
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

1-1-2003

The mediated data integration (MeDInt) : An approach to the The mediated data integration (MeDInt) : An approach to the

integration of database and legacy systems integration of database and legacy systems

Suvimol Mukviboonchai
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Digital Communications and Networking Commons

Recommended Citation Recommended Citation
Mukviboonchai, S. (2003). The mediated data integration (MeDInt) : An approach to the integration of
database and legacy systems. https://ro.ecu.edu.au/theses/1308

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1308

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ro.ecu.edu.au%2Ftheses%2F1308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1308

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

The Mediated Data Integration (MeDlnt):

An Approach to the Integration of Database

and Legacy Systems

by

Suvimol Mukviboonchai

B.S., M.S.

A Dissertation Submitted in Partial Fulfilment of

the Requirements for the Award of

Doctor of Philosophy

At the School of Computer and Information Science

Faculty of Communication, Health and Science

EDITH COWAN

UNIVERSITY
WESTERN AUSTRALIA

29 October 2003

ABSTRACT

The information required for decision making by executives in organizations is

normally scattered across disparate data sources including databases and legacy

systems. To gain a competitive advantage, it is extremely important for executives to

be able to obtain one unique view of information in an accurate and timely manner.

To do this, it is necessary to interoperate multiple data sources, which differ

structurally and semantically. Particular problems occur when applying traditional

integration approaches, for example, the global schema needs to be recreated when

the component schema has been modified. This research investigates the following

heterogeneities between heterogeneous data sources: Data Model Heterogeneities,

Schematic Heterogeneities and Semantic Heterogeneities. The problems of existing

integration approaches are reviewed and solved by introducing and designing a new

integration approach to logically interoperate heterogeneous data sources and to

resolve three previously classified heterogeneities. The research attempts to reduce

the complexity of the integration process by maximising the degree of automation.

Mediation and wrapping techniques are employed in this research. The Mediated

Data Integration (MeDlnt) architecture has been introduced to integrate

heterogeneous data sources. Three major elements, the Me Dint Mediator, wrappers,

and the Mediated Data Model (MDM) play important roles in the integration of

heterogeneous data sources. The MeDlnt Mediator acts as an intermediate layer

transforming queries to sub-queries, resolving conflicts, and consolidating conflict

resolved results. Wrappers serve as translators between the Me Dint Mediator and

data sources. Both the mediator and wrappers are well-supported by MDM, a

semantically-rich data model which can describe or represent heterogeneous data

schematically and semantically.

Some organisational information systems have been tested and evaluated using the

MeDlnt architecture. The results have addressed all the research questions regarding

- ll -

the interoperability of heterogeneous data sources. In addition, the results also

confirm that the Me Dint architecture is able to provide integration that is transparent

to users and that the schema evolution does not affect the integration.

- lll -

DECLARATION

I certify that this thesis does not, to the best of my knowledge and belief-

i. incorporate without acknowledgment any material previously submitted for a

degree or diploma in any institution of higher education;

ii. contain any material previously published or written by another person except

where due reference is made in the text; or

iii. contain any defamatory material.

Signature

(Suvimol Mukviboonchai)

Date 1 October 2003

IV

ACKNOWLEDGEMENTS

Foremost, the financial support provided by the Royal Thai Government and the

Office of Rajabhut Institutes Council throughout the research period is greatly

acknowledged. Without them, I would not have had this great opportunity.

I express my gratitude to my supervisor, Dr Chaiyapom Chirathamjaree, for his

guidance, advice and support throughout my research period. He always provided me

his valuable time despite of his busy schedule of management, lecturing and

research. I sincerely thank him for his time and patience. His support is greatly

acknowledged.

I would also like to thank my associate supervisor, Associate Professor Vichit

Lorchirachoonkul from National Institute of Development Administration (NIDA),

Thailand, for his valuable time and generous recommendations, I am really

appreciated.

I acknowledge with thanks those who contributed articles. Their names are listed in

the References. I am also thankful to the anonymous referees from the four

conferences. Their suggestions and comments have improved the content of my

research. My thanks are also due to Dr. Helen Armstrong and Dr. Val Hobbs for their

valuable suggestions on reviewing my thesis proposal three years ago. I am grateful.

No word can express my thanks to Dr. Judith Rochecouste for her precious time and

a great deal of support on my proposal and thesis editing, correcting grammar, and

English academic writing. I know she faced difficulty with my non-native English

language.

I am thankful the library support provided by the Library Account Manager, Ms. Lyn

Leslie, and the technical support provided by the SCIS support team for their great

care and helpful throughout my research period.

- V -

My thanks also go to my friends who studied with me at NIDA and Thammasat

University, and who worked together at UNHCR and Bangchak Green Net, who

have always kept in contact via e-mail over a long distance and have not let me

down.

A warm word of thanks to my four-year close friends in Perth, especially Surasithe

Khwanboonbumpen and Kacha Chansilp, for all the wonderful memories and their

encouragement when I was disheartened. Their compassion and warmth made me

feel like I was not away from home.

I am also want to thank other teachers and friends whom I could talk, discuss, and

learn from.

Thanks to my brother, Porrames Mukviboonchai, for taking good care of our mother

alone during this research period. I understand that he has been busy and stressed
from his hard work, but he looked after our mother well.

My special thanks go to my mother, Sulai Mukviboonchai, for all her unsparing love

and inspiration. I remember that she taught me mathematics when I was in secondary

school, even then she did not finish with primary school. I have learnt from her about

calmness, patience, and self-content. Thanks for being a great mum.

Lastly, I dedicate this work to my father, Prayong Mukviboonchai, who passed away

just before I started this research.

·· Vt -

TABLE OF CONTENTS

USE OF THESIS•••...•.. I

ABSTRACT ... II

DECLARATION .. IV

ACKNOWLEDGEMENTS .. V

TABLE OF CONTENTS .. VII

LIST OF FIGURES .. XII

LIST OF TABLES .. � XIV

CHAPTER 1 - INTRODUCTION .. 1

1.1 THE SIGNIFICANCE OF THE RESEARCH ... 2

1.2 THE PURPOSE OF THE RESEARCH ... 3

1. 3 RESEARCH QUESTIONS .. 3

1.4 RESEARCH METHODOLOGY ... 4

1. 5 THE ORGANISATION OF THE THESIS ... 5

CHAPTER 2- DATABASES AND HETEROGENEITIES 7

2.1 FILE AND DATABASE CHARACTERISTICS ... 8

2.2 DATA MODELS ... 9

2.2.1 The Relational Data Model ... 9

2.2.2 The Semantic Data Model .. 10

2.2.3 The Hyper Semantic Data Model ... 11

2.2.4 The Object Data Model.. ... 11

2.2.5 The Object-relational Data Model ... 12

2.2.6 The OMG Object Model .. 12

2.2.7 The ODMG Object Model ... 13

2.3 QUERY LANGUAGES ... 15

- Vil -

2.4 HETEROGENEITIES ... 16

2.4.1 Data Model Heterogeneities ... 16

2.4.2 Schematic Heterogeneities ... 17

2.4.3 Semantic Heterogeneities .. 18

2.5 CONFLICT RESOLUTIONS .. 20

2.5.1 Schematic Conflict Resolutions .. 20

2.5.2 Semantic Conflict Resolutions .. 22

2.6 SUMMARY .. 24

CHAPTER 3 - INTEGRATION TECHNIQUES .. 25

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

3.3

INTEGRATION APPROACHES .. 25

The Translation Approach .. 25

Global Schema Approach ... 26

The Federated Database Approach ... 28

The Multidatabase Language Approach .. 30

Mediation Approach .. 31

Other Approaches .. 34

RELATED TOOLS AND TECHNIQUES .. 37

Wrapping Techniques ... 37

The Common Object Request Broker Architecture (CORBA) 38

Enterprise Java Beans ... 41

Extensible Markup Language (XML) .. 41

Ontologies ... 43

Meta data ... 44

SUMMARY .. 45

CHAPTER 4-THE MEDIATED DATA INTEGRATION ARCHITECTURE. 46

4.1 ARCHITECTURE REQUIREMENTS .. 4 7

4.2 REQUIREMENT ANALYSIS .. 48

4.3 THE MED INT ARCHITECTURE .. 49

4.3. l MeDlnt Components ... 50

4.3.1.1 The User Interface ... 50

4.3.1.2 The MeDlnt Mediator .. 51

4.3.1.3 Wrappers ... 52

4.3.1.4 The Mediated Data Model ... 53

4.4 MEDINT PROCESSES ... 54

- Vlll -

4.5 SUMMARY .. 57

CHAPTER 5 - THE MEDIATED DATA MODEL .. 59

5.1 THE DESIGN OF THE MEDIATED DATA MODEL {MOM) 59

5.2 THE MEDIATED DATA MODEL COMPONENTS .. 62

5.2.1 The Mediated Data Definition Language (MDDL) .. 63

5.2.2 The Mediated Query Language (MQL) .. 67

5.2.3 The Mediated Data Representation Structure (MDRS) 68

5.3 SUMMARY .. 70

CHAPTER 6 - THE M E D I NT MEDIATOR .. 71

6.1 REGISTERING PROCESSOR {RP) ... 72

6.2 QUERY TRANSFORMATION AGENT {QTA) ... 73

6.2.1 Fetching Object Schema Definition Process .. 75

6.2.2 Decomposing and Transforming the User-requested Query to the Mediated

Query Language Process ... 79

6.2.3 Creating a Pre-defined Template Process ... 82

6.3 THE MEDIATED METADATA (MMD) ... 84

6.3.1 Schematic Meta Data 84.

6.3.1.1 The Data Source MetaData (DSMetaData) .. 85

6.3.1.2 The Object Mapping MetaData (OMMetaData) ,. 86

6.3.1.3 The Attribute Mapping MetaData (AMMetaData) 87

6.3.2 Semantic Meta Data .. 89

6.3.2.1 The Thesaurus MetaData (TSMetaData) . 90

6.3.2.2 The Conversion MetaData (CVMetaData) ... 92

6.4 CONFLICT RESOLUTION AGENT {CRA) .. 94

6.4.1 Applying MDRS Results to the Pre-defined Template 94

6.5 THE CONSOLIDATION PROCESSOR {CP) .. 97

6.5.1 Integrating the Mediated Data Representation Structures 97

6.6 THE RENDERING AGENT (RA) ... 98

6.6.1 Generating the Integrated Results ... 98

6. 7 SUMMARY .. 99

CHAPTER 7 - WRAPPERS ... 100

7 .1 THE DESIGN OF WRAPPERS .. 1 00

7.2 WRAPPER COMPONENTS .. 1 01

- IX -

7.2.1 Schema Translation Processor (STP) .. 101

7.2.1.1 STP Algorithm for the Relational Data Model .. 102

7.2. 1.2 STP Algorithm for the Object-oriented Data Model 104

7.2.1.3 STP Algorithm for Legacy File Processing Systems 106

7.2.2 Query Translation Processor (QTP) . .. 109

7. 2. 2. 1 Q TP Algorithm for the Relational Data Model 110

7. 2. 2. 2 QTP Algorithm for the Object-oriented Data Model 112

7.2.2.3 Q TPAlgorithm for Legacy File Processing Systems 113

7.2.3 Data Translation Processor (DTP) ... 115

7.3 SUMMARY .. 117

CHAPTER 8-SYSTEM EVALUATION AND RESULTS 119

8.1 SYSTEM EXPERIMENTATION AND EVALUATION 120

8.1.1 Test problem 1 - Hotel Chain Information System .. 120

8.1.2 Test Problem 2 - University Information System ... 133

8.2.2.1 Query 1 .. 135

8.2.2.2 Query 2 . : . 136

8.2 SUMMARY .. 137

8.2.1 Conflict Resolution In MeDlnt .. 138

8.2.2 The Integration Functions of the MeDlnt Components 139

CHAPTER 9 - DISCUSSION AND COt:,ICLUTION•........ 140

9.1 DISCUSSION .. 141

9.2 THESIS CONTRIBUTION ... 147

9.3 LIMITATIONS .. 147

9.4 FUTURE DIRECTIONS .. 147

9.5 CONCLUSION ... 148

REFERENCES ... 151

APPENDICES .. 159

APPENDIX A-GLOSSARY .. 160

APPENDIX 8 - LIST OF ACRONYMS ... 163

APPENDIX C-SYMBOLS USED IN EBNF ... 1 65

APPENDIX D -MOM RESERVED WORDS .. 166

APPENDIX E-DATA DEFINITION LANGUAGE IN RELATIONAL DATA MODEL 167

.. X -

APPENDIX F -DATA DEFINITION LANGUAGE IN OBJECT DATA MODEL 169

APPENDIX G - SCHEMAS REPRESENTATION BY MDDL 170

APPENDIX H - MDDL IMPLEMENTATION BY XML. .. 175

APPENDIX I -MMD REPRESENTATIONS IN XML. .. 180

APPENDIX J- THE MED INT INTEGRATION PROCESS OF TEST PROBLEM 2 188

APPENDIX K-PUBLISHED PAPERS ... 202

- XI -

LIST OF FIGURES

FIGURE 3.1 THE GLOBAL SCHEMA APPROACH ... 26

FIGURE 3.2 THE FEDERATED DATABASE APPROACH .. 29

FIGURE 3.3 THE MULTIDATABASE LANGUAGE APPROACH ... 30

FIGURE 3.4 THE MEDIATION APPROACH ... 32

FIGURE 4.1 THE MEDI NT ARCHITECTURE ... 50

FIGURE 4.2 DATA MODEL TRANSLATION .. 54

FIGURE 4.3 MEDI NT PROCESSES ... 55

FIGURE 4.4 DATA LAYERS ... 57

FIGURE 5.1 A 2-D RELATIONAL DATA MODEL .. 60

FIGURE 5.2 THE 3-D MEDIATED SEMANTIC DATA MODEL ... 61

FIGURE 5.3 COMPONENTS OF THE MEDIATED DATA MODEL 63

FIGURE 5.4 AN MDDL IMPLEMENTATION EXAMPLE 66

FIGURE 5.5 AN MDRS IMPLEMENTATION EXAMPLE .. 69

FIGURE 6.1 SIX COMPONENTS IN THE MED INT MEDIATOR ... 72

FIGURE 6.2 QTA PROCESSES .. 74

FIGURE 6.3 A 3-D MEDIATED DATA MODEL REPRESENTING MDRS TEMPLATE 83

FIGURE 6.4 AN ALIAS TREE ... 90

FIGURE 6.5 REPRESENTATION OF ATTRIBUTES AND SEMANTIC CONTEXTS 95

FIGURE 7.1 AN EXAMPLE OF AN EXPORTED SCHEMA DEFINITION TREE BY RWRAP 104

FIGURE 7.2 AN EXAMPLE OF AN EXPORTED SCHEMA DEFINITION TREE BY OWRAP 106

FIGURE 7.3AN EXAMPLE OF A LEGACY TEXT FILE ... 108

FIGURE 7.4 AN EXAMPLE OFAN EXPORTED SCHEMA DEFINITION TREE BY LWRAP 108

FIGURE 7.5 QUERY DISTRIBUTION AND TRANSLATION ... 109

FIGURE 7.6 FUNDAMENTAL RELATIONAL OPERATORS (DATE, 1990) .. 110

FIGURE 7. 7 DATA SOURCE AND WRAPPER RESPONSIBILITY CLASSIFICATION 117

- Xll -

FIGURE 7.8 THREE WRAPPERS DEVELOPED IN THIS STUDY .. 118

FIGURE 8.1 OBJECTS REQUESTED FROM WRAPPERS .. 126

FIGURE 8.2 THE UNIVDB ENTITY RELATIONSHIP DIAGRAM ... 133

FIGURE 8.3 THE UNIVDB'S RELATIONSHIP .. 134

FIGURE 8.4 THE CAMPUS08'S ENTITY RELATIONSHIP DIAGRAM ... 134

·· Xlll -

LIST OF TABLES

TABLE 2.1 COMPARISONS OF FILE PROCESSING AND DATABASE MANAGEMENT 8

TABLE 8.1 OBJECT SCHEMA DEFINITIONS REQUIRED ... 126

TABLE 8.2 INTEGRATED RESULT OF TEST PROBLEM 1 ... 132

TABLE 8.3 HETEROGENEITIES IN THE TEST PROBLEM 1 ... 133

TABLE 8.4 HETEROGENEITIES IN THE QUERY 1 OF TEST PROBLEM 2 .. 136

TABLE 8.5 HETEROGENEITIES IN THE QUERY 2 OF TEST PROBLEM 2 .. 137

TABLE 8.6 SUMMARY OF THE HETEROGENEITIES RESOLVED BY THE MEDI NT ARCHITECTURE IN

EACH EXAMPLE .. 137

TABLE 8. 7 SUMMARY OF THE HETEROGENEITIES RESOLVED BY THE COMPONENTS OF THE MED I NT

ARCHITECTURE .. 139

TABLE 8. 8 SUMMARY OF THE FUNCTIONS OF THEMED I NT COMPONENTS 139

TABLE 9 .1 COMPARISON OF MED INT WITH OTHER INTEGRATION APPROACHES 145

TABLE 9.2 COMPARISON OF MED INT WITH OTHER MODELS OF THE MEDIATION APPROACH 146

TABLE J.1 REQUIRED OBJECT SCHEMA DEFINITIONS OF THE QUERY 1 OF TEST PROBLEM 2 190

TABLE J.2 INTEGRATED RESULT OF THE QUERY 1 OF TEST PROBLEM 2 195

TABLE J.3 REQUIRED OBJECT SCHEMA DIFINITIONS OF THE QUERY 2 OF TEST SAMPLE 2 196

TABLE J .4 ExlSTING CONFLICTS OF THE QUERY 2 OF TEST SAMPLE 2 ... 198

TABLE J.5 INTEGRATED RESULT OF THE QUERY 2 OF TEST SAMPLE 2 ... 201

.. XlV -

MeDl n t : /\ /\ p p(OO C I , [O ! i h 0 I n ! (] T

C H A PTER 1 - INTRODUCTION

An adequate information system is one of the critical competitive components in

running a successful business in terms of transaction recording at the operation level,

reporting at the management level, or decision making at the executive level. In a

large or medium sized organisation, it is certainly possible to have more than one

information system serving the organisation's operations. New business activities

and the evolution of database technology all result in the adoption of many different

database systems within an organisation, for example, legacy file processing systems,

relational database systems, and/or object-oriented database systems. A single

database supporting all applications within an organisation is ideal. The situation of

island of information leads management and executives to become frustrated when

they want to get a unique view of information from multiple systems. Therefore, data

interoperability or database integration becomes necessary to obtain meaningful

information from multiple and incompatible data sources.

Furthermore, many Internet and intranet technologies which play a significant role in

business today increase the demand for data integration techniques. It is becoming

more and more necessary to be able to integrate numerous information sources

within an organisation or across organisations to serve customers and to link to

suppliers via the Internet. Both legacy systems and modem databases need to be

logically integrated to allow users to access information.

For the pragmatic reasons stated above, the data of an organisation or across

organisations need to be interoperable to service customers, management, executives

or new business projects. Therefore, this research focuses on developing a data

integration architecture to interoperate multiple databases and legacy systems

transparently and effectively.

1. 1 The Significance of the Research

The question why we have to make heterogeneous data sources interoperable rather

than transform them and import them into a single data source may be raised. Two

major problems of transforming all different kinds of data sources into only one main

data source is data latency and data integrity (CrossAccess Corporation, 2001) . The

integration system requires synchronisation in every transaction made to the system

which is redundant and unnecessarily costs money. On the other hand, if this main

data source is designed to be updated at every specified certain period of time, data

inconsistency problems will happen as a result of the changes which do not

propagate consistently to all related data sources.

In the process of interoperating any two or more database systems, heterogeneity is

the most critical problem that needs to be solved, for instance, some databases are

designed from different models, and the same real world entities may be represented

by different names or measured by different units in multiple data sources. Although

several researchers have been studying the conflicts and integration of heterogeneous

database systems (Abdalla, 1998; Miller, 1 998; Neild, 1999; Phijaisanit, 1 997;

Srinivasan, 1 997; Yu, 1997), there is still no common methodology. Few theses have

focused specifically on the integration of databases and legacy systems. In fact in

legacy systems, the semantics are hidden and hard to determine.

Another significant issue is that the traditional approach integration is pair-wise or

point-to-point interface. This then developed to the pre-integration approach using

the global schema technique which requires complete pre-integration and is

extremely expensive in both manpower and time. All local views are mapped by one

global view which must be created before query processing. This raises a problem

especially in a dynamic system. As a result when only the object of a local data

source is modified or an operation function is evolved, this affects a number of

changes on the global schema (Holowczak & Li, 1 996). The global view must be

recreated. It is also difficult to track overall changes either in pair-wise interfaces or

in the global schema approach. Furthermore, conflicts must be solved in the process

of the global schema creation. The more data sources are involved, the more difficult

.. 2 -

Me[i l nt

it is to solve such conflicts. This has led this research to focus on a solution that

avoids integrating with the pre-integration approach.

1.2 The Purpose of The Research

This thesis focuses on investigating an approach to integrating heterogeneous data

sources by:

• Addressing conflicts among heterogeneous database systems.

• Providing conflict resolution.

• Providing the appropriate architecture for achieving the interoperability or

logically integrating of multiple data sources by which schema evolution will not

affect the integration.

• This research covers legacy file processing systems, relational data models and

object-oriented data models.

1.3 Research Questions

Research question number one:

What are the possible conflicts occurring with the integration of heterogeneous

database systems? How can such conflicts be resolved? These conflicts would result

from various systems using different data models. Before integrating any systems,

conflicts or in correspondences between systems need to be solved to make the

relevant data in those systems meaningful.

Research question number two:

What approaches will provide solutions, and how, to logically integrate

heterogeneous database systems in the bounds of the following criteria?

• Transparency: the integration process should be transparent from users.

• Validity: the quality of the query result from the integration and conflict

resolution processes.

- 3 -

• Scalability: requiring minimised modifications when the addition or removal of

data sources are needed.
• Flexibility: component schema evolution should not affect the integration.
• Simplicity: minimising human interaction and maximising automation.

The objective of this question includes reducing the complexities of the integration

process to get information from such systems so that users are not responsible for

seeking where data sources are, what the conflicts are and how to resolve them. This

thesis also seeks to provide a method by which the global schema is not created

before issuing queries, thus the problem of schema changing can be avoided.

During the integration, there are a number of integration problems that need to be

solved. The major ones are:

• The requested query may need information from multiple data sources.
• How to define data sources relevant to the query?
• Because object identifiers are defined independently in each source, what is

the identifier used in the query?
• How to split the requested query to each data source?
• How will data sources, which are in different data models, understand the

requested query?
• The sets of results from the query need to be integrated. They might be

represented differently.
• How to homogenise them?

1.4 Research Methodology

The methodology used in the thesis is based on Formulative approach including

Conceptual analysis, Conceptual implementation and Experimentation.

Conceptual Analysis

Firstly, the problems of integrating database and legacy systems were investigated.

The topics below were surveyed and the research questions were drawn from these.

- 4 -

• database management systems and data models.

• conflicts and conflict resolutions.

• tools, techniques, and the pros and cons of integration approaches.

• information systems which require integration.

The research questions were formulated into the architecture requirements as the

framework to construct an abstraction model based on the functional divide and

conquer top-down approach . . . The model takes into account the relevant features

according to the architecture requirements.

Conceptual Implementation

As a consequence of the model, the concept details were implemented to support the

model constructed by developing the symbolic language and algorithms.

Experimentation

To prove the validity and the purpose of the model, some information systems which

require logical integration were chosen as samples to evaluate and test the integration

process. The result of the integration was reviewed and the integration model and

algorithms were then refined.

1.5 The Organisation of the Thesis

The thesis is organised into nine chapters. This chapter begins with the significance

and the goals of this study, followed by the research questions and methodology. The

remainder of the thesis is organised as follows.

Chapter 2 and 3 present a review of literature relevant to this research including file

and database characteristics, data models, definition languages and manipulation

languages, heterogeneities, and resolutions. The major integration approaches of the

previous research are surveyed. The strengths and weaknesses of each integration

approach are emphasised. Related tools and techniques, which are useful for the

integration, are reviewed.

- 5 -

Chapter 4 describes the framework and the development of a data integration model

called the Mediated Data Integration architecture (Me D l n t).

Chapter 5 introduces the Mediated Data Model (MDM), a data model used in

Me D i nt and appropriate for describing heterogeneous data schematically and

semantically.

Chapter 6 and 7 provide the detail components, the functions, and the algorithms of

the M e D I n t Mediator and wrappers.

In chapter 8, the procedures and the results of the integration are presented and the

model is evaluated and discussed.

Lastly, Chapter 9 presents discussion, contributions from this research, suggestions

for future work, limitations and conclusion.

- 6 -

C HAPTER 2 - DATABASES AND

HETEROGENEITIES

To interoperate multiple data sources, the main difficulties come from

heterogeneities which can be classified into three levels. Firstly, platform

heterogeneity includes different hardware, communication systems, and operating

systems. Secondly, database management system heterogeneity includes different

data models and query languages. Lastly, data heterogeneity includes both the

heterogeneities in structure of data collected and also the data itself. For example,

different representations might be used to refer to the same object. This research

focuses on the last two heterogeneities because the first heterogeneity perspective,

hardware, communication system, and operating system heterogeneity can be

overcome by middleware technologies, for example CORBA, Microsoft .NET etc.

Conversely, the database management and data heterogeneities are quite complex,

involve more human work, and require a precise methodology. Therefore, the

heterogeneities referred to in this research are only database management and data

heterogeneities.

Heterogeneities from multiple data sources resulting from the interoperability of

databases and legacy systems are considered in this research. Basically, these issues

arise not only from heterogeneous data sources, but also homogeneous data sources,

because of design autonomy. However, heterogeneities which occur in homogeneous

data sources are a subset of those in heterogeneous data sources. Consequently, this

thesis focuses on the generalised heterogeneous ones.

To integrate data from heterogeneous sources, one critical point is that their data

structures need to be interchangeable. This dictates that a common data model is

needed to represent different data structures semantically. In this chapter, traditional

and semantic data models are investigated to determine the useful characteristics for

developing the appropriate data model to be a common data model for the

- 7 -

integration. Also data definition languages and data manipulation languages are

investigated to gain a basic understanding of heterogeneities. Existing

heterogeneities and resolutions are classified and explored.

2. 1 File and Database Characteristics

File processing systems are the record-keeping and retrieving systems which come

before database systems. Even though these are traditional data recording systems, it

cannot be denied that they are still being used in most organisations which have

multiple information systems. File systems have a number of limitations, for

example, separated and isolated data, data duplication, application program
dependency, and the difficulty of representing data in the users' perspective (Date,
1 990; Kroenke, 2002).

The database approach was introduced in the 1 970s to overcome the problems

arising from legacy file-processing systems. The limitations of file recording systems

mentioned above were then overcome {Codd, 1 970; Date, 1 990; Kroenke, 2002) . .

Data from different purposes that were separated and isolated into different files in

different systems without any related information could be integrated into a database
system. This makes it easier for users to create a view or inquiry from several

entities. A well-designed database especially in terms of data integrity aspect can

reduce data duplication. In terms of program independence, data in a database can be

accessed by its database management system, and not by an application program,

thus, any changes made to the database will not affect application programs.

In terms of heterogeneous data integration, the characteristics of legacy file

processing and database management to be considered are as follows.

TABLE 2 .1 COMPARISONS OF FILE PROCESSING AND DATABASE MANAGEMENT

- 8 -

Files Databases

Data Isolated Integrated

Duplication Duplication reduced

Metadata No Data Definition Language

Data Retrieval Application Query Language

Table 2. 1 illustrates that, firstly data stored in file processing systems are isolated and

duplicated because the relationship information cannot be defined. Secondly, no

schema information is identified in file processing systems because there is no

metadata. Finally, the query languages provided in database management systems

can be used to retrieve data, while data retrieval in file processing systems depends

on the application.

2.2 Data Models

There are two meanings of data models which always cause confusion (Hirschheim,

Klein, & Lyytinen, 1 995). The first is the graphical, conceptual, notational or textual

information which perceptively represents the data of a system. Data models are used

to represent the organization information logically by data structures. The other
meaning of data model is "the outcome of using a data modelling language in some

specific situation" (Hirschheim et al., 1 995). Data models are generally related to a

data definition language (DDL) and a data manipulation language (DML) to define
data structures or schemas to represent objects or entities. This research uses the term

data models in the second sense.

Data models provide the structuring of database systems. Several kinds of data

models have been developed, for example, the hierarchical model, the network

model, the relational model, the nested relational model, and the object model. The

network, hierarchical and relational data models can be defined as classical data

models (Gray, Kulkarni, & Paton, 1 992; Hirschheim et al. , 1 995). To overcome
weaknesses in the classical data models, a variety of data models have been

developed, for example, the semantic data model, the object-oriented model, and so

on.

2.2.1 The Relational Data Model

Database systems mostly are based on the relational data model. Codd (1 970)

presents the relational model applied from a mathematical concept. A database is

perceived as a collection of tables. A relation or a table is a collection of tuples or

- 9 ..

records. The ordering of tuples is unimportance. Relations describe entities or

relationships between entities. Properties or attributes make differences of relations.

A primary key is the unique identifier for a table. Tables or views (virtual tables) can

be created, altered or deleted by using a data definition language. Users inquire to a

database using a data manipulation language. In this part, the relational algebra

including a number of operators is provided to operate one or more relations to create

a new relation. These operators can be classified into two groups: traditional set

operations and special relational operations. The traditional set operations are union,

intersections, difference and Cartesian product. The special operations are restrict,
project, join and divide (Date, 1 990; Kroenke, 2002).

2.2.2 The Semantic Data Model

Codd (1 979) extended the relational model to capture more meaning from the data to

provide more intelligent databases and more systematic database design. This

activity is so called Semantic Data Modelling. The attempts were searching for

meaningful units of information that larger than n-ary relation called atomic

semantics.

The Semantic Data Model (SDM) is designed to clearly and precisely describe

databases to be closer to the human perception more than the relational data model

(Bertino, Catania, & Zarri, 200 1 ; Hammer & McLeod, 1 98 1) . Entities are grouped

into classes represented by an SDM schema. Each class or semantic object includes a

class name, a collection of members, a textual class description, and a collection of

attributes which represent object characteristics.

The Semantic Model provides perception or conceptual representation of real world

objects. Abstraction is one of the features that serve this representation. There are

four main abstractions: generalisation, aggregation, classification, and association

(Bertino et al., 2001) . Semantic data models have been introduced to overcoming the

semantic limitations of the relational model. Semantic Models represent some

important types of constraints more easily: key dependencies and inclusion

- 1 0 -

dependency. Languages used for semantic models are able to query abstract data

types.

Semantic models can be categorised into three main classifications (Hammer &

McLeod, 1 98 1). The first class covers the abstraction mechanism or aggregation such

as the Entity Relationship Model (ERM). In the second class, the use of attributes to

interrelate objects is added, for example, the Functional Data Model (FDM) and

DAPLEX (Shipman, 1 98 1). An example of the third class is the Semantic Database

Language (SDM) (Hammer & McLeod, 1 98 1). An SDM database is a collection of

entities organised into classes, or types. Moreover, there are a number of semantic

models: TAXIS, SAM, IFO, RM/T, GEM, etc.

2.2.3 The Hyper Semantic Data Model

Hyper Semantic data models combine the concept of semantic data models and

artificial intelligence by focusing on object, operations, relationships and associated

knowledge (Potter, Trueblood, & Eastman, 1 989). The characteristics of this model

are:

• generalisation, classification and aggregation derived from semantic data models,

• membership (' is-a-member-of),

• constraint, ('is-a-constraint-on'),

• heuristic (inference mechanism),

• temporal (representation of synchronous or asynchronous relationships).

2.2.4 The Object Data Model

The Object Modelling Technique (OMT) methodology uses three kinds of models to

describe a system: the object model, the dynamic model and the functional model

(Blaha & Premerlani, 1 998; Rumbaugh, Blaha, Premerlani, Eddy, & Lorensen,

1 99 1). An object model, presented by an object diagram, describes the static

structure of a system covering objects, relationships, attributes and operations. A

dynamic model, presented by a state diagram, describes the interactions among

- l 1

M e D l n t · A. /\ q) l ') Ci C I

objects, which are changed overtime. A functional model, presented by a data flow

diagram, describes how data values are transformed and computed within a system.

An object is a boundary concept. An object class is a group of similar objects. The

classification concept allows objects with the same attributes and behaviour to be

grouped into a class. A class can be defined as a specialisation of one or more

classes. A class defined as a specialisation is called a subclass and inherits attributes,

messages and methods from its superclass. The subclass can specialise another class

by additions and substitutions. An object is an instance of its class. Generalisation

and inheritance are abstractions for sharing similarities among classes. A link is an

instance of an association. An association describes a group of links connecting

objects from the same class. Associations may be one-to-one, many-to-many, or

ternary.

An operation is a function or transformation applied to objects. Polymorphism allows

an operation to have more than one method on several classes, but such methods

must have the same signature. The same operation may behave differently when
applied to different classes. Encapsulation is the concept of separating the internal

and external implementation details of an objecL

2.2.5 The Object-relational Data Model

The object-relational data model was developed to be compatible with the relational

data model and to provide extended object capabilities such as primitive type
extensions, complex types, inheritance and so on (Bertino et al., 2001). Examples of

object-relational DBMS are Oracle, DB2, Sybase, UniSQL etc.

2.2.6 The OMG Object Model

The Object Management Group (OMG) Object Model can be described by objects,

requests, types, interfaces and operations (OMG, 2001). Objects are real-world

entities with their unique identities. An object is an encapsulated entity which can be

requested for some services from clients. Objects are instances of types. Clients

request services by issuing requests. A request consists of an operation, a target

- 1 2

MeDln t : /\ n A c, p r<) O C I ,

object, optional parameters, and an optional request context. Types are classes of

objects that are grouped together, and can be related through the subtype/supertype

relationships. A type defines the state and behaviour of objects. A type is an

identifiable entity with an associated predicate defined over entities. An associate

predicate consists of a mathematical function with a Boolean result. An entity

satisfies a type if the predicate is true for that entity. An entity that satisfies a type is

called a member of the type. An object can have only one type. The extension of a

type is the set of entities that satisfy the type at any particular time. A type can inherit

from other types and multiple inheritance is supported. Interfaces are descriptions

that a client may request of an object through that interface. Operations are entities

defining the behaviour of objects. They have their own identifiers which can be

requested for services from clients. Operations have signatures such as name,

argument types, and returned types. Operations cause method invocation in the

object implementation (OMG, 2001).

2.2.7 The ODMG Object Model

The ODMG-93, initiated by the Object Database Management Group (ODMG) - a

working group within the OMG, is an object-oriented database management system

(ODBMS) standard supporting portability across database systems. The ODMG 3.0

(Cattel & Barry, 2000) currently consists of:

• a data model (ODMG/OM) which is based on OMG object model,

• object specification languages which are the Object Definition Language (ODL)

used to define object types, and Object Interchange Format Language (OIF) used

to load the instance of an ODMS to or from files,

• a declarative language which is the Object Query language (OQL) used for

querying and updating objects, and

• C++, Smalltalk and JAVA language binding.

ODMG/OM is compatible with OMG/OM, because ODMG/OM has been developed

specially for database management system concepts. Therefore, ODMG/OM is an

extension and superset of OMG/OM (Ben-Natan, 1 995). ODMG supports the ISO

- 1 3 -

M e D l n t : A n /v:, p r',) o c l :

STandard for the Exchange of Product data - STEP (Schonhoff, Strassler, & Dittrich,

1 997; Strassler & Schonhoff, 1 998).

The ODMG object model supports objects and literals (values). Objects have a state

and a behaviour. The object state consists of a number of properties, which can be

either attributes or relationships. An attribute is related to a class, but a relationship is

related between two classes. Literals can be:

• atomic types: long, short, float, double, Boolean, char, and string,
• types defined through the set, bag, list, and array constructors,
• enumeration types defined by the enum constructor, and

• the predefined, structured types date, interval time, and timestamp.

Type has an interface and implementations. The type definition, properties and

operations, are supported by an instance of this type. Each implementation consists

of data structures supporting the properties of the type and methods that implement
the operations defined by that type. Types define the dynamic database schema; that

means the model supports schema evolution. Types can be objects themselves and
can have attributes. Types have two importance properties: the extent to which they

are the set of all instances of type, and a set of keys which can define a set of

properties that uniquely identify an object in an extent. It is also extended to support

instance model such as a relationship between objects (Ben-Natan, 1 995).

Properties defined for a type are an instance of a type. They can be queried or

manipulated. Properties are represented as attributes or relationships. Attributes are
part of the type definition which maps a named value with an instance of a type.

Relationships are defined between two types to maintain referential integrity (Ben

Natan, 1 995).

Operations are part of the type definition. They model the behaviour of instances of

the type. An operation is composed of its name which is unique for each type,

argument names and their types, returned types, and exceptions (Ben-Natan, 1 995).

Objects are encapsulations of state, identity, and behaviour. Objects can be mutable

or immutable. Mutable objects have an identifier and they may change their state

- 1 4 -

throughout their lifetime. The state of an immutable objects is its identity. An object

is the root of a hierarchy for mutable objects, and a literal is the root of hierarchy for

immutable objects.

The ODMG standard does not support views which are provided in RDBMS. It

provides meta data management at the object level. It also allows operations,

updates, insertions, etc to be performed on individual objects or collections of

objects.

2.3 Query Languages

A query language is separated into two parts: data definition and data manipulation.

Data definition languages are used to define the structures of information including

creation, modification, and deletion operations. Data Definition Language (DDL) is

the term that is used in relational database management systems (RDBMSs). Data

manipulation languages refer to data retrieval operations. Data manipulation

languages for the relational data model are non-procedural languages based on

mathematics - relational calculus and relational algebra (Codd, 1 970) . Query

languages allow access to the information in a declarative, value-based manner.

Using query languages is the only way to access a relational database management

system. SQL is the standard query language for relational databases. C-SQL (Sciore,

Siegal, & Rosenthal, 1 994) is an extended SQL used to deal with semantic values.

In object-oriented database management systems, there are two ways to access data:

navigating on object identifications (OIDs) and using query languages. Manipulation

languages provide constructs to access and use the information in a programmatic

manner. ODMG defines object manipulation language (OML) to support both C++

and Smalltalk. Object Query Language (OQL) is a declarative language for querying

object-oriented databases. It provides an SQL-like query language. The Object

Definition Language (ODL) is a programming language-independent specification

language based on Interface Definition Language (IDL) syntax to define ODBMS

schemas and semantics (Ben-Natan, 1 995). ODL provides a way to define object

types and structures.

- 1 5 -

M e D l rd : 1, r, /\ r> pr ,> o c l : ,o , i h ,c, l n h,> rr c1 + i <> f D o t n b c , e c r , d l. c J c c S y , t e 1n ,

Some other examples of query languages are SQL-92, an SQL extension concerned

with object-oriented aspects (Cattel & Barry, 2000), VQL (View Query Language)

(Abdalla, 1 998), the derived version of OQL to support semantic context, XQuery,

an XML query language, designed by the World Wide Web Consortium expressing

queries across the structure of XML (XQuery 1. 0: an XML query language, 2002).

Bolloju (1 996) presents a semantic approach to achieve semantic interoperability

based on semantic query transformation by providing the Structure Object Query

Language (SOQL), an object-oriented model which is rich in semantics itself. It

interoperates two autonomous information system contexts by the transformation of

SOQL to SQL. The mappings of structures, names, and attributes are used in the

process of the transformation with an assistance of domain knowledge.

2.4 Heterogeneities

Information from different data sources cannot be integrated or interoperable because

of heterogeneities of data models, schema designs, or semantic contexts.

Morgenstern (1 997) states that there are four levels at which differences may arise,

including differences at the data level, data schema level, data model level, and the

metadata model level. Kim and Seo (1 99 1) classify conflicts in multidatabase

systems into schematic and data conflicts regarding to the relational data model.

Heterogeneities in this thesis are classified into three levels: Data Model

Heterogeneities, Schematic Heterogeneities, and Semantic Heterogeneities.

2.4.1 Data Model Heterogeneities

Database management systems serving the application systems in an organisation

may be different because of a change of technology. This causes the use of different

data models which is one of the major problems in integrating of heterogeneous

database systems (Reddy, Prasad, & Reddy, 1 989). In addition, Data Model

Heterogeneities lead to differences in structure, constraints and query languages

(Sheth & Larson, 1 990). Further than the differences in characteristics of data models

themselves, in this study, Data Model Heterogeneities cover two differences, those of

- 1 6 -

data definition languages and data manipulation languages. The consequence of

different data definition languages is that the data integration system cannot get the

schema or data definitions of component data sources. Conversely, different data

manipulation languages lead to the problem of how to inquire data from

heterogeneous data sources.

2.4.2 Schematic Heterogeneities

Schematic Heterogeneities are discrepancies in the structure of component data

sources. In other words, the same concept is structured or modelled differently. Data

Model Heterogeneities and design autonomy cause the differences in the structures.

Schematic Heterogeneities can be categorised into three types: Naming conflicts,

Structural conflicts, and Classification conflicts.

In terms of design autonomy, data source components are designed using its own ,

terminologies in each independently-designed data source. This causes Naming

conflicts (Goh, Madnick, & Siegal, 1 994) or inconsistencies in naming objects · ·

(Reddy et al. , 1 989). In some cases, different names are assigned to the same

concept, called synonyms. For example, the object representing the course

information for students to enrol was named unit in one data source, but course in

another source. On the other hand, when the same name is assigned to different

concepts, these are called homonym (Batini, Lenzerini, & Navathe, 1986), for

example, name of the entity Book (Book. name) is an attribute referred to the names

of the books, while name of the entity Author is an attribute referred to the names of

the authors.

Naming conflicts can occur in both object and attribute levels. Kim, Choi, Gala &

Scheevel (1 993) classify these conflicts into Table versus table and Attr ibute versus

attr ibute conflicts. The former occurs when tables having the same name are used to

represent different objects in different systems, or tables having different names are

used to represent the same real world object in different systems. The Attribute

versus attribute conflict occurs when attributes having different names are used to

.. l 7 -

MeDlnt :

represent the same object in different systems, or attributes having the same name are

used to represent different objects.

Structural conflicts, a further set of conflicts, sometimes called Table versus

attribute conflicts (Kim et al., 1 993 ; Kim & Seo, 1 99 1), Schematic Heterogeneity

(Miller, 1 998), or Type conflicts (Batini et al., 1 986) occur when different structures

are used to refer to the same concept. The same information can be represented as an

attribute in one system, but as an entity in another system or an attribute is

represented by multiple attributes in another systems. For example, in library

systems, authors can be represented by only an author's name as an attribute in an

information system, but represented by an entity including author biography in

another data source.

This conflict includes the combination of many-to-many table conflicts and many-to

, many attribute conflicts (Kim & Seo, 1 991). Critchlow (1 997) classifies Structural

conflicts into simple and complex structural conflicts. Simple structural conflicts

occur when the same concept entities in different data sources can be mapped

directly one-to-one. Complex structural conflicts occur when an entity is represented

by several entities in another data source.

This research also defines a third type of Schematic Heterogeneities resulting from

either a specialisation or generalisation called Classification conflicts. For example,

in a university information system, staff and students are defined as different entities

in a relational database, but both of them are a subtype of a person object type in an

object database. The object type includes the shared characteristics of students and

staff such as id, name, address and date of birth. The unshared properties are defined

further in staff and student objects.

2.4.3 Semantic Heterogeneities

In order to exchange information among disparate sources, the meaning of data

represented in each source has to be considered in addition to the differences in the

structure of data. This means that semantic interoperability is required. Semantic

Heterogeneities are discrepancies in the meaning of related data among

- 1 8 -

heterogeneous systems, in another words, different ways of representing the same or

overlapping data. Such discrepancies may be due to differences in system design,

missing data, and other issues. They can exist even when data has come from the

same kind of database management system, but are designed differently by database

administrators. This category is the major consequence of design autonomy.

Semantic conflicts are classified in this research as followed.

Firstly, Naming conflicts (Goh et al., 1 994) or Different expressions (Kim & Seo,

1 991) which can occur in the semantic level as well as in the schema level are the

synonym or homonym of values of data. For example, month could be represented

differently by 'Jan ', 'J ', 'OJ, or 'January '.

Representation conflicts (Goh et al. , 1 994), which Holowczak & Li (1 996) call

Format heterogeneity, occur when different formats or data types are used to

represent the same object such as a student identification number which is

represented by characters in one system, but by numbers in another system.

Different units (Kim & Seo, 1 99 1), Measurement conflicts (Goh et al., 1 994) , or

Scaling conflicts occur when different units are used to measure an object in

different systems. This leads to data which cannot be integrated with different units.

Normally, this type of conflict is hidden and not easily solved because general data

models cannot represent the context of data. For example, employee's salary in one

system is coded on monthly basis, but on a yearly basis in another system.

Level of Abstraction Conflicts or Granular ity conflicts (Goh et al., 1 994) are

inconsistencies of data in disparate sources. This type of conflict occurs from data

collected in different levels of composed data or abstraction. For example, the

number of students in a system is classified by year in one system, but by faculty in

another system.

Different precisions (Kim & Seo, 1 99 1) or Precision conflicts (Abdalla, 1 998) occur

with different cardinalities, for example, a score is represented by A, B, C, D and F

in one system, but by a percentage in another system.

- 1 9 -

Missing data is that data which is gathered in one system, but does not exist in

another system. Kim and Seo (1 99 1) call this Wrong Data and may be caused by

incorrect-entry data or obsolete data.

Scope conflicts are discrepancies in the scope of the data stored in different systems.

For example, a faculty system has only student information of students in the faculty,

but the student information system collects information on all the students in the

university.

There are further types of conflicts, for example, Computational conflicts (Goh et

al., 1 994) occurring when the values of the same object are computed in dissimilar

ways, and Behaviour conflicts, identified by Abdalla (1 998), occurring when using

object-oriented models which are different in operations, parameters and return

types.

2.5 Conflict Resolutions

Schemas and the sets of result from multiple data sources may be represented

differently. During the integration process, these heterogeneities or conflicts need to

be resolved. A number of conflict resolution methods have been surveyed. They have

been classified into schematic conflict resolution and semantic conflict resolutions.

2.5.1 Schematic Conflict Resolutions

Schematic Heterogeneities make the difficulties of integrating the same concept

which is modelled differently. These are the first thing that needs to be resolved to

obtain the unique concept of the heterogeneous data sources. The followings are

some attempts to resolve Schematic Heterogeneities.

Schema Translation (Batini et al., 1 986) is the technique mostly used in the global

schema approach to merge or restructure different schemas to provide users with a

unique schema. It is very convenient to users, but the process of creating the global

schema is very complicated in large database systems. Abdalla (1 998) similarly

resolves Schematic Heterogeneities in the global schema integration by using

- 20 -

mapping techniques for both naming and structural conflicts. Naming conflicts can

be resolved by mapping a global name to local names. Structural conflicts can be

resolved by generating global entities mapping to local entities. Critchlow (1997)

also defined the mapping between databases which so called Schema coercion. The

Entity-relationship data model are used as a canonical data model to represent the

corresponding schemas. These correspondences then are used to generate a program

to transfer data between databases.

There are four techniques of object matching classified in (Zhou, Hull, & King,

1 996). Key-based matching is that objects from different databases should use the

same key, called a universal key. Lookup-table-based matching holds pairs of object

ids or keys for the corresponding objects. Comparison-based matching compares

attributes of two objects, based on arithmetic or logical comparisons or user-defined

functions and then returns a Boolean value. Lastly, historical-based matching is two

objects that match each other can remain matched even if they cease to satisfy other

conditions. These object matching techniques are used in Squirrel prototype (Zhou,

Hull, King, & Franchitte, . 1 995).

In the case of differ�nt names of equivalent enti.ties or the same name for different

entities, and different names for equivalent attributes or the same name for different

attributes, a catalog (Kim, 1 995), tables (Holowczak & Li, 1 996), or meta-data
repository (Abdalla, 1 998) can be used for maintaining these correspondences of

attributes in disparate data management systems. However, it is not appropriate to

maintain higher attribute correspondences such as one to many relationship

attributes.

Kim (1995) suggests three join methods to integrate relevant data in heterogeneous

systems. Horizontal Joins involve using union to unite entities. A union compatible

join can be used if and only if each attribute of two local databases has its

corresponding attribute after the transformation process. The extended union

compatible join is used when there are inheritance hierarchy conflicts. Vertical Joins

are used for integrating either entities or attributes among heterogeneous databases to

one entity. Mixed Joins are the combination of horizontal joins and vertical joins.

- 2 1

MeD1n t : A r, A p r', > c c l , f o r i ! n i ,";:; ru t i i f D o i o t:<i s e u i l e <J c c y S s t ni'>

Yan, Ozsu, & Liu (1 997) presents a homogenisation methodology in the AURORA

mediator system. An import schema is constructed. Then, schema mismatches are

resolved by transformation operators in the relational data model environment

(AURORA-RH). A group of related relations or related attributes are materialised to

create a derived relation.

2.5.2 Semantic Conflict Resolutions

Kim (1 995) suggests three ways of homogenizing representations to resolve different

representations of equivalent data. Firstly, different expressions, which involve using

separate codes or values to represent the same data, can be solved by defining the

same object with different representations. A static lookup table can be created for

defining equivalents, or operators can be defined using a multidatabase query

language. Secondly, different units can be solved by defining arithmetic expressions

(Kim, 1 995). A formulae has been defined by Holowczak & Li (1 996) for converting

values in one system to correspond with units in another system. However, this

resolution is not precisely accurate, that is, in some cases it operates accurately in

only one direction, because of the decimal from the truncation of the reversed

conversion. Lastly, different precision involves the domains of attributes, which are

defined by different cardinalities, resulting in different scales of precision for similar

data. A mapping among domains of equivalent attributes must be constructed by

using a many-to-one mapping to convert a number of more precise domains to a less

precise domain. If it is converted in an opposite way, this resolution is not precisely

accurate (Kim, 1 995).

Kim (1 995) also suggests two ways to resolve data mismatches in heterogeneous

systems by homogenizing attributes. Firstly, type coercion or data type mismatches

are conflicts in which data types of equivalent attributes have different domains. A

resolution is needed to change the data type of one attribute into another data type.

There is no problem with changing an integer number to a real number, but there is a

truncation problem for changing a real number to an integer number. Secondly,

attribute concatenations are resolutions involving a character-type attribute in one

- 2 2

system which is represented by more than one character-type attribute in another

system. An operator can be defined for concatenating these attributes.

The Object Exchange Model (OEM) transforms objects into schema-less objects in

which object id, object label, type and value are included. Meaningful tags or labels

are used for describing meanings of objects instead of schemas (Papak:onstantinou,

Garcia-Molina, & Widom, 1 995).

Abdalla (1 998) defines semantic specifications to represent models semantically.

There are two types of specifications which are enumerated domains and semantic

contexts. Enumerated domains are for resolving conflicts from different expressions.

An enumerated domain is an ordered set of defined value. For example: An attribute

'month' can have domain (Jan, Feb, . . . , Dec). A similar attribute can have domain

(1 , 2, . . . , 12). An enumerated domain can be multivalues ((Jan, l), (Feb,2), . . . ,

(Dec, 12)). Semantic contexts are a set of elements, each of which is a pair of a
property and an assigned value (LengthUnit=cm).

Articulation axioms are bi-directional (Holowczak: & Li, 1 996). These axioms will

return a true value if the logical expression is true in a given context. The benefit of

bi-directionality is that it can be reversed accurately. (Holowczak: & Li, 1 996) also

suggests that Naming conflicts can be solved by Aliases and Representation Conflicts

can be solved by Superclasses, a characteristic of the object model to represent
related component entities.

Tables, operators or functions can be defined in class definitions for solving
heterogeneity. Using the benefits of functions, a data mining approach was suggested

to discover data value conversion rules from the data (Lu, 1 998; Lu, Fan, Goh,

Madnick, & Cheung, 1 997). This resolution can also be used in the case of the

complex heterogeneity. Domain structural mismatches can be solved by using

functions and mapping tables.

To resolve the conflict that was defined in the previous section as Table versus

attribute, an independent view can be constructed to access data. This view neither

depends on any specific names nor changes when schemas are modified (Miller,

- 2 3 -

MeDin t : /\ A , , ;.> r o n c

1 998). Also conflicts have been solved in the Multibase project using a

generalisation concept by inheriting the common characteristics (both attributes and

functions) and defining them as a supertype definition.

Sciore et al. (1 994) describes values semantically by composing a simple value and

its context information to be a semantic value which can be exchanged between

systems via converting from the source context to the receiving context with the

assistance of conversion functions. These conversion functions can be implemented

in four methods: programming language, table lookup, on-line data source, and

logical rules. Conversion functions also may be total/non-total, lossless/lossy, or

orderpreserving/non-orderpreserving.

2. 6 Summary

Heterogeneities can occur in several levels. In this research, they are classified into

three main classes: Data Model, Schematic and Semantic Heterogeneities which
require different conflict resolutions. A number of conflict resolutions were also

reviewed in the chapter.

A number of data models has been investigated with the aim of obtaining useful

characteristics for developing a data model appropriate for this study. The result is
the formulation of an interchangeable data model, called the Mediated Data Model

(MDM), to be used in the heterogeneous database integration in this research.

- 2 4

CHAPTER 3 - INTEGRATION

TEC HNIQ UES

Data heterogeneities and conflict resolutions have been reviewed in the previous

chapter. Data integration approaches, which are the procedures to integrate or

interoperate data from multiple data sources, are reviewed and presented in this

chapter. The limitations of each approach are emphasised. This chapter also includes

brief information of integration middleware such as CORBA.

3. 1 Integration Approaches

In the last twenty years, several approaches to provide an integrated view of

heterogeneous data sources have been introduced to bring about the interoperability

among heterogeneous systems. In this research, they are classified into translation,

global schema, federated database, multidatabase, mediation and other integration

approaches.

3.1.1 The Translation Approach

The Translation approach or point-to-point scenario needs highly specialised

translation for each pair of local data sources, because it requires customising case

by-case interfaces. Therefore, the number of required translators grows geometrically

especially when component data sources increase (the number of required translators

is n*(n-1)/2 when n is the number of data sources). The development of these ad hoc

programs/translators is expensive in terms of both time and money .

.. 25 -

MeDlnt. An Approoc, for the lnt'::grution of Dotcrbos e arrc1 Leqac:y �ys'ern�

3.1.2 Global Schema Approach

The global schema approach is a tightly-coupled approach or a fully-integrated

approach, by which individual schemas from multiple data sources are merged by a

global schema to provide a single view as shown in Figure 3 .1.

Client

Query

� Global system

Local system Local system Local system

FIGURE 3.1 THE GLOBAL SCHEMA APPROACH

This approach allows accessing to multiple local data sources through the global

schema interface. The conceptual global schema is provided as a logically

centralized database (Hughes, 1991). This is another layer above the local external

schemas and which accesses local systems through the external interface of local

databases (Bright, Hurson, & Pakzad, 1992). Most global schema approaches are

relational data models. Multiple local schemas are consolidated bottom-up for

creating a global schema. It is quite convenient for users to have a uniform view and

access to multiple data sources through the logically integrated global schema

without knowledge of local schema heterogeneities. However, the schematic and

semantic heterogeneities must be resolved during the process of creating the global

schema. This causes a major difficulty in thoroughly understanding the schema and

semantic differences of local schemas which have been designed autonomously in

order to homogenise such differences (Kim, 1995). Therefore, the integration process

of this approach is more complicated when the number of local schemas to be

- 26 -

1-31-08)

certified

t [) o t (l L> Us E) (i Le 9 CC y Sy t rTi �

integrated increases. This approach is hard to automate because human

understanding is necessary to identify the schema and semantic conflicts. There is no

general solution when integrating more than two data sources whether all component

schemas should be integrated once or two schemas should be integrated at a time

(Bouguettaya, Benatallah, & Elmagarmid, 1999). Furthermore, in dynamic systems,

when local schemas usually change, the pre-integrated global schema is affected and

required to be recreated to correspondence to the local schemas.

Commonly, the integration is composed of two main steps: schema translation and

integration. The purpose of the schema translation (schema mapping or operational

mapping) is to translate local schemas which may be in different data models into a

common data model that used in the integration. The main purpose of integration is

to resolve the existing conflicts between different representations in different

component systems to provide the correspondence information. This task can be

divided into four steps:

• Pre-integration process, where the schemas to be integrated are selected and

different requirements and constraints on the integrated system are collected.

• The comparison of component schemas to detect conflict in their representations

and correspondences between them.

• The conformation process, which brings the components schemas into

compatibility and resolve conflicts between them. The automation conflict

resolution is not feasible, and the process has to be performed with close

interaction with designers and users (Abdalla, 1998).

• The merging and restructuring of component schemas into global schema views.

This is a strict approach in that the global schema creation process is separated from

the query process. Furthermore, the mapping between global and local schemas is

required. The addition, the modification or deletion of local schemas influences the

global schema being adjusted.

Critchlow (1997) presents a global schema approach by the assistance of the schema

coercion technique that transforms sources' schemas to a reference schema before

generating a transfer program to transfer data to the new created schema.

- 27 -

Abdalla (1998) provides a global integration by introducing a Functional Integration

Technique (FIT) based on the object-oriented model. An abstract view in a common

data model integrated from each local data sources is created. Conflicts are resolved

before the local data sources are integrated into a global view. A descriptive

language, the View Definition Language (VDL), is introduced to represent the local

views. This VDL can be mapped to IDL modules. The View Correspondence

Schema (VCS) is used to define the different correspondences between local views.

The Functional Integration Technique (FIT) is based on the object model providing

the global schema mapping oflocal entities to resolve structural, semantic and

behaviour conflicts (Abdalla, 1 998). An example is given for the integration between

two databases. However, the integration will be much more complex when the

number of databases i ncrease. Furthermore, i n practical, entities probably cannot be

mapped one by one.

3.1.3 The Federated Database Approach

The Federated Database Approach is more flexible than the previous approaches. A

Federated Database System (FDBS) can be a tightly- or loosely-coupled approach. It

depends on federation management and integration (Sheth & Larson, 1 990) whether

users or database administrators are the ones who control over the component

schemas. A loosely-coupled FDBS has multiple federation schemas controlled by

users while a tightly-coupled FDBS can have only a single federation schema or

multiple federation schemas with constraints controlled by database administrators.

From Figure 3.2, the local schema is the conceptual schema of local data sources.

Local schemas in different data models are transformed into component schemas in

the common data model. Shared data for each federation can be specified in export

schemas. A group of export schemas are then integrated by a federated schema. An

external schema, a subset of a federated schema, will be defined for users if it is a

tightly-coupled approach.

- 28

Me DI nt: ,1\ r: A ;>proo c I, for the In t.,,9ro t ion ,, f Dn tc1 bos e crnc1 L e9c cy Systems

Client Client Client Client

Federmd Schema

FIGURE 3.2 THE FEDERATED DATABASE APPROACH

Because this approach is quite broad, its advantages and disadvantages could be

discussed separately by classifying FDBSs in terms of how schema are integrated:

that is with tightly-coupled or loosely-coupled approaches.

Tightly-coupled FDBSs allow users to query one or more federated schemas without

knowledge of local data sources. However, it still requires complete pre-integration.

The federated schema must be developed before issuing any queries, so any changes

in local schemas would affect the federated schemas. View updating is partially

supported (Bouguettaya et al., 1999). This approach would violate component

schema constraints and the autonomy of component schemas (Holowczak & Li,

1996).

In loosely-coupled FDBSs, it is flexible for users to map semantic meaning.

However, view duplication may be generated by users, because they do not know

that others use the same view. This also causes the problem of view updating with

multiple semantic mappings. Even if the loosely-coupled FDBSs provide creating a

new view easier than in the tightly-coupled FDBSs, it is still difficult to detect

dynamic changes in the export level (Bouguettaya et al., 1999).

· 29

-31-08)

certified

------ --------------------------------------

Federated Schema

MeDlnt : I\ n A p proc1 c: t, fo r t h e I n t eq r-ci t i o n o f D o ! o t:in s e crn c1 L eqo c: y � y s t en, '>

From a federated information system workshop (Conrad et al., 1 999), it has been

found that schema integration is a difficult process involving detecting and solving

semantic heterogeneities among structures, constraints, and the behaviour of the

component databases.

3.1.4 The Multidatabase Language Approach

Client Client

Query Query

Client

Query

FIGURE 3.3 THE MUL TIDATABASE LANGUAGE APPROACH

The multidatabase language approach shown in Figure 3 .3 is more loosely-coupled

than the previous approaches. It has been introduced in an attempt to resolve the

problems of the previous approach by discarding the complete or partial schema

integration. This approach allows users to query local database systems directly

without any global schemas. It places the integration responsibility on users by

providing a multi-database manipulation language as a query language tool which is

able to communicate with the local databases and which is capable of managing

semantic conflicts through their specification. Users can see all the local schemas and

create their own logical export schema (Heimbigner & Mcleod, 1 989) from selected

schemas, which are relevant to information they need. The strong point of this

approach is that it maintains the autonomy of local databases (Hurson & Bright,

- 30 -

1996). However, it requires users to find relevant data in component data sources and

to understand their component schema and semantic contexts to be able to resolve

conflicts in creating their own views. This will be more complicated when dealing

with a large number of component data sources.

Kim and Seo (Kim & Seo, 1991) present UniSQL/M, a multidatabase system which

utilises the relational model as a common data model. Component databases systems

have to be converted firstly into relational schema, then a multidatabase schema

would be created as a view of the component schemas.

This approach is more flexible. A new export schema can be defined easily when

required by the query language tool. Users define the export schema and the mapping

before querying. Therefore, it is easy to add data sources. However, the processes of

defining export schemas and querying are still separate.

3.1.5 Mediation Approach

The mediation approach (Figure 3 .4) is a recent approach to interoperate

heterogeneous data sources. The main purpose of the mediation technique is to

reduce the complexities of the integration and make it transparent to the users .. This

approach allows users to issue a query to the mediator as if it is a centralized

homogeneous database. The query will be transformed by the mediator to other

query languages corresponding to relevant logical data sources (Neild, 1999).

Response data from each sub-query is composed by the mediator before such data is

returned to users. The mediator, the major component in this approach, consists of a

knowledge module placed in an intermediate position for bridging between clients

and servers (Weiderhold, 1995; Wiederhold, 1992). The knowledge that a mediator

provides would include information about where data is stored, and what structures

and semantics of data representations are required for each user's view.

- 31 -

D c1 t , 1 b u s e e n d L e ,;1 c c y S y s t rn :s

MeDlnt: J\r; Appro.oc:h for tt1e lntB9 1 c1tion of Dotnt>ose crncJ l.egoc:y 5ysiem�

Client

Query

Mediator

FIGURE 3.4 THE MEDIATION APPROACH

Context Mediation (Sci ore et al., 1994) is an architecture consisting of information·

systems, data environments, context mediators, conversion libraries, and shared

ontologies. The context mediator is the central component of the architecture. It acts

as an agent exchanging values from one information system to another by using

semantic values as the unit of exchange, together with semantic mappings from

shared ontologies and functions in conversion libraries. In this approach, data values

have their own associated contexts. A data value can be exchanged by converting it

from a source context to a receiving context. A data environment has two

components: semantic-value schema and semantic-value specification which provide

attributes and properties information. The context mediation consults data

environments to determine what conversions are needed. The shared-ontology

specifies mappings which describe naming equivalences among information systems.

The last component, the conversion libraries, contains all conversion functions. C

SQL (Context-SQL), the extended version of SQL is used to get benefits from meta

attributes.

TSIMMIS (Li et al., 1998), a project of the Stanford database group in conjunction

with IBM, is a mediation architecture integrating data from heterogeneous systems

by translating a query on the integrated view into a set of source queries. The

mediators use the view definitions to translate the query on the user views into a

- 32 -

-31-08)

certified

logical plan. Object Exchange Model (OEM) is used to deal with exchanging

heterogeneous data. It also provides wrappers as interfaces to the mediator.

The AURORA mediator system (Yan et al., 1997) is composed of an interactive

mediator author's toolkit (MAT), a mediation enabling algebra, a query rewriting

algorithm, and transformation rules that facilitate query optimisation. It integrates

heterogeneous sources by a homogenisation methodology. The concept transforms

the relation in the source to the relation format in the target. Thus, homogenisation

removes the schematic conflicts of data sources relating to an integrated view. A data

source can be integrated by a registration mechanism. The relational algebra and

operators are extended and designed for expressing homogenising views. Queries

against the views are mapped to subqueries against the data sources via wrappers.

AURORA provides a collection of workbenches, each consisting of a mediator

skeleton and a Mediator Author's Toolkit (MAT). Mediator skeletons are empty

view mediators and become custom-made mediators when views are defined.

Building a mediator means building a mediator view and a query processor.

Mediators are constructed from mediator skeletons which have these built-in

capabilities: a mediator enabling algebra (MEA) for defining views and a repository

to maintain them, and a query processor that considers queries posed against views

defined via the MEA.

Garlic (Roth et al., 1996; Roth & Schwarz, 1997) is another example of a mediator

system working together with wrappers to provide an integrated view of multiple

data sources. Each wrapper models data as objects and provides the method

invocation on such objects.

Neild (1999) presents a mediation approach called the Virtual Data Integrator. It has

two components: knowledge representation and query processor. A global schema is

constructed by the knowledge representation from the information of related objects,

contexts, and constraints. The query processor then can interpret the query.

The mediation approach is flexible in that it allows users to do the integration while

issuing the queries. No prior creation of global schema is needed and new additional

- 33

M 0 D l r d : A n A ,:, p t ,) <i <: I , : o , i i) f [) c: t o b c :� E:; e n c! L e J c c v S y t fl i :'>

M 0 D l nt : /\ A r:, p r ,) G C: 1 1

data sources are easily added to the system. However, a knowledge of data source

structure is necessary.

3.1.6 Other Approaches

The limitations of the above integration approaches have led integration technologies

towards a new variety of solutions. Various theories have been applied to solve

integration problems such as the object-oriented model, knowledge base, and

modelling. Examples of these approaches are discussed below.

Data Warehousing systems are different from integration systems in that a data

warehouse is an instantiated view (Jakobovits, 1 997) which serves to categorise data

on a multi-dimension. Nonetheless, data warehousing systems are static ; updating of

local data sources does not affect them until reconciliation time. Query execution

does not have to deal with complicated processes, for example, query translation, or

to communicate with data sources which are in different data models. The main

purpose of a data warehouse is to ��ovide users with the summarised information

from historical data. Data warehousing therefore derives selected information from

data sources, removes inconsistencies, and transforms the information to suit the

query and analysis (Seligman & Rosenthal, 1 996).

DataFoundry (Critchlow, Ganesh, & Musick, 1 998) is a mediated data warehouse

supported by a domain-specific ontology. The mediators transform data from source

format to data warehouse format and transfer query requests to data sources.

Ontology is a resource to generate mediator, and supports the query processor and

guides schema evolution. There are three types of knowledge: formal definitions of

databases, mappings and methods; concrete instances of these descriptions; and

domain-specific abstractions representing knowledge about a particular field.

Database descriptions are language independent definitions of the information

contained within a single database. They are used to identify the translations to

transfer data between data sources and the target. Mappings identify the

correspondence between database descriptions and abstractions at the class and

attribute levels. Transformations describe which attributes contain the same data, but

- 3 4 -

in different formats, and identify the methods that can be used to translate between

them.

The Information Integration Wizard Project (I-WIZ) (Hammer, 1 999) has been

developed by using hybrid data warehousing and a mediation approach to integrate

heterogeneous data sources. The warehouse is used to store frequently accessed data

and the mediation is used to support data that is not in the warehouse. This project

focuses on removing structural and semantic conflicts and the merging of

corresponding data by using the process of information transformation and

knowledge representation.

Reengineering approaches need to migrate databases to new environments (Seligman

& Rosenthal , 1 996). The mappings from old schema to new schema are required.

KADBASE is a schemata information integration of the engineering databases into a

single global schema based on a semantic model (a frame data model).

One of the knowledge representation techniques for heterogeneous database

integration is the Carnot project (Woelk et al. , n.d.), based on Cyc knowledge base

integration, wherein Cyc is responsible for comparing difference schemata and

merging them. Cyc was launched in 1 984 by Microelectronics and Computer

Technology Corporation (MCC). It is a large knowledge base which deals with a

huge amount of common sense knowledge. It stores knowledge about real-world

objects and their relationships, and also enables high-level queries to be posed

directly against a database, instead of embedding them in an application program.

Carnot provides articulation axioms to map between local models and the global

context.

For testing schematic integration, the ConceptDISH of Srinivasan (Srinivasan, 1 997)

integrates six no-semantic-conflict systems. The system incorporates conceptual

integration using background knowledge in database structure and data mining for

automatically discovering a set of concepts and providing a conceptual layer above

the legacy and object-oriented systems. The domain abstraction based on finding

similar patterns of meta level information is used instead of a common model.

- 35

The Context Interchange approach (Goh, Bressan, Madnick, & Siegel, 1 999)

provides a disparate information system integration framework, which is mid-way

between the two traditional approaches. This approach focuses on the semantics of

individual data items. That is, the semantics are independently captured and this
approach allows its mediator to detect conflicts when users issue queries. It does not

require the users to detect the conflicts.

The modelling approach provides a high level, semantically-rich object oriented,

model containing superclasses that encapsulate each component database used to

resolve heterogeneity issues. Several methods are defined to address the issue of
semantic heterogeneity (Holowczak & Li, 1 996).

Heil er, Mi l ler & Ventrone (1 996) also conccntrntc on the semantic interorcr:11, i l i ty of

databases and legacy systems. Their approach extracts the semantic incompatibilities

of different systems and collects the metadata in a repository for easy detection.

Then, their CASE tool is used to automatically create structured, semantic

information. However, this approach is still not suitable for run-time systems.

The InforFED system (Phijaisanit, 1997) -is a federated database system that uses an

ontology as the shared conceptual specification of all export schemas. This
architecture uses the mediation data model supporting the multiple value concepts,

which can export their data in their own unit values, as the common data model.

SINGle Access POint for heterogeneous data REpositories (SINGAPORE) is an

integration model in which the integration process is done after users issue queries. It

applies the metadata repository to provide data source structures and knowledge. The

structure of the metadata repository is defined formerly to capture such information

in the preintegration process (Domenig & Dittrich, 2000).

Chang & Raschid (1996) present a technique to support interoperable query

processing on multiple heterogeneous databases by utilising two canonical

representations. One is resolving heterogeneity based on query languages. Another

one provides the mapping information to resolve representational heterogeneity

among different schemas and is used to build a mapping knowledge dictionary.

36 ..

i h l n i s ()' CJ T i r 1

Bright, Hurson, & Pakzad (1 994) provide a partially automatic integration

framework for relational data sources to especially help semantic identification by

using global data structure to refer to local database systems. This allows users to use

their own terminology to manipulate data by applying linguistic knowledge theories
to match global entry terms to local data source terms. Thus, the mapping hierarchy

still needs human involvement.

McBrien & Poulovassilis (2001) present a method to integrate XML and structured

data sources by transforming XML documents into an entity-relationship (ER) model

using a low-level hypergraph-based data model (HDM). This represents an attempt

to convert XML documents into schemas to work with structured data sources.

3.2 Related Tools and Techniques

In this section, related integration tools and interfaces are reviewed. A number of

useful client-server standard tools have already been developed in distributed

heterogeneous systems, for example, CORBA, OLE and IDL.

3.2 .1 Wrapping Techniques

Wrapping techniques are used to integrate legacy systems with other new systems.

Layering, middleware and encapsulation are examples of wrapping techniques

(Aronica & Rimel, 1 996).

Layering is the most fundamental wrapping technique. This method maps one form

of an interface onto another form. Its functions can accommodate the complexity of

existing legacy systems. Layering is useful to aggregate legacy systems. This method

is helpful because operating under layers reduces the complexity of legacy systems

by dividing them into several business objects.

Middleware is system integration software for distributed processing and for

database and user interfaces. The field of distributed processing middleware has been

growing rapidly with the support of the Object Management Group's Common
Object Request Broker Architecture (CORBA). Database middleware provides

- 3 7 -

common mechanisms for accessing a variety of database systems and file structures.

Some database middleware products map legacy systems such as IMS onto relational

or object models. Database middleware allows a system to issue a single information

request and to access several data sources, which may be different vendor' s database
systems.

Encapsulation is the most general technique of object wrapping. This method

separates the interfaces out of an implementation. Encapsulation treats systems as a

black box abstract and implementation details are hidden in the box. All accesses

including direct and indirect accesses are performed through interface methods.

Using interface methods allows implementation details to be changed without

requiring other changes. CORBA and its IDL (Interface Definition Language) allow
encapsulated systems to hide differences in programming languages, systems

locations, OS, algorithms and data structures. Using IDL allows object encapsulation
to be freely defined apart from implementation details. Encapsulation can be used

with legacy systems whose source codes are lost, because wrappers can access

legacy files and databases directly. If legacy systems have a reasonably robust

application program interface {API), a wrapper can use it to perform most functions.

The Distributed Information Search Component (Disco) is an example of the
wrapper-based approach (Kapitskaia, Tomasic, & Valduriez, 1 997; Tomasic,

Raschid, & V alduriez, 1 995). It provides wrapper interfaces which support relational

logical operators. Disco talks to wrappers via the abstraction level.

3.2.2 The Common Object Request Broker Architecture (CORSA)

CORBA, developed by the Object Management Group (OMG), is a specification for

an application-level communication infrastructure. It is a standard technology

infrastructure for the development and deployment of object-based applications in

distributed, heterogeneous environments (Distributed Management Group, n.d. ;

OMG, 2001). The main purposes are for reusability, portability and interoperability.

CORBA simplifies distributed environments using an object paradigm that hides all

differences between programming languages, operating systems, and object location

- 38 -

MeD!nt : !, r, A ;> p 1 1)0 c I '

(Mowbray & Zahavi, 1 995). CORBA addresses interoperability and provides an

object-based central layer which can communicate over heterogeneous platforms

with language and platform independence (Segue Software, n.d.). The CORBA

standard defines mechanisms whereby objects implemented in different languages

can communicate transparently through an invocation method (Scallan, 1 999).

CORBA's characteristics allow the integrator or mediator to concentrate on database

management heterogeneity and data representation heterogeneity by ignoring

platform heterogeneity. The ORBs are the implementations of CORBA, which are

effective for system integration and for Internet accesses. Object Transaction Service

(OTS) is a horizontal service of OMG that allows users to access distributed

transactions across multiple heterogeneous databases and transactional legacy

systems (Vogel & Rangarao, 1 999). CORBA Interface Definit ion Language (IDL) is

defined by OTS to provide a common language and syntax for client and server

access. Distributed objects can be located anywhere in a network.

Components of CORBA are Object Request Broker, Object Services, Common

Facilities and Application Objects (OMG, 200 1).

The Object Request Broker, the central component of the architecture, provides a

seamless infrastructure for distributed communication across heterogeneous systems.
It is the core that allows objects requesting or being requested to be transparent.

Clients need not be aware of where the object is located, what programming

language is used, or any other relevant aspects. CORBA provides communication

facilities to applications through two mechanisms: static interfaces and a Dynamic

Invocation Interface (DII). An Interface Repository stores on-line descriptions of

known OMG IDL interfaces. Any interface can be used with either mechanism. The

Basic Object Adaptor (BOA) is an initial set of ORB interfaces for object

implementations.

Interface Definition Language (OMG IDL) is a technology-independent syntax for

describing object encapsulations. Its specifications are compiled into header files and

stub programs for direct use by developers. Mappings from OMG IDL to C, C++,

and Smalltalk are provided. From the header files, the OMG IDL compiler generates

stub and skeleton programs for each interface. The client program links directly to
-=�"=,-N-=�=-'�'"------�--N'N'��.=-·--� ' "'�-. �-"•""-��-�-N,=,-•-=--�--=="�''"""=,,--uu-,-''""--''"'"""'-���-h��--,www��e

.. 39 -

MeD ln t : r, n A ;:, p r ::> u c t : ' o , t ,, I r : t ,.:· (J <: t i , ; n , , f l ;o t u t, G s e e n d L c iJ U C ',' <: y :i ' i:· n , ,

the OMG IDL stub. The stub acts like a local functional call with transparent

interface that encodes and decodes the operation parameters into communication

formats suitable for transmission. The OMG IDL skeleton program is the

corresponding server-side implementation of the OMG IDL interface.

Dynamic Invocation Interface (DII) is a generic facility for invoking any operation

with a runtime-defined parameter list. A runtime interface description of the

operation signature can be retrieved on-line from the CORBA Interface Repository.

Programming with OMG IDL static interfaces is much more simple, but the DII

provides a level of flexibility that is necessary in some applications.

An Object Adaptor contains the interface between the ORB and the object

irnplemcntation. I t supports many type o f functions for general purpose uses, object

database integration, legacy integration.

Object Services are a shared fundamental set of lower-level services performing

basic function services for implementing an object. The object naming service

provides basic operations including bind, unbind, and resolve. The object event

service is a reusable set of interfaces for event posting and dissemination. The object

relational service provides a capability for managing associations and linkages

between objects.

Common Facilities are the set of shared high-level services that do not perform basic

functions.

Application Objects contain all the software such as developer's programs,

commercial applications, and legacy systems.

In conclusion, integration issues are simplified because CORBA can deal with

heterogeneous hardware, software, compiler versions, data access mechanisms,

component/module interfaces, and networking protocols. OMG IDL provides

operating system and programming language independent interface. Programmers do

not have to be concerned with the operating system, the server host hardware or the

server location or activation state (Mowbray & Zahavi, 1 995).

- 4 0

3.2.3 Enterprise JavaBeans

Vogel and Rangarao (1 999) state that "Enterprise JavaBeans (EJB) is a higher-level

component-based architecture for distributed business applications that use the

transaction system's lower-level APis". EJB was published by Sun in 1 998. It is a

Java-based component-oriented framework for developing, deploying and managing

distributed, transactional applications. EJB is a specification for server-side. It allows

developers to code business logic without worrying about managing transactions

such as start or terminate transactions. EJB is mainly designed for distributed

transactions, but it can be used to implement non-transaction systems (Thomas,

1 998). Several services ofEJB are interoperable with CORBA. Java Transaction

Service (JTS) is a service binding with CORBA's OTS. JTS is an Application

Programming Interface (API) which is able to manage distributed transact ions

operating with multiple databases in disparate systems (Matena & Hapner, 1999).

3.2.4 Extensible Markup Language (XML)

Extensible Markup Language (XML) is a specification developed by the XML Core

Working Group of the World Wide Web Consortium (W3C) organisation as a

standard way of representing structured data. XML is a subset of Standard

Generalized Markup Language (SGML). The goal of XML development is to make

SGML documents able to be processed simply on the Web and to bring about the

interoperability of SGML and HTML (Bray, Paoli, Sperberg-McQueen, & Maler,

2000). XML is a format for structured data interchange over the Internet. It supports

data exchange between heterogeneous systems. It becomes one of the means that are

used in transforming data from heterogeneous sources including transaction legacy

data (Goldfarb & Prescod, 2000). XML is the present and future specification with

which all systems tend to conform.

XML is different from HTML in that HTML has a limited number of markup tags,

but any markup tag can be used in XML (Goldfarb & Prescod, 2000). The designers

of XML have attempted to take the power of SGML and the simplicity of HTML to

create a new language for specifying document types that are tailored for the web, it

- 4 1

MeD l n t : 1, n i\ ,> p r',) c c l : 1o r ! ! 1 l n i (' fJ: U '. i

is easy to use and light weight. In XML, the meaning of the information is embedded

in the document. Information is separated into meaningful chunks called elements,

which are bounded by start and end tags. Tag names describe the content of the

elements. Elements can have attributes, which are property-value pairs embedded in

the start tag. The document has a hierarchical structure, where elements can be

contained in other elements. This structure implicitly describes the relationship

between elements.

XML processors are software modules used in processing XML documents by

accessing the structures and contents of XML documents (Morrison, Boumphrey, &

Brownell, 2000). XML applications utilise the services of XML processors to get the

structure and content of XML documents. XML processors can be plugged into an

XML application to process XML documents. An X:-.lL parser, part of the XML

processor, is used to analyse XML markups and identify the structure of a document.

From the investigation in this research, the characteristics of XML that allow for the

integration are as follows:

• Metadata: Document Type Definitions (DTDs) are schema definitions of

documents. DTD enables both syntactic and semantic checks of what is legal in a

document (Goldfarb & Prescod, 2000).

• Self-describing: This makes it human-readable.

• Exchanging: XML is turning into a crucial tool support for exchanging

information among databases. Especially, it is able to represent the complex

structure of object-oriented information which simple file format cannot

represent (Goldfarb & Prescod, 2000).

• Parsing: XML can be completely parsed because its data and metadata are

separated from its rendition (Goldfarb & Prescod, 2000).

• Future: XML is a proper standard for structured data on the web. Many relevant

specifications are being developed for supporting XML.

• Rendering: XML can be delivered to users differently (Goldfarb & Prescod,

2000).

• Transaction processing: To do a group of actions called a transaction, XML can

combine such actions into a request by nesting them as a component in a
- 4 2 -

transaction element even though an output of the first action will be an input of

the second action (Goldfarb & Prescod, 2000).

• Data interoperability (Tun, Goodchild, Bird, & Sue, 1 999): It is a text-based

format, making it platform- and software- independent. Thus, XML documents

can be exchanged over existing protocols such as HTTP. Its hierarchical structure

allows powerful data constructs from databases and other applications to be

specified.

• Open standard: This makes it vendor independent. Several generic tools are

bound to emerge that support XML applications.

The most significant reason that XML was chosen as one of the tools in the

integration process in this research is that the data type of each element need not be

specified i n case of data type mi smatches. Data values fro1n di fTcrcnt data sources

defined by different data types do not have to be refixed or coerced into any specified

data types, which would cause the loss of accurate information.

3.2.5 Ontologies

Ontologies are normally used in data integration to capture domain knowledge and

provide a commonly agreed understanding of a domain, which may be reused and

shared across applications. The knowledge represented inside an ontology can be

formalised by using five components:

• Classes or concepts all the notions which are relevant for a given application

domain describing objects, tasks, functions, actions, strategies, etc.

• Relations represent interactions between concepts and are defined as a subset of a

Cartesian product.

• Functions.

• Instances represent the specific instantiations of concepts.

• Axioms are used to represent properties that concepts and instances have to

satisfy.

Examples of the integration methodology based on ontologies are DataFoundry

(Critchlow et al., 1 998), The InforFED system (Phijaisanit, 1 997), and The

- 4 3 ..

Distributed Information Search Component (Disco) (Kapitskaia et al., 1 997; Tomasic

et al., 1 995).

3.2.6 Metadata

Metadata is a repository of stored information of data sources, reference definitions,

assertions about correspondences among data sources, libraries of conversion

functions, and schemas for integrated views (Seligman & Rosenthal, 1 996).

Morgenstern (1997) states that a basic form of metadata is a schema definition

providing a form of structural metadata. Data Dictionaries (Seligman & Rosenthal,

1 996) also are suggested as a kind of useful metadata to capture information from

data sources, but very limited in the amount of representation information.

A library of conversion functions has been an important part when data represented

by different units in multiple data sources need to be compared. One aspect needed to

be considered is whether that conversion is total, lossless, or orderpreserving (Sciore

et al., 1 994). A total conversion means it is possible to convert any value from any

unit to any other units. Currency conversion is an example of total conversion. In

contrast, the granularity conflicts mentioned in Chapter 2 are an example of a

nontotal conversion. The conversion function is lossless if it still gets the same result

when converted from a semantic context directly to another context or when

converted by a sequence of steps. The opposite of lossless conversion is lossy or

nonlossless conversion. An order preserving conversion occurs when two values in a

semantic context are converted to another context and the converted values still

follow in the same direction of the original values.

MetaData Specification (MDS) is used to construct a metadata repository to locate

and guide access to distributed heterogeneous resources (Morgenstern, 1 997). High

level MetaData Specification is used to drive mediators which help to link

heterogeneous information systems and provide a uniform data interface, hiding the

underlying heterogeneity.

.. 4 4 -

3.3 Summary

Major data integration approaches have been reviewed in this chapter. Each of them

has limitations and each is appropriate for particular cases, for example, how tightly

or loosely it may be required. The global schema approach is a tightly-coupled

approach which allow user to simply query on the global view, but it is a fully

integrated approach which will generate critical problems in dynamic systems.

Federated database approach is quite broad. It could be tightly- or loosely- coupled

depending on who, the user or database administrator, has control over the

component schemas. However, the same problem in the global schema approach also

appears in the federated schemas. This problem can be solved when using

multidatabasc language approach, but i t does not suppo1i legacy systems and users

have to be responsible on creating their own schema which means the k11owlcdge of

component schemas is necessary.

Taken into account the strength and weakness of the integration approach reviewed

above, an alternative integration architecture is proposed in the next chapter to

address research questions presen!ed earlier.

- 4 5

MeD ln t ' /\ ri A ,>P IOOC fo r t he I n

C H A PTER 4 - T HE MEDIATED DATA

INTEGRATION ARC HITECTURE

When interoperation between multiple heterogeneous data sources is required, there

would be a number of conflicts arising not only from different database designs, but

also from different kinds of data models employed within heterogeneous databases.

These conflicts generate the difficulties of homogenisation in terms of data model,

schema and semantic. The Mediated Data Integration (Me D l n t) architecture for the

heterogeneous cbta integration framework i s i 1�trc1duced in an attempt to O\'et'c r , ;:� ::

the above difficulties. Its main focus is to provide a solution to interoperate

heterogeneous data sources through transparent transformation of both the queries

and the data. Furthermore, M e D l n t is capable of solving not only Schematic and

Semantic Heterogeneities, but also conflicts from different query languages and data

models, namely Data Model Heterogeneity.

Jakobovits (1 997) classifies tightly-coupled database systems, mediator systems and

decision-logic based systems as static integration systems and loosely-coupled

database systems and metadata repository systems as dynamic systems. A static

integration system is defined as the system which Schematic and Semantic

Heterogeneities are resolved when a new component data source is added to the

integration system, while a dynamic integration system is the system which such

heterogeneities are resolved at query time. The integration approach proposed in the

research incorporates the advantages of both the mediator systems and metadata

repository systems. The Me D i nt architecture requires that new data sources be

registered when they are added to the integration system. However, the

heterogeneities are resolved at the query time. That means the mediator system is

extended to make it more dynamic through the inclusion of the metadata repository.

The ANSI/SPARC Study Group on Data Base Management Systems divides a

database system architecture into three levels: internal, conceptual, and external

- 4 6

levels (Date, 1 990). The internal level is a low level representation relating to the

physical storage side. The external level is the high level representation relating to

the user side. It can be presented differently depending on the application. The

conceptual level is between the internal and external levels representing the entire

information of a database. This architecture is categorised as the conceptual level

according to the ANSI/SPARC architecture.

This research will investigate and design an integration technique based on the

mediation approach. The mediated architecture adds a third layer between

applications and data sources.

4. 1 Architecture Requirements

Addressing the research questions proposed previously, the following architecture
requirements have been formulated as the framework to develop the integration

architecture.

Requirement number l : . The sch�ma evolution should not affect the integration. This

requirement is to cater for dynamic systems where schemas could be changed

frequently. When schema modification is made on data sources, it should not cause

large-scale modification to the integration system.

Requirement number 2: The integration should cover the major kinds of data sources

widely used such as legacy, relational model, and object-oriented model systems.

Requirement number 3 : This approach should increase automation and reduce

amount of work required by end-users. Users should not have to deal with conflict

resolutions once they issue queries. The different terminologies used in data sources

and the different structures of data sources should not affect users when issuing

queries.

Requirement number 4: Concerning on scalability, the integration architecture should

only require minimum modifications when a new data source is added or removed.

- 4 7

4.2 Requirement Analysis

In order to accommodate dynamic systems, from the architecture requirement

number 1 , that schema evolution should not affect integration and from requirement

number 4, when a new data source is added or removed, the integration should only

require minimimum modification, it has been found that the pre-integration

approach, such as tight-coupling and translation approaches, are not appropriate

because they cannot fulfil these requirements. This is because any modifications

made on the component data sources cause a lot of changes to the global schema or

translators (Goh et al., 1 999; Goh et al., 1 994).

Requirement number 2 is introduced to allow the architecture to interoperate well.

That is, the integration architecture should serve the most common k inds of data

sources, for example text files, XML, relational, and obj ect database management

systems. According to this requirement, the loose-coupling approach, such as
multidatabase approach, is not practical because it is able to serve only relational

database management systems.

Concerning usability and transparency, the integration system should be easy to .use.

This is addressed by requirement number 3, that users should not be responsible for

conflict resolution when they issue queries. In general, when users issue a query to

multiple data sources, they have to deal with heterogeneities among multiple results

from different data sources, for example, different currencies and different naming of

objects or attributes in each source, etc. This is because different data models and

database designs contain different data source schemas and terminologies. The

Multidatabase approach whereby users have to deal with these heterogeneities

themselves when issuing queries, is also not suitable.

The translation, tight-coupling, and loose-coupling approaches do not satisfy all of

the requirements described above. To accomplish such requirements, other

integration approaches have to be considered. Several experiments on generating

conflicts and applying solutions to such conflicts have been done. The main
processes are resolving the Data Model, Schematic and Semantic heterogeneities.

Data model and Schematic heterogeneities can be resolved by translation processes.

- 4 8

Semantic Heterogeneities require conflict resolution processes. However, further

experiments done by the author have revealed that the integration process is

considerably more complicated when dealing with both translation and conflict

resolution at the same time. In response to these difficulties, an architecture called

the Mediated Data Integration Model (MeDlnt) has been proposed. A mediator,

along with wrappers, are designed to mediate both requested queries and query

results from heterogeneous sources. The Me DI n t Mediator handles common

integration tasks, while the wrappers deal with integration tasks specific to individual

data sources. Translation processes are handled by wrappers whereas conflict

resolution processes are done by the MeDlnt Mediator. In addition, these integration

processes do not directly integrate data sources schemas, but integrate only the query

results from multiple data sources. This feature is the strength of the architecture in

that the integration processes do not directly force multiple schemas into a unique

global schema, nor do they resolve semantic conflicts directly. Rather, it slightly

adjusts only the result data to conform to the pre-defined referential template. The

main architecture and components of the Me DI n t solution are described in the next

section.

4.3 The M e D l nt Architecture

Me Dint, which stands for the Mediated Data Integration Architecture as shown in

Figure 4. 1 , is based on mediation and wrapping techniques. The two main

components are the mediator and wrappers acting as the intermediate agents between

clients and multiple data sources to communicate both request queries from clients to

data sources and also query results from data sources to clients. In addition, a data

model called the Mediated Data Model (MDM) has been developed as the backbone

of the integration system to generate a common data model used by the Me Dint

Mediator.

- 4 9

MeDlnt: Ar, A r,pr1>oct1 fo, the In t,;,ryo t ion of Do io t:iose Gr, cl L ei;:iccy Sys t e rw,

Client

MeDlnt Mediator

QTA

Define related objects

i Transform & Decompose query !
Define result template

MMD

RP

Register
data

sources

I DSMetaData !I OMMetaOata I AMMetaData

I CVMetaOata U TSMetaData i

RA

Present
the

integrated
result

CP

consolidate
results

CRA

Apply
result to

fit
template

RWrap

STP

QTP

DTP

OWrap

STP

QTP

OTP

LWrap

STP

OTP
DTP

Object-oriented
databa""s

------------- ·--------------------�

FIGURE 4.1 THEMED IN 1 ARCHITECTURE'

4.3.1 MeDlnt Components

The MeDlnt architecture is represented by four-tiers of components: the application

systems which interface to users, the mediator, wrappers and data sources

(Chirathamjaree & Mukviboonchai, 2002b; Mukviboonchai & Chirathamjaree,

2001a, 2001b). In addition, the Mediated Data Model (MDM), a data model designed

especially for the heterogeneous data integration framework, works along with the

Me DI n t Mediator and wrappers functioning as a central data model and working as

the backbone of the integration facilitating the Mediator and wrappers in

understanding each other.

4.3.1.1 The User Interface

To get information from multiple data sources, there are two alternatives for users to

issue queries to heterogeneous database systems. Firstly, users can use any query

- 50 -

1-31-08)
certified

,.

t
l

language to create the queries and the system provides translators to map from the

local query language to the query language commonly used in the system. Secondly,

a query language is provided for users to specify their queries. The latter option is

selected in this architecture because generally query languages are not capable of

utilising and specifying the heterogeneities between heterogeneous systems

(Papakonstantinou et al., 1995). Therefore, this approach also provides a data model

with a query language (see Chapter 5) which captures the heterogeneities for users so

that they can specify their own queries, including semantic contexts.

4.3.1.2 The MeDlnt Mediator

The MeDlnt Mediator provides middle-layer services, as an information integrator

does, between the application and wrappers. In g-:ncral, mediators are responc:ibL.:

for retrieving information from data sources, transforming received data into a

common representation, and integrating homogenised data (Wiederhold &

Genesereth, 1997). In this research, the Me DI nt Mediator has been designed to

include the following common characteristics of the integration processes:

• registering data sources information,

• defining associate objects and requesting object schemas from wrappers,

• decomposing and transforming a query to subqueries according to data sources,

• generating a result template,

• applying the multiple sets of results to a pre-defined template,

• consolidating the conflict-resolve sets of results, and

• displaying the integrated result to the user.

The components of the Me DI n t Mediator and their functions are described next.

Registering Processor (RP). Once a new data source is added to the Mediated Data

Integration system, it needs to be registered. This enables the integration system to

incorporate the essential information from each data source.

Query Transformation Agent (QTA). When the MeDlnt Mediator receives a

submitted query, QTA is responsible for defining query-associated objects and

requesting for object schema definitions which are in the Mediated Data Definition

- 5 l -

---··-----·----·-----··----·---·····-··-····-........................ ______ _ -......... .

Language (MDDL) format from wrappers. Furthermore, QTA transforms and

decomposes the submitted query to the Mediated Query Language (MQL) format

and sends a subquery to the wrapper of each source. QT A also creates a result

template from the attributes requested in the submitted query.

The Mediated MetaData (MMD). MMD is a repository collecting the information

necessary for the integration, for example, semantic information, data sources

definitions, and conversion functions, etc. This information is critical for resolving

both schematic and semantic conflicts. Many categories of MMD have been

developed: Data Source MetaData (DSMetaData), Object Mapping MetaData

(OMMetaData), Thesaurus MetaData (TSMetaData) and Conversion MetaData

(CVMetaData) (See Chapter 6 for more detailed information).

Conflict Resolution Agent (CRA). After the M e D l n t Mediator gets the query result

from the wrappers in the Mediated Data Representation Structure (MDRS) format,

CRA is responsible for applying each MDRS to fit the given template if they have

different structures and contexts. The pror-ess of applying MDRSs to fit the template
is one of the processes of indirect conflict resolution by resolving only the query

result, and not the data source schemas. This is the most significant aspect of the
architecture which can be described as data integration without schema integration.

Consolidation Processor (CP). CP integrates or consolidates the sets of MDRS
results which have already been fitted to the template. These MDRSs already have

the same structure or are structurally equivalent as all conflicts had been resolved

before this step.

Rendering Agent (RA). The RA is an interface automatically generating the

integrated conflict-resolved result of the query to the users.

The details of the Me D i n t Mediator are described in Chapter 6.

4.3.1.3 Wrappers

Wrappers are in the intermediate layer between the MeD ln t Mediator and data

sources. A wrapper is invoked when a data source in a difference data model is

- 5 2 -

MeD!n t : /\ ri A r:> pr -,.> c c ! , i o ,

added to the integration system. Wrappers mainly act as translators providing the

Me DI n t Mediator with information in the common data model used in the

integration system by dealing with the data model heterogeneities of different data

sources. The principle objective of wrappers is dealing with data model

heterogeneities including the different data definition languages and data

manipulation languages by mapping different data models to the Mediated Data

Model. Each M e D in t wrapper is composed of a Schema Translation Processor, a

Query Translation Processor and a Data Translation Processor.

The Schema Translation Processor (STP) is responsible for translating the data

definition of objects requested by the M e D l n t Mediator from the data definition

language of each source to the Mediated Data Definition Language (MDDL). It then

sends the object schemas in r. lDDL to the Mediator.

The Query Translation Processor (QTP) is responsible for translating Mediated

Query Language (MQL) subqueries into a specific query language which can be

executed in the database management system of each data source.

The Data Translation P!ocessoi: (DTP) gets a set of query results from each data

source and then translates the data contents t� the Mediated Data Representation

Structure (MDRS).

It can be noted that unshared characteristics are pushed to the wrappers to reduce the

amount of middleware modification when a data source is added, removed or

modified. The details of the M e D l n t wrappers have been provided in Chapter 7.

4.3.1.4 The Mediated Data Model

According to the aspect of model heterogeneities, the conventional data models are

not practical to represent and cover different characteristics of several data models or

to be a broker to negotiate their heterogeneities. Most conventional data models are

useful to describe the structure of data, but they are not suitable for describing the

semantics or the context of data. This research provides the Mediated Data Model

(MDM) which has been developed specifically for schematically and semantically

" 53 -

describing data models for heterogeneous system integration. The Mediated Data

Model consists of the following description languages.

• The Mediated Data Definition Language (MDDL),

• The Mediated Query Language (MQL), and

• The Mediated Data Representation Structure (MDRS).

Figure 4.2 depicts the mechanism of data model translation. A given type of data

model used for a data source will be translated by its associated wrappers (such as

RWrap for the relational data model) to be accommodated in MDM, which is the

common data model acknowledged by components in the MeDlnt Mediator. The

MeD lnt Mediator, therefore, does not have to deal with complications of different

data models. Thus, problems relating to the Data Model Heterogeneity can be

disposed of. Details of the Mediated Data Model are described in Chapter 5 .

4.4 MeD l nt Processes

The processes of the MeDint Architecture can be illustrated by the following

diagram (Figure 4.3).

- 5 4 ..

MeDlnt

Mediator

MOM

MOM

RWrap

.)

---\
I

I
system
Legacv

LWrap

�___,

EJEJ
EJ
RDB

EJEJ
0008

EJEJ
Legacy system

�------------------------_J

FIGURE 4.2 DATA MODEL TRANSLATION

MeDlnt: Ari A,:,prooc:11 to, the lnteorotk;n of Doic1t)(lse crnci Le9cc:y <;ysiE-rn,

Qu.ry

Registered OS

MDDLs

···-·--··--····--·-·--·--·---------·

I
.,..,...,, _ .. _______

I

: Transl�• Ob.I*«: i4 ----� , Schema to MDDL ,
, ____________________ ,

Subqu.ri.s

I------------------- I

I L�� �: Transl:Jte :
Specific queriu ,-: subquerles i4, ----�

i ____________________ J

Result Templ:1te

I...........................
I

• Tnnstorm to ' �-----�
Result$ MDRSs H MORS rl

�----� ••--••-•••••�----••w•I �--,---�

Set of results

II �di.War

11MMfrii .. J41'11N � ,niegr�•d r�

Wr:ippers

F1GURE4.3MED1NT PROCESSES

First, when a new data source is added to the integration system, an initialisation step

is needed. The data source has to be registered to MMD by RP. Data source

information, for example, assigned name, location, type, description, and constraints

relating to its structure and semantics must be collected into the Data Source

Metadata (DSMetaData), a category of MMD, as its schema knowledge to be

provided to other components in Me Dint when required.

Generally, when a user submits a query in MQL syntax to retrieve the information

they want from heterogeneous data sources, the query is submitted to the Me DI n t

Mediator instead of directly to the data sources. QTA then diagnoses the query,

- 55 -

-31-08)
certified

ob�t schemu

•

MeD!nt : J\ n A p pr () O C I, for t h e l n t ;; fyCJ t i on o f D n tot,c se c r, cJ t e ,y: c: y S y s t e m ,

defines the objects required, and sends a request to the STP, a component in

wrappers, to get the related object schema definitions. STPs translate disparate object

schemas which are in different data definition languages to MDDLs. From these

object MDDLs, QTA analyses again whether those gathered object schemas are

sufficient to transform the query. If not, QTA specifies further indirectly associated

objects from the relationships and subtypes, if any, of MDDLs of the direct objects.

Therefore, QTA has to repeat the process of getting MDDLs from STPs again until

there are enough object definitions for it to transform the requested query. The

submitted query is transformed and decomposed by QT A to MQL subqueries which

are submitted to QTPs. The QTP translates each MQL to a specific query language

which depends on what kind of query languages each database management system

can understand. QTA also prepares a template for the results after getting tl1e resul ts

from multiple data sources. This method does 1iot try to resolve conflicts directly

which would be more difficult and complicated.

After getting a response data back from data sources, the DTP, a component of a

wrapper, then translates the query results into MDRS. CRA resolves conflicts simply

by applying all MDRSs to fit into the structure of the predefined template so that

resultant MDRSs are structurally equivalent. CP then integrates the conflict-resolved

results which are in the same structure and have the same semantics. The RA finally

transforms the integrated result to users.

This architecture overcomes the weakness inherent in other approaches that require

the physical or logical integration of component schemas as mentioned in Chapter 2.

Only the query result from each source, according to the result template, will be

integrated instead. The template will be created from the submitted query. The

resultant data from each data source will be applied to fit to the template which is the

means by which the heterogeneities are resolved.

- 5 6

MeDln t : ,1\ n A �,Pl ')Clc: h for t he I n te9r ci i i o n ,:, f D o i c1 tJCJ se crnci l. eqo c: y S y s ' e rn ,;

Presentatim/
Integration layer

Resolution layer

Wrapper layer

Data source layer

Data Object layer

t';;'\, � � � Conflict-resolved (:.J Object � Wrapper Object � MDRS Object � �DRS Object

FIGURE 4.4 DATA LAYERS

An alternative view of the working of the M e D l n t archi tecture is illustrated in

Figure 4.4. Data representation is now described in terms of data layers and

encapsulation. The lowest layer is the data object layer which contains objects. File

or database management systems deal with their own objects in this layer. The .

requested objects are sent to the data source layer which presents wrapper obj.ects to

wrappers. These are encapsulated by wrappers which perform appropriate functions

to get query results in MDRS objects. CRA gets the MDRS objects from the wrapper

layer in order to resolve conflicts and sends RMDRS objects (conflict-resolved

MDRS) to the resolution layer. Finally, the presentation/integration layer integrates

the RMDSR objects to present the result of the query to users.

4.5 Summary

The requirements of heterogeneous data integration have been formulated and

derived from both the literature and the research questions. The mediation and

wrapping techniques are employed to satisfy these requirements. In this chapter, the

Mediated Data Integration (MeD l n t) architecture is presented. The M e D i n t

Mediator in collaboration with wrappers and the Mediated Data Model (MDM) have

been introduced to overcome the problems in dynamic integration systems and to

- 5 7 -

MeDlnt: Ar, A,:,pr,)OCI'

resolve the heterogeneity issue. The components of these three main components will

be described in details in chapter 5, 6 and 7.

- 58 -

MeDlnl: h n A ;>p r •) G C I ,

C H A PTER 5 - THE MEDIATED DATA

MODEL

Conventional data models have been designed concentrating on collecting and

manipulating data, but they are not practical for representing heterogeneities for the

integration purpose in that they are not capable of adequately brokering different

kinds of data models. Basically, the object-oriented data model best describes a real

world object, but it is still not suitable to be used as a common data model because it

is difficul t to incorporate semantic concepts (Conrad ct al . , 1 99 ')) . l\ fost conventional

data models are able to describe the structure of data, but are not rich enough to

express the meaning or context of the data. The integration of data sources when the

relevant databases have been designed dependently does not create heterogeneity

problems. However, when databases have been designed independently, there are

heterogeneity problems such as different terminology, data types, units of

measurement, domains, scopes, and so on. Heterogeneous data integration requires a

data model which is capable of describing data, schemas and contexts. This

complexity suggests the need for a new data model having characteristics appropriate

for supporting a mediated approach for the integration of databases and legacy

systems. To accommodate this need, a model called the Mediated Data Model

(MDM) which has been developed in this study specifically for describing and

representing heterogeneous data both schematically and semantically.

5. 1 The Design of the Mediated Data Model (MDM)

With a relational data model, a relation or a table representing an entity or a

relationship which users perceive can be described by a two-dimensional matrix

where rows represent tuples, and columns represent attributes, as shown in Figure

5. 1 .

- 59 -

MeDlnt· l\r, A;::,p'!ooc:I, fo, the lnt8f"J!'O!ion of Doic1t,ose crnc1 Le9c1c:y ':>yst,,rn,

athibute

FIGURE 5.1 A 2-0 RELATIONAL DATA MODEL

In general, a two-dimensional model is adequate to describe simple or atomic values

in a single database system or in dependently-designed databases without

heterogeneities. This is because they are normally designed according to the same

context. However, such a model is not capable of expressing a number of

independently-designed data sources meaningfully when interoperability is needed.

A tributes from different sources mav hav th same name but occ 1r i1 rliffi rent

contexts. For example, to represent an employee's salary quoted in Australian dollars

on yearly basis, in a single database would not require the context parameter since all

salary information within the same data source contains the same semantic context.

However, when multiple data sourc�s are designed independently, salary would

probably be quoted in different semantic contexts, i.e. different cuffencies or

different pay periods. Thus, the context of an attribute is critical when data

integration is needed and two-dimensional .data models would not be sufficient. This

leads to the need for a new data model with semantic enrichment. The Mediated Data

Model designed in this research provides a three-dimensional (3-D) approach (Figure

5.2) to denote semantic values by expressing those simple values meaningfully.

- 60

; 1------""""l--------f-------t-------,

attribute

FIGURE 5.2 THE 3-0 MEDIATED SEMANTIC DATA MODEL

For example, to explain an employee object type by three-dimensional semantic

MDM; the first dimension, tuples, are object instances of the employee object type;

the second dimension, attributes, are characteristics of the employee object type such

as id, name, address, salary; and the extended.third dimension, contexts, are

characteristics of each attribute sue� as the salary attribute which is in Australian

dollars and on a yearly basis. Its structure can be denoted by:

Salary '(value, currency, period)

The first element is the value of the salary attribute; the second and third elements

are semantic contexts of the salary attribute. An attribute value with its semantic

values would be:

Salary (15000, 'AUD', 'yearly')

This value can describe the amount of 15,000 AUD salary on a yearly basis. Thus,

the general syntax of an object instance can be represented in depth as:

Tuplei (Attribute1 (Value, Context1 , Context2 , ... , Context
j, ... ,

Contextm l, Attribute2 (•••), ••• , Attributek (...), ... , Attribute0 (•••))

For example,

Employee (Id (value), Name (value), ·-, Salary (value, currency,
period), ...)

An object instance would be:

Employee 1 (Id ('0995550'), Name ('Mark Johnson'), ... , Salary (15000,
'AUD', 'yearly'), ...)

- 6 l -

The formal definition of MDM and its components (described later in this chapter) is

defined syntactically in a syntactic metalanguage notation, the Extended Backus

Naur Form (EBNF) (ISO/IEC, 1 996; Scowen, 1 998). EBNF's symbols are given in

Appendix C.

The Mediated Data Model can be implemented by any language. The eXtensible

Markup Language (XML), which is platform independent, has been selected to

implement MDM. XML is based on an object-oriented model which is best for

describing the schema and the semantics of objects in the real-world. XML also has

flexible self-describing tags which are readable and easy to understand (Goldfarb &

Prescod, 2000; Morrison et al. , 2000). Moreover, XML is increasingly used as an

exchange format (Conrad et al., 1999).

5.2 The Mediated Data Model Components

The Mediated Data Model has been developed as a schematically and semantically

common data model which can be used to represent heterogeneous data models in

the integration ofheterogenous database systems (Chirathamjaree & Mukviboonchai,

2002a). With regard to its structural and manipulative parts, MDM consists of the

Mediated Data Definition Language (MDDL) and the Mediated Data Representation

Structure (MDRS) as the structural part, and the Mediated Query Language (MQL)

as the manipulative part as shown in Figure 5.3. MDM reserved words are defined in

Appendix D.

- 6 2

F IGURE 5 .3 COMPONENTS OF THE MEDIATED DATA MODEL

As shown in Figure 5 . 3 , MDM provides a common platform for translating

relational, object, and other data definition languages into MDDL. This provides a

common language for communication among components of the MeD ln t Mediator

and wrappers. By contrast, the submitted MQL query will be translated to the query

languages of each data source to let its database management system perform its own

query operation. Finally, the results from different data models will be applied to the

pre-defined template MDRS. All of these translation tasks between MDM and other

data models are performed by wrappers.

5.2.1 The Mediated Data Definition Language (MDDL)

Because each data source might be in a different data model, the MeD ln t Mediator

needs to be able to recognise their schemas. The Mediated Data Definition Language

(MDDL) is a flexibly interchangeable definition language which can capture data

definitions defined disparately in different data models. STPs (see Chapter 7) in

wrappers are responsible for transforming data source definitions in any other

specification languages into MDDL, so that all components in MeD ln t can

understand schema definitions unambiguously.

- 6 3 -

I SQL
I
1

1

1

Result.
I RDBJ'vfSi LJ

MDDL

MQL

MDRS

MDM

Resulti
'------'!

Leoacv

. _____ syst�ms*j

........................ '"'l

OQL

Result,
ODBtvfS

* No .chema definition an<I query language. �ee drnptu ., for <letaifa

c S y s r e ffi :'>

The syntax of the MDDL definition i n EBNF notation is composed of the following

rules:

MDDL rule

object_rule

ob:ject_identifier

subtype_rule

attribute n1le

attribute defined list

dat:?c_t.ype

cor:ttext :nil.es

· context identifier

· contezt __ type _ set

context_type

relationship_rule

relationship_list

relat.ionship_identifier

inverse_relat:i.onship

operation rule

operation_list

argument_list

argument

retu:med�type

object_rule, { object_rule } ;

object_identifier, '=' , ' { ' , [subtype_rule] ,

[attribute_ rule J , [relationship_ rn.le J ,

[operation_rule] , [key_rule] ,

letter, { letter I decimal digit } ;

' } , ,

'subtype ' , ' ' , object:_identif:i.er, { ' '

ob:ject_:i.dent: :Lfier} , " ; ";

'attribute ' , attribute ___ defined ___ list.,

{ attribute __ definied list } ,

attribut.e_identifier, data_type,

[context_rules] ;

, . , .

, . , .
I I

' ::_nte9er' I 'cha.racter' I 'c:ate '

'string' I ,1ser _defined;

'floa.t' I

' (' , context identi:f:::i.er, c:ontext __ type set,

{ ' , f I conlext __ i.dentifier, cont.ext type_ set) ,

, , , .
I ,

letter, { letter i ded.mal digit) ;

' { ' , contezt __ type, { ' , ' , cont.ezt ____ type t , ' } ' ;

letter l decirral digit , { letter I decirnal

digit } ;

'relationship ' relationship_list, { ' , ' ,

relationship_list } ,

relationship_identifier,

, . ,
I

' , [data_type] ,

' ' , inverse_relaU.onsh:i.p;

letter, { letter I decimal di.qi t } ;

object-':i.dent:i.fier, \ I
• I

relationship ____ identifier;

'operation ' , operation_ list, { ' , ' ,

operation_list } , , . , .
I I

operation_identifier, ' (' ,

{ argcJIT€nt_list } , ') ' ,

returned_type;

{ argument } ;

, . , . ,

letter, { letter I decimal diqit } ;

d.a ta �type;

- 6 4 -

key_rule 'key ' , attribute_identifier, { '+' ,

For example:

Lecturer
subtype

Staf f ;
relationship

Lecture
key

id;

attribute_identifier } ,

s et (Cour s e)

, . , .
I f

Course . LecturedBy;

From MDDL above, a real-world object type, Lecturer, is a subtype of Staff class.

This means that the properties of Lecturer are inherited from Staff. In addition, it

associates to the Course object type; a lecturer can lecture a number of units.

Course.LecturedBy is the inverse relationship of Lecturer.Lecture. Id is its primary

key.

In summary, MDDL can carry out the following functions:

• object type identification,

• inheritance information identification if the object type is a subtype of any other

object type,

• attribute declaration which describes the properties of the object type:

• context declaration which describes the context of an attribute,

• relationship information identification if an object associates to others.

A relationship is the logical binary connection between two objects including one

to one, one to many, many to many.

• operation information identification if the object has methods or behaviours, and

• key information which is the primary key to identify object instance.

- 65 -

MeDlnt: Ar, A;:,pro.c1ch fo: the lrdBfJrotion of Dotcit>ose on(J l.e9ocy 'Sysiern,

Ji MDDL.Kml - Notepad .• , F1Wt

/

sDB' >
erson >

ttri ute>
<id id•'000100010001" datatype•'string'/>
<naJte id•'000100010002' datatype•'user_defined">

<fna•e id•'000100010003" datatype•'string"/>
<lna•e id•'000100010004" datatype•'string'/>

(/na•e>
<address id•'000100010005" datatype•'string"/>
<tel_no id•'000100010006" datatype•'string'/>
<sex id•"000100010007" datatype•"char'/>
<dob id•'000100010008" datatype•'date'/>

<e a ions 1p>
<borrow id•"000100010009" datat.ype•"Book">

<inverse>Book.Loanby</inverse>
</borrow>

</Relationshi >
pera ion

<age id•"000100010010'>
<datatype>integer</datatype>

</age�

<ObjectType id•'000100020000' naJ!le= "Staff">
<Sub ype>Person</Subtype>
<Attribute>

<salary id="000100020001" !dat:i.t F''"•"flo. t" period="vearlv"
</Attribute>
<Key>Person.id</Key>

</Object Type>
<Ob'ectT e id = "000100030000" name= "lecturer">

<Subtype>Staff</Subtype>
< e a ions 1p>

<lecture id•"000100030001' datatype•'Course">
<inverse>Course.Lecturec!By</inverse>

</lecture>
</Re!a t ionshi >
<Kev>Person.1d</Ke >

< Ject ype>
(/DataSource>

FIGURE 5.4 AN MDDL IMPLEMENTATION EXAMPLE

In terms of implementation, the XML reviewed in Chapter 2, which is capable of

serving MDDL characteristics, was chosen as the implementation tool. Figure 5.4

shows an example of using XML to represent MDDL. An XML document with a

DataSource root can be applied to contain an MDDL _ rule or the schemas in a database.

The XML attributes, id and name, identify the data source object. The root element

<DataSource></DataSource> consists of a number of nested elements

<ObjectType></ObjectType> describing object types contained in the data source.

Each has its own id and name. <Subtype>, <Attribute>, <Relationship>, <Key> and

<Operation> are child elements of each <ObjectType>. Each <Attributes>,

<Relationship> and <Operation> has its own id and name. <Subtype> and <Key>

refer to other objects so they do not have their own object ids. XML attributes -

datatype =''float" period= "yearly" currency= "USD " - can be employed to represent

data types and the semantic contexts of each Attribute.

- 66 -

-31-08)

certified

Me DI nt: J\ :\ pr:>c c I, fo, th,:-- ! n i ,c,;yn'

5.2.2 The Mediated Query Language (MQL)

The general query languages used in database management systems are practical for

manipulating a single database system, but not heterogeneous databases which

consist of a number of different data models. Furthermore, general query languages

are not rich enough to contain or be able to specify the contexts in the query

statements. If data in multiple data sources are represented in different contexts,

users need to specify the contexts of the attributes on the query in both the selection

and the condition parts to ensure the correct query result. The problem of different

semantic contexts in heterogeneous data sources has resulted in the need to

decompose the query and create subqueries for those sources with different contexts.

Thus, the central query language is required to take this into account. The Mediated

Query Languag..: (MQL) is a query language d,..::i;;,ncd especially for this purpc,s� It

is generated by QTA (see Chapter 6) for three significant purposes: as a semantic

query language for users to specify their queries, as a query language used when

decomposing the submitted query into subqueries to distribute to associated

wrappers, and as the central query language being understood by all wrappers. MQL

is an extended version of SQL which is able to capture semantic contexts. Users can

identify within the select_ clause which conte�t of an attribute they want on the result

of the query even when the data are stored in different contexts in component data

sources. Moreover, they can also specify the condition of the query in the

condition_clause in the appropriate context required.

The syntax ofMQL in EBNF notation is:

t1;2L_rule

select clause

attribute list

context list

from clause

in clause

Select_clause, Fran_clause, In_clause,

[Condition_clause], ';';

'SELECT', '', attribute_list, {attribute_list};

object_identifier, '.', attribute_identifier,

{ context ___ list};

context __ identifier, '=' , context_ type;

'FRCM', object_identifier,

{object_identifier);

' ,

, ,

'IN', datasource_identifier,

{datasource_identifier};

' , , ,

- 67 -

Datasource identifier

condition clause

condition list

condition n.!le

left condition rule

comparison_operator

right ___ condi tion __ rule

literal

boolear1_operator

letter I decimal digit, { letter I decimal digit } ;

'CONDITION' , condition_list;

condition_�J.le, {boolean_operator, condition_rule } ;

left_condition_n.!le, carparison_operator,

right_condition_rule;

attribute_list ;

'""" I '>' I '<' I '>=' I '<=' I '<>' ;

attribute __ list I literal;

letter I decimal digit , { letter decimal digit } ;

'A.'\JD' I 'OR' ;

The following is an example of MQL.

Select Staff . id , Staff . salary (currency="AUD" , period="yearly")
From Staff
In DSl , DS2
Condition S t � f f . � � 1 0 ry (currency="AUD" , r � · 1 - " v0 � r l y") < 5 0 0 0 0 ;

It can be explained from this MQL that the user wants to get an id and a yearly-based

salary in Australian dollars of staff who have a salary of less than 50,000 Australian

dollars from data sources DSJ and DS2. MQL allows users to specify the semantic

context of each attribute whose value has been stored in data sources with different

contexts.

5.2.3 The Mediated Data Representation Structure (MDRS)

It has been found that heterogeneities also arise from the sets of query results

returned from multiple data sources which are in different representations (i.e., with

either schema or semantic contexts). Resultant data cannot be integrated until the

Schematic and Semantic Heterogeneities have been resolved. The process of directly

resolving these heterogeneities is very complicated. The Mediated Data

Representation Structure (MDRS) has thus been introduced to avoid the foregoing

complexities. MDRS which incorporates other components as a common data

representation in MDM homogenises these different representations simply, as the

practically defined-structure representing the structure of data contents with their

semantic contexts, which are different in the component data sources. The DTP, a

component in wrappers, takes care of translating data contents from data sources into

MDRS so that the MeDln t components are able to understand it, and CRA then

- 68 -

MeDlnf: .l\n A;::,prnoc:t, fo1 the lnt.::ryaiion of Da!obose crn<J l.e9oc:y <:;ysterns

applies the sets of MDRS results which have different schemas and semantics to

conform to the predefined template, which is also in the MDRS form.

Another significant reason why MDRS has to be implemented is that the result of the

query has to be in the user-requested format. MDRS is applied as a predefined

reference for other components that deal with conversions to know what the context

of that attribute should be and so that the result can be provided according to the

target context.

The specification ofMDRS in EBNF notation is:

MDRS result set

MDRS instance

attribute context value

attritJUte value

MDRS_template

attribute_template

' {' , {MDRS __ instance}, '} ' ;

' (' , attribute_ context __ _value, {' I , ,

attribute contc:.xt- valu�), ')' ;

object_identifier, '.', attribute_identifier,

'(', attribute_value , [context_value}, ')';

letter I decimal digit, {letter I decimal

digit};

. '(', attribute_template, {attribute_terrplace},

') , ;

o bJect_identifier, ' ,
• I attribute_ident�fier,

'(value, ', {context_type}, ')';

The following is the query result that has already been translated into MDRS. It

represents staff id and salary on a yearly-basis in US dollars.

(Staff.id, Staff.salary (currenc y="USD", perio d="yearly))

{ ("1542545", 15200.00 (currency="USD", period="yearly)),
("1478523", 25000.00 (currency="USD", period="yearly))}

>25000.00</salary>

Attrib\.te Context

FIGURE 5.5 AN MDRS IMPLEMENTATION EXAMPLE

- 69 -

-31-08)

certified

M0Dlnt: /\ /\;:,pri)OC!,

In terms of implementation, MDRS can also be represented by XML which is

flexible in exchanging information. From Figure 5.5 above, the root element -

<MDRS><IMDRS> - contains an MDRS_result_set; each element tag-

<Result> </Result> - inside represents each MDRS _ instance which consists of elements

-<id><lid>, <salary></salary> - represents attribute_value of an MDRS_instance.

The last important part, the XML attributes currency=" USD" and period= "yearly"

within an attribute_ value tag represent attribute contexts.

Through the MDDL, MQL and MDRS specifications, MDM is not only applicable

for solving the model heterogeneities of component data sources, but it is also

capable of solving Schematic and Semantic Heterogeneities.

5.3 Summary

One of the critical problems in heterogeneous data integration is dealing with

different data models of data sources. This drastically increases complexity

especially when a data integration system has to solve the Schematic and Semantic

Heterogeneities simultaneously. MeDlnt provides the Mediated Data Model (MDM)

as an interchangeable data model used in the architecture to overcome the Data:

Model Heterogeneity issue. Moreover, MDM is capable of not only representing

component schemas, but is also sufficiently rich in describing semantic contexts. To

describe schemas and semantics, the Mediated Data Definition Language (MDDL),

the Mediated Query Language (MQL) and the Mediated Data Representation

Structure (MDRS) are provided as the media among different sources to give data

definition and to manipulate data meaningfully. They provide semantic knowledge

for the Me DI n t Mediator during the integration process.

- 70 -

CHA PTER 6 - T HE MeD l nt MEDIATOR

In this study, a heterogeneous database integration model has been proposed by

incorporating a mediator and wrappers as intermediate layers between the application

and data sources. The mediator, M e D l nt , serves as an information integrator,

between the application and wrappers. Generally, mediators are responsible for

retrieving information from data sources, for transforming received data into a
common representation, and for integrating the homogenised data (Wiederhold &

Genesereth, 1 997). In this model , the Me D I n t Mediator acts as an interchangeable

agent and facilitator for wrappers and c l ients. It consists of six cu i 11po1 1cnts working

together transparently to facilitate clients and data sources to achieve the following

tasks:

• transforming and decomposing the submitted query into suhqueries and then

distribute them to associated wrappers;

• providing both schematic and semantic knowledge which is critical for query

transformation and conflict resolutions;

• resolving conflicts; and

• consolidating query results.

All the functions above are served by six components (Figure 6. 1), which are the

Registering Processor (RP), the Query Transformation Agent (QTA), the Mediated
MetaData (MMD), the Conflict Resolution Agent (CRA), the Consolidation

Processor (CP) and the Rendering Agent (RA) whose functions will be described in

this chapter.

- 7 l -

MeDln t : A A r, pr ,> u c l : ro , t , 1 i r' t , > ;Fu t i ,, , n ,:, f C ,1 t c1 t>u , e u r , ci L C CJ C , : y \ y :; ; ,,, 1 , , s

FIGURE 6, 1 Six COl,1F'u,E,H::i IN Tf lE M E D I N T MEDIA TOR

6. 1 Registering Processor (RP)

Because the required knowledge, such as different terminologies and different

schema designs, in heterogeneous integration systems needs to be determined by a

human, a partial automation methodology has been applied in the M e Dl n t

architecture. The processes of schema and terminology determination will be

specified manually in the initial phase. Then, the remaining of the integration process

is automatic.

Data sources must be initially registered to the Mediated MetaData (MMD) when a

new data source is added to the integration system. Registering Processor is

responsible for capturing the principal data source information to be stored in MMD

as knowledge for the integration.

The essential data source information needs to be registered to MMD, for example,

data source assigned names, locations, data models, descriptions, and constraints.

Moreover, in terms of terminology, all entities in each data source need to be mapped

to global objects so that other components in M e D in t can perceive them. The object

- 7 2

lnltlal
lnfarmatlon

Formatlec
lntegral!!d
RMDRSs

RP

RA

li
lnltlal

nformatlon

Integrated
RMDRSs

MMD

CP

lMQL

subquery
QTA

MDDLs

r data source
Information

1
1
Semantic

nfarmatlon

RMDRSs MDRSs
I+---- CRA

mapping information is also registered in MMD, and object unique ids must also be

assigned to the global objects.

The significant objectives ofregistering new data sources are:

• To assign a unique name for each data source to avoid ambiguity, for example, if

data sources in different systems have the same name;

• To identify the physical location of each data source, for example, in the form of

an IP address or URL of the data source;

• To incorporate the definition of each data source;

• To capture the semantic information of each data source if there are any critically

constraints to be considered. These semantic contexts must be defined to provide

the context of the attributes, which might have different contexts in different

sources; and

• To collect object information for mapping between local and global objects, so

that the global object can be referred to in the query and can be recognised by

M e D l n t components.

As mentioned previously, data source and object mapping information registered in

this process will be stored in MMD which will be discussed later in this chapter. Any

programming or descriptive languages can be applied to serve MMD in terms of

implementation. The eXtensible Markup Language (XML) was chosen in this

research to represent MMD because of its self-describing tags and platform

independent characteristics (Goldfarb & Prescod, 2000; Morrison et al., 2000). In

addition, XML conforms to the MDM implementation which also uses XML.

Examples of information registered in this initial phase are shown in the section on

MMD.

6.2 Query Transformation Agent (QTA)

When the M e D l n t Mediator gets a user-requested query from a client, the Query

Transformation Agent (QTA) cannot decompose the query at this point in time

because of Schematic and Semantic Heterogeneities. Each required decomposed

subquery should contain the same schema and semantic context as its related data

- 7 3 ..

MeDlnt: An Ayprr::>c1c:l1 to, th& lr.t,::,g,·ati,)n ,.,f Dotobose crnc1 Le,JCJc:y ':iys'er n

source. To decompose the query, QTA does not have enough information about

component data source schemas relating to the query nor about the different

terminologies used in each source. QT A thus needs to get pre-registered data source

information and object mapping information from MMD, so that it can determine

query-associated objects. QTA can send a request for these query-associated object

schema definitions to the STPs of the associated wrappers. However, these directly

associated object schema definitions may be insufficient to decompose the query

because the objects may relate to other objects or may be a specialisation of others.

Therefore, from these directly-associated object schema definitions, QTA defines

further transitively-associated objects from subtypes and from the relationships of

directly-associated objects. When getting enough schema information which has

already been translated by STPs to MDDL an \\ 1ic 1 can be utilised by the Me')lnt

components, QTA then transforms and decomposes the submitted query into n f\l()L

subqueries (n depends on how many data sources the query originally related to), and

submits these subqueries to the assorted wrappers. Furthermore, to facilitate the

conflict resolution process, QT A creates an MDRS result template from the object,

attribute and context information specified in the �ubmitted query and homogenises

query results to the template .. The process of QTA is shown below (Figure 6.2).

User �
q
�"·��-+-��---·

MMD

Create

template

FIGURE 6.2 QTA PROCESSES

- 7 4 -

request

STP
MDDL�-�

-31-08)

certified

[J

QTP

MeDlnt; /\ A;>pr1:>cc ! 1 f"o1 th�:-· ! n t<::'Di n ti n ,_:if [Joto t:,u:::e ond L eJocy Sys tf·rli)

Because this architecture was designed to suit dynamic integration systems, no

global schema has been created, so schema evolution is not an obstacle. The

integration system fetches the schema definitions once a query has been issued. QT A

requests only the necessary query-related object schema definition to transform and

decompose the query.

To simplify the above QTA functions, its processes can be broken down into three

parts: fetching object schema definitions, decomposing the query, and creating the

MDRS template.

6.2.1 Fetching Object Schema Definition Process

Firstly, after reccivi11g a user-requested query Cro111 :; ,; ! irnL ()Ti\ has to fetch object

schema definitions from query-associated data sources. To achieve this, QTA

analyses which objects in which data sources are required in order to get the

necessary data source information from MMD to identify query-required associated

objects. Then, QT A requests the STPs for the object schema definitions. Each STP

passes this request to its data so�ce, receives the object schema definitions, and

translates them to MDDLs, because they are in different data definition languages.

They are then returned to QT A. After QT A has received MDDLs from the STPs, it

analyses the components of the object schemas and determines further transitively

associated objects, which are also necessary in transforming the query. These may

associate to, or be a specialisation of, the direct-associated objects. This means that

QTA has to examine the directly-associated object MDDLs to find out:

• whether each object is a subtype of others; and

• whether there are any relationships among those objects.

If the examination falls into any of the criteria above, QTA has to request STPs for

further schema definition. If the object is a subtype of any other objects, the complete

object schema definitions include not only the requested object, but its superset

schema definition. For example,

Interface Person {
attribute
attribute
attribute

string id;
struct<string fname, string lname>
string address;

name;

- 7 5 -

attribute string
attribute string
attribute date
relationship Book

inverse Book::loanby}

Interface Staff:Person {
attribute float

Interface Lecturer:Staff (key id) {

tel_no;
sex;
dob;
borrow

salary;}

relationship set<Unit> lecture
inverse Unit:: lecturedby;}

Lecturer is a subtype of Staff and Staff is a subtype of Person, if the Lecturer

information is specified in the user-requested query, not only the directly-associated

object schema definition (Lecturer) is required, but also Staff and Person are required

to assist in decomposing the query. This is because the characteristics of Lecturer

were defined by its superset attributes and relationships in addition to its own. For

c\�unplc, i f a query rcq uc , lo l hc na ! l les and salary o r l c c , '. 1 , -.: r. ,: , : ; , 1n 1 , ' i s de fined i n the

Person class, and salary is defined in the Staff class, then Person and Staff schema

definitions are both required in conjunction with the Lecturer schema definition.

For the second criterion above, if any two or more objects requested by the query are

associated with each other, the relationship definition is also necessary for the query.

If the requested query specifies the names of students enrolled in unit 'CSP 1 1 43 ' ,

QTA recognised that, in addition to the Student and Unit schema definitions, the

relationship between them, Enro!Rec, is required as well.

CREATE TABLE Student
(id CHAR(7) NOT NULL,

fname CHAR(30) NOT NULL,
lname CHAR(30) NOT NULL,
address CHAR(50),
tel_no CHAR(1 0),
sex CHAR(1 },
dob DATE,
level CHAR(1) NOT NULL,
PRIMARY KEY (id));

CREATE TABLE Unit
(id CHAR(7) NOT NULL,

name CHAR(30) NOT NULL,
PRIMARY KEY (id)};

CREATE TABLE EnrolRec
(student_id CHAR(7) NOT NULL,

unit_id CHAR(7) NOT NULL,
PRIMARY KEY (student_id, unit_id)
FOREIGN KEY (id) REFERENCES Student,
FOREIGN KEY (id) REFERENCES Unit);

- 7 6 -

MeD l n t : h r , A 1) 1 1) 0 C l 1

From the QTA analysis process described above, QTA can determine transitively

associated objects in addition to directly-associated objects from the two criteria of

whether it is a specialisation of any particular type or whether there are any

relationships between them. This object schema definition fetching process has to be

performed repeatedly until QTA gets enough object schema definitions from the

STPs for the query.

The main reason why this architecture was not designed to get all schema definitions

from all connected data sources at the beginning of the request, but firstly diagnosing

the query and determining which object schema definitions are required, and

repeatedly getting only the query-associated object schema definitions, is that by

doing so it is more efficient in terms of query performance and resource utilisation,

cspcci:.il ly when there are a few r..: , ct lcd obj ects in each data S U ci l � ..: , c1 .i li 1 1g to the

requested query. This means QTA does not have to get all component schema

definitions which may not be necessary for the query, but, instead, QTA can capture

only few associated object schema definitions.

In the FetchDef(D, 0) algorithm below, while D and O are arrays of the data source

and the object identifications specified in from_ clause and In __ clause (see also MQL

in Chapter 5) of B, the requested query presents the process of fetching associated

objects.

Process FetchDef(D, 0);

{Fetch object schema definitions from multiple data sources.}

Type Sourcelnfo = Record of

DSname : DataSourceName;

DTModel : DataModelType;

Oname : ObjectName;

End Record;

MDDL_Str = MDDL_rule (see also Chapter 5)

Var DataSource : DataSourceName;

Object

DSinfo

i, j

MDDL

: ObjectName;

: Array of Sourcelnfo;

: Integer;

: MDDL_Str;

- 7 7 -

MeDln t : A r , J\ r ;

Function GetSchDef(DSname, DTModel, Oname);

{Get object schema definitions in MDDL syntax from wrappers.}

Begin { GetSchDef }

Case DSinfo.DTModel of

'Relational' : MDDL[Oname) :=RschmTrans(DSinfo.DSname, DSinfo.Oname);

{see also STP in Chapter 7.}

'Object' : MDDL[Oname) :=OschmTrans(DSinfo.DSname, DSinfo.Oname);

{see also STP in Chapter 7.}

End Case;

End { GetSchDef };

Begin { FetchDef }

{Check data source validity and get essential information for query decomposition and
transformation.}

Search for D[i] in DSMetaData;

If found() then Begin

Get SourceName to DSinfo.DSname;

Get Type to DSinfo.DTModel;

End;

Else retu!"n error message that such data source has not been registered:

{Check object validity and get object mapping information.}

For all OLi] in From_clause

Search for OLi] in OMMetaData;

If found() then

Get SourceObject to DSinfo.OnameLi] for each DSinfo.DSname;

Else DSinfo.OnameLi]:= OLiJ;

{Get directly-associated object schema definition from wrappers.}

For all DSlnfo.OnameLiJ of each DSinfo.DSname;

GetSchDef(DSinfo.DSname, DSinfo.DTModel, DSinfo.OnameLi));

{Get transitively-associated object schema definition from wrappers: specialization.}

For each MDDL[a)

If it is a subtype of others Then Begin

DSinfo.OnameLi] := MDDL(a) .subtype;

GetSchDef(DSlnfo. DSname, DSlnfo. DTModel, DSlnfo. OnameLi]);

End;

- 78 -

{Get transitively-associated object schema definition from wrappers: association.}

For each pair of MDDL[a), MDDL[l3)

If they are related to each other Then

DSinfo.Onameu):= MDDL[a) .relationship;

GetSchDef(DSinfo.DSname, DSinfo.DTModel, DSinfo.Onameu));

End { FetchDef }.

6.2.2 Decomposing and Transforming the User-requested Query to the

Mediated Query Language Process

When QTA gets enough object schema definitions from STPs in MDDL syntax

which can be utilised by all components in the MeD ln t Mediator, QTA can then

translate and decompose the user-requested query to MQL subqueries which
conform to the schemas of each source. These ;\ TQL subqueries wi l l be submit ted to

related wrappers to allow each wrapper to translate them into a speci fic query

language that can be processed by the query engine in each source.

The processes of query transformation and decomposition begin with replacing

global objects in the requested query with the local mapping objects (from

OMMetaData) of each source first, and then replacing global attributes with the local

attributes (from MDDL of each object, AMMetaData, and TSMetaData). These

subqueries are generated in the MQL syntax and submitted to the corresponding

wrappers.

In addition, Semantic Heterogeneities have to be considered in this step when the
semantic contexts of an attribute value specified in the condition_ clause of the query

are different from the semantic contexts of the same attribute in component data

sources. QTA has to convert the different context values transparently to users, so

each subquery sent to the associated wrapper has the same context with the target

data source and the wrapper does not have to deal with the context heterogeneity.

Note that MQL subqueries sent to wrappers have no semantic contexts attached.

Qtransform(A� D, 0, <;) is the process of decomposing and transforming the user

requested query to MQL subqueries. A·, D, 0, and <; are arrays of attributes, data

- 7 9 -

M e D l n t : t\ r , A r , p , 1> o c l ' f o r ; ,1 ,': l n t , ;- '.:) , c: t i <, n ,:; : U o t u u u \ e u r · ci L c ,i c c y , y :; t 0 n, ,

sources, objects, and conditions specified in select_ clause, from_ clause, In_ clause,

and condition_ clause of a user-requested query.

Process QTransform(A, E>, 0, <;);

{Decompose and transform the user-requested query to MQL subqueries.}

Type ct>_ Rec : Record of

Projection :

Object

DS

Selection

Join

Attribute context

Var ct>

i, j , a, 13, m

fr contex t , ,n \2(l l': �t.!Xt

Array of AttrRec;

Array of ObjectName;

Array of DataSourceName;

Array of ConditionRec;

Array of RelRec;

String;

: ct>_Rec;

: integer;

: Attribute _ _ con text;

Function GenSubQ(DS);

{Generate a subquery,}

Begin { GenSubQ }

ct>.Projection:= A;

ct>.Object:= O;

ct>.DS:= DS;

ct>. Selection:= <;;

For each ct>. Object, ct>.Projection, ct>. Selection

Search for matching objects and attributes in OMMetaData, AMMetaData, and

TSMetaData;

Replace ct> for all matching objects and attributes;

End { GenSubQ };

Function CreateJoin(cf>.Object[a], ct>.Object[(3]) ;

{Create a relationship condition.}

Begin { CreateJoin }

For each pair of ct>.Object[a] & ct>.Object[13)

ct>.Join[m):= ct>.Object[a] .ref_key, "=",ct>.Object[(3] .ref_key;

End { CreateJoin };

Function ConvF(attr_val, fr_context, to_context) ;

{Convert different semantics.}

Begin { ConvF }

Call the related conversion function in CVMetaData

- 8 0

MeDlnt : /> r : A ,> P f '.>Cl c l : : u , t ,1 l n i '" Ll ' G t i s:, n ,.:, f U o 1 o t, u , e u r: ci L e <J c c S y ,; t c· n , ,

If fr_context = default then

ConvF := attri_val, CVoperator, CVfactor;

Else if to_context = default then

ConvF := attri_val, CVreverse, CVfactor;

Else Error Message 'CVMetaData needs to be maintained."

End { ConvF };

Begin { QTransform }

{Generate subqueries for all sources indicated in the user-requested query (8).}

For all E>[i]

GenSubQ(E>[i]);

{Create relationship conditions if two objects have association.}

IF more than one object stated in from_clause Then

CrcatJoin (ct> . Objccl [' · : , ,:,. 01J icct [f'I]) :

{Convert attribute values i f semantic contexts are different.}

For each attribute with context specified;

Check the constraint information in DSMataData

If any attributes have contexts different from specified in the query

attri_ val : = ConvF(attri_ val, fr_context, to __ context);

End (QTransform }.

The following is an example of a user query to DSJ and DS2 data sources. Users

defined Staff.salary in Australian dollars and on yearly basis.

Select

From

In

Condition

Staff. id, Staff.salary(currency="AUD", period="yearly")
Staff
DS1 , DS2
Staff.salary(currency="AUD", period="yearly") < 50000;

After the query decomposition and transformation process, two subqueries are

generated. The first subquery is:

SELECT

FROM

IN

CONDITION

Staff.id, Staff.salary(currency="USD", period="yearly")
Staff
DS2

Staff.salary(currency="USD", period="yearly") < 25500;

Due to salary in DS2 is based on US dollars (Appendix J), the conversion is required

to convert "AUD " quoted in the user query to "USD ". As well as the second

subquery to DSJ, Staff.salary has to be converted to "monthly ".

- 8 1 ·-

SELECT
FROM

Staff. id, Staff.salary(currency="AUD", period="monthly")
Staff
DS1 IN

CONDITION Staff.salary(currency="AUD", period="monthly") < 41 66.67;

6.2.3 Creating a Pre-defined Template Process

From a user-requested query, it has been specified which attributes of an object users

want to be shown in the result. QTA is responsible for creating an MDRS template as

a basis for incorporating results from multiple data sources to this template. This

MDRS template represents the semantic context as predefined references for other

components that deals with conversion to determine which contexts of an attribute

should be presented to users, so that the component data sources set it as the target
cont,-:-,t to produce the final query ri:sn l t . Without a predefined tcmpL: ' ,' . rc?sults from

multiple data sources with both d i fferen t s t ructures and semant i c conL'··. : s \\ i l l be

more complicated to resolve straight away. Thus, the template has to be set in prior

as the target that all data have to fill in suggestively.

Temp!Create(A), is the process of the predefined template creation, while A is an

array of attributes specified in select_ clause.

· Process TemplCreate(A.);

{Create a pre-defined MDRS template.}

Type context_rec = Record of

name : Context_Name;

value : Context_Value;

EndRecord;

Project_Rec = Record of

attribute

context

EndRecord;

Attribu te_Name;

Array of context_rec;

Var Projection : Array of Project_Rec;

i, j : Integer;

Begin { TemplCreate }

For each attribute A.(i] ;

Projection[i) .attribute:= A.(i];

- 82 -

MeDlnt: .l\n Approoct1 tor the lnte9rciiion of Dotot.,ase or,ct l.egocy System,

For each context Li] of attribute A[i]

Projection[i].contextu].name:= A[i].contextLJ].name;

Projection[i].contextLi].value:= A[i].contextLi].value;

End { TemplCreate }.

For example, the query is

SELECT Lecturer.name, Lecturer.salary (currency="AUD", period="Monthly").

QTA prepares a pre-defined template that is:

(Lecture.name, Lecture.salary (currency="AUD", period="Monthly"))

The Lecturer.salary attribute and its contexts could be presented in the following 3-D

MDM concept model:

FIGURE 6.3 A 3-0 MEDIATED DATA MODEL REPRESENTING MORS TEMPLATE

From the above figure (Figure 6.3), the pre-defined template of salary has been

created. It is represented by a three-dimension MDM concept model with its

underlying semantic context, i.e. currency and the period of payment. The value of

the query result has to be converted to conform to further contexts which are "AUD"

currency and "Monthly" basis.

In summary, the main role of QTA is to decompose a user-requested query to

subqueries, each of which is distributed to its related data source to query data. This

task leads QT A, firstly to determine which data sources need to provide a result for,

secondly to transform the query into subqueries, and thirdly to submit them to the

data sources for execution by the query processing.

- 83

-31-08)

certified

6.3 The Mediated MetaData (MMD)

Basically, metadata is "data that defines and describes other data" or "information

and documentation which makes data understandable and sharable for users over

time". (ISO/IEC/TC JTC 1, 2002). The ISO 11179- Information Technology

Metadata registry, has been developed to provide an international standard for

sharing and exchanging data elements: It is a significant issue in data

interoperability. Metadata is highly relevant for interoperability (Comad et al., 1999).

To interoperate heterogeneous data, a strong, flexible, and incremental metadata is

required. The benefits of employing metadata are: increased data sharing and data

integration (Newton, 1996). In this research, the Mediated MetaData (MMD) was

developed as a repository for collecting knowledge information which is necessmy

for the integration, such as semantic constraints. d:,U1 source definitions, schcrn:1:;,

and conversion functions, etc. The main purpose of MMD is to provide a knowledge

base to be used in resolving both schematic and semantic conflicts. In this research,

MMD is divided into Schematic MetaData and Semantic MetaData.

6.3.1 Schematic MetaData

Data sources and their definitions initially registered by RP are reposed in MMD

which is simply and meaningfully implemented by XML with its readable self

described tag characteristics. Generally, any programming or descriptive languages

can be used to represent MMD. The Schematic MetaData consists of the Data Source

MetaData (DSMetaData), the Object Mapping MetaData (OMMetaData), and the

Attribute Mapping MetaData (AMMetaData)which contains data source schemas,

object mapping, and attribute mapping information respectively. DSMetaData,

OMMetaData, and AMMetaData therefore provide the required information for QTA

to define the associated objects required for the requested query and to decompose

the query to subqueries.

- 84

6.3.1 .1 The Data Source MetaData (DSMetaData)

The Data Source MetaData contains initialised component data source information

recorded by the RP. The following items are the types of information relating to data

sources which are contained in DSMetaData.

• Assigned name -the unique name for each data source to resolve any schematic

naming conflict which might cause name crashing.

• Description -the definition of each data source.

• Location - the physical location of the data source.

• Data model and database type -knowledge for the Me Dint Mediator to

determine what kinds of data models of the data source in order to take the

appropriate act : 0 1 1 , for example, for send ing the ci)•p1-c,i1 ri atc query language.

• Constraints -scm:u 1 t ic in formation about whdh--:r the d ;1Li :,uurcc has any

constraints.

The DSMetaData specification is as follows.

DSMetaData rule

DataSource rule

AssignedName

DataModel

Location

Source

Object_list

DataSource __ rule, (DataS0urce __ n1le f

' { ' , Ass :i.qnedName, DataModel, Tocat i on, Sour,:e,
Ob_iect_list,

D2scripticn, C0nstraint_rule, ' J ' ;

'A.ssignedNa.�e ' , letter, { letter ! decimal digit } ;

'DataModel ' , Relational I Object I Legacy;

'Location ' , letter, (letter l deci.maJ digit } ;

'SourceName ' , letter, { letter I decimal di.git } ;

'Objects ' , Object_identifier, (' , ' , Object_identifier } ;

Object_identifier letter, { letter ! decimal digit } ;

D2scription letter, { letter ! decimal digit } ;

Constraint rule 'Constaint ' , attribute_rule;

Attribute rule Attribute_ identifier, Context_ rule;

Attribute identifier= letter, { letter ! decimal digit } ;

Context rule Context_identifier, Context_type;

Context identifier letter, { letter ! decimal digit } ;

Context_ type letter, { letter I decimal digit} ;

An example of a registered data source is given below:

- 8 5

AssignedName

Data.111cx:iel

Location

SourceNam.e

Objects

Description

Constraint

DS2 ;

object;

carrpusO/DB;

CampusDB;

Person, Staff, Lecturer, Student , Book, Unit;

Campus database;

Salary (Currency = "AUD") ;

From the above DSMetaData example, the CampusDB is a data source in an object

data model located in campusOIDB. The unique name, DS2, is assigned to this data

source. Person, Staff, Lecture, Student, Book and Unit object classes are entities in

the DS2 data source. The constraint attribute i ndicates that the currency used i n thi s

data source i s J\ustral ia 1 1 d1 1 l l a :·s .

6.3.1.2 The Object Mapping MetaData {OMMetaData)

In addition to data source information which has to be registered in the Mediated

MetaData, the object mapping infonnation must be gathered to identify the

corresponding objects of component data sources. Object mapping information refers

to the same real world objects mapped to global objects so that the global objects can

be identified and referred to in the query and can be acknowledged by the

components in the M e Dl n t Mediator unambiguously. The object mapping

information is registered in the Object Mapping MetaData (OMMetadata). The main

objective of OMMetaData implementation is to solve schematic naming conflicts in

the entity level. The information required to be captured in OMMetaData are:

• A global object identifier - the assigning of a global identical identifier for each

real-world object to achieve naming equivalence and to be indistinguishable from

other collaborative components.

• Mapped data source - used to identify the component data source to which this

global object maps.

• Mapped object - used to identify the object of the data source to which this

global object maps to.

• Mapped object condition - used to describe mapping conditions.

- 8 6

M e D ! n t : A r , A , , p 1 1) (1 (: 11

The followings are the specification describing OMMetaData:

CMYletaData rule

Obj ectMapping_rule

Mapping(bject

GlobalObject

tv',appedObj ect

Source
digit } ;

Obj ect

Constraint

Attribute defined

ObjectMapping_rule, { ObjectMapping_rule } ;

' { ' , Mapping(bj ect , ' } ' ;

GlobalObject, Mapped'Jbject , {MappedObject } ;

'GlobalObject ' letter, { letter l decirnal digit } ;

'MappecK)bject ' Source, Object, {Constraint } ;

'SourceAssignedName ' , letter, { letter ! decimal

'SourceObject ' , letter, { letter l decirnal digit } ;

'Constraint ' , Attribule_defined;

Attribute_identifier, Corrparison_operator,

Attribute value;

Attribute :identi.f:i.er letter, { letter I dec:Lrnal d.iqit } ;

1 '> ' I '<' I '>-"·-' I , /· .. f

Attrioute value letter l deci.rnal digit, { letteT i deciIJBl digit } ;

The following is an example of OMMetaData.

GlobalCbject

Mapped(l)j ect

MappedObject

Lecturer

SourceAssigne,��ame

SourceC'bj ect

Constraint

Sourcel\ss.ignec:1.�arne

SourceObject

DS1

Staff

type�J L'

DS2

Lecturer

The above OMMetaData example shows that a global object assigned name,

Lecturer, which is mapped to the staff object class in the DSJ data source which has

the constraint of type = "L", and is mapped to the Lecturer object class in another

data source, DS2, without any constraint.

6.3.1 .3 The Attribute Mapping MetaData (AMMetaData)

The same attributes in multiple data sources which were assigned different names

can be mapped and reposed in the Attribute Mapping MetaData (AMMetaData) to

identify their correspondence. Similar to OMMetaData, attribute mapping
____________________ _____ ,_ __ ___ _

- 8 7 -

information refers to the same real world attributes mapped to global objects first so

that the global attributes can be identified and referred to in the query and can be

acknowledged by the components in the MeD lnt Mediator. The main objective of

AMMetaData implementation is to solve schematic naming conflicts in the attribute

level. The information required to be captured in AMMetaData are:

• A global attribute identifier is assigned as a unique name of a group of the same

real-world attributes from multiple data sources to achieve naming equivalence

and to be indistinguishable from other collaborative components.

• Mapped data sources are used to identify the component data source to which this

global attribute maps.

• Mapped objects are used to identify the objects of the data sources to which this

global attribute maps to.

• Mapped attributes are used to identify the attributes of the data sources to which

this global attribute maps to.

• Mapped attribute conditions are used to describe mapping conditions.

The followings are the specification describing AMMetaData :

AMl'Jfe+:.aData rule

AttributeMapping rule

MappingAttribute

GlobalAttribute

!'l;appedAttribute

Source
digit } ;

Object

Attribute

Constraint

Attribute identifier

comparison_operator

Attribute value

Attributciv'BppinrJ .rule, {AttributeI"'.::'lppirvJ _rul ,� : ;

' { ' , Mappingl\ttribute, ' } ' ;

Global.Attribute, MappedAttribute, {MappedAttribute } ;

'Global.Attribute ' letter, { letter ! decimal digit } ;

'MappedAttribute ' Source, Object,

Attribute ! Constraint ;

'SourceA.ssignedName ' , letter, { letter ! decimal

'SourceObject ' , letter, { letter ! decimal digit } ;

'Source.Attribute ' , letter, { letter l decirral digit } ;

Attribute_identifier, O::rnparison_operator,

Attribute_value;

letter, { letter I decimal digit } ;

'=·" I '>' I '<' I '>==' I '<,==·' I '<>' ;

letter I decimal diq:it, {letter I decimal. digit) ;

- 88

t i

The following is an example of AMMetaData.

GlobalAttribute

MappedAttribute

Student .Name

SourceAssignedName

SourceCbject

SourceAttribute

6.3.2 Semantic MetaData

DS2

Student

fname+lname

The Mediated MetaData is intended not only for serving the schematic conflict

resolution but also semantic conflict resolution by applying aliases to resolve

semantic naming conflicts, and by acting as a l ibrary of functions collecting

conversion functions to resolve scaling conflicts.

To resolve semantic conflicts and provide meaningful information exchange among

data sources, the semantic contexts of data need to be considered (Sciore et al.,

1994). The implicit context information has to be identified explicitly to share among

heterogeneous sources. For example, product price is normally represented only by a

real number 120.50. If it is coded by US dollars, without a semantic context, it could

be compared incorrectly to 1 46. 78 Australian dollars in another source. Both figures

need to be explicitly specified in their currency in addition to its value. Then,

120.50(Currency="USD '') can be compared correctly to 146. 78(Currency="AUD '')

from another data source by the facilitation of conversion functions. Therefore,

attribute values in different representations or contexts, can be compared by

converting them into the same semantic context before comparing their values. If the

conversion functions are not available, it can be implied that they have not been

defined in advance, so it is impossible to convert the sum because of lack of

information. Therefore, the semantic contexts and conversion information must be

explicitly defined for distinct representations in multiple data sources. Once the

system needs to integrate heterogeneous semantic values, it has to consult the

Semantic MetaData to homogenise the data.

- 89

MeD ln t : /\ r , A ,:, pr ,> c c l , fo r i i 1 ,': l n i ,;- 9 , u t i <> n f D u t u t<1 s0) u r·, <:1 L e9 u c y S y s t ;c0 n, ,

In this study, the Semantic MetaData can be classified into two types, Thesaurus

MetaData (TSMetaData) and Conversion MetaData (CVMetaData).

6.3.2.1 The Thesaurus MetaData (TSMetaData)

The 3-D semantic model has been proposed in this study to represent differences in

semantic values, i.e. representation conflicts, by gaining the advantage of aliases to

define corresponding domains. Aliases are collected in the Thesaurus MetaData

(TSMetaData). Whenever the system has to integrate heterogeneous semantic

values, it consults this agent to homogenise the data. For example, days in a week

can be represented in numerous ways:

Days of v-1eek ····. { Sun, Men, Tue , V'Jed, Thu, Fri, Sat }

Days of 1-�1e:ek :·.-.-: { ��w 1d<.:1·y, i�Jonciay, 1l\.1cscJ.ay,

This semantic heterogeneity could be modelled as a general tree (Figure 6.4)

grouping the same meaning aliases. Then, XML documents which are based on the

object-oriented model which is best for describing schema and semantic of objects in

the real-world are capable to collect these aliases.

Day d Week

FIGURE 6.4 AN ALIAS TREE

The following is the TSMetaData specification syntax.

TSMetaData rule

TS :rule

TSMappingO

GlobalCategory

TS_:rule, {TS_rule} ;

' { ' , TSMapping, ' } ' ;

GlobalCategory, Mappedinfo, {Mappedinfo} ;

'GlobalObject ' , letter, { letter l decimal digit} ;

- 9 0 -

MeD ln t : /\ r, A ,> p r ,) o c l , fo r t h i n t s, ;y u t i <:, n a:> ; U o t u t<1 s u , c n <i l e q o c y S y s t ,, rr, ,

Default, Aliases; Mappedinfo

Default

Aliases

Alias

'Default ' , letter, { letter ! decimal digit } ;

'Aliases { ' , Alias, {Alias } , ' } ' ;

'Alias ' , letter, {letter l decimal digit } ;

The following is an example of TSMetaData.

Global Category
Mappedlnfo

Mappedlnfo

Map-p8dlnfo

Mappedlnfo

<MetaData>
<DayONVeek>

Days
Defau1-t
Aliases

Default
.Aliases

L'efault
A . :i.ases

Alias
Alias
Alias

l\ .. :Las
Alias
Al i,,,s

Alias
Alias
Alias

<Day name="Sunday">
<alias>1 </alias>
<alias>Sun</alias>
<alias>Sunday</alias>

</Day>
<Day name="Monday">

<alias>2</alias>
<alias>Mon</alias>
<alias>Monday</alias>

</Day>

<Day name="Saturday">
<alias> 7 </alias>
<alias>Sat</alias>
<alias>Saturday</alias>

</Day>
</DayONVeek>

</Meta Data>

Sunday

Monday

Tuesay

- 9 1 -

1
Sun
Sunday

;
Mon

j

('.\)fl

Monday

MeD!n t : A r , A ,> P l ') O c l : f o , i :1 c l r , ! ci '.J ' u t i ,:, 1 1 f D o t o b u s e u r 1 c1 L e ,,1 c c y ']; y :; I rr, ,

6.3.2.2 The Conversion MetaData (CVMetaData)

Conversion plays a significant role in the data integration of heterogeneous sources,

especially when data are represented in different contexts. Query results with varied

semantic contexts are meaningless if the results cannot be compared for analysis or

decision-making. This is why a library of conversion functions is necessary when the

interoperation of data represented differently among heterogeneous sources is

required. The M e D l n t architecture encompasses the Conversion MetaData

(CVMetaData) to provide conversion knowledge. The major objective of

CVMetaData is resolving scaling conflicts. A conversion function will be invoked

when the same real world attributes from multiple data sources with different

semantic contexts are included in the user-requested query. For example, a weight

attribute in one system is collected in kilograms (kgs), but in another data source it is

collected in grams (gms). To interoperate them, a conversion is required to transform

weight values from grams to kilograms or from kilograms to grams depending on the

unit requested in the query. The following is the CVMetaData specification syntax.

CVl1et.a Data Rui e

CVTunct:ion

CVF identifier

Default.Context

CVfbody

CVto

CVfactor
digit } ;

CVoperator

CVreverse

CVFunction, {CVFunct.:i.on) ;

CVF _identifier, 'Default , DefaultContext., CVFbody;

.Letter, {leLter I decimal diqit } ;

letter, { letter ! decimal diqit } ;

CVto, CVfactor, CVoperator, CVreverse;

'CVto ' , letter, { letter ! decimal digit } ;

'r�vfactor ' , letter ! decimal digit, { letter ! decimal

'CVoperator ' , '+' I '-' I ' * ' I ' / ' ;
'CVreverse ' , '+' I '-' I '* ' I ' / ' ;

The following is an example of CVMetaData for resolving different unit of

measurements.

{Weight cnv Default
{

CVto
CVfactor
CVoperator
CVreverse

CVto
CVfactor

Kgs

gms
1 , 000
·k

I

rngs
1 , 000, 000

·--··---·--·---·-··-····- ···-······· . .• ··---· ··-·--------·--·---- ·----··--·--···---·--·---
- 9 2 -

CVoperator
CVreverse I

*

From the CVMetaData specification above, the default unit of weight used in the

integration system is kilograms. The conversion factors are defined based on the

standard unit of measurement used in the integration system, so the conversion factor

from one kilogram to grams is multiplying by 1 ,000 and to milligrams is multiplying

by 1 ,000,000. In the reverse conversion, from grams to kilograms, the same

conversion factor can be used, but using the division operator instead of the

multiplication.

For example, to interoperate Weight= 50(unit="kgs '') to Weight=

49999(unit="gms ") from multiple data sources which are in difo.:rent contexts,

immediate comparison cannot occur. If the context requested in the query is kgs,

Weight_cnv(kgs=>"gms") will be invoked to transform 49999(wzit="gms '') to

49. 999(unit="kgs ") to provide the same semantic context as requested.

50(unit="kgs ") does not need to be converted because it is in the same unit as the

requested context. Then, the values of 49.999(unit="kgs ") and 50(unit="kgs '),

which have the same semantic context, can be compared or interoperated. On the

other hand, if the required conversion function cannot be found, this means no

conversion factor is available for these attributes; the context information should be

attached to its values on the query results so that the semantic differences can be

noticed.

The conversion of an attribute with multiple contexts needs a sequential conversion

action. For example, when a salary attribute of 25000(currency="USD ",

period="yearly ") which represents US dollars on a yearly basis is compared with

2500(currency="A UD ", period="monthly '') which represents Australian dollars on

a monthly basis, multiple conversions are required to convert the currency and then

the period. In this case, the conversion is non-order preserving, so it does not matter

which conversion should be done first, but the priority of conversion is significant in

some cases.

- 9 3 -

Therefore, it can be concluded that DSMetaData provides data source information.

OMMetaData resolves schematic naming conflicts while TSMetaData resolves

semantic naming and representation conflicts. Finally, CVMetaData provides

conversion knowledge for the M e D l n t Mediator to homogenise the scaling conflict

due to different semantic contexts from multiple data sources.

6.4 Conflict Resolution Agent (CRA)

After the M e D l n t Mediator gets the MDRS query results from wrappers, the model

heterogeneity has been resolved. However, Schematic and Semantic Heterogeneities

have not been handled. The Conflict Resolution Agent (CRA) has this responsibility.
To deal with both schematic and semantic confl icts, CRA s imply ,1ppl ics each

MDRS result set to the pre-defined template. This pre-defined template is created
from the query. Thus, a varied result structure will be transformed to the structure of

the pre-defined template. This means that structural conflicts have been resolved. In
addition, different semantic contexts will be homogenised in this stage to have a

context compatible with the template, so CRA resolves problems with semantic

contexts such as scaling conflicts. However, naming conflicts in the semantic level

may still remain, but can be handled by aliases in TSMetaData.

6.4.1 Applying MDRS Results to the Pre-defined Template

After CRA has received the MDRS result sets from the wrappers, CRA can apply

each MDRS instance to its predefined template to resolve schema and semantic

conflicts.

For example, given the following:

(Lecturer.fname, Lecturer.lname, Lecturer.salary (currency="AUD", period="Monthly")),

it could be represented visually by an example of 3-D MDM as shown in Figure 6.5.

- 94 -

FIGURE 6.5 REPRESENTATION OF ATIRIBUTES AND SEMANTIC CONTEXTS

The role of CRA is to transform the values of query results corresponding to the

structure and semantic contexts of the pre-defined template. For example, if the

MDR S rcs 1-1 l ts of Lecturer. salary arc 1 ,c,t "•/ [ff) " currency or "month(, · " pcr ind. i t i s

necessary to convert these into the pre-defined semantic context during this process.

Assume that the first MDRS is

{ (Lectu rer. fname, Lecturer. lname, Lecturer.salary (currency="USD", period="yearly")) }

And the second MDRS is

· { (Lecturer.name, Lecturer.salary (currency="AUD", period="monthly")) }

which name = (fname, lname)

CRA needs to apply different structures of the MDRS results from the wrappers to

the predefined template. The conflict resolution method for the first MDRS result is

the value of Lecturer. salary, which is in "USD " currency on a "yearly " basis and

needs to be converted to "A UD" currency on a "monthly " basis by consulting

CVMetaData. The second set of MDRS results also needs a conversion function to

break Lecturer. name into Lecturer.fn.ame and Lecturer. lname. Then, both sets of

MDRS results can be filled into the template. Finally, the structural conflicts and

semantic conflicts will be resolved.

App/Temp(p, T, BJ is the process of applying a set of MDRS results (r) from a data

source a to the predefined template, where p is the predefined template created from

- 9 5

Process ApplTemp(p, r, B);

{Apply MDRSs to fit into the pre-defined template.}

Type context_rec = Record of

name : Context_Name;

value : Context_Value;

EndRecord;

Project_Rec = Record of

attribute

context

EndRecord;

Attribute_Name;

Array of context_rec;

Var Projection : Array of Project_Rec;

AttrConstraint : Array of Project_Rec;

RMDRS : Record of Projection;

i _; : Integer;

Function ConvF(attr _ _val, fr_context, to_context) ;

(Convert different semantics.}

Begin { ConvF }

Call the related conversion function in CVMetaData

If fr_context = default then

ConvF := attri_val, CVoperator, CVfactor;

Else if to_context = default then

ConvF := attri_val, CVreverse, CVfactor;

Else Error Message 'CVMetaData needs to be maintained."

End { ConvF } ;

Begin { ApplTemp }

Fill r in RMDRS;

Get AttrConstraint from DSMetaData.constraint;

Attach AttrConstaint to RMDRS;

Check each attribute in RMDRS against p;

If unmatched semantic contexts are found Then Begin

Attr_val := ConvF(attr_val, RMDRS.context, p.context);

Replace RMDRS.context with p.context;

End;

End { ApplTemp }.

From ApplTemp(p, T, 0), the set of results returned from the wrapper does not have

any semantic context attached. Constraints retrieved from DSMetaData are thus

necessary to create a new semantic data set before comparing its semantic contexts
_"________________ ----·---------"- - ------�------------ ---�---·-"-- ----

- 9 6

with the pre-defined template in order to convert result values to have the semantic

contexts conforming to the semantic contexts required by the user.

For example, the following is the set of results from DSJ .

{("21 5801 5", 3750.00(currency=" AUD", period="monthly)) ,
("4125101 ",21 25.00(currency=" AUD", period="monthly))}

It will be applied to fit the pre-define template.

(Staff.id, Staff.salary (currency="AUD", period="yearly"))

Staff.salary needs to be converted to "yearly" basis according to the pre-defined

template. The following is the set of results after the App!Temp(p, r, ()) process.

{("21 5801 5", 45000.00(currency="AUD", period="yearly")),
"41 25 1 0 1 " ,25500.00(currency="AUD", period="yearly"))}

6.5 The Consolidation Processor (CP)

The Consolidation Processor (CP) as a data integrator consolidates the conflict

resolved MDRS result sets which have structure and semantic contexts

corresponding to the predefined template. In other words, model, schematic, and

semantic conflicts have alr�ady been resolved. Thus, the result sets are structurally

equivalent. At this point, the sets of conflict-resolved results can be integrated simply

by set operations.

6.5.1 Integrating the Mediated Data Representation Structures

After CRA applies the MDRS results according to the predefined template format, all

result sets then conform to each other and also to the requested query both in their

schemas and semantics. CP integrates only the structurally and semantically

equivalent conflict-resolved sets by appropriate set operators, for example, the union

or interception operators, depending on the condition of the query.

Integrate(va, v/3, Q) is the process of integrating conflict-resolved MDRS result sets,

where va is a conflict-resolved set from data source a, and v/J is from data source /J,

and Q is a relational algebra

- 9 7 -

Me D ! n t : /\ n A ,> p 1·1.) o c I , i or t h s:0 I n r ,,:.· ;i , u t i , , n f U u ' < 1 t, u s � u n <1 L e 'J c c y s y :; t '" r1 , ,

Process Integrate(ua, uj3, D);

{Integrate two conflict-resolved MDRS result sets.}

Type context_rec = Record of

name : Context_Name;

value : Context_Value;

EndRecord;

Project_Rec = Record of

attribute

context

EndRecord;

Attribute_Name;

Array of context_rec;

Var Projection

ua, uj3

Q

Begin { Integrate }

Case Q is 'U'

Union(ua, uj3);

Case Q is 'n '

Intersect(ua, uj3);

Case Q is 'X'

Cartesian(ua, uj3);

Case Q is 'oo'

Join(ua, uj3);

End { Integrate }.

: Array of Project_Rec;

: Record of Projection;

: relation algebra;

6.6 The Rendering Agent (RA)

After all results from multiple data sources have been integrated by CP, the

Rendering Agent automatically generates the integrated results to the users. To

achieve flexibility, the Hyper Text Markup Language (HTML) format has been

chosen here to present the final query results.

6. 6.1 Generating the Integrated Results

The MDRS integrated result has to be transformed to produce output to users in

HTML. Because XML documents have been used to represent the integrated results

in the MeD ln t architecture, rendering from XML to HTML is quite simple.

- 98

Cascading Style Sheets (CSS) and eXtensible Style Language (XSL) are alternative

approaches (Morrison et al., 2000). A CSS or an XSL can be defined to generate an

HTML document from an XML document. Some XML parser software also

provides this feature. Therefore, the implementation of the RA will not be discussed

in detail in this study.

6. 7 Summary

The MeD ln t Mediator is a layer between clients and wrappers. Its main functions

include the decomposition of the user query into subqueries, provision of knowledge

about mapping information, resolution of conflicts, and consolidation of data. It is

independent from data sources :rnd docs not have to deal with the clata model

heterogeneities i tself. The mediator deals only with Schematic and Semantic

Heterogeneities. MDM is the data model used in the M e D l n t Mediator.

- 9 9

M e D l n t : h n /\ , , pi 1> o c l : 1 0 1 i h 0 l r: t 0 ;y o t i <> t D o t o b ci s e e n d l .. e ,2 u c y S ; :: t 0· ri , ,

CHAPTER 7 - WRAP PERS

The MeD ln t Mediator discussed in the previous chapter is responsible for

transforming a query to subqueries to request data and for integrating heterogeneous

data returned from multiple data sources. To reduce complexity, the M e D i n t

Mediator does not have to communicate with data sources directly. If that were the

case, it would have to handle heterogeneous data definition languages and

heterogeneous query languages in addition to dealing with conflict resolution. In this

study, wrappers take this responsibility by acting as intermediate translators

communicating with both the M e D l n t Mediator and component data sources even

though they may be in different data models.

7. 1 The Design of Wrappers

The MeD ln t Mediator cannot communicate to multiple data sources directly because

of the data model heterogeneities of multiple data sources including different schema

definitions, different query languages and different data representation structures.

Interpreters are necessary to translate these to the Mediated Data Model (MDM)

which is the common data model used in the MeD ln t architecture. MDM consists of

the Mediated Data Definition Language (MDDL), the Mediated Query Language

(MQL), and the Mediated Data Representation Structure (MDRS) which are the

common data definition, query language and data representation respectively. This

study introduces wrappers to satisfy the above purpose A wrapper is associated with

each data source to translate source schemas into MDDL schemas, MQL subqueries

to source specific queries, and data from data sources to MDRS data objects.

Wrappers, in this research, act as translators, including firstly schema definition

translators which accommodate queries by translating heterogeneous schema

definitions into MDDLs, secondly query translators which translate MQLs used in

the MeD ln t Mediator into specific data source query languages, and thirdly data

- 1 00 -

M e D ! n t : /\ n A ;, p 1 i> u c l 1 !0 1 t h e l n t <> q <1 t i ,> r 1 s, f U u t c1 t, u s e n r , <1 L e ,J c c y S y s t r n s

content translators which translate data in disparate representations into MDRSs.

Each wrapper is composed of its own Schema Translation Processor (STP), Query

Translation Processor (QTP) and Data Translation Processor (DTP) serving functions

described previously. Briefly, a wrapper is responsible for translating between the

data model used in a data source and MDM used in the Me D int Mediator.

Therefore, only one additional wrapper implementation is required for a pair of a

particular data model and MDM, when a new data source in a different data model is

added to the integration system. Let us say, if there are m data sources to be

integrated, and from such data sources, there are n (which n <= m) different data

models, there will be only n wrappers to be implemented. This is more beneficial

when comparing it with the tradition translation approach in which m *(m-1)

translatrits arc required. It will be expo1� c 1� t i :1 l l y more effic ient when the" ·.· : : ,·,� rn ,rny

data sources (m increases) to be integrated and more than one data model (1 1> / ,

where n i s a natural number).

The algorithms of the components of each wrapper are different They depend on

what kind of data model used in the data source. This study investigates developing

wrappers for the relational data model called RWrap, for the object-oriented data . .
model called OWrap, and for legacy text files called L Wrap.

7.2 Wrapper Components

There are three components in each wrapper: a Schema Translation Processor (STP),

a Query Translation Processor (QTP), and a Data Translation Processor (DTP).

7 .2.1 Schema Translation Processor (STP)

The Me D int Mediator needs schema definitions from data sources as information

for decomposing and transforming the query. To reduce complexity, the Mediator

was not designed to get the schema definitions from heterogeneous data sources.

Thus wrappers have the responsibility to communicate with each source to capture

schema definitions and to provide them in a format that can be recognised by the

MeDlnt Mediator.

- I O l -

A Schema Translation Processor (STP) is responsible for translating the data

definitions from source schema definitions into MDDL definitions which can be

employed by the QT A, a component of the Me D I n t Mediator when decomposing the

user's submitted query to subqueries. An STP supplies only the schema definitions

necessarily requested by the M e D i nt Mediator, and will not supply all object schema

definitions of component data sources to the M e D l n t Mediator. This results in great

benefits in terms of time and resource efficiency. Furthermore, it has been designed

to be suitable for dynamic systems whose source schemas could be changed

frequently.

An STP gets object schema definitions from data sources which may be represented

by Data Definition Language (DDL) in the relational data model, by Object

Defi nition Language (ODL) in the object <fo ta i ; 1 u c: c l , ur by other definit ion

languages in other data models. STPs transform this variety data definitions to

MDDLs the syntax of which is provided in Chapter 5 in the Extended Backus-Naur

Form (EBNF). Only the relational data model, the object data model and text legacy

systems have been studied in this research, so then; are three algorithms of STPs.

RSchmTransl(Si, OJ) is an algorithm for the relational data model,

OSchmTransl(Si, OJ) is for the object data model, and LSchmTransl(Si, OJ) is for

legacy text files. Si is data source i and Oj is object j in the data source i.

7 .2.1 .1 STP Algorithm for the Relational Data Model

RSchmTransl(Si, OJ) will generate an object schema definition tree (Figure 7. 1).

Process RSchmTransl(Si, Oj) ;

Type SchmDefRec is record of SchmName, SchmDesc, AttrSet, RelSet, KeySet;

AttrSet set of AttrRec;

RelSet

KeySet

set of RelRec;

set of KeyRec;

ObjSchmTr: Tree;

Var SchmDef : SchmDefRec;

SchmName: String;

SchmDesc: String;

VattrSet

VrelSet

AttrSet;

RelSet;

- 1 02 -

VkeySet

E>i

KeySet;

ObjSchmTr;

Function FetchSchm(Si,Oj);

Begin { FetchSchm }

FOR SchmDef:

SchmName:= (Si.Oj);

RETRIEVE description from Si.Oj to SchmDesc;

RETREIVE attribute from Si.Oj to VattrSet until no more attribute;

RETREIVE relationship from Si.Oj to Vre1Set until no more relation;

RETREIVE key from Si.Oj to VkeySet until no more key;

End { FetchSchm };

Function TranslSchm(SchmDef):

Begin (Trans!Sc: , : , , :

CREATETREE Di ;

CREATE root node from SchmDef. SchmName, SchmDef.ScheDesc;

CREATE attribute child node;

CREATE child node from VattrSet until no more attribute;

CREATE relationship child node;

CREATE child node from Vre1Set until no more relationship;

CREATE key child node;

CREATE child node from VkeySet until no more key;

End { Trans1Schm };

Begin { RSchmTransl }

FetchSchm(Si, Oj);

TranslSchm(SchmDef);

Return E>i;

End { RSchmTransl }.

1 03

Me DI n t : ;, n A r , p r 1.> n c I : f o , t h , ! r, t , , LP c: ' i ,) n , :, f U u t u t.c: s c u , , <1 l e <J u c y \ y :, , ,. rn ,

FIGURE 7 . 1 1\ .·J ,::<!/,IPLE OF AN EXPORTED SCHEMA DEF l : , ,T : J ,,; i : ; L � o { R'!JRAP

Figure 7. 1 shows an example of an object schema defini t ion tree exported by the

RWrap via the request (RSchmTransl(Si, Oj), while Si is a data source name and Oj is

the object 'Staff') from the M e D l n t Mediator.

From the above 'Staff' data definition tree, an MDDL definition can be simply

generated.

Staff = {
attribute

id string
salary float

relationship

key

id LoanRec. id
id Lecture.staff_id

id;

7.2.1 .2 STP Algorithm for the Object-oriented Data Model

0SchmTransl(Si,6j) will create an object schema definition tree (Figure 7.2).

Process 0SchmTransl(Si,Oj);

Type SchmDefRec is record of SchmName, SchmDesc, SubTSet, AttrSet, KeySet;

SubTSet

AttrSet

set of string;

set of AttrRec;

KeySet set of KeyRec;

ObjSchmTr: Tree;

- l 0 4 -

MeD!nt : 1,. r , A ,> p r o o < : 11 ro , t h l n i •" q 1 c 1 t k, 1 1 f D o i < 1 t, CJ s u c r , ci L e ,i c1 e y <:. y s t <- 11 1 ,

Var SchmDef : SchmDefRec;

SchmName: String;

SchmDesc: String;

VsubtSet SubtSet;

VattrSet AttrSet;

VkeySet KeySet;

f)i ObjSchmTr;

Function FetchSchm(Si,Oj);

Begin { FetchSchm }

FOR SchmDef:

SchmName:= (Si.Oj);

RETRIEVE description from Si.Oj to SchmDesc;

RETRIEVE subtype from Si .Oj to VsubtSet until no more subtype;

RETREIVE attribute r:·· n 1 '.·; i . ()j to VattrSet unt il no rnur,

IF attribute is related to o ther attribute THEN

RETRIEVE related attribute until no more related allrilmte

RETREIVE relationship from Si.Oj to VrelSet until no more relation;

RETREIVE key from Si.Oj to VkeySet until no more key;

End { FetchSchm };

Function TranslSchm(SchmDef):

Begin { TranslSchm }

CREATETREE Di;

CREATE root node from SchmDef.SchmName, SchmDef.ScheDesc;

CREATE subtype child node;

CREATE attribute child node;

CREATE child node from VattrSet until no more attribute;

IF there is related attribute THEN

CREATE child node from VsubtSet until no more related attribute;

CREATE key child node;

CREATE child node from VkeySet until no more key;

End { TranslSchm };

Begin { OSchmTransl }

FetchSchm(Si,Oj);

TranslSchm(SchmDef);

Return Di;

End { OSchmTransl }.

- l 05 -

f' IGURE 7.2 AN EXAMPLE 01' Ai i f:Xf'CJ iH L U SCHEMA D E F I N IT ION TREE l , U: ,- . , .. \ 1 '

Figure 7 .2 shows an example of an object schema definition tree exported by the

OW rap by the request (OSchmTransl(Si, Oj}, while Si is a data source name and Oj is

the object 'Lecturer ') from the M e D l n t Mediator.

From the above 'Lecturer ' data definition tree, an MDDL definition can be simply

generated.

Lecturer = {
subtype

Person
attribute

salary
lecture

key
id

float
Unit. lecturedBy

7 .2.1.3 STP Algorithm for Legacy Fi le Processing Systems

The characteristics of legacy file processing systems are quite different from those of

the relational data model and the object data model in database management systems.

They do not have metadata, so schema information cannot be drawn like the previous

two data models. The STP of the L Wrap thus takes advantage of only the first row of

text files to indicate the name of each field by ignoring data types. Moreover, the

- I 06 ··

data in each file in legacy file processing systems are separated (Kroenke, 2002), so

no relationship information is involved.

Process LSchmTransl(Si,Oj);

Type SchmDefRec is record of SchmName, AttrSet;

AttrSet set of AttrRec;

ObjSchmTr: Tree;

Var SchmDef : SchmDefRec;

SchmName: String;

VattrSet AttrSet;

E>i ObjSchmTr;

Function FetchSchm(Si,Oj);

Begin { FetchSchm }

From l ' , < '. fi r: : :. ri iw of Oj in S i

FOR Scl1mDef:

SchmNamc:= (Si.Oj) ;

RETRE!VE attribute from Si. Oj to VattrSct until no more attribute;

End { FetchSchm };

Function Trans!Schm(SchmDef):

Begin { Trans!Schm }

CREATETREE E>i;

CREATE root node from SchmDef.SchmName

CREATE attribute child node;

CREATE child node from VattrSet until no more attribute;

End { Trans1Schm };

Begin { LSchmTransl }

FetchSchm(Si, Oj) ;

TranslSchm(SchmDef);

Return E>i;

End { LSchmTransl }.

- I 07 -

MeDlnt: Ar, Appro-oct1 to, the lnt�ryotion of Dotot)ase oncl Le1;1ocy System,

An example of a legacy text file is shown in Figure 7.3.

4 StaH.t><t - Notepad ; f!. L

"id","na•e"."address","tel_no"."sex","dob"."salary", "type"
"0995832","John Valker"."5/45 Bradford street. Mt.Lawley
6050"."94424050"."K".8/7/1965 0:00:00.5000.00. "Secretary"
"0995964","Micheal Fugh"."9 Walcott street, Mt.Lawley
6050"."93800458","M",9/5/1958 0:00:00.6500.00,"Lecturer•I

FIGURE 7.3 AN EXAMPLE OF A LEGACY TEXT FILE

...

Figure 7.4 shows a schema definition tree exported by the L Wrap from the previous

example (Figure 7.3) by the request (LSchmTransl(Si,Oj}, while Si is a data source

name and Oj is the file 'Staff') from the Me DI n t Mediator.

Staff

FIGURE 7.4 AN EXAMPLE OFAN EXPORTED SCHEMA DEFINITION TREE BY LWRAP

From the above 'Staff' data definition tree (Figure 7.4), an MDDL definition can be

simply generated.

Staff = {
attribute

id string
name string
address string
tel_no string

- l 08 -

-31-08)
certified

}

MeDlnt : J\ r1 Approc;ic ti for the l r. tegro i i on o f D a t o b o s e a r ct L egacy S y s t e rn s

7 .2.2 Query Translation Processor (QTP)

Due to the complexity of dealing with heterogeneity, the processes of conflict

resolution and query translation and transformation have been split. The Me D I n t

Mediator handles the heterogeneity both on the query and the data. To the query, the

M e D l n t Mediator decomposes and transforms it to MQL specifications before

passing the decomposed- and transformed-subqueries to wrappers. Wrappers do not

have to deal with heterogeneity, but only translate subqueries to the query languages,

which can be operated by the connected data sources.

From MDDLs of associated objects, a QTP translates MQL submitted from QTA to

a specific query language, for example, Structured Query Language (SQL) and

Object-oriented Query L,n!.!uagc (OQL), etc, that each ., t u ce can execute. QTPs

sense what query language should be generat d from DSr-.klaData.

R\\'rap

SQ

::\1ediator

OWrap
OQL MQLJ

FIGURE 7.5 QUERY DISTRIBUTION AND TRANSLATION

From Figure 7.5, assume that the M e D l n t Mediator submitted MQL1 to DS1 and

MQL2 to DS2 passing through RWrap since DS1 and DS2 are relational models using

SQL as their query language. The M e D l n t Mediator also submits MQL3 to DS3

passing through OWrap because DS3 is an object-oriented model using OQL as its

query language. MQL 1 and MQL2 will be translated by the QTP of the relational

wrapper to SQL which is the query language used in DS1 . Also MQL3 has to be

translated by the QTP of the object wrapper before submitting to data sources to

process the query.

- I 09 -

MeDlnt : A r: A r:, p roc1 c: l1 for t h e l n t e r; r o t i o n o f D n i o ti ci s e e n cl L e g o c y S y s i e rw,

The algorithm of each QTP is varied depending on what kinds of query language a

QTP has to be translated into.

7.2.2. 1 QTP Algorithm for the Relational Data Model

According to relational algebra (Date, 1 990), the special relational operators are

Restriction or Selection, Projection and Join (Figure 7.6). The Restriction or

Selection operator extracts specified tuples from a relation. The Projection operator

extracts specified attributes from a relation, while the Join operator builds a relation

from two specified relations (Date, 1990).

RE ST RI CT P O ECT

� 4,: -·· · "'
··�, . :'}.

,- <«»o. '-""'<·<..· 0:.%«:,

•h

JOIN

�

al b l b l c l

a2 b l b2 c2

a3 b2 b3 c3

al

a2

a3

b l

b l

b2

FIGURE 7.6 FUNDAMENTAL RELATIONAL OPERATORS (DATE, 1 990)

Considering a basic SQL statement,
SELECT item(s)
FROM table(s)
[WHERE condition_expression];

c l

c l

c2

relating to the relational algebra mentioned above, the SELECT item(s) clause is

where the Projection operator is stated and the WHERE condition_expression

statement is where the Restriction and Join operators can be stated.

· 1 1 0 -

MeD!nt· !\r, Ak,p1,.>c1cl1 f-o, the lnt,;;:irnri,.,r, f Uui(lt'GSU cr,c1 Le[Jccy Systcn,,

Consider an MQL statement used in the MeDlnt Mediator,

SELECT attribute(s) with context
FROM object(s)
IN datasource(s}
[CONDITION condition_expression with context];

As a result of the decomposition and transformation processes, the semantic context

heterogeneities on the subqueries have been removed and each subquery thus has the

same context as the associated data source. MQL subqueries submitted to the

wrappers are:

SELECT attribute(s)
FROM object(s)
IN datasource(s)
[CONDITION condition_expression];

It can be noted from the MQL statement that the SELECT attribute(s) clause is where

the Projection operator is stated and the TV!!F:RF; condition_exprcssion c:'.:1tc111cnt is

where the Restriction can be stated.

By the previous comparison of both SQL and MQL statements, it is a simple task to

generate an SQL statement from an MQL statement. The algorithm c:.i.n be explained

by the following SQLGen process.

Process SQLGen(x);

Type <t> _Rec : Record of

Var

h, i,j, k

Object

Projection

Restriction

Join

: <t>_Rec;

: integer;

SQL_statement: string;

Function CreateJoin(x);

Begin { CreateJoin }

array[1 .. h] of ObjectType;

array[1. .i] of AttrRec;

array[l .. j] of ConditionRec;

array[l..k] of RelRec;

For each pair of tablea & tablel3

<t> .Join[k]:= tablea.ref_key, "=", tablel3.ref_key;

End { CreateJoin };

Begin { SQLGen }

For all x.From(h]

<t> .Object[h]:= x.From[h];

- I 1 1 -

MeDln t : A rs ,\ ;> p 1 ,,o c 1 1 fo : i r 1 f, I n i -." u u t i ,.:, i 1 ,.:, f D o t c 1 t,u \e n r, <:1 L e 'JC c: y S y '.i t ," n , ,

For all x.select[i]

<I> .Projection[i]:= x.Select[i] ;

For all x.ConditionLiJ

<I> .RestrictionLiJ:= x.ConditionLi];

IF more than one object stated in FOR clause

CreatJoin(x);

SQL_statement = "SELECT ", <I> .Projection[i} ,

"FROM", <I> .Object(h) ,

["WHERE", <I> • RestrictionLiJJ,

["AND", <I> .Join[k)) ;

End { SQLGen }.

The algorithm above generates an SQL statement by

• creating Projection from attributes specified in the SELECT clause,

• creating obj ects from the FRCJJ\;J clause, a 1 1d

• creating Restriction and Join from the CONDITION clause and relationsh i p

statements.

Note that from IN clause of an MQL statement, the wrappers know which data

sources that subqueries should be submitted to. This QTP algorithm is only suitable

for basic SQL statements. However, it can be extended to cover more complex

statements.

7.2.2.2 QTP Algorithm for the Object-oriented Data Model

The Object Query Language (OQL) is an extension of the SQL and is similar to it.

However, an object's attribute in OQL can easily be navigated by using path

expressions. The MQL design is also based on the object-oriented data model which

is suitable for representing the OQL. Consider a basic OQL statement,

SELECT list of typevar. item
FROM list of typevar type
[WHERE condition_expression];

The SELECT list of typevar. item clause is where the Projection operator is stated and

the WHERE condition_ expression statement is where the Restriction and Join

operators can be stated similar to an SQL statement. Therefore, the algorithm can be

explained by the following OQLGen process.

- I 1 2 -

M e D l n 1 : A n s\ r; p 1 <) <1 c l 1 ru , ! ! 1 <'· ! n i •.': �J , u t i ,.; r , , , f U u t o t:, c 1 s e u n <i L e <J c c y \ y :; t s:, n , :;

Process OQLGen(x);

Type <t>_Rec : Record of

Object

Projection

Restriction

Join

Var <I> : <t>_Rec;

h, i, j, k : integer;

OQL_statement: string;

Function CreateJoin(x);

Begin { CreateJoin }

array[l . .h] of ObjectType;

array[1 . .i] of AttrRec;

array[1 . . j) of ConditionRec;

array[1 . . k) of RelRec;

For each pair of tablea & tablef3

<I> .Join[k] := tablea.ref_key, "=" , tablef3 .ref_key;

End { CreateJoin };

Begin { OQLGen }

For all x.From[h]

<I> . Object[h] : = x.From[h] ;

For all x.select[i]

<I> . Projection[i] : = x.Select[i];

For all x.ConditionLi]

<I> . RestrictionLi] := x. ConditionLi];

IF more than one object stated in FOR clause

CreatJoin(x);

OQL_statement = "SELECT ", <I> .Projection[i] ,

"FROM", <I> .Object[h) ,

["WHERE", <I> .RestrictionLi)),

["AND", <I> .Join[k)] ;

End { OQLGen }.

7.2.2.3 QTP Algorithm for Legacy File Processing Systems

Querying data from legacy text files is not as simple as from database management

systems because specific ad hoc coding will be required. Conversely, converting text

files to other forms such as objects in a database or to XML documents is not as

complex, since query languages can then be used to retrieve data. In this study, XML

documents have been chosen, so the query language used to perform on XML

documents is XQuery developed by the World Wide Web Consortium (XML query

- 1 1 3 -

MeDln t : A r , A , ; !) l '>U C: t: :o , t 0.- l r : i ,,, q rc t i ,> : i ,.> ' D o t c1 t<, , c-; n r, c1 L e 11 c < : y S y s t ,: n , ,

uses cases, 2002; XQuery 1 . 0: an XML query language, 2002). The basic syntax of

XQuery is

FOR var IN expr
WHERE expr
RETURN expr

From the text file (Figure 7.3), the generated XML document (staff.xml) is shown

below.

<root>
<Staff>

<id>0995832</id>
<name>John Walker</name>
<address>5/45 Bradford street, Mt. Lawley 6050</address>
<tel_no>9442 4050</tel_no>
<sex>M</sex>
<dob>S/7 /1 965</dob>
<salary>5000.00</salary>
<type>Secretary</type>

</Staff>
<Staff>

<id>0995964</id>
<name>Micheal Fugh</name>
<address>9 Walcott stree, Mt.Lawley 6050</address>
<tel_no>93800458</tel_no>
<sex>M</sex>
<dob>9/5/1 958</dob>
<salary>6500.00</salary>
<type> Lectu rer</type>

</Staff>
</root>

Based on the above XML document, the following query is an example of XQuery

that requires id and name of staff whose type equals "Lecturer ".

FOR $s IN document("Staff.xml")/root/Staff
WHERE $s/type="Lecturer"
RETURN

<Staff>
{$slid}
{$s/name}

</Staff>

Firstly, the query declares a variable s as staff in root in the "Staff.xml" document.

The WHERE clause can be compared to the restriction part of the relational algebra.

Elements stated in the RETURN clause can be compared to the projection part.

Therefore, the algorithm can be explained by the following XQLGen process.

Process XQLGen(x);

Type <I> _Rec : Record of

Object

Projection

Restriction

String;

array[1 . . i] of AttrRec;

array(1 . . j) of ConditionRec;

- 1 1 4 -

MeDln t : ,\ r , /\ ;, p (,:> o c l , fu r ! i 1 ,, l n i <: u r u t i ,.:, n , , f [) o t c1 t:, c , e c r: <1 L e ,.1 c c y S y :, t <:· rn :;

Var : ct>_Rec;

i, j : integer;

XQL_statement: string;

Begin { XQLGen }

ct> .Object:= x.From;

For all x.select[i]

ct> .Projection[i) := x.Select[i);

For all x.ConditionLi)

ct> .RestrictionLi) := x.ConditionLi);

XQL_statement = 'FOR $r IN document(" ', ct> .Object, '.xml")/root/ ', ct> .Object,

[WHERE $rj ', ct> .RestrictionLi)),

"RETURN",

'<', ct> .Object, '>',

'{$rj ', ct> .Projection[i) , '}',

"< / ', (:J .Object, '>', ;

End { XQLGen } .

7.2.3 Data Translation Processor (DTP)

Data returned from heterogeneous data sources by the request of subqueries cannot

be interoperated by the MeD l nt Mediator instantly because they are represented in

different data models. This responsibility has been given to wrappers. A Data

Translation Processor (DTP), a component within a wrapper, handles this by

transforming the data content received from data sources to the common data model

used in the M e D l n t Mediator which is the Mediated Data Representation Structure

(MDRS). The M e D l n t Mediator can recognise MDRSs and can take further action

to solve conflicts. However, the semantic contexts of query results returned from the

data source are ignored in this phase. They are attached later by the Me D in t

Mediator. This step aims only to resolve the Data Model Heterogeneity of data

returned from data sources.

DataTrans(p) is a process of translating data from relational data sources to MDRS,

while p is a resultant data set from the data source.

- 1 1 5 -

Process DataTransl(p);

Type DataSet

Var n

Set of Record;

DataSet;

Function RecTrans(p);

Begin { RecTrans }

For all attributes

Put(n) separating each attribute by comma;

End { RecTrans };

Begin { DataTransl }

Repeat

Read next record;

RecTrans(p);

Until no more record;

Return n;

End { DataTransl } .

Next, an example of the different structures of data returned from t\\o data sources is

shown. The first one, D1, is data structure returned from a relational dat::i. source.

0 1 = {
Attribute

id
fname
lname

Key
id

};

Integer
string
string

D2 is data structure returned from an object data source.

D2 = {
Attribute

id Integer
name struct

(fname string,
lname string)

Key
id

};

D1 should be translated into { *(id, fname, lname) } , for example,

{ (" 09955 4 7 " , " John" , "Mc . Klen") , (" 0 9 9555 0 " , "Susan", "Johnson") }

D2 should be translated into { *(id, (fname, lname)) } , for example,

{ (" 0 9 9 5 1 5 2 " , (" Jame" , "Carter")) ,
(" 0 9 9 4 5 2 1 " , ("Catherine " , "Foster")) }

- l 1 6 -

These two result sets will then have the MDRS format which could be sent to the

Me Dlnt Mediator for conflicts to be resolved.

7.3 Summary

FIGURE 7. 7 DATA SOURCE AND WRAPPER RESPONSIBILITY CLASSIFICATION

Wrappers are described in Figure 7.7 in terms of the responsibility of data source and

wrapper management in the Me D int framework. Objects and attributes are handled

by the file/database management system of each data source. However, to be

represented in MDRS objects, the data model heterogeneities have to be resolved and

handled by wrappers.

This research only focuses on the relational data model, the object data model and

legacy text files which are widely used in the real world. Thus, three wrappers were

designed: an RWrap for the relational data model, an OWrap for the object-oriented

data model, and an L Wrap for legacy text files. Inside each wrapper (Figure 7 .8),

there are three algorithms serving as a Schema Translation Processor (STP), a Query

Translation Processor (QTP) and a Data Translation Processor (DTP).

- l 1 7 -

ala source

object

FIGURE 7 .8 THREE WRAPPERS D EVELC· , · f' 'J IN THIS STUDY

An STP translates schemas from the data source into the Mediated Data Definition

Language (MDDL). A QTP is responsible for transbting the Mediated Query

Language (MQL) subqueries to a specific query to he processed by each data source.

A DTP gets the query result from each data source, and then translates this into the

Mediated Data Representation Structure (MDRS) where each unit is a set of required

object attributes or properties.

l 1 8

RWrap OWrap LWrap

RSchmTransl OSchmTransl LSchmTransl

RQueryTransl OQueryTransl LQueryTransl

DataTransl Data Transl Data Transl

Wrapper for Wrapper for Wrapper for
the relational the object data legacy text
data model model files

CHAPTER 8 - SYSTEM EVALUATION

AND RES ULTS

The critical problem in a data integration process is the heterogeneity of component

data sources. The causes of heterogeneities can be from the autonomy of data

sources, different database design, and so on. Conflicts or heterogeneities between

heterogeneous data sources in this study have previously been classified into three

major types: Data Model Heterogeneity, Schematic Heterogeneity, and Semantic

Heterogeneity. Bri ef descrirtions are given below :

Data Model Hetcrogcneitv

Data Model Heterogeneity occurs when there is a prob km with data integration from

multiple data sources when component data sources use di fferent data models, for

example, some may be relational data models, some may be object-oriented data

models, and others may be legacy file processing systems. Data Model Heterogeneity

involves using different data definition languages and manipulation languages.

Schematic Heterogeneity

Schematic Heterogeneities exist when the structures of same real-world objects are

defined differently in their component data sources. They can be classified as:

• Naming Conflicts which include conflicts between entity-entity and attribute-

attribute,

• Structural Conflicts which include entity-attribute and attribute-data,

• Generalisation/specialisation Conflicts, and

• Relationship Conflicts.

- 1 1 9 -

Semantic Heterogeneity

Semantic Heterogeneities occurs when data in component data sources are

represented differently. These include Naming Conflicts, Representation Conflicts,

Scaling Conflicts, and Level of Abstraction Conflicts.

In this chapter, example problems of heterogeneities from a number of information

systems that require integration are described. The conflicts classified previously are

then resolved. The objectives are to demonstrate the integration process using the

Me D i n t architecture and to evaluate its correctness. Each example problem is

chosen to demonstrate a different set of conflicts.

8. 1 System Experin1entation and Evaluation

8 . 1 . 1 Test problem 1 - Hotel Chain Information Systom

The example is a Hotel Reservation Information System vvhicli prnviJ..:s information

for travel agencies. The information systems of contacted hotels need to be

interoperated. Heterogeneities have been found when integrating them. Following are

the object schema definitions of component data sources only which relate to this

query example.

HOTEL CHAIN A - OBJECT-ORIENTED DATA MODEL

CREATE TYPE Address_type (
Number
Street
City
State
Country
Postcode

CREATE Type HotelObj (
Name
Address
Phone
Fax
Rooms
Description

CHAR,
CHAR,
CHAR,
CHAR,
CHAR,
CHAR)

CHAR,
Address_type,
CHAR,
CHAR,
NUMBER,
CHAR)

- 1 20 -

CREATE TYPE Loc_type (
Building
Floor
Wing

CREATE TYPE Class_type (
RoomClass
NumberPersons

CREA TE TYPE RoomObj (
Hotel
Number
Location
Class
Price

CREATE RoomStatus (
Room
Date

CHAR,
CHAR,
CHAR)

CHAR,
NUMBER)

Hotel Obj,
CHAR,
Loc_type,
Class_type,
NUMBER)

RoomObj,
DATE,

Status {checkin, checkout, available, reserved})

HOTEL CHAIN B - RELATIONAL DATA MODEL

CRr=ATE T.I\RLE HOTELINFO
(Name
Address
City
State
Country
Postcode
Phone
Fax
Rooms
Description
PRIMARY KEY (Name))

CREATE TABLE ROOM

CHA, ! ,
CHAR,
CHAR,
CHAR,
CHAR,
CHAR,
CHAR,
CHAR,
NUMBER,
CHAR,

(Hotel Name CHAR,
Number CHAR,
Building CHAR,
Floor CHAR,
Class CHAR,
NumberPersons NUMBER,
Price NUMBER,
PRIMARY KEY (HotelName, Number),
FOREIGN KEY (HotelName) REFERENCES HOTELINFO)

CREATE TABLE STATUS
(HotelName CHAR,
RoomNumber CHAR,
Date DATE,
Status CHAR,
PRIMARY KEY (HotelName, RoomNumber, Date)
FOREIGN KEY (HotelName, RoomNumber) REFERENCES ROOM)

HOTEL CHAIN C - LEGACY FILE PROCESSING SYSTEM

HOTEL(Name, Address, City, State, Country, Postcode, Phone, Fax, Rooms, Description)

ROOM (HotelName, Number, Building, Floor, Class, NumberPersons, Price)

STATUS (HotelName, RoomNumber. Date, Status)

- 1 2 1

Each data source is the data source of a hotel chain which includes a number of

hotels of its chain. Hotel data sources may be served by different data models, for

example, an object-oriented data model (HotelA), a relational data model (HotelB),

and a legacy file processing system (HotelC). These cause Data Model

Heterogeneities.

Schematic Heterogeneities also exist, for example:

• Hotel location, room classification and address are declared as object types in the

Object-oriented data model (HotelA), which is different from the Relational data

model (HotelB) and the file process system (HotelC).
• Attributes of room status, for example, HotelA.RoomStatus, HotelB.Status, and

HotelC.status are declared differently.
• l'<a 1n i1 1g conflicts occur i .e . l lotcL\ .LuumStatus .Room.Numbcr,

HotelB.STATUS.RoomNumber, Hote!C.STATUS.RoomNumber.

Semantic Heterogeneities also exist, for example:

• DitT:rcnt currencies used in the pr ic.? quoted of each of the hote ls ,x! , :1 ': r :

located in different countries. These cause Scaling Conflicts.
• Representation Conflicts or Domain Mismatches

• Domain of HotelA.RoomStatus is user-defined type which is { checkin,
checkout, available, reserved} .

• Domain ofHotelB.Status is CHAR which could be 'I ' , 'O', 'A' and 'R'.
• Domain ofHotelC .Status is CHAR which could be 'In', 'Out' , 'Av' and 'Re'.

Before integration occurs, the five prerequisites of the M e D l n t architecture which

form the components of the Mediated MetaData (MMD) have to be maintained:

Prerequisite 1 - New data sources have to be registered in the Data Source

MetaData (DSMetaData).

-----------------·- · · ···· - --- ----------
- 1 22 -

AssignedName
DataModel
Location
SourceName
Objects
Description
Constraint

AssignedName
DataModel
Location
SourceName
Objects
Description
Constraint

A�;siq:nedNarne
DataModel
T {JC<'l t i CT'

' ·, . � ' -..:::: �. � _, / .(_ '- - � " � ,,

Objects
Descri.pt I.en
Constraint

HoteJA;
object ;
http: //A. can/HotelDB;
HotelA;
RoomStatus;
Hotel A' s database;
Price (OJrrency = "USO'') ;

HotelB;
relational;
http: //B. can. au/HotelDB;
HotelB;
Hote1In:fo, Room, Status;
Hotel B' s database;
Price (OJrrency = "AUD") ;

Hc,t:elC;
legar.::y;

H,-,,tc.l , RJ(';rn, Stc1tu.s ;
Hc�el C' s files;
Prier:� {Currency = "P. .. UD") ;

Prerequisite 2 - Entity equivalences have to be indicated in the Object Mapp in�

MetaData (OMMetaData).

GlobalCbj ect
t-'l..at1)eda)j ect

MappedObject

MappedObject

GlobalObject
MappedObject

Maf1)edC:bject

MappecKbject

GlobalObject
MappedObject

MappedObject

MappedObj ect

Hotelinfo
SourceJIBsigned.lilarr�
SourceObject
SourceAssignedName
SourceObject
SourceAssignedNarne
SourceObject

Roamin:fo
SourceAssignedName
SourceObject
SourceAssignedName
SourceObject
SourceAssignedName
SourceObject

RocrnStatus
SourceAssignedName
SourceObject
SourceJIBsigned.lilarne
SourceObject
SourceAssignedNarne
SourceOb:j ect

HotelA
HotelObj
HotelB
Hote1In:

f

o
HotelC
Hotel

HotelA
RoorrObj
HotelB
Room
HotelC
Room

Hote1A
RoomStatus
HotelB
Status
HotelC
Status

- 1 23 -

Prerequisite 3 - Attribute equivalences have to be indicated in the Attribute

Mapping MetaData (AMMetaData).

GlobalAttribute
�,appedAttribute

GlobalAttribute
Mappedl.\l tribute

GiobaJl,lt cibute
MappedAttribute

city
SourceAssignedName
SourceObject
SourceAttribute

country
Source7\ssignedNarne
SourceObject
SourceAttribute

class
SourceAssigned.'\Jarne
SourceObject
Source.Attribute

HotelA
HotelObj
Address . city

Hote1A
HotelObj
Address . country

HotelA

Clas:c;_Type . RoomClass

Prerequisite 4 - Data equivalences have to be defined in the Thesaurus MetaData

(TSMetaData).

G: obal.Cateqory
i":z:..r_;pr:.=:d.lnf ()

Iv'.:apped.Info

Mappedinfo

RccrnSl.:,1tus
':,. F· . , l . ' ..

A .. iases

Default
ALiases

Default
Aliases

Ahas
AI.:Las
Alias
AL:i.as

ALias
Alias
Alias
Alias

Alias
Alias
Alias

I
In
Checkin
Check in

Check out

0
Out
Checkout
Check out

Available

- 1 2 4 -

A
Av
Available

Mapped.Info Default
Aliases

Alias
Alias
Alias

Reserved

R
Re
Reserved

Prerequisite 5 - Conversion factors of different units have to be specified in the

Conversion MetaData (CVMetaData).

{Currency_cnv Default

CVto
CVfactor
CVoperator
C'Vreverse

AUD

USO
0 . 596
*
I

All the prerequi s i te t�sks above ;1rc performed by the ::' '/ ; '. ,.T ; :� ;:. Processor (RP). Tn

terms of implementation, the XML documents are used ,o r�prcscnt MMD (See

Appendix I) .

Assume that a user wants to enquire about the price of a :- tandard room in hotels in

'Perth, Australia' which are available on 1 st March 2003 , the Mediated Query

Language (MQL) is stated as follows:

SELECT

FROM

I N

CONDITION

Hotel lnfo.Name, Roomlnfo.Class, Roomlnfo.Price (currency = 'AUD')

Hotellnfo, Roomlnto, RoomStatus

HotelA, HotelB. HotelC

(Hotellnfo.City = 'Perth' and

Hotel lnfo.Country = 'Australia' and

RoomStatus.Status = 'Available' and

Room Status. Date = '01 /03/2003' and

Roomlnfo.Price < 200 (currency='AUD'))

Because of these data sources use different currencies, it has been stated on the query

that the price shown on the output must be Australian dollars (Roomlnfo.Price (currency =

'AUDJ) which is easier for accommodation price comparison. Also, the contexts of the

values stated in condition of the query can be defined clearly (Roomlnfo.Price < 200

(cun-ency='AUDJ).

The major task of the M e D l n t Mediator after getting a query from a client is to

decompose the query to subqueries and to distribute the subqueries to associated

- 1 25 -

wrappers. This task is assigned to QT A. Before doing this, QT A has to fetch object

schema definitions which are related to the query.

The Process of Fetching Object Schema Definition

Following the algorithm stated in the Process FetchDef(D, OJ (See Chapter 6), from

the query, DSMetaData, and OMMetaData, QTA realises that the required object

schema are as shown in Table 8. 1 .

TABLE 8.1 OBJECT SCHEMA DEFINITIONS REQUIRED

FIGURE 8.1 OBJECTS REQUESTED FROM WRAPPERS

Schema Translation Processes

The STPs, by the RSchmTransl(Si, Oj), OSchmTransl(Si, Oj), and LSchmTransl(Si, Oj)

processes (See Chapter 7), translate the disparate object schema definitions into

MDDLs.

- 1 2 6 -

HotelA HotelB HotelC

HotelObj Hotellnfo Hotel

RoomObj Room Room

RoomStatus Status Status
�-"----�--

QTA send requests for the MDDLs of those objects to the S l i'; ,1: :tssociatcd

wrappers as shown in Figure 8.1.

� --- - ---�------ -- ·--�---- · -

HotelObj

RoomObj

Room Status

HotelA

Hotellnfo

Room

Status

HotelB

Hotel

Room

Status

HotelC

From HotelA

HotelObj = {
attribute

}

Name
Addres s
Phone
Fax
Rooms
Descript ion

RoomObj = {
attribute

Hotel
Number
Location
Cla s s
Price

)
RoomSt atus = {

attribute

From Hote!B

Date
Status

Hot ": 1 I n f o = (

Room

attribute

key

}

Name
Addres s
City
State
Country
Postcode
Phone
Fax
Rooms
Des cription

Name ;

= {
attribute

HotelName
Number
Building
Floor
Clas s
Numbe rPersons
Price

relationship
HotelName

key

s tring ;
addres s_type ;
s tring ;
string ;
numeric;
string ;

HotelObj ;
string;
loc_type ;
class_type ;
numeric ;

{ checkin , chec kout , a v a i J. abl e ,
res erved) ;

string;
string;
string ;
string ;
string ;
string ;
string ;
string;
numeric;
string ;

string;
st ring ;
string ;
string ;
string ;
numeric;
numeric;

Hote1Info . Name ;

HotelName+Number ;

- 1 2 7 -

RoomStatus = {
attribute

HotelName
Room
Date
Status

relationship
Hotel Name
Room

key

string ;
string ;
dat e ;
string ;

Room . HotelName ;
Room . Number;

HotelName+Room+Date ;

From HotelC

Hotel = {

Room

attribute

}

Name
Address
City
State
Country
, c t c'.:lde
Phone
Fax
Rooms
Description

= {
attribute

HotelName
Number
Building
Floor
Class
NumberPersons
Price

relationship
HotelName

}
Status = {

attribute
Hot elName
Room
Date
Status

relationship
Hotel Name
Room

string ;
string ;
string;
string ;
c;r rin0 ;

,-s t r i ng ;
string ;
numer i c ;
string ;

string ;
st ring ;
str ing;
string;
string;
numeri c ;
numeric;

Hotel . Name ;

string ;
string ;
dat e ;
string ;

Room . HotelName ;
Room . Number;

From the above MDDLs from HotelA, the FetchDef(D, 6) process also analyses that

there are further user-defined type definitions (address_type and class_type) required

from data sources. Then, QTA sends another request to OWrap.

- 1 28 -

Address_type= {
attribute

Number
Street
City
State
Country
Postcode

}

string ;
string;
string;
string ;
string ;
string ;

Class_type = {
attribute

RoomClass
NurnberPersons

string ;
numeric ;

Query Decomposing Process

Now, QTA has enough object schema definitions for decomposing the query by the

Qtransform(A, D, 0, <;:) process (See Chapter 6)) .

Al l obj ect and a t t r ibute i dentifiers defined on t l : . · '.; , :: : .: query arc global i dcn t i k: .·

which can be mapped to local identifiers with the assistance of information in

OMMetaData and AMMetaData. From TSMetaD:1ta and CVMetaData, attribute

values and contexts will be converted to the corresponding source values and

contexts.

MQL to HotelA

SELECT

FROM

IN

CONDITION

Hotel Obj . Name, RoomObj. Class_ Type. RoomClass, Room Obj . Price

HotelObj, RoomObj, RoomStatus

HotelA

(HotelObj.Address.City = 'Perth' and

HotelObj.Address.Country = 'Australia' and

RoomStatus.Status = 'Available' and

RoomStatus.Date = '01/03/2003' and

RoomObj .Price < 1 1 9 .2)

200 (currency = 'AUD') is converted with assisting information in CVMetaData to

1 1 9.2 corresponding to the currency used in this data source.

1 29

MQL to HotelB

SELECT
FROM

IN
CONDITION

Hotellnfo.Name, Room.Class, Room.Price
Hotellnfo, Room, Status
HotelB
(Hotellnfo.City = 'Perth' and
Hotellnfo.Country = 'Australia' and
Status.Status = 'A' and
Status.Date = '01 /03/2003' and
Room.Price < 200)

MQL to HotelC

SELECT
FROM
IN
CONDITION

Hotel .Name, Room.Class, Room.Price
Hotel, Room, Status
HotelC
(Hotel.City = 'Perth' and
Hotel.Country = 'Austral ia' and
Status.Status ·::: '/\v' anrl

Room.Price < 200)

Creating a Pre-defined Template Process

By Temp!Create(A), QTA also prepares a template in MDRS 1·o rmat

(Hotellnfo.Name, Roomlnfo.Class, Roomlnfo.Price (currency='AUD'))

Query Translation Processes

Each subquery will be sent to the QTP of its associated wrapper for query translation

which is performed by the SQLGen(x), OQLGen(x), or XQLGen(x).

OQL to HotelA

SELECT
FROM
WHERE

HotelObj .Name, RoomObj.Class_ Type.RoomClass, RoomObj.Price
HotelObj, RoomObj , RoomStatus
(HotelObj.Address.City = 'Perth' and
HotelObj.Address.Country = 'Australia' and
RoomStatus.Status = 'Available' and
RoomStatus.Date = '01 /03/2003' and
RoomObj.Price < 1 1 9.2)

- 1 30 -

SQL to HotelB

SELECT
FROM
WHERE

Hotellnfo.Name, Room.Price
Hotellnfo, Room, Status
(Hotellnfo.City = 'Perth' and
Hotellnfo.Country = 'Australia' and
Status.Status = 'A' and
Status.Date = '01 /03/2003' and
Room.Price < 200 and
(Hotellnfo.Name = Room.HotelName and
Room.HotelName = Status .HotelName and
Room.Number = Status.Room))

For a pair of related objects declared on a query in a relational data model,

relationship statements have to be included in the condition statement.

XQuery to HotelC

</result>

FOR $h IN document("http://C.com/HotelF i les/Hotel .xml'")//hotel
FOR $r I N document(''http://C.com/Hote1Fi les/room.xml")//room[hotelname=Sh/narne]
FOR $s IN document("http://C.com/HotelFi les/status .xml")//status[hots!n2mo=$r.hotelname

a,�d roorn=$r.number]
WHERE

RETURN
<room>

</room>

($h/city = 'Perth' and
$h/country "' ';'.\ustra!ia and
$s/status = 'Av' and
$s/date = '01 /03/2003' and
$r/price < 200 and)

{$h/name}
{$r/price}

Data Translation Processes

The subqueries above will be performed by the query processing of the local

database management systems. Then, the query results will be returned to wrappers.

The DTPs will translate query results which are in disparate models to MDRS:

HotelA

{("Sheraton Perth Hotel", "Deluxe", 1 02 (currency=USD))}

HotelB

{("Novotel Langley Perth", "Standard", 140.00 (currency=AUD)),
("Novotel Langley Perth", "Apartment", 1 70.00 (currency=AUD))}

- 1 3 1 -

HotelC

{("City Stay Apartments", "Standard", 1 06.00 (currency=AUD))}

However, the results still cannot be integrated because they are still in different

contexts.

Applying MDRS Results to the Pre-defined Template Process

The result from Hotel Chain A still needs the conflict resolving process App/Temp(p,

r, 0) to be performed by CRA to apply the result corresponding to the predefined

template. CVMetaData provides currency conversion information.

(Hotellnfo.Name, Roomlnfo.Class, Roomlnfo.Price (currency='AUD'))

HotelA

{("Sheraton Perth Hotel", "Deluxe", 1 7 1 . 1 4 (currency=AUD))}

Integrating the Mediated Data Representation Structure Process

Now all query result can be integrated by CP using the union operator.

{("Sheraton Perth Hotel", "Deluxe", 1 71 . 1 4 (currency=AUD)),
("Novotel Langley Perth", "Standard", 140.00 (currency=AUD)),
("Novotel Langley Perth", "Apartment", 1 70.00 (currency=AUD))
("City Stay Apartments", "Standard", 1 06.00 (currency=AUD))}

Generating the Integrated Result Process

Finally, RA can present the integrated query result to users as shown in Table 8.2.

TABLE 8.2 INTEGRATED RESULT OF TEST PROBLEM 1

- 1 32 -

Hotellnfo.Name Room Info.Class Room Info.Price
(currency=' AUD')

Deluxe 171.14

Standard 140.00

Apartment 170.00

Sheraton Perth Hotel

Novotel Langley Perth

Novotel Langley Perth

City Stay Apartments Standard 106.00

From this example, the following heterogeneities (Table 8.3) have been resolved:

TABLE 8.3 HETEROGENEITIES IN THE TEST PROBLEM 1

FIGURE 8.2 THE UNIVD8 ENTITY RELATIONSHIP DIAGRAM

- 1 33 -

Conflicts HotelA HotelB HotelC Heterogeneities

Model Relational Object Legacy

Schema Naming RoomStatus, RoomNumber

Structural Address, Location, Class

Semantic Scaling currency='USD' currency='AUD' currency='AUD'

Representation Room Status

8.1.2 Test Problem 2- University Information System

This sample is a university information system which is composed of a relational

system namely UnivDB (Figure 8.2 and 8.3)and an object-oriented system

CampusDB (Figure 8.4).

MeDlnt: /,r, A,,p.rooct, fo, tl,e lnlesrcition of Dotot;nse or,cl Legoc:y <;ysterns

�.

.

""

Book

-Id
fnome
homo
oddress
tel_no

FIGURE 8.3 THE UN!V0B'S RELATIONSHIP

FIGURE 8.4 THE CAMPUS08's ENTITY RELATIONSHIP DIAGRAM

From this example, all three categories of heterogeneities have occurred.

Firstly, UnivDB is a relational data model, while CampusDB is an object data model

(see Appendix E and F for data definitions); this causes a Data Model

Heterogeneity.

Secondly, there is a Structural conflict in the Schematic Heterogeneity category

which has been caused by using different structures to represent the same real-world

object in both data sources. For example, in UnivDB, Staff and Student objects have

- 134 -

-31-08)

certified

�, ., h_r

their own attributes, relationships and key, while in CampusDB, Staff and Student are

subtypes of Person. It means that Staff and Student share some equivalent

characteristics. Lecturer is another object defined in CampusDB as a subtype or a

specialisation of Staff. Furthermore, one to many and many to many relationships are

normally represented differently in a relational model than from an object model

which is able to distinguish between Enro/Rec, LoanRec, Prerequisite, Lecture, and

Author in UnivDB, and Student.Enrol, Book.loanby, Course.hasprerequisite,

Lecturer.Lecture, and Book.author in CampusDB. There are also conflicts from

using the structure data type struct in the object data model to amalgamate many

attributes, for example, name has been defined as struct<stringfname; string

/name>. This falls into the Attribute-attribute conflicts in structural conflicts.

Finally, a number of Semantic Heterogeneities occur between both sources. Student

level in UnivDB is represented by {P, U}, but in CampusDB it is represented by

{postgrad, undergrad}; this causes a Representation conflict. Staff salary in Univ DB

is quoted in US dollars, but in CampusDB is quoted in Australian dollars; this causes

a Scaling conflict.

8.2.2.1 Query 1

The first query example is a request for the id and name of postgraduate students

who enrol in 'CSP1143' from both DSJ and DS2.

SELECT

FROM

IN

CONDITION

Student.id, Studentname

Student, Unit

DS1, DS2

Unit.id = 'CSP1143' and

Student.level="postgrad";

- 135 -

In this example, the following heterogeneities (Table 8.4) have been resolved:

TABLE 8.4 HETEROGENEITIES IN THE QUERY 1 OF TEST PROBLEM 2

All have been solved by the M e D l n t Mediator and wrappers algorithms. The entire

integration process is mostly the same as the previous example problem but only

some details are different because of the distinction of conflict types. The details of
the integration process are presented in Appendix J .

8.2.2.2 Query 2

A user may want to get the id and yearly salary of staff who earns less than 50,000

AUD$ from UnivDB(DSJ) and CampusDB(DS2) . Thi s query initiates conflicts

which are different from the first query.

Select

From

I n

Condition

Staff.id, Staffsalary(currency="AUD", period="yearly'')

Staff

DS1 , DS2

Staff.salary(currency="AUD". period="yearly") < 50000;

In this query example, a Scaling conflict is added. The submitted query needs yearly

salary information from Univ DB and CampusDB in Australian dollars, but in the data

sources registered information in DSMetaData, the currency using in CampusDB is

US dollars and salary is quoted on a monthly basis in Univ DB. Therefore, the

condition in the query submitted to CampusDB has to be converted to US dollars and

then after getting the result from CampusDB, again the result in US dollars has to be

converted back into Australian dollars. Moreover, the query submitted to UnivDB

has to be transformed into a monthly basis to compare to data in the source, and the

result has to be converted back into a yearly basis by the query requested.

1 3 6

Heterogeneities Conflicts UniDB CampusDB

Model Relational Object

Schema Entity-entity Unit Course

Attribute-attribute Unit.id Course.code

Structural Fname, !name Name

Specialisation Student.Person

Semantic Naming D(level)={U,P} D(level)={postgrad, undergrad}

MeD!nt : /, r , A r:, 1 > 1 ·> o c 1 , :0 1 t h e l n t ,c, s1 , G t i ,:; n <; f !J u ' < 1 t , u s e c r , c:1 L e ,J c c y S y s + , · m ,

In this example, the following heterogeneities (Table 8.5) have been resolved:

TABLE 8.5 HETEROGENEITIES IN THE QUERY 2 OF TEST PROBLEM 2

The result from the integration process can be described in terms of conflict

resolutions and functionality as follows:

- 1 3 7 -

Heterogeneities Conflicts Un1DB CampusDB

Model Relational Object

Schema Specialisation Staff Staff:Person

Semantic Scaling currency='AUD' currency='USD'

Abstraction Period='monthly' period='yearly'

All have been solved by the Mediator and wrappers algorithms. The details of the

integration process are presented in Appendix J.

8.2 Summary

By applying the Me DI n t architecture to a number of information systems, the

correctness of the integration results are shown in the previous section. Different sets

of conflicts have been resolved (Table 8.6).

TABLE 8.6 SUMMARY OF THE HETEROGENEITIES RESOLVED BY THfc ME DI NT ARCHITECTURE IN EACH EX/1.1.'PI c'

I
Heterogeneities Conflicts Test Problem1

Test Problem2

Query 1 Query 2

Model .; .; .;

Schema Naming .; .; .;

Structural .; .;

Specialisation .; .;

Relationship .;

Semantic Naming .;

Scaling .; .;

Abstraction .;

Representation .;

8.2.1 Conflict Resolution In MeDlnt

Conflicts between heterogeneous data sources in this study are classified into three

major types which are Data Model Heterogeneity, Schematic Heterogeneity, and

Semantic Heterogeneity. The previous evaluation shows that these three category

conflicts can be removed successively and correctly.

Data Model Heterogeneity

From the example problems, component data sources of which some are relational

data models, some are object-oriented data modes, and others are legacy file

processing systems pose Data Model Heterogeneities. In Me Dint, the Mediated Data

Model (MDM) consisting of the Mediated Data Definition Language (MDDL), the

Mediated Query Language (MQL), and the Mediated Data Representation Structure

(MDRS) have been employed to create a common data model to be used in

communicating between the Me DI n t Mediator components and wrappers. The

problems of local data sources using different data definition languages can be

solved by translation into MDDL by wrappers. The ml:Jiator components make uses

ofMDDL. Similar to the problem of different data manipulation languages, MQL is

used when decomposing a user query into subqueries, before the wrappers translate

these subqueries to the query language used in each data source.

Schematic Heterogeneity

Schema Heterogeneities in the example problems occur when the structures of same

real-world objects have been defined differently in their component data sources.

They are classified into Naming conflicts, Structural conflicts,

Generalisation/Specialisation conflicts, and Relationship conflicts. They are solved

by the assistance of mapping and constraint information defined in OMMetaData and

AMMetaData.

Semantic Heterogeneity

Semantic Heterogeneities occur when the data in component data sources have been

represented differently. These Naming conflicts and Representation conflicts are
---·-------······-·----

- 1 38 -

---- -----------

MeDlnt : t, r, A r:, p 1oo c l 1 i u , i r 1 t:· l n i , :· c.i :- u t 1 u n f D o t o t, o s e c r , d l e ,) c c y S y :; f ,'· ri , s

solved by TSMetaData. Scaling conflicts and Level of Abstraction conflicts are

solved by the extended dimension of the Mediated Data Model in conjunction with

CVMetaData. Heterogeneities resolved in the example problems are summarised in

Table 8.7.

TABLE 8.7 SUMMARY OF THE HETEROGENEITIES RESOLVED BY THE COMPONENTS OF THE M E D I N T

ARCHITECTURE

- 1 39 -

Resolved Heterogeneities

by Data Model Schema Semantic

MOM ..J ..J

OMMetaData ..J

AMMetaData ..J

TSMetaData ..J

CVMetaData

8.2.2 The Integration Functions of the Me Dint Components

In terms of functionality, the MeDlnt architecture is mainly separated into two parts

which are facilitation and translation. The function of facilitation is performed by the

MeDlnt Mediator which has been designed especially for homogenising

heterogeneities both on users' queries and on query results. Wrappers are created for

the translation purpose including schema definition, query and data translation. The

Me Dint component functionalities are shown in Table 8.8.

TABLE 8.8 SUMMARY OF THE FUNCTIONS OF THE MEDI NT COMPONENTS

Functions Mediator Wrapper

RA QTA MMD CRA CP STP QTP DTP

..J ..J Data sources autonomy
information

..J Data sources' schema
definitions translation

..J Query decomposition and
translation

Data Translation ..J

Conflict Resolution ..J ..J

Data Consolidation ..J

MeDln t : i\ c, A

C H APT E R 9 - D I SC U SS I O N AN D

CO N C LUT I O N

Many organisations have put much effort to deal with information scattering from

multiple data sources with the aim of providing a unique view of the information. A

number of heterogeneities can arise from platform, database and data levels. At

database and data levels, there are Data Model, Schematic, and Semantic

Heterogeneities that need to be solved. Several integration techniques have been

presented such as global schema, federated database, multidatabase approaches and

so on. However, some of thern are suitable for particular data models, some do not

support legacy file repositories, and some generate problems in dynamic systems.

This research introduces a framework called the Mediated Data Integrat ion

(Me D l n t) architecture based on the mediat.ion approach and incorporating with

wrappers and a semantic-rich data model, the Mediated Data Model (MDM), to

resolve the problems of integrating heterogeneous data sources. MDM enriches the

Me D i n t architecture to capture different semantic contexts from data sources. No

pre-integration is required before users issue their queries thus avoiding the problem

of local schema evolution in dynamic systems. Furthermore, instead of schema and

semantic integration, the pre-defined template in collaboration with the mediator

components provides the query result consolidation without global schema

integration.

This chapter presents the discussion of the Me D i n t architecture, thesis contribution,

limitations and future research directions.

- 1 4 0 -

9. 1 Discussion

From the review and extensive investigation, it has been found that heterogeneities,

which are the major problem of heterogeneous data integration, can be classified into

three categories: Data Model Heterogeneities, Schematic Heterogeneities, and

Semantic Heterogeneities.

Data Model Heterogeneities exist when different data models are used to describe

component data sources. This includes the use of different data definition languages

to describe component schemas and the use of different data manipulation languages

to describe user queries. Schematic Heterogeneities can be found at the schema level

of component data sources when different structures are used to represent the same

concept. In addition, they can result from diffei;-ent data model characteristics and/or

design autonomy. Semantic Heterogeneitie.s are found at the data level when the

same set of data is represented in different terminologies or different contexts. A
number of efforts have been introduced to resolve heterogeneities, for example,

mapping techniques, schema translation, meta-data repositories, join methocls,

homogenising, the Object Exchange Model (OEM), semantic specification,

superclasses, and so on.

Several integration approaches have been introduced to interoperate heterogeneous

data sources and to resolve the heterogeneities. The global schema approach is a
fully-integrated approach or tightly-coupled approach. The component schemas are

integrated by a single view. The federated database approach can be tightly- or

loosely- coupled. More than one federated schema is created by users or

administrators. The multidatabase approach is more loosely-coupled by providing a

multi-database manipulation language as a query tool to communicate with

component databases. However, each approach has some limitations, for example,

the global schema and multidatabase approaches cannot be served by legacy file

processing systems, the global schema and federated schemas have to be recreated in

dynamic systems when component schemas changed, and so on.

This research investigates the design of an approach to logically integrate database

and legacy file processing systems and to resolve the three previously classified

- 1 4 I -

heterogeneities. The integration and conflict resolution processes should be

transparent to users when they issue the queries. One of the major concerns is the

component schema evolution should not affect the integration or lead to a large

number of consequent modifications. The research finally introduces the M e D l n t

architecture based on the mediation approach as a solution to logically integrating

heterogeneous data sources. It is the middle layer between clients and multiple data

sources. It encompasses three major components: the M e D l n t Mediator, MDM, and

wrappers. The M e D l n t architecture can be explained based on the conceptual level

of the ANSI/SP ARC architecture.

The M e D l n t Mediator is in-between the clients and the wrappers. It has been

designed to overcome Schema and Semantic Heterogeneity issues. It functions as an

agent homogenising conflicts in both directions. In the client-to-source direction, it

decomposes user queries according to the schemas and semantic contexts of

component data sources. In the source-to-client direction, it homogenises results

which are schematic and semantic difference.:; to have the same structure and ..:untcxt

as the pre-dcfo:u.::J template. The M e D I n t ha.s .:,i,,;. components. The Regish.:1i116
Processor (RP) captures component data source, object, attribute and constraint

information to the Me D i n t MetaData (MMD). MMD consists of the Object Mapping

MetaData (OMMetaData), the Attribute Mapping MetaData (AMMetaData), the

Thesaurus MetaData (TSMetaData), and the Conversion MetaData (CVMetaData).

The Query Transformation Agent (QTA) decomposes and transforms the query to

subqueries in the same context as the target data sources. The Conflict Resolution

Agent (CRA) resolves the conflicts by homogenising query results corresponding to

the pre-defined template. The Consolidation Processor (CP) merges conflict-resolved

results from multiple data sources. The Rendering Agent (RA) finally generates the

integrated results to display to users.

MDM is developed to be a common data model used in the M e D l n t Mediator for

solving Data Model Heterogeneities. MDM characteristics are derived from the

object data model. However, it adds the third dimension to the two dimensions of the

relation data model to represent semantic contexts. Therefore, it is not only a general

data model which just describes the structure of data sources, but it is also capable of

- 1 4 2 -

depicting and representing heterogeneous data models schematically and

semantically. MDM consists of the Mediated Data Definition Language (MDDL),

the Mediated Query Language (MQL), and the Mediated Data Representation

Structure (MDRS). The Mediated Data Definition Language (MDDL) is able to

express schemas of different data models semantically. The Mediated Query

language (MQL) is a semantic query language by which users can specify the query

with the context if the data in component sources are represented in different

contexts. The Mediated Data Representation Structure (MDRS) presents data with its

contexts in order to be consolidated correctly.

Wrappers overcome Data Model Heterogeneities including different data definition

language and data manipulation language issues. They function as translators

interpreting different schemas, queries, and data from/to MDM. Component schemas

are translated by Schema Translation Processors (STPs). User queries are translated

by Query Translation Processors (QTPs). Results are translated by Data Translation

Processors (DTPs). In this research, wrappers are p;-0, idcd for relational data

models, object data .1110�.;ls, ::md legacy file system:.;. L ... di uf them includes an STP, ,,

QTP, and a DTP.

In summary, Data Model Heterogeneities covering different data definition

languages and data manipulation languages can be overcome by the Mediated Data

Model (MDM) incorporating wrappers. Schema Heterogeneities can be resolved

with the assistance of mapping information and constraint information defined in

OMMetaData and AMMetaData. Semantic Heterogeneities are resolved by

TSMetaData, CVMetaData, and the extended dimension of MDM.

On resolving the Schematic heterogeneities, one of the strengths of the M e D i n t

architecture is that on the integration process, it neither tries to force component

schemas to create a global schema, nor integrates them directly, but only query

results are consolidated. This does not violate original schemas. Furthermore, this

avoids pre- and full-integration and therefore can solve the problem of schema

changing in dynamic systems. In addition to the semantic conflict resolution process,

the Semantic Heterogeneities are not solved directly, but each result from the

- 1 4 3 -

component data sources will be transformed to have the same format as the pre

defined template.

The MeD ln t architecture can be described as partial automation. Conflict resolution

processes are transparent to users. Only the pre-registered process needs to be done

at the beginning or when a new data source is added to the integration system. This

task is done by RP in cooperation with MMD. These help users in minimising the

complexity of the query processes by which the users do not have to find out where

data sources are, what conflicts exist, and how to resolve them.

Compared to other dynamic integration systems, in terms of minimisation, this

method is applied to get only query-associated object schema definitions in order to

decompose and transform a query. This shows efficient performance especially in
medium- or large-sized organisations which involve a number of data sources and/or

a large number of entities, because most of the queries just require information from

a small portion of the entire information of an organisation. However, for small -sized

organisations, the method can be changed to get all obj ect scl, cnns once which is
less complicated and is a subset of this architecture.

In relation to usability, MQL, an extension of SQL which is familiar to users, allows
users to specify their own queries. The semantic contexts can be specified on the

projection and restriction parts of MQL. In terms of scalability and flexibility, when

a new data source is added to the integration system and uses the same data model as

the pre-registered data sources, only the registering process is required. However, if a

new data source with data model heterogeneities is added, a new wrapper is also

required. The integration system therefore requires only minimised modifications

with the addition or removal of data sources.

MMD is implemented using the eXtensible Markup Language (XML) which is a

W3C's standard ofrepresenting and exchanging structured data. Two examples of

integration systems in Chapter 8 and Appendix J were tested and evaluated. They

show and prove the validity and effectiveness of the M e D l n t architecture.

- 1 4 4 -

From the specified research goals which focus on investigating an effective approach

to integrating heterogeneous systems, each goal has been achieved:

• Addressing conflicts among heterogeneous database systems;
• Providing conflict resolution;
• Providing the appropriate architecture for achieving the interoperability or

logically integrating of multiple data sources by which schema evolution will not

affect the integration;
• This research covers legacy file processing systems, the relational data model and

the object-oriented data model.

TABLE 9.1 COMPARISON OF M E D I NT WITH OTHER INTEGRATION APPROACHES

Global Schema Federated Multi-database MeDlnt
Approach Database Language

Approach Approach

Serving schema No. No. Yes Yes
Evolution

Pre-created global
schema requires to

be recreated

Pre�created
federated schemas

require to be

I ,-----·-

lntv·,· ·· 0·: OBA Users ,-. ._: ·n1:1�; 1n

respon.s,oiilty

recreated

['" � �r users.

Depend on tightly or
loosely approach

OBA Users Automation Conflict resolution
responsibility

OBA or users.
Depend on tightly or

loosely approach

Schema Complicate. Complicate. No. Automation
integration
process Especially when

many data sources
are involved.

Semantic Complicate. Complicate. Automation
integration
process Have to be done

together with
schema integration

process

Complicate.

Users need to
understand all

component data
sources thoroughly.

Structural Yes. Yes. No No.
Integration

Only results are A global schema is
created.

Federated schemas
are created. consolidated.

Transparent to Yes No Yes
users

Yes/No.

Depend on tightly or
loosely approach

Scalability No Yes

No No No Yes Support legacy file
systems

- 145 -

Finally, Table 9. 1 shows the comparison of MeD lnt with other integration

approaches. The MeD lnt is unique in serving dynamic systems whose component

schemas could be changed dramatically. It is a partial automated integration by

which only pre-registration information is required. Neither database administrators

or users are responsible for the integration process and the conflict resolution

process. Such complex processes are transparent to users. In terms of scalability,

only a wrapper is required to be developed when a new data sources from a different

data model is added to the integration system. Furthermore, legacy file processing

systems can be interoperated in the MeD lnt architecture.

TABLE 9.2 COMPARISON OF M E D I NT WITH OTHER MODELS OF THE MEDIATION APPROACH

TSIMMIS AURORA MeDlnt

Techniques Mediator, Global Mediation,
employ Schema, Object Homogenisation,

Exchange

Mediator,
Wrapper,

Semantically-rich
data model,
MetaData

Mediation Mediate the
technique

Mediate the
d:fferences between differer" :sir,:

Context Mediator

Mediation,
Conversion, Shared

Ontologies

Mediate the
difference"� ·:ng

conversion

Integrated view,
Wrapper

Mediate the relation
using transformation

technique the transl <'Jn I the integrated view
; '.111d the underlying and·-;· . , �: .

views representation
techniques.

Integration Generate the Terminology Creating an Translating the
technique routines for Mapping integrated view queries into the

combining underlying
information by context
reformulating

queries

Data Modelling N/A MDRS as a data Information and its
data environment model to

Object Exchange
Model- Hierarchy

representation represent data
and its contexts

Query Issuing Users can define
query by their

Users can define
query by their own

context

User issue the query
based on the

integrated view own context

Users issue query
based on the
context of the

mediated global
schema

Data Model Yes N/A N/A Yes
Heterogeneity

Schematic Yes N/A Yes Yes
Heterogeneity

Semantic N/A Yes N/A Yes
Heterogeneity

Support Static Dynamic Static Dynamic
Static/Dynamic
Integration
Environment

The comparison of the MeDlnt architecture to other mediation architecture is shown

in Table 9.2

146

I

MeDlnt : A r, A ,>p r ,.l o c l , , o , i i'h'- ! n i •.':fJ t CJ t i ,, r 1 ,., f D o t <1 i:.<1 s e c r, <i L e J c c y � y :; ' s:· rn s

9.2 Thesis Contribution

The contributions of the work presented from this research are:

• presenting a transparent data integration framework based on the mediation and

wrapper approach to homogenise the heterogeneities and to interoperate database

and legacy systems;

• introducing a semantically-rich data model, MDM, which is capable of

describing the Schematic and Semantic Heterogeneities of multiple data models;

• finding the shared characteristics of disparate data sources and giving these

integration tasks to the Me Dint Mediator, while the unshared characteristics of

data sources are pushed to wrappers for efficiency;

• initiating the idea of design a database management system for which database

administrators can determine the data semantic context freely. This performs well

especially in medium- or large-sized organisations in both keeping tracks of the

large amount of i nformation to be meaningful c1nd interoperating with other datci

sources when ne(' · kd .

9.3 Limitations

1 . This architecture focuses on read-only access to the integration.

2. Only SQL and OQL were considered in query translation as representative of

relational and object-oriented query languages respectively. However, for

other query languages, the appropriate algorithm can be developed using the

same concept.

9.4 Future directions

This section provides some recommendations for future research.

1 . One of the weaknesses of no pre-integrated schema is that it requires fetching

the component schemas during the query decomposition process. Therefore,

- 1 4 7 -

MeD l n t : f., n A p p r ,.i o c l , 1 0 1 i n E' l n i <c \J f' CJ ' i ,:, n <> f D o t c:1 t\u s o n r, d L e c,i u c y S v s t e rn ,

the research can be extended to cover the query performance with the aim of

enhancing the performance of the entire system.

2 . The validity of the conflict resolution process still depends on human to

define the correspondences. To enhance the mapping automation, a rule

based system can be applied to schematic and semantic mappings to reduce

the manpower required and human errors in the manual mapping process.

This has the benefit of only re-defining some incorrect cases.

3. Dynamic conversions can be extended, for example the currency conversion

factor can use current information from the Internet to reduce the time spent

on maintenance.

4. The interception of different legacy systems could be investigated to create a

template from their common points for generating wrappers in order to avoid

creating everything from scratch.

5 . Because this resc:1. r,: 1 1 f'<)c Jlscs on read-only acccs:: 1 , : ' • i : 1 1 ·.Tr�1tion, the

architecture can be extended to read-write access with careful consideration

of the consistency aspect by updating to master data sources and

appropriately propagating to replicating data sources.

6. In terms of increasing user friendliness, a graphical user interface could be

developed to draw component schemas and contexts to simplify the query

specification.

9.5 Conclusion

Generally, multiple and heterogeneous data sources are used to serve an organisation

for different operational purposes. Depending on the management perspectives,

related information should be interoperated to provide the unique concept to enhance

decision making. To do this, some critical problems occur, for example, how to

integrate data sources which have different data models, how to solve the problem

when the structure of data sources is designed differently, how to solve the problem

- 1 4 8 -

MeD!nt : f, r , A ,:, p r o o c i , ! o r t h 0 l n i •" D ··u t i <> r , o f D o l c1 t:,c1 s e e n d L e J u c y S y :, ' <:· 11 1 ,

of different terminologies or different contexts. From the existing integration

approaches, a number of obstacles have been found, for example, the effect from

component schema evolution. The research questions have been directed towards

meeting the integration system requirements.

Me D i n t is a mediation-wrapper approach presented as a framework to interoperate

heterogeneous data sources. It has been designed based on the functional, divide and

conquer, top-down approach. The MeD ln t Mediator incorporates wrappers and

MDM, a semantic data model, to accomplish the integration requirements and

resolve the heterogeneities which are categorised in this research into Data Model

Heterogeneities, Schematic Heterogeneities, and Semantic Heterogeneities. By the

design, the shared-characteristics of the integration processes are assigned to the

Me D i n t Mediator while the unshared-characteristics which are the differences in

data models are assigned to wrappers. The M e D l n t Mediator deals with

homogenising tasks including getting component schema definitions into MDDL,

, : _ _ , ; npusing and transforming usc: t qu, : : i �s i n to MQL subqucric:; ,\ : ' . . , , . :�· \ h

cc, , , -.:.,i-JunJing to the data source c01 , ,c:x,s, �1pplying MDRS rcsulb : u l ; ;- 1 , 1 _ -Jd1nc<l

template to resolve Schematic and Semantic Heterogeneities, and finally

consolidating conflict-resolved results. These show that the M e D I n t Mediator

principally functions as a conflict-broker of all data sources resolving the three

previously-classified heterogeneities with the assistance of wrappers which are

designed to be translators. Each of them translates schema definitions, query

languages, and results between the data model of a data source and MDM. This

reduces the complexity of dealing with several data models at the same time during

the integration process by taking the advantage of using a unique data model, MDM.

It is capable of describing the component data models schematically and

semantically through the extended third-dimension which is responsible for capturing

semantic contexts.

The information systems including object-oriented data sources, relational data

sources, and legacy file processing data sources have been tested and evaluated. The

results show the validity and effectiveness of the approach. The complex processes

of query decomposition, query transformation, query translation, data translation,

- 1 4 9 -

conflict resolution, and data consolidation have been made transparent to users. The

component schema definitions are gathered after users issue the queries, thus the

problem of schema evolution can be solved. The query therefore gets the latest

component schema update. In addition, no schema is integrated, but only results are

consolidated. Human interaction is required only in the data source registration phase

when a new data source of a different data model is added to the integration system.

- 1 50 -

MeD!nt : !, ri ,\ ,:, p r , .> o c ! ' i'o 1 t h ,: · l n i -� q n:i + i 1, n ,; f D n t c1 t.\(:: s e c r1 ci L E' 'J C C 'y S y :; t e 1i , ,

R E F E R E N C ES

Abdalla, K. (1998). A new approach to the integration of heterogeneous databases
and information systems. Unpublished doctoral dissertation, University of
Miami, Florida.

Aronica, R. C. , & Rimel, D . E. (1 996). Wrapper your legacy systems. Datamation,
42(12), 83-88.

Batini, C., Lenzerini, M., & Navathe, S. B. (1 986). A comparative analysis of
methodologies for database schema integration. A CM Computing Surveys,
18(4), 323-364.

Ben-Natan, R. (1995). COREA: a guide to common object request broker
architecture. New York, USA: McGraw-Hill.

Benyon, D. (1 997). Information and data modelling (2nd ed.). England: McGraw
Hil l .

Bertino, E . , Catania, 1> , .: _ ��. : ii i , G . P. (200 1) . /iu.., ."/i", . r . . · , ; . , . ', , , ., e systems. Britain:
ACM Press.

Blaha, M., & Premerlani, W. (1 998). Object-oriented modeling and design for
database applications. New Jersey, USA: Prentice-Hall.

Bolloju, N. (1 996). Semantic query transformation: an approach to achieve semantic
interoperability in homogeneous application domains. In T.-Y. Cheung, J.
Fong & B. Siu (Eds.), Database Reengineering and Interoperability. New
York, USA: Plenum Press.

Bouguettaya, A., Benatallah, B., & Elmagarmid, A. (1 999). An overview of
multidatabase systems: past and present. In A. Elmagarmid, M. Rusinkiewicz
& A. Sheth (Eds.), Management of heterogeneous and autonomous database
systems (pp. 1 -32). San Francisco, California, USA: Morgan Kaufmann
Publishers.

Bray, T., Paoli, J., Sperberg-McQueen, C . M., & Maler, E. (2000, August 1 4).
Extensible Markup Language (XML) 1 .0. Retrieved August 1 5, 2000, from
http://www.w3.org/TR/2000/WD-xml-2e-200008 14

Bright, M. W., Hurson, A. R., & Pakzad, S . (1 994). Automated resolution of
semantic heterogeneity in multidatabases. ACM Transactions on Database
Systems, 19(2), 212-253.

- l 5 1 -

,.) f D O t O t) Cl S e C ri Ci L 0 'J C C y S y S t rn :'>

Bright, M. W., Hurson, A. R., & Pakzad, S. H. (1 992). A taxonomy and current
issues in multidatabase systems. Computer, 25(3), 50-59.

Cattel, R. G. G., & Barry, D. K. (Eds.). (2000). The object data standard: ODMG
3.0. California, USA: Academic Press.

Chang, Y.-H., & Raschid, L. (1996). Using parameterized canonical representations
to resolve conflicts and achieve interoperability between relational and object
databases. In T.-Y. Cheung, J. Fong & B. Siu (Eds.), Database Reengineering
and Interoperability. New York, USA: Plenum Press.

Chirathamjaree, C., & Mukviboonchai, S. (2002a, 8-9 August). A Mediated Data
Model for Heterogeneous Data Integration. Paper presented at the 2nd
Annual International Conference on Computer and Information Science (ICIS
'02), Seoul, Korea.

Chirathamjaree, C., & Mukviboonchai, S. (2002b, 28-3 1 October). The Mediated
Integration Architecture for Heterogeneous Data Integration. Paper
presented at the 1 7th IEEE Region 1 0 International Conference on
Computers, Communications, Control and Power Engineering (IEEE
TENCON'02), Beijing, CHINA.

Codd, E. F. (1 970). A relatiomil model of data for large shard rl:lt:i h:1nks.
Communications of the , lCAI, 1 3(6), 377-387.

Codd, E. F . (1 979). Extending the database relational model to ct1pture more
meaning. ACM Transactions on Database Systems, 4(4), 397-434.

ComputerUser.com Inc. (2000). High-tech dictionary. Retrieved May 1 1 , 2000, from
http://www.currents.net/resources/dictionary/noframes/index.html

Conrad, S., Hasselbring, W., Hohenstien, U., Kutsche, R., Roantree, M., Saake, G.,
et al. (1 999). Engineering Federated Information Systems (EFIS '99
Workshop Report). SIGMOD Record, 28(3).

Critchlow, T. (1 997). Schema coercion: using database meta-information to
facilitate data transfer. Unpublished doctoral dissertation, University of Utah.

Critchlow, T., Ganesh, M., & Musick, R. (1 998, August). Meta-data based mediator
generation. Paper presented at the Proceedings of the Third IFCIS
Conference on Cooperative Information Systems (CoopIS'98), New York,
USA.

CrossAccess Corporation. (200 1). Completing the enterprise integration strategy:
data integration for e-business in search of speed, scale and scope (white
paper). Santa, Clara, California, USA.

Date, C. J. (1 990). An introduction to database systems (5th ed. Vol. 1). USA:
Addison-Wesley Publishing.

- 1 5 2 -

Distributed Management Group. (n.d.). Distributed object computing with COREA.
Retrieved March 22, 2000, from
http://www.infosys.tuwien.ac.at/Research/Corba/

Domenig, R., & Dittrich, K. R. (2000, November). A query based approach for
integrating heterogeneous data sources. Paper presented at the Proceedings
of the Ninth International Conference on Information and Knowledge
Management (CIKM'2000), Washington DC, USA.

Goh, C. H., Bressan, S., Madnick, S., & Siegel, M. (1 999). Context interchange: new
features and formalisms for the intelligent integration. ACM Transactions on
Information Systems, 1 7(3), 270-293.

Goh, C. H., Madnick, S. E., & Siegal, M. D. (1 994, 29 November - 2 December).
Context interchange: overcoming the challenges of large-scale interoperable
database systems in a dynamic environment. Paper presented at the
Proceedings of the Third International Conference on Information and
Knowledge Management (CIKM'94), Gaithersburg, Maryland, USA.

Goldfarb, C. F., & Prescod, P. (2000). The XML handbook (2nd ed.). New Jersey:
Prentice-Hall.

Gnv P . M. n. . Kulkarni , K. G. , & f>;i tnn. N. W. (1 992) . Ohject-orientl'r! dn tnhnses:
u . ,cnuufic da!a model appruuc/1 . ,. :� : l'rcnticc-Hall Intcrnat i u , , (,<) .

Hammer, J . (1 999). The information integration wizard (IWiz) project (report on
work in progress No. TR99-019): Department of Computer and Information
Science & Engineering, University of Florida.

Hammer, M., & McLeod, D. (1 98 1). Database description with SDM: a semantic
database model. ACM Transactions on Database Systems, 6(3), 3 5 1 -386.

Heiler, S., Miller, R. J., & Ventrone, V. (1 996, April). Using metadata to address
problems of semantic interoperability in large object systems. Paper
presented at the Proceedings of the First IEEE Metadata Conference, Silver
Spring, Maryland, USA.

Heimbigner, D., & Mcleod, D. (1 989). A federated architecture for information
management. In A. Gupta (Ed.), Integration of information systems: bridging
heterogeneous databases (pp. 46-71). New York, USA: IEEE Press.

Hirschheim, R., Klein, H. K., & Lyytinen, D. (1995). Information systems
development and data modelling: conceptual and philosophical foundations.
Britain: Cambridge University Press.

Holowczak, R. D., & Li, W. S. (1 996, April). A survey on attribute correspondence
and heterogeneity metadata representation. Paper presented at the
Proceedings of the First IEEE Metadata Conference, Silver Spring, Maryland,
USA.

- 1 53 -

Howe, D. (1 999). The free on-line dictionary of computing. Retrieved May 1 0, 2000,
from http://wombat.doc.ic.ac. uk/foldoc/foldoc.cgi ?IMS

Hughes, J. G. (199 1). Object-oriented databases. New York, USA: Prentice-Hall.

Hurson, A. R., & Bright, M. W. (1 996). Object-oriented multidatabase systems. In 0.
A. Bukhres & A. K. Elmagrarmid (Eds.), Object-oriented multidatabase
systems: a solution for advanced application. New Jersey, USA: Prentice
Hall.

Internet.com Corp. (2000, Aug. 1 1 , 1 997). Webopedia: the number one encyclopedia
dedicated to computer technology. Retrieved 1 0 May, 2000, from
http://webopedia.intemet.com/TERM/e/enterprise.html

ISO/IEC. (1 996). Information technology - Syntactic Metalanguage - Extended BNF,
ISOIIEC 14977, from http://www.cl.cam.ac.uk/�mgk25/iso- 14977.pdf

ISO/IEC/TC JTC 1 . (2002, 6 September). Information technology - Metadata
registries -part 1 : framework. Retrieved October 8, 2002, from
http://www.sdct.itl.nist.gov/�ftp/18/1 l 1 79/1 1 l 79-1 .htm

Jakobovits, R. (1 997). Integrating autonomous heterogeneous data sources (report
No. TR-97- 1 2-05) : Department of C0rnnt1tcr Science Engineering. Un iversitv
of \\ : u : 1 .

Kapitskaia, 0. , Tomasic, A. , & Valduriez, P. (1 997). Dealing with discrepancies in
wrapper functionality (Technical Report No. RR-3 138): INRIA.

Kim, W. (1 995). Modern database systems: the object model, interoperability, and
beyond. New York, USA: ACM Press.

Kim, W., Choi, I . , Gala, I., & Scheevel, M. (1 993). On resolving schematic
heterogeneity in multidatabase systems. Journal of Distributed and Parallel
Database, 1(3), 251 -279.

Kim, W., & Seo, J. (1991). Classifying schematic and data heterogeneity in
multidatabase systems. Computer, 24(1 2), 1 2- 18.

Kroenke, D. M. (2002). Database processing: fundamentals, design &
implementation (8th ed.). New Jersey, USA: Prentice Hall.

Li, C., Yemeni, R., Vassalos, V., Garcia-Molina, H., Papakonstantinou, Y., Ullman,
J., et al. (1998, June). Capability based mediation in TSIMMIS. Paper
presented at the Proceedings of ACM SIGMOD International Conference on
Management of Data (S1GM0D'98), Seattle, Washington, USA.

Lu, H. (1 998). A data mining approach for resolving conflicts during data
integration. Retrieved October 1 8, 1 999, from
http://www.comp.polyu.edu.hk/News/Seminars/sem9809 1 7 .html

- 1 54 -

Lu, H., Fan, W., Goh, C. H., Madnick, S. E., & Cheung, D. W. (1997, October).
Discovering and reconciling semantic conflicts: a data mining perspective.
Paper presented at the IFIP Working Conference on Data Semantics (DS-7),
Switzerland.

Matena, V., & Hapner, M. (1 999, December 1 7). Enterprise JavaBeans™

specification, v 1. 1 . Retrieved March 28, 2000, from
http://www. j avasoft.com/products/ej b/docs.html

McBrien, P ., & Poulovassilis, A. (2001 , June). A semantic approach to integrating
XML and structured data sources. Paper presented at the Proceedings of the .
1 3th International Conference on Advanced Information Systems
Engineering (CAiSE 2001), Interlaken, Switzerland.

Miller, R. J. (1 998, June). Using schematically heterogeneous structures. Paper
presented at the Proceedings of ACM SIGMOD International Conference on
Management of Data (SIGMOD'98), Seattle, Washington, USA.

Morgenstern, M. (1 997, September) . Metadatafor heterogeneous databases. Paper .
presented at the Second IEEE Metadata Conference, Silver Springs,
Maryland, USA.

1Vforrison, M., Boumr11 ••
0y. " . & Brownell , D . (200()'\ YHT. l ' " '<'nshcd. Indi ana,

USA: Sams l\,i : 1 , : . .
Y

Mowbray, T. J., & Zahavi, R. (1 995). The essential COIUJA. Canada: John Wiley &
Sons.

Mukviboonchai, S., & Chirathamjaree, C. (200 1 a, 1 -5 July). XA1Int: an mediated
integration model. Paper presented at the Eleventh Annual International
Symposium of the International Council On Systems Engineering (INCOSE
200 1), Melbourne, Australia.

Mukviboonchai, S., & Chirathamjaree, C. (2001 b, 22-25 July). An XML based
approach for the integration of database and legacy systems. Paper presented
at the 5th World Multi-Conference on Systemics, Cybernetics, and
Informatics (SCI2001), Orlando, FL.

N CITS. (1 999). American national standard dictionary for information technology
(ANSDIT). Retrieved March 22, 2000, from
http://www.x3.org/tc home/k5htm/WD.htm

Neild, T. H. (1 999). The virtual data integrator: an object-oriented mediator for
heterogeneous database integration. Unpublished doctoral dissertation,
Northwestern University.

Newton, J. (1 996, April). Application of metadata standards. Paper presented at the
Proceedings of the First IEEE Metadata Conference, Silver Spring, Maryland,
USA.

- 1 55 -

OMG. (2001 , February). The common object request broker: architecture and
specification. Retrieved June 5, 200 1 , from
ftp://ftp.omg.org/pub/docs/formal/O 1 -02-01 .pdf

Papak:onstantinou, Y., Garcia-Molina, H., & Widom, J. (1 995, March). Object
exchange across heterogeneous information sources. Paper presented at the
Proceedings of the Eleventh International Conference on Data Engineering
(ICDE'95), Taipei, Taiwan.

Phijaisanit, W. (1997). Dynamic meta-data support for information integration and
sharing across heterogeneous databases (federated database). Unpublished
doctoral dissertation, George Mason University.

Potter, W. D., Trueblood, R. P., & Eastman, C. M. (1 989). Hyper-semantic data
modeling. Data & Knowledge Engineering, 4, 69-90.

Rao, 8. R. (1 994). Object-oriented databases: technology, applications, and
products. Singapore : McGraw-Hill.

Reddy, M. P., Prasad, B. E. , & Reddy, P. G. (1 989). Query processing in
heterogeneous distribute database management systems. In A. Gupta (Ed.),
Integration of information systems: bridging heterogeneous databases. New
Y nrk, USA: IEEE Pres"

R(1 1
, , ivf . T., Arya, M. , Haas, L. , C \: ;· _·y, H . , Cody, W. , Fagin, R . , '· ! , l . (1 ()96, June).

The Garlic project. Paper presented at the Proceedings of Lhc 1 9% ACM
SIGMOD International Conference on Management of Data (SIGMOD'96),
Montreal, Quebec, Canada.

Roth, M. T., & Schwarz, P. (1 997, August). A wrapper architecture for legacy data
sources. Paper presented at the Proceedings of 23rd International Conference
on Very Large Data Bases (VLDB'97), Athens, Greece.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1 991). Object
oriented modeling and design. New Jersey, USA: Prentice Hall.

Scallan, T. (1 999). Assuring reliability of enterprise JavaBean applications.
Retrieved March 1 5, 2000, from www.segue.com

Schonhoff, M., Strassler, M., & Dittrich, K. R. (1 997, June). Data integration in
engineering environments. Paper presented at the Proceedings of the
International Conference on Advanced information Systems Engineering
(CAiSE'97) Workshop, Barcelona, Spain.

Sciore, E., Siegal, M., & Rosenthal, A. (1 994). Using semantic values to facilitate
interoperability among heterogeneous information systems. ACM
Transactions on Database Systems, 19(2), 254-290.

Scowen, R. S. (1 998, 1 7 September). Extended BNF - a generic base standard, from
http://www.cl.cam.ac.uk/�mgk25/iso-14977-paper.pdf

- 1 56 -

MeDln t : /', r, A ;:, 1) 1 •) (1 (: r1 J-o t t n 0 I n i •:", \.) : CJ 1 ! () : : , ; f [; o 1 <:I L<: S U G ,; (1 L (' •J G C y S y :i t ," Ii i S

Segue Software. (n.d.). A CORRA primer. Retrieved March 14, 2000, from
www.omg.org/library/whitepapers.html

Seligman, L., & Rosenthal, A. (1996, April). A metadata resource to promote data
integration. Paper presented at the Proceedings of the First IEEE Metadata
Conference, Silver Spring, Maryland, USA.

Sheth, A. P., & Larson, J. A. (1 990). Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Computing
Surveys, 22(3).

Shipman, D. W. (198 1). The functional data model and the data language DAPLEX.
A CM Transactions on Database Systems, 6(1), 140- 173 .

Srinivasan, U. (1997). A framework for conceptual integration of heterogeneous
databases. Unpublished doctoral dissertation, University of New South
Wales, Sydney, Australia.

Stallings, W. (2001). Operating systems: internals and design principles (4th ed.) .
New Jersey, USA: Prentice-Hall.

Strassler, M., & Schonhoff, M. (1998, December). Integrating engineering
dotnhm·es: hnw does the applicatin11 dnmnin influence the FDR.MS

w .·i . . : , , . 11 ...: : · Paper presented a l l : t ...: , . · · .. : i ,_ nl: Datcnbankcn \V, 1 1
). '. · k 1 · , 1r:_;, Denmark.

Thomas, A. (1 993, December). Enterprise JamBeans™ technology: server
component model for the Java™ platform. Retrieved February 25, 2000, from
http://www.javasoft.com/products/ejb/white paper.html

Tomasic, A., Raschid, L. , & Valduriez, P. (1 995, May). Scaling heterogeneous
databases and the design of Disco. Paper presented at the Proceedings of the
1 6th International Conference on Distributed Computing Systems, Hong
Kong.

Tun, Z. Z., Goodchild, A., Bird, L., & Sue, H. (1 999). Introduction to XML Schema.
Retrieved October 30, 2000, from
http://www.dstc.edu.au/Research/Projects/Titanium/papers/XMLSchema/Intr
o-to-XMLSchema.html

Vogel, A., & Rangarao, M. (1 999). Programming with enterprise JavaBeans, JTS
and OTS: building distributed transactions with Java and C++. Canada:
John Wileys & Sons, Inc.

Weiderhold, G. (1 995). Mediation and software maintenance. Paper presented at the
00-ER Conference.

Wiederhold, G. (1 992). Mediators in the architecture of future information systems.
IEEE Computer Magazine, 25(3).

- 1 5 7 -

Wiederhold, G., & Genesereth, M. (1 997). The conceptual basis for mediation
services. IEEE Expert, 12(5), 38-47.

Woelk, D. , Bohrer, B., Brice, R., Huhns, M., Jacobs, N. , Ksieyzk, T. , et al. (n.d.).
Carnot. Retrieved April 1 0, 2000, from
http://www.mcc.com/projects/infosleuth/archives/ carnot/

XML query uses cases. (2002, 1 6 August). Retrieved 23 September, 2002, from
http://www.w3.org/TR/xmlquery-use-cases

XQuery 1. 0: an XML query language. (2002, 16 August). Retrieved 23 September,
2002, from http://www.w3c.org/TR/xquery

Yan, L. L. , Ozsu, M. T., & Liu, L. (1 997, June). Accessing heterogeneous data
through homogenization and integration mediators. Paper presented at the
Second IFCIS Conference on Cooperative Information Systems (CoopIS-97),
Charleston, South Carolina, USA.

Yu, T. F. (1 997). Information modeling and mediation languages and techniques for
information sharing among heterogeneous information systems. Unpublished
doctoral dissertation, University of Florida.

Zhou, G. , Hul l , 'R . 1;>� Kirn!. R . (1 996). Generati r nr r 1'.'t1 in tegration mediators thnt 1.F A

. , . ' ' 1·1 t 11 · ' , · ' , , ' 6(" 1"'1) 1 () () . -, · , rnatcn;l i .) : :1 " 1 1 u1 11 e 1gell i 1,- , . , 1 1/\ J ..'.1 _ , · - - ·

Zhou, G., Hull, R. , King, R., & Franchitte, J. C. (1 995) . Support ing data integrat io : 1
and warehousing using H20. Data Engineering Bulletin, 18(2).

- 1 58 -

Me DI n t : l. n A ,>p r ') o c I : r o r t h I r' t ,,, n , c t i <> n •.> f Du t <:1 l:<1 5 n c r, c1 L e Jc c y s y :; , ,:- r 1, �

A P P E N D I C ES

Appendix A Glossary

Appendix B List of Acronyms

Appendix C Symbols Used in EBNF

Appendix D MDM Reserved Words

Appendix E Data Definition Language in Relational Data Model

Appendix F Data Definition Language in Object Data Model

:'\ppendix G Schemas Rl'rr·:se 1,t1ti 0n in MDDL

1\ppcndix H MDDL ImpL.: : 1 1 ..: L l :tl i Pn by XML

Appendix I MMD Representation in XML

Appendix J M e D l n t Integration Process of Test Problem 2

Appendix K Published Papers

- 1 59 -

Appendix A - Glossary

Agent is a self-contained program capable of controlling its own decision making

and acting, based on its perception of its environment, in pursuit of one or more

objectives (Bertino et al., 200 1).

Aggregation is the process of collecting together a number of characteristics of

something and treating it as a single thing (Benyon, 1 997).

Classification is the process of recognising that various objects share certain

characteristics and can be treated as a single thing (Benyon, 1 997).

Data integration is the method of accessing multiple data sources and receiving

only one unified result to solve the problem of island of information.

D:1 ti.· � To d d Heterogeneity occur \\l _ n d:1 t:1 i n component data so: 1 r ,· . _ ; '. , 1 L:
interop,�ru ted are in different data mo, 1 --'.k

Design autonomy refers to data sources are designed without awarcn..:s;:; of lhe

existing related data sources. This leads to heterogeneity problem when data

integration is required . .

Directly-associated objects are objects that QTA can determine instantly from

information from the user-requested query. The schemas of these objects are required

to decomposing and transforming the query.

Extended Backus-Naur Form (EBNF) is a syntactic metalanguage which presents

by a notation for defining the linear sequence syntax of a language by use of a

number of rules (1 996; Scowen, 1 998).

Generalisation is a relationship that an object class is defined as a superset of other

objects.

- 1 60 -

Heterogeneity is the problem when integrating heterogeneous data sources. It has

been defined in this study into three categories: Data Model Heterogeneity,

Schematic Heterogeneity, and Semantic Heterogeneity.

Interoperability is the capability that databases, software and hardware can

communicate, execute programs, exchange services, or transfer data among various

systems (NCITS, 1 999).

Legacy system is a critical application system, which has served an organisation for

several years. Although the system is not compatible and hard to modify, it is still

used because an organisation has invested considerably time and money and cost of

replacing is (ComputerUser.com Inc., 2000; Howe, 1 999; Internet.com Corp, 2000).

Mediator is a dynamic interface between clients and databases. It provides

communication needed to transform data to information (Wiederhold, 1 992).

Mcta<lata is , : ,: Lk ,cription of the structure u r ddta cr.:.rocnkc, 2002).

Mi<l<llcwarc i '.> a set of drivers, APis, or other ,_; lhv:n ,: that improves conncc t i , : , _

between a client application and a server (Stallinss, 200 l) .

Schema is a description of the structure of a database. Such description, generally

stored in a data dictionary, is relevant to the level of (Internet.com Corp, 2000;

NCITS, 1 999).

Schematic Heterogeneities are conflicts which results from the use of different

schemas or structures in heterogeneous database systems.

Schema evolution is the process of changing the structure or the behaviour of

persistent classes including creating, dropping, renaming, changing attributes and

methods in the classes (Rao, 1 994).

Semantics are the relationships of characters or groups of characters using as

symbols to their meanings (NCITS, 1 999).

- 1 6 1 -

Semantic Heterogeneities are conflicts which occur when data which have the same

meaning are represented differently by different database systems.

Specialisation is a relationship that an object is defined as a subset of a general

object class.

Structural view focuses on the main objects which are in the system and how those

objects are related (Benyon, 1 997).

Transitively-associated objects are objects relating to the query that QTA

determines further from directly-associated object schema definitions that their

schemas are required to decomposing and transforming the query.

Wrapper is an interface between the Me D I n t mediator and data sources translating

schema definitions, query languages, and data.

- 1 62 -

MeD!nt : 1\ r, A ;> p r ,> o c l , i' o r i h f, l n t 0 q : u t i <>r i <> ' D o t u t, u s c) e n d l. e q c c y S y :; + r1 1 ,

MeDlnt: An Aop1oact1 for the Integration of Dotobose oriel Legocy 'iysiern�

Appendix C - Symbols used in EBNF

Symbol

=

{}

[)

()

' '

Indicates

Defining-symbol

Terminator-symbol

Repetition-symbol

Definition-separator -symbol

Concatenate-symbol

Except-symbol

Repeated sequence

Optional-sequence

Grouped sequence

Quote-symbol

- l 65 -

1-31-08)
certified

MeD!nt: Ar, A�>pruo<:I: •o, ti1f, lnt<":r,:citi.:,n cf DuioL,u,e ur-,<1 Le<Jucy Sy:;t0n,s

Appendix D - MDM Reserved Words

attribute and character

condition date float

from in integer

key operation or

relationship select string

subtype user defined

> < >=

<= <>

- 1 66 -

Appendix G - Schemas Representation by MDDL

The Mediated Data Definition Language (MDDL)- CampusDB

Set of Objects {Person, Staff, Lecturer, Student, Book, Course}

Person

Staff

Lecturer

Student

attribute

id

name

address

tel no

sex

dab
relationship

Borrow

operation

age ();

subtype

Person;
attribute

salary
key

id;

subtype

Staff;
relationship

Lecture

key

id;

subtype

Person;

attribute

level

relationship

Enrol

key

id;

string

struct(fname string, lname string)

string

string

character

date;

set (Book) Book.LoanBy;

:_1 Udt i

set(Course) Course.LecturedBy;

{undergrad, postgrad};

set(Course) Course.EnrolledBy;

- 170 ..

MeDtnt

Appendix I - MMD Representations in XML

Test Problem 1 -Hotel Chain Information System

DataSource MetaData (DSMetaData)

<?xml version="1 O" 5'tandalone="no'7>

10

;;.Hotel A's D�abasesc: � ni:, r.>

·nt 1>

>

>Hotel's B d&tebase<

neme="prlce">

name="currencv">AU >

<OS assignedMm�"HotelC">

al, .4od , >le.gacyc:.O eMod I>

<locet1orr>http:/IC.co.thkiote1Files<A.oc 100>

u,ce , n_>HolelC</SourceN

"'9

40

<Attribute name="price">

<Conte narne•"currency"> THB< ontext>

"46 </Attnbule>
7 «on� r , >
8 <i..,S>
9 SMetaD la>

- 180 -

TABLE J.5 INTEGRATED RESULT OF THE QUERY 2 OF TEST SAMPLE 2

Staff.id

2158015

4125101

1542545

1478523

Staff.salary(currency=" AUD", period="yearly")

45000.00

25500.00

29803.92

49019.61

- 20 l

	The mediated data integration (MeDInt) : An approach to the integration of database and legacy systems
	Recommended Citation

