions to achieve much lower cycle times in comparison. Other 

methods involving path generation include similar decomposition methods to create 

regular polygon subsets before using genetic [128] or ant colony optimisation 

algorithms [129] to generate a large number of possible trajectories. Each solution is 

evaluated against performance criteria to find a trajectory with optimal attributes such 

as path length and cycle time. Partitioning becomes even more excessive when part 

complexity increases [127] leading to increasingly disjointed robot programs. 
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Figure 2-8: (Left) The automotive bonnet geometry used for automated robot path planning in [127]. (Right) 
the generated robot trajectory after partitioning the bonnet into multiple spray domains. 

Arikan and Balkan [114] simulate robot motion by discretising robot path lines to 

determine spray locations. At each location, paint is sprayed for a time period which is 

a function of required paint flow rate and the level of path discretisation; effectively 

simulating a continuous spray motion. After seeding the initial path line, two adjacent 

paint distribution curves are superimposed to calculate the range of paint thickness 

within the overlap region. For two equal parabolic distribution curves the optimised 

offset distance, minimising thickness variation, is the spray area diameter multiplied 

by 0.608. Paint thickness deviations between simulated and experimental results over 

a simple part profile are as high as 20% suggesting that further process 

characterisation is required.  

To reduce material waste associated with over-spray, process variables should also be 

modified to alter spray cone geometry enabling efficient robot path design. Atkar et al. 

[130] emphasises the importance of intelligent path line seeding which plays a crucial 

role in achieving this, as well as minimising cycle times. Optimising robot speed 

relative to spray flow rate improved paint uniformity by as much as 25% in some 

cases compared with constant speed trajectories. 

Even after achieving an optimised robot path using these types of simulation tools, the 

trajectory has to be physically possible for an industrial robot. Most published 

trajectory planning techniques take place in Cartesian space whereas industrial robots 

typically operate in joint space [131]. Transformation from Cartesian to joint space 

requires the use of inverse kinematics which is non-trivial and can theoretically 
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produce an almost infinite amount of solutions to the same problem. Conversely, 

using forward kinematics to translate joint motion to applicator position is usually 

closed-form and relatively simple. Ideally a commercially available robot simulation 

software package should be utilised to aid trajectory planning techniques. 

2.2.3. Fibre retention and material permeability 

Traditional directed fibre preforming methods use a vacuum assisted tool to evacuate 

air from behind the tool surface thus providing fibre retention on the tooling surface. 

The challenges in designing effective preform tooling is highlighted in a study to 

improve preform quality of automotive vehicle B-pillars [86]. Initial preforms 

suffered from large areal density variations with areas over 100% above target volume 

fraction levels (40% Vf); mainly attributed to inconsistent airflow through the tool. 

Efforts to reduce flow variation were performed by baffling sections of the tool after 

accumulating air flow field data via measurements using an anemometer. 

Improvements were reported but ultimately insufficient to satisfy preform quality 

requirements even after modifying other process variables such as fibre length, fibre 

feedrate, TCP location and air speed. This suggests that air flow and therefore, fibre 

retention capability is highly sensitive to tooling geometry. Despite the commonplace 

application of such fibre retention techniques for DFP processes, very little work has 

been conducted in characterising the retention capabilities for such materials. 

There is substantial literature available for examining air permeability through porous 

media however. The media typically tested comprises of a granular bed using liquid as 

the permeating fluid with the resistance caused by a granular bed often quoted as 

obeying Darcy’s law where a linear relationship exists between the medium’s pressure 

gradient and the superficial fluid velocity [132]. The Kozeny-Carmen channel model 

is widely used for relating physical constants to packed beds of particles during 

laminar flow [133] but has limited use for fibrous materials and highly porous media 

[134]. Forchheimer and Brinkman [135] observed that Darcy’s law only held true for 

low superficial velocities (“seepage” velocity) catering solely for viscous drag effects 

where inertial effects are negligible and with frictional losses being attributed entirely 

to viscous drag from the permeating fluid. Scheidegger [136] surmised that in order to 

characterise the seepage velocity domain in which Darcy’s law holds true, a Reynolds 
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number could be introduced. Scheidegger noted that numerous investigations focussed 

on finding a universal critical Reynolds number, above which Darcy’s law is no 

longer valid, ultimately failed due to large discrepancies between the different fluids 

and media examined.  

Deviating from channel theory, Forchheimer [135] proposed the inclusion of a second 

order term to define inertial drag in addition to viscous forces for higher flow rates. 

This permits modelling for pressure drops across porous media where flow conditions 

exist in the turbulent phase at higher fluid velocities. Notably, Forchheimer further 

suggested the use of higher order terms to provide a closer fit to experimental data. 

Further extensions were applied by Ergun [137] and Comiti-Renaud [138] to adapt 

Forchheimers principles to physical properties including porosity, specific surface 

area and tortuosity for packed particle beds. Belkacemi and Broadbent [139] further 

developed Kyan’s pore model, suited to air flow through fibrous and woven fabrics 

experiencing high pressure drops, showing good agreement between experimental 

data and model predictions. An alternative model for woven textiles was developed by 

Goodings [140] acknowledging the influence of structural parameters such as the 

weave pattern and warp and weft linear densities. For all of these models several 

structural properties were required for each material involving experimental 

characterisation. 

Preforming processes use a perforated screen to support the material whilst under 

vacuum retention which therefore contributes towards the total air flow resistance in 

the system. Zierep et al. [141] using manufacturer’s data for plate porosity failed to 

describe aerodynamic performance by relating pressure drop across the plate to the 

superficial velocity. It was suggested that the porosity value should be inferred from 

aerodynamic performance using a D/B transpiration law. A revision of the D/B 

constants gave a relationship where the pressure drop was proportional to mass flow 

squared. For increasing pressure drop the squared function resulted in an adequate fit 

with experimental data. Haque et al. [142] investigated the influence of perforated 

plates within electrostatic precipitators to characterise the plate performance for a 

CFD model. By modelling the plate as thin porous media the pressure drop can be 

calculated using a combination of viscous and inertial terms emulating Forchheimers 

equation. Changes in gas viscosity was predicted to have negligible effects on 
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pressure drop over a wide range of superficial velocities, thereby nullifying the 

viscous term in turbulent flow conditions. 

The bulk of work performed in this area has been concerned with highly 

homogeneous fabrics at low superficial velocities and typically for single layers. It is 

not clear from the published literature how the developed models can be applied to the 

fibre architectures of interest. Work presented in Chapter 5 compares the 

characteristics of various types of fabrics, fibrous mats and unconsolidated DCFP 

fibre stacks with respect to a wide range of air velocities to attempt to build upon 

existing knowledge.     

2.2.4. Mesoscale modelling 

Material characterisation and accurate mechanical property prediction for 

discontinuous fibre composites are essential for the development of material models 

which integrate into existing design procedures. Several analytical modelling 

methodologies such as classical laminate theory, ROM based and statistical averaging 

are used to homogenise constituent materials within a given domain. For mechanical 

stiffness prediction these modelling approaches offer a convenient solution both in 

terms of speed and accuracy because stiffness is essentially a volume averaged 

quantity [143]. Strength predictions are less accurate however, with large over-

predictions due to the inability to account for complex fibre/matrix, fibre/fibre 

interactions and localised volume fraction variation within the mesostructure of the 

composite. Stress concentrations arising from fibre bundle ends and resin rich areas 

are particularly susceptible to failure initiation and damage evolution; therefore more 

exhaustive methods of property modelling are required. Numerical modelling 

combining the generation of random fibre networks with finite element method (FEM) 

can reproduce the stochastic characteristics of random fibre composites and offers a 

promising solution to capture localised stress and strain fields required for damage 

analysis. 

Finite Element Analysis (FEA) is commonly used to model the mechanical behaviour 

of a wide range of fibre reinforced composite materials. The random heterogeneous 

nature of discontinuous fibre composites means that a repeating unit cell approach 

used for textile and UD materials is non-applicable however. Hill [144] states that a 
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representative volume element (RVE) should be used instead which can be defined as 

a macroscopic statistical representation of the constitutive materials. This means that a 

sufficiently large sampling of all the microstructural heterogeneities present in the 

composite is required. An alternative view adopted by Drugan and Willis [145] states 

that the RVE should be the smallest material volume element which accurately 

represents the mean constitutive response. Harper et al. [146] provide a useful review 

of current approaches in generating RVEs for random fibre architectures. It is 

apparent that accurately recreating mesoscale architectures remains challenging due to 

complex fibre networks and the wide range of inclusion geometric forms typically 

used in discontinuous fibre composites. 

Numerical generation of RVEs can be categorised by the following methods; Random 

sequential adsorption (RSA), Monte Carlo (MC) procedures, image reconstruction 

techniques [147] and process-driven simulation. RSA and MC methods are the most 

widely adopted; randomly generating fibre centroid positions and orientations which 

can be tailored to experimental observation by using statistical distributions. For 

three-dimensional RVE generation, issues relating to ‘jamming’ occur where the 

constraint preventing fibre intersections is no longer valid prior to reaching the desired 

fibre volume fraction [146, 147]. This is usually a consequence of modelling high 

aspect ratio fibres as rigid cylinders. Efforts to increase ultimate volume fraction in 

RVE generation allow out-of-plane curvature for improved fibre packing efficiency. 

A model using a modified RSA technique is presented by Pan et al. [147] for in-plane 

fibre networks. Fibres are permitted to locally bend to avoid intersecting neighbouring 

fibres achieving fibre volume fractions of 35% - 40%, approaching levels suitable for 

structural applications. This is achieved by dividing the RVE into sub-layers to allow 

fibres to occupy adjacent layers thereby avoiding intersections. Fibre bundles are 

approximated using a series of polyhedra with elliptical cross sections but still fails to 

capture realistic out-of-plane curvature (Figure 2-9 – A). 

Higher volume fractions were achieved using a random walk force-biased packing 

approach [148]. Each fibre was modelled as a chain of spheres, limiting its 

applicability for elliptical carbon tow segments, but does offer control over fibre 

tortuosity and out-of-plane orientation (Figure 2-9 – B). For a 24 K tow segment with 

an effective tow diameter of 1.4 mm [146], the maximum fibre volume fraction 
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permissible is 65% Vf (7.5 mm fibre length) decreasing inversely with aspect ratio to 

~50% Vf  (46 mm fibre length) [148]. A similar force-biased approach was proposed 

[149] for mixed dimension modelling targeting >50% Vf. The model can output either 

1D truss or 2D shell fibre meshes constrained in 3D continuum elements with no 

limitations on fibre bundle aspect ratio, producing realistic fibre networks applicable 

for DFP processes (Figure 2-9 – D). Commercially available software such as 

DIGIMAT can also provide RVE generation duties with direct portability to 

ABAQUS/standard but covers a generalised approach rather than process specific, and 

can only achieve relatively low fibre volume fractions for the architectures of interest. 

 
 

  
Figure 2-9: (A) RVE of a random chopped fibre composite with curved fibre bundles generated using a 
model developed by Pan et al. [147]. (B) An RVE generated using a random walk based stochastic model 
proposed by Altendorf et al. [148]. (C) RVE of a polymer matrix reinforced with carbon nanotubes created 
using Digimat software [150]. (D) A compressed RVE with shell fibre architectures producing realistic DFP 
fibre architectures [149].  

To remove the fibre volume fraction jamming limit, several researchers have used 1D 

beam elements permitting fibre intersections [143, 146, 151, 152]. Obviously this 

simplification to the 2D domain negates complex 3D phenomena resulting from 

fibre/fibre contact and the effects of out-of-plane curvature on mechanical properties 

[149]. A stochastic fibre network model developed by Harper et al. [143] was used to 

(A) (B) 

(C) (D) 
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simulate DCFP fibre architectures at the mesoscopic level using 1D beam elements (in 

ABAQUS/standard) to represent tows which are tied to 2D solid continuum elements 

using the embedded element technique. Using beam elements is computationally 

inexpensive and permits the analysis of larger volume models approaching macroscale 

modelling that replicate process specific fibre networks. For large fibre lengths or high 

aspect ratios this can alleviate the occurrence of boundary-to-boundary bridging fibres 

which can exist when constrained to small scale RVE dimensions – a result of using 

computationally expensive 3D continuum elements. 

2.2.5. Macroscale modelling 

The process driven models discussed in Section 2.2.1 are capable of spraying virtual 

macroscale preforms in an effort to simulate the physical preforming process and 

reproduce accurate mass distributions. The discrete deposition model developed by 

Gunnerson et al. [111] was used to optimise fibre release locations to manufacture 

net-shape preforms for an automotive brake pad. A Coulomb law repulsion algorithm 

was used to distribute deposition locations until the system achieved a low-energy 

equilibrium providing an optimised deposition pattern. The simulated preforming area 

was discretised to graphically represent preform height, in the form of a contour map, 

based on the underlying statistical mass distribution functions. The deposition strategy 

was replicated for experimental preforming with a 3D scanner used to determine the 

height of the fibre bed and subsequently compared with simulated results (Figure 

2-10). The difference in height between predicted and experimental results was found 

to be within ±10% across the preform for the specific combination of material 

parameters presented (8.5 mm, 10 K carbon fibre tow). The simulation software 

appears to be solely developed for optimising deposition location in order to obtain a 

uniform material distribution with no further application to predict mechanical 

properties. 
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Figure 2-10: A deposition contour map showing the difference between actual fibre mass distribution and 
model predictions using identical deposition sites. Image taken from [111]. 

Rather than modelling each deposition as a statistical distribution Liakus et al. [109] 

explicitly located each fibre in the deposition plane to build up a three-dimensional 

preform. Tow segments were modelled as rigid bodies with significant out-of-plane 

orientations resulting from high aspect ratio fibres coupled with the inclusion of a 

mould wall. As fibre lengths increased from 12.7 mm to 76.2 mm the use of rigid 

body mechanics led to increasing overestimations of true out-of-plane orientations due 

to entanglement when faced with certain tow-tow interactions. This would lead to 

lower in-plane mechanical properties when compared to experimental results. In-plane 

and out-of-plane fibre orientations were of interest during the study due to the preform 

thickness being of the same order of magnitude as the preform diameter – resulting in 

a three-dimensional preform. 

A three-level micromechanical modelling approach was applied to predict the elastic 

constants using the Mori-Tanaka method [153] and to evaluate the dependence of 

process parameters on elastic and thermal properties. No experimental validation was 

presented however for the rigid body deposition model or for final composite 

performance. 

Harper et al. [53] used a 2D simulation model to investigate the effect of several 

process parameters on preform mass variation. Fibre length and global areal density 

was found to significantly influence the local density variation requiring an 

optimisation of the deposition strategy to improve variability. Areal mass variation 
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was reduced when simulating the deposition of shorter fibres (25 mm instead of 75 

mm) consequently leading to increases in mechanical properties from experimental 

testing. 

To capture observed non-uniform strain distributions for tested tensile specimens, 

Feraboli et al. [154] proposed generating multiple random RVEs (RRVE) over a 

discretised specimen representing the heterogeneous nature of discontinuous fibre 

composites. By examining distinct strain regions from experimental digital image 

correlation (DIC) specimen results a characteristic length scale was determined from 

which defined the RRVE area; in this case 161 mm2. To put the RRVE area in 

perspective; the area of a single intact fibre used in study was 426 mm2. The 

mechanical properties of each RRVE were generated independently of neighbouring 

elements based upon classical laminate theory (CLT) and solved simultaneously using 

FEA (Figure 2-11). The strain distributions generated proved to be similar to 

experimental DIC plots replicating the heterogeneous reinforcement distribution. 

Employing CLT based RRVEs is therefore a promising solution to capture the 

generalised response of discontinuous fibre composites.  

 

 
Figure 2-11: (Top) Tensile specimen divided into 48 regions described as RRVEs with independently 
generated material properties. (Bottom) FE output showing the strain distribution contour plot over the 
specimen length. Images taken from [154]. 

2.3. Chapter conclusions 

A review of the key microstructural parameters affecting composite fabrication and 

final laminate performance for DFP materials was conducted. The mesoscale 

architecture arising from the use of bundled reinforcement makes the optimisation of 

these parameters challenging. A compromise is often required between material 
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processability and mechanical part performance. Increasing reinforcement length was 

proven to be beneficial in terms of increasing laminate properties but can suffer 

knockdown effects during preforming and resin transfer stages if fibre lengths are 

excessively long. The cost-effectiveness of using larger carbon tow forms (≥24 K) 

was found to negatively affect mechanical properties of the composite compared to 

the use of smaller filament count tows. Both fibre length and tow size dictate preform 

homogeneity – smaller fibre lengths and bundle sizes increase preform segment count 

for a given target areal density.  The increase in segment count has the net effect of 

increasing preform homogeneity through improved reinforcement distribution. This is 

highly desirable to lower intra-preform and inter-preform mass variability thus 

increasing the repeatability of the process.  

Several researchers have attempted to accurately reproduce the material mesostructure 

to facilitate mechanical property prediction. Numerical modelling approaches have 

focussed on developing a representative volume element to capture the complex 

fibre/fibre and fibre/matrix interactions which can lead to failure initiation sites 

defining the materials mechanical response. Although this method offers the 

opportunity to characterise the material on the micro and mesoscale a RVE is not 

necessarily a suitable representation of the macroscale stochastic fibre network, 

particularly for complex 3D part geometries. Current macroscale process-driven 

models attempt to recreate mass variation but are limited to simple 2D depositions 

failing to capture the versatility offered through directed fibre preforming. 

Analogous processes such as paint spray deposition have had strong interest in 

developing macroscale modelling techniques to replicate the physical process and 

offer a solution to optimise material coverage. The importance of effective deposition 

characterisation for such models was highlighted. Optimisation of the material 

distribution was proposed using automated robot path planning based upon the target 

geometry. Although the potential for such techniques could significantly reduce 

experimental trials for robot trajectory generation, the examples given often suffered 

from disjointed path profiles even for simple planar part geometries. The path 

planning optimisation tools outlined appear to be suited to planar surfaces with little 

evidence for application to genuine 3D geometries. Suggested robot trajectories 

become unnecessarily complex particularly with the inclusion of geometric features 

and irregular part boundaries. Rather than developing autonomous solutions to 
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effective path planning a more appropriate technique would be to take a heuristic 

approach allowing the operator to define a simple path program and intuitively 

optimise process parameters based on performance criteria. 
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3.1. Preforming materials 

Carbon fibres of various types obtained from Toho Tenax Europe GmbH are used as 

the reinforcement material for all experimental preforming operations and process 

characterisation throughout this thesis. Four tow sizes were available for investigation 

with larger tow sizes (higher filament counts) providing a cost advantage due to 

manufacturing efficiencies. All four derivatives and their properties are summarised in 

Table 3-1. 

Reichhold PRETEX 110, a powdered epoxy with a heat activated curing agent, is used 

as the preform binder. The binder has an observed melting temperature of ~60 ºC with 

onset of exothermic reaction at ~75 ºC peaking at ~115 ºC [155]. 

Table 3-1: Specification of carbon fibre reinforcement used for preforming operations. Values taken from 
manufacturer’s data sheets.  

Designation 
Fibre 

modulus 
Fibre 

strength 
Filament 
diameter 

Density 
Elongation 
at break 

Linear 
density 

Sizing 
level 

 (GPa) (MPa) (ȝm) (g/cm3) (%) (Tex) (%) 
3K E HTA40 

E13 
238 3950 7 1.76 1.7 200 1.3 

6K E HTA 
5131 

238 3950 7 1.76 1.7 400 1.3 

12K E HTS40 
F13 

240 4300 7 1.77 1.8 800 1.0 

24K E STS 
5631 

240 4300 7 1.77 1.8 1600 1.0 

 

3.2. Preform manufacture 

The latest iteration of the UoN DCFP deposition head is mounted on a Fanuc RJ3iB 

six-axis industrial robot with direct fibre feed from bobbins located in close proximity. 

Chopped fibre segments are directed towards a vacuum plenum, held in place on a 

perforated screen using a constant vacuum fan speed of 1000 rpm. Powdered binder is 

stored in a robot-mounted fluidised bed chamber where the atomising and carriage air 
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streams are calibrated to deliver ~6% wt (of total preform weight) of binder to the 

deposition head. A Daniels down-stroke press was used for preform consolidation 

with a 5 minute cure cycle at 120 °C.   

To characterise the performance of the updated alignment concentrator (Section 

1.3.2.2) several preforms were manufactured to areal densities of 1.611 kg/m2 (30% 

Vf) and 2.865 kg/m2 (50% Vf) for a 3mm mould cavity. Preforms were sprayed to 500 

mm by 400 mm dimensions in order to die-cut a final preform area of 400 mm by 300 

mm for resin infusion. Due to efficient fibre packing achieved through aligning the 

chopped segments, preform consolidation was performed without additional 

compaction pressure using only the weight of the top platen (3148 kg) to ensure the 

mould cavity was filled. Compaction pressure was therefore ~154 kPa for a preform 

area of 0.2 m2.    

Prior to manufacturing aligned plaques for mechanical testing, two spray patterns 

were considered and compared in order to maximise mechanical properties. During an 

initial trial a typical north-south robot trajectory was programmed with the robot head 

continually pointing in the northwards direction (Figure 3-1). On southward passes a 

small proportion of fibres (for fibre lengths ≥60 mm) would stand on end before 

falling leading to visibly misaligned segments. This was due to a bias applied by the 

chopping mechanism discussed in Chapter 4. An alternative trajectory was trialled 

which only sprayed fibres whilst the robot travelled northwards to alleviate this issue, 

taking advantage of the robot direction to ‘lay down’ chopped segments (Figure 3-1). 

The robot travelled to the start point of each subsequent offset path using fast joint 

motion to minimise the impact on cycle time. By monitoring the robot motion signal 

(as described in Chapter 7) the cycle time was found to be 23% greater when 

compared with the north-south program. Two plaques were manufactured (6 K, 60 

mm, 30% Vf) to assess the difference in mechanical properties with the north-north 

program offering superior performance for tensile strength. A 21% increase in tensile 

strength was experienced with less variability between the 10 specimens tested for 

each plaque. Tensile stiffness was found to be near identical in terms of average 

stiffness and variability. The north-north strategy was therefore adopted for the rest of 

the alignment study in Chapter 7. 
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Figure 3-1: (Left) A north -south robot trajectory typically used for single layer coverage for random 
deposition. (Right) The alternative program used for manufacturing aligned preforms consisting entirely of 
north passes. 

Additional preforms were manufactured specifically for process model validation tests 

with preform specifications outlined in Chapter 7. The north-south pattern in Figure 

3-1 and an orthogonal spray pattern were used for random oriented deposition using 

the same consolidation conditions as for aligned preforms. The validation tests studied 

the mass variation across a 400 mm x 300 mm area by die cutting the preform into 25 

mm x 25 mm coupons (Figure 3-2). Each coupon was weighed individually to an 

accuracy of ±0.001 g. 

 
Figure 3-2: Picture of a die cut preform used for process model validation. The preform is cut into 192 
coupons of 25 mm x 25 mm dimensions. 
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3.3. Resin transfer moulding 

RTM was employed for all moulding activities using a steel 400 mm x 300 mm  tool 

with a 3 mm cavity. All preforms were trimmed and weighed prior to transfer to the 

mould station in order to provide a good fit and to ascertain the final plaque fibre 

volume fraction. A tight fit was required within the mould cavity to prevent 

compaction issues and race-tracking. The tool was placed into a Daniels down-stroke 

press with both platens heated to 60 ºC and a pressure of ~2.7 MPa applied to prevent 

leakage during injection.  

The Gurit PRIME™ 20LV epoxy infusion system along with a slow acting hardener 

was stored, preheated, mixed and injected using a CIject One™ resin injection 

machine. According to manufacturer’s data using the recommended curing cycle, the 

cured resin system has a tensile modulus of 3.5 GPa and a tensile strength of 73 MPa. 

The resin system was preheated to ~70 ºC to reduce viscosity and aid preform wet-out 

to avoid disturbing fibre segments within the preform which can potentially degrade 

laminate mechanical properties. 

A vacuum was applied to expel air from the cavity via the mould tool outlet before 

and during injection similar to the vacuum-assisted RTM (VaRTM) process used in 

industry. Initial trials indicated that only low injection pressures (≤1 bar) should be 

used for aligned fibre preforms to prevent the resin front from advancing too quickly – 

resin flow coincides with the direction of reinforcement. If a flow path to the outlet 

develops prior to full preform wet-out there is a high risk of incurring dry regions of 

reinforcement in the final plaque. To encourage full impregnation, the outlet of the 

mould tool was briefly closed once resin had reached it with resin still being injected. 

Once injection was completed the temperature of the platens was raised to 120 ºC and 

left to cure for an hour before cooling to below 40 ºC for demoulding. 

3.4. Mechanical testing 

Mechanical property data presented in this thesis is derived from tensile testing to 

establish basic design information on the strength and stiffness of aligned 

discontinuous carbon fibre composites. Results can be directly compared to existing 
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tensile test data pertaining to DCFP architectures as well as random fibre architecture 

results gathered as part of the overall ASP project. 

Each plaque produced 10 specimens cut to 220 mm x 25 mm dimensions in the 0º 

direction with average thickness and width values, gathered from 5 measurements for 

each dimension, taken along the gauge area using vernier calipers. Tensile testing was 

conducted on an Instron 5581 50 kN machine at an extension rate of 1 mm/min in 

accordance with BS EN ISO 527-4: 1997. Applied load was recorded from the 

crosshead load cell and strain was measured using an extensometer over a 50 mm 

gauge length. Young’s modulus was measured using the gradient of the linear portion 

of the stress-strain curve between strains of 0.0005 and 0.0025. 
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4.1. Introduction 

Although the high performance composites market is currently dominated by 

continuous fibre architectures, there is increasing interest in utilising discontinuous 

fibres for structural applications; mainly in the form of mesoscale advanced sheet 

moulding compounds (A-SMC) [156]. These materials consist of chopped carbon 

fibre bundles with resin systems optimised for compression moulding (typically at 80 

– 140 bar). Critically, chopping of the carbon fibres into short bundles facilitates 

various means of automation of the costly layup step in the composite manufacturing 

process [45, 157] and underlines the potential for directed fibre processes such as 

DCFP. These processes are generally designed to operate in conjunction with low-cost 

liquid moulding technologies; although developments towards one-shot deposition 

strategies to produce similar materials to A-SMCs do exist [158].  

The heterogeneous fibre architectures resulting from DFP processes make material 

property prediction challenging and difficult to implement into established industrial 

design practices. For demanding structural applications requiring high mechanical 

properties, a detailed knowledge of the fibre architecture is required. Attempts at 

explicitly modelling such architectures thus far have either focussed on the mesoscale 

[143, 147-149] or are only applicable to simple two-dimensional component 

geometries [53, 109, 111]. A realistic process-driven model suitable for complex 

three-dimensional geometries is currently lacking restricting the uptake for DFP 

processes and is the main focus of study throughout this thesis. In order to develop a 

macroscale process model, detailed process characterisation is required to identify the 

dominant parameters affecting reinforcement distribution.  

In the present work a methodology to characterise and model the UoN DCFP 

deposition head is outlined. The chopping device dictates fibre location and 

orientation with fibre spray being a function of material parameters (fibre length, tow 

size) and process parameters (head position and orientation, fibre feedrate, induced 
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fibre directionality). A further study attempts to characterise chopped segment flight 

kinematics as a precursor to generating a fibre flight model. 

4.2. Deposition head characteristics 

4.2.1. Methodology 

Fibre spray can be assumed to conform to a spray cone emanating from the deposition 

device creating a projection area on the tool surface [53, 109, 119]. The shape of the 

projected area on the deposition plane is dictated by the spread of fibres released from 

the tool centre point (TCP) which coincides with the pinch point between the chop 

rollers (Figure 4-1). The spread of the fibres is accounted for in orthogonal directions; 

in-line with the device orientation x’ and the perpendicular direction y’. This is due to 

observations that in some cases the fibre spread assumes an elliptical distribution 

rather than a symmetrically circular distribution. 

A preform screen was placed in the deposition plane with a marked grid split into 100 

mm by 100 mm squares. The grid was used as orthogonal datum lines to position the 

deposition head and to later calibrate measurement scales when processing data in 

CAD software. The TCP was aligned with the centre intersection of 4 adjacent grid 

cells as in Figure 4-2 and the TCP height determined by measuring the distance 

between the pinch point of the chop rollers and the preform screen.  

Each deposition consisted of passing 1.8 m of carbon tow (~10 times greater than the 

chop roller circumference) at a predetermined feedrate whilst the robot was stationary. 

Photographs of each deposition were taken using a high resolution digital camera 

(tripod mounted for consistency) and subsequently imported into AutoCAD 2005 

where the preform screen gridlines were used to scale the image. Once calibrated, 

vector lines were manually drawn in the position of each fibre segment in the image. 

In the case of overlapping fibres – as long as a fibre end was visible an accurate 

estimation for fibre orientation was feasible. Position and orientation data for each 

vector line is relative to the projected TCP (PTCP) and the positive x’ axis 

respectively (Figure 4-2). Data for each line is then exported to a spreadsheet for 

further processing. 
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The cone base centre point was located by averaging the midpoints of each vector 

line, essentially calculating the centre of mass for the deposited fibre stack. The 

degree of spread from the mean midpoint location was attained statistically, dictating 

the projected cone boundary and fully defining the spray cone domain relative to the 

TCP. Segment orientations were sorted into a discrete frequency distribution in the 

range of ±90º about the positive x’ axis using 18 classes (each frequency bin equating 

to 10°). 

 

 
Figure 4-1: Coordinate system convention used for process modelling. 
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Figure 4-2: Photograph of a static deposition of fibres illustrating the spread of fibre segments around the 
PTCP. White lines are drawn on each segment in AutoCAD to obtain orientation and position data. 

A method for automating the detection of fibre location and orientation is presented 

by Mather et al. [112] using an image analysis technique in MATLAB. Although the 

software showed potential; processing images of high throughput depositions, as is the 

case here, is limited due to poor segment edge definition and multiple instances of 

overlapping segments. Manual detection was preferred to allow for more sophisticated 

interpretation and informed decision making in determining segment location and 

orientation. 

4.2.2. Design of experiments 

An experimental feasibility study was conducted to determine the process parameters 

which affect spray cone geometry with four variables identified: tow size, fibre length, 

fibre speed and TCP height. Range bounding and intermediary values for each 

variable were chosen to represent typical DCFP operating conditions, summarised in 

Table 4-1. The range of tow sizes tested includes the entire range of reinforcement 

material forms available during the project listed in Table 3-1. A fibre length of 10 

mm was chosen as a lower bound value because smaller fibre lengths suffered from 

excessive fragmentation where the integrity of the fibre bundle diminishes, making it 

difficult to accurately determine segment count and location. For the upper bound 

value, the knife roller installed in the deposition head can cut segments up to 180 mm 

in length. However, during the feasibility study segments of this length had an 
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undesirable tendency to fold leading to excessive in-plane distortion. This would 

severely impact mechanical performance due to inefficient stress transfer between 

fibre and matrix and was therefore omitted from the study with the next size down (90 

mm) selected as the limiting value. The maximum fibre speed for this experiment (3 

m/s) was chosen based upon achieving reliable and repeatable deposition across all 

fibre length and tow size combinations. Slower feedrate values of 1 m/s and 2 m/s 

were included to assess the effect on the location of the cone centre point. For TCP 

height, 300 mm is a typical value used in preform manufacture to encourage even 

fibre coverage [56]. For instances where this is unfeasible due to three-dimensional 

part profiles, geometric features or robot reach, a lower value of 100 mm was also 

studied. 

Table 4-1: Process parameters and corresponding values investigated for random spray characterisation. 

Process parameters Units Values investigated 
Tow size - 3 K, 6 K, 12 K, 24 K 

Fibre length mm 10, 30, 90 
Fibre speed m/s 1, 2, 3 
TCP height  mm 100, 300 

 

A full factorial experimental design for the factors and levels outlined in Table 4-1 

was conducted resulting in 72 unique depositions, providing a thorough investigation 

into the random spray process. Each unique deposition was repeated a further two 

times for additional data and to assess repeatability.  

The experiment was replicated for aligned depositions where an alignment 

concentrator was fitted to the deposition head to mechanically induce directional bias 

to chopped segments. The distance between the bottom of the concentrator and the 

preform screen was fixed at 50 mm (equating to a TCP height of 110 mm) after 

manufacturing trial preforms. Alternative distances were investigated with fibre 

blockage and fibre bed disruption culminating from distances too close to the screen. 

Conversely, noticeable degradation in alignment levels was experienced as the 

distance increased negating the benefits of using the alignment concentrator. A 110 

mm TCP height produced reliable highly aligned depositions and was subsequently 

used for preform manufacture as in Chapter 3. During the feasibility study it was 

visually apparent that the concentrator was ineffective in orienting 10 mm fibre 

lengths due to the fixed concentrator plates being set 11 mm apart to accommodate the 
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width of 24 K tows. Chopped segments were able to rotate between the plates leading 

to low levels of alignment; therefore an intermediate fibre length of 60 mm was 

investigated instead. The complete list of factor levels used in the alignment 

characterisation study is presented in Table 4-2. 

Table 4-2: Process parameters and corresponding values investigated for aligned spray characterisation. 

Process parameters Units Values investigated 
Tow size - 3 K, 6 K, 12 K, 24 K 

Fibre length mm 30, 60, 90 
Fibre speed m/s 1, 2, 3 
TCP height  mm 110 

4.2.3. Results and discussion 

4.2.3.1. Random deposition 

The most significant observation for the random spray characterisation experiment is 

that in each case the spray cone centre point (fibre stack centre of mass) was located 

rearwards (-x’) of the PTCP. This is due to a bias applied by the chopping mechanism 

where the knife roller is situated behind the pressure roller in terms of position along 

the local head X’ axis. Figure 4-3 illustrates the effect of the chopping bias with the 

spray cone centre point moving away from the PTCP as TCP height increases. 

 
Figure 4-3: The effect on fibre distribution when increasing TCP height in isolation (12k, 10mm, 2m/s). 
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Minitab v.16 was used to analyse the effect of each factor in the full factorial 

experiment by performing a general linear analysis of variance (ANOVA). Mean fibre 

distance from the PTCP and fibre distribution to one standard deviation in the x’ and 

y’ directions were investigated separately. Figure 4-4 shows the mean fibre midpoint 

distance from the PTCP along the y axis. The main effects plot shows that fibre speed 

is relatively insignificant compared to the other three factors with tows size and TCP 

height having the greatest effect on location. The variation in mean fibre locations 

from the overall mean (-8.5 mm) is small however when the scale of a typical preform 

is taken into consideration. Boundary mean values (-5 mm and -12 mm) and the 

overall mean clearly indicates that a bias is applied by the deposition head resulting in 

fibres being sprayed off centre.  

A two-way interaction plot is presented in Figure 4-5 where it is clear that many 

interactions exist between the four variables investigated. Increasing any one variable 

with respect to another does not provide a predictable response in mean fibre location. 

For example the mean response for the three fibre lengths tested between speeds of 1 

m/s and 2 m/s show that 30 mm and 90 mm fibre lengths behave in a very similar 

manner approaching the PTCP as speed is increased. 10 mm fibre length depositions 

oppose this trend with the mean fibre location moving further away from the PTCP. 

Increasing the speed from 2 m/s to 3 m/s now shows depositions using 10 mm and 90 

mm fibre lengths responding similarly and opposite to the behaviour observed for 60 

mm fibre lengths. These types of interactions make it very difficult to have any 

confidence when trying to predict the response of mean fibre location when using 

intermediary values or values outside the scope of this designed experiment. 

Figure 4-6 shows the main effects plot for mean midpoint distance along the x’ axis 

from the PTCP. The factor which is responsible for the largest deviation from the 

PTCP is the TCP height. A further significant effect is also observed when increasing 

tow size from 12 K to 24 K. The mean distance from the PTCP for 24 K depositions 

was 11 mm – at least a factor of 3 lower than results for other tow sizes. When 

considering individual segment properties; heavier segments and segments with a 

larger geometric form would be expected to fall closer to the PTCP. This is not 

apparent when comparing 6 K and 12 K tows however. The spray bias applied by the 

chopping mechanism appears to be accentuated when increasing feedrate above 1 m/s 
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with a plateau between 2 m/s and 3m/s indicating that further increases in feedrate 

may not have any further influence on mean fibre locations. 

 

 
Figure 4-4: Main effects plot for mean segment midpoint location along the y’ axis. 

 
Figure 4-5: Two-way interaction plot for mean segment midpoint location along the y’ axis. 

Secondary interactions are shown in Figure 4-7. Although the main effects plot 

suggests that TCP height is the dominant factor with regards to mean fibre location, it 

is also apparent from the interactions plot that 24 K tows are affected less than other 
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tow sizes when changing the other factors investigated. The interactions plot confirms 

the complex relationships that exist between each factor as experienced for mean fibre 

location along the y’ axis. 

 
Figure 4-6: Main effects plot for mean segment midpoint location along the –x’  axis 

 
Figure 4-7: Two-way interaction plot for mean segment midpoint location along the –x’  axis 

As expected the distribution of fibres from the mean midpoint location was seen to 

increase in both the x’ and y’ directions with increasing TCP height in almost all 
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cases. This infers that as the deposition head moves away from the deposition plane 

the projected spray cone area increases. Figure 4-8 and Figure 4-9 present the main 

effects plots for dispersion from the mean to one standard deviation in the y’ and x’ 

directions respectively. TCP height is the dominant factor for fibre spread along the y’ 

axis and also has a significant effect along the x axis; however, increasing fibre length 

between 30 mm and 90 mm sees the largest variation in dispersion from the mean. 

Fibre spread increases linearly with fibre speed in both cases whereas tow size appears 

to have very little effect. The mean dispersion for all the treatments highlight that a 

greater spread of fibres exists along the x’ axis (ıx’ = 36 mm) than the y’ axis (ıy’ = 24 

mm). This suggests that the typical spray cone shape using the current deposition head 

design is elliptical rather than circular. Therefore, the generalised approach of using a 

circular spray cone shape utilised in other spray process models [53, 118, 159] is 

unsuitable. 

Further analysis of each recorded deposition concluded that a normal distribution 

provides a satisfactory fit to describe the dispersion of segments from the mean in 

both the x’ and y’ directions. An example of the statistical fit is provided in Figure 

4-10. Table 4-3 presents collated data for 3 K depositions which is used to define the 

geometric properties of the spray cone. The entire array of experimental data from the 

full factorial experiment is provided in Appendix B. 

 
Figure 4-8: Main effects plot for segment midpoint spread to one standard deviation from mean midpoint 
locations (y’ axis) 
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Figure 4-9: Main effects plot for segment midpoint spread to 1 standard deviation from mean midpoint 
locations (x’  axis). 

 
Figure 4-10: Fibre distribution from the mean midpoint location for a 12 K deposition (100 mm TCP height, 
10 mm fibre length). 
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Chapter 4. Process characterisation 

Table 4-3: Spray cone characteristics for 3 K tow segments. (* Projection angle values are explained in 
Section 4.2.4.2). Characteristics for 6, 12 & 24 K tow segments can be found in Appendix B. 

Fibre 
length 

Fibre 
Speed 

TCP 
height 

Mean fibre 
location 

Standard 
deviation 

Projection 
angle* 

(mm) (m/s) (mm) (mm) (mm) (degrees) 

   x’  y’ x’ y’ x’ y’ 

10 

1 
100 9.69 -7.69 12.40 12.90 

1.06 5.82 
300 30.74 -3.59 30.47 29.67 

2 
100 21.28 -9.56 14.92 13.21 

2.12 10.57 
300 55.13 -9.12 26.33 23.17 

3 
100 22.92 -10.55 17.37 14.36 

1.92 15.07 
300 82.13 -7.64 34.02 27.96 

30 

1 
100 7.71 3.91 25.33 19.31 

0.26 12.07 
300 68.69 -2.80 39.04 33.57 

2 
100 19.67 -7.61 19.80 10.43 

1.31 15.74 
300 87.38 -5.09 26.98 21.56 

3 
100 -1.99 -11.40 36.35 14.83 

0.86 13.70 
300 81.91 -1.18 36.98 35.58 

90 

1 
100 -7.36 2.34 51.04 21.63 

2.40 3.95 
300 25.45 -12.00 54.12 26.27 

2 
100 11.44 2.75 44.52 23.47 

0.63 10.85 
300 60.09 -6.81 63.88 29.74 

3 
100 -21.67 2.24 40.76 26.30 

1.60 12.38 
300 80.36 -19.11 78.45 44.94 

 

The final procedure to characterise fibre spray was to determine the distribution of 

segment orientations between ±90° about the positive x’ axis. It was observed that two 

types of distribution were common throughout the results; normal and uniform. For 

each treatment both distributions were fitted to a frequency density plot with the 

Kolmogorov Smirnov test employed to determine goodness of fit. A low significance 

level value (Į = 0.01) was used to compare with the test statistic to determine which 

hypothesized distribution was in closest agreement with the experimental distribution.  

All depositions using 10 mm fibre lengths could be adequately approximated to a 

uniform distribution. Treatments with 90 mm fibres followed a normal distribution 

with increasing levels of alignment experienced as TCP height was reduced to 100 

mm. For 30 mm fibre lengths, 24 K tows were uniformly distributed between ±90° for 

all fibre speed and TCP height combinations. For the other tow sizes a uniform 

distribution was only suitable for a fibre speed of 1 m/s. Faster rates of fibre ejection 

produced normally distributed fibre orientations. Orientation results for 3 K segments 

are presented in Table 4-4 with a complete set of results for each tow size in Appendix 

B. 
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Table 4-4: Fibre orientation distribution for deposition s utilising  3 K tow. 

Fibre 
length  

Speed  
TCP 

height  
Uniform 

distribution  
Normal 

distribution  
Mean  

Standard 
deviation  

(mm) (m/s) (mm)   (degrees) (degrees) 

10 

1 
100 Ɣ - - - 
300 Ɣ - - - 

2 
100 Ɣ - - - 
300 Ɣ - - - 

3 
100 Ɣ - - - 
300 Ɣ - - - 

30 

1 
100 Ɣ - - - 
300 Ɣ - - - 

2 
100 - Ɣ 5.17 36.65 
300 - Ɣ 0.61 43.63 

3 
100 - Ɣ -2.29 40.96 
300 - Ɣ 0.61 43.63 

90 

1 
100 - Ɣ 5.79 37.37 
300 - Ɣ 8.33 39.38 

2 
100 - Ɣ 6.95 38.96 
300 - Ɣ 3.06 42.09 

3 
100 - Ɣ -3.21 41.00 
300 - Ɣ -4.77 39.15 

 

The dominant factor affecting fibre orientation distribution was fibre length, the 

effects of which are clearly depicted in Figure 4-11 for a 24 K deposition. Longer 

fibre lengths have less time to rotate once released meaning that the inherent aligned 

state attained whilst processing the carbon tows through the deposition device is 

retained to some degree. As TCP height was raised to 300 mm the variance in 

segment orientation also increased for permutations following a normal distribution 

and remained uniform for all other treatments. Changes in fibre speed only appeared 

to noticeably influence the orientation distribution for treatments with 30 mm fibre 

length. 
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Figure 4-11: Frequency density plots for segment orientation with corresponding fitted distributions. Effects 
of increasing fibre length is clear, all other variables are kept constant (24 K, 100 mm TCP height, 1 m/s 
fibre speed). 

4.2.3.2. Aligned deposition 

Due to the close proximity of the alignment concentrator to the preform screen (50 

mm) fibre speed had very little influence on the mean fibre location relative to the 

PTCP. Alignment plates restricted the motion of chopped segments along the y’ axis 

with mean fibre locations within ±5 mm from the PTCP for all but one of the 

permutations (24 K, 90 mm). The mean fibre location along the x’ axis was found to 

be fibre length dependant with fibre ends contacting the preform screen behind the 
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PTCP before falling forwards. This resulted in the mean fibre location moving closer 

to the PTCP as fibre length increased. 

A large disparity exists between segment dispersion from the mean in the x’-y’  plane 

due to the 12 mm channel between alignment plates constraining fibre motion in the 

y’ direction. After averaging all the treatment results, ߪത௫ᇲ is found to be a factor of 

four greater than ߪതݕԢ. This means that a slender elliptical spray cone is generated for 

aligned depositions at a TCP height of 110 mm.  

In previous studies, levels of alignment were found to increase with tow filament 

count and fibre length [54]. This trend was observed for fibre length; however, 

alignment performance was less sensitive to tow size for long fibre lengths (90 mm) 

and was found to deteriorate using shorter fibres (30 mm) due to tow filamentisation 

(Figure 4-12). Peak levels of alignment were achieved processing 24 K, 90 mm fibres 

with 90% of fibres oriented within ±10º of the desired direction. 

A Laplace distribution (double exponential distribution) was used to approximate 

fibre orientation with a normal distribution fit proving inadequate, agreeing with 

previous work conducted by Harper et al. [54]. For each treatment, segment 

orientations were reduced to angles between 0º and 90º and then mirrored about 0º 

resulting in a symmetrical distribution between ±90º. This increased the number of 

data points available to fit a Laplacian function as in Figure 4-12 using the following 

probability density function: 

(ߠ)݂  = ߙ ቆ݁݌ݔ[െ(|ߠ|െ [(ߚ/ߤ

ߚ2 ቇ (4-1) 

 

where µ is the location parameter, ȕ is the shape parameter, Į is the normalisation 

constant and ș is the fibre orientation in radians between –ʌ/2 and ʌ/2. Curve 

parameters and percentage of fibres between ±10o for each aligned deposition 

(averaged over the fibre speeds investigated) is presented in Table 4-5. 
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Figure 4-12: (Left) A  typical aligned fibre distribution plot with fitted Laplacian curve. (Rig ht) Fitted 
orientation distribution curves for 30 mm fibre lengths. 

Table 4-5: Orientation distribution parameters for all tow size and fibre length permutations considered for 
alignment characterisation. 

Tow 
size 
(K) 

Fibre 
length 
(mm) 

Normalization 
constant (Į) 

Location 
parameter (µ) 

Shape 
parameter (ɴ) 

Fibres 
between 
±10° (%) 

3 30 1.20377 -0.4513 0.1814 60.2 
3 60 1.03247 -0.3238 0.1387 51.7 
3 90 1.03579 -0.3184 0.1362 88.3 
6 30 1.23382 -0.4181 0.1664 55.3 
6 60 1.09016 -0.3483 0.1458 81.3 
6 90 1.05147 -0.2541 0.1080 89.7 
12 30 1.11827 -0.7643 0.3175 47.3 
12 60 1.10112 -0.3807 0.1587 75.0 
12 90 1.08280 -0.3173 0.1332 75.1 
24 30 1.09635 -1.3386 0.5752 31.1 
24 60 1.05475 -0.4325 0.1345 82.4 
24 90 1.09003 -0.1364 0.0571 90.0 

4.2.4. Spray cone modelling 

4.2.4.1. Modelling schema 

Due to the complex interactions that exist between the four factors investigated, most 

likely arising from stochastic spray behaviour, it is unfeasible to produce a predictive 

model which can define spray cone geometric parameters with any confidence. 

Therefore a database containing spray cone characteristics was formed using the 

averaged results obtained from repetitions for each permutation. The database is 
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populated with information from both full factorial experiments for random and 

aligned depositions. 

Prior to preform manufacture, the material parameters tow size and fibre length are 

fixed according to preform requirements. This leaves fibre speed and TCP height as 

the only variables which can change during the spray process. Fibre speed is 

dependent on both preform property requirements and robot trajectory whereas TCP 

height is entirely governed by robot trajectory and tool geometry. The database 

structure is therefore designed around this parameter order so that the process model 

can extract spray characteristics efficiently by performing a closest-match routine to 

each variable. 

Tow size was seen to have a greater influence on the spray cone base centre point than 

fibre length (Figure 4-4 & Figure 4-6), consequently, the characterisation data is 

initially grouped by tow size and then by fibre length. The data can then be grouped 

further by fibre speed as this variable is less likely to change as frequently as TCP 

height for three-dimensional geometries. This leaves the spray cone characterisation 

data for each tow size, fibre length and fibre speed permutation stored as a function of 

TCP height. The database order is depicted in Figure 4-13 with the closest-match 

routine assessing each variable in turn to generate the appropriate spray 

characteristics. 

 
Figure 4-13:  A diagram showing the execution order of the closest-match routine to extract spray cone 
geometry and segment orientation based upon tow size, fibre length, fibre speed and TCP height. 
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4.2.4.2. Determining spray cone characteristics 

Figure 4-14 illustrates the response of mean fibre location as TCP height is increased 

for three separate variable permutations. Tow size and fibre length are held constant in 

this case (12 K, 10 mm) with the three data series representing different fibre speeds. 

A linear fit appears to provide a good approximation to the mean response in both 

directions and is tied through the origin. Figure 4-14 is representative for all tow size 

and fibre length combinations. The linear approximations in effect represent the spray 

cone centrelines in the x and y directions – finding the inverse tangent of the linear 

gradients provides the spray cone angles (įx’, įy’) used for process modelling in 

Chapter 6. Table 4-3 lists the spray cone angles for 3 K depositions and in Appendix 

B for other tow sizes. 

For segment distribution from the mean, a linear approximation between the two data 

points (TCP heights of 100 mm and 300 mm) for each series is used (Figure 4-15). A 

third data point (the origin) cannot be applied in this case as in Figure 4-14. The same 

approach is used to describe the distribution of segment orientations about the mean 

orientation for random spray. For aligned depositions the TCP height is always 

assumed to be 110 mm and therefore the aligned spray cone characteristics are not 

stored as a function of TCP height. 

 
Figure 4-14: The effect of increasing TCP height on mean midpoint location. Different fibre speeds are 
shown for 12 K 10 mm fibres. A linear fit provides a good approximation to the spray cone centre point 
along both  -x’  and y’ axes. 
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Figure 4-15: The effect of increasing TCP height on spread of segment midpoints from the midpoint mean. 
Different fibre speeds are shown for 12 K 10 mm fibres. 

For every combination of tow size, fibre length and fibre speed there are six spray 

cone characteristics stored in the database: spray angles (įx’, įy’), distribution of fibres 

from the mean (ıx’, ıy’), orientation distribution ıș (if the orientation distribution is not 

uniform) from the mean orientation ș. 

The process of simulating the randomised position and orientation of a fibre segment 

using the proposed database is described in Chapter 6. In summary, the spray angles 

are combined to generate a single spray cone centreline. The TCP height is then used 

to find the position of the spray cone centre point relative to the PTCP. Two random 

numbers are then generated to locate the segment midpoint in the deposition plane 

using the standard deviation values ıx’ and ıy’. A Box-Muller transformation is 

employed to transform a two-dimensional set of uniformly distributed random 

numbers to a bivariate normal distribution (Equations (4-2) and (4-3)). The simulated 

location for each fibre within the spray cone can then be found by scaling the 

normally distributed numbers by the fibre spread (to one standard deviation) 

depending on TCP height. 
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 ܼ௫ᇱ = ඥെ2݈݊ ଵܷ cos(2ܷߨଶ) (4-2) 

 ܼ௬ᇱ = ඥെ2݈݊ ଵܷ sin(2ܷߨଶ) (4-3) 

௫ᇱݏ  =  ௫ܼ௫ (4-4)ߪ

௬ᇱݏ  =  ௬ܼ௬ (4-5)ߪ

where Zx�,y� is the standardised score, U1,2 are uniformly distributed random numbers 

and sx’,y’ is the segment location from the mean in the in the x’-y’ plane. The segment 

orientation is either uniformly random or calls once more on the Box-Muller 

transformation to randomly generate an orientation using the mean ș and standard 

deviation ıș. An example of a fitted segment midpoint distribution is presented in 

Figure 4-16 for both x’ and y’ directions. 

 
Figure 4-16: Experimental segment distribution versus a fitted distribution using the Box-Muller 
transformation for 6 K, 30 mm fibres at 2 m/s and a TCP height of 100 mm. 

4.2.5. Conclusions 

Four variables were identified as the principle factors governing fibre location 

distribution and orientation during preforming; fibre length, fibre speed, tow size and 

TCP height. Full factorial experiments for random and aligned depositions were 

performed over a range of values for each factor representing typical DCFP operating 

conditions. TCP height was determined as the dominant factor in defining spray cone 

geometry for random fibre spray. Increasing height accentuated a bias applied by the 

chopping mechanism which resulted in almost all depositions accumulating behind 
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the PTCP (along the local negative x’ axis). Fibre distributions about the segment 

midpoint mean also increased in both the x’ and y’ directions with height thereby 

increasing the size of the virtual spray cone.  

An important observation was made with regard to segment orientation for random 

fibre spray. Processing fibre lengths of ≥30 mm gave rise to a directional bias 

meaning that a quasi-random deposition can no longer be achieved without orienting 

the gun on subsequent passes to alleviate this effect. This is an important 

consideration when designing spray strategies to achieving desired laminate 

mechanical performance. The directional bias can also be diminished by increasing 

TCP height and reducing fibre speed. 

Tight control over spray cone geometry was achieved using the alignment 

concentrator due to the constraints placed on ejected fibres. As a result of the slender 

spray cone profiles, accurate robot trajectory planning is required to produce 

homogeneous preforms. An optimised distance of 50 mm (110 mm TCP height) 

between the concentrator and the fibre bed was established through trial preforming 

operations where high levels of orientation could be achieved without disturbing 

deposited fibres. Orientation analysis showed that very high levels of alignment 

(>90% between ±10°) can be achieved whilst maintaining deposition rates comparable 

with typical random spray preforming. 

A modelling schema was also presented which structures the entire array of 

characterisation data into a database with the intention of using a closest match routine 

to find representative empirically derived data to suit simulation conditions. The data 

is structured in order by tow size, fibre length and fibre speed. Spray cone geometry is 

retrievable as a function of TCP height which is the variable most likely to change 

during 3D preforming. This approach was adopted due to the complex interactions 

existing between the four parameters investigated meaning that a predictive model 

was unfeasible. Whilst this method of characterising the deposition device requires an 

investment in terms of time, it is clear that a reduced DOE may have missed some of 

the parameter interactions and possibly led to incorrect trends being identified. 
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4.3. Fibre flight kinematics 

The deposition head characterisation study outlined a procedure to replicate fibre 

spray onto planar surfaces with knowledge of key process variables during simulation. 

To recreate fibre distribution for complex three-dimensional preforming other factors 

such as gravity and aerodynamic effects need to be considered. The initial trajectory 

of the fibre, from being released from the head, is determined by the head orientation 

and the four variables discussed in Section 4.2.2. The motion of the fibre is then 

dictated by aerodynamic drag and gravity which will ultimately determine final fibre 

locations on the tool surface; this section of work attempts to quantify these effects to 

develop a fibre flight model. 

4.3.1. Methodology 

This study comprised of two separate experiments. The first was a simple vertical 

fibre drop test to calculate drag terms for different tow and fibre length permutations. 

The second experiment involved processing the fibres through the deposition head 

positioned horizontally and recording the distance between the point of release and the 

landing site. The results from the second experiment were used to validate the drag 

coefficients derived from the drop test via a numerical fibre flight model. 

Test specimens were selected to represent typical DCFP process parameters using four 

tow sizes; 3 K, 6 K, 12 K and 24 K cut to four lengths; 30 mm, 60 mm, 90 mm and 

180 mm. The tow segments were released from a height of 4.34 m in a stable 

environment with the descent time recorded. The average descent velocity was 

calculated to find the resulting quadratic drag term. The quadratic drag equation was 

employed due to observed turbulence and relatively high speeds (>2 m/s) encountered 

when fibres are ejected from the deposition head. 

஽ܨ  = െ 1

2
 (6-4) ܣ஽ܥଶݒߩ

 

where FD is the drag force, ȡ is the density of air, v is the fibre velocity, CD is the drag 

coefficient and A is the reference area. The drag force can be determined assuming the 

fibre segment is in steady state where: 
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 ݉݃ െ ஽ܨ =  0 (4-7) 

 

During the experiment it was observed that fibres tend to fall in either a tumbling 

motion with angular momentum (bluff body) or close to vertical along the fibre axis 

(streamlined) (Figure 4-17). This adds significant complexity in trying to establish a 

consistent value for the reference area A therefore a value for the combined drag-area 

term CDA was calculated – knowledge of the independent drag coefficient is 

unnecessary in context to creating a fibre flight model. 

ܣ஽ܥ  =
ଶݒߩ2݉݃  (4-8) 

 

 
Figure 4-17: A diagram of bluff body and streamlined orientations which define segment descent behaviour. 

 
Figure 4-18: Free body diagram of the forces and velocity components acting on a tow segment during flight 
in the plane of motion. 

A numerical model was developed to simulate projectile motion derived from the free 

body diagram in Figure 4-18. The fibre trajectory, after being released from the 

deposition head, was determined by considering motion in the horizontal r and 
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vertical s directions individually. The quadratic drag force in Equation (4-6) resolves 

along both axes as follows: 

௥ܨ  = ߠݏ݋ܿ  ,ߠݏ݋஽ܿܨ ൎ ௩ೝ௩   so  ܨ௥ = ஽ܨ ቀ௩ೝ௩ ቁ (4-9) 

௦ܨ  = ߠ݊݅ݏ  ,ߠ݊݅ݏ஽ܨ ൎ ௩ೞ௩   so  ܨ௦ = ஽ܨ ቀ௩ೞ௩ ቁ (4-10) 

 

Substituting ܾ =  
ଵଶܥߩ஽ܣ   so that   ܨ஽ = െܾݒଶ: 

௥ܨ  = െܾݒଶ ቀݒ௥ݒ ቁ = െܾݒݒ௥ (4-11) 

௦ܨ  = െܾݒଶ ቀݒ௦ݒ ቁ = െܾݒݒ௦ (4-12) 

 

Resolving the forces along r and s gives: 

 ݉ܽ௥ = െܾݒݒ௥ (4-13) 

 ݉ܽ௦ = െܾݒݒ௦ െ݉݃ (4-14) 

 

Substituting ݒ = ඥݒ௥ଶ +  ௦ଶ and rearranging gives the following closed formݒ

expressions for the segment acceleration along r and s: 

 ݀ଶݐ݀ݎଶ =
െܾݒ௥ඥݒ௥ଶ + ௦ଶ݉ݒ  (4-15) 

 ݀ଶݐ݀ݏଶ =
െܾݒ௦ඥݒ௥ଶ + ௦ଶݒ െ݉݃݉  (4-16) 

 

The solutions for vr and vs and position along r and s were solved numerically using 

the Euler method with a 0.001 s time step. The adopted Euler method was written in 

the C# programming language specifically for this task.  

The second experiment involved positioning the deposition head so that segments are 

ejected parallel to the datum surface at an initial height of 0.4 m (Figure 4-19). The 

same tow size and fibre length permutations were processed from 1.8 m lengths of 

carbon tow at an initial fibre speed of 2 m/s. A grid of 20 x 20 mm cells was 
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positioned on the datum surface to accurately locate the deposited tow segments using 

the same image analysis outlined in Section 4.2.1 to find the mean segment midpoint 

location and the distribution from the mean to one standard deviation. The results 

from the second experiment were compared with predicted fibre locations output from 

the numerical model using CDA values calculated from the first part of the study.  

 
 

Figure 4-19: (Left) Schematic of the experimental setup (Right)  with the 20 mm by 20 mm grid in place to 
accurately locate each deposited segment using image analysis techniques outlined in Section 4.2.1. 

4.3.2. Results and discussion 

Table 4-6 presents the CDA terms calculated from the drop test using Equation (4-8). 

As anticipated CDA values for the 12 K and 24 K segments are significantly larger 

than for 3 K and 6 K segments due to larger cross sectional areas in each of the 

segments principle axes. The predicted landing positions along with experimental data 

obtained from the second experiment are presented in Figure 4-20. The error bars for 

the experimental data series represent the dispersion of fibres from the mean location 

to one standard deviation. 

The quadratic drag model significantly underestimates the distance travelled by each 

segment. Predicted values are ~50% of the observed mean midpoint locations for all 

tow size and fibre length permutations. However, the relationship between predicted 

distances for each permutation correlates well with experimental results which share 

similar trends.  
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Table 4-6: CDA terms derived experimentally for each tow size and fibre length permutations. 
* denotes the two-component CDA terms obtained to increase the accuracy of the numerical model. This is 
explained later in the text. 

Tow size 
Fibre length 

(mm) 

Segment 
mass (kg) 

(x10-5) 

CdA (m2)  
(values from initial 

drop test, x10-4) 

CdA1* 
(m2) 

(x10-4) 

CdA2* 
(m2) 

(x10-4) 

3 K 

30 0.6 0.64 0.72 0.32 
60 1.2 1.01 1.54 0.45 
90 1.8 1.74 2.04 0.50 
180 3.6 2.60 3.10 0.71 

6 K 

30 1.2 0.79 0.96 0.39 

60 2.4 1.33 1.79 0.51 

90 3.6 1.93 2.81 0.66 

180 7.2 2.52 3.78 0.91 

12 K 

30 2.4 1.86 2.48 0.86 

60 4.8 4.06 5.27 1.70 

90 7.2 4.88 6.27 2.11 

180 14.4 6.66 8.92 2.92 

24 K 

30 4.8 2.01 2.71 0.65 

60 9.6 4.44 5.44 1.23 

90 14.4 6.56 8.34 1.60 

180 28.8 8.54 12.70 2.01 

 

By observing the flight of the fibre segment once ejected from the deposition head, it 

is clear that CDA values are too high for the horizontal component of drag force. The 

segment initially exits the head aligned horizontally and therefore has a very low 

frontal reference area. In the vertical direction the entire length of fibre is contributing 

to the reference area and will therefore provide a greater resistance to motion. To 

account for this the model was modified so that separate CDA terms were used along 

the longitudinal axis of the fibre, CDA1 and in the corresponding perpendicular 

direction accounting for the full length of fibre, CDA2. As previously discussed, two 

different mechanisms exist when describing tow segment descent during the vertical 

drop test. The longitudinal fibre axis was either aligned with the direction of travel or 

parallel to the ground revolving about this axis with angular momentum. The vertical 

drop test was extended to include 15 measurements for both characteristics separately, 

thereby achieving representative CDA values rather than the combined values gathered 

previously. The two-component drag-area terms are included in Table 4-6. Figure 

4-21 shows a vast improvement for model prediction by considering the orientation of 

the segment and the appropriate CDA1,2 terms in the r and s directions. Predicted 

values fall within experimental uncertainty for each tow size and fibre length 

permutation. 
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Figure 4-20: Comparison of experimental and predicted values for the distance along the r axis versus fibre 
length for each tow size. Predicted values using the numerical fibre flight model consistently under predict 
the final segment location by ~50%. 

 
Figure 4-21: Comparison of experimental and predicted values for the distance along the r axis versus fibre 
length for each tow size. Predicted values are obtained using the two-component drag term producing 
simulated values within the error margins of the experimental results. 

Plotting CDA1 and CDA2 terms against fibre length for each tow size investigated 

highlights a distinct relationship. Similar CDA values exist for 3 K and 6 K tows and 

likewise for 12 K and 24 K tows (Figure 4-22 and Figure 4-23). This is due to the 

similarity in segment aspect ratios within the two groups where 12 K and 24 K 

segments are at least twice the width of the 3 K and 6 K variants. Quadratic curves are 

fitted to each tow size data series to approximate CDA terms over the full range of 
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fibre lengths that can be processed using the UoN DCFP equipment. Table 4-7 

presents the quadratic equation coefficients for each tow size. 

 
Figure 4-22: Streamlined drag term CDA1 versus fibre length for each tow size approximated by quadratic 
polynomial curves. 

 
Figure 4-23: Bluff body drag term CDA2 versus fibre length for each tow size approximated with quadratic 
polynomial curves. 
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Table 4-7: Coefficients for the quadratic polynomial curves used to approximate the relationship between 
drag-area terms and fibre length in Figure 4-22 and Figure 4-23.  

Tow size 
(k) 

Quadratic coefficients 
CdA1 CdA2 ࢞૛ ࢞ R2 ࢞૛ ࢞ R2 

3 -0.0027 0.8772 0.84 -0.0062 2.8417 0.99 
6 -0.0031 1.0590 0.91 -0.0091 3.7535 0.98 
12 -0.0073 2.4380 0.99 -0.026 9.6250 0.99 
24 -0.0089 3.2128 0.99 -0.0197 10.635 0.99 

 

Figure 4-24 illustrates the effect of assuming zero drag or using a linear drag term 

compared with the adopted quadratic drag model for the predicted flight trajectory. 

For this particular case the zero and linear drag models overestimate the landing site 

by 20.1% and 14.4% respectively. 

 
Figure 4-24: TCP height versus distance along r axis (horizontal distance) for simulated 12 K, 30 mm 
segment trajectories using different drag terms. An experimental data point with error bars (one standard 
deviation) is provided. 

Further modifications are required to Equations (4-15) and (4-16) to account for 

variable deposition head orientations. It is assumed that the fibre segment is always 
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 ܾଵ,ଶ =  
1

2
 ଵ,ଶ (4-17)ܣௗܥߩ

 

However, to consider head orientations that are not coincident with the orthogonal 

directions r and s, new CDA values must be obtained. This is achieved by determining 

the orientation of the deposition head relative to the vertical axis within the plane of 

motion and then scaling the CDA values proportionately. For example, if the 

deposition head ejects segments vertically down to the tool surface the drag term 

along the s axis will be CDA1 due to the streamlined orientation. CDA2 would be used 

to resolve the segment velocity along the r axis. Turning the head through 90º so that 

the segments are now ejected along the r axis will switch the CDA values accordingly. 

Any orientations in between will be proportionally scaled to lie between these two 

bounding conditions as follows: 

 ݉ܽ௥ = െ൤൬1 െ ߠ
90
൰ (ܾଶ െ ܾଵ) + ܾଵ൨  (18-4 ) ݒ௥ݒ

 ݉ܽ௦ = െ൤൬ ߠ
90
൰ (ܾଶ െ ܾଵ) + ܾଵ൨ ݒ௦ݒ െ݉݃ ( 4-19) 

 
݀ଶݐ݀ݎଶ = െ 1݉൤൬1 െ ߠ

90
൰ (ܾଶ െ ܾଵ) + ܾଵ൨ ௥ଶݒ௥ඥݒ +  ௦ଶ ( 4-20)ݒ

 
݀ଶݐ݀ݏଶ = െ 1݉ ൤൬ ߠ

90
൰ (ܾଶ െ ܾଵ) + ܾଵ൨ ௥ଶݒ௦ඥݒ + ௦ଶݒ െ  ݃ ( 4-21) 

 

4.3.3. Conclusions 

A study into the flight characteristics of typical tow size and fibre length combinations 

used in DCFP has highlighted the need for an appropriate model for 3D preforming 

simulation. Two modes of flight have been identified; streamlined and bluff body, 

which significantly alter the corresponding drag-area term required for predicting 

fibre trajectory. Through observation, it was found that chopped segments exit the 

deposition head in a streamlined orientation with the initial direction of travel. By 
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using a two-component drag-area term, to account for segment orientation, a 

numerical model based upon projectile motion was developed providing reasonable 

approximations for all tow size and fibre length permutations investigated when 

compared to experimental results. A further modification was made to the governing 

projectile motion equations to account for variable deposition head orientations. This 

was achieved by scaling the two-component drag-area terms according to initial 

segment trajectory in the plane of motion. 

4.4. Chapter conclusions 

The objective of this chapter was to identify and understand the key process variables 

which affect fibre distribution during the preforming process. Four variables (tow size, 

fibre length, fibre speed and TCP height) were varied within typical operating bounds 

for DFP processes to characterise their influence on fibre location and orientation 

relative to the deposition device. Fibre spray was modelled to conform to a cone with 

segment midpoint location data, obtained from discrete depositions, used to define the 

cone geometry. TCP height was found to have the greatest effect on cone geometry 

for random spray with the projected spray area increasing as TCP height increased. A 

chopping bias was also accentuated with TCP height resulting in segments 

accumulating at varying distances from the target area. The other variables 

investigated also affected both fibre distribution and orientation, however, data 

analysis failed to identify consistent interactions between the process parameters 

required for predictive modelling. Therefore, it was suggested that the acquired 

characterisation data is stored in a database employing a closest-match routine to 

extract spray cone geometry and orientation data for process modelling.  

Characterisation of aligned fibre deposition showed that very high levels of alignment 

(>90% between ±10°) is achievable whilst maintaining deposition rates comparable to 

random spray preforming – a significant improvement over previous alignment 

methods used in DCFP. Levels of alignment were seen to increase with fibre length 

leading to slender spray cone profiles making accurate robot path programming 

essential to achieve homogeneous fibre distribution.  
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A study into the flight kinematics of ejected tow segments revealed that initial fibre 

orientation to the direction of motion has a significant bearing on flight trajectory 

predictions. A semi-empirical fibre flight model was developed with a two-component 

drag-area term to take into account the initial segment trajectory. Predicted deposition 

sites fell within experimental bounds of uncertainty for each tow size and fibre length 

permutation tested. 

The modelling procedures discussed in this chapter are used in the development of the 

DFP process model in Chapter 6. 
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Chapter 5. Process characterisation – fibre retention 

5.1. Introduction 

Many preforming processes are reliant upon air suction to provide retention of fibres, 

fibre bundles or textile broad goods. This method of retention is particularly prevalent 

in directed fibre preforming and other process derivatives. A large centrifugal fan 

evacuates air from behind a perforated screen with fibres retained on the screen by 

atmospheric pressure until a binder is applied and cured. Upon cessation of the air 

flow the shape of the preform is retained. Sizing of the fans for this type of process 

tends to be highly empirical and little data is available on the performance of various 

fibre types and on the factors that dominate performance. Of particular interest is the 

force available to retain the fibre bundles on the preform screen and thus the 

maximum thickness or areal density that can be deposited on vertical or complex 

surfaces. This section of work aims to identify the limiting factors in fan selection and 

to investigate various fibres and preform types to determine the maximum areal 

density and determine coefficients that can be used in analytical and computational 

fluid dynamics models. Furthermore the exact mechanism of fibre retention is not well 

understood – the relative contribution of atmospheric pressure derived force and 

aerodynamic bluff body inertial force is not known. 

5.2. Methodology 

This section provides details on the apparatus used to measure air flow characteristics 

and on the performance of the installed UoN DCFP vacuum fan. 

5.2.1. Air flow measurement 

BS EN ISO 5801:2007 provides the recommended apparatus geometry and a method 

for determining the mass flow rate for air drawn from free space - as is the case for the 

DCFP facility. Mass flow rate was measured using a conical inlet duct taking pressure 
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readings with respect to atmosphere at a certain point downstream of the inlet. Figure 

5-1 shows the geometry of the airflow measurement duct which was placed in the 

position normally occupied by the preform screen (Figure 5-2). To initially 

characterise the entire system (vacuum fan with upstream ducting including the 

plenum section) the differential pressure was measured with a FC0510 digital 

micromanometer and logged with respect to fan speed. The materials tested in this 

study were placed on a perforated screen located in the middle of the duct with a 

second micromanometer attached to the apparatus to measure pressure differential 

readings across the plate and fibre stack in order to generate mass flow/pressure drop 

curves. The mass flow rate was determined according to Equation (5-1). 

௠ݍ = ߨߝߙ ݀ଶ
4
ඥ2ߩ௨ο(1-5) ݌ 

qm, mass flow rate (kg/s) 

d, throat diameter (m) 

ȡu, upstream density (kg/m3) 

ǻp, pressure difference (Pa) 

Į, flow coefficient 

İ, expansibility factor 

 

 

where d = 0.2 m (Figure 5-1), Įİ = 0.94 in accordance with BS EN ISO 5801:2007 

and ȡu = 1.1839 kg/m3 at an ambient temperature of 25ºC. 
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Figure 5-1: Schematic cross section of the conical test duct used to measure mass flow rate. A perforated 
plate is placed near the middle of the duct which holds the material specimens. 

 
Figure 5-2: Experimental setup with the test duct positioned in place of the perforated screen. 

5.2.2. Fan performance 

A Halifax Fan Ltd Chinook No. 27 backward inclined centrifugal fan is used to 

provide a vacuum for fibre retention in the current UoN DCFP facility. The initial 

sizing of the fan was based on discussion with DFP system users which suggested that 

a fan of 10,000 m3/hr volume flow rate and 800 mmWG fan pressure would be 
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sufficient for a 1 m2 preform area. The fan speed is controlled by a 37 kW WEG 

CFW09 inverter. A filter system is used between the fan and the preform bed which 

comprises of 3 large F9 grade particulate bag filters with efforts being made to seal 

the entire system from air leakage. Figure 5-3 shows the pressure versus mass flow 

rate characteristics of the fan at various speeds using data supplied by the fan 

manufacturer. Figure 5-4 shows the absorbed power for both a fully open condition 

(no preform screen) and the fully blocked condition. The final operating power is 

determined by the extent of preform coverage and the size of the installed preform 

screen and thus lies somewhere in the region bounded by the two curves. Maximum 

suction level for a fan speed of 2500 rpm was measured at 5492 Pa which agrees well 

with the manufacturers’ scaled performance data reproduced in Figure 5-3 and 

suggests that some leakage in the system upstream of the test apparatus allows the 

generation of slightly higher static pressures at zero measured mass flow. 

 

 
Figure 5-3: Performance characteristics of the installed DCFP fan for various fan speeds given in rpm.  
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Figure 5-4: Absorbed power characteristics of the installed DCFP suction fan 

Table 5-1 summarises the wide variety of materials tested to provide an extensive 

cross section of fibrous architectures and mediums available for preforming. It was of 

particular interest to determine the effect of tow size i.e. the difference between a 

highly lofted low filament count random material and a 24 K unidirectional material 

with large stitches. It was also desirable to establish whether DCFP architecture is 

analogous to a fabric material as deposited areal mass increases. 

Specimens for the apparatus were prepared using a circular die cutter of 200 mm 

diameter to place over the top of the perforated plate in the experimental duct. Glass 

and carbon fibre rovings were chopped directly into the duct using the DCFP 

deposition device with an Archimedean spiral robot trajectory programmed to provide 

a uniform distribution. 

Pressure differential measurements for each material type across the range of areal 

mass values supplied in Table 5-1 were logged for fan speed increments of 250 rpm 

between 0 rpm and 2250 rpm. 
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Table 5-1: Details of the coupon materials and their corresponding lay-up configurations. * denotes supplier 
areal density data. 

Material 
type Supplier Designation 

Areal 
density* Tow size 

Tested 
orientations 

Tested areal 
density (gsm) 

Non-woven 
carbon fibre 

mat 

Technical 
fibre 

products 
TP-10 10 gsm 

Single 
filament CF 0° 10,20…120, 

200, 300, 500 

UD Non-
crimp fabric  

Sigmatex PC333 450 gsm 
24 K Toho 
Tenax STS 
5631 CF 

0° 
450,900,1350…

3600 

UD Non-
crimp fabric  

Sigmatex PC251 300 gsm 
12 K Toray 
T700 50C 

0º, 0/90º, 
0/90/±45º 

300, 600, 
900….3600 

UD Non-
crimp fabric  

Sigmatex PC278 200 gsm 
12 K Toray 
T700 50C 0° 

200,400,600...1
200 

Continuous 
filament 

random mat 
Vetrotex U750-375 375 gsm 

25/50 tex 
GF 

Random 
375, 750, 

1125…9000 

Chopped 
strand mat 

Owens 
Corning 

M534-450 450 gsm N/A Random 
450,900,1350…

4500 

Chopped 
glass roving 

(F3P) 
PPG 2001-600TEX - 600 tex Random 

32, 64, 96, 128, 
256, 384, 512, 
640, 960, 1280 

DCFP Sotira - - - Random 
1267, 2597, 

3947 

DCFP UoN 
24 K E STS 

5631 
- 24 K Random 939, 1951 

DCFP UoN 
3 K E HTA40 

E13 
- 3 K Random 

471, 1009, 
1509, 2040 

 

Two perforated preform screens (coarse and fine), manufactured from mild steel, were 

tested as representative of commonly used screen geometries. The coarse screen has a 

thickness of 2.5 mm with 4 mm diameter holes on a 6 mm diagonal pitch (40% open 

area). The fine screen has a thickness of 1 mm with 1 mm diameter holes on a 2 mm 

diagonal pitch (23% open area). 
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5.3. Modelling porous media 

The computational fluid dynamics code Fluent (Ansys Ltd) was used to model the 

behaviour of the perforated plates and preform layers. The recommended porous jump 

boundary condition is a 1D simplification of a porous zone and allows the user to 

specify coefficients which describe the performance of a perforated plate or a packed 

bed under various flow conditions. The pressure drop produced by a porous jump is 

described by Equation (5-2) which is a modified form of Darcy’s law including an 

inertial resistance term. 

 
ο݌ο݄ =  

ߙߤ ܷ +
1

2
 ଶܷଶ (5-2)ܥߩ

 

where ȝ is the laminar fluid viscosity, Į is the permeability of the medium, C2 is the 

pressure-jump coefficient, U is the air velocity normal to the porous face, and ǻh is 

the thickness of the medium [160]. 

5.4. Results 

5.4.1. Performance of perforated preform screens 

Figure 5-5 shows the mass flow versus pressure drop performance across the coarse 

and fine preform screens. As expected the screen with fine perforations provides 

significantly higher resistance to air flow than the coarse plate. A polynomial curve 

was fitted to the experimental data where the behaviour was seen to be entirely 

dominated by the pressure-jump coefficient C2 and not the permeability Į from 

Equation (5-2). An excellent quality of fit was obtained up to flow rates of 1 kg/s. For 

the coarse plate C2 = 2715 (R2 = 0.997) and for the fine plate C2 = 17117 (R2 = 

0.9999) implying that the pressure drop caused by the fine plate is approximately 6 

times that of the coarse plate. Table 5-2 summarises the limiting performance of the 

ducted system at each fan speed set point for a fully open and closed duct. 
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Figure 5-5: Characterisation of perforated plate performance comparing two different geometries. 

Table 5-2: Performance limits of the ducted system. 

 Open duct (no plate) Closed duct (sealed) 
Fan speed Mass flow rate Pressure drop 

(rpm)  (kg/s) (Pa) 
250 0.296 53.9 
500 0.647 223.6 
750 0.951 513.9 
1000 1.305 924.8 
1250 1.609 1451.4 
1500 1.928 2069.2 
1750 2.282 2804.7 
2000 2.563 3657.9 
2250 - 4560.1 

 

5.4.2. Performance of various fabric preform architectures 

The same curve fitting approach was employed for both the fabric and discontinuous 

fibre preforms using experimental data recorded at fan speeds up to 2250 rpm. For the 

majority of fabrics the quadratic curve fit (Equation (5-2)) produced a poor fit as areal 

mass increased. A high quality fit to experimental data was achieved using a quartic 

polynomial curve. For all materials tested the cubic and linear terms of the polynomial 

were over 10 orders of magnitude smaller than the quartic and quadratic terms and 

therefore considered negligible in determining pressure drop. Therefore the fitted 

curves take the form of a biquadratic expression as follows:  
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οܲο݄ = ܷܽସ + ܾܷଶ (5-3) 

 

Initial biquadratic expressions combined the effect of both the first layer of fabric and 

the coarse preform plate. Subsequent layers of fabric contribute to increasing b values 

as air flow reduces towards 0 m/s and material thickness increases. The quartic 

coefficient a does not follow a similar correlation with areal mass across the different 

materials. Figure 5-6 shows the superficial air velocity versus pressure drop 

performance of a single layer of fabric restrained by the coarse preform screen for 

selected materials. It should be noted that maximum pressure drop across the plate is 

achievable when the duct is completely sealed above the plate resulting in no air flow 

through the duct. Fitted curve coefficients for each tested fabric over the range of areal 

masses set out in the design of experiments is presented in Appendix C. 

 
Figure 5-6: Comparison of the resistance characteristics for the first layers of selected woven and non-woven 
fabrics. 

5.4.3. Performance of discontinuous fibre architectures 

Discontinuous fibre preforming consists of depositing fibres at a desired rate to 

achieve a target areal density. This differs to fabrics which build up part thickness 

through the addition of discrete layers. As fibres are deposited in DFP processes the 

areal density increases as a function of linear fibre speed. Therefore to efficiently 

manage the fan speed to provide enough retention pressure throughout the deposition, 
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a characterisation study was conducted using both 24 K and 3 K fibres. By controlling 

the speed of the fibres being processed through the deposition head, the number of 

chopped fibres could be determined and used to calculate the areal mass for each 

cycle. Figure 5-7 shows the pressure drop and superficial air velocity response as areal 

mass is increased for a maximum fan speed of 2250 rpm. The random deposition of 

carbon tow segments shares very similar characteristics with the non-crimp UD fabric, 

particularly for 3 K tows. To achieve equivalent areal densities, the segment count for 

3 K depositions is 8 times greater than when using 24 K tows. The increase in 

segment count results in improved coverage of the perforated plate – blocking open 

channels for which air can pass through. This explains the lower superficial velocities 

recorded up to 600 gsm and the faster rise in pressure drop before reaching a plateau. 

 
Figure 5-7: Change in pressure drop and superficial air velocity as areal mass is increased for 24 K and 3 K 
carbon tows and glass rovings. All fibre segments are 60 mm in length and fan speed is held constant at 2250 
rpm. The data for NC-300 UD fabric is included for comparison. 

5.4.4. Discussion 

The purpose of this study was to characterise the chosen materials so that for a given 

areal density the air velocity is sufficient for full retention on the preform screen. The 

pressure required to retain the material was calculated from the areal density (kg/m2) 

for one layer of fabric by dividing the weight of the fabric by the area of the specimen. 

A summary of the required pressure values for each fabric is presented in Table 5-3. 

In theory additional layers can be added until the maximum permissible pressure drop 
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at that particular fan speed is reached, however this is unrealistic as an undetermined 

amount of fabric layers is required to achieve a fully sealed state. This is due to the 

nature of the porous media, such as the materials investigated, allowing air to flow 

through the thickness preventing complete vacuum. The method of determining if 

there is enough available head pressure is to add a layer of material and observe the 

pressure difference between the current and previous layer. If the change in pressure 

drop between layers is less than the required pressure drop then this means the current 

fan speed is insufficient to hold the fabric in place. In this case the fan speed needs to 

be increased until a high enough head pressure is reached within the system limits. 

Table 5-3: The retention pressure required for selected fabrics and discontinuous fibre architectures. 

Material type / Composition Areal density (gsm) 
Required retention 

pressure (Pa) 
Non-crimp UD 0º 200 1.96 
Non-crimp UD 0º 300 2.94 
Non-crimp UD 0º 450 4.41 
Unifilo CoFRM  392 3.87 
Chopped strand 512 5.03 
Non-woven mat 10 0.10 

24 K DCFP preform 939 9.21 
3 K DCFP preform 471 4.62 

24 K DCFP segment spray 67 0.66 
3 K DCFP segment spray 84 0.82 

Glass roving spray 32 0.31 

 

Results suggest that for 300 gsm non-crimp fabric a maximum of 3 layers (900 gsm) 

can be retained by the fan at 2250 rpm whereas the glass CoFRM mat can be built up 

to over 9300 gsm. By combining the pressure drop and mass flow data with the fan 

curve a decision can be made on how many layers can be stacked before being 

constrained by fan performance.  

To calculate the required speed for a given fan specification an iterative model is 

proposed. Using manufacturer’s data for volume flow rate versus head pressure a fan 

curve can be modelled and scaled accordingly with respect to fan speed. Each ply of 

material deposited onto the preform screen can be represented by a resistance curve on 

the fan curve plot. The equations for each resistance curve is fitted as described 

previously. Initially, there are two resistance curves for the preform screen and the 

first layer of fabric, and a fan curve for the minimum operating speed. By intersecting 

the fan curve with both resistance curves two pressure drop values are obtained. If the 
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difference between the two pressure drop values does not exceed the required pressure 

drop value (Table 5-3) then the current fan speed is insufficient to achieve retention. 

The fan speed is then incremented giving a new curve equation with which to evaluate 

against the two resistance curves continuing until the required pressure drop 

difference is achieved.  

Due to the resistance curves being based on test specimens of relatively small size, up-

scaling is required to represent the final preforming scale for a given part. 

5.5. Scalability 

To achieve a target areal mass that can be fully retained under vacuum the size of the 

part and fan characteristics need to be considered. For a given areal mass and to 

maintain a constant superficial velocity across the preform bed, the volume flow rate 

of air is related to the square of the part area. Therefore if the part area is doubled then 

the volume flow rate needs to be increased four times to maintain superficial velocity. 

The limiting value for which can be determined by consulting the maximum speed 

plot on the fan curve. The fan curve also provides the maximum possible value for 

head pressure thus giving the limiting areal mass that can be deposited. The pressure 

drop is independent of area unlike the volume flow rate and therefore consideration of 

the two variables is important when sizing a fan for these types of applications. This 

study looked at characterising fabrics and the preforming screen rather than the 

observing the overall performance of the fan. To be able to relate the fan performance 

as areal mass is increased, to the manufacturers fan curve; additional manometers are 

required to measure the pressure and mass flow rates upstream and downstream of the 

fan according to BS EN ISO 5801:2007. This will also provide information on losses 

throughout the system. 

For this study however the materials tested have been characterised using pressure 

drop versus superficial air velocity plots which is area independent. The required 

pressure drop across the material is always constant for a given areal mass. To 

calculate the fan speed needed to provide sufficient pressure difference for a given 

part area and areal mass, knowledge of the quartic and quadratic terms discussed 
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earlier is required for the current layer and subsequent layer (or deposition masses if 

considering automated discontinuous fibre processes). 

5.6. Chapter conclusions 

Attempts have been made to characterise the air permeability of various fabrics and 

preform types to determine the fibre / fabric retention force on a perforated 

preforming tool. This permits the sizing of fan equipment and intelligent design of 

both tooling and deposition patterns. Results show that a wide range of air 

permeability is displayed for common preforming materials with the implication that 

different limits in areal mass exist for retention purposes. Individual carbon fibre 

segments were also characterised and shown to behave in a similar way to non-crimp 

UD fabrics even at low areal masses (300 gsm). 

An iterative approach to determining the required fan speed to fully retain material 

was proposed. By approximating the resistance curve for each layer of material 

experimentally, the resistance curves can be used in conjunction with fan speed 

characteristics data to increment fan speed until the required pressure drop is achieved 

to retain the next layer of material. It is anticipated that a maximum of ~900 gsm of 

non-crimp UD fabric (and DCFP type architectures) can be fully retained using the 

current UoN vacuum fan installation. This equates to low volume fraction laminates 

(~17% Vf for 3 mm part thickness) and highlights the requirement for either upgraded 

fan specifications or alternative forms of fibre retention. Additional testing is required 

to validate this theory by developing the experimental rig further in order to record the 

force required to remove a layer whilst under retention from the fan. 

Other forms of forms of retention should also be investigated for discontinuous fibre 

architectures, especially when targeting structural specification preforms of high areal 

mass (>2000 gsm). One possible solution could involve spraying the resin system 

simultaneously with the reinforcement. By selecting an appropriate resin system, such 

as used for prepreg materials, having undergone a staging cycle (giving a ‘tacky’ 

characteristic) the potential exists to retain fibres in-situ for 3D profiles. 
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6.1. Introduction 

Chapter 2 has highlighted the potential to increase manufacturing efficiency for 

various deposition processes through parameter optimisation using computational 

modelling techniques. The ability to recreate discontinuous fibre networks for three-

dimensional component geometry was lacking however. In this chapter a modelling 

schema for a versatile software package capable of simulating a typical DFP process 

is presented with specific details on modelling approaches and software 

implementation provided throughout. Whilst the modelling methodology is applicable 

to any DFP process, the software developed in this chapter is based around the UoN 

DCFP facility drawing upon characterisation data acquired in Chapter 4. 

6.1.1. Model requirements 

The rationale behind developing a process model is to streamline the route to 

manufacture for DFP processes from a conceptual design stage. Several requirements 

were identified in order for the model to succeed in this capacity: 

• The design procedure for creating a process model should consider each element 

or subsystem involved in the physical process to gain an understanding of the 

potential limitations and difficulties which may exist in formulating modelling 

strategies. 

• The principle mechanism for maximising the performance of parts manufactured 

using DFP processes is through the optimisation of reinforcement coverage. A 

meaningful method of assessing the quality of areal mass coverage is therefore 

required with the ability to modify process parameters to improve preform 

quality. 

• Once optimised, the preform architecture is to be made available for subsequent 

mechanical property prediction. This is achieved via an interface with commercial 

Finite Element Analysis software.  
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• Model validation is a necessity for confidence in simulation output which is 

achieved through characterisation studies and direct comparisons with empirical 

data. The majority of the validation work is summarised in Chapter 7. 

6.1.2. Previous modelling limitations 

Previous attempts at modelling DFP processes have generally focussed on microscale 

and mesoscale structures. Due to the stochastic nature of the material and the 

complexity in predicting mechanical properties based on fibre architecture, much of 

the work has been conducted on producing realistic RVEs. This approach by its 

definition means that the RVE is representative of the entire preforming area which 

can cause complications when determining appropriate RVE scales. This approach 

may offer a suitable solution for simple planar structures but their suitability for 

capturing the mass variability across genuine three-dimensional part geometry is 

limited. Through observation, it is significantly more difficult to optimise fibre 

distribution for three-dimensional preforming than for planar profiles due to various 

factors including; non-trivial robot trajectory planning, gravitational effects which 

affect final segment location and the difficulty in assessing preform quality. It is 

therefore questionable whether a mesoscale RVE is indeed representative over an 

entire preform structure for real part geometries. 

Other modelling attempts have included process-driven approaches such as a 

previously developed two-dimensional DCFP process model which was primarily 

concerned with specimen scale analysis [53]. Very basic spray cone characterisation 

coupled with rudimentary robot path generation has restricted its applicability to the 

physical preforming process; however, this has demonstrated the potential for 

replicating macroscale mass variability for complete structures. The work presented in 

this section builds upon ideas from the existing model [53] to resemble the physical 

process more faithfully.  
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6.2. Program development 

6.2.1. Basic framework 

The complete software package is implemented in C# via Microsoft’s Visual Studio – 

an integrated development environment (IDE). Visual Studio provides an extensive 

set of libraries and toolkits to aid efficient software development with built-in support 

for applications requiring a front end Graphical User Interface (GUI) to operate the 

underlying software engine. Managed DirectX is used for more intensive graphical 

rendering calling upon Direct3D, one of the APIs contained within DirectX. 

An object-oriented programming design philosophy is adopted which is well suited to 

modelling DFP processes. These types of processes can be decomposed into core 

functional subsystems which can be programmed as self-sufficient independent 

modules enabling explicit control of data flow during program execution. This is 

important for program stability and to permit revisions and expansions in module 

functionality without compromising overall program execution.  

To model the DCFP process each element of the process was examined to ascertain to 

what extent it can be feasibly modelled. Figure 6-1 illustrates the main subsystems 

involved for spraying a preform via DCFP with additional subsystems included which 

are required for computational simulation. The flow diagram serves as a visual 

representation of the program framework and the interactions that exist between each 

subsystem. Details for each part of the flow diagram are discussed in the following 

sections.  
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Figure 6-1: Process model flow diagram combining DCFP processes with simulation requirements. Orange 
blocks represent user-defined input files for the model. The top row of orange blocks signifies the required 
inputs to initiate execution of the process model. Final output is an input file for finite element analysis (blue 
block). 

6.2.2. Tool meshing and import of surfaces 

The typical modern day design approach takes advantage of parametric 3D CAD 

software to generate component geometry. The vast array of software available means 

that choosing a file format common across all platforms is important for program 

accessibility. A parametric model (in file formats such as STEP and IGES) gives a 
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precise representation of the geometry, however, each surface is independent making 

overall surface analysis for material coverage unnecessarily complex [123]. Graphics 

engine requirements mean that component geometry has to be expressed as a three-

dimensional surface consisting of triangular facets creating a tessellated model. The 

file format .STL is ideal in terms of both universal CAD software adoption and its raw 

geometry definition structure. It was found that in general 3D CAD packages only 

offer very basic mesh generation options such as the ability to alter chord height 

which controls element resolution. This is acceptable for simple planar profiles, but 

for geometries where features such as curves, rounds and holes are present element 

surface areas tend to vary significantly as in Figure 6-2 (left). Analysing coverage 

variation using this type of mesh would not only be computationally expensive but 

also of limited value when attempting to visualise mass distribution across the 

component surface. Significantly distorted element geometries can also give rise to 

errors in downstream FEA techniques. 

To achieve greater control over mesh generation it is suggested that CAD geometry is 

imported into meshing software where node seeding, element resolution, distribution 

and shape can be modified. Tailored seeding of element nodes improves the 

distribution of elements which is vital for effective coverage analysis described in 

Section 6.2.6. The mesh import routine was extended to accept the native .INP file 

format for ABAQUS/CAE which has been chosen in this thesis to generate meshes as 

well as for fulfilling FEA duties. Figure 6-2 (right) shows the improved mesh after 

processing the original .STL file in ABAQUS. 
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Figure 6-2: Comparison of mesh quality generated from identical surface geometry. The left image is a .STL 
file output from Pro/Engineer which offers very limited mesh control. Element area is affected by geometric 
features resulting in significant area variation. Mesh quality is improved using ABAQUS/CAE by 
controlling element seeding. The images are top down views of a car seat tool. 

6.2.3. Modelling robot dynamics and defining preform properties 

Modelling of the Fanuc RJ3iB robot used in the UoN DCFP cell is generalised to 

simulate any industrial 6-axis robot which can differ in the exact nature of their 

programming methodology but remain kinematically similar. The laboratory robot 

executes commands based on coordinates for 3D position and spatial rotations, 

movement control parameters and gun control instructions. Movement control 

parameters dictate point-to-point robot motion via a smoothing variable. No 

smoothing means that each path point is reached with the robot sacrificing speed for 

accuracy whereas increasing levels of smoothing allows the robot to calculate a 

trajectory to minimise speed variation but at the cost to positional accuracy. For the 

purposes of this model it is assumed that no smoothing is applied for simplicity.  

In this subsystem the intention is not to model the rotations of each robot joint but to 

store a local copy of the desired point location, tool centre point (TCP), and target 

velocity information programmed to the robot. The structured data file therefore 

consists of 3 coordinates (x, y and z in world space), 3 rotations (w, p and r about the 

local tool centre point axes (X’, Y’, Z’) respectively), target path velocities and 

deposition head control signals on a line-by-line basis. The data is stored in an XML 

file allowing for efficient parsing and editing via a custom user interface. 
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Figure 6-3: Diagram showing the process model coordinate systems. (X, Y, Z) is the world axes shown as 
centre of the virtual platen where X projects into the preforming area. The local deposition head coordinate 
system is also shown with relevant notation to describe head orientations. 

The robot program can be further modified by initiating a graphical representation 

where each program line corresponds to a manipulable spherical node (Figure 6-4). 

The nodes can be selected and transformed via user interaction with the imported 

mesh geometry overlaid for visual reference. Figure 6-4 shows an optimised robot 

path used in later sections to create 3D preforms. 
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Figure 6-4: Screen shot of the process model GUI for robot trajectory editing. The robot program has been 
read from an external XML file and converted to a graphical representation with each instruction line 
taking the form of a spherical node. Orthogonal view planes are rendered to aid accurate node placement. 

6.2.3.1. Robot kinematics 

Once the robot trajectory is defined, a set of kinematic equations are applied to 

account for accelerations as the path changes direction. The robot is assumed to be 

capable of accelerating at 20g with a peak velocity of 2 m/s. The distance between 

two point locations is calculated to obtain the stroke distance s as follows: 

௡ݏ  = ටοݔ௡,௡ିଵଶ + οݕ௡,௡ିଵଶ + οݖ௡,௡ିଵଶ  (6-1) 

 

As previously mentioned, motion smoothing is not utilised meaning that the robot 

accelerates from and to rest. Therefore the time taken to accelerate between points ta is 

found using the target velocity v: 

௔೙ݐ  =
௡ݒ

20݃ (6-2) 
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where g is gravitational acceleration (~9.81 m/s2). Total distance taken to accelerate sa 

and to travel at peak velocity sv is expressed as: 

௔೙ݏ  = ௔೙ଶݐ10݃  (6-3) 

௩೙ݏ  = ௡ݏ െ  ௔೙ (6-4)ݏ2

 

The elapsed stroke time at constant velocity tv is given by: 

௩೙ݐ  =
௡ݒ௩೙ݏ  (6-5) 

 

Thus giving a total stroke time ts and total cycle time tc: 

௦೙ݐ  = ௩೙ݐ +  ௔೙ (6-6)ݐ2

௖ݐ  = ෍ݐ௦೔௡
௜ୀଵ  (6-7) 

 

Storing this data for each path stroke means that a velocity profile can be mapped 

along the path lines with respect to time. At any given distance along the robot path 

the instantaneous robot speed, required for spray deposition simulation, and 

accumulated cycle time can be deduced. 

6.2.3.2. Preform design 

Several material and process parameters are configurable to satisfy preform design 

requirements prior to simulation (Figure 6-5). Material parameters include; tow size, 

number of tows, fibre length and target areal density. Other process variables 

requiring definition include; area of interest (component area), total robot path length 

and knife roller circumference. The UoN deposition head uses 180 mm circumference 

knife rollers to accommodate a large range of segment lengths from 7.5 mm to 180 

mm. Total path length is determined via the robot kinematics module by summing 

each path length. Component area Ap is calculated on generation of the part mesh 

object by summing the area of each element which are defined by three position 

vectors  (v1, v2, v3) so that: 
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௡࢛  = ૛௡࢜ െ  ૚௡ (6-8)࢜

௡࢜  = ૜௡࢜ െ  ૚௡ (6-9)࢜

௣ܣ  = ෎ 1

2
௡࢛| × |௡࢜

௡
௜ୀଵ  (6-10) 

 

These parameters are subsequently used to determine the location of where each fibre 

is likely to be released from the deposition head along the robot path. The calculations 

used for this stage resemble those used by the DCFP laboratory equipment; essentially 

simulating the function of a programmable logic controller. 

 

Figure 6-5: Screenshot of the preform design input form. The top section is used to set process variables 
such as microstructural properties and target areal density. The mid-section displays key attributes from 
the robot input and component mesh files. The bottom section displays the process outputs based upon 
calculations using the previous two sections.   
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To find the distance between deposition locations the calculations can be split into two 

parts. When designing a preform the key consideration is the desired areal density. 

This value dictates the required linear density of material for processing through the 

deposition head based on robot path length. Required linear density is a value for the 

mass of fibre deposited per millimetre of robot travel. 

 fibre mass target (g) = target areal mass × part area (6-11) 

 required linear density (g/mm) =  
fibre mass target

total path length
 (6-12) 

 

Tow size multiplied by the number of tows processed equates to the available linear 

density of reinforcement: 

 available linear density (g/mm) =  
tow size ×number of tows

15
 (6-13) 

 

Dividing the required linear density by the available linear density provides a density 

ratio: 

 linear density ratio =  
required linear density 

actual linear density
 (6-14) 

 

Finally, dividing the linear density ratio by the chosen fibre length results in a value 

for the number of segments deposited per millimetre of robot travel. Dividing by a 

further factor of 1000 and taking the inverse gives a figure for the number of microns 

travelled per deposition. The reason for converting to microns is for the benefit of 

iterative routines where positive integers are beneficial compared to fractions of 

millimetres. 

 distance per deposition (ȝm) =  
1000 ×  fibre length

linear density ratio
 (6-15) 

 

Fibre release locations are mapped out along the robot trajectory by incrementing by 

the distance found in Equation (6-15) from the initial seed point. This information is 
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fed back into the robot kinematics module to find the instantaneous robot speed at 

each release location and subsequently stored for spray simulation. 

It should be noted that segment release locations are assumed to be evenly spaced 

along a given path stroke even though the robot does not maintain a constant speed 

between points due to acceleration zones. This is because the laboratory setup is 

configured so that fibre feedrate is controlled proportionally to robot velocity in an 

effort to provide homogeneous fibre coverage. This means that release locations are 

independent of robot velocity explaining its absence from Equations (6-11) to (6-15). 

The instantaneous robot velocity is used in this case to calculate fibre feedrate only. 

6.2.4. Modelling fibre spray 

The deposition head simulation subsystem deals with the mechanics of fibre spray 

where the output is a projection path from the head to the tool surface for each 

released segment. A deposition head characterisation study was conducted in Chapter 

4 to gain an understanding of which process variables affect deposition. The results 

from this study are stored in a structured XML file describing the spray cone 

geometry via projection angles and bivariate mass distributions. An orientation 

distribution is also stored to fully define the ejected segment on the tool surface. 

With tow size, fibre length, TCP height and fibre speed known at each release point, 

the program cycles through the characteristics file applying a closest-match routine. 

The routine begins by matching tow size and fibre length; storing values for projection 

angles and segment spread as a function of TCP height for all available fibre speeds, 

as these two process variables change during preforming simulation. 

Prior to any fibre segment being released, the local orientation of the deposition head 

has to be accounted for. Figure 6-3 shows the local head coordinate system in relation 

to the world coordinate system. An initial fibre projection ray (FPR) projects down the 

local -Z’ axis of the chopping device as in Figure 6-6 (left). This projection ray is the 

idealised path a segment would take if there was no bias applied via the chopping 

mechanism. However, results from Chapter 4 indicate that a bias does exist. 

Depending on the values for the four process variables investigated in the 

characterisation study, two rotations are applied about the local X’ and Y’ axes 
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respectively to transform the FPR. This represents the cone centre line projecting from 

the deposition head TCP. 

Using the height-dependant segment distribution values, a virtual spray cone is 

created where a further two rotations are applied generating a randomised FPR as in 

Figure 6-6 (right). Several rotations are required for each segment released in order to 

fully define the FPR exiting from the deposition head. Because of this, a decision was 

made to utilise quaternions which are found to be computationally efficient in size and 

speed when compared with equivalent matrix representations for three-dimensional 

spatial rotations.  

  

 

Figure 6-6: Schematic diagram showing the rotations applied to the fibre projection ray (FPR). The left 
image has two rotations applied to the FPR which defines the cone centre line (red line). The right image 
shows a further two rotations producing a randomised FPR conforming to process parameter dependent 
spray cone characteristics.  
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The q1, q2 and q3 component of a quaternion describes the axis about which a rotation 

will occur. The q0 component is the magnitude of the rotation about this axis. 

 ܳ = ଴ݍ + ଵ݅ݍ + ଶ݆ݍ + ଷ݇ݍ = ଴ݍ + ,ଵ݅ݍ) ,ଶ݆ݍ  ଷ݇) (6-16)ݍ

 

where q0, q1, q2 and q3 are real numbers and: 

 ݅ଶ = ݆ଶ = ݇ଶ = ݆݅݇ = െ1 (6-17) 

 

It is convenient to think of the component q0 as a scalar and the imaginary part (q1i, 

q2j, q3k) as a vector v which means the quaternion takes the form of a scalar plus a 

vector: 

 ܳ = ݓ +  (6-18) ࢜

 

A pure rotation about the unit vector ࢜ෝ by an angle ș can be represented as: 

 ܳ = ݏ݋ܿ ߠ
2

+ ݊݅ݏෝ࢜ ߠ
2

 (6-19) 

 

The deposition head orientation is permitted to change during preforming with all 

rotations described in the robot program file. Initially the head orientation is described 

using an identity quaternion: 

 ܳ௜ = 1 + (0݅ + 0݆ + 0݇) (6-20) 

 

Rotations are applied in the same order as the laboratory robot with rotations about the 

Y’ axis first, the X’ axis second and finally the Z’ axis through angles p, w and r 

respectively. Therefore the first rotation can be expressed using Equation (6-19) as: 

 ܳ௬ = ݏ݋ܿ ݌
2

+ (0݅ + 1݆ + ݊݅ݏ(0݇ ݌
2

 (6-21) 

 ܳ௬ = ݏ݋ܿ ݌
2

+ ݆. ݊݅ݏ ݌
2

 (6-22) 
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Expressing rotations about the X’ and Z’ axes in the same manner results in a further 

two quaternions. To add rotations, quaternions are simply multiplied together in order 

– quaternions are noncommutative so care must be taken in multiplying them in the 

correct order. At each release location the head rotation Qh is therefore calculated as 

follows: 

 ܳ௛ = ܳ௜ܳ௬ܳ௫ܳ௭ (6-23) 

 

The next stage is to express the FPR as a quaternion. There are two rotations about the 

local X’ and Y’ axes which describes the cone centre line direction such that: 

 ܳ௖ = ܳோ௬ܳோ௫ (6-24) 

 

A final quaternion is required to apply the additional rotation to the FPR to produce 

the randomised fibre trajectory according to the normal segment distribution. Using 

the Box-Muller method a uniform set of random numbers in the interval (0, 1] are 

transformed into two independent normally distributed values. These values are then 

scaled by the height dependent distribution variables to generate a location point in the 

X’-Y’ plane (offset by TCP height). This gives a random fibre location (x’, y’, zTCP) 

relative to the TCP. To find the axis and angle by which to transform a projection ray 

from the cone centre line to the randomised fibre location some vector algebra is 

required. An initial vector vo is created: 

࢕࢜  = (0, 0,െ1) (6-25) 

 

The fibre location derived from the distribution values is expressed as a position 

vector vf: 

௙࢜  = ,ᇱݕ,ᇱݔ)  ஼௉) (6-26)்ݖ

 

Vector vf is normalised so that the axis of rotation can be found using the cross 

product rule as follows: 

ࢇ  = ௢࢜ ×  ෝ௙ (6-27)࢜
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The angle of rotation about axis vector a is calculated using the dot product rule: 

ߠ  = ௖࢜)ଵିݏ݋ܿ ή  ෝ௙) (6-28)࢜

 

Finally, this can be converted to quaternion notation as before: 

 ܳ௙ = ݏ݋ܿ ߠ
2

+ ݊݅ݏࢇ ߠ
2

 (6-29) 

 

All the information to construct the final randomised FPR is now available. The 

quaternion containing rotations for the head, cone centre line, and randomised fibre 

location within the cone is given by: 

 ܳி௉ோ = ܳ௛ܳ௖ܳ௙ (6-30) 

 

The FPR itself is a vector defined by an origin and a direction in 3D space. The origin 

is always the TCP location (x, y, z) and the ray direction vFPR is found by transforming 

vo as follows: 

ி௉ோ࢜  = ܳி௉ோ࢜௢ܳி௉ோିଵ  (6-31) 

 

Quaternions Qh and Qc can remain constant depending if the input parameters remain 

consistent as the fibre release location is incremented from point to point. The 

quaternion Qf is recalculated at each step however, providing the randomised fibre 

path within the spray cone. 

Two pieces of information now exist for each released segment; initial exit velocity 

and trajectory. Program execution is passed to the fibre flight model which further 

manipulates the FPR based on the factors and equations presented in Chapter 4. A 

small time step (0.01 s) is used to resolve the segment velocity and location in 3D 

space as it falls from the deposition head to the tool surface. At each time step the 

FPR is passed to a mesh intersection algorithm to ascertain whether the segment has 
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collided with the mesh surface. The fibre flight routine increments until a collision is 

detected with the resulting intersection point stored as the segment midpoint. 

6.2.5. Modelling airflow 

One of the features of the DCFP process is the use of a vacuum fan to expel air from 

underneath the perforated tool providing a means of fibre retention. The air from the 

surrounding environment is forced through the tool area by a centrifugal fan creating 

an airflow profile above the tool. Fibres being dropped from a height above the tool 

will be influenced by this air flow in addition to the gravitational effects taken into 

consideration via the fibre flight model. 

To take into account the flow of surrounding air through the porous tool, the DCFP 

cell can be conveniently modelled using a Computational Fluid Dynamics (CFD) 

software package. To develop the full field airflow the DCFP environment is imported 

into CFD software along with the tool geometry and permeability properties. This is 

described in greater detail in Chapter 5 for small coupon-scale characterisation. 

Once the system is solved for a particular set of boundary conditions the resulting air 

velocity profile can be exported as a three dimensional vector field covering the entire 

spatial envelope above the tool. As a segment is released from the deposition head 

there is a set of 8 vector nodes surrounding the segment centroid. By averaging and 

weighting the effect of the 8 vectors, dependent on node proximity, a resultant force 

can be included in the fibre flight free body diagram (Figure 6-7). 

 
Figure 6-7: Fibre flight free body diagram with the addition of a force provided by the resultant external 
airflow.   

For the purposes of this thesis, this stage is omitted from the model due to high 

computational expense and inefficiencies that arise from implementing the airflow 
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model. The methodology of interpolating surrounding vectors to find the resultant 

airflow induced force is applicable, but a more efficient method of locating 

neighbouring vector nodes on each time step is required. An additional reason for the 

omission of the airflow model is that a full characterisation study would need to be 

conducted to ensure that a reliable and robust method of modelling air extraction 

through different tool profiles is possible. Other challenging aspects include being 

able to accurately model the effects on airflow of partial fibre coverage during 

deposition as layers are built up. Chapter 5 demonstrated that tool perforations can be 

covered at low areal density levels significantly affecting the total pressure drop 

through the fibrous stack and tool thickness, therefore impacting retention capacity. 

6.2.6. Coverage routine and preform analysis 

So far the fibre spray subsystem has simulated segment descent and intersected the 

mesh creating a segment midpoint on the tool surface. Code execution now passes to a 

routine which assembles the segment to the required fibre length. The orientation of 

the fibre segment, relative to the local deposition head coordinate system, is randomly 

generated using the parameter dependent distributions derived from the 

characterisation study in Chapter 4. It was demonstrated that for random deposition 

the orientation distribution was found to be adequately approximated by using either a 

normal or uniform distribution depending on process parameters. For normally 

distributed orientations the Box-Muller transform method is used with mean and 

standard deviation values applied to scale the distribution accordingly. For aligned 

deposition the Laplace distribution was found to provide a close fit to experimental 

data in Chapter 4. To generate samples from this distribution a general purpose 

Acceptance-Rejection algorithm is used. Bounding values for the distribution are 

determined and tested against using uniformly independent random numbers within 

the range [-90°, 90º] to see if they fall within the probability function. The three 

orientation distribution curves employed by the model are presented as generic 

functions for illustrative purposes in Figure 6-8. 
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Figure 6-8: Generic orientation distributions used for random and aligned deposition. Values from a 
random number generator are scaled for depositions that can be approximated as a uniform distribution. A 
normal distribution is used for random spray where levels of alignment bias are expected – the Box-Muller 
transform is used to generate fitted values. The Laplace distribution is approximated for aligned deposition 
using an Acceptance-Rejection algorithm. 

6.2.6.1. Fibre segment assembly algorithm 

The coverage routine begins by projecting the segment (fibre bundle) midpoint 

vertically up (+Z axis) onto a two-dimensional X-Y reference plane above the mesh 

surface and incremented 1 mm in the direction of orientation. From this incremental 

step, an intersection ray is constructed to project vertically down (-Z axis) to intersect 

the mesh again. The new surface point represents the first portion of the fibre 

segment. This process is repeated by incrementing in the reference plane and 

projecting down to generate intersection points until half of the fibre length is reached; 

this is illustrated in Figure 6-9. The segment is then incremented in the opposite 

direction from the midpoint. Total segment length is found by summing the distance 

between each mesh intersection point with the entire process repeated for each 

subsequent fibre deposited. Figure 6-10 shows the difference between random and 

oriented spray modes on a 2D surface with intersections points visible along the 

segment lengths. 

A value for mass is assigned to each intersection point taking into account that the 

number of intersections will be one greater than the fibre length: 
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 mass per intersection (g) = 
tow size

15,000
·

fibre length

fibre length+1
 (6-32) 

 

For each intersection point the element identification number is retrieved from the 

mesh object and the intersection mass value is incremented to the element mass 

attribute. Once the spray simulation is complete, the total mass for each element will 

be proportional to the number of times it has been intersected.  

 

 

Figure 6-9: Schematic of how the intersection algorithm builds up a virtual tow segment. Half of the 
segment has been assembled on the tool surface. 

 

 
Figure 6-10: Close-up screenshots of sparse segment depositions using random (top) and aligned (bottom) 
orientation distributions. Segments of 30 mm length are used with the intersection points visible along the 
segment lengths.    
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This method for assigning segment mass distribution across the mesh is satisfactory 

for 2D preforming simulation; providing a fast route to evaluating macroscale fibre 

homogeneity. Problems occur on significantly contoured tool geometries however. 

Accuracy for each incremental intersection location diminishes for surfaces that 

deviate away from the X-Y plane. This can result in the iterative assembly routine 

completing prematurely due to the target fibre length condition being satisfied even 

though the number of intersection points indicates that the segment is underweight. 

This is demonstrated in Figure 6-11 where the target length is achieved in the top 

diagram (2D surface) but ill-defined in the bottom diagram (3D surface). The 

accuracy of segment mass distribution is lost due to the surface gradient resulting in 

the fibre assembly routine completing after only 7 intersections compared with 11 for 

the 2D case. Trial 3D part geometries were used during subsystem development with 

deposited mass approaching levels 20% lower than target mass values in extreme 

cases. Since the process model is primarily concerned with evaluating preform 

properties by examining areal mass variation, it was imperative to improve the method 

of fibre assembly for 3D surfaces. 

 
Figure 6-11: A diagram showing the potential problems with using the incremental intersection routine for 
heavily profiled 3D surfaces. The segment is built up to the correct fibre length in the top image on a 2D 
surface. The segment is poorly defined in the bottom image with fewer intersection points due to steep 
surface gradients deviating away from the X-Y plane. 
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The revised segment assembly method retrieves mesh element properties after the 

initial intersection. 4 position vectors (3 element vertices and the intersection point) 

are translated to global axes origin by subtracting the last element vertex from each 

point. The element normal vector is calculated along with the axis and angle of 

rotation to the X-Y plane – found using the same methodology set out in Equations 

(6-25) to (6-29). The resulting pure rotation quaternion is used to transform all 4 

points into 2D space. The same method is also applied to transform the rotations of 

the deposition head to 2D space thereby determining the positive x direction relative 

to the element so that the orientation of the fibre segment can be correctly assigned. 

The orientation determines the direction in which to incrementally assemble the fibre 

as was previously accomplished. 

Once incremented, a barycentric technique is employed to check whether the new 

intersection point remains within the element boundaries and then transforms the point 

back into 3D space. If the point was found to remain within the element boundaries 

then the 3D coordinate is stored as the next segment intersection point.  If not then the 

point is offset relative to the element plane. This is achieved by multiplying the 

element normal by a nominal value to ensure that the point is far enough away from 

the mesh. An intersection ray is sent back to the mesh via the inverse element normal. 

If the ray encounters another element in the mesh, the new intersection point is stored 

as the next segment point. The properties of the currently intersected element are 

stored and used to transform to 2D space as before. This process is repeated until the 

target fibre length is achieved. Execution of the routine is illustrated in Figure 6-12 

where the intersection points appear to traverse the element surface to accurately 

assemble the segment. This provides a robust method of distributing segment mass on 

contoured tool geometries with errors of <1.5% between target mass and simulated 

values. 
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Figure 6-12: An example of segment construction using the improved 3D intersection routine. The segment 
is assembled by traversing the element surface from the midpoint until it crosses the element boundary 
(left). A projection point is established by transforming the ‘overshoot’ point into a parallel offset plane and 
then projecting back to the mesh to locate the next element (right). The process is repeated until target fibre 
length is achieved.  

Once preforming simulation completes, the next phase is to meaningfully quantify 

levels of fibre coverage. Fibre mass per element and the corresponding areal mass are 

determined by: 

 element mass(g) =  number of intersections × mass per intersection (6-33) 

 element areal mass(gsm) = 
element mass

area of element
 (6-34) 

 

During preform design (Section 6.2.3.2) a value for target areal mass was required to 

calculate the fibre deposition rate. The areal mass for each element is evaluated 

against this global target areal mass value to determine the relative error per element. 

This leads to the creation of an error map which is scaled via user-defined limits to a 

colour palette. This allows visual feedback of areal density variation over the entire 

tool area. By visualising preform variability the user can modify robot path points and 

other process parameters accordingly to produce higher quality depositions. 

Additionally, fibre distribution is quantified by finding the coefficient of variation 

(CV) of reinforcement mass over the entire population of mesh elements. 

Thus far, a key assumption for coverage analysis is that using mass-weighted 

intersection points provides a suitable approximation to modelling the full fibre 
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segment on the mesh surface. The primary reason for adopting this method is that for 

3D meshes it is a relatively inexpensive procedure to simulate fibre deposition. A 

more realistic but complex assessment of coverage is achieved by assigning each 

segment an areal mass value (dependent on tow properties) and finding the true 

segment area within each element. Figure 6-13 is an example of how the mass 

distribution can differ.  The ‘idealised’ method of using segment area encounters over 

twice as many elements than the intersection method in this case. Element mass is 

proportional to segment area whereas element mass is proportional to the number of 

intersection points for the adopted method.  

 
Figure 6-13: An illustration of the number of elements encountered using the polygon coverage method (left) 
and the intersection method (right). In this particular  case the polygon coverage method interacts with over 
twice the number of elements. 

Clearly the mass-weighted approximation performance will be sensitive to mesh 

resolution, with divergence expected as element size decreases. Therefore, a 

validation study was conducted to understand the limitations of the adopted method 

and to attempt to formulate a suggested range for average element area through the 

use of planar meshes. This required developing a polygon clipping algorithm to 

evaluate the ‘idealised’ method (referred to as the polygon coverage method) in 

Figure 6-13 (left). 

6.2.6.2. Polygon coverage algorithm 

The routine uses the same segment midpoint and orientation values as the mass-

weighted method to allow for direct comparisons with identical fibre architectures. 

Using simple trigonometry the four corner points of each segment are calculated 

forming rectangles known as subject polygons. All mesh elements are stored as 
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triangles which are called clipping polygons. The aim is to determine whether subject 

polygons exist within any given clipping polygon and calculate the corresponding area 

occupied. By summing the subject areas the total mass within each element can be 

established. To achieve this, a modified Sutherland-Hodgman algorithm adapted from 

[161] is utilised to clip each subject polygon to each element boundary in turn.  

Elements are dealt with sequentially by cycling through all subject polygons and 

checking whether the segment vertices (subject polygon corner points) exist inside the 

clip line.  

 
Figure 6-14: Vector and vertex definitions used for the Sutherland-Hodgman polygon clipping algorithm. In 
the left image the first subject vertex is checked against the element clipping edge (vector u). S1 is 
immediately rejected and a line intersection test is conducted between S1 and S2 and the clipping edge 
(right).  

This is accomplished by creating three vectors; v, u and s as in Figure 6-14. Element 

edge vectors v and u are used to find the normal vector Q for the clipping polygon. 

Vector u is also the clipping edge. Subject vector s changes depending on which 

vertex is being tested. To determine if a subject vertex lies inside the element 

boundary, normal vectors of both sets of vectors are calculated using the cross product 

rule: 

۾  = × ܝ  (35-6) ܛ

ۿ  = ܝ ×  (36-6) ܞ

If the subject vertex lies inside the clipping edge then both normal vectors (P, Q) will 

be of the same sign. The model checks this by taking the dot product of both vectors; 

if the result is positive then the subject vertex exists within the clipping edge. In the 

case of Figure 6-14 the dot product would return negative which means that the vertex 
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is rejected by the algorithm and would move onto the next subject vertex. The 

algorithm executes by testing each vertex against each clipping face whilst also testing 

for any intersections between subject vertices and the clipping edge (Figure 6-14 – 

right). 

After testing against a clipping edge has completed, a fresh set of ‘clipped’ vertices 

are stored and passed to the next clipping edge for testing and repeated until the 

algorithm has traversed around the element boundary. This is visualised in Figure 

6-15 (top left) where s1 and s4 have been rejected by the first clipping edge. Two 

intersections have been detected with 4 vertices stored for the next clipping edge. If all 

of the segment vertices were to exist outside of the clip edge, the segment is 

immediately rejected and the algorithm advances to the next segment. 

 
Figure 6-15: A schematic showing the progressive clipping of a segment polygon to the element boundary 
(clockwise from top left). All subject vertices are tested against each clip edge in turn resulting in the shaded 
portion in the bottom left image. 
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All the clipped polygons are further subdivided into triangles for graphical 

representation and to determine polygon areas by summing the area of each triangle. 

This method gives a rigorous evaluation of segment distribution across a 2D area.  

In reality the tow segment footprint is affected by the processing route through the 

chopping device and is not necessarily a consistently uniform area. The widths of the 

subject polygons are based on empirically derived values for tow segment widths 

taken from an average of 30 processed samples for each of the four tow sizes 

investigated (3 K, 6 K, 12 K, and 24 K). Even though the polygon coverage method 

provides a close approximation to true areal coverage, mass distribution across a tow 

segment width is non-uniform and therefore segment mass is not spread evenly over 

the segment footprint. The cross section of a tow is generally elliptical with the 

greatest concentration of filaments towards the mid-plane of the segment. For the 

purposes of this study the mass distribution at filament-scale is neglected as the effect 

is insignificant when considering the scale of analysis. 

6.2.6.3. Mesh sensitivity study 

The majority of published work on FEA modelling for mechanical property response 

in discontinuous fibre composites has concentrated on the microscale and mesoscale. 

Fibre/matrix and fibre/fibre interactions have been the principle area of interest which 

typically requires elements of between 0.02 mm and 0.5 mm depending on desired 

RVE scale. However, topological tool areas suitable for DFP processes could range 

from experimental plaque scale (~0.1 m2) to several square metres depending on 

application. Using a 0.5 mm element would result in approximately 8 million 

elements for a tool surface area of 2 m2. Clearly this is impractical for FEA and for the 

current process modelling technique where issues surface within Direct3D; the upper 

limit for a single mesh object is ~65,500 facets. Tool meshes can be discretised and 

imported into the model but at a significant cost to computation time due to the spray 

simulation routine calling on a mesh intersection algorithm, testing each mesh object 

in turn. Therefore a compromise must be met between average element area and 

model accuracy; both in terms of geometrical representation in the process model and 

for subsequent FEA. 
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Each intersection in the adopted method takes the form of a mass-weighted node 

representing a discretised portion of tow segment. It was anticipated that the variation 

in simulated areal mass over a meshed area will diverge between the polygon 

coverage and intersection coverage routines as element area decreases. If meshes are 

too fine then there is a risk of obtaining anomalous values for element mass due to the 

inability to replicate mass distribution over segment widths. 

To establish the lower bound for element area a mesh sensitivity study was performed. 

Two tow sizes (3 K and 24 K) have been investigated due to the vast difference in 

aspect ratios and their similarities in geometric form to 6 K and 12 K tow sizes 

respectively. A preform area of 400 mm x 300 mm was sprayed targeting 3 different 

areal densities (100, 200 and 300 gsm). Identical fibre distributions were used to allow 

direct comparisons between the two methods with 5 repetitions performed for each 

permutation of variables. 

The performance of the mass-weighted routine was assessed by comparing element 

mass found using this routine against the ‘idealised’ polygon coverage values which 

gives a mass error value. In all cases the mean error for the entire mesh area is a small 

percentage (<2%) of the target areal density. This is as expected; even though 

variation exists on an element-to-element basis, the two methods will average out to 

give very similar global mass totals. The standard deviation of error values across the 

mesh provides a clearer picture of the relative performance of the intersection routine.  

In Figure 6-16 standard deviation is expressed as a percentage of target areal density 

to allow direct comparison between all experimental permutations. In each case the 

variation from element-to-element shows that mass distribution is highly sensitive to 

element area, particularly for the larger tow size. Small element areas coupled with 

increasing tow density leads to localised mass concentrations compared with results 

using the polygon routine. The effect is seen to reduce as target areal density is 

increased in both cases with variation between the two methods reducing by as much 

as 50% for 24 K segments. A tolerance level of 10% (depicted by the horizontal line, 

Figure 6-16) was chosen as a compromise between mesh detail and mass distribution 

accuracy which suggests an element area of 200 mm2 is acceptable for 24 K tows as 

long as the target areal densities exceeds 300 gsm. For 3 K segments a much finer 

mesh is permissible down to 20 mm2 for the equivalent areal density.  
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Figure 6-16: Element mass variation between the two coverage algorithms versus average element area. 
Mass variation is expressed as a percentage of target areal density for 3 K and 24 K depositions with a 10% 
threshold line used to determine element size limits. Mass distribution accuracy for the intersection 
algorithm is highly sensitive to element size for higher filament count segments. 

Figure 6-17 shows the number of elements encountered by the intersection routine 

normalised to the polygon method. For 3 K, 100 gsm preforms 96% of the same 

elements are occupied using 20 mm2 element areas. A mesh consisting of 200 mm2 

elements results in around 98% of the same elements encountered for depositions 

using 24 K segments at 300 gsm. 

 
Figure 6-17: Percentage of elements occupied using the intersection routine normalised to the number 
encountered by the polygon routine across different mesh densities.  
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For a reliable representation of mass distribution across the tool surface the 

conclusions from this study is that for slender aspect ratio segments (3 K and 6 K) a 

minimum mesh element size of 20 mm2 is recommended. For 12 K and 24 K tows a 

mesh element area of 270 mm2 should be used. In both cases at least 300 gsm should 

be deposited ensuring that the segment count is sufficiently high to reduce the effect 

of localised mass concentrations. In reality, final preform areal densities are not going 

to be as low as 300 gsm; this would equate to a fibre volume fraction of ~6% for a 3 

mm thick moulded laminate. This value is far more likely to represent a single layer 

during the spray process where it may be desirable to analyse the coverage 

performance of the layer in isolation. 

Whilst the Sutherland-Hodgman polygon clipping algorithm can be extended to 

process 3D contoured meshes, it is computationally more expensive than the 

intersection routine in its un-optimised state. Rather than commit significant time to 

extending, optimising and testing the routine, the intersection method is preferred 

providing an acceptable approximation to macroscale mass distribution. 

6.2.7. Preform areal mass variability 

The stochastic nature of spray processes result in inherently variable areal coverage. 

Previous work has investigated the effects of three microstructural parameters (tow 

size, fibre length and laminate thickness) on simulated areal density variation and 

experimental mechanical performance [53]. Simulated depositions showed that areal 

density variation was strongly correlated with laminate thickness and tow size. 

Increasing the target areal density from 0.75 kg/m2
 to 2.25 kg/m2 resulted in an 

average decrease of 31% in areal density variability. A decrease in tow size from 24 K 

to 6 K saw an average decrease of 50%. The mean effect of increasing fibre length 

was found to be significant at the lower areal density bound but generally less of a 

factor than the other two parameters. These correlations translated to clear trends in 

mechanical performance highlighting the need to understand and limit areal variation. 

Due to the change in modelling design philosophy and experimental set up for this 

thesis, it was important to perform a similar investigation into the likely effects on 

areal mass variation across virtual preforms. The same three parameters were studied 

with the experimental design shown in Table 6-1. 
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Table 6-1: The three factors investigated in the simulated areal mass variability study with their 
corresponding factor level values.  

Tow size Fibre length Target areal density 

(K) (mm) (gsm) 

3, 6, 12, 24 10, 30, 90 
200, 400, 800, 1200, 

1600, 2000, 4000 

 

The deposition head height was fixed at 300 mm from the mesh and an orthogonal 

robot path used to promote even fibre coverage. The spray area was oversized in 

relation to the tool mesh to remove any large mass variations that arise at spray 

boundaries. Each robot pass targeted a deposition of 200 gsm so for higher areal 

densities multiple passes were required. 

 
Figure 6-18: Areal density variation across the simulated preform versus target areal density for 3 K and 24 
K fibre architectures. An inverse power law relationship is observed in each case. 

The simulated results for the relationship between target areal density and mass 

variation follows a decaying power law in each case. As previously observed, 

increasing bundle filament count results in increases in mass variation for any given 

target areal density. This is due to fewer segments being sprayed on each robot pass. 

Figure 6-18 illustrates the potential increase in variation when switching from a 3 K 

tow to a 24 K tow whilst keeping all other process variables constant. For a preform 

designed for 30% Vf at 3 mm laminate thickness (~1600 gsm) the areal mass variation 

can be expected to rise by an average of ~130% for the three fibre lengths 

investigated.  
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Preforms consisting of 3 K tow will result in segment counts eight times greater than 

for the equivalent 24 K tow preform. The actual segment count can be estimated in the 

model by dividing robot path length by Equation (6-15): 

 number of segments deposited =
robot path length

distance per deposition
 (6-37) 

 
Figure 6-19: Areal density variation versus segment count for all tow size and fibre length permutations 
investigated. An inverse power law is observed giving a linear relationship using log-log axes. Simulations 
suggest that areal variation is strongly dependent on the number of segments deposited. 

Expressing preform areal density variation for all tow sizes and fibre length 

permutations with respect to segment count results in Figure 6-19. Model simulations 

suggest that areal density variation is strongly dependent on segment count and not on 

the specific microstructural parameters investigated. The literature review in Chapter 

2 highlighted the improvements in intra-preform CV for discontinuous fibre laminates 

when tow size and fibre length are reduced and laminate thickness is increased 

(keeping global fibre volume fraction constant). The net effect is an increase in the 

number of segments present in the composite thereby reducing the occurrence of 

unreinforced resin rich areas prone to failure initiation. The relationship in Figure 6-19 

further supports these observations. 

For this particular robot path strategy, attempting to limit the areal mass variation to 

5% across the 400 mm x 300 mm preform area would require ~65,000 segments. If a 

fibre length of 10 mm is selected, using 3 K tows would require an areal density of 
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least 1090 gsm (~20% Vf for a 3 mm thick plaque). This is comfortably within the 

operating range for both physical preforming and moulding operations. Increasing the 

tow size to 24 K means that the lowest global areal density value is eight times 

greater, due to the difference in tow linear density, which is unfeasible for a 3 mm 

cavity (this laminate thickness is used to create mechanical testing specimens in 

Section 7.4.2). Therefore preform quality would have to be sacrificed to accommodate 

larger filament counts unless the part thickness was substantially increased. 

If the use of larger tow sizes is desirable for reasons such as material cost and 

potential deposition rates, then the fibre length should be reduced to approach critical 

length to increase segment count. Other modifications to the spray process should also 

be considered to further improve coverage such as programming more complex robot 

paths by offsetting sequential orthogonal passes. Fibre filamentisation procedures 

have also been effective in decreasing intra-preform CV by splitting fibre bundles into 

lower filament-count forms [55, 87, 106]. Filamentisation can occur naturally during 

fibre spray (as a result of low levels of sizing or short fibre lengths) or induced 

mechanically; however, undesirable effects such as increasing preform loft and 

reducing permeability can negatively impact manufacturing cycle times and preform 

processability. The current iteration of the UoN DCFP deposition head tends to retain 

tow integrity during fibre spray, therefore low levels of inherent filamentisation is 

experienced. 

6.2.8. Iterative solution based on homogeneity 

The visualisation of fibre distribution and preform variability offers a useful 

mechanism of feedback to optimise process parameters based upon initial design 

criteria. As described in previous sections; three-dimensional fibre networks are 

graphically represented using fibre centrelines constructed from intersection points 

spanning the tool mesh. Intra-preform variability is illustrated in the form of a 

coverage map based on the difference in areal density between the local element 

domain and the average preform areal density. Areas which deviate excessively from 

the preform mean are identified according to a user-defined colour scale. Process 

parameters can then be modified to improve material distribution until preform mass 

CV requirements or other design criteria are met. In Chapter 2, work investigating the 
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optimisation of material distribution for paint spray process showed potential for 

automated techniques; however, severe limitations existed for complex 3D geometries 

such as unrealistic robot programs and large disparities between simulated and 

experimental data. The conclusion was that a heuristic approach would be viable if 

process simulations can be performed rapidly to simulate informed changes to process 

parameters. The current simulation software adopts this approach demonstrated by the 

following example. 

Figure 6-20 shows an iterative process to transform a simple planar robot trajectory, 

suitable for spraying flat plaques, into a 3D trajectory to spray the complex seat tool 

geometry. Deposition head orientations were also modified (not shown) to ensure the 

deposition head is always oriented towards the target mesh in an effort to reduce 

wastage (<6% for the final simulated preform). Figure 6-21 and Figure 6-22 show the 

resulting coverage maps and preform structures for the basic 2D robot program and 

the optimised program respectively using 6 K tows, 30 mm fibre length and targeting 

an areal density of 300 gsm. The initial simulation produced an inconsistent preform 

with unoccupied areas of reinforcement on the lateral bolster sections of the seat 

(Figure 6-21) leading to a preform mass CV of ~36%. With the revised robot program 

in Figure 6-22, the lateral bolster sections are successfully sprayed producing a more 

homogenous preform with a mass CV of ~20%. The return edges are still lean on 

reinforcement; however, the structural sections of the seat show improved coverage 

for a low target areal density. Comparisons between different tow sizes and target 

areal densities is summarised in Table 6-2 with the highest quality preform (14.7% 

CV) achieved using 3 K tows at 1611 gsm. Preforming simulation and coverage 

analysis completed in ~79 s for 3 K, 300 gsm depositions and ~415 s for a 1611 gsm 

preform. The fast simulation times allows for rapid optimisation of process parameters 

compared with conducting experimental trials. 
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Table 6-2: Comparison of preform mass CV values and wastage for different tow size, target areal density 
and robot program permutations. 

Tow size 
(K) 

Target areal 
density (gsm) 

Robot 
program 

Average areal 
density (gsm) 

Wastage 
(%)  CV (%)  

3 300 CS04 284.26 5.3 17.7 
3 1611 CS04 1537.62 4.6 14.7 
6 300 CS01 255.87 14.7 36.3 
6 300 CS02 213.68 28.8 34.3 
6 300 CS03 249.79 16.7 33.9 
6 300 CS04 290.69 3.1 20.0 
6 1611 CS04 1511.38 6.2 15.4 
12 300 CS04 271.76 9.4 25.7 
12 1611 CS04 1522.62 5.5 16.8 
24 300 CS04 288.37 3.9 32.7 
24 1611 CS04 1543.06 4.2 18.8 

 

 
Figure 6-20: Evolution in robot  trajectory planning for the car seat geometry. Black lines depict the 
continuous robot paths used to simulate different preforming strategies. (A) A simple trajectory commonly 
used for 2D preforming was employed to establish the preform baseline quality. (B & C)  The robot 
trajectory was progressively modified to conform to the tooling geometry with path lines added to spray the 
lateral bolsters with optimised deposition head orientations. (D) The robot trajectory used to produce the 
simulated preform in Figure 6-22 which is optimised for fibre coverage and to limit material wastage during 
preforming.  

 

(A) CS01 (B) CS02 

(C) CS03 (D) CS04 
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Figure 6-21: Initial preforming effort using a basic robot program, 6 K tows and 30 mm fibre length 
targeting 300 gsm. (Top inset) Single layer robot trajectory using North-South passes. (Top) Preform mass 
coverage map showing the variation of areal mass from the preform average. Clearly the deposition is 
unbalanced with very low levels of reinforcement in the lateral bolster sections. (Bottom) The simulated 
preform structure with visib ly poor coverage. The preform CV of mass is 36.3%.  
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Figure 6-22: Improved deposition strategy using the visual robot trajectory editor with the robot path 
extended to spray the lateral bolster sections directly (Top inset). The coverage map shows a more uniform 
distribution of reinforcement with only the return edges lacking fibre content. The process variables remain 
constant using 6 K tows, chopped to 30 mm fibre length targeting 300 gsm. (Bottom) The simulated 3D fibre 
network with an intra-preform CV of mass of 20.0%. 
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6.2.9. Finite Element Analysis output 

Further analysis of the simulated fibre network can be completed using FEA to model 

the mechanical response as a complete composite part. Analysis is performed in the 

commercial FEA package ABAQUS using an input deck generated from within the 

process model software. To capture the macroscale heterogeneous response of 

discontinuous fibre architectures the properties for each element domain is treated 

separately to neighbouring elements building upon concepts presented by Feraboli 

with the use of random RVE’s [154]. Two modelling approaches are provided; rule of 

mixtures (ROM) and classical laminate theory (CLT). The ROM approach is a 

simplistic route to mechanical property analysis calculating the fibre volume fraction 

within each element and assigning appropriate fibre and matrix properties. Properties 

within each element domain are assumed to be isotropic with fibre orientations 

disregarded. A more complex analysis is performed by applying CLT which takes into 

account individual fibre orientations. Each fibre is modelled as a unidirectional (UD) 

tape with the addition of a resin ply to achieve target laminate thickness. The input file 

supplies ABAQUS with model geometry, material definitions and history input data 

leaving boundary and loading conditions to be defined within ABAQUS prior to 

processing finite element data. 

6.2.9.1. Rule of mixtures 

The ROM approach is applied to each element independently using the element areal 

mass found using Equation (6-34) to calculate fibre volume fraction: 

 ௙ܸ௜ = ݉஺௜ ߩ௖ݐ௜  (6-38) 

where ȡc is the density of carbon fibre, mA is the areal mass and t is the thickness of 

the ith element. A linear elastic material model is applied to each element with 

Young’s modulus in the principle direction E1 and Poisson’s ratio v12 calculated as 

follows: 

= ଵ௜ܧ  ఏߟൣ ௙ܸܧ௙ + ൫1 െ ௙ܸ൯ܧ௠൧௜ (6-39) 

ଵଶݒ  = ൣ ௙ܸݒ௙ + ൫1 െ ௙ܸ൯ݒ௠൧௜ (6-40) 
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The Krenchel efficiency factor Șș for predicting the effect of fibre orientation on 

stiffness is taken as 0.375 for perfectly random orientations [162]. For simplicity the 

original nodal and element definitions used for geometrical representation in the 

process model are retained and reproduced as shell section elements (type S3) in 

ABAQUS. Mesh element resolution is limited by the findings from the mesh 

sensitivity study where element areas ≥200 mm2 are recommended for larger tow 

sizes (≥12 K) to avoid large localised mass concentrations for target global areal 

densities of ≥300 gsm. For smaller tow sizes (≤6 K) a finer mesh is permissible down 

to an element area of 20 mm2 spacing without affecting the accuracy of mass 

distribution. 

To avoid multiple unique material definitions for each element, the range of areal 

masses across the meshed domain are discretised into equal length bins. An arbitrary 

value of 20 bins is chosen where each element mass is evaluated and assigned to the 

closest mid bin value. 

To assess the tensile stiffness response using the ROM approach, a specimen scale 

mesh was generated for the process model (Figure 6-23). An area which covered 

twice the fibre length from the boundary of the area of interest (AOI) was sprayed. 

The resulting mass distribution was then imported into ABAQUS/Standard for static 

tensile testing. The specimen size was in accordance with typical experimental testing 

standards; width of 25 mm and gauge length of 120 mm, and pinned at one end with 

the other end loaded via a dummy node. A displacement boundary condition was 

applied to the dummy node and the resulting force recorded to calculate principle 

stress and tensile modulus. 
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Figure 6-23: (Top) Close-up screenshot of a random deposition with the line segments representing bundle 
centrelines. The corresponding mass coverage map is visible behind the fibre network highlighting the fibre 
rich/lean areas. (Centre) The specimen mesh imported into ABAQUS/CAE complete with material property 
definitions created using ROM. The greyscale depicts fibre volume fraction with darker elements 
representing areas of high fibre content. (Bottom) A sample result obtained from FE analysis with the 
specimen subject to a tensile load (applied to the right hand edge). The contoured image shows the strain 
distribution along the specimen. 

6.2.9.2. Classical Laminate Theory 

An alternative method to modelling the fibre segments distributed throughout the part 

is to treat each instance of fibre within each element as a ply of unidirectional material 

covering the area of the element. 

= ஺௣ߩ 
݉௙௣ ܣ௣ ݌,     = 1, 2, � , ݊ (6-41) 

 

where ȡA is areal density, Ap is the ply area (equal to the element area) and mf is the 

mass of fibre within each ply p. Each unidirectional ply will have the same material 

properties along its principle axis with the thickness of the ply proportional to the 

equivalent segment areal mass. The thickness is calculated by assigning a volume 

fraction to the fully impregnated tow segment. Using a value of 0.6 [146]: 
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 ௣ܸ =
௧ܸ௢௪௙ܸ௧௢௪ =  

݉௙௣ 
 ௙ (6-42)ߩ0.6

 

The thickness of the ply tp can be expressed as: 

௣ݐ  =
௣ܸܣ௣ (6-43) 

 

The ply principle axis orientation equates to the tow segment orientation relative to 

the global axes. Once all UD plies within an element have been assigned the 

remaining composite part thickness tr is assigned as an isotropic resin ply. 

௥ݐ  = ௖ݐ െ෍ݐ௣೔௡
௜ୀଵ  ( 6-44) 

 

where tc is the target composite thickness. The isotropic resin ply tr is halved and 

assigned as the surface plies of the composite element as in Figure 6-24. If the total 

segment ply thickness exceeds the cavity depth then the resin ply thickness is set to 

zero. This is caused by localised segment agglomeration which results in the local part 

thickness being greater than the tool depth. This is a concern during manufacture if 

experienced regularly across the tool surface with implications on pressure required 

for tool closure suggesting that the preform design volume fraction is too high. If the 

occurrence is infrequent then it is reasonable to assume that through preform handling 

and consolidation prior to moulding, the areas of excessive areal mass will go through 

some distribution phase to surrounding zones with lower areal mass. The process 

model software provides a percentage value for element ply stacks exceeding tool 

cavity depth with the addition of the fibre coverage map so that the user can make an 

informed decision of whether to proceed with property analysis or refine the 

deposition strategy. A sample FE output is presented in Figure 6-25 showing the strain 

distribution over the specimen length. High strain areas match low areas of low 

volume fraction in the top image, particulary at the specimen boundary. 
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Figure 6-24: A screenshot of a ply stack plot in ABAQUS for the element highlighted in the inset image. The 
two thick bounding layers represent resin-only regions modelled as an isotropic material. Each UD ply 
towards the middle of the composite represent individual impregnated tow segments using the laminate 
analogy. The banded lines on each ply signify the ply orientation. 

 
Figure 6-25: (Top) Close-up screenshot of a random deposition with the line segments representing bundle 
centrelines. The corresponding mass coverage map is visible behind the fibre network highlighting the fibre 
rich/lean areas. (Bottom) A sample result obtained from FE analysis using CLT based definitions with the 
specimen subject to a tensile load (applied to the right hand edge). The contoured image shows the strain 
distribution along the specimen.  

6.3. Chapter conclusions 

In this chapter a modelling schema to create realistic fibre networks for three-

dimensional preforms was presented. The proposed software package can import 

complex tool geometry along with the flexibility to define various process and 

material parameters to simulate the physical DFP process. The process model draws 
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upon deposition head characterisation data and fibre flight kinematic modelling in 

Chapter 4 to simulate the macroscale deposition process. The resulting preform 

structure is then analysed to determine the quality of reinforcement distribution in 

order to facilitate process parameter optimisation. 

The method adopted to assemble fibres was demonstrated and compared against a 

robust fibre coverage method and was observed to be sensitive to part mesh density. 

An element size of 270 mm2 for 12 K and 24 K preforms and 20 mm2 for smaller tow 

forms is suggested to provide close approximations to chopped segment mass 

distributions.  

A mass variability study was conducted for simulated 2D preform architectures where 

it was observed that variability is heavily dependent on the number of segments 

present in the structure. An inverse power law exists between areal density variation 

and segment count where for a 300 mm x 400 mm area (experimental plaque scale), 

~10,000 chopped segments are required to achieve a preform mass CV of ~10%. In 

terms of input process parameters this points to the usage of small tow sizes and small 

fibre lengths to improve preform quality and process repeatability. Repeatability and 

material uniformity is particularly important for design procedures when selecting 

these types of materials. An example of the proposed iterative preform design process 

for genuine 3D tool geometry illustrated the improvements in preform mass CV that 

can be realised through the optimisation of robot trajectory and material parameters. 

Two methods for mechanical property analysis were presented as a means of 

assessing the macroscopic performance of the final moulded component. A ROM 

based method homogenises each element within the component mesh taking the form 

of an isotropic material with properties dependent on fibre content. This method 

provides a fast route to FE analysis suitable for random fibre architectures. A more 

intensive analysis is available using laminate analogy to take into account fibre 

segment orientation. This method is adopted in Chapter 7 to predict the tensile 

modulus of aligned fibre specimens and compared against experimental data. 
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7.1. Introduction 

In this chapter the process model outlined in Chapter 6 is subject to validation tests 

using empirical data obtained from the UoN DCFP facility. The two core components 

of the process model are the robot simulation model and the mechanism for simulating 

fibre deposition. Fibre spray modelling is to some degree validated within the typical 

operating limits of the current DCFP process by using characterisation data collated in 

Chapter 4. The robot simulation subsystem is derived entirely from first principles 

however, using simple kinematic equations which are validated in the following 

section. Additionally, a fibre alignment study is performed to characterise the 

mechanical performance of aligned DCFP architectures using the current 

concentrator. The latest iteration of the concentrator was designed to achieve high 

deposition rates whilst retaining the properties reported in previous work [54]. This 

also provided an opportunity for comparison with the classical laminate plate theory 

method developed for FEA analysis in the previous chapter. 

7.2. Cycle time 

In Chapter 6 the robot was assumed to accelerate at a constant rate using an arbitrary 

value to develop the kinematic model. In this section the kinematic model is compared 

with the laboratory robot to assess model accuracy. The robot performance is 

considered in isolation with quoted cycle times equating to robot program execution 

only rather than the cycle time for the complete preforming process. 

A simple path profile was chosen which is typically used to deposit a single layer of 

reinforcement for a 600 mm x 400 mm flat plaque (Figure 7-1). The overall path 

length is 11.6 m consisting of an east/west pass followed by a north/south pass 

covering a target area of 0.24 m2. The overall cycle time for the program was recorded 

experimentally via data logging software communicating directly with the 
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programmable logic controller (PLC) which monitors user defined outputs from the 

robot unit. The simulated cycle time for a target linear robot speed of 1 m/s was 11.84 

s which compares with the experimentally recorded cycle time of 21.67 s; resulting in 

an error of 45.4%. The error remained unacceptably high over a range of target 

velocities investigated – over 30% lower than experimental results. 

 
Figure 7-1: Robot path lines for an orthogonal spray pattern typically used for 2D experimental plaque 
preforming. 

In each case the peak velocities were equal for each path line indicating that a large 

discrepancy exists between true and simulated robot acceleration. Due to the lack of 

information available for detailed motion control of the laboratory robot, an in-depth 

study into the acceleration characteristics was conducted. A National Instruments 

USB-6009 data logger was used to fulfil the requirement for a higher sampling rate 

(~5000 Hz), than available via the PLC, to record the response during the short 

acceleration phases. A start-stop single path program was used to analyse both 

acceleration zones, from rest to target velocity and vice versa, using a calibration 

constant of 0.4 V/mm2 to deduce the velocity profile over the single path. 

The recorded signal consisted of high levels of noise so a simple recursive filter was 

employed twice; forwards and backwards through the raw data set, resulting in a zero-

phase filtered signal as in Figure 7-2. From this the peak acceleration was calculated 

from the linear acceleration region of the curve. An average acceleration was also 

derived by taking into account the S-curve motion profile essentially creating a 

trapezoidal velocity model, Figure 7-3. 
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Figure 7-2: Voltage signal from the robot control unit for a single robot path (1000 mm, 1000 mm/s). The 
signal is proportional to the linear robot velocity. A custom recursive zero-phase filter was used to smooth 
the raw data set. 

 

 
Figure 7-3: Voltage signal response over an acceleration zone starting from rest. The average acceleration 
zone accounts for the S-curve motion profile. 
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Figure 7-4: Experimentally derived peak and average accelerations versus programmed target velocity. 

Four target velocities were investigated; 100, 500, 1000 & 2000 mm/s to examine the 

response in robot acceleration. Figure 7-4 shows that a linear fit satisfies the 

relationship between target velocity and acceleration over the tested range and implies 

that the time taken to accelerate is independent of the programmed target velocity or 

more specifically; the potential change in velocity. For the Fanuc RJ3iB the constant 

acceleration (averaged zone) time is ~0.23 s. 

Updating the robot model subsystem with the empirically derived values for 

acceleration time and acceleration constant achieves a close approximation to 

experimental results for cycle times over a single start-stop path of 1000 mm. The 

maximum cycle time error is 2 orders of magnitude lower than previously attained 

(Table 7-1). Applying the revised model to the full-scale preform pattern in Figure 7-1 

reduces the maximum recorded error in cycle time to ~1.6% from ~45.4% for a target 

velocity of 1 m/s. Cycle time comparisons for each target velocity is presented in 

Table 7-2. The error that exists between the model and observed cycle times is within 

an acceptable tolerance (>2%) to have confidence that path strategies can be faithfully 

replicated within the process model. This not only provides realistic projected cycle 

times but also accurate instantaneous robot velocity data required for deposition 

modelling. 
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Table 7-1: Actual cycle times compared with simulated cycle times for various robot linear velocities. Cycle 
time error is reduced to <1% by using the experimentally derived acceleration constant. 

Target 
velocity 

Distance 
travelled 

Actual 
cycle time 

Simulated 
cycle time* 

Error*  Simulated 
cycle time** 

Error**  

(mm/s) (mm) (s) (s)  (s)  
100 1000 10.24 10.00 2.34% 10.23 0.08% 
500 1000 2.23 2.00 10.16% 2.23 0.12% 
1000 1000 1.23 1.00 18.06% 1.23 0.42% 
2000 1000 0.73 0.51 30.05% 0.73 0.32% 

* Using the original acceleration constant, 20g  
** Acceleration constant linear to target velocity, y = 4.3156x  

Table 7-2: Actual cycle time versus simulated cycle time for an orthogonal spray program (Figure 7-1) at 
various robot linear velocities. 

Target 
velocity 

Distance 
travelled 

Actual 
cycle time 

Simulated 
cycle time 

Error  

(mm/s) (mm) (s) (s)  

100 11600 126.42 125.73 0.55% 

500 11600 32.84 32.93 0.27% 

1000 11600 21.67 21.33 1.57% 

2000 11600 15.75 15.53 1.40% 

7.3. Preform variability 

One of the key objectives in developing the process-driven model detailed in Chapter 

6 was to accurately recreate preform fibre networks in order to capture the 

macroscopic mass variability in DFP materials. The predicted preform mass CV 

values for a broad set of process parameter combinations suggested that segment 

count was a dominant factor with lower CV values obtained by increasing the number 

of segments. Segment count is a function of tow size and fibre length with the 

implication that for a given a target global areal density, preform CV can be reduced 

by using smaller tow sizes and fibre lengths. An inverse power law relationship was 

identified between preform mass CV and segment count. 

In this section, preform simulations using the process model software are compared to 

equivalent experimental preforms to assess the model performance. The experimental 

flat plaque preforms (400 mm x 300 mm) were manufactured as described in Chapter 

3 with a die cutter used to divide the preform into 25 mm x 25 mm coupons. Preforms 

were cut from the centre of the deposition area to avoid edge effects with the 

orthogonal robot program in Figure 7-1 used to encourage good quality coverage. The 

weight of each coupon was measured and averaged over the preform area to determine 
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average coupon weight, total preform weight and to represent each coupon as a 

percentage of the average as in Figure 7-5. The preform mesh used in simulations was 

sized to match the die cutter geometry so that direct comparisons were permitted using 

identical process parameters. Figure 7-5 and Figure 7-6 shows comparative 6 K, 30 

mm fibre length preforms with a target areal density of 0.6 kg/m2 and 1.2 kg/m2 

respectively. In both cases the predicted average coupon mass and overall preform 

mass is underweight – mainly attributed to the additional binder content (~5% wt) 

necessary for consolidation. The CV values compare favourably for both areal 

densities investigated with 13.5% versus 14.6% for experimental and predicted 

depositions respectively targeting 0.6 kg/m2. The effect of doubling the target areal 

density results in a decrease of 38% to 8.4% in preform mass CV for the experimental 

preform and a 34% reduction to 9.7% for the simulated preform. Table 7-3 

summarises the results for both preform architectures with the addition of a 24 K, 30 

mm fibre length, 1.0 kg/m2 preform included to validate predicted results for larger 

tow sizes. 

Two further preforms were manufactured to investigate the accuracy of the simulated 

spray cone domain with tow size, fibre length and target areal density held constant (6 

K, 30 mm, 1.2 kg/m2). To assess the fibre distribution relative to the robot trajectory a 

simple north-south path was programmed using a regular 50 mm offset and a single 

100 mm offset near the centre of the preform area as in Figure 7-7. The preforms were 

cut 25 mm from the top trajectory boundary in order to capture edge effects arising 

from increasing the TCP height. A height of 75 mm (Figure 7-8) and 350 mm (Figure 

7-9) was programmed to assess the model performance when required to extrapolate 

outside of the observed characterisation interval defined in Chapter 4. In both cases 

the process model adequately replicates the experimental results with absolute CV 

values <1% higher producing similar mass variation plots. In Figure 7-8 the low TCP 

height produces a clearly defined channel of very low areal mass as a result of the 

reduction in the projected area dimensions of the spray cone and the 100 mm path 

offset. Four of the experimental coupons were not measured within this channel due to 

the loss in preform integrity post preform consolidation. Therefore coupon mass 

values were unassigned which marginally increases the experimental CV value. 

Figure 7-9 shows the same preform spray pattern but with the TCP height set at a 

distance of 350 mm above the deposition plane with a distinct spray boundary present 
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in both the experimental and simulated preforms. This is a result of the chopping 

mechanism which ejects fibres with a bias towards the local deposition head -x’ axis. 

Raising the TCP height to 350 mm also produces a greater projected spray cone area 

with evidence of spray overlap into the channel created by the vacant robot path.  

Preform mass properties for both specifications are summarised in Table 7-3. 
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Figure 7-5: Comparison between experimental (left) and predicted (right) mass variability for a preform 
consisting of 6 K, 30 mm segments with a target areal density of 0.6 kg/m2. Preforms are flat with 
dimensions of 400 x 300 mm. 

 
Figure 7-6: Comparison between experimental (left) and predicted (right) mass variability for a preform 
consisting of 6 K, 30 mm segments with a target areal density of 1.2 kg/m2. Preforms are flat with 
dimensions of 400 x 300 mm. 
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Table 7-3: Mass properties for manufactured preforms obtained from dividing the preform in to 25 mm by 
25 mm coupons. Equivalent simulated preform properties use identical process parameters to the 
experimental setup. 

Preform properties  
Preform 

mass  

Average 
coupon 
mass  

Lowest 
coupon 
mass  

Highest 
coupon 
mass  

CV  

(g) (g) (g) (g) (%)  

6 K, 30 mm,  
0.6 kg/m2 

Experimental 72.95 0.380 0.263 0.531 13.52 

Simulated 71.11 0.370 0.240 0.519 14.55 

6 K, 30 mm,  
1.2 kg/m2 

Experimental 150.23 0.78 0.604 0.995 8.43 

Simulated 141.42 0.74 0.573 0.930 9.66 

24 K, 30 mm,  
1.0 kg/m2 

Experimental 115.38 0.601 0.315 0.891 20.59 

Simulated 116.82 0.608 0.326 1.03188 20.26 

6 K, 30 mm,  
1.2 kg/m2 – gap  

(75 mm TCP height) 

Experimental 113.79 0.592 0.000 1.048 37.58 

Simulated 108.16 0.563 0.055 0.988 38.43 

6 K, 30 mm,  
1.2 kg/m2 – gap 

(350 mm TCP height) 

Experimental 104.81 0.546 0.0813 0.9304 36.63 

Simulated 99.80 0.520 0.061 0.844 37.25 

 

 

Figure 7-7: Screenshot of a simple north-south robot trajectory programmed for the process model with a 
path line omitted. The 400 mm by 300 mm preform (red area) was taken 25 mm from left and top trajectory 
boundaries for mass variability analysis. Experimental preforms were created using the same robot 
program and process parameters. The preforms were cut close to the top trajectory boundary so that edge 
effects could be compared between simulated and experimental preforms along with the effect of increasing 
path offset distance.  
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Figure 7-8: Comparison between experimental (left) and predicted (right) mass variability for a preform 
consisting of 6 K, 30 mm segments with a target areal density of 1.2 kg/m2 using the robot trajectory in 
Figure 7-7. TCP height was held constant at 75 mm above the deposition plane resulting in a clear section 
lean in fibre mass – corresponding to the omitted robot path. The experimental mass plot has a less well 
defined channel which is highly likely due to a small error in positioning the die cutter relative to the robot 
trajectory.  

 
Figure 7-9: Comparison between experimental (left) and predicted (right) mass variability for a preform 
consisting of 6 K, 30 mm segments with a target areal density of 1.2 kg/m2 using the robot trajectory in 
Figure 7-7. TCP height was raised to 350 mm above the deposition plane producing a greater spray cone 
projection area. This is evident with higher fibre content in the region of the vacant robot path line. The 
effect of spray bias is also demonstrated with the preform boundary visible along the top portion of the 
preform.  
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7.4. Fibre alignment 

An effective way to maximise mechanical performance for discontinuous fibre 

composites is through the alignment of reinforcement in the direction of applied load. 

Previous studies conducted using the UoN DCFP facility used a funnel concentrator to 

mechanically align chopped segments (Section 1.3.2.1) [54]. High levels of alignment 

were achieved, particularly for long fibre lengths and high filament count tows (115 

mm, 24 K), where ~94% of the deposited segments could be aligned to within ±10° of 

the robot travel direction. Tensile stiffness and strength gains of 206% and 234% 

respectively were attained over equivalent random architectures. Deposition rate was 

considerably affected however with fibre processing issues limiting maximum output 

to 0.12 kg/min compared with >2 kg/min for random deposition. The proven scope for 

expanding the DCFP mechanical performance envelope via fibre alignment was 

enough incentive to develop a new concentrator in order to remove the limitations on 

deposition rate. The redesigned concentrator is detailed in Section 1.3.2.2 with the 

following experimental study conducted to assess the performance of the concentrator 

and key process parameters. 

7.4.1. Design of experiments 

Table 7-4 summarises the experimental design for investigating the effect of three 

process variables on mechanical properties; fibre length, tow size and fibre volume 

fraction. Fibre volume fraction was held constant at 30% Vf to study the effects of 

fibre length and tow size in isolation and to provide a direct comparison to random 

fibre architectures consisting of the same target fibre content. Two further preforms 

were manufactured using 6 K tows with 30 mm and 60 mm fibre lengths at 50% Vf 

representing a high performance structural specification. Each preform was 

manufactured, moulded and tested according to the experimental methodology in 

Chapter 3.  
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Table 7-4: Design of Experiments for aligned plaques studying the effects of tow size, fibre length and 
volume fraction. All plaques were moulded to a target thickness of 3mm with 5% wt of Pretex binder. 

Tow size Fibre length Target volume fraction 

(K) (mm) (%)  

3 30 30 
3 60 30 
3 90 30 
6 30 30 
6 30 50 
6 60 30 
6 60 50 
6 90 30 
12 30 30 
12 60 30 
12 90 30 
24 30 30 
24 60 30 
24 90 30 

 

7.4.2. Mechanical tensile testing results 

Results from the experimental tensile tests are summarised in Figure 7-10 and Figure 

7-11 with the random fibre 6 K, 50% Vf results taken from [163] for comparison. 

Tensile properties for all tow sizes at 30% Vf are observed to improve with increasing 

fibre length. Tensile stiffness values are similar for 6 K, 12 K & 24 K plaques with an 

average gain of 24% when increasing fibre lengths from 30 mm to 90 mm. 3 K 

plaques exhibit noticeably superior performance for 30 mm fibre lengths; however the 

stiffness trend lines for all 30% Vf plaques suggest that a plateau may exist around ~60 

GPa. The highest tensile modulus achieved at 30% Vf was observed for the 3 K, 60 

mm permutation at 56.5 GPa. Results are omitted for 90 mm 3 K fibres due to 

processing issues resulting in poor quality preforms. The close proximity of the 

deposition head to the preform tool coupled with the tow width being of the same 

scale as the circular perforations in the preform tool meant that chopped segments 

became lodged in the perforations disrupting fibre spray on subsequent passes. An 

increase of at least 64% is observed in tensile strength as fibre length is increased 

from 30 mm to 90 mm (6 - 24 K tows), most likely due to the reduction in segments 

present in the preform. This effectively reduces the amount of stress raisers emanating 

from fibre bundle ends resulting in higher strength values.   
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The effect of filament count is particularly significant to tensile strength performance 

with UTS values increasing as the tow size is reduced. Strength increases by 53% and 

60% for 30 mm and 90 mm fibre length plaques respectively when reducing tow size 

from 24 K to 6 K at 30% Vf. The substantial increase in strength can be attributed to 

two important factors. The decrease in bundle filament count results in more segments 

in the laminate to achieve an equivalent fibre volume fraction – whilst this means that 

a greater amount of segment ends are present, the smaller filament bundle sizes means 

that the stress concentrations arising from the bundle ends are less intense. The 

increased number of segments also improves preform homogeneity and hence quality, 

as demonstrated in Section 7.3. The 3 K, 60 mm combination once again exhibited the 

highest properties with an absolute strength value of 510.4 MPa, but with the potential 

of even higher properties if 90 mm fibre lengths could have been reliably processed. 

The amount of data points collected over the fibre lengths of interest did not provide 

conclusive evidence of a plateau being reached for tensile strength typically seen for 

discontinuous fibre composites. 

Increasing the fibre volume fraction to 50% Vf for 6 K, 30 mm and 60 mm fibre length 

plaques provided significant improvements in modulus as anticipated. Increasing the 

fibre length from 30 mm to 60 mm produced a 34% gain in tensile stiffness with a 

highest absolute value of 91.6 GPa. Strength values appeared to be relatively 

insensitive to lengthening the fibre length by a factor of two, with UTS falling 

fractionally by 2% with an absolute highest value of 507.5 MPa (6 K, 30 mm). A gain 

of 68% and 83% was experienced for 30 mm and 60 mm fibres lengths respectively 

over the 6K 30% Vf case. Improvements of 76% and 29% were observed for ultimate 

tensile strength. Aligned high performance specification (6 K, 50% Vf) specimens 

experienced an increase of 49% and 111% in modulus over the equivalent random 

architecture for 30 mm and 60 mm fibre lengths respectively and UTS improved by 

137% and 78%. The properties for the high performance specification equate to 

maximum retention values of 77% and 40% for stiffness and strength compared to an 

equivalent continuous UD laminate. 
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Figure 7-10: Tensile modulus versus fibre length for  all 30% and 50% Vf plaques. Data for the high 
performance specification (50% Vf) random architecture plaques is taken from [163]. 

 
Figure 7-11: Ultimate tensile strength versus fibre length for all 30% and 50% Vf plaques. Data for the high 
performance specification (50% Vf) random architecture plaques is taken from [163]. 

Normalised testing data for 30% Vf aligned and random specimens is presented in 

Figure 7-12 for 30 mm fibre lengths to allow for a direct comparison with available 

data [163]. The benefit of aligning fibres can be clearly seen for each tow size with 

considerable performance gains in both tensile stiffness and strength. The highest 

mechanical properties as well as the largest percentage increase over the random fibre 

laminate is realised for 3 K tows with a gain of 137% and 148% in modulus and 

ultimate tensile strength respectively. 
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Figure 7-12: Mechanical performance comparison between random and aligned specimens normalised to 
30% Vf. Fibre length is held constant at 30 mm with a target laminate thickness of 3 mm. 

Normalised results (to 30% Vf) for tensile testing data is summarised in Figure 7-13 

comparing mechanical performance of plaques manufactured using the current 

method for fibre alignment with plaques created using the previous DCFP 

concentrator (data taken from [54]). Tensile stiffness values for 6 K and 24 K tows are 

bounded by the previous results with superior properties for 24 K plaques using the 

current alignment concentrator. The distinction between 6 K and 24 K properties is far 

less pronounced for the current alignment process however. Whilst direct comparisons 

cannot be made between both sets of data due to geometric differences in chopping 

mechanism; significant improvements in ultimate tensile strengths has been realised. 

Processing 6 K, 90 mm fibre produced the highest absolute strength of 502.9 MPa, 

25% higher than the best case from the previous study. Considering that the segment 

count will be roughly equal between the two alignment methods for 30 mm and 60 

mm architectures, the increase in strength experienced using the current alignment 

device is more than likely a result of improved preform homogeneity. This could be 

the result of an optimised deposition strategy used for the current work where spray 

layers were staggered to encourage improved fibre coverage. 
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Figure 7-13: Mechanical performance comparison between using the current alignment concentrator and 
the previous concentrator normalised to 30% Vf. 

7.4.3. Mechanical stiffness prediction using FEA 

Results from the fibre alignment experimental study were used to validate the FE 

input deck generated by the process software as described in Section 6.2.9. The CLT 

approach was chosen to account for aligned fibre distributions which significantly 

affect final laminate performance. The input deck defines mesh geometry, ply 

definitions for each mesh element (thickness and orientation) and material properties 

for a 60% Vf UD ply and neat resin. The material properties are derived from the 

constituent properties summarised in Chapter 3. Additional simulation setup was 

completed within ABAQUS/CAE to assign boundary and loading conditions prior to 

execution using the finite element code ABAQUS/Standard.  

Each of the tow size and fibre length permutations for 30% Vf aligned plaques were 

simulated using identical input parameters including the north-north program 

discussed in Chapter 3 to provide a fair comparison. A 120 mm x 25 mm specimen 

mesh was extracted from the centre of the deposition area with one edge assigned a 

pinned boundary condition and the opposite edge loaded via a dummy node using a 

fixed displacement (2 mm).  

FE results for tensile stiffness are provided in Figure 7-14. For almost all of the 

permutations tested, predicted mechanical stiffness values exceed experimental values 

and reside close to the upper experimental uncertainty range. Simulated results over-

predict modulus by 6% - 14% (excluding 24 K, 30 mm and 12 K, 90 mm 
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permutations) but still capture the general trend of tensile stiffness increasing with 

fibre length for each plaque specification. Despite the comparative difference in 

tensile modulus between simulations and experimental data, the laminate analogy 

approach combined with alignment characterisation data accumulated in Chapter 4 

demonstrates the applicability for mechanical property analysis for full macroscale 

geometries. 

 
Figure 7-14: Comparison between experimental and FE simulation results for specimen tensile stiffness. 
Each tow size and fibre length permutation was normalised to 30% Vf. 

7.5. Chapter conclusions 

The validity of several important subsystems contained within the DFP process 

simulation software has been tested in this chapter as well as characterising the 

performance of the current alignment concentrator. Analysis of the velocity profile for 

the UoN DCFP 6-axis robot has revealed that the time taken to accelerate between 

programmed changes in velocity is a fixed quantity (~0.23 s). Applying this 

knowledge to the robot kinematic model developed in Chapter 6 reduces the predicted 

cycle time error from 45.4% to 1.6% for a typical orthogonal spray pattern used to 

manufacture experimental preforms. Increasing the accuracy of robot motion 

simulation allows for a closer approximation to the true fibre release sites during 

preforming. 
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Preform mass variability was studied for random 2D fibre architectures in an effort to 

validate mass coverage results obtained from the model software. Close agreements 

for preform mass CV between experimental and simulated depositions exist 

confirming the relationship between mass variation and segment count established in 

Chapter 6. Further analysis has shown that by modelling fibre deposition conforming 

to a spray cone and using the characterisation data acquired in Chapter 4; spray area 

boundaries can be successfully reproduced. This is particularly important for three-

dimensional tool profiles where accurate deposition head control is required for net-

shape preforming.  

The performance envelope and flexibility of the DCFP process has been enhanced 

through the development of an alignment concentrator designed for high deposition 

rates. Cycle times are on a par with random fibre preforming achieving satisfactory 

rates in excess of 2 kg/min when processing four 24 K tows with high levels of fibre 

alignment. Gains in tensile modulus and strength over random architecture (quasi-

isotropic modulus 21.4 GPa and UTS 136.2 MPa) for 30% Vf plaques of 137% and 

148% respectively underline the potential of DCFP as a highly automated process for 

structural applications. Maximum tensile properties attained from 30% Vf laminates 

were for the 3 K, 60 mm combination with tensile stiffness and strength values of 56.5 

GPa and 510.4 MPa respectively. Increasing volume fraction to 50% Vf using 6 K 

tows produced further gains in tensile modulus with the highest value observed in this 

study of 91.6 GPa which further confirms the potential for using aligned 

discontinuous fibres for structural applications as previously investigated by Cordell 

and Reeve [42, 105]. Both the characterisation study (Chapter 4) and mechanical 

testing results have demonstrated that high levels of alignment can be maintained, 

compared to the previous DCFP concentrator, even though a very significant increase 

in deposition rate (>600%) has been achieved. 

Mechanical property prediction for aligned specimens has been provided using a 

classical laminate theory approach showing reasonable agreement to experimental 

results. The oriented fibre networks produced by the process software was 

approximated using UD plies within each element domain and solved simultaneously 

using commercial finite element code. An increasing modulus with fibre length trend 

was reproduced over the tow size and fibre length permutations investigated 
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demonstrating the viability of such methods to predict macroscale behaviour for 

complete structures. 
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Chapter 8. Thesis conclusions 

The main aim of this thesis was to further the development of discontinuous fibre 

preforming processes, predominantly via the generation of computational design 

software. This required a detailed understanding of the process and material 

parameters available for the manufacture of discontinuous fibre composites to 

formulate effective modelling strategies. 

An extensive characterisation study was performed to identify the key variables 

affecting fibre distribution during the preforming stage. Tow size, fibre length and 

fibre speed were all found to affect mean fibre location in the deposition plane, 

however, tool centre point height had the greatest influence on both mean location and 

on fibre distribution from the mean. Increasing TCP height results in a larger effective 

spray area whilst also accentuating a bias applied by the chopping mechanism 

resulting in fibres being ejected at an angle to the intended direction. The complex 

interactions which exist between the variables investigated, as a result of the 

stochastic nature of this type of spray process, meant that predictive modelling of 

deposition sites was unfeasible. Instead, fibre deposition was modelled to conform to 

a spray cone domain - the geometry of which can be modified depending on the 

process input parameters. This approach requires sufficient characterisation data to be 

acquired over the typical operating range of DFP processes. 

A stochastic macroscale model was developed to generate realistic fibre networks for 

three-dimensional component geometries. Existing macroscale process models 

concerning discontinuous fibre materials have been restricted to the 2D domain 

limiting their applicability to the physical process [53, 111]. The versatile software 

developed during the course of this thesis has extended the scope for simulating DFP 

processes for use as a preforming design tool. Rapid simulation times facilitate 

efficient process parameter optimisation with the potential to significantly reduce the 

reliance on costly experimental trials. The software provides direct feedback on the 

quality of reinforcement homogeneity which has a strong bearing on final composite 
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performance. This is a vital step to increasing the attractiveness of DFP processes in 

industry which has been previously highlighted by Vaidya [108]. 

Preform simulations suggest that intra-preform mass variability is heavily dependent 

on the number of fibre segments present in the preform and not on the specific 

microstructural parameters. Segment count is a function of tow size, fibre length and 

target areal density however. The accuracy of the model predictions for preform mass 

variability was validated against experimental data with close agreement for different 

fibre architectures.  

Mechanical property prediction for simulated preform structures was facilitated via an 

interface with commercial finite element analysis code. Classical laminate plate theory 

was applied to individual elements over an entire specimen-scale domain taking into 

account individual segment orientations and showing reasonable agreement with 

experimental tensile results. This method is applicable to full scale 3D component 

geometries permitting the prediction of the mechanical behaviour for the finished 

laminate and offering a distinct advantage over current statistical methods adopted 

[154]. 

A physical process development involved expanding the performance envelope for 

DCFP through the design of an improved deposition head and fibre alignment device. 

Applying directional bias to fibre reinforcement in the direction of the load path 

provides a useful mechanism for increasing discontinuous fibre composite properties. 

The updated deposition device is capable of spraying highly aligned fibres at 

deposition rates comparable to random fibre preforming achieving ~2 kg/min for a 

research-scale installation. This potentially opens up the use of highly automated low 

cost preforming technologies such as DCFP for structural applications where the 

design criteria are stiffness limited. This is a significant increase in deposition rate for 

aligned fibre spray over previous attempts [54]. Tensile modulus results obtained for 

aligned laminates at 50% fibre volume fraction are comparable with aluminium 

demonstrating the breadth in mechanical properties that can be achieved.   
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8.1. Recommendations for further work 

In this thesis the process modelling techniques presented have attempted to capture 

the complex mechanisms involved in directed fibre preform manufacture in order to 

create realistic fibre networks. The main limitations of the proposed software have 

been highlighted in Chapter 6 which offers the potential for further development work 

to expand the capabilities of the model. 

To increase the accuracy for representing fibre segments across the tool geometry the 

method for fibre assembly should be improved. Currently the intersection method 

described in Section 6.2.6.1 is used for 3D tool profiles but a more realistic 

representation can be achieved by extending the polygon method in Section 6.2.6.2 

into the 3D domain. This would allow finer meshes to be used which are particularly 

beneficial for complex structures with numerous features. 

For the purposes of this thesis an airflow model was omitted from the preform 

simulations performed in Chapter 6 & 7. The airflow model is essentially a vector 

averaging routine which takes into account surrounding air velocity and manipulates a 

fibre segment travelling from the deposition head to the preform screen. The 

surrounding airflow is dependent on the tool geometry, fan system specification and 

the level of fibre coverage already deposited. Because fibre coverage is increased 

gradually over the duration of preforming it is a non-trivial task to model airflow 

through the entire system accurately. It was suggested that CFD (Section 5.3) may 

provide a convenient means to model airflow which could output the required velocity 

field on a layer-by-layer basis for example. Developing this side of the model would 

require significant effort however for an uncertain gain in the accuracy of fibre 

deposition. 

The FE input deck or integration with commercial FEA software requires substantial 

validation work against experimental data. The work presented in Section 7.4.3 only 

considered tensile stiffness data for aligned fibre preforms at 30% Vf. A similar study 

is required for random fibre architectures and over a realistic range of volume 

fractions (i.e. 15% to 50% Vf). Tensile strength was not considered due to the lack of a 

realistic macroscale damage model which is applicable to discontinuous architectures. 

Being able to predict the final part mechanical properties would further enhance the 
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attractiveness of using the process model in conjunction with design tools such as 

CAD. 

In Chapter 5 the issue of retaining the deposited fibres in place prior to preform 

consolidation was investigated. Although a great deal of data was obtained relating 

pressure drop and superficial air velocity through a material layer/stack thickness, the 

exact nature of retention is still unknown. A theory relating the available pressure 

drop across the preform screen versus the required retention pressure for the medium 

was presented which requires validation. This could be achieved via modifications to 

the testing apparatus where the force to remove a layer or thickness of material under 

vacuum can be recorded, or the apparatus inverted so that the material is being 

retained against its own weight. The vacuum fan can then be controlled until a 

limiting condition is met where the pressure drop is no longer sufficient to hold the 

material in place. Other forms of retention should also be investigated with the 

potential to ‘tack’ fibres into place by introducing a resin system during fibre spray. 

This could open up further possibilities of reducing part manufacture to a one-shot 

deposition process producing a charge similar to compression moulding processes. 

Benefits would include a reduction in cycle times, manufacturing stages and number 

of tools required. An increased tooling and press cost would be incurred however due 

to the requirement of higher tool closing pressures compared to RTM. 
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Appendix B  

Deposition head characteristics 

Deposition head characteristic data resulting from the study in Section 4.2 is presented 

in Tables B-1 to B-4. The data is used to define a virtual spray cone in order to 

explicitly position a chopped segment on the deposition plane in the process model 

developed in Chapter 7. 

Table B-1: Spray cone characteristics for 3 K tow segments. The mean fibre location, standard deviation of 
segments from the mean position and the projection angle define the spray cone geometry. 

Fibre length 
Fibre 
Speed 

TCP 
height 

Mean fibre 
location 

Standard 
deviation 

Projection angle 

(mm) (m/s) (mm) (mm) (mm) (degrees) 

   x’  y’ x’  y’  x’  y’  

10 

1 
100 -9.69 -7.69 12.40 12.90 

1.06 5.82 
300 -30.74 -3.59 30.47 29.67 

2 
100 -21.28 -9.56 14.92 13.21 

2.12 10.57 
300 -55.13 -9.12 26.33 23.17 

3 
100 -22.92 -10.55 17.37 14.36 

1.92 15.07 
300 -82.13 -7.64 34.02 27.96 

30 

1 
100 -7.71 3.91 25.33 19.31 

0.26 12.07 
300 -68.69 -2.80 39.04 33.57 

2 
100 -19.67 -7.61 19.80 10.43 

1.31 15.74 
300 -87.38 -5.09 26.98 21.56 

3 
100 1.99 -11.40 36.35 14.83 

0.86 13.70 
300 -81.91 -1.18 36.98 35.58 

90 

1 
100 7.36 2.34 51.04 21.63 

2.40 3.95 
300 -25.45 -12.00 54.12 26.27 

2 
100 -11.44 2.75 44.52 23.47 

0.63 10.85 
300 -60.09 -6.81 63.88 29.74 

3 
100 21.67 2.24 40.76 26.30 

1.60 12.38 
300 -80.36 -19.11 78.45 44.94 
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Table B-2: Spray cone characteristics for 6 K tow segments. The mean fibre location, standard deviation of 
segments from the mean position and the projection angle define the spray cone geometry. 

Fibre length 
Fibre 
Speed 

TCP 
height 

Mean fibre 
location 

Standard 
deviation Projection angle 

(mm) (m/s) (mm) (mm) (mm) (degrees) 
   x’  y’ x’ y’ x’ y’ 

10 

1 
100 -11.49 -5.34 16.57 10.94 

0.81 6.87 
300 -36.33 -2.93 31.51 27.15 

2 
100 -17.82 -9.41 22.99 15.40 

2.50 9.58 
300 -50.32 -11.45 36.67 24.56 

3 
100 -14.42 -13.41 28.58 22.67 

3.54 10.44 
300 -56.62 -16.12 41.33 24.92 

30 

1 
100 -6.22 -1.41 10.84 14.42 

3.96 5.43 
300 -29.61 -22.61 44.74 36.04 

2 
100 -9.87 -7.12 24.95 8.97 

1.94 12.48 
300 -70.50 -8.89 33.19 26.93 

3 
100 -5.50 -9.14 21.44 13.44 

1.25 14.30 
300 -83.12 -4.21 40.74 25.74 

90 

1 
100 9.22 -0.60 35.13 14.51 

0.65 8.80 
300 -54.69 -3.60 57.33 14.61 

2 
100 -30.98 -9.61 63.93 30.90 

1.71 9.79 
300 -47.18 -6.75 65.05 34.54 

3 
100 -2.50 -4.16 45.73 27.06 

0.60 6.49 
300 -37.09 -2.13 58.32 25.29 

Table B-3: Spray cone characteristics for 12 K tow segments. The mean fibre location, standard deviation of 
segments from the mean position and the projection angle define the spray cone geometry. 

Fibre length 
Fibre 
Speed 

TCP 
height 

Mean fibre 
location 

Standard 
deviation 

Projection angle 

(mm) (m/s) (mm) (mm) (mm) (degrees) 

   x’  y’ x’ y’ x’ y’ 

10 

1 
100 -22.39 -5.33 26.57 12.67 

2.01 10.39 
300 -53.63 -9.91 35.92 26.87 

2 
100 -24.03 -8.33 25.49 21.03 

2.75 14.73 
300 -79.60 -13.22 34.54 31.80 

3 
100 -32.78 -8.89 34.63 23.78 

2.94 17.59 
300 -94.77 -14.18 49.31 34.18 

30 

1 
100 -8.64 -6.43 13.94 14.36 

5.60 12.84 
300 -73.11 -30.52 32.46 35.16 

2 
100 -14.16 -5.92 21.42 8.91 

2.32 18.91 
300 -109.44 -11.53 38.73 34.08 

3 
100 -6.33 -10.34 24.25 10.74 

1.03 14.27 
300 -82.68 -2.54 48.01 44.51 

90 

1 
100 -10.67 -10.56 51.10 16.45 

0.59 10.84 
300 -60.28 0.08 34.53 19.55 

2 
100 -3.84 -6.91 38.80 28.19 

1.61 6.09 
300 -34.30 -7.07 66.53 29.39 

3 
100 -30.57 -2.23 61.63 36.92 

3.48 4.52 
300 -16.14 -19.51 69.79 33.70 
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Table B-4: Spray cone characteristics for 24 K tow segments. The mean fibre location, standard deviation of 
segments from the mean position and the projection angle define the spray cone geometry. 

Fibre length 
Fibre 
Speed 

TCP 
height 

Mean fibre 
location 

Standard 
deviation Projection angle 

(mm) (m/s) (mm) (mm) (mm) (degrees) 
   x’  y’ x’ y’ x’ y’ 

10 

1 
100 -6.03 -6.60 14.11 10.50 

1.58 6.64 
300 -36.82 -6.99 35.04 20.94 

2 
100 -5.15 -8.51 20.08 13.29 

2.97 2.08 
300 -10.40 -14.48 39.51 21.66 

3 
100 -2.45 -14.83 22.99 16.72 

3.09 6.20 
300 -35.38 -13.06 41.29 23.11 

30 

1 
100 -7.04 -8.12 17.58 10.67 

6.05 2.87 
300 19.07 -32.61 28.17 36.07 

2 
100 -6.66 -7.19 15.86 15.08 

4.19 5.30 
300 -28.68 -22.00 32.53 33.94 

3 
100 -6.67 -7.95 25.48 18.41 

2.53 6.94 
300 -38.37 -12.06 37.58 34.14 

90 

1 
100 28.38 -14.83 18.07 12.64 

4.32 1.46 
300 -17.96 -13.06 41.31 20.00 

2 
100 14.56 0.76 55.99 33.09 

1.89 4.87 
300 -33.24 -11.26 51.58 35.24 

3 
100 5.63 -4.52 36.30 22.28 

3.68 6.42 
300 -39.37 -19.91 66.86 38.82 

 

Fibre orientation distributions  

Table B-5: Fibre orientation distribution for deposition using 3 K tow. Fibre orientation is taken relative to 
the x’ axis of the deposition head. 

Fibre 
length  

Speed  
TCP 

height  
Uniform 

distribution  
Normal 

distribution  
Mean  

Standard 
deviation  

(mm) (m/s) (mm)   (degrees) (degrees) 

10 

1 
100 Ɣ - - - 
300 Ɣ - - - 

2 
100 Ɣ - - - 
300 Ɣ - - - 

3 
100 Ɣ - - - 
300 Ɣ - - - 

30 

1 
100 Ɣ - - - 
300 Ɣ - - - 

2 
100 - Ɣ 5.17 36.65 
300 - Ɣ 0.61 43.63 

3 
100 - Ɣ -2.29 40.96 
300 - Ɣ 0.61 43.63 

90 

1 
100 - Ɣ 5.79 37.37 
300 - Ɣ 8.33 39.38 

2 
100 - Ɣ 6.95 38.96 
300 - Ɣ 3.06 42.09 

3 
100 - Ɣ -3.21 41.00 
300 - Ɣ -4.77 39.15 
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Table B-6: Fibre orientation distribution for deposition using 6 K tow. Fibre orientation is taken relative to 
the x’ axis of the deposition head. 

Fibre 
length  

Speed  
TCP 

height  
Uniform 

distribution  
Normal 

distribution  
Mean  

Standard 
deviation  

(mm) (m/s) (mm)   (degrees) (degrees) 

10 

1 
100 Ɣ - - - 
300 Ɣ - - - 

2 
100 Ɣ - - - 
300 Ɣ - - - 

3 
100 Ɣ - - - 
300 Ɣ - - - 

30 

1 
100 Ɣ - - - 
300 Ɣ - - - 

2 
100 - Ɣ 5.98 33.80 
300 - Ɣ -2.83 43.17 

3 
100 - Ɣ -12.12 34.44 
300 - Ɣ -0.48 41.10 

90 

1 
100 - Ɣ 2.65 37.26 
300 - Ɣ 1.75 35.87 

2 
100 - Ɣ -2.06 37.46 
300 - Ɣ 5.57 39.06 

3 
100 - Ɣ 5.26 33.24 
300 - Ɣ -4.47 37.20 

Table B-7: Fibre orientation distribution for deposition using 12 K tow. Fibre orientation is taken relative to 
the x’ axis of the deposition head. 

Fibre 
length  

Speed  
TCP 

height  
Uniform 

distribution  
Normal 

distribution  
Mean  

Standard 
deviation  

(mm) (m/s) (mm)   (degrees) (degrees) 

10 

1 
100 Ɣ - - - 
300 Ɣ - - - 

2 
100 Ɣ - - - 
300 Ɣ - - - 

3 
100 Ɣ - - - 
300 Ɣ - - - 

30 

1 
100 Ɣ - - - 
300 Ɣ - - - 

2 
100 - Ɣ 2.29 33.27 
300 - Ɣ -5.50 39.58 

3 
100 - Ɣ 3.54 32.73 
300 - Ɣ 2.97 43.56 

90 

1 
100 - Ɣ -7.35 33.08 
300 - Ɣ 6.75 35.06 

2 
100 - Ɣ 7.86 27.73 
300 - Ɣ 8.25 39.33 

3 
100 - Ɣ 9.10 42.71 
300 - Ɣ 4.19 43.40 
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Appendix B 

Table B-8: Fibre orientation distribution for deposition using 24 K tow. Fibre orientation is taken relative to 
the x’ axis of the deposition head. 

Fibre 
length  Speed  

TCP 
height  

Uniform 
distribution  

Normal 
distribution  Mean  

Standard 
deviation  

(mm) (m/s) (mm)   (degrees) (degrees) 

10 

1 
100 Ɣ - - - 
300 Ɣ - - - 

2 
100 Ɣ - - - 
300 Ɣ - - - 

3 
100 Ɣ - - - 
300 Ɣ - - - 

30 

1 
100 Ɣ - - - 
300 Ɣ - - - 

2 
100 Ɣ -   
300 Ɣ -   

3 
100 Ɣ -   
300 Ɣ -   

90 

1 
100 - Ɣ -8.71 24.62 
300 - Ɣ -11.77 27.64 

2 
100 - Ɣ -0.56 37.00 
300 - Ɣ 0.83 33.45 

3 
100 - Ɣ 4.14 34.01 
300 - Ɣ -2.35 41.32 
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Appendix C 

Fan resistance curve coefficients 

Table C-1 and C-2 list the quartic and squared terms which characterise the resistance 

curves for each material tested. The curves are based on the relationship between 

superficial air velocity and pressure drop across the medium taken at 10 fan speed set 

points. 

Table C-1: Quartic and squared term coefficients derived from fitted resistance curves taken for dry fab ric 
and mat materials.  

Material Type / 
Composition 

Areal density Quartic term  Squared term 
Required 
retention 
pressure 

 (gsm)   (Pa) 

Non-crimp UD -
300gsm, 

300 37.45 524.59 

2.94 
600 824.88 1605.40 
900 4386.90 3878.80 
1200 1826.40 8597.80 

Non-crimp UD  - 
450gsm, 

450 5471.5 2288.1 

4.41 900 13341 12084 
1350 -7910 29886 
1800 -168208 59484 

Non-crimp UD – 
200gsm 

200 1.49 106.98 

1.96 

400 247.43 137.91 
600 1333.50 598.27 
800 5991.50 2686.10 
1000 12157.00 6965.40 
1200 3966.20 17768.00 

Unifilo CoFRM 
~375gsm 

391 0.0759 32.546 

1.51 

795 0.14 57.97 
1165 0.22 89.52 
1547 0.16 130.04 
2368 0.17 202.37 
3144 0.27 276.39 
3940 0.42 355.53 
4676 0.13 432.06 
6264 0.04 595.84 
7782 0.09 759.85 
9326 0.10 1027.5 
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Appendix C 

Table C-2: Quartic and squared term coefficients derived from fitted resistance curves taken for 
discontinuous fibre architectures. Consolidated preforms and free fibre stacks were tested. 

Material Type / 
Composition 

Areal density Quartic term  Squared term 
Required 
retention 
pressure 

 (gsm)   (Pa) 

24k DCFP UoN 
preform 

939.0 5970.2 1759.6 
9.21 

1951.2 43989 16701 

3k DCFP UoN 
preform 

471.0986 160.57 331.28 

4.62 
1009.042 1396.6 2868.9 
1508.789 3858.4 3884.9 
2040.366 3487.5 10213 

DCFP Sotira 
preform 

1266.87 -1485 5670.6 
12.42 2597.41 -20521 18945 

3947.04 -63683 33560 

24k DCFP - 
unconsolidated 

67.23 0.0095 10.577 

0.66 

134.45 0.0347 23.44 
201.68 0.2162 60.214 
268.91 0.2683 120.35 
336.14 1.1298 209.72 
403.36 3.2269 407.84 
470.59 2.2234 754.25 
537.82 0.2074 1243.8 
605.04 27.897 2011.9 
672.27 249.67 3293.5 
739.50 -1033.3 5647 
873.95 -1298.7 6940.6 
1142.86 -7426 15748 

3k DCFP -  
unconsolidated 

84.03 0.0763 27.242 

0.82 

168.07 1.9091 90.978 
252.10 26.646 157.848 
336.14 102.92 212.91 
420.17 227.28 240.23 
504.20 394.82 346.52 
672.27 618.33 605.83 
840.34 1643.7 656.04 

Glass roving -  
unconsolidated 

32.09 0.0017 6.0637 

0.31 

64.17 0.0053 9.797 
96.26 0.0106 14.057 
128.34 0.0186 21.837 
256.69 0.4043 56.908 
385.03 2.974 106.62 
513.37 13.568 140.65 
641.71 21.391 263.13 
962.57 93.712 347.84 
1283.43 235.58 999.26 
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