
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-12-2012

Semantic Integration of Coastal Buoys Data using SPARQL Semantic Integration of Coastal Buoys Data using SPARQL

Rakesh Kumar Gourineni

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Gourineni, Rakesh Kumar, "Semantic Integration of Coastal Buoys Data using SPARQL" (2012). Theses and
Dissertations. 3906.
https://scholarsjunction.msstate.edu/td/3906

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3906?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3906&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Template Created By: James Nail 2010

SEMANTIC INTEGRATION OF COASTAL BUOYS DATA USING SPARQL

By

Rakesh Kumar Gourineni

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Electrical Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

May 2012

Template Created By: James Nail 2010

Copyright 2012

By

Rakesh Kumar Gourineni

Template Created By: James Nail 2010

SEMANTIC INTEGRATION OF COASTAL BUOYS DATA USING SPARQL

By

Rakesh Kumar Gourineni

Approved:

_________________________________ _________________________________
Nicolas H.Younan Roger L.King
Department Head and James Worth Giles Distinguished Professor
Bagley Chair Department of Electrical Director of CAVS Department of
and Computer Engineering Electrical and Computer Engineering
(Major Advisor) (Co-Major Advisor)

_________________________________ _________________________________
James V.Aanstoos James E. Fowler
Associate Reasearch Professor Professor and Graduate Program
Geosystems Research Institute Director of Department of Electrical
(Committee Member) and Computer Engineering

Sarah A. Rajala
Dean of the Bagley College of Engineering

Template Created By: James Nail 2010

Name: Rakesh Kumar Gourineni

Date of Degree: May 11, 2012

Institution: Mississippi State University

Major Field: Electrical and Computer Engineering

Major Professor: Nicholas H.Younan

Title of Study: SEMANTIC INTEGRATION OF COASTAL BUOYS DATA USING

SPARQL

Pages in Study: 47

Candidate for Degree of Master of Science

Currently, the data provided by the heterogeneous buoy sensors/networks (e.g.

National Data Buoy center (NDBC), Gulf Of Maine Ocean Observing System (GoMoos)

etc. is not amenable to the development of integrated systems due to conflicts in the data

representation at syntactic and structural levels. With the rapid increase in the amount of

information, the integration of heterogeneous resources is an important issue and requires

integrative technologies such as semantic web. In distributed data dissemination system,

normally querying on single database will not provide relevant information and requires

querying across interrelated data sources to retrieve holistic information. In this thesis we

develop system for integrating two different Resource Description Framework (RDF)

data sources through intelligent querying using Simple Protocol and RDF Query

Language (SPARQL). We use Semantic Web application framework from AllegroGraph

that provides functionality for developing triple store for the ontological representations,

forming federated stores and querying it through SPARQL.

ii

DEDICATION

I would like to dedicate this research to my parents, family members, and friends.

iii

ACKNOWLEDGEMENTS

I would like to express my heartfelt and sincere thanks to my major advisor Dr.

Nicolas H. Younan for his continued support and guidance through my research and for

his time to review the report. I would like to thank my co-major advisor Dr. Roger L.

King for his help, guidance, and patience throughout and also for his valuable

suggestions that helped me to complete this thesis successfully. I’m grateful to my

committee member, Dr. James V.Aanstoos, for his support, encouragement, and valuable

suggestions.

I would like to thank the Northern Gulf Institute (NGI), a NOAA cooperative

institute for funding this project. I would also like to thank all the graduate students for

their support and advices.

I shall always be thankful to my family and friends for their unconditional love

and support throughout my Master’s program

iv

TABLE OF CONTENTS

 Page

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER

I. INTRODUCTION ...1

1.1 Background ..1
1.2 Ontologies ..3
1.3 Semantic Integration of Heterogeneous Data Sources5
1.4 Triple Store ..5
1.5 Federated Database ..6
1.6 Motivation and Objectives ...7

II. LITERATURE REVIEW ..9

2.1 RDF stores ...9
2.1.1 Sesame ...10
2.1.2 3-store ..10
2.1.3 Jena ..11
2.1.4 Parka ..12
2.1.5 RDFLib/Redland ..12
2.1.6 TAP ..13

2.2 Querying Federated Databases ..13

III. METHODOLOGY ..15

3.1 Semantic Web ..15
3.2 Federated Database ..16

3.2.1 Requirements of federated database management system18
3.3 Overview of semantic integration approach ..18

3.3.1 Semantic integration considerations ..18

v

3.3.2 AllegroGraph ...19
3.3.3 Sesame Java API ..20
3.3.4 AllegroGraph Web View Framework ..21

3.4 Architecture of a semantic integration approach22
3.4.1 Creating a repository and Storing triples24
3.4.2 Creating Federated Repository ..25
3.4.3 Querying through SPARQL ..25

3.5 protégé-OWL ...26
3.6 Apache Tomcat ..28

IV. RESULTS ..29

4.1 Find out the all the atmospheric properties measured by
barometer in NDBC and GoMOOS ? ..34

V. CONCLUSION AND FUTURE WORK ..43

5.1 Conclusion ...43
5.2 Future Work ...44

REFERENCES ..45

vi

LIST OF TABLES

TABLE Page

 1.1 Representation of data in a triple store [11] ...6

 3.1 Syntactical representation of NDBC and GoMOOS ontologies17

vii

LIST OF FIGURES

FIGURE Page

 1.1 Representation of a federated database ..6

 1.2 Overview of the research. ...8

 2.1 Example of RDQL query ...11

 3.1 Allegrograph Database overview ...20

 3.2 Snippet of Allegrograph Web View. ..21

 3.3 Overview of the implementation. ...23

 3.4 Snippet of a SPARQL query ..26

 3.5 Ontology representation of a domain in protégé-OWL editor28

 4.1 Creating NDBC triple store ..30

 4.2 NDBC triple store with triples imported ..31

 4.3 Creating GoMOOS triple store ..32

 4.4 GoMOOS triple store with triples imported ...33

 4.5 Representation of the Federated store formed from NDBC and
GoMOOS ...34

 4.6 Results of SPARQL query to get the atmospheric properties measured
by barometer. ..35

 4.7 Results of SPARQL query to get the atmospheric properties measured
by thermistor ..36

 4.8 Results of SPARQL query to get the atmospheric properties measured
by seismometer. ..37

 4.9 Results of SPARQL query to get the devices used in the coastal buoys38

viii

 4.10 Results of SPARQL query to obtain the station ids from NDBC and
GoMOOS ...39

 4.11 SPARQL query results depicts the parameters measured by NDBC and
GoMOOS ...40

 4.12 Graphical View of the SPARQL CONSTRUCT query41

 4.13 Graphical View of the SPARQL CONSTRUCT query42

1

CHAPTER I

INTRODUCTION

1.1 Background

In World Wide Web, the term Web 2.0 deals with web applications which allow

users to interrelate with each other [1]. All the blogs, wikis, and social networks come

under Web 2.0. In addition to retrieving the information, Web 2.0 offers many useful

characteristics such as rich user experience, participation of the user and dynamic

content. For instance, users can get control over the data which is provided to them.

There are three parts in Web 2.0. The first one is Rich Internet Application which

deals with how a particular application is transformed from a desktop application to an

internet application with the help of Asynchronous JavaScript and XML (AJAX). The

second is Service Oriented Architecture which explains how smaller applications

integrate to become much richer applications [1]. Finally, the third one is the social web,

in which end user is an imperative part which deals with the interaction of Web 2.0 with

the end user. All the Web 2.0 applications are built with AJAX support so that it works in

any browser. Besides this, a language, this is iterative and with good web services, must

be used to build the applications so that they can be updated very easily. On the whole,

the primary idea of Web 2.0 applications is sharing and integrating the data which results

in valuable results when queried.

The World Wide Web (WWW) is a system of interlinked hyper text documents

accessed through the internet. With the help of the WWW, humans can retrieve texts,

2

images, and other multimedia from the web pages [2]. It is the main rationale for making

the Internet as a household application. But only humans can interact with the WWW

which forms a great drawback besides its massive conquest. As computers do not have

the ability to understand the meaning of the web pages, they cannot make conclusions

from the information and compare different information sources. In addition to this we

cannot use the information on the web on a large scale because the information can be

processed by anyone with the absence of a global system [3]. Semantic Web provides the

solution for this problem.

In order to make the computers do more useful work, a stack support namely the

“Web of Data” was proposed by W3C[4]. This “Web of Data” is referred to as the

Semantic Web which will help people in maintaining the databases such as building the

data stores on the web, forming relations among the data, and querying across the data

stores. The Semantic Web data refers to date, time stamps, chemical properties, titles etc.

must be in standard format so that it can be easily reachable and manageable by the

Semantic Web tools [5]. In addition to this, the relations among the data should also be

present. The Semantic Web enables “intelligent” reasoning capabilities for web based

systems by providing a meaningful structure to the web data.

Standardized XML-type data formats such as Resource Description

Framework(RDF) and Ontology Web Language(OWL) are used to solve the

heterogeneity problems and to achieve semantic interoperability on the Semantic Web.

RDF is an XML based general purpose language used to describe information about the

web sources in standard format [6]. OWL is a W3C standard XML based language which

is used to provide additional vocabulary to the data along with the formal semantics [7].

When compared with RDF, OWL is a more expressive language because it adds more

3

vocabulary for representing the properties of the data, relations between the classes and

more machine interoperability. So in order to provide semantic integration of the datasets

on the Semantic Web, we define the datasets in ontologies.

1.2 Ontologies

Ontologies are metadata schemas which are described with vocabulary of

concepts, machine-readable semantics, instances, properties etc. With the help of

ontologies people and machine can communicate easily [8]. They provide specific

vocabulary that is required by a particular application. In recent years, ontologies are

used in various fields such as semantic Web services, semantic integration, knowledge

management, electronic commerce, social networks, etc. For instance, the wind direction

parameter, which is measured by sensors can be represented as a defined concept in an

ontology. This is shown in Example 1.

<owl:Class rdf:about="#WindDirection">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:someValuesFrom rdf:resource="#StationID"/>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasStationID"/>

 </owl:onProperty>

 </owl:Restriction>

 <owl:Restriction>

4

 <owl:hasValue

rdf:resource="http://sweet.jpl.nasa.gov/ontology/earthrealm.owl#OceanRegion"/>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasMeasurement"/>

 </owl:onProperty>

 </owl:Restriction>

 <owl:Restriction>

 <owl:hasValue

rdf:resource="http://sweet.jpl.nasa.gov/ontology/space.owl#Direction"/>

 <owl:onProperty

rdf:resource="http://sweet.jpl.nasa.gov/ontology/space.owl#hasDirection"/>

 </owl:Restriction>

 <owl:Restriction>

 <owl:someValuesFrom rdf:resource="#Sensors"/>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#measuredBy"/>

 </owl:onProperty>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 <rdfs:subClassOf rdf:resource="#Wind"/>

 </owl:Class>

Example 1: Snippet of Ontological Representation for Wind Direction Class

5

However, with the rapid increase in the amount of information, different

enterprises that use different database systems to store and search the data and querying

across single datasets will not provide relevant and useful information. Thus, there is a

need for semantic integration of the heterogeneous data sources to resolve the

heterogeneity problems.

1.3 Semantic Integration of Heterogeneous Data Sources

In recent years, semantic integration is widely used in a variety of processing

applications which are actively used in the web, database, and data mining communities.

Semantic integration deals with solving the heterogeneity problems, which are initiated

from the semantically heterogeneous data [9]. The heterogeneity problems include the

modeling of complex relations in different sources, matching of data definitions in

ontologies, and the reconciliation of inconsistencies. So, there is a need for semantic

integration of heterogeneous data sources.

In order to store the ontology files of different organizations, we need a flexible

and efficient database which can handle very large datasets and can perform efficient

queries to retrieve the information about the devices and also certain properties [10]. The

ontology data is represented as RDF triples that forms a RDF graph which can be stored

in RDF triple stores.

1.4 Triple Store

A Triple store is a purpose built database which is used to store the RDF metadata

in the form of triples [11]. A triple store can consist of large number of triples which is

like a relational database and can be queried through RDF query languages such as

Simple Protocol and RDF Query Language (SPARQL), RDF Data Query Language

6

(RDQL) etc. More than one billion triples can be stored into one single triple store. The

data in the triple stores is stored in the form of subject-predicate-object like “Sam is 45”.

The triple store representation is represented in Table 1.1. The triple store

implementations are done on the databases namely 3store, 4 store, Allegrograph etc. [12].

Table 1.1 Representation of data in a triple store [11]

 Subject(Resource URI) Predicate(Property URI) Object(Entity value)
 (…) (…) (…)

1.5 Federated Database

The term database system refers to the software database management system

which manages one or more databases. In the same way, a federated database system is a

collection of databases which are syntactically different. A federated store is structured

by the amalgamation of heterogeneous database systems. As the federated store consists

of diverse information sources, heterogeneities arise. Naming conflicts, data conflicts,

metadata conflicts, and domain conflicts are some of the heterogeneities [13]. A federated

database is represented in Figure 1.1.

Figure 1.1 Representation of a federated database

7

1.6 Motivation and Objectives

Ocean sensor networks such as GoMOOS (Gulf of Maine Ocean Observing

Systems) [14] and NDBC (National Data Buoy Center) [15] provide real time or near real

time sensor data. Due to the heterogeneous and non semantic nature of the sensor data it

prevents the semantic interoperability in ocean sensor networks. So the two ontologies

cannot communicate due to the heterogeneities in their properties. NDBC and GoMOOS

both maintain the same Marine/meteorological data and consist of the same sensors but

the vocabulary representations are different. For instance the wind direction in NDBC is

represented as “Wind Direction” but in GoMOOS it is represented as “Wind_Direction”.

Though NDBC and GoMOOS refer to the same parameter semantically they are

represented in a different manner.

In this research, to overcome the heterogeneities of the data sources, intelligent

querying across different knowledge bases is required. Federated database aids users to

query multiple datasets at the same time and these multiple responses will be

standardized to one result set. The National Data Buoy Center (NDBC) and the Gulf of

Maine Ocean Observing System (GoMOOS) Ontology Web Language files (OWL files)

are stored as RDF triple stores in Allegrograph database [16]. A federated data-store is

formed in Allegrograph by the amalgamation of the NDBC and GoMOOS OWL files.

The querying of these knowledge bases is achieved via SPARQL which is a RDF query

language. The main objective of the query languages is to make the machine to

understand a particular application. So if we want the information regarding the wind

direction parameter, then, the result must contain the values from NDBC and GoMOOS.

The preliminary implementation of the proposed intelligent querying using SPARQL is

shown in Figure 1.2.

8

Figure 1.2 Overview of the research.

9

CHAPTER II

LITERATURE REVIEW

In the last few years, wide research is going on in semantic integration to facilitate

interoperability between different systems. As querying on single datasets does not

retrieve efficient results, the research in semantic integration include techniques for

matching database schemas and answering queries using multiple sources of data.

Moreover the research in semantic integration became prominent as it is actively used in

several fields such as databases, integration of the information and ontologies. In this

section we will discuss about the research work in storing the RDF metadata as triple

stores and querying across the federated databases using SPARQL, which is an RDF

query language.

2.1 RDF stores

For the query processing, storage engine is the core component, as it comprehends

the organization of the systems and the implementation of SPARQL. Large amount of

(subject, predicate, object) triples are stored by the triple stores [17]. Examples of triple

store implementations are Sesame [18], 3-store [19], Jena [20], Allegrograph [16] and

OpenLink Virtuoso [21]. All these triple store implementations use the relational model.

In addition to these we have other RDF storage implementations such as Parka [22],

RDFLib/Redland [23] and TAP [24].

10

2.1.1 Sesame

In [18], architecture Sesame was developed for the efficient storage and querying

of large quantities of metadata in RDF and RDF Schema. The design and implementation

of Sesame is independent of other specific storage devices, so that it can be stored on top

of variety of storage devices such as triple stores or relational databases or object oriented

databases. A support for concurrency control, independent export of RDF and RDFS

information and RQL(RDF Query Language), a query language of RDF is provided by

Sesame.

From [18] we can infer that the most important feature of Sesame is its

abstraction, which helps Sesame to port to different repositories such as relational

databases, RDF triple stores and remote services on the web. Moreover Sesame is a

server based application and it is used as a remote service for managing the RDF data on

the semantic web.

2.1.2 3-store

In paper [19] 3 store and RDF engine is described which efficiently supports RDF

and RDFs over relatively large RDF knowledge bases using a relational database back-

end to perform queries. The main aim of the work is to design and implement a system

for scalable storage of RDF data. The 3-layer optimization model of Sophia[25] is used

for the multi-level optimization and also enables efficient RDBMS storage. Both classes

and instances are stored using unified storage mechanism. The 3 store’s layers are

characterized as RDF syntax, RDF representation and relational databases system.

In the database structure of 3-store, using hash of the resource URIs and literal

values as a foreign key the schema is normalized. Resources and literals are stored in

separate tables with a hash of their values used as the primary key. Both resources and

11

literals use hashing function so that the triple table contains a flag to indicate whether the

object of the triple is a literal or a resource. The 3-store RDQL query transforms an

RDQL query into an SQL query over the underlying RDBMS representation of the RDF

data. RDQL is the more common RDF query language. There are other graph matching

query languages with comparable syntaxes and capabilities. The example of query

expressions is given in Figure 2.1

Figure 2.1 Example of RDQL query

2.1.3 Jena

Jena [20] is a leading semantic web tool kit for manipulating RDF models which

has been developed by Hewett-Packard Labs. In [20] the architecture of Jena is given.

The heart of Jena architecture is RDF graph, which is a set of nodes. There are three

layers in this architecture. The first one is the graph layer, which stores the triples as the

universal data structure. This layer is based on the RDF Abstract Syntax [26] and it

implements triple stores, both in memory and backed by persistent storage, read-only

views of non-triple data as triples and virtual triples corresponding to the results of

inference processes over some further set of triples as premises. The second is the model

layer, which gives a richer set of methods for operating on both graph and nodes within

the graph. The third is the enhgraph layer, which provides the multiple simultaneous

views. This layer provides an extension point for providing views of graphs and views of

12

nodes within a graph. The needs of the Model and ontology API are generalized and thus

making the design decision stateless. To provide polymorphic objects within the

enhgraph, Java single inheritance model is used, thus allowing multiple inheritances.

In Jena the queries are executed against the graphs which have multiple statement

tables. There is a handler for each statement table to convert between the graph view of

Jena and the tuple view of SQL. To evaluate the triple pattern, the query processor passes

the pattern, in turn, to each table handler for evaluation. But the drawback with Jena is

that it is not suitable for storing large volume of data that we require.

2.1.4 Parka

Parka [22] is an inferencing database written over a custom relational database

back-end; the Parka version has been modified to support RDF. Query execution is

handled by the relational engine, as in 3-store, though the table layout is significantly

different, so comparing the translation engine algorithms is beyond the scope of this

document. According to its documentation, Parka has an upper limit on its knowledge

base size of around 2.5 million triples, which appears to be due to the structure of the

relational indexes, and which makes it inappropriate for the scale of data with which we

are working.

2.1.5 RDFLib/Redland

The Redland [23] suite appears to be capable of storage of large RDF graphs, but

currently has no graph matching query facility, so is unsuitable for our purposes. Adding

a query mechanism to Redland was considered, but because it does not use a DBMS

back-end it would have been considerably more effort to implement that than to port the

existing 3-store code to another environment. However RDF parser from Redland

13

provides a C API for extracting the triples from RDF/XML and RDF/Ntriples documents.

It abstracts the complexities of the RDF syntax, and removes the implementation burden

from our core goal of building a scalable, persistent RDF knowledge base.

2.1.6 TAP

TAP [24] is an RDBMS backed RDF knowledge base which has appeared since

the start of the development of 3-store version 2. It provides an Apache module, TApche,

which allows remote access to the stored RDf, much like 3-store. However, TApache

provides no graph matching query interface such as RDQL, and provides only the direct

triple matching method, GetData, much like the low level librdfsql access methods used

internally by all the RDF stores.

2.2 Querying Federated Databases

In [26] the architecture of an end-to-end semantic search engine that uses a graph

data model to enable interactive query answering over structured and interlinked data

collected from many disparate sources on the web. The architecture of Semantic Web

Search Engine requires the components such as

(i) Crawler. Used to store the web documents and this architecture also uses

multicrawler, which is a pipelined crawling architecture, syntactically transforms the

data from different sources into single federated store for easy integration into a

semantic web system.

(ii) Object Consolidator. Within RDF, URIs(Uniform Resource Identifier) are used to

uniquely identify the entries. But on the web due to the lack of URIs cause conflicts

in the entities. We can eradicate this by merging equivalent entities representing a

particular person having the same values for an email property.

14

(iii)Query Processor. The query processor creates and optimizes the logical plan for

answering the queries for all the databases stored in a federated store.

(iv) User interface. To provide user-friendly search, query and browsing over the data

indexed, the architecture provides a user interface which is the human access point to

the Semantic Web Search Engine.

In [27] an approach known as the federated database approach, allows the

applications to access data across several heterogeneous databases as if they are accessing

a single database without changing the state of the individual databases. They took the

example of the queries related to airlines and aircraft classes. The steps followed are

formulation of integration policy, schema transformation, conflict identification, conflict

resolution, schema merging, and querying on the federated database.

In [28] a new schema was proposed to store, index and query RDF data. Graph

feature of RDF data is taken into consideration which might help to reduce the join costs

on the vertical database structure. The contributions of the paper are graph portioning of

RDF triples, signature indexing and SQL rewriting.

In our approach we created a federated database by using Allegrograph and

queried it through SPARQL.

15

CHAPTER III

METHODOLOGY

3.1 Semantic Web

For the management and exploitation of the web data semantic web symbolizes a

vision for a new era[29]. In the present World, the World Wide Web (WWW) consists of

a large number of web data. The problem with the rapid growth of web data is that it is

not useful to use it on a large scale as there is no global system for publishing the data.

For instance, if we look at the information regarding weather data, sports, television

guides, etc., there is a large number of HTML (Hyper Text Markup Language) files, but

it is not easy to use in the way that one might use [30]. This web of data is referred to as

the semantic web which will help people in maintaining the databases such as building

the data stores on the web and forming relations among the data and querying across the

data stores. Therefore, it is very tricky to find appropriate answers for specific questions

from users. In order to make computers do more useful work, a stack support namely

“Web of Data” was proposed by W3C. In recent years the innovations in the semantic

web made it an efficient way of representing the WWW data. The semantic web

enhances the web data for better understanding and responding to the user queries. The

semantic web data refers to date, time stamps, chemical properties, titles, etc., must be in

a standard format so that it can be easily reachable and manageable by the semantic web

tools [30]. In addition to this, the relations among the data should also be present. The

16

semantic web enables “intelligent” reasoning capabilities for the web based systems by

providing a meaningful structure to the web data.

The semantic web is based on a set of XML (Extensible Markup Language)

languages and RDF that can be used to markup the content of web pages. The

effectiveness of the semantic web depends on ontologies. Ontology provides specific

vocabulary that is required by a particular application. With the help of ontologies people

and machine can communicate easily[31]. The main vision of the semantic web is the

transformation of the web into an Internet wide knowledge representation system, in

which web pages provide information and ontologies provide the conceptual framework

needed to interpret that information [32]. The semantic web depends on ontologies to

give the meaning of the data. The semantic web has the potential to provide the web

services infrastructure with the semantic information that it needs. It also provides formal

languages and ontologies to reason about service descriptions, message content, business

rules, and relations between these ontologies. The semantic web transforms the web into

a repository of computer readable data, and the web services provide the tools for the

automatic use of that data.

3.2 Federated Database

In recent years the conventional file processing systems used by different

organizations have been replaced by Database Management Systems (DBMS)[33]. Today

every organization has several different DBMS and databases and their applications. But

these DBMS are not decision support, overall control, and distributed. So, even though

DBMS eradicate the limitations of the conventional file processing systems, there is a

need for the organizations to look towards the heterogeneous distributed database

17

scenario. This scenario deals with bounding large number of DBMS within a network

[33]. A heterogeneous distributed database management system can be better explained

with an example. Consider two different ontological representations, NDBC and

GoMOOS which maintain the same sensor data, and differ in their syntactical

representations. For instance wind speed, air temperature, water temperature, wind

direction, wind gust and wave height are represented in differently as shown in Table 3.1.

Table 3.1 Syntactical representation of NDBC and GoMOOS ontologies

X GoMOOS

Wind speed Wind_speed

Air Temperature Air_Temperature

Water temperature Sea_Surface_Temperature

Wind direction Wind_direction

Wind gust Wind_gust

Wave Height Significant_wave_height

Dominant wave period Dominant_wave_period

A federated database approach proposed by Hammer and Mcleod[33] augments

the accessibility of the heterogeneous database systems and allows applications to access

global data. Each local database in the federated database is considered as a logical

component which is lashed with one or more federated schemas.

18

3.2.1 Requirements of federated database management system

In this section, we will look at the main requirements of a federated database

management system [33].

1. A federated database system must consist of a large number of heterogeneous

databases so that the querying can be done across a single federated database.

2. Each and every single database in the federated database must be accessible using

any of the query languages.

3. There should not be any changes in the existing data.

4. The federated database system must be feasible enough to add new databases into

it.

5. The most important aspect of a federated database system is its performance. Its

performance must be almost equal to that of single database.

A federated database system must meet all the above requirements. In our

research we built a federated store which is an amalgamation of the NDBC and

GoMOOS systems. To query across this federated database, we used SPARQL query

language.

3.3 Overview of semantic integration approach

In this section the methodology and the system development tools used in the

semantic integration approach is discussed.

3.3.1 Semantic integration considerations

For integrating the existing databases the major challenge lies in constructing a

global database which satisfies the requirements mentioned in section 3.4.1. When we

integrate heterogeneous databases there is a need to discover the hidden relationships

19

which do not appear in individual databases. Many conflicts arise while integrating the

heterogeneous databases [33]. These are

1. Name Conflicts - , refers to representing the same data with their synonyms. For

instance the concept of atmospheric pressure in the NDBC ontology is equivalent

to barometric pressure in GoMOOS ontology.

2. Different representation conflicts - , arise when syntactically the same data is

represented with the same constructs such as denoting an entity s, an entity in one

database, and as an attribute in other databases.

3. Conflicts in application semantics - , arise due to different insights of different

users.

Therefore it is of utmost important to eradicate these conflicts so that we can

achieve semantic interoperability between the heterogeneous databases.

3.3.2 AllegroGraph

AllegroGraph is a semantic web application framework database that can store

ontology files in the form of triples. By querying these triples through various query APIs

like SPARQL and Prolog, we can obtain the desired results, which are intended by the

user. Figure 3.1 represents the block diagram of an AllegroGraph database. It consists of

assertions (triples) that have five fields namely subject, predicate, object, graph, and id

[16]. The string dictionary manages these strings of arbitrary sizes (subject, predicate,

object, and graph) and UPIs and prevents duplication. AllegroGraph uses indices that

contain the assertions and additional information for boosting the query process. It can

perform freetext searching in the assertions using its free text indices, and also records

the deleted triples.

20

In our research we used Java client distribution provided by Allegrograph. The

java client uses java sesame API(Application Programming Interface). The

communication with the java client is done through HTTP port.

Figure 3.1 Allegrograph Database overview

3.3.3 Sesame Java API

Sesame is an open source Java framework which is used for querying, analyzing

and managing the RDF data [34]. It can be used as a database for RDF data or as a Java

library for applications that need to work with RDF internally. Sesame provides the

necessary tools to parse, interpret, query and store all the information in a separate

database or on a remote server [35].

Sesame supports two query languages namely SeRQL(Sesame RDF query

language) and SPARQL. Albaba is an API of Sesame which allows mapping Java classes

onto the ontologies so that the Java source files can be generated. Sesame’s API offers a

21

stackable interface which helps in abstracting the storage engine from the query interface.

Through sesame API many other triple stores can be used including Allegrograph,

Mulgara and Virtuso Universal server. In this study we used sesame java API with

Allegrograph database and querying is done in SPARQL.

3.3.4 AllegroGraph Web View Framework

The AllegroGraph Web View[36] is a graphical interface for managing and

querying the AllegroGraph triple stores. The HTTP (Hypertext Transfer Protocol)

interface of AllegroGraph is used by the AllegroGraph Web View. A Snippet for the

AllegroGraph Web View is shown in Figure 3.2.

Figure 3.2 Snippet of Allegrograph Web View.

22

Using the AllegroGraph Web View, we can create individual triple stores by

loading RDF data into a repository and browse the available catalogs and

repositories[36]. We can create federated stores and issue SPARQL and Prolog queries

on the federated stores. The AllegroGraph Web View helps us to view and add

namespaces. A SPARQL-style notation is used for RDF resources throughout the

interface.

3.4 Architecture of a semantic integration approach

The basic idea behind the semantic integration approach is described as follows:

Suppose there are two information sources, NDBC and GoMOOS, with their respective

ontologies, describing the same domain but differ in naming convention as mentioned in

Table 1. For instance, the concept of atmospheric pressure in the NDBC ontology is

equivalent to barometric pressure in GoMOOS ontology. If we want information

regarding the number of devices present at the coastal buoys then the result must show

the devices from both NDBC and GoMOOS. The architecture of the semantic integration

approach used in our research is illustrated in Figure 3.3.

23

Figure 3.3 Overview of the implementation.

AllegroGraph[16] uses AllegroGraph Webview Framework [36], which is a

graphical interface through which we can manage and query the AllegroGraph triples.

The steps involved in the methodology can be described in three steps as follows:

1. In the first step, the two ontology files, NDBC and GoMOOS which consist of

RDF metadata are loaded into the Allegrograph database as different individual

repositories(triple stores) , thus forming individual triple stores of NDBC and

GoMOOS.

2. In the second step, these individual triple stores are combined to form a federated

database. As querying on a single dataset is very easy and it will not lead to useful

information retrieval, we need a federated database.

3. In the third step, we use SPARQL query language, which is an RDF query

language to query on the federated database. This yields knowledgeable results.

24

Before querying the federated database, we need to discover the relations between

these two datasources.

3.4.1 Creating a repository and Storing triples

Firstly start the Allegrograph server which is done by the username and password

assigned to the server. Once we initialize the server a client-side server object is created,

which can access the available repositories in the Allegrograph server by calling

listCatalog() method. We use CreateRepositiry() method inorder to create a client-side

repository object, which is used to open our desired repository. We create a repository

named NDBC. This repository is initialized using initialize() method. We will get a

warning method if we initialize the same repository twice. Once the repository is

initialized we need to check the type of indices to store. To quickly identify the block of

triples, Allegrograph uses a set of stored indices which matches a specific query pattern.

The default set of indices are spogi, gspoi, posgi and I where

• S represents Subject URI
• P represents Predicate URI
• O represents Object URI
• G represents Graph URI
• I represents triple identifier

The information of the index is denoted by the order of the letters. For instance

posgi index represents the triples stored first by predicate, then by object, then by subject

and finally by graph. The fifth column in the index denotes the triple number. Thus the

repository will consist of only the indices which we need. Now, the NDBC repository

must be loaded with the triples. The Java sesame API client loads the triples in N-triples

format or RDF/XML format. In our implementation we stored our triples in RDF/XML

format. We use addFile() method to store the RDF data from the ontology files of

25

ndbc.owl, loading the NDBC repository with the triples. In the same way GoMOOS

repository is created and it is loaded with the RDF data from gomoosont.owl.

3.4.2 Creating Federated Repository

Allegrograph aids us to combine the repositories and search them in parallel. This

can be done by querying a single federated repository which will distribute the queries to

the secondary repositories and combines the result. The federated repository can be

created as follows.

• Open NDBC repository which is loaded with the RDF data from ndbc.owl.
• Open GoMOOS repository which is loaded with the RDF data from

gomoosont.owl
• Call federate() method to create a federated repository.

3.4.3 Querying through SPARQL

RDF is a directed, labeled graph data format for representing the information in

the web [37].The information in the social networks, personal information, and metadata

are represented in RDF. Many query languages were proposed to retrieve the information

from the RDF files [38]. But most of the query languages such as RQL (Resource

Description Framework Query Language) and RDQL (Resource Description Framework

Query language) are restricted to a single value, format, and type of information and do

not enable for data sharing and merging. To overcome these limitations and to meet the

user cases and requirements, a SPARQL query language was proposed. SPARQL was

developed as a query language for RDF by W3C and querying is done by triple patterns,

conjunctions, and disjunctions [39].

A SPARQL query language consists of semantic annotations and descriptions

when compared with the existing standard sensor web languages, which allows the sensor

26

data to be understood and processed in a meaningful way by a variety of applications

with different purposes. The four different query forms of SPARQL are the SELECT

query, which pulls out the values into a table from a SPARQL endpoint, the

CONSTRUCT query, which extracts the information and converts them into valid RDF,

the ASK query, which provides True/False results for a query, and the DESCRIBE query,

which helps to pull an RDF graph [39]. In our research, we used SPARQL query

language to query across the federated database of NDBC and GoMOOS and to retrieve

the results from the federated database formed by combining NDBC and GoMOOS. A

sample SPARQL query used is shown in Figure 3.4.

Figure 3.4 Snippet of a SPARQL query

3.5 protégé-OWL

The protégé-OWL editor is a software platform that allows users to create and

manipulate OWL ontologies. A set of actions which are implemented are supports

loading, saving, editing, and visualizing OWL ontologies. The users can also import

27

existing ontologies into the project by means of protégé plugins, which appear as tabs. It

also supports the SPARQL (SPARQL Protocol and RDF Query Language) query

language that allows users to retrieve the desired data by running queries on the ontology

knowledge base.

In this application, ontologies representing knowledge of the coastal domain for

different information sources are built in an Ontology Web Language using a protégé-

OWL editor. Once a new ontology project is created, tabs, such as OWLClasses,

properties and Individual tabs, are used to add classes, individuals, and properties to the

ontology as per the application needs. Figure 3.5 shows an OWL ontology representing

the domain knowledge in terms of classes, properties, and individuals with a protégé

editor.

28

Figure 3.5 Ontology representation of a domain in protégé-OWL editor

3.6 Apache Tomcat

An Apache Tomcat is a servlet container developed by the Apache Software

Foundation (ASF) [40]. The Tomcat implements the Java Servlet and the JavaServer

pages (JSP) technologies. It provides a pure Java HTTP web server environment for the

Java code to run. The Tomcat is used as the container for almost all the blocks of the

architecture. The ontology files are deployed in Tomcat as a web archive (WAR) file.

The Tomcat is responsible for serving the request/response from the client.

29

CHAPTER IV

RESULTS

In this chapter, the results for the implementation of the semantic integration

framework on coastal buoys data are presented. The graphical user interface for the

semantic integration approach is developed using the Allegrograph Web View. The

querying in the AllegroGraph Web View can be done in SPARQL or Prolog. In this study

we have used SPARQL. In the AllegroGraph Web View, we first create individual triple

stores of NDBC and GoMOOS. Then, we form a federated database, which is formed by

the amalgamation of the two individual triple stores. Figures 4.1-4.13 show the procedure

for the implementation. The results will be retrieved by querying the federated database

formed by combining NDBC and GoMOOS.

30

Figure 4.1 Creating NDBC triple store

31

Figure 4.2 NDBC triple store with triples imported

32

Figure 4.3 Creating GoMOOS triple store

33

Figure 4.4 GoMOOS triple store with triples imported

34

Figure 4.5 Representation of the Federated store formed from NDBC and GoMOOS

4.1 Find out the all the atmospheric properties measured by barometer in NDBC
and GoMOOS ?

From the query we can get the results as in NDBC the atmospheric property is

‘AtmosphericPressure’ and in GoMOOS the atmospheric property is

‘barometric_pressure’ shown in Figure 4.6. The result of the query is obtained by

querying on the federated database formed by combining both NDBC and GoMOOS. So,

we can infer that the same atmospheric property is represented differently in both NDBC

and GoMOOS.

35

Figure 4.6 Results of SPARQL query to get the atmospheric properties measured by
barometer.

Similarly Figure 4.7 gives the information regarding the atmospheric parameters

measured by thermistor in both NDBC and GoMOOS. The result show that Dominant

Wave Period is measured which is represented as ‘Air Temperature’ in NDBC and

air_temperature in GoMOOS. Thus querying the federated database retrieves useful

results.

36

Figure 4.7 Results of SPARQL query to get the atmospheric properties measured by
thermistor

Similarly Figure 4.8 gives the information regarding the atmospheric parameters

measured by seismometers in both NDBC and GoMOOS. The result show that Dominant

Wave Period is measured which is represented as ‘DominantWavePeriod’ in NDBC and

dominant_wave_period in GoMOOS. Thus querying the federated database retrieves

useful results from both datasets.

37

Figure 4.8 Results of SPARQL query to get the atmospheric properties measured by
seismometer.

The SPARQL query on the federated database to obtain the information regarding

the devices present in both NDBC and GoMOOS datasets is represented in Figure 4.9.

From the results shown, we can infer that the same devices in GoMOOS and NDBC are

represented differently.

38

Figure 4.9 Results of SPARQL query to get the devices used in the coastal buoys

The SPARQL query using CONSTRUCT -to obtain some of the buoy station ids

maintained by NDBC and GoMOOS is represented in Figure 4.10. When we query on the

federated store we get to know that the representation of the maintained attribute is

represented differently. In NDBC, it is denoted as Owned and in GoMOOS it is given by

ownedAndMaintainedBy.

39

Figure 4.10 Results of SPARQL query to obtain the station ids from NDBC and
GoMOOS

Figure 4.11 provides the information regarding the parameters measured by

NDBC and GoMOOS. We can infer that the same air temperature is represented as

air_temperature in GoMOOS and AirTemperature in NDBC.

40

Figure 4.11 SPARQL query results depicts the parameters measured by NDBC and
GoMOOS

CONSTRUCT in SPARQL provides not only to extract data from the triple stores

but also helps to create new useful data. CONSTRUCT returns a graph which is a set of

triples, as shown in Figure 4.12 and Figure 4.13.

41

Figure 4.12 Graphical View of the SPARQL CONSTRUCT query

42

Figure 4.13 Graphical View of the SPARQL CONSTRUCT query

The federated store is built and we queried intelligently across the knowledge

bases through SPARQL, which allowed expressing queries across diverse data sources,

whether the data is stored natively as RDF or viewed as RDF via middleware.

43

CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In recent years the innovations in the semantic web made it as an efficient way of

representing the data on the World Wide Web. Semantic web enables “intelligent”

reasoning capabilities for the web based systems by providing a meaningful structure to

the web data. It also enhances the web data for better understanding and responding the

user queries. However, with the rapid increase in the amount of information on the

semantic web, the integration of heterogeneous web-resources has become a very grave

issue. Thus, there is a need for ontology mapping and intelligent querying across different

knowledge bases. Ontology mapping is a process in which for each entity in an ontology,

a corresponding entity is found in a different but same domain ontology which shares the

same meaning [2]. In general, the large number of existing mapping algorithms causes

uncertainty due to limited accurate mappings. Even, querying across single datasets will

not provide relevant and useful information. Addressing the above constraints, we

propose an ontology mapping of two different Resource Description Framework (RDF)

datasets and intelligently querying across the federated data-store through SPARQL. In

this study, the federated data-store is formed by the amalgamation of National Data Buoy

Center (NDBC) and Gulf Of Maine Ocean Observing System (GOMOOS) ontology web

Language files (owl files). SPARQL is a RDF query language that can be used for

querying the ontology files which are stored in AllegroGraph. The main objective of the

44

query languages is to make the machine to understand a particular application. We use

AGWebview, which is a graphical interface for managing and querying the AllegroGraph

triple stores provided by Allegrograph. In this paper the ontologies(GoMOOS and

NDBC) are stored as individual triple stores. These individual stores are combined to

form a federated store and are queried through SPARQL which is an RDF query

language. Thus the heterogeneous data sources are combined and queried intelligently.

5.2 Future Work

Currently the federated database is formed by combining two ontologies. In future

the federated store must be formed by more ontologies so that the retrieved results will be

more useful. Moreover we can use Gruff, which is a graph based triple store browser for

Allegrograph instead of AGWebview, through which we can display visual graphs of

subsets of a store’s resources and their links.

45

REFERENCES

[1] Guha, R.; Al-Dabass, D.; , "Impact of Web 2.0 and Cloud Computing Platform
on Software Engineering," Electronic System Design (ISED), 2010 International
Symposium on , vol., no., pp.213-218, 20-22 Dec. 2010 doi:
10.1109/ISED.2010.48

[2] Hirsch, P.M.; , "Exercise the power of the World Wide Web," Computer
Applications in Power, IEEE , vol.8, no.3, pp.25-29, Jul 1995
doi:10.1109/67.392022

[3] http://www.w3.org/standards/semanticweb/

[4] http://www.w3.org/standards/semanticweb/data.html

[5] Klyne, G., and Caroll, J.J. (eds.) Resource Description Framework (RDF):
Concepts and abstract Syntax. W3C Recommendation 10 February 2004. Latest
version available at http:///www.w3.org/TR/rdf-concepts/for rdf.

[6] Patel-Schneider, P.F., Hayes, P., and Horrocks, I. (eds.). OWL Web Ontology
Language Semantic and Abstract Syntax. W3C Recommendation 10 February
2004. Latest version available at http://www.w3.org/TR/owl-semantics/for owl.

[7] Alexander Maedche and Steffen Staab. Ontology Learning for the Semantic
Web.

[8] Biffl, S.; Sunindyo, W.D.; Moser, T.; , "Semantic Integration of Heterogeneous
Data Sources for Monitoring Frequent-Release Software Projects," Complex,
Intelligent and Software Intensive Systems (CISIS), 2010 International
Conference on ,vol.,no.,pp.360-367, 15-18 Feb. 2010 doi:10.1109/CISIS.2010.58

[9] Dibowski, H.; Kabitzsch, K.; , "Ontology-based Device Descriptions and triple
store based device repository for automation devices," Emerging Technologies and
Factory Automation (ETFA), 2010 IEEE Conference on , vol., no., pp.1-9, 13-
16Sept.2010doi:10.1109/ETFA.2010.5641257

46

[10] Dibowski, H.; Kabitzsch, K.; , "Ontology-based Device Descriptions and triple
store based device repository for automation devices," Emerging Technologies and
Factory Automation (ETFA), 2010 IEEE Conference on , vol., no., pp.1-9, 13-16
Sept. 2010

[11] http://www.franz.com/agraph/support/documentation/current/agraph-
introduction.html#header3-103

[12] Soutou, C.; , "Towards a methodology for developing a federated database system
," Computing and Information, 1993. Proceedings ICCI '93., Fifth International
Conference on , vol., no., pp.560-564, 27-29 May 1993.

[13] http://www.gomoos.org/.

[14] http://www.ndbc.noaa.gov/

[15] http://www.franz.com/agraph/allegrograph/

[16] Kamel, M.N.; Kamel, N.N.; , "The federated database management system: an
architecture of distributed systems for the 90's," Distributed Computing Systems,
1990. Proceedings., Second IEEE Workshop on Future Trends of , vol., no.,
pp.346-352, 30 Sep-2 Oct 1990 doi: 10.1109/FTDCS.1990.138344

[17] J. Broekstra, A. Kampan, and F. van Harmelen. Sesame: Ageneric architecture for
storing and querying RDF and RDF Schema. In Int'l Semantic Web Conference
'02, pages 54–68, 2002

[18] S. Harris and N. Gibbins. 3store: Efficient bulk RDF storage.In In Proc. of
PSSS’03, pages 1–15, 2003.

[19] The Jena Semantic Web Toolkit, Web page, Hewlett-Packard Labs,
2003,http://www.hpl.hp.com/semweb/jena.html.

[20] http://virtuoso.openlinksw.com/

[21] Kilian Stoel, Merwyn Taylor, and James Hendler, Efficient management of
verylarge ontologies, Proceedings of American Association for Articial
Intelligencen Conference (AAAI-97) (1997).

[22] Raptor RDF Parser Toolkit, http://www.redland.opensource.ac.uk/raptor/, 2003

[23] TAP Project, GetData: Querying the Data
Web,http://tap.stanford.edu/tap/getdata.html, 2003

[24] S. Harris and N. Gibbins. 3store: Efficient bulk RDF storage.In In Proc. of
PSSS’03, pages 1–15, 2003.

47

[25] A. Harth, J. Umbrich, A. Hogan, and S. Decker.Yars2: A federated repository for
querying graph structured data from the web. In ISWC/ASWC, 2007.

[26] M.N. Kamel, N.N. Kamel Federated database management system: requirements,
issues and solutions Computer Communications, 15 (4) (1992), pp. 270–278

[27] Yan, Y., Wang, C., Zhou, A., Qian, W., Ma, L., and Pan, Y. Efficiently querying
RDF data in triple stores. In Proceedings of WWW. 2008, 1053-1054.

[28] Rauber, A.; Witvoet, O.; Aschenbrenner, A.; Bruckner, R.; , "Putting the World
Wide Web into a data warehouse: a DWH-based approach to Web
analysis," Database and Expert Systems Applications, 2002. Proceedings. 13th
International Workshop on , vol., no., pp. 822- 826, 2-6 Sept. 2002
doi: 10.1109/DEXA.2002.1045999

[29] http://www.w3.org/2005/Incubator/usdl/XGR-usdl-20111027/

[30] Maedche, A., & Staab, S. (2001). Ontology Learning for the Semantic Web.
IEEE Intelligent Systems16(2), 72-79.

[31] Wang Yong-gui; Jia Zhen; , "Research on semantic Web mining," Computer
Design and Applications (ICCDA), 2010 International Conference on , vol.1, no.,
pp.V1-67-V1-70, 25-27 June 2010doi: 10.1109/ICCDA.2010.5541057

[32] Maedche, A.; Staab, S.; , "Ontology learning for the Semantic Web," Intelligent
Systems, IEEE , vol.16, no.2, pp. 72- 79, Mar-Apr 2001 doi:
10.1109/5254.920602URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnum
ber=920602&isnumber=19905

[33] http://www.michelepasin.org/techblog/2011/02/24/survey-of-pythonic-tools-for-
rdf-and-linked-data-programming/

[34] http://www.openrdf.org/doc/sesame/users/ch01.html

[35] http://www.franz.com/agraph/support/documentation/current/agwebview.html

[36] http://www.w3.org/RDF/

[37] Teswanich, W., Chittayasothorn, S.: A Transformation of RDF Documents and
Schemas to Relational Databases. In: IEEE

[38] Gupta, R.; Malik, S.K.; , "SPARQL Semantics and Execution Analysis in
Semantic Web Using Various Tools," Communication Systems and Network
Technologies (CSNT), 2011 International Conference on , vol., no., pp.278-282, 3-
5 June 2011doi: 10.1109/CSNT.2011.67

[39] http://tomcat.apache.org

	Semantic Integration of Coastal Buoys Data using SPARQL
	Recommended Citation

	May 2012
	CHAPTER I TC "CHAPTER" \f C \l "1" \n
	1.1 Background
	1.2 Ontologies
	1.3 Semantic Integration of Heterogeneous Data Sources
	1.4 Triple Store
	1.5 Federated Database
	1.6 Motivation and Objectives
	2.1 RDF stores
	2.1.1 Sesame
	2.1.2 3-store
	2.1.3 Jena
	2.1.4 Parka
	2.1.5 RDFLib/Redland
	2.1.6 TAP

	2.2 Querying Federated Databases
	3.1 Semantic Web
	3.2 Federated Database
	3.2.1 Requirements of federated database management system

	3.3 Overview of semantic integration approach
	3.3.1 Semantic integration considerations
	3.3.2 AllegroGraph
	3.3.3 Sesame Java API
	3.3.4 AllegroGraph Web View Framework

	3.4 Architecture of a semantic integration approach
	3.4.1 Creating a repository and Storing triples
	3.4.2 Creating Federated Repository
	3.4.3 Querying through SPARQL

	3.5 protégé-OWL
	3.6 Apache Tomcat
	4.1 Find out the all the atmospheric properties measured by barometer in NDBC and GoMOOS ?
	5.1 Conclusion
	5.2 Future Work

