2,000 research outputs found

    CYCLONE Unified Deployment and Management of Federated, Multi-Cloud Applications

    Full text link
    Various Cloud layers have to work in concert in order to manage and deploy complex multi-cloud applications, executing sophisticated workflows for Cloud resource deployment, activation, adjustment, interaction, and monitoring. While there are ample solutions for managing individual Cloud aspects (e.g. network controllers, deployment tools, and application security software), there are no well-integrated suites for managing an entire multi cloud environment with multiple providers and deployment models. This paper presents the CYCLONE architecture that integrates a number of existing solutions to create an open, unified, holistic Cloud management platform for multi-cloud applications, tailored to the needs of research organizations and SMEs. It discusses major challenges in providing a network and security infrastructure for the Intercloud and concludes with the demonstration how the architecture is implemented in a real life bioinformatics use case

    FAIRness and Usability for Open-access Omics Data Systems

    Get PDF
    Omics data sharing is crucial to the biological research community, and the last decade or two has seen a huge rise in collaborative analysis systems, databases, and knowledge bases for omics and other systems biology data. We assessed the FAIRness of NASAs GeneLab Data Systems (GLDS) along with four similar kinds of systems in the research omics data domain, using 14 FAIRness metrics. The range of overall FAIRness scores was 6-12 (out of 14), average 10.1, and standard deviation 2.4. The range of Pass ratings for the metrics was 29-79%, Partial Pass 0-21%, and Fail 7-50%. The systems we evaluated performed the best in the areas of data findability and accessibility, and worst in the area of data interoperability. Reusability of metadata, in particular, was frequently not well supported. We relate our experiences implementing semantic integration of omics data from some of the assessed systems for federated querying and retrieval functions, given their shortcomings in data interoperability. Finally, we propose two new principles that Big Data system developers, in particular, should consider for maximizing data accessibility

    Semantic Integration of Coastal Buoys Data using SPARQL

    Get PDF
    Currently, the data provided by the heterogeneous buoy sensors/networks (e.g. National Data Buoy center (NDBC), Gulf Of Maine Ocean Observing System (GoMoos) etc. is not amenable to the development of integrated systems due to conflicts in the data representation at syntactic and structural levels. With the rapid increase in the amount of information, the integration of heterogeneous resources is an important issue and requires integrative technologies such as semantic web. In distributed data dissemination system, normally querying on single database will not provide relevant information and requires querying across interrelated data sources to retrieve holistic information. In this thesis we develop system for integrating two different Resource Description Framework (RDF) data sources through intelligent querying using Simple Protocol and RDF Query Language (SPARQL). We use Semantic Web application framework from AllegroGraph that provides functionality for developing triple store for the ontological representations, forming federated stores and querying it through SPARQL

    Integration of Legacy and Heterogeneous Databases

    Get PDF

    Biomedical data integration in computational drug design and bioinformatics

    Get PDF
    [Abstract In recent years, in the post genomic era, more and more data is being generated by biological high throughput technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as well as the solutions developed using these approaches in the past few years.Red Gallega de InvestigaciĂłn sobre CĂĄncer Colorrectal; Ref. 2009/58Programa Iberoamericano de Ciencia y TecnologĂ­a para el Desarrollo; 209RT- 0366Instituto de Salud Carlos III; PIO52048Instituto de Salud Carlos III; RD07/0067/0005Ministerio de Industria, Turismo y Comercio; TSI-020110-2009-

    BlogForever D3.2: Interoperability Prospects

    Get PDF
    This report evaluates the interoperability prospects of the BlogForever platform. Therefore, existing interoperability models are reviewed, a Delphi study to identify crucial aspects for the interoperability of web archives and digital libraries is conducted, technical interoperability standards and protocols are reviewed regarding their relevance for BlogForever, a simple approach to consider interoperability in specific usage scenarios is proposed, and a tangible approach to develop a succession plan that would allow a reliable transfer of content from the current digital archive to other digital repositories is presented

    The mediated data integration (MeDInt) : An approach to the integration of database and legacy systems

    Get PDF
    The information required for decision making by executives in organizations is normally scattered across disparate data sources including databases and legacy systems. To gain a competitive advantage, it is extremely important for executives to be able to obtain one unique view of information in an accurate and timely manner. To do this, it is necessary to interoperate multiple data sources, which differ structurally and semantically. Particular problems occur when applying traditional integration approaches, for example, the global schema needs to be recreated when the component schema has been modified. This research investigates the following heterogeneities between heterogeneous data sources: Data Model Heterogeneities, Schematic Heterogeneities and Semantic Heterogeneities. The problems of existing integration approaches are reviewed and solved by introducing and designing a new integration approach to logically interoperate heterogeneous data sources and to resolve three previously classified heterogeneities. The research attempts to reduce the complexity of the integration process by maximising the degree of automation. Mediation and wrapping techniques are employed in this research. The Mediated Data Integration (MeDint) architecture has been introduced to integrate heterogeneous data sources. Three major elements, the MeDint Mediator, wrappers, and the Mediated Data Model (MDM) play important roles in the integration of heterogeneous data sources. The MeDint Mediator acts as an intermediate layer transforming queries to sub-queries, resolving conflicts, and consolidating conflict-resolved results. Wrappers serve as translators between the MeDint Mediator and data sources. Both the mediator and wrappers arc well-supported by MDM, a semantically-rich data model which can describe or represent heterogeneous data schematically and semantically. Some organisational information systems have been tested and evaluated using the MeDint architecture. The results have addressed all the research questions regarding the interoperability of heterogeneous data sources. In addition, the results also confirm that the Me Dint architecture is able to provide integration that is transparent to users and that the schema evolution does not affect the integration

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Strategies for Managing Linked Enterprise Data

    Get PDF
    Data, information and knowledge become key assets of our 21st century economy. As a result, data and knowledge management become key tasks with regard to sustainable development and business success. Often, knowledge is not explicitly represented residing in the minds of people or scattered among a variety of data sources. Knowledge is inherently associated with semantics that conveys its meaning to a human or machine agent. The Linked Data concept facilitates the semantic integration of heterogeneous data sources. However, we still lack an effective knowledge integration strategy applicable to enterprise scenarios, which balances between large amounts of data stored in legacy information systems and data lakes as well as tailored domain specific ontologies that formally describe real-world concepts. In this thesis we investigate strategies for managing linked enterprise data analyzing how actionable knowledge can be derived from enterprise data leveraging knowledge graphs. Actionable knowledge provides valuable insights, supports decision makers with clear interpretable arguments, and keeps its inference processes explainable. The benefits of employing actionable knowledge and its coherent management strategy span from a holistic semantic representation layer of enterprise data, i.e., representing numerous data sources as one, consistent, and integrated knowledge source, to unified interaction mechanisms with other systems that are able to effectively and efficiently leverage such an actionable knowledge. Several challenges have to be addressed on different conceptual levels pursuing this goal, i.e., means for representing knowledge, semantic data integration of raw data sources and subsequent knowledge extraction, communication interfaces, and implementation. In order to tackle those challenges we present the concept of Enterprise Knowledge Graphs (EKGs), describe their characteristics and advantages compared to existing approaches. We study each challenge with regard to using EKGs and demonstrate their efficiency. In particular, EKGs are able to reduce the semantic data integration effort when processing large-scale heterogeneous datasets. Then, having built a consistent logical integration layer with heterogeneity behind the scenes, EKGs unify query processing and enable effective communication interfaces for other enterprise systems. The achieved results allow us to conclude that strategies for managing linked enterprise data based on EKGs exhibit reasonable performance, comply with enterprise requirements, and ensure integrated data and knowledge management throughout its life cycle
    • 

    corecore