Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

1-1-2003

The mediated data integration (MeDInt) : An approach to the
integration of database and legacy systems

Suvimol Mukviboonchai
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

b Part of the Digital Communications and Networking Commons

Recommended Citation
Mukviboonchai, S. (2003). The mediated data integration (MeDint) : An approach to the integration of
database and legacy systems. https://ro.ecu.edu.au/theses/1308

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1308

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ro.ecu.edu.au%2Ftheses%2F1308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1308

Edith Cowan University
Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

The Mediated Data Integration (MeDint):
An Approach to the Integration of Database

and Legacy Systems

by

Suvimol Mukviboonchai

B.S., MS.

A Dissertation Submitted in Partial Fulfiiment of

the Requirements for the Award of
Doctor of Philosophy

At the School of Computer and Information Science

Faculty of Communication, Health and Science

EDITH COWAN
'™ UNIVERSITY

WESTERN AUSTRALIA

29 October 2003

ABSTRACT

The information required for decision making by executives in organizations is
normally scattered across disparate data sources including databases and legacy
systems. To gain a competitive advantage, it is extremely important for executives to
be able to obtain one unique view of information in an accurate and timely manner.
To do this, it is necessary to interoperate multiple data sources, which differ
structurally and semantically. Particular problems occur when applying traditional
integration approaches, for example, the global schema needs to be recreated when
the component schema has been modified. This research investigates the following
heterogeneities between heterogeneous data sources: Data Model Heterogeneities,
Schematic Heterogeneities and Semantic Heterogeneities. The problems of existing
integration approaches are reviewed and solved by introducing and designing a new
integration approach to logically interoperate heterogeneous data sources and to
resolve three previously classified heterogeneities. The research attempts to reduce

the complexity of the integration process by maximising the degree of automation.

Mediation and wrapping techniques are employed in this research. The Mediated
Data Integration (MeDInt) architecture has been introduced to integrate
heterogeneous data sources. Three major elements, the MeDInt Mediator, wrappers,
and the Mediated Data Model (MDM) play important roles in the integration of
heterogeneous data sources. The MeDInt Mediator acts as an intermediate layer
transforming queries to sub-queries, resolving conflicts, and consolidating conflict-
resolved results. Wrappers serve as translators between the MeDInt Mediator and
data sources. Both the mediator and wrappers are well-supported by MDM, a
semantically-rich data model which can describe or represent heterogeneous data

schematically and semantically.

Some organisational information systems have been tested and evaluated using the

MeDint architecture. The results have addressed all the research questions regarding

the interoperability of heterogeneous data sources. In addition, the results also
confirm that the MeDint architecture is able to provide integration that is transparent

to users and that the schema evolution does not affect the integration.

- i -

DECLARATION

I certify that this thesis does not, to the best of my knowledge and belief:

i. incorporate without acknowledgment any material previously submitted for a

degree or diploma in any institution of higher education;

ii. contain any material previously published or written by another person except

where due reference is made in the text; or

iii. contain any defamatory material.

Signature

(Suvimol Mukviboonchai)

Date 1 October 2003

ACKNOWLEDGEMENTS

Foremost, the financial support provided by the Royal Thai Government and the
Office of Rajabhut Institutes Council throughout the research period is greatly
acknowledged. Without them, I would not have had this great opportunity.

I express my gratitude to my supervisor, Dr Chaiyaporn Chirathamjaree, for his
guidance, advice and support throughout my research period. He always provided me
his valuable time despite of his busy schedule of management, lecturing and
research. I sincerely thank him for his time and patience. His support is greatly

acknowledged.

I would also like to thank my associate supervisor, Associate Professor Vichit
Lorchirachoonkul from National Institute of Development Administration (NIDA),
Thailand, for his valuable time and generous recommendations. I am really

appreciated.

I acknowledge with thanks those who contributed articles. Their names are listed in
the References. I am also thankful to the anonymous referees from the four
conferences. Their suggestions and comments have improved the content of my
research. My thanks are also due to Dr. Helen Armstrong and Dr. Val Hobbs for their

valuable suggestions on reviewing my thesis proposal three years ago. I am grateful.

No word can express my thanks to Dr. Judith Rochecouste for her precious time and
a great deal of support on my proposal and thesis editing, correcting grammar, and
English academic writing. I know she faced difficulty with my non-native English

language.

I am thankful the library support provided by the Library Account Manager, Ms. Lyn
Leslie, and the technical support provided by the SCIS support team for their great

care and helpful throughout my research period.

My thanks also go to my friends who studied with me at NIDA and Thammasat
University, and who worked together at UNHCR and Bangchak Green Net, who
have always kept in contact via e-mail over a long distance and have not let me

down.

A warm word of thanks to my four-year close friends in Perth, especially Surasithe
Khwanboonbumpen and Kacha Chansilp, for all the wonderful memories and their
encouragement when I was disheartened. Their compassion and warmth made me

feel like I was not away from home.

I am also want to thank other teachers and friends whom I could talk, discuss, and

learn from.

Thanks to my brother, Porrames Mukviboonchai, for taking good care of our mother
alone during this research period. I understand that he has been busy and stressed

from his hard work, but he looked after our mother well.

My special thanks go to my mother, Sulai Mukviboonchai, for all her unsparing love
and inspiration. | remember that she taught me mathematics when I was in secondary
school, even then she did not finish with primary school. I have learnt from her about

calmness, patience, and self-content. Thanks for being a great mum.

Lastly, I dedicate this work to my father, Prayong Mukviboonchai, who passed away

just before I started this research.

Vi

TABLE OF CONTENTS

USE OF THESIS e ieeeeeiieeiiiieisseeiseesssnesssassasssnssssssasssnssanssssnssssnssnssnssssnnses §
AB S T RACT ...cciieiieiieirieiteeititseteesieaesseesssssssssssssssssssssssssssassssssssssssansssanssnsnns Il
DECLARATIONt iieeireeeirreeissnsssassssnssssssassssssassssssssssnssesnsnsssansssnnsns v
ACKNOWLEDGENMENTS..... oo cieiiieiiteiirecresisesssnssesssasssssssssssssenssssssssassssnnss \')
TABLE OF CONTENTS ...cciieiiiiiieiieeireeiiresssessanranssassanssesssensssansssassssnnsssen Vil

LIST OF FIGURES.cc oot iieireiireeeiseenssesssasssssssassssnssssssssnsssanssssnsasnnnns Xl
LIST OF TABLES...... .ot irtciiecireeireeirenssrneranssessssnsssnsssnsssnsssansns aeeerennans XV
CHAPTER 1 - INTRODUCTION ... cieiiteiieeirenirensnessessssssssssssnsssesnssssnnsnas 1
11 THE SIGNIFICANCE OF THE RESEARCHienieee e 2
1.2 THEPURPOSE OF THE RESEARCH.....c.uieuieiieeee e 3
1.3 RESEARCH QUESTIONSouttine e 3
1.4 RESEARCH METHODOLOGY ...uuiiitieeiei ettt e e e e e e e 4
15 THE ORGANISATION OF THE THESIS .. cuutiuteeee et eeeeeeee e eee e eaaeaaaen 5
CHAPTER 2 - DATABASES AND HETEROGENEITIES........ccccovveerreennnnee. 7
2.1 FILE AND DATABASE CHARACTERISTICS .. euenenie e 8
2.2 DATAMODELS ..ot e e et 9
221 TheRelational Data MOloueeeieiiee e, 9
222 TheSemantic Data MOAELot 10
2.2.3 The Hyper Semantic Data Modelcccoovoiiiiinniic e 11
22.4 The Object Data MOGE............cc.c.orruiueieeeeeceeeeeeeeeeeeeeeeeee e 11
2.2.5 The Object-relational Data MOdEL................cceeciiiiiiienie e 12
226 The OMG ObJECt MOGEL.........cvooveeeeeceeeeeeeeeeeeeee e 12
227 The ODMG ODbJECt MOGEL...........oovoveeeeeeeeeeetceeeeeeeeeee et 13
2.3 QUERY LANGUAGESot 15

2.4 HETEROGENEITIESvtentte et e e e e te e e e e e ea e e e e e aanaanns 16

2.41 Data Model Heterogeneities...............ooove e iceieieie ettt e 16
242 Schematic Heterogeneities.............oceeiiiiiiiii it 17
2.43 Semantic Heterogeneitiescccooeiiiieieiiee e 18
2.5 CONFLICT RESOLUTIONSoovttttiieeeeeeeiiieeiieseee e e e e eeesvrasaneeeeeeeeeeenes 20
2.5.1 Schematic Conflict RESOIULIONS............cociiiiiiiiii e e 20
25.2 Semantic Conflict RESOIULIONS...........coviiie i, 22
2.8 SUMMARY.......oiiiiiiiiittie et ie e e ettt e e et e e et b e e e e st e e s eeaee e e e e e 24
CHAPTER 3 - INTEGRATION TECHNIQUES........cccccccstiiiiiinninnnneennssiannns 25
3.1 INTEGRATION APPROACHEScciiuiiiiieiiiiiiie e e iiite e e et e e 25
3.1.1 The Translation APProachcccveiiieiiioiieiiee et 25
3.1.2 Global Schema APPrOACKh.............cooiiiieiie et ettt 26
3.1.3 The Federated Database Approach............cccceooiieiiiieniieei e 28
3.1.4 The Multidatabase Language Approachccocceeeioieiiieiiie e 30
3.1.5 Mediation APProach............oooii i 31
316 Other APPrOACHEScooiiiiiiiiiiiii it 34
3.2 RELATED TOOLS AND TECHNIQUES...........veiiieeieeeeieiee e 37
3.21 Wrapping TEChNIQUES.........cc. ittt e e 37
3.2.2 The Common Object Request Broker Architecture (CORBA)...... e 38
3.2.3 Enterprise JAvaBeaNnsoooiiiiiii i 41
3.24 Extensible Markup Language (XML)ccocoieiiiiiieii e 41
K B @ ¢ (o] (oo 11U 43
326 Metadata. ... 44
3.3 SUMMARY ...ouiiiitt et e et et e e e e e e e e e e e et enaaaas 45

CHAPTER 4 - THE MEDIATED DATA INTEGRATION ARCHITECTURE. 46

41 ARCHITECTURE REQUIREMENTScuvuuiieeeeeeeeeetieniiieeeeeeeeeeeeiiiannans 47
4.2 REQUIREMENT ANALYSISutiiiiiiiieiiiiiieiieeee s e et e e e e e e 48
4.3 THEMEDINT ARCHITECTUREctttiiiiiiiieeeeeaiiieteeeeeceitee e eniiee e 49
4.3.1 MeDInt COMPONENLEScccoiiiiiiiiie et ettt e e 50
4.3.1.1 TRE USEr INtOrIfacecccoocveoueeeeeeeeeeeeeeee e 50
4.3.1.2 TheMeDInt Mediator..............ccooceeieeiiieieeeee e 51
4.3.1.3 WIGPPEIS .ottt ettt 52
4.3.1.4 The Mediated Data Modelccoocomumemeieeeeiieeeeeeeee e 53

4.4 MEDINT PROCESSESooiiiiiiiiiteeeaiieieeeeseieeeessree e s seeeee e e 54

4.5 SUMMARY ..ottt e e et 57

CHAPTER 5 - THE MEDIATED DATA MODEL............ e eeeeeeeeeeeeeeeeees 59
5.1 THE DESIGN OF THE MEDIATED DATA MODEL (MDM)ooiiiiiiieiiene 59
5.2 THE MEDIATED DATA MODEL COMPONENTS........uvttiriieeeirieenireeesieeeenees 62

5.2.1 The Mediated Data Definition Language (MDDL)............cc.ccoeieiiviiiieiniicenn 63
5.2.2 The Mediated Query Language (MQL)ccooeiereinne e e e 67
5.2.3 The Mediated Data Representation Structure (MDRS)..............cccoeeeiennnn. 68
5.3 SUMMARY ...ttt e e s e e e e e e 70

CHAPTER 6 - THE MEDINT MEDIATOR......ccciiiiiiemnriecnneenesssnnensennnaes 7
6.1 REGISTERING PROCESSOR (RP) ..ottt 72
6.2 QUERY TRANSFORMATION AGENT (QTA).....oomiieiiiiiiieeeeeeeeeeeeeeeeee 73

6.2.1 Fetching Object Schema Definition Process..........ccccoeoiiiiiiiiiiiiiiiniiee e 75
6.2.2 Decomposing and Transforming the User-requested Query to the Mediated
Query Language Process...........cc.cccoceeeeennenne ettt ee et eee e e e e e a—aaeeeanaeaans 79
6.2.3 Creating a Pre-defined Template Process...........ccoceriiiieiiiiiiciecee e 82
6.3 THEMEDIATED METADATA(MMD) ..o 84
6.3.1 SchematicMetaData.............cco i 84.
6.3.1.1 The Data Source MetaData (DSMetaData)..................cccooueevviueeeeeniii. 85
6.3.1.2 The Object Mapping MetaData (OMMetaData)...........c......ccccevuveeee o 86
6.3.1.3 The Attribute Mapping MetaData (AMMetaData)ccccooeeenn...... 87
6.3.2 SemanticMetaData............oooi i 89
6.3.2.1 The Thesaurus MetaData (TSMetaData)cc.cccooeeueeeeeeeeeieeannne.. 90
6.3.2.2 The Conversion MetaData (CVMetaData).............cccccveeeeeeeeeeeneceeccnnn.. 92
6.4 CONFLICT RESOLUTION AGENT (CRA)ooeiiiieiiieieeeeiieee e 94
6.4.1 Applying MDRS Results to the Pre-defined Templateccccceeeiieen 94
6.5 THE CONSOLIDATION PROCESSOR (CP)ooviiiiiiiiieeeiiiiee e 97
6.5.1 Integrating the Mediated Data Representation Structures..............ccccceovns 97
6.6 THERENDERING AGENT (RA) ..ottt 08
6.6.1 Generating the Integrated ReSUIScccooiiii i, 98
B.7 SUMMARYcotiiiiiiiieiiititee e eeee e e e sttt e e s s eibt e e e e s sabrreeeeseaareeeesenaaes 99

CHAPTER 7 -WRAPPERS....... s cesessssssssssssssssesssssssnsnns 100
7.1 THE DESIGN OF WRAPPERSccutttieeeiiiiteeesiieteeessnnreeessianeee e 100
7.2 WWRAPPER COMPONENTScotiiiiiiiiieeeiiieieeseeeieeeseeeesssnaeeeeenaans 101

7.2.1 Schema Translation Processor (STP)........ccccecciciarierniinciieeenrecserenrereen e 101

7.2.1.1 STP Algorithm for the Relational Data Model...................cccoccueeeanr.. 102

7.2.1.2 STP Algorithm for the Object-oriented Data Modei................................ 104

7.2.1.3 STP Algorithm for Legacy File Processing Systems...............cccccc........ 106

7.2.2 Query Translation Processor (QTP)...........cocviiiiii i e seeeeesrerennenee s 109
7.2.2.1 QTP Algorithm for the Relational Data Modelccccccceerueuen... 110

7.2.2.2 QTP Algorithm for the Object-oriented Data Modei............................... 112

7.2.2.3 QTP Algorithm for Legacy File Processing Systems................c............ 113

7.2.3 Data Translation Processor (DTP)ccoeuiriiiiiieiiie e 115

7.3 SUMMARY ...ttt ettt e e 117
CHAPTER 8 — SYSTEM EVALUATION AND RESULTScccooeviniiiiinnnns 119
8.1 SYSTEM EXPERIMENTATION AND EVALUATIONccccviimmiiianineennn. 120
8.1.1 Test problem 1 — Hotel Chain Information Systemcccccccoiiiiiiiiin, 120
8.1.2 Test Problem 2 — University Information Systemcccoooiiiiniin. 133
8.2.2.1 QUEIY T ettt 135

8.2.2.2 QUEIY 2 ... e e 136

8.2 SUMMARY ..ottt ittt ettt 137
8.2.1 Conflict Resolution INn MeDINt ... 138
8.2.2 The Integration Functions of the MeDInt Components......................c.co..... 139
CHAPTER 9 — DISCUSSION AND CONCLUTION..........cceetviiinnnnne dieasanes 140
9.1 DISCUSSIONooooooooseesooeeeeeeeeeeeoeeeooeeeese e eeeseeeeeeene 141
9.2 THESIS CONTRIBUTIONceiiiiiiienieriesireeerriee st e e e e 147
9.3 LIMITATIONSeiiiiiiiiiie et 147
9.4 FUTUREDIRECTIONSoutiiiiieiiiiiiiieeesiireeeesreeeeeeeniteneeessnrieee e e 147
9.5 CONCLUSIONoeiiiiiiiiitieeeini ettt ettt 148
REFERENCES ... nnnrrrrrrrnsnsnrssssssssssssssssns s sne e sensssssensssnnnnnsnes 151
APPENDICES.......iiiireeemmriniininninsnnnnnsssssennssnninesssssssssssnssnnnsssssssssssnnnnnns 159
APPENDIX A — GLOSSARYuuiiiiiieeieiiiiririestitee sttt re s eireee e et e e e e 160
APPENDIX B — LIST OF ACRONYMSooeiiiiiiiiieeeineie et s 163
APPENDIX C —SYMBOLSUSEDIN EBNF ..o, 165
APPENDIX D — MDM RESERVED WORDS...........ovtiiieiiiieeiiiieeee e 166
APPENDIX E — DATA DEFINITION LANGUAGE IN RELATIONAL DATA MODEL..... 167

APPENDIX F —DATA DEFINITION LANGUAGE IN OBJECT DATA MODEL 169

APPENDIX G — SCHEMAS REPRESENTATIONBYMDDLooovviiieeeeieeenn. 170
APPENDIX H —MDDVL IMPLEMENTATIONBY XML ..., 175
APPENDIX | — MMD REPRESENTATIONSIN XML ..., 180

APPENDIX J — THE MED INT INTEGRATION PROCESS OF TEST PROBLEM 2.... 188
APPENDIX K —=PUBLISHED PAPERS.......oueeeee e 202

Xt -

LIST OF FIGURES

FIGURE 3.1 THE GLOBAL SCHEMA APPROACHocueiiuieeiteieeaeeeenieesteeseeeeaeeseeseeeaeeeseeeseenneasnas 26
FIGURE 3.2 THE FEDERATED DATABASE APPROACHcccviiiiieitieierieteateeease e e eeeeeeneeeeeeneeneeens 29
FIGURE 3.3 THE MULTIDATABASE LANGUAGE APPROACH............cccuvviviauiieeeeeeteeeeeeeeeeaeeseeeenens 30
FIGURE 3.4 THE MEDIATION APPROACHc.viiuiitiiieieitietteeteeteenteeneesseasseesssssesesssensesesseensensens 32
FIGURE 4.1 THE MEDINT ARCHITECTUREoviitiitieuieteeeeeeteeteeeteeseestesneenssesasseessessesseesesseesenns 50
FIGURE 4.2 DATAMODEL TRANSLATIONooiitiiiuieitieieeeeeet e eee e et e eeeeeeaeeeaeeeae s eteeteeeeeenneeeae e 54
FIGURE 4.3 Mémm PROCESSES.......oitiieiiitie ettt e e e ettt e et e e eaae e 55
FIGURE 4.4 DATA LAYERS.......coiiiieiee oottt ettt ettt et 57
FIGURE 5.1 A 2-D RELATIONAL DATA MODELcoooviiuiiiticieieceiee ettt 60
FIGURE 5.2 THE 3-D MEDIATED SEMANTIC DATAMODELcuoeiiiiiieeeieeeeeeeeeeeee 61
FIGURE 5.3 COMPONENTS OF THE MEDIATED DATA MODELcc.ooovviiiiciiecie e 63
FIGURE 5.4 AN MDDL IMPLEMENTATION EXAMPLEoiviiuiiiiteeteeseetessieessaeessesseessennesnes one 66
FIGURE 5.5 AN MDRS IMPLEMENTATION EXAMPLEccooiviiiiiiiiiiieieeiteeeeiieee st e eree e e 69
FIGURE 6.1 SIX COMPONENTS IN THE MED INT MEDIATORccviiiiiiiiiiieiieeeeete e eiieeee e 72
FIGURE 6.2 QTA PROCESSES......cu.ttitieueitiseintiiseteatseiteeseesteeseeesseetesssesnssesseesessesseassassassessessensens 74
FIGURE 6.3 A 3-D MEDIATED DATA MODEL REPRESENTING MDRS TEMPLATEccccoecveveneee. 83
FIGURE 6.4 AN ALIAS TREEccocoviitiarieutesiseateitaneasseastenseassesseesnsesseassseseasessesssesssnsensessssenns 90
FIGURE 6.5 REPRESENTATION OF ATTRIBUTES AND SEMANTIC CONTEXTS ...cocvveeuviiriees e 95
FIGURE 7.1 AN EXAMPLE OF AN EXPORTED SCHEMA DEFINITION TREE BY RWRAP...................... 104
FIGURE 7.2 AN EXAMPLE OF AN EXPORTED SCHEMA DEFINITION TREE BY OWRAP 106
FIGURE 7.3 AN EXAMPLE OF A LEGACY TEXT FILEocovivieieiteeererereseressnenseetnoseenesasesseansessassannss 108
FIGURE 7.4 AN EXAMPLE OFAN EXPORTED SCHEMA DEFINITION TREE BY LWRAP....................... 108
FIGURE 7.5 QUERY DISTRIBUTION AND TRANSLATIONccoveiiierueireerriorietieerceneseaseeseesneseenaens 109
FIGURE 7.6 FUNDAMENTAL RELATIONAL OPERATORS (DATE, 1990)cccooviieiiiiiieeccieeee, 110
FIGURE 7.7 DATA SOURCE AND WRAPPER RESPONSIBILITY CLASSIFICATIONccooievenreenrenn. 117

- Xil -

FIGURE 7.8 THREE WRAPPERS DEVELOPED IN THIS STUDYcooiitiiieieieeeeeeeeeeeeeeeeeveeeeeeeeeee e 118

FIGURE 8.1 OBJECTS REQUESTED FROMWRAPPERScccotiiierieriereenieneeniesaseeseesnsessansesseneans 126
FIGURE 8.2 THE UNIVDB ENTITY RELATIONSHIP DIAGRAMc.ooiiiiiiiiiiiiieeiieieeeeeieeeeaes 133
FIGURE 8.3 THE UNIVDB'S RELATIONSHIP..........c.viirieriemieiieieeteeeiieteseeseessssesseesessesesseseesesnesnens 134
FIGURE 8.4 THE CAMPUSDB'S ENTITY RELATIONSHIP DIAGRAMccceiimiiieniiiniiinieeniieneeean 134

- Xiii -

LIST OF TABLES

TABLE 2.1 COMPARISONS OF FILE PROCESSING AND DATABASE MANAGEMENTc..cccoveevennenen. 8
TABLE 8.1 OBJECT SCHEMA DEFINITIONS REQUIREDcceiuiieitiieeiiieiiteeeereeeeineesseaneesneeveeens 126
TABLE 8.2 INTEGRATED RESULT OF TESTPROBLEM 1ouiiiiiiiiiiiiiiiee e e e e e e 132
TABLE 8.3 HETEROGENEITIES IN THE TEST PROBLEM 1ouiiiiiiiiiiiie et 133
TABLE 8.4 HETEROGENEITIES IN THE QUERY 1 OF TESTPROBLEM 2........vviiiiiieeiiieeiee e 136
TABLE 8.5 HETEROGENEITIES IN THE QUERY 2 OF TESTPROBLEM 2oooviiiiiiiiciecee e 137

TABLE 8.6 SUMMARY OF THE HETEROGENEITIES RESOLVED BY THE MEDINT ARCHITECTURE IN
EACH EXAMPLEooviiiiiiiiee ettt e e et ee e et e e st e e e s e st a et e e e e e e e eeeeereaans 137

TABLE 8.7 SUMMARY OF THE HETEROGENEITIES RESOLVED BY THE COMPONENTS OF THE MED INT

ARCHITECTUREuttiiieiiiieeeeettteeeseeteessesseeesasaseesassaeeeaassseeesanssseesanssaeesannsaeeessnbeesensens 139
TABLE 8.8 SUMMARY OF THE FUNCTIONS OF THE MEDINT COMPONENTSooeivvieiiiieeiene <o 139
TABLE 9.1 COMPARISON OF MEDINT WITH OTHER INTEGRATION APPROACHES 145

TABLE 9.2 COMPARISON OF MED INT WITH OTHER MODELS OF THE MEDIATION APPROACH....... 146

TABLE J.1 REQUIRED OBJECT SCHEMA DEFINITIONS OF THE QUERY 1 OF TEST PROBLEM2......... 190
TABLE J.2 INTEGRATED RESULT OF THE QUERY 1 OF TESTPROBLEM 2ccccvviieiiiieiiieciieeeen, 195
TABLE J.3 REQUIRED OBJECT SCHEMA DIFINITIONS OF THE QUERY 2 OF TEST SAMPLE 2............. 196
TABLE J.4 EXISTING CONFLICTS OF THE QUERY 2 OF TESTSAMPLE 2.......ooiiiiiieeiiieciieeeiee e 198
TABLE J.5 INTEGRATED RESULT OF THE QUERY 2 OF TESTSAMPLE 2........cooiiviiiiiiiiiiiecieeeieeans 201

< X1V -

MeDint An Approach for the Integration of Database and Legacy Systerms

CHAPTER 1 - INTRODUCTION

An adequate information system is one of the critical competitive components in
running a successful business in terms of transaction recording at the operation level,
reporting at the management level, or decision making at the executive level. In a
large or medium sized organisation, it is certainly possible to have more than one
information system serving the organisation’s operations. New business activities
and the evolution of database technology all result in the adoption of many different
database systems within an organisation, for example, legacy file processing systems,
relational database systems, and/or object-oriented database systems. A single
database supporting all applications within an organisation is ideal. The situation of
island of information leads management and executives to become fruswated when
they want to get a unique view of information from multiple systems. Therefore, data
interoperability or databése integration becomes necessary to obtain meaningful

information from multiple and incompatible data sources.

Furthermore, many Internet and intranet technologies which play a significant role in
business today increase the demand for data integration techniques. It is becoming
more and more necessary to be able to integrate numerous information sources
within an organisation or across organisations to serve customers and to link to
suppliers via the Internet. Both legacy systems and modern databases need to be

logically integrated to allow users to access information.

For the pragmatic reasons stated above, the data of an organisation or across
organisations need to be interoperable to service customers, management, executives
or new business projects. Therefore, this research focuses on developing a data
integration architecture to interoperate multiple databases and legacy systems

transparently and effectively.

Malinh: An Approach for the Integrotion of Dotabase and Legaay Systems

1.1 The Significance of the Research

The question why we have to make heterogeneous data sources interoperable rather
than transform them and import them into a single data source may be raised. Two
major problems of transforming all different kinds of data sources into only one main
data source is data latency and data integrity (CrossAccess Corporation, 2001). The
integration system requires synchronisation in every transaction made to the system
which is redundant and unnecessarily costs money. On the other hand, if this main
data source is designed to be updated at every specified certain period of time, data
inconsistency problems will happen as a result of the changes which do not

propagate consistently to all related data sources.

In the process of interoperating any two or more database systems, heterogeneity is
the most critical problem that needs to be solved, for instance, some databases are
designed from different models, and the same real world entities may be represented
by different names or measured by different units in multiple data sources. Although
several researchers have been studying the conflicts and integration of heterogeneous
database systems (Abdalla, 1998; Miller, 1998; Neild, 1999; Phijaisanit, 1997,
Srinivasan, 1997; Yu, 1997), there is still no common methodology. Few theses have
focused specifically on the integration of databases and legacy systems. In fact in

legacy systems, the semantics are hidden and hard to determine.

Another significant issue is that the traditional approach integration is pair-wise or
point-to-point interface. This then developed to the pre-integration approach using
the global schema technique which requires complete pre-integration and is
extremely expensive in both manpower and time. All local views are mapped by one
global view which must be created before query processing. This raises a problem
especially in a dynamic system. As a result when only the object of a local data
source is modified or an operation function is evolved, this affects a number of
changes on the global schema (Holowczak & Li, 1996). The global view must be
recreated. It is also difficult to track overall changes either in pair-wise interfaces or
in the global schema approach. Furthermore, conflicts must be solved in the process

of the global schema creation. The more data sources are involved, the more difficult

MeDint: An Approach for the Integration of Dotabase and Legaoy Sysiems

it is to solve such conflicts. This has led this research to focus on a solution that

avoids integrating with the pre-integration approach.

1.2 The Purpose of The Research

This thesis focuses on investigating an approach to integrating heterogeneous data

sources by:

e Addressing conflicts among heterogeneous database systems.
e Providing conflict resolution.
e Providing the appropriate architecture for achieving the interoperability or

logically integrating of multiple data sources by which schema evolution will not

affect the integration.

e This research covers legacy file processing systems, relational data models and

object-oriented data models.

1.3 Research Questions

Research question number one:

What are the possible conflicts occurring with the integration of heterogeneous
database systems? How can such conflicts be resolved? These conflicts would result
from various systems using different data models. Before integrating any systems,
conflicts or in correspondences between systems need to be solved to make the

relevant data in those systems meaningful.
Research question number two:

What approaches will provide solutions, and how, to logically integrate

heterogeneous database systems in the bounds of the following criteria?

e Transparency: the integration process should be transparent from users.

e Validity: the quality of the query result from the integration and conflict

resolution processes.

MabDint An Approach for the Integrotion of Database and Legaoy Sysiams

e Scalability: requiring minimised modifications when the addition or removal of
data sources are needed.
e Flexibility: component schema evolution should not affect the integration.

e Simplicity: minimising human interaction and maximising automation.

The objective of this question includes reducing the complexities of the integration
process to get information from such systems so that users are not responsible for
seeking where data sources are, what the conflicts are and how to resolve them. This
thesis also seeks to provide a method by which the global schema is not created

before issuing queries, thus the problem of schema changing can be avoided.

During the integration, there are a number of integration problems that need to be

solved. The major ones are:

e The requested query may need information from multiple data sources.
e How to define data sources relevant to the query?
e Because object identifiers are defined independently in each source, what is
the identiﬁer used in the query?
e How to split the requested query to each data source?
e How will data sources, which are in different data models, understand the
requested query?
e The sets of results from the query need to be integrated. They might be
represented differently.

e How to homogenise them?

1.4 Research Methodology

The methodology used in the thesis is based on Formulative approach including

Conceptual analysis, Conceptual implementation and Experimentation.
Conceptual Analysis

Firstly, the problems of integrating database and legacy systems were investigated.

The topics below were surveyed and the research questions were drawn from these.

MeaDint: An Aoproach for the Integrotion of Dotabaose and Legaoy Systems

e database management systems and data models.
e conflicts and conflict resolutions.
e tools, techniques, and the pros and cons of integration approaches.

¢ information systems which require integration.

The research questions were formulated into the architecture requirements as the
framework to construct an abstraction model based on the functional divide and
conquer top-down approach... The model takes into account the relevant features

according to the architecture requirements.
Conceptual Implementation

As a consequence of the model, the concept details were implemented to support the

model constructed by developing the symbolic language and algorithms.
Experimentation

To prove the validity and the purpose of the model, some information systems which
require logical integration were chosen as samples to evaluate and test the integration
process. The result of the integration was reviewed and the integration model and

algorithms were then refined.

1.5 The Organisation of the Thesis

The thesis is organised into nine chapters. This chapter begins with the significance
and the goals of this study, followed by the research questions and methodology. The

remainder of the thesis is organised as follows.

Chapter 2 and 3 present a review of literature relevant to this research including file
and database characteristics, data models, definition languages and manipulation
languages, heterogeneities, and resolutions. The major integration approaches of the
previous research are surveyed. The strengths and weaknesses of each integration
approach are emphasised. Related tools and techniques, which are useful for the

integration, are reviewed.

MeDint An Acproach for the Integration of Database ond Legaoy Systems

Chapter 4 describes the framework and the development of a data integration model

called the Mediated Data Integration architecture (MeDInt).

Chapter 5 introduces the Mediated Data Model (MDM), a data model used in
MeDInt and appropriate for describing heterogeneous data schematically and

semantically.

Chapter 6 and 7 provide the detail components, the functions, and the algorithms of
the MeDInt Mediator and wrappers.

In chapter 8, the procedures and the results of the integration are presented and the

model is evaluated and discussed.

Lastly, Chapter 9 presents discussion, contributions from this research, suggestions

for future work, limitations and conclusion.

Malint An Avproaoh for the Integration of Dotabose and Legaoy Systems

CHAPTER 2 - DATABASES AND
HETEROGENEITIES

To interoperate multiple data sources, the main difficulties come from
heterogeneities which can be classified into three levels. Firstly, platform
heterogeneity includes different hardware, communication systems, and operating
systems. Secondly, database management system heterogeneity includes different
data models and query languages. Lastly, data heterogeneity includes both the
heterogeneities in structure of data collected and also the data itself. For example,
different representations might be used to refer to the same object. This research
focuses on the last two heterogeneities because the first heterogeneity perspective,
hardware, communication system, and operating system heterogeneity can be
overcome by middleware technologies, for example CORBA, Microsoft .NET etc.
Conversely, the database management and data heterogeneities are quite complex,
involve more human work, and require a precise methodology. Therefore, the
heterogeneities referred to in this research are only database management and data

heterogeneities.

Heterogeneities from multiple data sources resulting from the interoperability of
databases and legacy systems are considered in this research. Basically, these issues
arise not only from heterogeneous data sources, but also homogeneous data sources,
because of design autonomy. However, heterogeneities which occur in homogeneous
data sources are a subset of those in heterogeneous data sources. Consequently, this

thesis focuses on the generalised heterogeneous ones.

To integrate data from heterogeneous sources, one critical point is that their data
structures need to be interchangeable. This dictates that a common data model is
needed to represent different data structures semantically. In this chapter, traditional
and semantic data models are investigated to determine the useful characteristics for

developing the appropriate data model to be a common data model for the

-7 -

MaDint An Aoproaoh for the integrotion of Doltabase and Legaoy Systems

integration. Also data definition languages and data manipulation languages are
investigated to gain a basic understanding of heterogeneities. Existing

heterogeneities and resolutions are classified and explored.

2.1 File and Database Characteristics

File processing systems are the record-keeping and retrieving systems which come
before database systems. Even though these are traditional data recording systems, it
cannot be denied that they are still being used in most organisations which have
multiple information systems. File systems have a number of limitations, for
example, separated and isolated data, data duplication, application program
dependency, and the difficulty of representing data in the users’ perspective (Date,

1990; Kroenke, 2002).

The database approach was introduced in the 1970s to overcome the problems
arising from legacy file-processing systems. The limitations of file recording systems
mentioned above were then overcome (Codd, 1970; Date, 1990; Kroenke, 2002). .
Data from different purposes'that were separated and isolated into different files in
different systems without any related information could be integrated into a database
system. This makes it easier for users to create a view or inquiry from several
entities. A well-designed database especially in terms of data integrity aspect can
reduce data duplication. In terms of program independence, data in a database can be
accessed by its database management system, and not by an application program,

thus, any changes made to the database will not affect application programs.

In terms of heterogeneous data integration, the characteristics of legacy file

processing and database management to be considered are as follows.

TABLE 2.1 COMPARISONS OF FILE PROCESSING AND DATABASE MANAGEMENT

Files Databases
Data Isolated Integrated
Duplication Duplication reduced
Metadata No Data Definition Language
Data Retrieval Application Query Language

Mabint An Agproach for the Integration of Dotabase and Legaey Systems

Table 2.1 illustrates that, firstly data stored in file processing systems are isolated and
duplicated because the relationship information cannot be defined. Secondly, no
schema information is identified in file processing systems because there is no
metadata. Finally, the query languages provided in database management systems
can be used to retrieve data, while data retrieval in file processing systems depends

on the application.

2.2 Data Models

There are two meanings of data models which always cause confusion (Hirschheim,
Klein, & Lyytinen, 1995). The first is the graphical, conceptual, notational or textual
information which perceptively reprcsents the data of a system. Data modcls are used
to represent the organization information logically by data structures. The other
meaning of data model is “the outcome of using a data modelling language in some
specific situation” (Hirschheim et al., 1995). Data models are generally related to a
data definition language (DDL) and a data manipulation language (DML) to define
data structures or schemas to represent objects or entities. This research uses the term

data models in the second sense.

Data models provide the structuring of database systems. Several kinds of data
models have been developed, for example, the hierarchical model, the network
model, the relational model, the nested relational model, and the object model. The
network, hierarchical and relational data models can be defined as classical data
models (Gray, Kulkami, & Paton, 1992; Hirschheim et al., 1995). To overcome
weaknesses in the classical data models, a variety of data models have been
developed, for example, the semantic data model, the object-oriented model, and so

on.

22.1 The Relational Data Model

Database systems mostly are based on the relational data model. Codd (1970)
presents the relational model applied from a mathematical concept. A database is

perceived as a collection of tables. A relation or a table is a collection of tuples or

-9 .

MebDint An Approaeh for the Integration of Dalabase gnd Legaay Systems

records. The ordering of tuples is unimportance. Relations describe entities or
relationships between entities. Properties or attributes make differences of relations.
A primary key is the unique identifier for a table. Tables or views (virtual tables) can
be created, altered or deleted by using a data definition language. Users inquire to a
database using a data manipulation language. In this part, the relational algebra
including a number of operators is provided to operate one or more relations to create
a new relation. These operators can be classified into two groups: traditional set
operations and special relational operations. The traditional set operations are union,
intersections, difference and Cartesian product. The special operations are restrict,

project, join and divide (Date, 1990; Kroenke, 2002).

2.2.2 The Semantic Data Model

Codd (1979) extended the relational model to capture more meaning from the data to
provide more intelligent databases and more systematic database design. This
activity is so called Semantic Data Modelling. The attempts were searching for
meaningful units of information that larger than n-ary relation called atomic

semantics.

The Semantic Data Model (SDM) is designed to clearly and precisely describe
databases to be closer to the human perception more than the relational data model
(Bertino, Catania, & Zarri, 2001; Hammer & McLeod, 1981). Entities are grouped
into classes represented by an SDM schema. Each class or semantic object includes a
class name, a collection of members, a textual class description, and a collection of

attributes which represent object characteristics.

The Semantic Model provides perception or conceptual representation of real world
objects. Abstraction is one of the features that serve this representation. There are
four main abstractions: generalisation, aggregation, classification, and association
(Bertino et al., 2001). Semantic data models have been introduced to overcoming the
semantic limitations of the relational model. Semantic Models represent some

important types of constraints more easily: key dependencies and inclusion

MaDint An Approaoh for the Integration of Dolabase and Legaay Systerms

dependency. Languages used for semantic models are able to query abstract data

types.

Semantic models can be categorised into three main classifications (Hammer &
McLeod, 1981). The first class covers the abstraction mechanism or aggregation such
as the Entity Relationship Model (ERM). In the second class, the use of attributes to
interrelate objects is added, for example, the Functional Data Model (FDM) and
DAPLEX (Shipman, 1981). An example of the third class is the Semantic Database
Language (SDM) (Hammer & McLeod, 1981). An SDM database is a collection of
entities organised into classes, or types. Moreover, there are a number of semantic

models: TAXIS, SAM, IFO, RM/T, GEM, etc.

2.2.3 The Hyper Semantic Data Model

Hyper Semantic data models combine the concept of semantic data models and
artificial intelligence by focusing on object, operations, relationships and associated
knowledge (Potter, Trueblood, & Eastman, 1989). The characteristics of this model

are:

e generalisation, classification and aggregation derived from semantic data models,
e membership (‘is-a-member-of”),
e constraint, (‘is-a-constraint-on’),
e heuristic (inference mechanism),

e temporal (representation of synchronous or asynchronous relationships).

2.2.4 The Object Data Model

The Object Modelling Technique (OMT) methodology uses three kinds of models to
describe a system: the object model, the dynamic model and the functional model
(Blaha & Premerlani, 1998; Rumbaugh, Blaha, Premerlani, Eddy, & Lorensen,
1991). An object model, presented by an object diagram, describes the static
structure of a system covering objects, relationships, attributes and operations. A

dynamic model, presented by a state diagram, describes the interactions among

MeDint An Approaoh for the Integration of Dolabose and Legaoy Systems

objects, which are changed overtime. A functional model, presented by a data flow

diagram, describes how data values are transformed and computed within a system.

An object is a boundary concept. An object class is a group of similar objects. The
classification concept allows objects with the same attributes and behaviour to be
grouped into a class. A class can be defined as a specialisation of one or more
classes. A class defined as a specialisation is called a subclass and inherits attributes,
messages and methods from its superclass. The subclass can specialise another class
by additions and substitutions. An object is an instance of its class. Generalisation
and inheritance are abstractions for sharing similarities among classes. A link is an
instance of an association. An association describes a group of links connecting
objects from the same class. Associations may be one-to-one, many-to-many, or

ternary.

An operation is a function or transformation applied to objects. Polymorphism allows
an operation to have more than one method on several classes, but such methods
must have the same signature. The same operation may behave differently when
applied to different classes. Encapsulation is the concept of separating the internal

and external implementation details of an object.

2.2.5 The Object-relational Data Model

The object-relational data model was developed to be compatible with the relational
data model and to provide extended object capabilities such as primitive type
extensions, complex types, inheritance and so on (Bertino et al., 2001). Examples of
object-relational DBMS are Oracle, DB2, Sybase, UniSQL etc.

2.2.6 The OMG Object Model

The Object Management Group (OMG) Object Model can be described by objects,
requests, types, interfaces and operations (OMG, 2001). Objects are real-world
entities with their unique identities. An object is an encapsulated entity which can be
requested for some services from clients. Objects are instances of types. Clients

request services by issuing requests. A request consists of an operation, a target

12 -

MeDlint: An Aoproach for ihe Integration of Database and Legaoy Systems

object, optional parameters, and an optional request context. Types are classes of
objects that are grouped together, and can be related through the subtype/supertype
relationships. A type defines the state and behaviour of objects. A type is an
identifiable entity with an associated predicate defined over entities. An associate
predicate consists of a mathematical function with a Boolean result. An entity
satisfies a type if the predicate is true for that entity. An entity that satisfies a type is
called a member of the type. An object can have only one type. The extension of a
type is the set of entities that satisfy the type at any particular time. A type can inherit
from other types and multiple inheritance is supported. Interfaces are descriptions
that a client may request of an object through that interface. Operations are entities
defining the behaviour of objects. They have their own identifiers which can be
requested for services from clients. Operations have signaturcs such as name,
argument types, and returned types. Operations cause method invocation in the

object implementation (OMG, 2001).

2.2.7 The ODMG Object Model

The ODMG-93, initiated by thg ’Ob'j'ect' DataBase Management Group (ODMG) - a
working group within the OMG, is én object-oriented database management system
(ODBMS) standard supporting portability across database systems. The ODMG 3.0
(Cattel & Barry, 2000) currently consists of:

a data model (ODMG/OM) which is based on OMG object model,

e object specification languages which are the Object Definition Language (ODL)
used to define object types, and Object Interchange Format Language (OIF) used
to load the instance of an ODMS to or from files,

e adeclarative language which is the Object Query language (OQL) used for
querying and updating objects, and

e (C++, Smalltalk and JAVA language binding.

ODMG/OM is compatible with OMG/OM, because ODMG/OM has been developed
specially for database management system concepts. Therefore, ODMG/OM is an

extension and superset of OMG/OM (Ben-Natan, 1995). ODMG supports the ISO

MeRint An Approach for ine integration of Database and Legaay Sysisms

STandard for the Exchange of Product data - STEP (Schonhoff, Stréssler, & Dittrich,
1997; Strassler & Schonhoff, 1998).

The ODMG object model supports objects and literals (values). Objects have a state
and a behaviour. The object state consists of a number of properties, which can be
either attributes or relationships. An attribute is related to a class, but a relationship is

related between two classes. Literals can be:

e atomic types: long, short, float, double, Boolean, char, and string,
o types defined through the set, bag, list, and array constructors,
e enumeration types defined by the enum constructor, and

¢ the predefined, structured types date, interval time, and timestamp.

Type has an interface and implementations. The type definition, propertics and
operations, are supported by an instance of this type. Each implementation consists
of data structures supporting the properties of the type and methods that implement
the operations defined by that type. Types define the dynamic database schema; that
means the model supports schema evolution. Types can be objects themselves and
can have attributes. Types have two importance properties: the extent to which they
are the set of all instances of type, and a set of keys which can define a set of
properties that uniquely identify an objecf in.an extent. It is also extended to support

instance model such as a relationship between objects (Ben-Natan, 1995).

Properties defined for a type are an instance of a type. They can be queried or
manipulated. Properties are represented as attributes or relationships. Attributes are
part of the type definition which maps a named value with an instance of a type.
Relationships are defined between two types to maintain referential integrity (Ben-
Natan, 1995).

Operations are part of the type definition. They model the behaviour of instances of
the type. An operation is composed of its name which is unique for each type,

argument names and their types, returned types, and exceptions (Ben-Natan, 1995).

Objects are encapsulations of state, identity, and behaviour. Objects can be mutable

or immutable. Mutable objects have an identifier and they may change their state

Malint An Aoproach for the Integration of Dolabase and Legaay Systems

throughout their lifetime. The state of an immutable objects is its identity. An object
is the root of a hierarchy for mutable objects, and a literal is the root of hierarchy for

immutable objects.

The ODMG standard does not support views which are provided in RDBMS. It
provides meta data management at the object level. It also allows operations,
updates, insertions, etc to be performed on individual objects or collections of

objects.

2.3 Query Languages

A query language is separated into two parts: data definition and data manipulation.
Data definition languages are used to define the structures of information including
creation, modification, and deletion operations. Data Definition Language (DDL) is
the term that is used in relational database management systems (RDBMSs). Data
manipulation languages refer to data retrieval operations. Data manipulation
languages for the relational data model are non-procedural languages based on
mathematics — relational calculus and relational algebra (Codd, 1970). Query
languages allow access to the information in a declarative, value-based manner.
Using query languages is the only way to access a relational database management
system. SQL is the standard query language for relational databases. C-SQL (Sciore,
Siegal, & Rosenthal, 1994) is an extended SQL used to deal with semantic values.

In object-oriented database management systems, there are two ways to access data:
navigating on object identifications (OIDs) and using query languages. Manipulation
languages provide constructs to access and use the information in a programmatic
manner. ODMG defines object manipulation language (OML) to support both C++
and Smalltalk. Object Query Language (OQL) is a declarative language for querying
object-oriented databases. It provides an SQL-like query language. The Object
Definition Language (ODL) is a programming language-independent specification
language based on Interface Definition Language (IDL) syntax to define ODBMS
schemas and semantics (Ben-Natan, 1995). ODL provides a way to define object

types and structures.

MaeDint: An Aoproach for the Integration of Database and Legaay Systems

Some other examples of query languages are SQL-92, an SQL extension concerned
with object-oriented aspects (Cattel & Barry, 2000), VQL (View Query Language)
(Abdalla, 1998), the derived version of OQL to support semantic context, XQuery,
an XML query language, designed by the World Wide Web Consortium expressing
queries across the structure of XML (XQuery 1.0: an XML query language, 2002).
Bolloju (1996) presents a semantic approach to achieve semantic interoperability
based on semantic query transformation by providing the Structure Object Query
Language (SOQL), an object-oriented model which is rich in semantics itself. It
interoperates two autonomous information system contexts by the transformation of
SOQL to SQL. The mappings of structures, names, and attributes are used in the

process of the transformation with an assistance of domain knowledge.

2.4 Heterogeneities

Information from different data sources cannot be integrated or interoperable because
of heterogeneities of data models, schema designs, or semantic contexts.
Morgenstern (1997) states that there are four levels at which differences may arise. -
including differences at the data level, data schema level, data model level, and the
metadata model level. Kim and Seo (1991) classify conflicts in multidatabase
systems into schematic and data conflicts regarding to the relational data model.
Heterogeneities in this thesis are classified into three levels: Data Model

Heterogeneities, Schematic Heterogeneities, and Semantic Heterogeneities.

2.4.1 Data Model Heterogeneities

Database management systems serving the application systems in an organisation
may be different because of a change of technology. This causes the use of different
data models which is one of the major problems in integrating of heterogeneous
database systems (Reddy, Prasad, & Reddy, 1989). In addition, Data Model
Heterogeneities lead to differences in structure, constraints and query languages
(Sheth & Larson, 1990). Further than the differences in characteristics of data models

themselves, in this study, Data Model Heterogeneities cover two differences, those of

S 1h -

Melint An Agproach for the Integrotion of Database and Legaoy Systems

data definition languages and data manipulation languages. The consequence of
different data definition languages is that the data integration system cannot get the
schema or data definitions of component data sources. Conversely, different data
manipulation languages lead to the problem of how to inquire data from

heterogeneous data sources.

2.4.2 Schematic Heterogeneities

Schematic Heterogeneities are discrepancies in the structure of component data
sources. In other words, the same concept is structured or modelled differently. Data
Model Heterogeneities and design autonomy cause the differences in the structures.
Schematic Heterogeneities can be categorised into three types: Naming conflicts,

Structural conflicts, and Classification conflicts.

In terms of design autonomy, data source components are designed using its own.
terminologies in each independently-designed data source. This causes Naming
conflicts (Goh, Madnick, & Siegal, 1994) or inconsistencies in naming objects --
(Reddy et al., 1989). In some cases, different names are assigned to the same
concept, called synonyms. For example, the object representing the course
information for students to enrol was named unit in one data source, but course in
another source. On the other hand, when the same name is assigned to different
concepts, these are called homonym (Batini, Lenzerini, & Navathe, 1986), for
example, name of the entity Book (Book.name) is an attribute referred to the names
of the books, while name of the entity Author is an attribute referred to the names of

the authors.

Naming conflicts can occur in both object and attribute levels. Kim, Choi, Gala &
Scheevel (1993) classify these conflicts into Table versus table and Attribute versus
attribute conflicts. The former occurs when tables having the same name are used to
represent different objects in different systems, or tables having different names are
used to represent the same real world object in different systems. The Attribute

versus attribute conflict occurs when attributes having different names are used to

MeDint An Approach for ihe Integration of Dotabase and Leguay Systems

represent the same object in different systems, or attributes having the same name are

used to represent different objects.

Structural conflicts, a further set of conflicts, sometimes called Table versus
attribute conflicts (Kim et al., 1993; Kim & Seo, 1991), Schematic Heterogeneity
(Miller, 1998), or Type conflicts (Batini et al., 1986) occur when different structures
are used to refer to the same concept. The same information can be represented as an
attribute in one system, but as an entity in another system or an attribute is
represented by multiple attributes in another systems. For example, in library
systems, authors can be represented by only an author’s name as an attribute in an
information system, but represented by an entity including author biography in

another data source.

This conflict includes the combination of many-to-many table conflicts and many-to
.many attribute conflicts (Kim & Seo, 1991). Critchlow (1997) classifies Structural
conflicts into simple and complex structural conflicts. Simple structural conflicts
occur when the same concept entities in different data sources can be mapped
directly one-to-one. Complex structural conflicts occur wher an entity is represented

by several entities in another data source.

This research also defines a third type of Schematic Heterogeneities resulting from
either a specialisation or generalisation called Classification conflicts. For example,
in a university information system, staff and students are defined as different entities
in a relational database, but both of them are a subtype of a person object type in an
object database. The object type includes the shared characteristics of students and
staff such as id, name, address and date of birth. The unshared properties are defined

further in staff and student objects.

2.4.3 Semantic Heterogeneities

In order to exchange information among disparate sources, the meaning of data
represented in each source has to be considered in addition to the differences in the
structure of data. This means that semantic interoperability is required. Semantic

Heterogeneities are discrepancies in the meaning of related data among

- 18 -

sMedint An Avproach for the integration of Dotabase ond Legaay Systems

heterogeneous systems, in another words, different ways of representing the same or
overlapping data. Such discrepancies may be due to differences in system design,
missing data, and other issues. They can exist even when data has come from the
same kind of database management system, but are designed differently by database
administrators. This category is the major consequence of design autonomy.

Semantic conflicts are classified in this research as followed.

Firstly, Naming conflicts (Goh et al., 1994) or Different expressions (Kim & Seo,
1991) which can occur in the semantic level as well as in the schema level are the
synonym or homonym of values of data. For example, month could be represented

differently by Jan’, ‘1°, 01, or ‘January’.

Representation conflicts (Goh et al., 1994), which Holowczak & Li (1996) call
Format heterogeneity, occur when different formats or data types are used to
represent the same object such as a student identification number which is

represented by characters in one system, but by numbers in another system.

Different units (Kim & Seo, 1991), Measurement conflicts (Goh et al., 1994) , or
Scaling conflicts occur when different units are used to measure an object in
different systems. This leads to data which cannot be integrated with different units.
Normally, this type of conflict is hidden and not easily solved because general data
models cannot represent the context of data. For example, employee’s salary in one

system is coded on monthly basis, but on a yearly basis in another system.

Level of Abstraction Conflicts or Granularity conflicts (Goh et al., 1994) are
inconsistencies of data in disparate sources. This type of conflict occurs from data
collected in different levels of composed data or abstraction. For example, the
number of students in a system is classified by year in one system, but by faculty in

another system.

Different precisions (Kim & Seo, 1991) or Precision conflicts (Abdalla, 1998) occur
with different cardinalities, for example, a score is represented by A, B, C, D and F

in one system, but by a percentage in another system.

- 19 -

MeDint An Aoprogch for the Integration of Dotabose and Legaoy Systems

Missing data is that data which is gathered in one system, but does not exist in
another system. Kim and Seo (1991) call this Wrong Data and may be caused by

incorrect-entry data or obsolete data.

Scope conflicts are discrepancies in the scope of the data stored in different systems.
For example, a faculty system has only student information of students in the faculty,
but the student information system collects information on all the students in the

university.

There are further types of conflicts, for example, Computational conflicts (Goh et
al., 1994) occurring when the values of the same object are computed in dissimilar
ways, and Behaviour conflicts, identified by Abdalla (1998), occurring when using

object-oriented models which are different in operations, parameters and return

types.

2.5 Conflict Resolutions

Schemas and the sets of result from multiple data sources may be represented
differently. During the integration process, these heterogeneities or conflicts need to
be resolved. A number of conflict resolution methods have been surveyed. They have

been classified into schematic conflict resolution and semantic conflict resolutions.

2.5.1 Schematic Conflict Resolutions

Schematic Heterogeneities make the difficulties of integrating the same concept
which is modelled differently. These are the first thing that needs to be resolved to
obtain the unique concept of the heterogeneous data sources. The followings are

some attempts to resolve Schematic Heterogeneities.

Schema Translation (Batini et al., 1986) is the technique mostly used in the global

schema approach to merge or restructure different schemas to provide users with a
unique schema. It is very convenient to users, but the process of creating the global
schema is very complicated in large database systems. Abdalla (1998) similarly

resolves Schematic Heterogeneities in the global schema integration by using

- 20 -

MeDint An Approach for the Integrotion of Dotabase and Legaay Systems

mapping techniques for both naming and structural conflicts. Naming conflicts can
be resolved by mapping a global name to local names. Structural conflicts can be
resolved by generating global entities mapping to local entities. Critchlow (1997)
also defined the mapping between databases which so called Schema coercion. The
Entity-relationship data model are used as a canonical data model to represent the
corresponding schemas. These correspondences then are used to generate a program

to transfer data between databases.

There are four techniques of object matching classified in (Zhou, Hull, & King,
1996). Key-based matching is that objects from different databases should use the
same key, called a universal key. Lookup-table-based matching holds pairs of object
ids or keys for the corresponding objects. Comparison-based matching compares
attributes of two objects, based on arithmetic or logical comparisons or user-defined
functions and then returns a Boolean value. Lastly, historical-based matching is two
objects that match each other can remain matched even if they cease to satisfy other

conditions. These object matching techniques are used in Squirrel prototype (Zhou,

Hull, King, & Franchitte, 1995).

In the case of different names of equivalent entities or the same name for different
entities, and different names for equivalent attributes or the same name for different
attributes, a catalog (Kim, 1995), tables (Holowczak & Li, 1996), or meta-data
repository (Abdalla, 1998) can be used for maintaining these correspondences of
attributes in disparate data management systems. However, it is not appropriate to
maintain higher attribute correspondences such as one to many relationship

attributes.

Kim (1995) suggests three join methods to integrate relevant data in heterogeneous
systems. Horizontal Joins involve using union to unite entities. A union compatible
join can be used if and only if each attribute of two local databases has its
corresponding attribute after the transformation process. The extended union
compatible join is used when there are inheritance hierarchy conflicts. Vertical Joins
are used for integrating either entities or attributes among heterogeneous databases to

one entity. Mixed Joins are the combination of horizontal joins and vertical joins.

- 21 -

MeDint: An Aoproach for the Integraiion of Dotabase and Legacy Systerms

Yan, Ozsu, & Liu (1997) presents a homogenisation methodology in the AURORA
mediator system. An import schema is constructed. Then, schema mismatches are
resolved by transformation operators in the relational data model environment
(AURORA-RH). A group of related relations or related attributes are materialised to

create a derived relation.

2.5.2 Semantic Conflict Resolutions

Kim (1995) suggests three ways of homogenizing representations to resolve different
representations of equivalent data. Firstly, different expressions, which involve using
separate codes or values to represent the same data, can be solved by defining the
same object with different representations. A static lookup table can be created for
defining equivalents, or operators can be defined using a multidatabase query
language. Secondly, different units can be solved by defining arithmetic expressions
(Kim, 1995). A formulae has been defined by Holowczak & Li (1996) for converting
values in one system to correspond with units in another system. However, this
resolution is not precisely accurate, that is, in some cases it operates accurately in
only one direction, because of the decimal from the truncation of the reversed
conversion. Lastly, different precision involves the domains of attributes, which are
defined by different cardinalities, resulting in different scales of precision for similar
data. A mapping among domains of equivalent attributes must be constructed by
using a many-to-one mapping to convert a number of more precise domains to a less
precise domain. If it is converted in an opposite way, this resolution is not precisely

accurate (Kim, 1995).

Kim (1995) also suggests two ways to resolve data mismatches in heterogeneous
systems by homogenizing attributes. Firstly, type coercion or data type mismatches
are conflicts in which data types of equivalent attributes have different domains. A
resolution is needed to change the data type of one attribute into another data type.
There is no problem with changing an integer number to a real number, but there is a
truncation problem for changing a real number to an integer number. Secondly,

attribute concatenations are resolutions involving a character-type attribute in one

22 .

Mebinh An Approach for fhe Infegration of Database and Legaoy Svstems

system which is represented by more than one character-type attribute in another

system. An operator can be defined for concatenating these attributes.

The Object Exchange Model (OEM) transforms objects into schema-less objects in
which object id, object label, type and value are included. Meaningful tags or labels
are used for describing meanings of objects instead of schemas (Papakonstantinou,

Garcia-Molina, & Widom, 1995).

Abdalla (1998) defines semantic specifications to represent models semantically.
There are two types of specifications which are enumerated domains and semantic
contexts. Enumerated domains are for resolving conflicts from different expressions.
An enumerated domain is an ordered set of defined value. For example: An attribute
‘month’ can have domain (Jan, Feb, ..., Dec). A similar attribute can have domain
(1,2, ..., 12). An enumerated domain can be multivalues ((Jan,1), (Feb,2), ...,
(Dec,12)). Semantic contexts are a set of elements, each of which is a pair of a

property and an assigned value (LengthUnit=cm).

Articulation axioms are bi-directional (Holowczak & Li, 1996). These axioms will
return a frue value if the logical expression is true in a given context. The benefit of
bi-directionality is that it can be reversed accurately. (Holowczak & Li, 1996) also
suggests that Naming conflicts can be solved by Aliases and Representation Conflicts
can be solved by Superclasses, a characteristic of the object model to represent

related component entities.

Tables, operators or functions can be defined in class definitions for solving
heterogeneity. Using the benefits of functions, a data mining approach was suggested
to discover data value conversion rules from the data (Lu, 1998; Lu, Fan, Goh,
Madnick, & Cheung, 1997). This resolution can also be used in the case of the
complex heterogeneity. Domain structural mismatches can be solved by using

functions and mapping tables.

To resolve the conflict that was defined in the previous section as Table versus
attribute, an independent view can be constructed to access data. This view neither

depends on any specific names nor changes when schemas are modified (Miller,

.23 -

ration of Dolabass and Legooy Svatams

1998). Also conflicts have been solved in the Multibase project using a
generalisation concept by inheriting the common characteristics (both attributes and

functions) and defining them as a supertype definition.

Sciore et al. (1994) describes values semantically by composing a simple value and
its context information to be a semantic value which can be exchanged between
systems via converting from the source context to the receiving context with the
assistance of conversion functions. These conversion functions can be implemented
in four methods: programming language, table lookup, on-line data source, and
logical rules. Conversion functions also may be total/non-total, lossless/lossy, or

orderpreserving/non-orderpreserving.

2.6 Summary

Heterogeneities can occur in several levels. In this research, they are classified into
three main classes: Data Model, Schematic and Semantic Heterogeneities which
require different conflict resolutions. ‘A number of conflict resolutions were also

reviewed in the chapter.

A number of data models has been investigated with the aim of obtaining useful
characteristics for developing a data model appropriate for this study. The result is
the formulation of an interchangeable data model, called the Mediated Data Model

(MDM), to be used in the heterogeneous database integration in this research.

- 24 -

i

Malint An Approach for the

H Dataibose and Legooy Sysiems

CHAPTER 3 - INTEGRATION
TECHNIQUES

Data heterogeneities and conflict resolutions have been reviewed in the previous
chapter. Data integration approaches, which are the procedures to integrate or
interoperate data from multiple data sources, are reviewed and presented in this
chapter. The limitations of each approach are emphasised. This chapter also includes

brief information of integration middleware such as CORBA.

3.1 Integration Approaches

In the last twenty years, several approaches to provide an integrated view of
heterogeneous data sources have been introduced to bring about the interoperability
among heterogeneous systems. In this research, they are classified into translation.
global schema, federated database, multidatabase, mediation and other integration

approaches.

3.1.1 The Translation Approach

The Translation approach or point-to-point scenario needs highly specialised
translation for each pair of local data sources, because it requires customising case-
by-case interfaces. Therefore, the number of required translators grows geometrically
especially when component data sources increase (the number of required translators
is n*(n-1)/2 when n is the number of data sources). The development of these ad hoc

programs/translators is expensive in terms of both time and money.

.25 -

3.1.2 Global Schema Approach

The global schema approach is a tightly-coupled approach or a fully-integrated
approach, by which individual schemas from multiple data sources are merged by a

global schema to provide a single view as shown in Figure 3.1.

| Client

—_—

Query

e —

(E;lobal Schema \
/

Global system

Local system Localsystem | | Lacalsystem

FIGURE 3.1 THE GLOBAL SCHEMA APPROACH

This approach allows accessing to multiple local data sources through the global
schema interface. The conceptual global schema is provided as a logically
centralized database (Hughes, 1991). This is another layer above the local external
schemas and which accesses local systems through the external interface of local
databases (Bright, Hurson, & Pakzad, 1992). Most global schema approaches are
relational data models. Multiple local schemas are consolidated bottom-up for
creating a global schema. It is quite convenient for users to have a uniform view and
access to multiple data sources through the logically integrated global schema
without knowledge of local schema heterogeneities. However, the schematic and
semantic heterogeneities must be resolved during the process of creating the global
schema. This causes a major difficulty in thoroughly understanding the schema and
semantic differences of local schemas which have been designed autonomously in
order to homogenise such differences (Kim, 1995). Therefore, the integration process

of this approach is more complicated when the number of local schemas to be

- 26 -

MeDint: An Approach for the integrotion of Dotabase and Legacy Systems

integrated increases. This approach is hard to automate because human
understanding is necessary to identify the schema and semantic conflicts. There is no
general solution when integrating more than two data sources whether all component
schemas should be integrated once or two schemas should be integrated at a time
(Bouguettaya, Benatallah, & Elmagarmid, 1999). Furthermore, in dynamic systems,
when local schemas usually change, the pre-integrated global schema is affected and

required to be recreated to correspondence to the local schemas.

Commonly, the integration is composed of two main steps: schema translation and
integration. The purpose of the schema translation (schema mapping or operational
mapping) is to translate local schemas which may be in different data models into a
common data model that used in the integration. The main purpose of integration is
to resolve the existing conflicts between different representations in different
component systems to provide the correspondence information. This task can be

divided into four steps:

e Pre-integration process, where the schemas to be integrated are selected and
different requirements and constraints on the integrated system are collected.

e The comparison of component schemas to detect conflict in their representations
and correspondences between them.

e The conformation process, which brings the components schemas into
compatibility and resolve conflicts between them. The automation conflict
resolution is not feasible, and the process has to be performed with close
interaction with designers and users (Abdalla, 1998).

¢ The merging and restructuring of component schemas into global schema views.

This is a strict approach in that the global schema creation process is separated from
the query process. Furthermore, the mapping between global and local schemas is
required. The addition, the modification or deletion of local schemas influences the

global schema being adjusted.

Critchlow (1997) presents a global schema approach by the assistance of the schema
coercion technique that transforms sources’ schemas to a reference schema before

generating a transfer program to transfer data to the new created schema.

- 27 -

Malint An Approach for the intsgration of Dotabase and Legaoy Systems

Abdalla (1998) provides a global integration by introducing a Functional Integration
Technique (FIT) based on the object-oriented model. An abstract view in a common
data model integrated from each local data sources is created. Conflicts are resolved
before the local data sources are integrated into a global view. A descriptive .
language, the View Definition Language (VDL), is introduced to represent the local
views. This VDL can be mapped to IDL modules. The View Correspondence

Schema (VCS) is used to define the different correspondences between local views.

The Functional Integration Technique (FIT) is based on the object model providing
the global schema mapping of local entities to resolve structural, semantic and
behaviour conflicts (Abdalla, 1998). An example is given for the integration between
two databases. However, the integration will be much more complex when the
number of databases increase. Furthcrmore, in practical, entities probably cannot be

mapped one by one.

3.1.3 The Federated Database Approach

The Federated Database Approach is miore flexible than the previous approaches. A
Federated Database System (FDBS) can be a tightly- or loosely-coupled approach. It
depends on federation management and integration (Sheth & Larson, 1990) whether
users or database administrators are the ones who control over the component
schemas. A loosely-coupled FDBS has multiple federation schemas controlled by
users while a tightly-coupled FDBS can have only a single federation schema or

multiple federation schemas with constraints controlled by database administrators.

From Figure 3.2, the local schema is the conceptual schema of local data sources.
Local schemas in different data models are transformed into component schemas in
the common data model. Shared data for each federation can be specified in export
schemas. A group of export schemas are then integrated by a federated schema. An
external schema, a subset of a federated schema, will be defined for users if it is a

tightly-coupled approach.

- 28 -

MeDint: An Approach for the Integration of Database and Legacy Systems

’T ' client] ['c_uen7| | cﬁn{]

Federated Schema |: Federated Schema |

FIGURE 3.2 THE FEDERATED DATABASE APPROACH

Because this approach is quite broad, its advantages and disadvantages could be
discussed separately by classifying FDBSs in terms of how schema are integrated:

that is with tightly-coupled or loosely-coupled approaches.

Tightly-coupled FDBSs allow users to query one or more federated schemas without
knowledge of local data sources. However, it still requires complete pre-integration.
The federated schema must be developed before issuing any queries, so any changes
in local schemas would affect the federated schemas. View updating is partially
supported (Bouguettaya et al., 1999). This approach would violate component
schema constraints and the autonomy of component schemas (Holowczak & Li,

1996).

In loosely-coupled FDBSs, it is flexible for users to map semantic meaning.
However, view duplication may be generated by users, because they do not know
that others use the same view. This also causes the problem of view updating with
multiple semantic mappings. Even if the loosely-coupled FDBSs provide creating a
new view easier than in the tightly-coupled FDBSs, it is still difficult to detect
dynamic changes in the export level (Bouguettaya et al., 1999).

MeDint: An Approach for the integration of Database and Legacy Systems

From a federated information system workshop (Conrad et al., 1999), it has been
found that schema integration is a difficult process involving detecting and solving
semantic heterogeneities among structures, constraints, and the behaviour of the

component databases.

3.1.4 The Multidatabase Language Approach

| Client

| Client | Client

Query Query Query

FIGURE 3.3 THE MULTIDATABASE LANGUAGE APPROACH

The multidatabase language approach shown in Figure 3.3 is more loosely-coupled
than the previous approaches. It has been introduced in an attempt to resolve the
problems of the previous approach by discarding the complete or partial schema
integration. This approach allows users to query local database systems directly
without any global schemas. It places the integration responsibility on users by
providing a multi-database manipulation language as a query language tool which is
able to communicate with the local databases and which is capable of managing
semantic conflicts through their specification. Users can see all the local schemas and
create their own logical export schema (Heimbigner & Mcleod, 1989) from selected
schemas, which are relevant to information they need. The strong point of this

approach is that it maintains the autonomy of local databases (Hurson & Bright,

- =86 -

MeDint An Aoproach for the Integration of Database and Legaey Sysiems

1996). However, it requires users to find relevant data in component data sources and
to understand their component schema and semantic contexts to be able to resolve
conflicts in creating their own views. This will be more complicated when dealing

with a large number of component data sources.

Kim and Seo (Kim & Seo, 1991) present UniSQL/M, a multidatabase system which
utilises the relational model as a common data model. Component databases systems
have to be converted firstly into relational schema, then a multidatabase schema

would be created as a view of the component schemas.

This approach is more flexible. A new export schema can be defined easily when
required by the query language tool. Users define the export schema and the mapping
before querying. Therefore, it is easy to add data sources. However, the processes of

defining export schemas and querying are still separate.

3.1.5 Mediation Approach

The mediation approach (Figure 3.4) is a recent approach to interoperate
heterogeneous data sources. The main purpose of the mediation technique is to
reduce the complexities of the integration and make it transparent to the users. This
approach allows users to issue a query to the mediator as if it is a centralized
homogeneous database. The query will be transformed by the mediator to other
query languages corresponding to relevant logical data sources (Neild, 1999).
Response data from each sub-query is composed by the mediator before such data is
retumed to users. The mediator, the major component in this approach, consists of a
knowledge module placed in an intermediate position for bridging between clients
and servers (Weiderhold, 1995; Wiederhold, 1992). The knowledge that a mediator
provides would include information about where data is stored, and what structures

and semantics of data representations are required for each user’s view.

-3 -

Mebint: An Approach for the Integration of Dalabase and Legacy Systerms

Client

Query

Mediator

FIGURE 3.4 THE MEDIATION APPROACH

Context Mediation (Sciore et al., 1994) is an architecture consisting of information
systems, data environments, context mediators, conversion libraries, and shared
ontologies. The context mediator is the central component of the architecture. It acts
as an agent exchanging values from one information system to another by using
semantic values as the unit of exchange, together with semantic mappings from
shared ontologies and functions in conversion libraries. In this approach, data values
have their own associated contexts. A data value can be exchanged by converting it
from a source context to a receiving context. A data environment has two
components: semantic-value schema and semantic-value specification which provide
attributes and properties information. The context mediation consults data
environments to determine what conversions are needed. The shared-ontology
specifies mappings which describe naming equivalences among information systems.
The last component, the conversion libraries, contains all conversion functions. C-
SQL (Context-SQL), the extended version of SQL is used to get benefits from meta-

attributes.

TSIMMIS (Li et al., 1998), a project of the Stanford database group in conjunction
with IBM, is a mediation architecture integrating data from heterogeneous systems
by translating a query on the integrated view into a set of source queries. The

mediators use the view definitions to translate the query on the user views into a

s 2R

MaBint An Agproach for the Intsgrotion of Dotabase and Llegocy Systerms

logical plan. Object Exchange Model (OEM) is used to deal with exchanging

heterogeneous data. It also provides wrappers as interfaces to the mediator.

The AURORA mediator system (Yan et al., 1997) is composed of an interactive
mediator author’s toolkit (MAT), a mediation enabling algebra, a query rewriting
algorithm, and transformation rules that facilitate query optimisation. It integrates
heterogeneous sources by a homogenisation methodology. The concept transforms
the relation in the source to the relation format in the target. Thus, homogenisation
removes the schematic conflicts of data sources relating to an integrated view. A data
source can be integrated by a registration mechanism. The relational algebra and
operators are extended and designed for expressing homogenising views. Queries
against the views are mapped to subqueries against the data sources via wrappers.
AURORA provides a collection of workbenches, each consisting of a mediator
skeleton and a Mediator Author’s Toolkit (MAT). Mediator skeletons are empty
view mediators and become custom-made mediators when views are defined.
Building a mediator means building a mediator view and a query processor.
Mediators are constructed from mediator skeletons which have these built-in
capabiliiies: a mediator enabling algebra (MEA) for defining views and a repository
to maintain them, and a query processor that considers queries posed against views

defined via the MEA.

Garlic (Roth et al., 1996; Roth & Schwarz, 1997) is another example of a mediator
system working together with wrappers to provide an integrated view of multiple
data sources. Each wrapper models data as objects and provides the method

invocation on such objects.

Neild (1999) presents a mediation approach called the Virtual Data Integrator. It has
two components: knowledge representation and query processor. A global schema is
constructed by the knowledge representation from the information of related objects,

contexts, and constraints. The query processor then can interpret the query.

The mediation approach is flexible in that it allows users to do the integration while

issuing the queries. No prior creation of global schema is needed and new additional

- 33 -

MaDint: An Aoproach for fhe integra

noof Database and Legaoy Systems

data sources are easily added to the system. However, a knowledge of data source

structure is necessary.

3.1.6 Other Approaches

The limitations of the above integration approaches have led integration technologies
towards a new variety of solutions. Various theories have been applied to solve
integration problems such as the object-oriented model, knowledge base, and

modelling. Examples of these approaches are discussed below.

Data Warehousing systems are different from integration systems in that a data
warehouse is an instantiated view (Jakobovits, 1997) which serves to categorise data
on a multi-dimension. Nonetheless, data warchousing systems are static; updating of
local data sources does not affect them until reconciliation time. Query execution
does not have to deal with complicated processes, for example, query translation, or
to communicate with data sources which are in different data models. The main
purpose of a data warehouse is to provide users with the summarised information
from historical data. Data warehousing therefore derives selected information from
data sources, removes inconsistencies, and transforms the information to suit the

query and analysis (Seligman & Rosenthal, 1996).

DataFoundry (Critchlow, Ganesh, & Musick, 1998) is a mediated data warehouse
supported by a domain-specific ontology. The mediators transform data from source
format to data warehouse format and transfer query requests to data sources.
Ontology is a resource to generate mediator, and supports the query processor and
guides schema evolution. There are three types of knowledge: formal definitions of
databases, mappings and methods; concrete instances of these descriptions; and
domain-specific abstractions representing knowledge about a particular field.
Database descriptions are language independent definitions of the information
contained within a single database. They are used to identify the translations to
transfer data between data sources and the target. Mappings identify the
correspondence between database descriptions and abstractions at the class and

attribute levels. Transformations describe which attributes contain the same data, but

- 34 -

sMalint An Approacoh for the Integrotion of Dolabase and Legacy Systems

in different formats, and identify the methods that can be used to translate between

them.

The Information Integration Wizard Project (I-WIZ) (Hammer, 1999) has been
developed by using hybrid data warehousing and a mediation approach to integrate
heterogeneous data sources. The warehouse is used to store frequently accessed data
and the mediation is used to support data that is not in the warehouse. This project
focuses on removing structural and semantic conflicts and the merging of
corresponding data by using the process of information transformation and

knowledge representation.

Reengineering approaches need to migrate databases to new environments (Seligman
& Rosenthal, 1996). The mappings from old schema to new schema are required.
KADBASE is a schemata information integration of the engineering databases into a

single global schema based on a semantic model (a frame data model).

One of the knowledge representation techniques for heterogeneous database
integration is the Carnot project (Woelk et al., n.d.), based on Cyc knowledge base
integration, wherein Cyc is responsible for comparing difference schemata and
merging them. Cyc was launched in 1984 by Microelectronics and Computer
Technology Corporation (MCC). It is a large knowledge base which deals with a
huge amount of common sense knowledge. It stores knowledge about real-world
objects and their relationships, and also enables high-level queries to be posed
directly against a database, instead of embedding them in an application program.
Camot provides articulation axioms to map between local models and the global

context.

For testing schematic integration, the ConceptDISH of Srinivasan (Srinivasan, 1997)
integrates six no-semantic-conflict systems. The system incorporates conceptual
integration using background knowledge in database structure and data mining for
automatically discovering a set of concepts and providing a conceptual layer above
the legacy and object-oriented systems. The domain abstraction based on finding

similar patterns of meta level information is used instead of a common model.

- 35 -

MeDint. An Auproach for the Integration of Dotabase and Legaoy Sysisrms

The Context Interchange approach (Goh, Bressan, Madnick, & Siegel, 1999)
provides a disparate information system integration framework, which is mid-way
between the two traditional approaches. This approach focuses on the semantics of
individual data items. That is, the semantics are independently captured and this
approach allows its mediator to detect conflicts when users issue queries. It does not

require the users to detect the conflicts.

The modelling approach provides a high level, semantically-rich object oriented,
model containing superclasses that encapsulate each component database used to
resolve heterogeneity issues. Several methods are defined to address the issue of

semantic heterogeneity (Holowczak & Li, 1996).

Heiler, Miller & Ventrone (1996) also concentrate on the semantic interopernbility of
databases and legacy systems. Their approach extracts the semantic incompatibilities
of different systems and collects the metadata in a repository for easy detection.
Then, their CASE tool is used to automatically create structured, semantic

information. However, this approach is still not suitable for run-time systems.

The InforFED system (Phijaisanit, 1997)-is a federated database system that uses an
ontology as the shared conceptual specification of all export schemas. This
architecture uses the mediation data model supporting the multiple value concepts,

which can export their data in their own unit values, as the common data model.

SINGle Access POint for heterogeneous data REpositories (SINGAPORE) is an
integration model in which the integration process is done after users issue queries. It
applies the metadata repository to provide data source structures and knowledge. The
structure of the metadata repository is defined formerly to capture such information

in the preintegration process (Domenig & Dittrich, 2000).

Chang & Raschid (1996) present a technique to support interoperable query
processing on multiple heterogeneous databases by utilising two canonical
representations. One is resolving heterogeneity based on query languages. Another
one provides the mapping information to resolve representational heterogeneity

among different schemas and is used to build a mapping knowledge dictionary.

.36 -

Mebint An Aoprogceh for the Integration of Dolabase and Legaoy Systems

Bright, Hurson, & Pakzad (1994) provide a partially automatic integration
framework for relational data sources to especially help semantic identification by
using global data structure to refer to local database systems. This allows users to use
their own terminology to manipulate data by applying linguistic knowledge theories
to match global entry terms to local data source terms. Thus, the mapping hierarchy

still needs human involvement.

McBrien & Poulovassilis (2001) present a method to integrate XML and structured
data sources by transforming XML documents into an entity-relationship (ER) model
using a low-level hypergraph-based data model (HDM). This represents an attempt

to convert XML documents into schemas to work with structured data sources.

3.2 Related Tools and Techniques

In this section, related integration tools and interfaces are reviewed. A number of
useful client-server standard tools have already been developed in distributed

heterogeneous systems, for example, CORBA, OLE and IDL.

3.2.1 Wrapping Techniques

Wrapping techniques are used to integrate legacy systems with other new systems.
Layering, middleware and encapsulation are examples of wrapping techniques

(Aronica & Rimel, 1996).

Layering is the most fundamental wrapping technique. This method maps one form
of an interface onto another form. Its functions can accommodate the complexity of
existing legacy systems. Layering is useful to aggregate legacy systems. This method
is helpful because operating under layers reduces the complexity of legacy systems

by dividing them into several business objects.

Middleware is system integration software for distributed processing and for
database and user interfaces. The field of distributed processing middleware has been
growing rapidly with the support of the Object Management Group’s Common
Object Request Broker Architecture (CORBA). Database middleware provides

- 37 -

MeDint An Approaoh for the Intesgrotion of Dolabass and Legaay Svsienms

common mechanisms for accessing a variety of database systems and file structures.

Some database middleware products map legacy systems such as IMS onto relational
or object models. Database middleware allows a system to issue a single information
request and to access several data sources, which may be different vendor’s database

systems.

Encapsulation is the most general technique of object wrapping. This method
separates the interfaces out of an implementation. Encapsulation treats systems as a
black box abstract and implementation details are hidden in the box. All accesses
including direct and indirect accesses are performed through interface methods.
Using interface methods allows implementation details to be changed without
requiring other changes. CORBA and its IDL (Interface Definition Language) allow
encapsulated systems to hide differences in programming languagcs, systems
locations, OS, algorithms and data structures. Using IDL allows object encapsulation
to be freely defined apart from implementation details. Encapsulation can be used
with legacy systems whose source codes are lost, because wrappers can access
legacy files and databases directly. If legacy systems have a reasonably robust

application program interface (API), a wrapper can use it to perform most functions.

The Distributed Information Search Component (Disco) is an example of the
wrapper-based approach (Kapitskaia, Tomasic, & Valduriez, 1997, Tomasic,
Raschid, & Valduriez, 1995). It provides wrapper interfaces which support relational

logical operators. Disco talks to wrappers via the abstraction level.

3.2.2 The Common Object Request Broker Architecture (CORBA)

CORBA, developed by the Object Management Group (OMG)), is a specification for
an application-level communication infrastructure. It is a standard technology
infrastructure for the development and deployment of object-based applications in
distributed, heterogeneous environments (Distributed Management Group, n.d.;
OMG, 2001). The main purposes are for reusability, portability and interoperability.
CORBA simplifies distributed environments using an object paradigm that hides all

differences between programming languages, operating systems, and object location

- 38 -

MeDint An Aoproaceh for the Integration of Daotabase and Legaoy Systems

(Mowbray & Zahavi, 1995). CORBA addresses interoperability and provides an
object-based central layer which can communicate over heterogeneous platforms
with language and platform independence (Segue Software, n.d.). The CORBA
standard defines mechanisms whereby objects implemented in different languages
can communicate transparently through an invocation method (Scallan, 1999).
CORBA’s characteristics allow the integrator or mediator to concentrate on database
management heterogeneity and data representation heterogeneity by ignoring
platform heterogeneity. The ORBs are the implementations of CORBA, which are
effective for system integration and for Internet accesses. Object Transaction Service
(OTS) is a horizontal service of OMG that allows users to access distributed
transactions across multiple heterogeneous databases and transactional legacy
systems (Vogel & Rangarao, 1999). CORBA Interface Definition Language (IDL) is
defined by OTS to provide a common language and syntax for client and server

access. Distributed objects can be located anywhere in a network.

Components of CORBA are Object Request Broker, Object Services, Common
Facilities and Application Objects (OMG, 2001).

The Object Requesi Broker, the central component of the architecture, provides a
seamless infrastructure for distributed communication across heterogeneous systems.
It is the core that allows objects requesting or being requested to be transparent.
Clients need not be aware of where the object is located, what programming
language is used, or any other relevant aspects. CORBA provides communication
facilities to applications through two mechanisms: static interfaces and a Dynamic
Invocation Interface (DII). An Interface Repository stores on-line descriptions of
known OMG IDL interfaces. Any interface can be used with either mechanism. The
Basic Object Adaptor (BOA) is an initial set of ORB interfaces for object

implementations.

Interface Definition Language (OMG IDL) is a technology-independent syntax for
describing object encapsulations. Its specifications are compiled into header files and
stub programs for direct use by developers. Mappings from OMG IDL to C, C++,
and Smalltalk are provided. From the header files, the OMG IDL compiler generates

stub and skeleton programs for each interface. The client program links directly to

.35 -

MaDint Arn Approach for the Integration of Balabase and Legaay Sysiems

the OMG IDL stub. The stub acts like a local functional call with transparent
interface that encodes and decodes the operation parameters into communication
formats suitable for wansmission. The OMG IDL skeleton program is the

corresponding server-side implementation of the OMG IDL interface.

Dynamic Invocation Interface (DII) is a generic facility for invoking any operation
with a runtime-defined parameter list. A runtime interface description of the
operation signature can be retrieved on-line from the CORBA Interface Repository.
Programming with OMG IDL static interfaces is much more simple, but the DII

provides a level of flexibility that is necessary in some applications.

An Object Adaptor contains the interface between the ORB and the object
implementation. It supports many type of functions for general purposec uses, object

database integration, legacy integration.

Object Services are a shared fundamental set of lower-level services performing
basic function services for implementing an object. The object naming service
provides basic operations including bind, unbind, and resolve. The object event
service is a reusable set of interfaces for event posting and dissemination. The object
relational service provides a capability for managing associations and linkages

between objects.

Common Facilities are the set of shared high-level services that do not perform basic

functions.

Application Objects contain all the software such as developer’s programs,

commercial applications, and legacy systems.

In conclusion, integration issues are simplified because CORBA can deal with
heterogeneous hardware, software, compiler versions, data access mechanisms,
component/module interfaces, and networking protocols. OMG IDL provides
operating system and programming language independent interface. Programmers do
not have to be concerned with the operating system, the server host hardware or the

server location or activation state (Mowbray & Zahavi, 1995).

- 40 -

Melint An Agproach o the Integrotion of Database and Legaoy Systerms

3.2.3 Enterprise JavaBeans

Vogel and Rangarao (1999) state that “Enterprise JavaBeans (EJB) is a higher-level
component-based architecture for distributed business applications that use the
transaction system’s lower-level APIs”. EJB was published by Sun in 1998. Itis a
Java-based component-oriented framework for developing, deploying and managing
distributed, transactional applications. EJB is a specification for server-side. It allows
developers to code business logic without worrying about managing transactions
such as start or terminate transactions. EJB is mainly designed for distcibuted
transactions, but it can be used to implement non-transaction systems (Thomas,
1998). Several services of EJB are interoperable with CORBA. Java Transaction
Service (JTS) is a service binding with CORBA’s OTS. JTS is an Application
Programming Interface (API) which is able to manage distributed transactions

operating with multiple databases in disparate systems (Matena & Hapner, 1999).

3.2.4 Extensible Markup Language (XML)

Extensible Markup Language (XML) is a specification developed by the XMI. Core
Working Group of the World Wide Web Consortium (W3C) organisation as a
standard way of representing swructured data. XML is a subset of Standard
Generalized Markup Language (SGML). The goal of XML development is to make
SGML documents able to be processed simply on the Web and to bring about the
interoperability of SGML and HTML (Bray, Paoli, Sperberg-McQueen, & Maler,
2000). XML is a format for swructured data interchange over the Internet. It supports
data exchange between heterogeneous systems. It becomes one of the means that are
used in transforming data from heterogeneous sources including transaction legacy
data (Goldfarb & Prescod, 2000). XML is the present and future specification with

which all systems tend to conform.

XML is different from HTML in that HTML has a limited number of markup tags,
but any markup tag can be used in XML (Goldfarb & Prescod, 2000). The designers
of XML have attempted to take the power of SGML and the simplicity of HTML to

create a new language for specifying document types that are tailored for the web, it

- 41 -

MeDint: An Anproach for the Integration of Daotabass and Legaoy Systems

is easy to use and light weight. In XML, the meaning of the information is embedded
in the document. Information is separated into meaningful chunks called elements,
which are bounded by start and end tags. Tag names describe the content of the
elements. Elements can have attributes, which are property-value pairs embedded in
the start tag. The document has a hierarchical structure, where elements can be
contained in other elements. This structure implicitly describes the relationship

between elements.

XML processors are software modules used in processing XML documents by
accessing the structures and contents of XML documents (Morrison, Boumphrey, &
Brownell, 2000). XML applications utilise the services of XML processors to get the
structure and content of XML documents. XML processors can be plugged into an
XML application to process XML documents. An XML puarser, part of the XML

processor, is used to analyse XML markups and identify the structure of a document.

From the investigation in this research, the characteristics of XML that allow for the

integration are as follows:

e Metadata: Document Type Definitions (DTDs) are schema definitions of
documents. DTD enables both syntactic and semantic checks of what is legal in a
document (Goldfarb & Prescod, 2000).

e Self-describing: This makes it human-readable.

e Exchanging: XML is tuming into a crucial tool support for exchanging
information among databases. Especially, it is able to represent the complex
structure of object-oriented information which simple file format cannot
represent (Goldfarb & Prescod, 2000).

e Parsing: XML can be completely parsed because its data and metadata are
separated from its rendition (Goldfarb & Prescod, 2000).

e Future: XML is a proper standard for structured data on the web. Many relevant
specifications are being developed for supporting XML.

e Rendering: XML can be delivered to users differently (Goldfarb & Prescod,
2000).

e Transaction processing: To do a group of actions called a transaction, XML can

combine such actions into a request by nesting them as a component in a

- 42 -

MabDint An Aoproaoh for the Integration of Dotabase and Legaoy Sysiems

transaction element even though an output of the first action will be an input of
the second action (Goldfarb & Prescod, 2000).

e Data interoperability (Tun, Goodchild, Bird, & Sue, 1999): It is a text-based
format, making it platform- and software- independent. Thus, XML documents
can be exchanged over existing protocols such as HTTP. Its hierarchical structure
allows powerful data constructs from databases and other applications to be
specified.

e Open standard: This makes it vendor independent. Several generic tools are

bound to emerge that support XML applications.

The most significant reason that XML was chosen as one of the tools in the
integration process in this research is that the data type of each element need not be
specified in case of data tvpe mismatches. Data values from different data sources
defined by different data types donot have to be refixed or coerced into any specified

data types, which would cause the loss of accurate information.

3.2.5 Ontologies

Ontologies are normally used in data integration to capture domain knowledge and
provide a commonly agreed understanding of a domain, which may be reused and
shared across applications. The knowledge represented inside an ontology can be

formalised by using five components:

e C(Classes or concepts all the notions which are relevant for a given application
domain describing objects, tasks, functions, actions, strategies, etc.

e Relations represent interactions between concepts and are defined as a subset of a
Cartesian product.

¢ Functions.

e Instances represent the specific instantiations of concepts.

e Axioms are used to represent properties that concepts and instances have to

satisfy.

Examples of the integration methodology based on ontologies are DataFoundry

(Critchlow et al., 1998), The InforFED system (Phijaisanit, 1997), and The

- 43 -

MabDint An Approaoh for the Integration of Database and Legaoy Svstams
h i b : F

Distributed Information Search Component (Disco) (Kapitskaia et al., 1997; Tomasic
et al., 1995).

3.2.6 Metadata

Metadata is a repository of stored information of data sources, reference definitions,
assertions about correspondences among data sources, libraries of conversion
functions, and schemas for integrated views (Seligman & Rosenthal, 1996).
Morgenstern (1997) states that a basic form of metadata is a schema definition
providing a form of structural metadata. Data Dictionaries (Seligman & Rosenthal,
1996) also are suggested as a kind of useful metadata to capture information from

data sources, but very limited in the amount of representation information.

A library of conversion functions has been an important part when data represented
by different units in multiple data sources need to be compared. One aspect needed to
be considered is whether that conversion is total, lossless, or orderpreserving (Sciore
et al., 1994). A total conversion means it is possible to convert any value from any
unit to any other units. Currency conversion is an example of total conversion. In
contrast, the granularity conflicts mentioned in Chapter 2 are an example of a
nontotal conversion. The conversion function is lossless if it still gets the same result
when converted from a semantic context directly to another context or when
converted by a sequence of steps. The opposite of lossless conversion is lossy or
nonlossless conversion. An order preserving conversion occurs when two values in a
semantic context are converted to another context and the converted values still

follow in the same direction of the original values.

MetaData Specification (MDS) is used to construct a metadata repository to locate
and guide access to distributed heterogeneous resources (Morgenstern, 1997). High
level MetaData Specification is used to drive mediators which help to link
heterogeneous information systems and provide a uniform data interface, hiding the

underlying heterogeneity.

- 44 -

MaDint An Agproach for the integ rof Dotabase ond Leguay Syatems

3.3 Summary

Major data integration approaches have been reviewed in this chapter. Each of them
has limitations and each is appropriate for particular cases, for example, how tightly
or loosely it may be required. The global schema approach is a tightly-coupled
approach which allow user to simply query on the global view, but it is a fully-
integrated approach which will generate critical problems in dynamic systems.
Federated database approach is quite broad. It could be tightly- or loosely- coupled
depending on who, the user or database administrator, has control over the
component schemas. However, the same problem in the global schema approach also
appears in the federated schemas. This problem can be solved when using
multidatabase language approach, but it does not support legacy systems and users
have to be responsible on creating their own schema which means the knowledge of

component schemas is necessary.

Taken into account the strength and weakness of the integration approach reviewed
above, an alternative integration architecture is proposed in the next chapter to

address research questions presented earlier.

- 45 -

MeDlint: An Agproach for the Integration of Dotabase and Legaooy Systems

CHAPTER 4 - THE MEDIATED DATA
INTEGRATION ARCHITECTURE

When interoperation between multiple heterogeneous data sources is required, there
would be a number of conflicts arising not only from different database designs, but
also from different kinds of data models employed within heterogeneous databases.
These conflicts generate the difficulties of homogenisation in terms of data model,
schema and scmantic. The Mediated Data Integration (MeDInt) architecture for the
heterogencous data integration framework is introduced in an attempt to overcom:
the above difficulties. Its main focus is to provide a solution to interoperate
heterogeneous data sources through transparent transformation of both the queries
and the data. Furthermore, MeDInt is capable of solving not only Schematic and
Semantic Heterogeneities, but also conflicts from different query languages and data

models, namely Data Model Heterogeneity.

Jakobovits (1997) classifies tightly-coupled database systems, mediator systems and
decision-logic based systems as static integration systems and loosely-coupled
database systems and metadata repository systems as dynamic systems. A static
integration system is defined as the system which Schematic and Semantic
Heterogeneities are resolved when a new component data source is added to the
integration system, while a dynamic integration system is the system which such
heterogeneities are resolved at query time. The integration approach proposed in the
research incorporates the advantages of both the mediator systems and metadata
repository systems. The MeDint architecture requires that new data sources be
registered when they are added to the integration system. However, the
heterogeneities are resolved at the query time. That means the mediator system is

extended to make it more dynamic through the inclusion of the metadata repository.

The ANSI/SPARC Study Group on Data Base Management Systems divides a

database system architecture into three levels: internal, conceptual, and external

- 46 -

Malint An Approach for the Integration of Daotabase and Legooy Systems

levels (Date, 1990). The internal level is a low level representation relating to the
physical storage side. The external level is the high level representation relating to
the user side. It can be presented differently depending on the application. The
conceptual level is between the internal and external levels representing the entire
information of a database. This architecture is categorised as the conceptual level

according to the ANSI/SPARC architecture.

This research will investigate and design an integration technique based on the
mediation approach. The mediated architecture adds a third layer between

applications and data sources.

4.1 Architecture Requirements

Addressing the research questions proposed previously, the following architecture
requirements have been formulated as the framework to develop the integration

architecture.

Requirement number 1: The schema evolution should not affect the integration. This
requirement is to cater for dynamic systems where schemas could be changed
frequently. When schema modification is made on data sources, it should not cause

large-scale modification to the integration system.

Requirement number 2: The integration should cover the major kinds of data sources

widely used such as legacy, relational model, and object-oriented model systems.

Requirement number 3: This approach should increase automation and reduce
amount of work required by end-users. Users should not have to deal with conflict
resolutions once they issue queries. The different terminologies used in data sources
and the different structures of data sources should not affect users when issuing

queries.

Requirement number 4: Concerning on scalability, the integration architecture should

only require minimum modifications when a new data source is added or removed.

- 47 -

sMalint An Approaoh for the Infegrotion of Dolabase and Legaoy Systems

4.2 Requirement Analysis

In order to accommodate dynamic systems, from the architecture requirement
number 1, that schema evolution should not affect integration and from requirement
number 4, when a new data source is added or removed, the integration should only
require minimimum modification, it has been found that the pre-integration
approach, such as tight-coupling and translation approaches, are not appropriate
because they cannot fulfil these requirements. This is because any modifications
made on the component data sources cause a lot of changes to the global schema or

translators (Goh et al., 1999; Goh et al., 1994).

Requirement number 2 is introduced to allow the architecture to interoperate well.
That is, the integration architecture should serve the most common kinds of data
sources, for example text files, XML, relational, and object databasc management
systems. According to this requirement, the loose-coupling approach, such as
multidatabase approach, is not practical because it is able to serve only relational

database management systems.

Concerning usability and transparency, the integration system should be easy to use.
This is addressed by requirement number 3, that users should not be responsible for
conflict resolution when they issue queries. In general, when users issue a query to
multiple data sources, they have to deal with heterogeneities among multiple results
from different data sources, for example, different currencies and different naming of
objects or attributes in each source, etc. This is because different data models and
database designs contain different data source schemas and terminologies. The
Multidatabase approach whereby users have to deal with these heterogeneities

themselves when issuing queries, is also not suitable.

The translation, tight-coupling, and loose-coupling approaches do not satisfy all of
the requirements described above. To accomplish such requirements, other
integration approaches have to be considered. Several experiments on generating
conflicts and applying solutions to such conflicts have been done. The main
processes are resolving the Data Model, Schematic and Semantic heterogeneities.

Data model and Schematic heterogeneities can be resolved by translation processes.

- 48 -

MeDint An Approach for the int

ation of Dotabase ond Legaoy Systems

Semantic Heterogeneities require conflict resolution processes. However, further
experiments done by the author have revealed that the integration process is
considerably more complicated when dealing with both translation and conflict
resolution at the same time. In response to these difficulties, an architecture called
the Mediated Data Integration Model (MeDint) has been proposed. A mediator,
along with wrappers, are designed to mediate both requested queries and query
results from heterogeneous sources. The MeDInt Mediator handles common
integration tasks, while the wrappers deal with integration tasks specific to individual
data sources. Translation processes are handled by wrappers whereas conflict
resolution processes are done by the MeDInt Mediator. In addition, these integration
processes do not directly integrate data sources schemas, but integrate only the query
results from multiple data sources. This feature is the strength of the architecture in
that the integration processes do not directly force multiple schemas into a unique
global schema, nor do they resolve semantic conflicts directly. Rather, it slightly
adjusts only the result data to conform to the pre-defined referential template. The
main architecture and components of the MeDInt solution are described in the next

section.

4.3 The MeDInt Architecture

MeDInt, which stands for the Mediated Data Integration Architecture as shown in
Figure 4.1, is based on mediation and wrapping techniques. The two main
components are the mediator and wrappers acting as the intermediate agents between
clients and multiple data sources to communicate both request queries from clients to
data sources and also query results from data sources to clients. In addition, a data
model called the Mediated Data Model (MDM) has been developed as the backbone
of the integration system to generate a common data model used by the MeDInt

Mediator.

- 49 -

Mebint: An Approach for the Integration of Batabase and Legacy Systerms

RWrap

| oTA STP

- ' QTP

Define related objects I
RP DTP
[Transform & Decompose query] ' Register
data
fi It templat

Define result template | . OWrap

STP

1] L I :
Client !._.. MMD oTP
: | DSMetaData “ OMMetaData] AMMetaData DTP Objectoriented
l CVMetaData " TSMetaData I dniabases

RA cp CRA LWrap

l__._! Present L_I Consolidate L_I Apply L

the results resultto oTP

integrated fit
result template | _ bTP |
]

FIGURE 4.1 THE MED!N1 ARCHITECTURE

4.3.1 MeDIint Components

The MeDInt architecture is represented by four-tiers of components: the application
systems which interface to users, the mediator, wrappers and data sources
(Chirathamjaree & Mukviboonchai, 2002b; Mukviboonchai & Chirathamjaree,
2001a, 2001b). In addition, the Mediated Data Model (MDM), a data model designed
especially for the heterogeneous data integration framework, works along with the
MeDInt Mediator and wrappers functioning as a central data model and working as
the backbone of the integration facilitating the Mediator and wrappers in

understanding each other.

4.3.1.1 The User Interface

To get information from multiple data sources, there are two alternatives for users to

issue queries to heterogeneous database systems. Firstly, users can use any query

- 50 -

MaDint: A Acnioach for the Integration of Databagse and Legaoy Systerms

language to create the queries and the system provides translators to map from the
local query language to the query language commonly used in the system. Secondly,
a query language is provided for users to specify their queries. The latter option is
selected in this architecture because generally query languages are not capable of
utilising and specifying the heterogeneities between heterogeneous systems
(Papakonstantinou et al., 1995). Therefore, this approach also provides a data model
with a query language (see Chapter 5) which captures the heterogeneities for users so

that they can specify their own queries, including semantic contexts.

4.31.2 The MeDint Mediator

The MeDInt Mediator provides middle-layer services, as an information integrator
does, between the application and wrappers. In ¢eneral, mediators are responsible
for retrieving information from data sources, transforming received data into a
common representation, and integrating homogenised data (Wiederhold &
Genesereth, 1997). In this research, the MeDInt Mediator has been designed to

include the following common characteristics of the integration processes:

e registering data sources information,

e defining associate objects and requesting object schemas from wrappers,

e decomposing and transforming a query to subqueries according to data sources,
e generating a result template,

e applying the multiple sets of results to a pre-defined template,

e consolidating the conflict-resolve sets of results, and

e displaying the integrated result to the user.

The components of the MeDInt Mediator and their functions are described next.

Registering Processor (RP). Once a new data source is added to the Mediated Data
Integration system, it needs to be registered. This enables the integration system to

incorporate the essential information from each data source.

Query Transformation Agent (QTA). When the MeDInt Mediator receives a
submitted query, QTA is responsible for defining query-associated objects and

requesting for object schema definitions which are in the Mediated Data Definition

[4

- 851 -

MeDint An Agproach for the infegration of Dolabase and tegacy Systems

Language (MDDL) format from wrappers. Furthermore, QTA transforms and
decomposes the submitted query to the Mediated Query Language (MQL) format
and sends a subquery to the wrapper of each source. QTA also creates a result

template from the attributes requested in the submitted query.

The Mediated MetaData (MMD). MMD is a repository collecting the information
necessary for the integration, for example, semantic information, data sources
definitions, and conversion functions, etc. This information is critical for resolving
both schematic and semantic conflicts. Many categories of MMD have been
developed: Data Source MetaData (DSMetaData), Object Mapping MetaData
(OMMetaData), Thesaurus MetaData (TSMetaData) and Conversion MetaData
(CVMetaData) (Seec Chapter 6 for more detailed information).

Conflict Resolution Agent (CRA). After the MeDInt Mediator gets the query result
from the wrappers in the Mediated Data Representation Structure (MDRS) format,
CRA is responsible for applying each MDRS to fit the given template if they have
different structures and contexts. The process of applying MDRSs to fit the template
is one of the processes of indirect conflict resolution by resolving only the query
result, and not the data source schemas. This is the most significant aspect of the

architecture which can be described as data integration without schema integration.

Consolidation Processor (CP). CP integrates or consolidates the sets of MDRS
results which have already been fitted to the template. These MDRSs already have
the same structure or are structurally equivalent as all conflicts had been resolved

before this step.

Rendering Agent (RA). The RA is an interface automatically generating the

integrated conflict-resolved result of the query to the users.

The details of the Me Dint Mediator are described in Chapter 6.

4.3.1.3 Wrappers

Wrappers are in the intermediate layer between the MeDInt Mediator and data

sources. A wrapper is invoked when a data source in a difference data model is

- 592 .

MeDint: An Approach for the Integration of Dotabase and Legaay Sysiems

added to the integration system. Wrappers mainly act as translators providing the
MeDInt Mediator with information in the common data model used in the
integration system by dealing with the data model heterogeneities of different data
sources. The principle objective of wrappers is dealing with data model
heterogeneities including the different data definition languages and data
manipulation languages by mapping different data models to the Mediated Data
Model. Each MeDInt wrapper is composed of a Schema Translation Processor, a

Query Translation Processor and a Data Translation Processor.

The Schema Translation Processor (STP) is responsible for translating the data
definition of objects requested by the MeDInt Mediator from the data definition
language of each source to the Mediated Data Definition Language (MDDL). It then

sends the object schemas in MDDL to the Mediator.

The Query Translation Processor (QTP) is responsible for translating Mediated
Query Language (MQL) subqueries into a specific query language which can be

executed in the database management system of each data source.

The Data Translation Processor (DTP) gets a set of query results from each data
source and then translates the data contents to the Mediated Data Representation

Structure (MDRS).

It can be noted that unshared characteristics are pushed to the wrappers to reduce the
amount of middleware modification when a data source is added, removed or

modified. The details of the MeDInt wrappers have been provided in Chapter 7.

4.3.1.4 The Mediated Data Model

According to the aspect of model heterogeneities, the conventional data models are
not practical to represent and cover different characteristics of several data models or
to be a broker to negotiate their heterogeneities. Most conventional data models are
useful to describe the structure of data, but they are not suitable for describing the
semantics or the context of data. This research provides the Mediated Data Model

(MDM) which has been developed specifically for schematically and semantically

- 53 -

Mebint An Appioaceh for the Integration of Dotabase and Leguay Svsiems

describing data models for heterogeneous system integration. The Mediated Data

Model consists of the following description languages.

e The Mediated Data Definition Language (MDDL),
e The Mediated Query Language (MQL), and
e The Mediated Data Representation Structure (MDRS).

MeDint ! 3
Mediator O dagbn}:;:,._,, F |
e OWrap ; i
i
N J oooB
TN
Legacy A
MDM system
LWrap
N _ Legacy system

FIGURE 4.2 DATA MODEL TRANSLATION

Figure 4.2 depicts the mechanism of data model translation. A given type of data
mode] used for a data source will be translated by its associated wrappers (such as
RWrap for the relational data model) to be accommodated in MDM, which is the
common data model acknowledged by components in the MeDInt Mediator. The
MeDInt Mediator, therefore, does not have to deal with complications of different
data models. Thus, problems relating to the Data Model Heterogeneity can be
disposed of. Details of the Mediated Data Model are described in Chapter 5.

4.4 MeDInt Processes

The processes of the MeDInt Architecture can be illustrated by the following
diagram (Figure 4.3).

MeDint: An Anproach for the Integration of Ralabase and Legacy Sysiems

Query

——=1 object schemas |

Registered DS

) +
! Translate Object |

. C s
MDiDLS Schemato MDDL |
= Subqueries |
- { Transite | |
Specific queries ? subqueries '
)

Result Template L

; ¢ Transtormto !
| Results |— MDRS '—-{_ MDRSs |

| Setotresults

—mm—-[Integrated resurt |

B redixer .| Wrappers

FIGURE 4.3 MEDINT PROCESSES

First, when a new data source is added to the integration system, an initialisation step
is needed. The data source has to be registered to MMD by RP. Data source
information, for example, assigned name, location, type, description, and constraints
relating to its structure and semantics must be collected into the Data Source
Metadata (DSMetaData), a category of MMD, as its schema knowledge to be

provided to other components in MeDInt when required.

Generally, when a user submits a query in MQL syntax to retrieve the information
they want from heterogeneous data sources, the query is submitted to the MeDInt

Mediator instead of directly to the data sources. QTA then diagnoses the query,

- 55 -

MeDint: An Aopproach tor the integration of Ratabase and Legacy Systerms

defines the objects required, and sends a request to the STP, a component in
wrappers, to get the related object schema definitions. STPs translate disparate object
schemas which are in different data definition languages to MDDLs. From these
object MDDLs, QTA analyses again whether those gathered object schemas are
sufficient to transform the query. If not, QTA specifies further indirectly associated
objects from the relationships and subtypes, if any, of MDDLs of the direct objects.
Therefore, QTA has to repeat the process of getting MDDLs from STPs again until
there are enough object definitions for it to transform the requested query. The
submitted query is transformed and decomposed by QTA to MQL subqueries which
are submitted to QTPs. The QTP translates each MQL to a specific query language
which depends on what kind of query languages each database management system
can understand. QTA also prepares a template for the results after getting the results
from multiple data sources. This method does not try to resolve conflicts directly

which would be more difficult and complicated.

After getting a response data back from data sources, the DTP, a component of a
wrapper, then translates the query results into MDRS. CRA resolves conflicts simply
by applying all MDRSs to fit into the structure of the predefined template so that
resultant MDRSs are structurally equivalent. CP then integrates the conflict-resolved
results which are in the same structure and have the same semantics. The RA finally

transforms the integrated result to users.

This architecture overcomes the weakness inherent in other approaches that require
the physical or logical integration of component schemas as mentioned in Chapter 2.
Only the query result from each source, according to the result template, will be
integrated instead. The template will be created from the submitted query. The
resultant data from each data source will be applied to fit to the template which is the

means by which the heterogeneities are resolved.

MeDint: An Approach for the Integration Of Dalabase and Legacy Systems

Presentation/
Integration layer

Resolution layer

Wrapper layer

Data source layer

Data Object layer

Conflictresolved
@ Object Wrapper Obiject MDRS Object < RMDRSO >> MDRS Object

FIGURE 4.4 DATA LAYERS

An alternative view of the working of the MeDInt architecture is illustrated in
Figure 4.4. Data representation is now described in terms of data layers and
encapsulation. The lowest layer is the data object layer which contains objects. File
or database management systems deal with their own objects in this layer. The.
requested objects are sent to the data source layer which presents wrapper objects to
wrappers. These are encapéulated by wrappers which perform appropriate functions
to get query results in MDRS objects. CRA gets the MDRS objects from the wrapper
layer in order to resolve conflicts and sends RMDRS objects (conflict-resolved
MDRYS) to the resolution layer. Finally, the presentation/integration layer integrates

the RMDSR objects to present the result of the query to users.

4.5 Summary

The requirements of heterogeneous data integration have been formulated and
derived from both the literature and the research questions. The mediation and
wrapping techniques are employed to satisfy these requirements. In this chapter, the
Mediated Data Integration (MeDInt) architecture is presented. The MeDint
Mediator in collaboration with wrappers and the Mediated Data Model (MDM) have

been introduced to overcome the problems in dynamic integration systems and to

=5y 7

MeDint: An Aoproaeh for the Integration of Doltabase and Legacy Systerms

resolve the heterogeneity issue. The components of these three main components will

be described in details in chapter 5, 6 and 7.

- 58 -

MaeDint: An Aoproach for the Infegration of Dotabase and Legacy Svstems

CHAPTER 5 - THE MEDIATED DATA
MODEL

Conventional data models have been designed concentrating on collecting and
manipulating data, but they are not practical for representing heterogeneities for the
integration purpose in that they are not capable of adequately brokering different
kinds of data models. Basically, the object-oriented data model best describes a real-
world object, but it is still not suitable to be used as a common data model because it
is difficult to incorporate semantic concepts (Conrad ct al., 1999). Most conventional
data models are able to describe the structure of data, but are not rich enough to
express the meaning or context of the data. The integration of data sources when the
relevant databases have been designed dependently does not create heterogeneity
problems. However, when databases have been designed independently, there are
heterogeneity problems such as different terminology, data types, units of
measurement, domains, scopes, and so on. Heterogeneous data integration requires a
data model which is capable of describing data, schemas and contexts. This
complexity suggests the need for a new data model having characteristics appropriate
for supporting a mediated approach for the integration of databases and legacy
systems. To accommodate this need, a model called the Mediated Data Model
(MDM) which has been developed in this study specifically for describing and

representing heterogeneous data both schematically and semantically.

5.1 The Design of the Mediated Data Model (MDM)

With a relational data model, a relation or a table representing an entity or a
relationship which users perceive can be described by a two-dimensional matrix

where rows represent tuples, and columns represent attributes, as shown in Figure
5.1.

MeDint: An Agproach fo: the Integration of Database and Legacy Systems

attribute

—

[P) N ey Ly

tuple

FIGURE 5.1 A 2-D RELATIONAL DATA MODEL

In general, a two-dimensional model is adequate to describe simple or atomic values
in a single database system or in dependently-designed databases without
heterogeneities. This is because they are normally designed according to the same
context. However, such a model is not capable of expressing a number of
independently-designed data sources meaningfully when interoperability is needed.
Attributes from different sources mav have thi same name but occnr in different
contexts. For example, to represent an employee’s salary quoted in Australian dollars
on yearly basis, in a single database would not require the context parameter since all
salary information within the same data source contains the same semantic context.
However, when multiple data sources are designed independently, salary would
probably be quoted in different semantic contexts, i.e. different currencies or
different pay periods. Thus, the context of an attribute is critical when data
integration is needed and two-dimensional data models would not be sufficient. This
leads to the need for a new data model with semantic enrichment. The Mediated Data
Model designed in this research provides a three-dimensional (3-D) approach (Figure

5.2) to denote semantic values by expressing those simple values meaningfully.

- 60

Melint An Aupioach for

tuple

attribute

FIGURE 5.2 THE 3-D MEDIATED SEMANTIC DATA MODEL

For example, to explain an employee objcct type by three-dimensional scmantic
MDM,; the first dimension, tuples, are object instances of the employee object type;
the second dimension, attributes, are characteristics of the employee object type such
as id, name, address, salary; and the extended third dimension, contexts, are
characteristics of each attribute such as the salary attribute which is in Australian

dollars and on a yearly basis. Its structure can be denoted by:

Salary}(value, currency, period)
The first element is the value of the salary attribute; the second and third elements
are semantic contexts of the salary attribute. An attribute value with its semantic

values would be:

Salary (15000, ‘AUD’, ‘yearly’)
This value can describe the amount of 15,000 AUD salary on a yearly basis. Thus,

the general syntax of an object instance can be represented in depth as:

Tuple; (Attribute; (Value, Context;, Context,,.., Context;, ..,
Context,), Attribute, (..), .., Attributey(..), .., Attribute,(..))

For example,

Employee (Id (value), Name (value), .., Salary (value, currency,
period), ..)

An object instance would be:

Employee; (Id (‘'0995550’), Name (‘Mark Johnson’),.., Salary (15000,
"AUD’, ‘yearly’), ..)

-6 -

MelDint An Aoproach for the Intsgration of Dotabose and Legaoy Sysiems

The formal definition of MDM and its components (described later in this chapter) is
defined syntactically in a syntactic metalanguage notation, the Extended Backus-
Naur Form (EBNF) (ISO/IEC, 1996; Scowen, 1998). EBNF’s symbols are given in
Appendix C.

The Mediated Data Model can be implemented by any language. The eXtensible
Markup Language (XML), which is platform independent, has been selected to
implement MDM. XML is based on an object-oriented model which is best for
describing the schema and the semantics of objects in the real-world. XML also has
flexible self-describing tags which are readable and easy to understand (Goldfarb &
Prescod, 2000; Morrison et al., 2000). Moreover, XML is increasingly used as an
exchange format (Conrad et al., 1999).

5.2 The Mediated Data Model Components

The Mediated Data Model has been developed as a schematically and semantically
common data model which can be used to represent heterogeneous data models in
the integration of heterogenous database systems (Chirathamjaree & Mukviboonchai,
2002a). With regard to its structural and manipulative parts, MDM consists of the
Mediated Data Definition Language (MDDL) and the Mediated Data Representation
Structure (MDRS) as the structural part, and the Mediated Query Language (MQL)
as the manipulative part as shown in Figure 5.3. MDM reserved words are defined in

Appendix D.

- 62 -

MeDint An Agproach for the Integration of Dotabase and Legaay Systems

DDL MDDL ODL
SQL MaL OQL
Results MDRS Resulto
RDBMS MDM | ODBMS
Result. E
Legacy |
systems*
* No schema defoution and query langnage. see chapter 7 for details

FIGURE 5.3 COMPONENTS OF THE MEDIATED DATA MODEL

As shown in Figure 5.3, MDM provides a common platform for translating
relational, object, and other data definition languages into MDDL. This provides a
common language for communication among components of the MeDInt Mediator
and wrappers. By contrast, the submitted MQL query will be translated to the query
languages of each data source to let its database management system perform its own
query operation. Finally, the results from different data models will be applied to the
pre-defined template MDRS. All of these translation tasks between MDM and other

data models are performed by wrappers.

5.2.1 The Mediated Data Definition Language (MDDL)

Because each data source might be in a different data model, the MeDInt Mediator
needs to be able to recognise their schemas. The Mediated Data Definition Language
(MDDL) is a flexibly interchangeable definition language which can capture data
definitions defined disparately in different data models. STPs (see Chapter 7) in
wrappers are responsible for transforming data source definitions in any other
specification languages into MDDL, so that all components in MeDInt can

understand schema definitions unambiguously.

- 63 -

Mebint An Approach for the Integration of Dolabase and Legaoy Systems

The syntax of the MDDL definition in EBNF notation is composed of the following

rules:

MDDL rule = object rule, {object rule};

object rule = object identifier, ‘=", ‘{’, [subtype rule],
[attribute rule], [relationship rule],
[operation rule], [key rule], ‘}’, Y;';

object identifier 5= letter, {letter |decimal digit};

subtype rule = ‘subtype ', ‘', object identifier, {‘ ',
object identifier}, “;”;

attribute rule = ‘attribute ', attribute defined list,

{attribute definied list}, *;’;

I

attribute defined list attribute identifier, data type,

[context rules];

[(= 0L AT

data type = ‘integer’ | ‘character’ | ‘date’ | ‘float’
‘string’ | user defined;
context rules ‘{7, context identifier, context type set,

{*)", context identifier, context type set},

2
" context identifier = letter, {letter {decimal digit};
" context type set o= ‘{7, context type, {‘,’, context typet, ‘}';
context type - = letter| decimal digit, {letter | decimal
digit};
relationship rule = ‘relationship ’, relationship list, {%,’,

relationship list}, ;'
relationship list = relationship identifier, ‘', [data typel,
‘' ', inverse relationship;
relationship identifier = letter, {letter |decimal digit};
inverse relationship object identifier, ‘.’,
relationship identifier;
operation rule = ‘operation ', operation list, {‘,’,
operation list}, Y;';
operation list = operation identifier, ‘(’,
{argument list}, Y)’, ‘:',

returned type;

argument list = {argument };
argument = letter, !letter |decimal digit};
returned type = data_type;

- 64 -

MeDint An Approach for the integration of Database ond Legaoy Systems

key rule = ‘key ', attribute identifier, {‘+',
attribute identifier}, ;'
For example:
Lecturer = {
subtype
Staff;
relationship
Lecture set (Course) Course.LecturedBy;
key
id;

}
From MDDL above, a real-world object type, Lecturer, is a subtype of Staff class.

This means that the properties of Lecturer are inherited from Staff. In addition, it
associates to the Course object type; a lecturer can lecture a number of units.
Course. LecturedBy is the inverse relationship of Lecturer. Lecture. Id is its primary

key.

In summary, MDDL can carry out the following functions:

object type identification,

¢ inheritance information identification if the object type is a subtype of any other
object type,

e attribute declaration which describes the properties of the object type:

e context declaration which describes the context of an attribute,

¢ relationship information identification if an object associates to others.
A relationship is the logical binary connection between two objects including one
to one, one to many, many to many.

e operation information identification if the object has methods or behaviours, and

¢ key information which is the primary key to identify object instance.

‘65-

Melint: An Approach for the Integration ¢f Database and Legacy Systermns

. SEEEY

3
sDB*>
erson »
ttra ute> | |
¢id i1id="000100010001" datatype="string"/>

<name 1d="000100010002" datatype="user defined">
<fname 1d="000100010003" datatype="string"/>
<lname i1id="000100010004" datatype="string"/>

{/name>

<address id="000100010005" datatype=“string”"/>

<tel_no 1d="000100010006" datatype="string"/>

<sex 1d="000100010007" datatype="char“,>

<dob 1id="000100010008" datatype="date“/>

¢ e a ions 1p>
<borrow id="000100010009" datatype=“Book">
<inverse>Book.Loanby</inverse>
</borrow>
</Relationshi >
pera 1®n
¢age id="000100010010">
<datatype>integer</datatype>
</age?

£
<ObjectType 1d="000100020000" name="Staff">
<Sub ype>Person</Subtype>
¢Attribute>
¢salary id="000100020001" [datar p=="tlo.t" period="vearly”
<shttribute>
<Key>Perscon.1d<«/Key>
<s/QObjectType>
<Ob'ectT e 1d="000100030000" name="Lecturer”>
<Subtype>Statt</Subtype>
< e a ions 1p>
<lecture id="000100030001" datatype=“Course"”>
<inverse>Course. LecturedBy</inverse>
</lecture>
</Relatignsh
<Key>Person.id<«/Ke >
< ject ype>
k /DataSource>

FIGURE 5.4 AN MDDL IMPLEMENTATION EXAMPLE

In terms of implementation, the XML reviewed in Chapter 2, which is capable of
serving MDDL characteristics, was chosen as the implementation tool. Figure 5.4
shows an example of using XML to represent MDDL. An XML document with a
DataSource root can be applied to contain an MbDL _rule or the schemas in a database.
The XML attributes, id and name, identify the data source object. The root element
<DataSource></DataSource> consists of a number of nested elements
<ObjectType></ObjectType> describing object types contained in the data source.
Each has its own id and name. <Subtype>, <Attribute>, <Relationship>, <Key> and
<Operation> are child elements of each <ObjectType>. Each <Attributes>,
<Relationship> and <Operation> has its own id and name. <Subtype> and <Key>
refer to other objects so they do not have their own object ids. XML attributes -
datatype="float” period="yearly” currency="USD ”- can be employed to represent

data types and the semantic contexts of each Attribute.

- 646 -

MaDint An Agproach for the Integration of Dolabase and Legoay Systems

5.2.2 The Mediated Query Language (MQL)

The general query languages used in database management systems are practical for
manipulating a single database system, but not heterogeneous databases which
consist of a number of different data models. Furthermore, general query languages
are not rich enough to contain or be able to specify the contexts in the query
statements. If data in multiple data sources are represented in different contexts,
users need to specify the contexts of the attributes on the query in both the selection
and the condition parts to ensure the correct query result. The problem of different
semantic contexts in heterogeneous data sources has resulted in the need to
decompose the query and create subqueries for those sources with different contexts.
Thus, the central query language is required to take this into account. The Mediated
Query Language (MQL) is a query language desigiied especially for this purpose it
is generated by QTA (see Chapter 6) for three significant purposes: as a semantic
query language for users to specify their queries, as a query language used when
decomposing the submitted query into subqueries to distribute to associated
wrappers, and as the central query language being understood by all wrappers. MQL
is an extended version of SQL which is able to capture semantic contexts. Users can
identify within the select clause which context of an attribute they want on the result
of the query even when the data are stored in different contexts in component data
sources. Moreover, they can also specify the condition of the query in the

condition_clause in the appropriate context required.

The syntax of MQL in EBNF notation is:

MOL rule = Select clause, From clause, In clause,
[Condition clause], ‘;';

select clause = ‘SELECT’, ‘ ‘, attribute list, {attribute list};

attribute list = object identifier, ‘.’, attribute identifier,
{context listj};

context list = context identifier, ‘=", context type;

from clause == ‘FROM’, object identifier, V,’,
{object identifier};

in clause = ‘IN', datasource identifier, ‘,’,

{datasource identifier};

- &7 -

MeDint An Approaoh for the Integration of Database gnd Legaay Systerms

Datasource identifier

letter | decimal digit, {letter | decimal digit};

condition clause = ‘CONDITION’, condition list;
condition list = condition rule, {boolean cperator, condition rule};
condition rule = left condition rule, comparison cperator,

right condition rule;

left condition rule = attribute list;

camparison operator = A U L B B e

right condition rule = attribute list | literal;

literal == letter | decimal digit, {letter | decimal digit};
boolean operator = ‘BND" | ‘OR’;

The following is an example of MQL.

Select Staff.id, Staff.salary(currency="AUD”, period="yearly”)
From Staff

In DS1, DS2

Condition Staff.salary(currency="AUD", c~-i~1="vyearly”) < 50000;

It can be explained from this MQL that the user wants to get an id and a yearly-based
salary in Australian dollars of staff who have a salary of less than 50,000 Australian
dollars from data sources DS! and DS2. MQL allows users to specify the semantic
context of each attribute whose value has been stored in data sources with different

contexts.

5.2.3 The Mediated Data Representation Structure (MDRS)

It has been found that heterogeneities also arise from the sets of query results
returned from multiple data sources which are in different representations (i.e., with
either schema or semantic contexts). Resultant data cannot be integrated until the
Schematic and Semantic Heterogeneities have been resolved. The process of directly
resolving these heterogeneities is very complicated. The Mediated Data
Representation Structure (MDRS) has thus been introduced to avoid the foregoing
complexities. MDRS which incorporates other components as a common data
representation in MDM homogenises these different representations simply, as the
practically defined-structure representing the structure of data contents with their
semantic contexts, which are different in the component data sources. The DTP, a
component in wrappers, takes care of translating data contents from data sources into

MDRS so that the MeDInt components are able to understand it, and CRA then

- 48 -

MeDint: An Agproach for the integration of Database and Legacy Sysiems

applies the sets of MDRS results which have different schemas and semantics to

conform to the predefined template, which is also in the MDRS form.

Another significant reason why MDRS has to be implemented is that the result of the
query has to be in the user-requested format. MDRS is applied as a predefined-
reference for other components that deal with conversions to know what the context
of that attribute should be and so that the result can be provided according to the

target context.

The specification of MDRS in EBNF notation is:

MDRS result set ‘{(’, {MDRS_instance}, ‘}';

MDRS instance ‘(", attribute context value, {‘,',
attribute context valu=l, ‘}’;

attribute context value coject identifier, '.’, attribute identifier,

‘(", attribute value, {context wvalue}, ‘)’;

attribute value letter | decimal digit, {letter | decimal
digit};

MDRS template -'(", attribute template, {attribute templata},
WS

attribute template object ddentifier, ‘.7 lattmibhEcTidena e,

' (Value/ 4 ’ {conteXt type} v ‘) ' i

The following is the query result that has already been translated into MDRS. It

represents staff id and salary on a yearly-basis in US dollars.

(Staff.id, Staff.salary (currency=”USD”, period="yearly))

{(“1542545”, 15200.00 (currency="USD”, period="yearly)),
(“1478523”, 25000.00 (currency="USD”, period="yearly))}

>25000.00<¢ssalary>

Aftringe Context

FIGURE 5.5 AN MDRS IMPLEMENTATION EXAMPLE

L 49 -

Melint: Ao Approach for the integration of Dotabase and Legacy Sysiems

In terms of implementation, MDRS can also be represented by XML which is
flexible in exchanging information. From Figure 5.5 above, the root element -
<MDRS></MDRS> - contains an MDRS_result_set; each element tag -
<Result></Result> - inside represents each MDRS instance which consists of elements
-<id></id>, <salary></salary> - represents attribute value of an MDRS_instance.
The last important part, the XML attributes currency="USD"” and period="yearly”

within an attribute_value tag represent attribute contexts.

Through the MDDL, MQL and MDRS specifications, MDM is not only applicable
for solving the model heterogeneities of component data sources, but it is also

capable of solving Schematic and Semantic Heterogeneities.

5.3 Summary

One of the critical problems in heterogeneous data integration is dealing with
different data models of data sources. This drastically increases complexity
especially when a data integration system has to solve the Schematic and Semantic
Heterogeneities simultaneously. MeDInt provides the Mediated Data Model (MDM)
as an interchangeable data model used in the architecture to overcome the Data :
Model Heterogeneity issue. Moreover, MDM is capable of not only representing
component schemas, but is also sufficiently rich in describing semantic contexts. To
describe schemas and semantics, the Mediated Data Definition Language (MDDL),
the Mediated Query Language (MQL) and the Mediated Data Representation
Structure (MDRS) are provided as the media among different sources to give data
definition and to manipulate data meaningfully. They provide semantic knowledge

for the MeDInt Mediator during the integration process.

- 70 -

MaDint: An Aoproach for the Infegration of Dotabase and Legaoy Systerns

CHAPTER 6 - THE MeDIint MEDIATOR

In this study, a heterogeneous database integration model has been proposed by
incorporating a mediator and wrappers as intermediate layers between the application
and data sources. The mediator, MeDInt, serves as an information integrator,
between the application and wrappers. Generally, mediators are responsible for
retrieving information from data sources, for transforming received data into a
common representation, and for integrating the homogenised data (Wiederhold &
Genesereth, 1997). In this model, the MeDInt Mediator acts as an interchangeable
agent and facilitator for wrappers and clients. It consists of six components working
together transparently to facilitate clients and data sources to achieve the following

tasks:

¢ transforming and decomposing the submitted query into subqueries and then
distribute them to associated wrappers; i

e previding both schematic and semantic knowledge which is critical for query
transformation and conflict resolutions;

¢ resolving conflicts; and

e consolidating query results.

All the functions above are served by six components (Figure 6.1), which are the
Registering Processor (RP), the Query Transformation Agent (QTA), the Mediated
MetaData (MMD), the Conflict Resolution Agent (CRA), the Consolidation
Processor (CP) and the Rendering Agent (RA) whose functions will be described in
this chapter.

-7 -

MeDint An Approach for the Integration of Dotcabase and Legaay Systems

lMOL
Initial subquery
—Aramaton—s RA TA -
Q MDDLs
Initial data source
information information
MMD
Semantic
Information
Formattecl
Igte%rstsed Integrated
MDRSs RMDRSs RMDRSS MDRSs
RP CcP CRA

FIGURE 6.1 SIX COLIPUNENTS IN THE MEDINT MEDIATOR

6.1 Registering Processor (RP)

Because the required knowledge, such as different terminologies and different
schema designs, in heterogeneous integration systems needs to be determined by a
human, a partial automation methodology has been applied in the MeDInt
architecture. The processes of schema and terminology determination will be
specified manually in the initial phase. Then, the remaining of the integration process

is automatic.

Data sources must be initially registered to the Mediated MetaData (MMD) when a
new data source is added to the integration system. Registering Processor is
responsible for capturing the principal data source information to be stored in MMD

as knowledge for the integration.

The essential data source information needs to be registered to MMD, for example,
data source assigned names, locations, data models, descriptions, and constraints.
Moreover, in terms of terminology, all entities in each data source need to be mapped

to global objects so that other components in MeDInt can perceive them. The object

- 72 -

Mebint An Approgoh for the Infegrotion of Dotabase and Legacy Systems

mapping information is also registered in MMD, and object unique ids must also be

assigned to the global objects.

The significant objectives of registering new data sources are:

e To assign a unique name for each data source to avoid ambiguity, for example, if
data sources in different systems have the same name;

e To identify the physical location of each data source, for example, in the form of
an IP address or URL of the data source;

e To incorporate the definition of each data source;

e To capture the semantic information of each data source if there are any critically
constraints to be considered. These semantic contexts must be defined to provide
the context of the attributes, which might have different contexts in diffcrent
sources; and

e To collect object information for mapping between local and global objects, so
that the global object can be referred to in the query and can be recognised by

MeDInt components.

As mentioned previously, data source and object mapping information registered in
this process will be stored in MMD which will be discussed later in this chapter. Any
programming or descriptive languages can be applied to serve MMD in terms of
implementation. The eXtensible Markup Language (XML) was chosen in this
research to represent MMD because of its self-describing tags and platform
independent characteristics (Goldfarb & Prescod, 2000; Morrison et al., 2000). In
addition, XML conforms to the MDM implementation which also uses XML.
Examples of information registered in this initial phase are shown in the section on
MMD.

6.2 Query Transformation Agent (QTA)

When the MeDInt Mediator gets a user-requested query from a client, the Query
Transformation Agent (QTA) cannot decompose the query at this point in time
because of Schematic and Semantic Heterogeneities. Each required decomposed

subquery should contain the same schema and semantic context as its related data

.73 .

MeDint: An Approach for the Integration of Database and Legacy Systers

source. To decompose the query, QTA does not have enough information about
component data source schemas relating to the query nor about the different
terminologies used in each source. QTA thus needs to get pre-registered data source
information and object mapping information from MMD, so that it can determine
query-associated objects. QTA can send a request for these query-associated object
schema definitions to the STPs of the associated wrappers. However, these directly-
associated object schema definitions may be insufficient to decompose the query
because the objects may relate to other objects or may be a specialisation of others.
Therefore, from these directly-associated object schema definitions, QTA defines
further transitively-associated objects from subtypes and from the relationships of
directly-associated objects. When getting enough schema information which has
already been translated by STPs to MDDL anif which can be utilised by the MeDInt
components, QTA then transtorms and decomposes the submitted query into 2 MQL
subqueries (n depends on how many data sources the query originally related to), and
submits these subqueries to the assorted wrappers. Furthermore, to facilitate the
conflict resolution process, QTA creates an MDRS result template from the object,
attribute and context information specified in the submitted query and homogenises

query results to the template.. The process of QTA is shown below (Figure 6.2).

query

User

'"! STP
MD! = oy

QTP

Create
tempiate

FIGURE 6.2 QTA PROCESSES

- 74 -

MeDint: An Approaoh for the Infegration of Dotabase and Legaay Systarms

Because this architecture was designed to suit dynamic integration systems, no
global schema has been created, so schema evolution is not an obstacle. The
integration system fetches the schema definitions once a query has been issued. QTA
requests only the necessary query-related object schema definition to transform and

decompose the query.

To simplify the above QTA functions, its processes can be broken down into three

parts: fetching object schema definitions, decomposing the query, and creating the
MDRS template.

6.2.1 Fetching Object Schema Definition Process

Firstly, after receiving a user-requested query {ron o client, QTA has to feteh object
schema definitions from query-associated data sources. 1o achieve this, QTA
analyses which objects in which data sources are required in order to get the
necessary data source information from MMD to identify query-required associated
objects. Then, QTA requests the STPs for the object schema definitions. Each STP
passes this request to its data source, receives the object schema definitions, and
translates them to MDDLs, because they are in different data definition languages.
They are then returned to QTA. After QTA has received MDDLs from the STPs, it
analyses the components of the object schemas and determines further transitively-
associated objects, which are also necessary in transforming the query. These may
associate to, or be a specialisation of, the direct-associated objects. This means that

QTA has to examine the directly-associated object MDDLs to find out:

e whether each object is a subtype of others; and

e whether there are any relationships among those objects.

If the examination falls into any of the criteria above, QTA has to request STPs for
further schema definition. If the object is a subtype of any other objects, the complete
object schema definitions include not only the requested object, but its superset

schema definition. For example,

Interface Person {

attribute string id;
attribute struct<string fname, string Iname> name;
attribute string address;

-75-

Melint An Approdach for the Integration of Daotabase and Legaoy Systems

attribute string tel_no;
attribute string sex;
attribute date dob;
relationship Book borrow

inverse Book::loanby}

Interface Staff:Person {
attribute float salary;}

Interface Lecturer:Staff (key id) {
relationship set<Unit> lecture
inverse Unit::lecturedby;}

Lecturer is a subtype of Staff and Staffis a subtype of Person, if the Lecturer
information is specified in the user-requested query, not only the directly-associated
object schema definition (Lecturer) is required, but also Staff and Person are required
to assist in decomposing the query. This is because the characteristics of Lecturer
were defined by its superset attributes and relationships in addition to its own. For
example, if a query requests the names and salary of leciuiers, e is detined in the
Person class, and salary is defined in the Staff class, then Person and Staff schema

definitions are both required in conjunction with the Lecturer schema definition.

For the second criterion above, if any two or more objects requested by the query are
associated with each other, the relationship definition is also necessary for the query.
If the requested query specifies the names of students enrolled in unit ‘CSP1143’,
QTA recognised that, in addition to thé Student and Unit schema definitions, the

relationship between them, EnrolRec, is required as well.

CREATE TABLE Student
(id CHAR(7) NOT NULL,
fname CHAR(30) NOT NULL,
Iname CHAR(30) NOT NULL,
address CHAR(50),
tel_no CHAR(10),

sex CHAR(1),
dob DATE,
level CHAR(1) NOT NULL,
PRIMARY KEY (id));
CREATE TABLE Unit

(id CHAR(7) NOT NULL,
name CHAR(30) NOT NULL,
PRIMARY KEY (id));

CREATE TABLE EnrolRec
(student_id CHAR(7) NOTNULL,
unit_id CHAR(7) NOT NULL,
PRIMARY KEY (student_id, unit_id)
FOREIGN KEY (id) REFERENCES Student,
FOREIGN KEY (id) REFERENCES Unit):

- 76 -

MaDint An Agpproach for the Integration of Dotabase and Legaay Svsiems

From the QTA analysis process described above, QT A can determine transitively-
associated objects in addition to directly-associated objects from the two criteria of
whether it is a specialisation of any particular type or whether there are any
relationships between them. This object schema definition fetching process has to be
performed repeatedly until QTA gets enough object schema definitions from the

STPs for the query.

The main reason why this architecture was not designed to get all schema definitions
from all connected data sources at the beginning of the request, but firstly diagnosing
the query and determining which object schema definitions are required, and
repeatedly getting only the query-associated object schema definitions, is that by
doing so it is more efficient in terms of query performance and resource utilisation,

o the

&

cspecially when there are a few iciated objects in cach data souice iciatiii
requested query. This means QTA does not have to get all component schema
definitions which may not be necessary for the query, but, instead, QTA can capture

only few associated object schema definitions.

In the FetchDef(D, O) algorithm below, while D and O are arrays of the data source
and the object identifications specified in from_clause and In_clause (see also MQL
in Chapter 5) of 8, the requested query presents the process of fetching associated

objects.

Process FetchDef(D, 0);
{Fetch object schema definitions from multiple data sources.}
Type Sourcelnfo = Record of
DSname : DataSourceName;
DTModel : DataModelType;

Oname : ObjectName;

End Record;
MDDL_Str = MDDL_rule (see also Chapter 5)
Var DataSource : DataSourceName;
Object : ObjectName;
DSInfo : Array of Sourcelnfo;
i,] : Integer;
MDDL : MDDL_Str;

-77 -

MeDint: An Approaeh for the Integrall

en G Dotabase and Legaay Systems

Function GetSchDef(DSname, DTModel, Oname);
{Get object schema definitions in MDDL syntax from wrappers.}
Begin { GetSchDef}
Case DSInfo.DTModel of
‘Relational’ : MDDL[Oname}:=RschmTrans(DSinfo.DSname, DSinfo.Oname);
{see also STP in Chapter 7.}
‘Object’ : MDDL[Oname}:=OschmTrans(DSinfo.DSname, DSinfo.Oname);
{see also STP in Chapter 7.}
End Case;
End { GetSchDef };

Begin { FetchDef }

{Check data source validity and get essential information for query decomposition and
transformation.}

tot ali opj i clause
Scarch for D[i] in DSMetaData;
If found() then Begin
Get SourceName to DSInfo.DSname;
Get Type to DSInfo.DTModel;
End;

Else return error message that such data source has not been registered:

{Check object validity and get object mapping information.}
For all O[j] in From_clause
Search for O[j] in OMMetaData;
If found() then
Get SourceObject to DSInfo.Onamelj] for each DSinfo.DSname;
Else DSInfo.Onamelj]:= O[j);

{Get directly-associated object schema definition from wrappers.}
For all DSInfo.Onamelj] of each DSInfo.DSname;
GetSchDef(DSInfo.DSname, DSInfo.DTModel, DSInfo.Onamelj});

{Get transitively-associated object schema definition from wrappers: specialization.}
For each MDDL|[a]
If it is a subtype of others Then Begin
DSInfo.Onamelj] := MDDL(a].subtype;
GetSchDef(DSInfo.DSname, DSInfo.DTModel, DSInfo.Onamelj]);
End;

.78 -

MeDint An Approach for the intesgration of Dotabase and Legaoy Systems

{Get transitively-associated object schema definition from wrappers: association.}
For each pair of MDDL|a], MDDL|[B]
If they are related to each other Then
DSInfo.Onamelj]:= MDDL[a].relationship;
GetSchDef(DSInfo.DSname, DSInfo.DTModel, DSInfo.Onamel(j));
End { FetchDef }.

6.2.2 Decomposing and Transforming the User-requested Query to the

Mediated Query Language Process

When QTA gets enough object schema definitions from STPs in MDDL syntax
which can be utilised by all components in the MeDInt Mediator, QTA can then
translate and decompose the user-requested query to MQL subqueries which
conform to the schemas of each source. These MOL, subqueries will be submitted to
related wrappers to allow each wrapper to translate them into a specific query

language that can be processed by the query engine in each source.

The processes of query transformation and decomposition begin with replacing
global objects in the requested query with the local mapping objects (from
OMMetaData) of each source first, and then replacing global attributes with the local
attributes (from MDDL of each object, AMMetaData, and TSMetaData). These
subqueries are generated in the MQL syntax and submitted to the corresponding

wrappers.

In addition, Semantic Heterogeneities have to be considered in this step when the
semantic contexts of an attribute value specified in the condition clause of the query
are different from the semantic contexts of the same attribute in component data
sources. QTA has to convert the different context values transparently to users, so
each subquery sent to the associated wrapper has the same context with the target
data source and the wrapper does not have to deal with the context heterogeneity.

Note that MQL subqueries sent to wrappers have no semantic contexts attached.

Qtransform(4, D, O, C) is the process of decomposing and transforming the user-

requested query to MQL subqueries. 4, D, O, and C are arrays of attributes, data

- 79 -

MeDInt An Agproach for the Intsgration of Datatase and Legaay Systerms

sources, objects, and conditions specified in select clause, from_clause, In_clause,

and condition_clause of a user-requested query.

Process QTransform(A, B, O, C);
{Decompose and transform the user-requested query to MQL subqueries.}
Type &_Rec : Record of

Projection: Array of AttrRec;

Object : Array of ObjectName;

DS : Array of DataSourceName;

Selection : Array of ConditionRec;

Join : Array of RelRec;
Attribute_context : String;
Var (4] : d_Rec;
ij,a, B, m : integer;
fr_context, o _context o Attribute_context;

Function GenSubQ(DS);
{Generate a subquery.}
Begin { GenSubQ }
&®.Projection:= A;
®.Object:= O;
d.DS:= DS;
&.Selection:= C;
For each ®.Object, d.Projection, ®.Selection
Search for matching objects and attributes in OMMetaData, AMMetaData, and
TSMetaData;
Replace & for all matching objects and attributes;
End { GenSubQ };

Function CreateJoin(®.Object|a], ®.Object|B]);
{Create a relationship condition.}
Begin { CreateJoin }
For each pair of ®.Object|[a] & P.Object|B]
®.Join|m]:= ®.Object[a).ref_key, “=",d.Object[B].ref_key;
End { CreateJoin };

Function ConvF(attr_val, fr_context, to_context);
{Convert different semantics.}
Begin { ConvF)

Call the related conversion function in CVMetaData

- 80 -

MeDint: An Auproach for the Integration of Database and Legacy Systams

If fr_context = default then
ConvF := attri_val, CVoperator, CVfactor;
Else if to_context = default then
ConvF := attri_val, CVreverse, CVfactor;
Else Error Message ‘CVMetaData needs to be maintained.”

End { ConvF };

Begin { QTransform }
{Generate subqueries for all sources indicated in the user-requested query (6).}
Forall B|i]
GenSubQ(b([i));

{Create relationship conditions if two objects have association.}
IF more than one object stated in from_clause Then

CreatJoin(h.Object !, G Obiect|B]):

{Convert attribute values if semantic contexts are different.}
For each attribute with context specified;
Check the constraint information in DSMataData
If any attributes have contexts different from specified in the query
attri_val := ConvF(attri_val, fr_context, to_context);

End { QTransform }.

The following is an example of a user query to DS/ and DS2 data sources. Users

defined Staff salary in Australian dollars and on yearly basis.

Select Staff.id, Staff.salary(currency="AUD", period="yearly")
From Staff

In DS1, DS2

Condition Staff.salary(currency="AUD", period="yearly”) < 50000;

After the query decomposition and transformation process, two subqueries are

generated. The first subquery is:

SELECT Staff.id, Staff.salary(currency="USD", period="yearly")
FROM Staff
IN DS2

CONDITION Staff.salary(currency="USD”, period="yearly") < 25500;

Due to salary in DS?2 is based on US dollars (Appendix J), the conversion is required
to convert “AUD” quoted in the user query to “USD”. As well as the second
subquery to DS1, Staff salary has to be converted to “monthly”.

- 81 -

§

Maelint An Approach for the Infegration of Dotabase and Legaey Svstems

SELECT Staff.id, Staff.salary(currency="AUD", period="monthly”)

FROM Staff
IN DS1

CONDITION Staff.salary(currency="AUD", period="monthly”) < 4166.67;

6.2.3 Creating a Pre-defined Template Process

From a user-requested query, it has been specified which attributes of an object users
want to be shown in the result. QTA is responsible for creating an MDRS template as
a basis for incorporating results from multiple data sources to this template. This
MDRS template represents the semantic context as predefined references for other
components that deals with conversion to determine which contexts of an attribute
should be presented to users, so that the component data sources set it as the target
contoxt to produce the final query result. Without a predefined templa‘o. results from
multiple data sources with both dittfcrent structures and semantic contesis will be
more complicated to resolve straight away. Thus, the template has to bc sct in prior

as the target that all data have to fill in suggestively.

TemplCreate(A), is the process of the predefined template creation, while 4 is an

array of attributes specified in select clause.

- Process TemplCreate(A);
{Create a pre-defined MDRS template.}
Type context_rec = Record of
name : Context_Name;
value : Context_Value;
EndRecord;
Project_Rec = Record of

attribute : Attribute_Name;

context : Array of context_rec;
EndRecord;
Var Projection : Array of Project_Rec;
1,] : Integer;

Begin { TemplCreate }
For each attribute A[i];

Projection(i].attribute:= A[i];

- 82 -

MeDInt: An Approach tor the Integration of Ratabase and Legacy Systems

For each context [j] of attribute Ali]
Projection(i].context[j].name:= A[i].context[j].name;
Projection|i].context[j].value:= A[i].contextlj].value;

End { TemplCreate }.

For example, the query is

SELECT Lecturer.name, Lecturer.salary (currency="AUD", period="Monthly").
QTA prepares a pre-defined template that is:

(Lecture.name, Lecture.salary (currency="AUD", period="Monthly”))
The Lecturer.salary attribute and its contexts could be presented in the following 3-D

MDM concept model:

FIGURE 6.3 A 3-D MEDIATED DATA MODEL REPRESENTING MDRS TEMPLATE

From the above figure (Figure 6.3), the pre-defined template of salary has been
created. It is represented by a three-dimension MDM concept model with its
underlying semantic context, i.e. currency and the period of payment. The value of
the query result has to be converted to conform to further contexts which are “4UD”

currency and “Monthly” basis.

In summary, the main role of QTA is to decompose a user-requested query to
subqueries, each of which is distributed to its related data source to query data. This
task leads QTA, firstly to determine which data sources need to provide a result for,
secondly to transform the query into subqueries, and thirdly to submit them to the

data sources for execution by the query processing.

- 83

Malint An Agpproach for the integration of Dotabase. and Legaoy Systems

6.3 The Mediated MetaData (MMD)

Basically, metadata is “data that defines and describes other data” or “information
and documentation which makes data understandable and sharable for users over
time”. (ISO/IEC/TC JTC 1, 2002). The ISO 11179 — Information Technology —
Metadata registry, has been developed to provide an international standard for
sharing and exchanging data elements: It is a significant issue in data
interoperability. Metadata is highly relevant for interoperability (Conrad et al., 1999).
To interoperate heterogeneous data, a strong, flexible, and incremental metadata is
required. The benefits of employing metadata are: increased data sharing and data
integration (Newton, 1996). In this research, the Mediated MetaData (MMD) was
developed as a repository for collecting knowledoe information which is necessary
for the integration, such as semantic constraints. duta source definitions, schemas,
and conversion functions, etc. The main purpose of MMD is to provide a knowledge
base to be used in resolving both schematic and semantic conflicts. In this research,

MMD is divided into Schematic MetaData and Semantic MetaData.

6.3.1 Schematic MetaD’ata

Data sources and their definitions initially registered by RP are reposed in MMD
which is simply and meaningfully implemented by XML with its readable self-
described tag characteristics. Generally, any programming or descriptive languages
can be used to represent MMD. The Schematic MetaData consists of the Data Source
MetaData (DSMetaData), the Object Mapping MetaData (OMMetaData), and the
Attribute Mapping MetaData (AMMetaData)which contains data source schemas,
object mapping, and atwibute mapping information respectively. DSMetaData,
OMMetaData, and AMMetaData therefore provide the required information for QTA
to define the associated objects required for the requested query and to decompose

the query to subqueries.

- 84 -

MeDIint An Agproach for the integration of Database and Legoay Systerms

6.3.1.1 The Data Source MetaData (DSMetaData)

The Data Source MetaData contains initialised component data source information

recorded by the RP. The following items are the types of information relating to data

sources which are contained in DSMetaData.

e Assigned name —the unique name for each data source to resolve any schematic

naming conflict which might cause name crashing.

e Description —the definition of each data source.

e Location — the physical location of the data source.

e Data model and database type —knowledge for the Me DInt Mediator to

determine what kinds of data models of the data source in order to take the

appropriatc action, for example, for sending the appropriate query language.

¢ Constraints —scmantic information about whether the data sowrcee has any

constraints.

The DSMetaData specification is as follows.

DSMetaData rule

DataSource ruie

AssigriedName
DataModel
Location

Source

Object list
Object identifier
Description
Constraint rule

Attribute rule

Attribute identifier=

Context rule
Context identifier

Context type

DataSource rule, {DataSource rulet

A\ 4

{’, AssignedName, DataModel, Ilocafion, Source,

Object list,

i

i

Descripticn, Constraint rule, ‘}‘;
‘AssignedName ‘, letter, {letter |decimal digit};
‘DataModel ', Relational ! Object | Legacy;
‘Location ’, letter, {letter |decimal digit};
‘SourceName ', letter, {letter |decimal digit};
‘Objects ’, Object identifier, {‘,’, Object identifier};
letter, {letter |decimal digit};
letter, {letter |decimal digit};

‘Constaint ', attribute rule;
Attribute identifier, Context rule;
letter, {letter |decimal digit};
Context identifier, Context type;
letter, {letter |decimal digit};
letter, {letter |decimal digit};

An example of a registered data source is given below:

-85 -

MaeDint: An Approach for the integration of Database and Legaoy Systams

{
AssignedName DS2;

DataModel object;

Location campusO/DB;

SourceName CampusDB;

Oojects Person, Staff, Lecturer, Student, Book, Unit;

Description Campus database;
Constraint Salary(Currency = “AUD"”);

}

From the above DSMetaData example, the CampusDB is a data source in an object
data model located in campusO/DB. The unique name, DS2, is assigned to this data
source. Person, Staff, Lecture, Student, Book and Unit object classes are entities in

the DS2 data source. The constraint attribute indicates that the currency used in this

data source is Australian lollars.

6.3.1.2 The Object Mapping MetaData (OMMetaData)

In addition to data source information which has to be registered in the Mediated
MetaData, the object mapping inforination must be gathered to identify the
corresponding objects of component data sources. Object mapping information refers
to the same real world objects mapped to global objects so that the global objects can
be identified and referred to in the query and can be acknowledged by the
components in the MeDInt Mediator unambiguously. The object mapping
information is registered in the Object Mapping MetaData (OMMetadata). The main
objective of OMMetaData implementation is to solve schematic naming conflicts in

the entity level. The information required to be captured in OMMetaData are:

e A global object identifier — the assigning of a global identical identifier for each
real-world object to achieve naming equivalence and to be indistinguishable from
other collaborative components.

e Mapped data source — used to identify the component data source to which this
global object maps.

e Mapped object — used to identify the object of the data source to which this
global object maps to.

e Mapped object condition — used to describe mapping conditions.

- 86 -

TOTF

MeDint: An Approach fo

e Integration of Dotabose and Legacy Systems

The followings are the specification describing OMMetaData:

OMMetaData rule
ObjectMapping rule
MappingCbject
GlobalObject
MappedObject

Source
digit};

Object
Constraint

Attribute defined

Attribute identifier

OBAL Lson

ObjectMapping rule, {ObjectMapping rule};

Y{’, MappingObject, ‘}';

GlobalObject, MappedObject, {MappedObject};
‘GlobalUbject ', letter, {letter |decimal digit};
‘Mappedibject ', Source, Object, {Constraint};

‘SourceAssignedName ’, letter, {letter Idecimal

‘SourceCbiject ’, letter, {letter |decimal digit};

‘Constraint ', Attribule defined;

Attribute identifier, Comparison operator,
Attribute value;

letter, {letter |decimal digit};

d R N A B A IR RN ey

i < RN

letter|decimal digit, {letter |decimal digiti;

The following is an example of OMMetaData.

r

1
GlobalCbject
Mapped>ject

MappedObject

Lecturer

SourceAssignecName DSt
SourceObj ect Staff
Constraint type='L’
Source?ssignedName DS2
SourceObject ILecturer

The above OMMetaData example shows that a global object assigned name,

Lecturer, which is mapped to the staff object class in the DS1 data source which has

the constraint of #fype = “L”, and is mapped to the Lecturer object class in another

data source, DS2, without any constraint.

6.3.1.3 The Attribute Mapping MetaData (AMMetaData)

The same attributes in multiple data sources which were assigned different names

can be mapped and reposed in the Attribute Mapping MetaData (AMMetaData) to

identify their correspondence. Similar to OMMetaData, attribute mapping

- 87 -

MeDint An Agproach for ine Intsgration of Dotabase and Legaay Systems

information refers to the same real world attributes mapped to global objects first so
that the global attributes can be identified and referred to in the query and can be
acknowledged by the components in the MeDInt Mediator. The main objective of
AMMetaData implementation is to solve schematic naming conflicts in the attribute

level. The information required to be captured in AMMetaData are:

e A global attribute identifier is assigned as a unique name of a group of the same
real-world attributes from multiple data sources to achieve naming equivalence
and to be indistinguishable from other collaborative components.

e Mapped data sources are used to identify the component data source to which this
global attribute maps.

e Mapped objects are used to identify the objects of the data sources to which this
global attribute maps to. ’

e Mapped attributes are used to identify the attributes of the data sources to which

this global attribute maps to.

e Mapped attribute conditions are used to describe mapping conditions.

The followings are the specification describing AMMetaData:

AMMetaData rule s AttributeMapping rule, {AttributeMapping rule:;
AttributeMapping rule = ‘i', MappingAttribute, ‘}’;

MappingAttribute = GlobalAttribute, MappedAttribute, {MappedAttribute};
GlobalAttribute = ‘GlobalAttribute ', letter, {letter |decimal digit};
MappedAttribute = ‘MappedAttribute ', Source, Object,

Attribute {Constraint;

Source = ‘SourceAssignedName ’, letter, {letter |decimal
digit};

Object = ‘SourceObject ', letter, {letter |decimal digit};
Attribute = ‘Sourcelttribute ‘, letter, {letter |decimal digit};
Constraint = Attribute identifier, Camparison operator,

Attribute value;

Attribute identifier letter, {letter |decimal digit};
comparison operator = A S N A A e
Attribute value letter|decimal digit, {letter |decimal digit};

- 88 -

MabDint An Approach for the Intagration of Dotabose ond Legaoy Systaems

The following is an example of AMMetaData.

{
GlobalAttribute Student . Name

MappedAttribute SourceAssignedName DS2
SourceCbject Student
SourceAttribute fname+lname

6.3.2 Semantic MetaData

The Mediated MetaData is intended not only for serving the schematic conflict
resolution but also semantic conflict resolution by applying aliases to resolve
semantic naming conflicts, and by acting as a library of functions collecting

conversion functions to resolve scaling conflicts.

To resolve semantic conflicts and provide meaningful information exchange among
data sources, the semantic contexts of dataneed to be considered (Sciore et al.,
1994). The implicit context information has to be identified explicitly to share among
heterogeneous sources. For example, pfodﬁct price is normally represented only by a
real number 120.50. If it is coded by US dollars, without a semantic context, it could
be compared incorrectly to 146.78 Australian dollars in another source. Both figures
need to be explicitly specified in their currency in addition to its value. Then,
120.50(Currency="USD ") can be compared correctly to 146.78(Currency="AUD”)
from another data source by the facilitation of conversion functions. Therefore,
attribute values in different representations or contexts, can be compared by
converting them into the same semantic context before comparing their values. If the
conversion functions are not available, it can be implied that they have not been
defined in advance, so it is impossible to convert the sum because of lack of
information. Therefore, the semantic contexts and conversion information must be
explicitly defined for distinct representations in multiple data sources. Once the
system needs to integrate heterogeneous semantic values, it has to consult the

Semantic MetaData to homogenise the data.

-89 -

MeDint: An Aoproach for the Integrotion of Database and Legaoy Systems

In this study, the Semantic MetaData can be classified into two types, Thesaurus

MetaData (TSMetaData) and Conversion MetaData (CVMetaData).

6.3.21 The Thesaurus MetaData (TSMetaData)

The 3-D semantic model has been proposed in this study to represent differences in
semantic values, i.e. representation conflicts, by gaining the advantage of aliases to
define corresponding domains. Aliases are collected in the Thesaurus MetaData
(TSMetaData). Whenever the system has to integrate heterogeneous semantic
values, it consults this agent to homogenise the data. For example, days in a week

can be represented in numerous ways:

Days of week = {1, 2, 3, 4, 5, 6, 7}
Days of week = {Sun, Mon, Tue, Wed, Thu, Fri, Sati
Days of week = {Sundavy, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}

This semantic heterogeneity could be modelled as a general tree (Figure 6.4)
grouping the same meaning aliases. Then, XML documents which are based on the
object-oriented model which is best for describing schema and semantic of objects in

the real-world are capable to collect these aliases.

FIGURE 6.4 AN ALIAS TREE

The following is the TSMetaData specification syntax.

TSMetaData rule = TS rule, {TS rule};

TS rule = ‘{*, TSMapping, ‘}’;

TSMappingO = GlobalCategory, Mappedinfo, {MappedInfo};
GlobalCategory = ‘GlobalObject ’, letter, {letter |decimal digit};

- 90 -

MeDlint: An

Acproach for the integration

(4

f Dotabase.and Legacy Systerns

MappedInfo =
Default =
Aliases =

Alias =

The following is an example of TSMetaData.

{
GlobalCategory Days
MappedInfo Default
Aliases
{
Alias
Alias
Alias
}
MappedInfo Default
Aliases
{
Allas
Alias
Alims
MappedInfo
{
Alias
Alias
Alias
}
MappedInfo ...
}
<MetaData>
<DayOfWeek>
<Day name="Sunday">
<alias>1</alias>
<alias>Sun</alias>
<alias>Sunday</alias>
</Day>
<Day name="Monday">
<alias>2</alias>
<alias>Mon</alias>
<alias>Monday</alias>
</Day>
.<Day name="Saturday">
<alias>7</alias>
<alias>Sat</alias>
<alias>Saturday</alias>
</Day>
</DayOfWeek>
</MetaData>

‘Alias ’, letter,

Default, Aliases;

‘Aliases { ', Alias,

‘Default ’, letter, {letter |decimal digit};

{Alias},

A} }I’.

{letter |decimal digit};

Sunday

1
Sun
Suncay

Moriday

Tuesay

3
o

Monday

MaDint An Approach for the infegration of Database and Legaay Systerms

6.3.2.2 The Conversion MetaData (CVMetaData)

Conversion plays a significant role in the data integration of heterogeneous sources,
especially when data are represented in different contexts. Query results with varied
semantic contexts are meaningless if the results cannot be compared for analysis or
decision-making. This is why a library of conversion functions is necessary when the
interoperation of data represented differently among heterogeneous sources is
required. The MeDInt architecture encompasses the Conversion MetaData
(CVMetaData) to provide conversion knowledge. The major objective of
CVMetaData is resolving scaling conflicts. A conversion function will be invoked
when the same real world attributes from multiple data sources with different
semantic contexts are included in the user-requested query. For example, a weight
attribute in one system is collected in kilograms (kgs), but in another data source it is
collected in grams (gms). To interoperate them, a conversion is required to transform
weight values from grams to kilograms or from kilograms to grams depending on the

unit requested in the query. The following is the CVMetaData specification syntax.

CVMetaData Ruie CVFunction, {CVFunction};

CVFunct.ion CVF identifier, ‘Default = ', DefaultContext, CVibody;
CVF identifier = letter, {letter |decimal digit};

DefaultContext = letter, {letter |decimal digit};

CVfbody = CVto, CVfactor, CVoperator, CVreverse;

CVto = ‘CVto ', letter, {letter |decimal digit};

CVfactor = ‘Cvfactor ’, letter |decimal digit, {letter !decimal
digit};

CVoperator = ‘CVoperator ’, ‘47 | ‘=f | | e

CVreverse = ‘CVreverse /, 4/ | =/ | w1 | Vi

The following is an example of CVMetaData for resolving different unit of

measurements.
{Weight cnv Default Kgs
{
CVto ams
CVfactor 1,000
CVoperator *
CVreverse /
}
{
CVto mgs
CVfactor 1,000,000

- 92 -

Mebint An Aoproach for the Integrotion of Dalabase and Legaoy Svstenms

CVoperator *
CVreverse /

From the CVMetaData specification above, the default unit of weight used in the
integration system is kilograms. The conversion factors are defined based on the
standard unit of measurement used in the integration system, so the conversion factor
from one kilogram to grams is multiplying by 1,000 and to milligrams is multiplying
by 1,000,000. In the reverse conversion, from grams to kilograms, the same
conversion factor can be used, but using the division operator instead of the

multiplication.

For example, to interoperate Weight= 50(unit="kgs”) to Weight=
49999(unit="gms”’) from multiple data sources which are in difiizrent contexts,
immediate comparison cannot occur. If the context requested in the query is kgs,
Weight _cnv(kgs=>“gms”) will be invoked to transtorm 49999(unit="gms”) to
49.999(unit="*kgs ") to providc the same semantic context as rcquested.
50(unit="kgs ") does not need to be converted because it is in the same unit as the
requested context. Then, the values of 49.999(unit="kgs”) and 50(unit="kgs"),
which have the same semantic context, can be compared or interoperated. On the
other hand, if the required conversion function cannot be found, this means no
conversion factor is available for these attributes; the context information should be
attached to its values on the query results so that the semantic differences can be

noticed.

The conversion of an attribute with multiple contexts needs a sequential conversion
action. For example, when a salary atwibute of 25000(currency=“USD”,
period="yearly”) which represents US dollars on a yearly basis is compared with
2500(currency="AUD”, period="“monthly) which represents Australian dollars on
a monthly basis, multiple conversions are required to convert the currency and then
the period. In this case, the conversion is non-order preserving, so it does not matter
which conversion should be done first, but the priority of conversion is significant in

some cases.

-93 -

MeDint: An Auproach for the Integration of Databose and Legaay Systerms

Therefore, it can be concluded that DSMetaData provides data source information.
OMMetaData resolves schematic naming conflicts while TSMetaData resolves
semantic naming and representation conflicts. Finally, CVMetaData provides
conversion knowledge for the MeDInt Mediator to homogenise the scaling conflict

due to different semantic contexts from multiple data sources.

6.4 Conflict Resolution Agent (CRA)

After the MeDInt Mediator gets the MDRS query results from wrappers, the model
heterogeneity has been resolved. However, Schematic and Semantic Heterogeneities
have not been handled. The Conflict Resolution Agent (CRA) has this responsibility.
To deal with both schematic and scmantic conflicts, CRA simply applics cach
MDRS result set to the pre-defined template. This pre-defined template is created
from the query. Thus, a varied result structure will be transformed to the structure of
the pre-defined template. This means that structural conflicts have been resolved. In
addition, different semantic contexts will be homogenised in this stage to have a
context compatible with the template, so CRA resolves problems with semantic
contexts such as scaling conflicts. However, naming conflicts in the semantic level

may still remain, but can be handled by aliases in TSMetaData.

6.4.1 Applying MDRS Results to the Pre-defined Template

After CRA has received the MDRS result sets from the wrappers, CRA can apply
each MDRS instance to its predefined template to resolve schema and semantic

conflicts.

For example, given the following:

(Lecturer.fname, Lecturer.Iname, Lecturer.salary (currency="AUD", period="Monthly")),

it could be represented visually by an example of 3-D MDM as shown in Figure 6.5.

- 94 -

pMelint An Avpproach for the Integration of Dotabase and Legaoy Systerms

Lecturer.fname

Lecturer.lname N
Lecturer.salary|

FIGURE 6.5 REPRESENTATION OF ATTRIBUTES AND SEMANTIC CONTEXTS

The role of CRA is to transform the values of query results corresponding to the
structure and semantic contexts of the pre-defined template. For example, if the
MDRS results of Lecturer.salary arc not “AUD " currency or “monthlyv" period. it 1s

necessary to convert these into the pre-defined semantic context during this process.

Assume that the first MDRS is

{ (Lecturer.fname, Lecturer.lname, Lecturer.salary (currency="USD", period="yearly")) }

And the second MDRS is

"{ (Lecturer.name, Lecturer.salary (currency="AUD", period="monthly"))}

which name = (fname, Iname)

CRA needs to apply different structures of the MDRS results from the wrappers to
the predefined template. The conflict resolution method for the first MDRS result is
the value of Lecturer.salary, which isin “USD” currency on a “yearly” basis and
needs to be converted to “AUD” currency on a “monthly” basis by consulting
CVMetaData. The second set of MDRS results also needs a conversion function to
break Lecturer.name into Lecturer.fname and Lecturer.lname. Then, both sets of
MDRS results can be filled into the template. Finally, the structural conflicts and

semantic conflicts will be resolved.

ApplTemp(p, 7, 6) is the process of applying a set of MDRS results (z) from a data

source a to the predefined template, where p is the predefined template created from

- 95 .

MeaDint: An Aoproach o

fotabase and Legaoy

BYETEINS

Process ApplTemp(p, 1, 6);
{Apply MDRSs to fit into the pre-defined template.}
Type context_rec = Record of
name : Context_Name;
value : Context_Value;
EndRecord;
Project_Rec = Record of

attribute : Attribute_Name;
context : Array of context_rec;
EndRecord;
Var Projection : Array of Project_Rec;

AttrConstraint : Array of Project_Rec;
RMDRS : Record of Projection;

1] : Integer;

Function ConvF(attr_val, fr_context, to_context);
{Convert different semantics.}
Begin { ConvF'}
Call the related conversion function in CVMetaData
If fr_context = default then
ConvF := attri_val, CVoperator, CVfactor;
Else if to_context = default then
ConvF := attri_val, CVreverse, CVfactor;
Else Error Message ‘CVMetaData needs to be maintained.”
End { ConvF };

Begin { ApplTemp }
Fill tin RMDRS;
Get AttrConstraint from DSMetaData.constraint;
Attach AttrConstaint to RMDRS;
Check each attribute in RMDRS against p;
If unmatched semantic contexts are found Then Begin
Attr_val := ConvF(attr_val, RMDRS.context, p.context);
Replace RMDRS.context with p.context;
End;
End { ApplTemp }.

From ApplTemp(p, 7, 6), the set of results returned from the wrapper does not have

any semantic context attached. Constraints retrieved from DSMetaData are thus

necessary to create a new semantic data set before comparing its semantic contexts

- 96 -

Mebint An Aoproach for the Integration of Dotabase and Legaoy Systems

with the pre-defined template in order to convert result values to have the semantic

contexts conforming to the semantic contexts required by the user.

For example, the following is the set of results from DS].

{(“2158015", 3750.00(currency="AUD", period="monthly)),
(“4125101",2125.00(currency="AUD", period="monthly))}

It will be applied to fit the pre-define template.

(Staff.id, Staff.salary (currency="AUD”, period="yearly”))

Staff.salary needs to be converted to “yearly” basis according to the pre-defined
template. The following is the set of results after the App/Temp(p, t, 6) process.

{(“2158015", 45000.00(currency="AUD", period="yearly")),
“4125101”,25500.00(currency="AUD", period="yearly”))}

6.5 The Consolidation Processor (CP)

The Consolidation Processor (CP) as a data integrator consolidates the conflict-
resolved MDRS result sets which have structure and semantic contexts
corresponding to the predefined template. In other words, model, schematic, and
semantic conflicts have already been resolved. Thus, the result sets are structurally
equivalent. At this point, the sets of conflict-resolved results can be integrated simply

by set operations.

6.5.1 Integrating the Mediated Data Representation Structures

After CRA applies the MDRS results according to the predefined template format, all
result sets then conform to each other and also to the requested query both in their
schemas and semantics. CP integrates only the structurally and semantically
equivalent conflict-resolved sets by appropriate set operators, for example, the union

or interception operators, depending on the condition of the query.

Integrate(va, vf, Q) is the process of integrating conflict-resolved MDRS result sets,
where va is a conflict-resolved set from data source @, and v is from data source f3,

and Q is a relational algebra.

-97 -

MeDint An Avproaoh for the Intagral

o oof Dotaoa

sg and Legacy Systsms

Process Integrate(va, uf3, Q);

{Integrate two conflict-resolved MDRS result sets.}

Type context_rec = Record of
name : Context_Name;
value : Context_Value;
EndRecord;
Project_Rec = Record of
attribute : Attribute_Name;
context Array of context_rec;
EndRecord;
Var Projection : Array of Project_Rec;
va, uB : Record of Projection;
Q : relation algebra,;

Begin { Integrate }

Case Qis ‘U’
Union(va, uf);

Case Qis 1V
Intersect(va, upB);

Case Qis X’
Cartesian(va, uf);

Case Qis ‘@’
Join(va, uB);

End { Integrate }.

6.6 The Rendering Agent (RA)

After all results from multiple data sources have been integrated by CP, the

Rendering Agent automatically generates the integrated results to the users. To

achieve flexibility, the Hyper Text Markup Language (HTML) format has been

chosen here to present the final query results.

6.6.1 Generating the Integrated Results

The MDRS integrated result has to be transformed to produce output to users in

HTML. Because XML documents have been used to represent the integrated results

in the MeDInt architecture, rendering from XML to HTML is quite simple.

.98 -

Mebint An Approach for the Integraiton of Dotabase and Legacy Systerms

Cascading Style Sheets (CSS) and eXtensible Style Language (XSL) are alternative
approaches (Morrison et al., 2000). A CSS or an XSL can be defined to generate an
HTML document from an XML document. Some XML parser software also

provides this feature. Therefore, the implementation of the RA will not be discussed

in detail in this study.

6.7 Summary

The MeDInt Mediator is a layer between clients and wrappers. Its main functions
include the decomposition of the user query into subqueries, provision of knowledge
about mapping information, resolution of conflicts, and consolidation of data. It is
independent from data sources and does not have to deal with the data model
heterogeneities itself. The mediator deals only with Schematic and Scmantic

Heterogeneities. MDM is the data model used in the MeDInt Mcdiator.

- 99 .

MeDint: An Aoproach for the integration of Database and Legaey Systems

CHAPTER 7 - WRAPPERS

The MeDInt Mediator discussed in the previous chapter is responsible for
wransforming a query to subqueries to request data and for integrating heterogeneous
data returned from multiple data sources. To reduce complexity, the MeDInt
Mediator does not have to communicate with data sources directly. If that were the
case, it would have to handle heterogeneous data definition languages and
heterogeneous query languages in addition to dealing with conflict resolution. In this
study, wrappers take this responsibility by acting as intermediate translators
communicating with both the MeDInt Mediator and component data sources even

though they may be in different data models.

7.1 The Design of Wrappers

The MeDInt Mediator cannot communicate to multiple data sources directly because
of the data model heterogeneities of multiple data sources including different schema
definitions, different query languages and different data representation structures.
Interpreters are necessary to translate these to the Mediated Data Model (MDM)
which is the common data model used in the MeDInt architecture. MDM consists of
the Mediated Data Definition Language (MDDL), the Mediated Query Language
(MQL), and the Mediated Data Representation Structure (MDRS) which are the
common data definition, query language and data representation respectively. This
study introduces wrappers to satisfy the above purpose A wrapper is associated with
each data source to translate source schemas into MDDL schemas, MQL subqueries

to source specific queries, and data from data sources to MDRS data objects.

Wrappers, in this research, act as translators, including firstly schema definition
translators which accommodate queries by translating heterogeneous schema
definitions into MDDLs, secondly query translators which translate MQLs used in

the MeDInt Mediator into specific data source query languages, and thirdly data

- 100 -

MeDint An Aopmibach for the Intsgration of Database and Legoaoy Systaerms

content translators which translate data in disparate representations into MDRSs.
Each wrapper is composed of its own Schema Translation Processor (STP), Query
Translation Processor (QTP) and Data Translation Processor (DTP) serving functions
described previously. Briefly, a wrapper is responsible for translating between the
data model used in a data source and MDM used in the MeDInt Mediator.
Therefore, only one additional wrapper implementation is required for a pair of a
particular data model and MDM, when a new data source in a different data model is
added to the integration system. Let us say, if there are m data sources to be
integrated, and from such data sources, there are » (which » <= m) different data
models, there will be only » wrappers to be implemented. This is more beneficial
when comparing it with the tradition translation approach in which m*(m-1)
translators are required. It will be exponrcrtially more efficient when thers are many
data sources (m increases) to be integratcd and more than one data modecl (1> 1,

where 7 is a natural number).

The algorithms of the components of each wrapper are different. They depend on
what kind of data model used in the data source. This study investigates developing
wrappers for the relational data model called RWrap, for the object-orientea data

model called OWrap, and for legacy text files called LWrap.

7.2 Wrapper Components

There are three components in each wrapper: a Schema Translation Processor (STP),

a Query Translation Processor (QTP), and a Data Translation Processor (DTP).

7.2.1 Schema Translation Processor (STP)

The MeDInt Mediator needs schema definitions from data sources as information
for decomposing and transforming the query. To reduce complexity, the Mediator
was not designed to get the schema definitions from heterogeneous data sources.
Thus wrappers have the responsibility to communicate with each source to capture
schema definitions and to provide them in a format that can be recognised by the

MeDInt Mediator.

- 101 -

MeDint An Auproach for the Integration of Dotabase and tegaay Systems

A Schema Translation Processor (STP) is responsible for translating the data
definitions from source schema definitions into MDDL definitions which can be
employed by the QTA, a component of the MeDInt Mediator when decomposing the
user’s submitted query to subqueries. An STP supplies only the schema definitions
necessarily requested by the MeDInt Mediator, and will not supply all object schema
definitions of component data sources to the MeDInt Mediator. This results in great
benefits in terms of time and resource efficiency. Furthermore, it has been designed
to be suitable for dynamic systems whose source schemas could be changed

frequently.

An STP gets object schema definitions from data sources which may be represented
by Data Definition Language (DDL) in the relational data model, by Object
Definition Languagce (@DL) in the object data modcl, or by other definition
languages in other data models. STPs transform this variety data definitions to
MDDLs the syntax of which is provided in Chapter 5 in the Extended Backus-Naur
Form (EBNF). Only the relational data model, the object data model and text lcgacy
systems have becn studied in this research, so there are three algorithms of STDs.

' RSchmTransl(Si,0j) is an algorithm for the relational data model,

.; OSchmTransl(Si, Oj) is for the object data model, and LSchmTransl(Si,Oj) is for

legacy text files. Si is data source i and Oj is object j in the data source i.

7.21.1 STP Algorithm for the Relational Data Model

RSchmTransl(Si,0j) will generate an object schema definition tree (Figure 7.1).

Process RSchmTransl(Si,0j);
Type SchmbDefRec is record of SchmName, SchmDesc, AttrSet, RelSet, KeySet;

AttrSet : set of AttrRec;
RelSet . set of RelRec;
KeySet : set of KeyRec;

ObjSchmTr: Tree;

Var SchmDef : SchmbDefRec;
SchmName: String;
SchmbDesc: String;
VattrSet : AttrSet;
VrelSet : RelSet;

- 102 -

MebDint An Approach for the

vof Dotabase and Legaoy Systerms

VkeySet : KeySet;
bi : ObjSchmTr;

Function FetchSchm(Si,0j);
Begin { FetchSchm }
FOR SchmbDef:

SchmName:= (Si.0j);
RETRIEVE description from Si.0j to SchmDesc;
RETREIVE attribute from Si.0j to VattrSet until no more attribute;
RETREIVE relationship from Si.0j to VrelSet until no more relation;
RETREIVE key from Si.0j to VkeySet until no more key;

End { FetchSchm };

Function TranslSchm(SchmDef):

CREATETREE bi;
CREATE root node from SchmDef.SchmName, SchinDef.ScheDesc;
CREATE attribute child node;
CREATE child node from VattrSet until no more attribute;
CREATE relationship child node;
CREATE child node from VrelSet until no more relationship;
CREATE key child node;
CREATE child node from VkeySet until no more key;
End { TranslSchm };

Begin { RSchmTransl }
FetchSchm(Si,0j);
TranslSchm(SchmDef);
Return bi;

End { RSchmTransl).

- 103 -

Me DIint: An Approach for the Integration of Datavase and Legaaoy Systerms

FIGURE 7.1 Al UXALIPLE OF AN EXPORTED SCHEMA DEFIST: Ui 1L 6 RVYRAP

Figure 7.1 shows an examplc of an object schema definition trec exported by the
RWrap via the request (RSchmTransi(Si, 0j), while Siis a data source name and Ojis

the object ‘Staff’) from the MeDInt Mediator.

From the above ‘Staff’ data definition tree, an MDDL definition can be simply

generated.
Staff = {
attribute
id string
salary float
relationship
id LoanRec.id
id Lecture.staff_id
key
id;
}

7.21.2 STP Algorithm for the Object-oriented Data Model

OSchmTransl(Si,0j) will create an object schema definition tree (Figure 7.2).

Process OSchmTransl(5i,0j);
Type SchmbDefRec is record of SchmName, SchmDesc, SubTSet, AttrSet, KeySet;
SubTSet : set of string;
AttrSet : set of AttrRec;
KeySet : set of KeyRec;
ObjSchmTr: Tree;

- 104 -

MeDint An Aoproach for the Integration of Database ond Leaaey Systams

Var SchmDef : SchmbDefRec;
SchmName: String;
SchmDesc: String;
VsubtSet : SubtSet;
VattrSet : AttrSet;
VkeySet : KeySet;
bi : ObjSchmTr;

Function FetchSchm(Si,0j);
Begin { FetchSchm }
FOR SchmDef:
SchmName:= (3i.0j);
RETRIEVE description from $i.0j to SchmDesc;
RETRIEVE subtype from Si.0j to VsubtSet until no more subtype;
RETREIVE attribute {1 $1.0j to VattrSet until no more « tribune;
IF attribute is related to other attribute THEN
RETRIEVE related attribute until no more related atiribute
RETREIVE relationship from Si.0j to VrelSet until no more relation;
RETREIVE key from Si.0j to VkeySet until no more key;
End { FetchSchm };

Function TranslSchm(SchmDef):
Begin { TranslSchm }
CREATETREE bij;
CREATE root node from SchmDef.SchmName, SchmDef.ScheDesc;
CREATE subtype child node;
CREATE attribute child node;
CREATE child node from VattrSet until no more attribute;
IF there is related attribute THEN
CREATE child node from VsubtSet until no more related attribute;
CREATE key child node;
CREATE child node from VkeySet until no more key;
End { TranslSchm };

Begin { OSchmTransl }
FetchSchm(Si,0j);
TranslSchm(SchmDef);
Return bj;

End { OSchmTransl }.

- 105 -

MaeDint An Approach for the Integration of Database and Legaay Systems

FIGURE 7.2 AN EXAMPLE OF Al EXPORTED SCHEMA DEFINITION TREE £ (0 Rar

Figure 7.2 shows an example of an object schema definition tree exported by the
OWrap by the request (OSchmTransl(Si, Oj), while Siis a data source name and Oj is
the objcct ‘Lecturer’) from the MeDInt Mediator.

From the above ‘Lecturer’ data definition tree, an MDDL definition can be simply

generated.

Lecturer = {
subtype
Person
attribute
salary float
lecture Unit.lecturedBy
key
id
}

7.21.3 STP Algorithm for Legacy File Processing Systems

The characteristics of legacy file processing systems are quite different from those of
the relational data model and the object data model in database management systems.
They do not have metadata, so schema information cannot be drawn like the previous
two data models. The STP of the LWrap thus takes advantage of only the first row of

text files to indicate the name of each field by ignoring data types. Moreover, the

- 106 -

MebDint An Auprocgeh for the Integradion of Datapase and Legaoy Sysiems

data in each file in legacy file processing systems are separated (Kroenke, 2002), so

no relationship information is involved.

Process LSchmTransl(Si,0j);
Type SchmbDefRec is record of SchmName, AttrSet;
AttrSet : set of AttrRec;
ObjSchmTr: Tree;
Var SchmDef : SchmbDefRec;
SchmName: String;
VattrSet : AttrSet;
bi : ObjSchmTr;

Function FetchSchm(Si,0j);
Begin { FetchSchm }
From tlic fivut row of Of in Si
FOR SchmbDef:
SchmName:= (Si.0j);
RETREIVE attribute from Si.Qj to VattrSet until no more attribute;
End { FetchSchm };

Function TranslSchm(SchmDef):
Begin { TranslSchm }
CREATETREE bj;
CREATE root node from SchmDef.SchmName
CREATE attribute child node;
CREATE child node from VattrSet until no more attribute;
End { TranslSchm };

Begin { LSchmTransl }
FetchSchm(Si,0j);
TranslSchm(SchmbDef);
Return bi;

End { LSchmTransl }.

- 107 -

MeDint: An Approach for the Integration of Database and Legacy Systems

An example of a legacy text file is shown in Figure 7.3.

: 3 I ol

*id", "nane”, "address”, “tel_no", "sex", "dob", "salary”, "type" -
"0995832", "John Walker",L"5/45 Bradford street, Mt.lawvley

6050", "94424050", "M",8-,771965 0:00:00.5000.00, "Secretary”
"0995964", "Micheal Fugh®,"9 Walcott street, Mt lavley

6050", 93800458, "M"*,9,5,1958 0:00:00,.6500.00. *Lecturer"®| LI

FIGURE 7.3 AN EXAMPLE OF A LEGACY TEXT FILE

Figure 7.4 shows a schema definition tree exported by the LWrap from the previous
example (Figure 7.3) by the request (LSchmTransl(Si,0j), while Si is a data source

name and Oj is the file ‘Staff’) from the MeDInt Mediator.

Staft

FIGURE 7.4 AN EXAMPLE OFAN EXPORTED SCHEMA DEFINITION TREE BY LWRAP

From the above ‘Staff’ data definition tree (Figure 7.4), an MDDL definition can be

simply generated.

Staff = {
attribute
id string
name string
address string
tel_no string

}

7.2.2 Query Translation Processor (QTP)

Due to the complexity of dealing with heterogeneity, the processes of conflict
resolution and query translation and transformation have been split. The MeDInt
Mediator handles the heterogeneity both on the query and the data. To the query, the
MeDInt Mediator decomposes and transforms it to MQL specifications before
passing the decomposed- and transformed-subqueries to wrappers. Wrappers do not
have to deal with heterogeneity, but only translate subqueries to the query languages,

which can be operated by the connected data sources.

From MDDLs of associated objects, a QTP translates MQL submitted from QTA to
a specific query language, for example, Structured Query Language (SQL) and
Object-oriented Query Lancuage (OQL), etc, that each s can execute. QTPs

sense what query language should be generated from DSMctaData.

RWrap
SQL

—— e

Mediator

secuim—.

MQL3 1[T I_ QL -lf__m_,y

FIGURE 7.5 QUERY DISTRIBUTION AND TRANSLATION

From Figure 7.5, assume that the MeDInt Mediator submitted MQL, to DS; and
MQL; to DS; passing through RWrap since DS; and DS; are relational models using
SQL as their query language. The MeDInt Mediator also submits MQL3 to DS;
passing through OWrap because DS; is an object-oriented model using OQL as its
query language. MQL; and MQL; will be translated by the QTP of the relational
wrapper to SQL which is the query language used in DS;. Also MQL; has to be
translated by the QTP of the object wrapper before submitting to data sources to

process the query.

- 109 -

MeDint: An Agproach for the Integration of Database and Llegacy Systems

The algorithm of each QTP is varied depending on what kinds of query language a
QTP has to be translated into.

7.2.21 QTP Algorithm for the Relational Data Model

According to relational algebra (Date, 1990), the special relational operators are
Restriction or Selection, Projection and Join (Figure 7.6). The Restriction or
Selection operator extracts specified tuples from a relation. The Projection operator
extracts specified attributes from a relation, while the Join operator builds a relation

from two specified relations (Date, 1990).

RESTRICT PROJECT JOIN

du

[
al|bl| Ibl{cl| fal|bl|cl

el
|

a2|bl| |b2 02| a2 bl cl

a3|b2| |b3|c3| |a3|b2|c2

FIGURE 7.6 FUNDAMENTAL RELATIONAL OPERATORS (DATE, 1990)

Considering a basic SQL statement,

SELECT item(s)
FROM table(s)
[WHERE condition_expression];

relating to the relational algebra mentioned above, the SELECT item(s) clause is
where the Projection operator is stated and the WHERE condition_expression

statement is where the Restriction and Join operators can be stated.

- 110 -

MebDint. An Acprocch for the Infegration of Dotabase and Legaoy Systarms

Consider an MQL statement used in the MeDInt Mediator,

SELECT attribute(s) with context

FROM object(s)

IN datasource(s)

[CONDITION condition_expression with context];

As a result of the decomposition and transformation processes, the semantic context
heterogeneities on the subqueries have been removed and each subquery thus has the
same context as the associated data source. MQL subqueries submitted to the

wrappers are:

SELECT attribute(s)

FROM object(s)

IN datasource(s)

[CONDITION condition_expression};

It can be noted from the MQL statement that the SELECT attribute(s) clause is where
the Projection operator is stated and the V//ERE condition_expression statement is

where the Restriction can be stated.

By the previous comparison of both SQL and MQL statements, it is a simple task to
generate an SQL statement from an MQL. statement. The algorithm can be explained

by the following SQLGen process.

Process SQLGen(y);
Type &_Rec : Record of

Object : array[l..h] of ObjectType;
Projection : array|1..i] of AttrRec;
Restriction : array[l..j] of ConditionRec;
Join : array[1..k] of RelRec;
Var (2] : d_Rec;
h, i j, k : integer;

SQL_statement: string;

Function CreateJoin(x);
Begin { CreateJoin }
For each pair of tablea & table
® .Join[k]:= tablea.ref_key, “=”, tablef.ref_key;
End { CreateJoin };

Begin { SQLGen }
For all x.From(h]
® .Object[h]:= x.From|h];

-1

MeDint: An Auproach for the Integration of Dotabase and Legagcy Systems

For all x.select[i]
@ .Projection(i]:= x.Select]i];
For all x.Condition]j]
@ .Restriction[j]:= x.Condition[j};
IF more than one object stated in FOR clause
CreatJoin(x);
SQL_statement = “SELECT ”, & .Projection(i],
“FROM”, @ .Object|h],
[“WHERE”, & .Restriction(j]],
[“AND”, @ .Join[k]];
End { SQLGen }.

The algorithm above generates an SQL statement by

e creating Projection from attributes specified in the SELECT clause,

e creauny objects from the FROM clause, and

e creating Restriction and Join from the CONDI/TION clause and relationship
statements.

Note that from /N clause of an MQL statement, the wrappers know which data

sources that subqueries should be submitted to. This QTP algorithm is only suitable

for basic SQL statements. However, it can be extended to cover more complex

statements.

7.2.2.2 QTP Algorithm for the Object-oriented Data Model

The Object Query Language (OQL) is an extension of the SQL and is similar to it.
However, an object’s attribute in OQL can easily be navigated by using path
expressions. The MQL design is also based on the object-oriented data model which

is suitable for representing the OQL. Consider a basic OQL statement,

SELECT list of typevar.item

FROM list of typevar type

[WHERE condition_expression];

The SELECT list of typevar.item clause is where the Projection operator is stated and
the WHERE condition_expression statement is where the Restriction and Join
operators can be stated similar to an SQL statement. Therefore, the algorithm can be

explained by the following OQLGen process.

- 112 -

MeDint Arn Approach for the Integration of Database and legaay Systems

Process OQLGen(y);
Type &P_Rec : Record of

Object : array|l..h] of ObjectType;
Projection : array]l..i] of AttrRec;
Restriction : array|l..j] of ConditionRec;
Join . array|l..k] of RelRec;
Var (<o) : ®_Rec;
h i, j k : integer;

OQL_statement: string;

Function CreateJoin(x);
Begin { CreateJoin }
For each pair of tablea & tablef
@ Joinlk|:= tablearef_key, “=”, tablef.ref_key;
End { CreateJoin };

Begin { OQLGen |
For all x.From[h]
@ .Object[h]:= x.From[h];
For all x.select(i]
@ .Projection[i]:= x.Select[i];
For all x.Condition][j]
& .Restriction|[j]:= x.Conditionl[j];
IF more than one object stated in FOR clause
CreatJoin(x);
OQL_statement = “SELECT ”, & .Projection]i],
“FROM”, @ .Object[h],
[“WHERE”, & .Restriction][j]],
[“AND”, @ .Joink]];
End { OQLGen }.

7.2.2.3 QTP Algorithm for Legacy File Processing Systems

Querying data from legacy text files is not as simple as from database management
systems because specific ad hoc coding will be required. Conversely, converting text
files to other forms such as objects in a database or to XML documents is not as
complex, since query languages can then be used to retrieve data. In this study, XML
documents have been chosen, so the query language used to perform on XML

documents is XQuery developed by the World Wide Web Consortium (XML query

- 113 -

MeDint An Auproach tor tne Integration of Database and Legaay Sysiems

uses cases, 2002; XQuery 1.0: an XML query language, 2002). The basic syntax of
XQuery is

FOR var IN expr
WHERE expr
RETURN expr

From the text file (Figure 7.3), the generated XML document (staff. xml) is shown

below.

<root>

<Staff>
<id>0995832</id>
<name>John Walker</name>
<address>5/45 Bradford street, Mt Lawley 6050</address>
<tel_no>9442 4050</tel_no>
<sex>M</sex>
<dob>8/7/1965</dob>
<salary>5000.00</salary>
<type>Secretary</type>

</Staff>

<Staff>
<id>0995964</id>
<name>Micheal Fugh</name>
<address>9 Walcott stree, Mt Lawley 6050</address>
<tel_n0>93800458</tel_no>
<sex>M</sex>
<dob>9/5/1958</dob>
<salary>6500.00</salary>
<type>Lecturer</type>

</Staff>

</root>

Based on the above XMI. document, the following query is an example of XQuery

that requires id and name of staff whose type equals “Lecturer”.

FOR $s IN document(“Staff. xml")/root/Staff
WHERE $s/type="Lecturer”
RETURN
<Staff>
{$s/id}
{$s/name}
</Staff>

Firstly, the query declares a variable s as staff in root in the “Staffxml” document.
The WHERE clause can be compared to the restriction part of the relational algebra.
Elements stated in the RETURN clause can be compared to the projection part.
Therefore, the algorithm can be explained by the following XQLGen process.

Process XQLGen(y);

Type <P_Rec : Record of
Object : String;
Projection : arrayfl..i] of AttrRec;
Restriction : array|l..j] of ConditionRec;

- 114 -

MeDint An Auproach for the Integrotion of Database and Legacy Systems

Var (2] : ®_Rec;
i, : integer;

XQL_statement: string;

Begin { XQLGen }
@ .Object:= x.From;
For all x.select(i]
@ .Projection]i]:= x.Select[i];
For all x.Condition][j]
@ .Restriction[j]:= x.Condition[j];
XQL_statement = ‘FOR $r IN document(“ ’, @ .Object, ‘xml”)/root/ ’, & .Object,
[WHERE $r/’, @ .Restrictionl[j]],
“RETURN”,
‘<’, d Object, >,
“$Sr/’, @ .Projectionl(i], ¥,
</, @ .Object, >7;

End { XQLGen }.
7.2.3 Data Translation Processor (DTP)

Data returned from heterogeneous data sources by the request of subqueries cannot
be interoperated by the MeDInt Mediator instantly because they are represented in
different data models. This responsibility has been given to wrappers. A Data
Translation Processor (DTP), a component within a wrapper, handles this by
transforming the data content received from data sources to the common data model
used in the MeDInt Mediator which is the Mediated Data Representation Structure
(MDRS). The MeDInt Mediator can recognise MDRSs and can take further action
to solve conflicts. However, the semantic contexts of query results returned from the
data source are ignored in this phase. They are attached later by the MeDInt
Mediator. This step aims only to resolve the Data Model Heterogeneity of data

returned from data sources.

DataTrans(p) is a process of translating data from relational data sources to MDRS,

while p is a resultant data set from the data source.

- 115 -

MaDint An Agproach for the integra

s Daldabase and Legaoy Svystems

Process DataTransl(p);
Type DataSet : Set of Record;
Var n : DataSet;

Function RecTrans(p);
Begin { RecTrans }
For all attributes
Put(m) separating each attribute by comma;

End { RecTrans };

Begin { DataTransl }
Repeat
Read next record;
RecTrans(p);
Until no more record;
Return

End { DataTransl }.
Next, an example of the different structures of data returned from two data sources is

shown. The first one, D; _is data structure returned from a relational data source.

D1 ={
Attribute
id Iinteger
fname string
Iname string
Key
id
3

D; is data structure returned from an object data source.

D2 ={
Attribute
id Integer
name struct
(fname string,
Iname string)

id
X
D, should be translated into { *(id, fname, Iname) }, for example,

{ (0995547, John”, “"Mc.Klen”), (Y0995550”, “Susan”, “Johnson”) }

D;should be translated into { *(id, (fname, Iname)) }, for example,

{(“0995152”, (“Jame”, “Carter”)),
(“"0994521”, (“Catherine”,”Foster”))}

- 116 -

MaDint An Agproach for the Integration of Dolabase and Legaoy Systerms

These two result sets will then have the MDRS format which could be sent to the

MeDInt Mediator for conflicts to be resolved.

7.3 Summary

MDRS

Wrapper

data source

DS,

File/Database management system
object LAJ B]l { C D

File/Databas¢ management syste

siite () () () () (D

m

FIGURE 7.7 DATA SOURCE AND WRAPPER RESPONSIBILITY CLASSIFICATION

Wrappers are described in Figure 7.7 in terms of the responsibility of data source and
wrapper management in the MeDInt framework. Objects and attributes are handled
by the file/database management system of each data source. However, to be
represented in MDRS objects, the data model heterogeneities have to be resolved and

handled by wrappers.

This research only focuses on the relational data model, the object data model and
legacy text files which are widely used in the real world. Thus, three wrappers were
designed: an RWrap for the relational data model, an OWrap for the object-oriented
data model, and an LWrap for legacy text files. Inside each wrapper (Figure 7.8),
there are three algorithms serving as a Schema Translation Processor (STP), a Query

Translation Processor (QTP) and a Data Translation Processor (DTP).

- 117 -

vof Dotabase and Legaoy Sysiems

RWrap OWrap LWrap
RSchmTransl OSchmTransl LSchmTransl
RQueryTransl OQueryTransl LQueryTransl

DataTransl DataTransl DataTransl
Wrapper for Wrapper for Wrapper for

the relational the object data legacy text
data model model files

FIGURE 7.8 THREE WRAPPERS DEVELCED IN THIS STUDY

An STP translates schemas from the data source into the Mediated Data Definition
Language (MDDL). A QTP is responsible for translating the Mediated Query
Language (MQL) subqueries to a specific query to be processed by each data source.
A DTP gets the query result from each data source, and then translates this into the
Mediated Data Representation Structure (MDRS) where each unit is a set of required

object attributes or properties.

-118 -

CHAPTER 8 - SYSTEM EVALUATION
AND RESULTS

The critical problem in a data integration process is the heterogeneity of component
data sources. The causes of heterogeneities can be from the autonomy of data
sources, different database design, and so on. Conflicts or heterogeneities between
heterogeneous data sources in this study have previously been classified into three
major types: Data Model Heterogeneity, Schematic Heterogeneity, and Semantic

Heterogeneity. Brief descriptions are given below:
Data Model Heterogeneity

Data Model Heterogencity occurs when there is a problem with data integration from
multiple data sources when component data sources usc different data models, for
example, some may be relational data models, some may be object-oriented data
models, and others may‘be legacy file processing systems. Data Model Heterogeneity

involves using different data definition languages and manipulation languages.
Schematic Heterogeneity

Schematic Heterogeneities exist when the structures of same real-world objects are

defined differently in their component data sources. They can be classified as:

e Naming Conflicts which include conflicts between entity-entity and attribute-
attribute,

e Structural Conflicts which include entity-attribute and attribute-data,

¢ Generalisation/specialisation Conflicts, and

e Relationship Conflicts.

- 119 -

MaebDint An Auproach for the Integr

oo of Dotabase and Legaoy Systems

Semantic Heterogeneity

Semantic Heterogeneities occurs when data in component data sources are
represented differently. These include Naming Conflicts, Representation Conflicts,

Scaling Conflicts, and Level of Abstraction Conflicts.

In this chapter, example problems of heterogeneities from a number of information
systems that require integration are described. The conflicts classified previously are
then resolved. The objectives are to demonstrate the integration process using the
MeDint architecture and to evaluate its correctness. Each example problem is

chosen to demonstrate a different set of conflicts.

8.1 System Experimentation and Evaluatiu:i

8.1.1 Test problem 1 — Hotel Chain Information System

Tlic example is a Hotel Reservation Information System which provides information
for travel agencies. The information systems of contacted hotels need to be
interoperated. Heterogeneities have been found when integrating them. Following are
the object schema definitions of component data sources only which relate to this

query example.

HOTEL CHAIN A - OBJECT-ORIENTED DATA MODEL

CREATE TYPE Address_type (

Number CHAR,
Street CHAR,
City CHAR,
State CHAR,
Country CHAR,
Postcode CHAR)
CREATE Type HotelObj (

Name CHAR,
Address Address_type,
Phone CHAR,
Fax CHAR,
Rooms NUMBER,
Description CHAR)

- 120 -

Malint An Approach for the Integration of Dolabase and Legacy Syste

CREATE TYPE Loc_type (
Building
Floor
Wing

CREATE TYPE Class_type (
RoomClass
NumberPersons

CREATE TYPE RoomObj (
Hotel
Number
Location
Class
Price

CREATE RoomStatus (
Room
Date
Status

CHAR,
CHAR,
CHAR)

CHAR,
NUMBER)

HotelObj,
CHAR,
Loc_type,
Class_type,
NUMBER)

RoomObj,
DATE,
{checkin, checkout, available, reserved})

HOTEL CHAIN B - RELATIONAL DATA MODEL

CREATE TABLE HOTELINFO

(Name
Address
City

State
Country
Postcode
Phone
Fax
Rooms
Description

PRIMARY KEY (Name))

CREATE TABLE ROOM
(HotelName
Number
Building
Floor
Class
NumberPersons
Price

CHAX,
CHAR,
CHAR,
CHAR,
CHAR,
CHAR,
CHAR,
CHAR,
NUMBER,
CHAR,

CHAR,
CHAR,
CHAR,
CHAR,
CHAR,
NUMBER,
NUMBER,

PRIMARY KEY (HotelName, Number),
FOREIGN KEY (HoteIName) REFERENCES HOTELINFO)

CREATE TABLE STATUS
(HotelName
RoomNumber
Date
Status

CHAR,
CHAR,
DATE,
CHAR,

PRIMARY KEY (HotelName, RoomNumber, Date)
FOREIGN KEY (HoteIName, RoomNumber) REFERENCES ROOM)

HOTEL CHAIN C - LEGACY FILE PROCESSING SYSTEM

HOTEL(Name, Address, City, State, Country, Postcode, Phone, Fax, Rooms, Description)

ROOM (HotelName, Number, Building, Floor, Class, NumberPersons, Price)

STATUS (HotelName, RoomNumber, Date, Status)

- 121 -

MebDint: An Aoproach [for the Integration of Dotabase and Legaay Svsterms

Each data source is the data source of a hotel chain which includes a number of
hotels of its chain. Hotel data sources may be served by different data models, for
example, an object-oriented data model (HotelA), a relational data model (HotelB),
and a legacy file processing system (HotelC). These cause Data Model

Heterogeneities.

Schematic Heterogeneities also exist, for example:

e Hotel location, room classification and address are declared as object types in the
Object-oriented data model (HotelA), which is different from the Relational data
model (HotelB) and the file process system (HotelC).

e Attributes of room status, for example, Hotel A.RoomStatus, HotelB.Status, and
HotelC.status are declared differently.

e Naming contlicts oceur 1.e. HotelA fLvvimbtatus.Room.Number,

HotelB.STATUS.RoomNumber, Hotel C.STATUS.RoomNumber.
Semantic Heterogeneities also exist, for example:

e Difforent currencies used in the price quoted of each of the hotels which ar:
located in different countries. These cause Scaling Conflicts.
e Representation Conflicts or Domain Mismatches
e Domain of Hotel A.RoomStatus is user-defined type which is {checkin,
checkout, available, reserved}.
e Domain of HotelB.Status is CHAR which could be ‘I’, ‘O’, ‘A’ and ‘R’.
e Domain of HotelC.Status is CHAR which could be ‘In’, ‘Out’, ‘Av’ and ‘Re’.

Before integration occurs, the five prerequisites of the MeDInt architecture which

form the components of the Mediated MetaData (MMD) have to be maintained:

Prerequisite 1 - New data sources have to be registered in the Data Source
MetaData (DSMetaData).

- 122 -

MeDint: An Aoproach o

{
AssignedName Hoteld;

DataModel object;

Location http://A. com/HotelDB;
SourceNarne Hoteld;

Qbjects RoomStatus;

Description Hotel A’s database;
Constraint Price(Currency = “USD”);

}

{
AssignedName HotelB;

DataModel relational;

Location http://B. com.au/HotelDB;
SourceName HotelB;

Objects Hotellnfo, Room, Status;
Description Hotel B’s database;
Constraint Price(Currency = “AUD");

}
{
Assignedhare HotelC;
DataiModel legacy;

Status;
es;

NATIRV Y
19

: {Currency = “AUD"};

}

Prerequisite 2 - Entity equivalences have to be indicated in the Object Mapping

MetaData (OMMetaData).

{

GlobalCbiject
MappedOhiject

MappedQObject
MappedCoject

}

{
GlobalObject
MappedCbiject
MappedChiject
MappedObiject
}

{
GlobalObject
MappedObject
Mappedtbject
MappedObject

}

HotelInfo
SourceAssignedName
SourceCbject:
SourceAssignedName
SourceCbject:
SourceAssignedName
SourceCbject

RoamInfo
SourceAssignedName
SourceObject
SourceAssignedName
SourceObject
SourceAssignedName
SourceCbject

RoomStatus
SourceAssignedName
SourceObject
SourceAssignedName
SourceQbject
SourceAssignedName
SourceCbject

HotelA
HotelQObj
HotelB

Hotellnfo

HotelC
Hotel

HotelA
RoomOb]j
HotelB
Roaom
HotelC
Room

HotelA

RoomStatus

HotelB
Status
HotelC
Status

- 123 -

Malint An f\;:q.)% oach for the Integrat

ion of Daotabase and Legooy Systerms

Prerequisite 3 - Attribute equivalences have to be indicated in the Attribute

Mapping MetaData (AMMetaData).

{
GlobalAttribute

MappedAttribute

}
{
GlobalAttribute
Mappedsittribute

}
{

GlobalAttribute
MappedAttribute

1
r

Prerequisite 4 - Data equivalences have to be defined in the Thesaurus MetaData

(TSMetaData).

{

city
SourceAssignedName
SourceObject
SourceAttribute

country
SourceAssignedName
SourceObject
SourceAttribute

class
SourceAssignedName
-Coject
SourceAttribute

o
OCAAY

MappedInfo

Mappedinfo

{
Alias
Alias
Alias
Alilas
}
Default
Aliases
{
Alias
Alias
Alias
Alias
}
Default
Aliases
{
Alias
Alias
Alias
}

HotelA
Hotel @bj
Address.city

HotelA
HotelObj
Address.country

HotelA
RocrCir
Class Type.RoomClass

Chsch

T
In
Checkin
Check in

Check out

o

Out
Checkout
Check out

Available
A

Av
Available

- 124 -

pMeDint An Approach for the integration of Dolabase and Legaoy Systems

MappedInfo Default Reserved
Aliases
{
Alias R
Alias Re
Alias Reserved

}

Prerequisite S - Conversion factors of different units have to be specified in the
Conversion MetaData (CVMetaData).

{Currency cnv Default AUD
{
CVto USsD
Cvfactor 0.596
CVoperator *
CVreverse /
}
}
All the prerequisite tasks above are performed by the Revistering Processor (RP). In

terms of implementation, the XML documents are uscd o represent MMD (See

Appendix I).

Assume that a user wants to enquire about the price of a standard room in hotels in
‘Perth, Australia’ which are available on 1** March 2003, the Mediated Query
Language (MQL) is stated as follows:

SELECT Hotellnfo.Name, Roominfo.Class, Roominfo.Price (currency = ‘AUD’)
FROM Hotellnfo, Roominto, RoomStatus
IN HotelA, HotelB, HotelC

CONDITION (Hotelinfo.City = ‘Perth’ and
Hotelinfo.Country = 'Australia’ and
RoomStatus.Status = ‘Available’ and
RoomStatus.Date = '01/03/2003’ and
Roominfo.Price < 200 (currency="AUD’))

Because of these data sources use different currencies, it has been stated on the query
that the price shown on the output must be Australian dollars (Roominfo.Price (currency =
‘AUD’)) which is easier for accommodation price comparison. Also, the contexts of the
values stated in condition of the query can be defined clearly (Roominfo.Price < 200

(currency="AUD))).

The major task of the MeDInt Mediator after getting a query from a client is to

decompose the query to subqueries and to distribute the subqueries to associated

- 125 -

MeabDint An Approach for the Integration of Dotabase and Legacy Systerms

wrappers. This task is assigned to QT A. Before doing this, QTA has to fetch object

schema definitions which are related to the query.
The Process of Fetching Object Schema Definition

Following the algorithm stated in the Process FetchDef(D, O) (See Chapter 6), from
the query, DSMetaData, and OMMetaData, QTA realises that the required object

schema are as shown in Table 8.1.

TABLE 8.1 OBJECT SCHEMA DEFINITIONS REQUIRED

HotelA HotelB HotelC
HotelObj Hotellnfo Hotel
RoomObj Room Room
RoomStatus Status Status
QTA send requests for the MDDLs ot those objects to the S1i's o associated

wrappers as shown in Figure 8.1.

QTA

HotelObj Hotellnfo Hotel
RoomObj Room Room

RoomStatus Status Status
) 3

FIGURE 8.1 OBJECTS REQUESTED FROM WRAPPERS

Schema Translation Processes

The STPs, by the RSchmTransi(Si,05), OSchmTransl(Si,0j), and LSchmTransl(Si,Oj)
processes (See Chapter 7), translate the disparate object schema definitions into
MDDLs.

- 126 -

MeDint An Apploach

YO

From HotelA

HotelObj

RoomObj

RoomStatus

From HotelB

Hot=elInfo

Room

={

attribute
Name
Address
Phone
Fax
Rooms
Description

}

={

attribute
Hotel
Number
Location
Class
Price

}

=1

attribute
Rcom
Date
Status

={

attribute
Name
Address
City
State
Country
Postcode
Phone
Fax
Rooms
Description

key
Name;

}

={

attribute
HotelName
Number
Building
Floor
Class
NumberPersons
Price

relationship
HotelName

key
HotelName+Number;

}

string;
address_type;
string;
string;
numeric;
string;

HotelObj;
string;
loc_type:;
class_type;
numeric;

cate;
{checkin, checkout,
reserved};

string;
string;
string;
string;
string;
string;
string;
string;
numeric;
string;

string;
string;
string;
string;
string;
numeric;
numeric;

HotelInfo.Name;

- 127 -

on of Database and Legacy Systems

available,

#Melint An Approach for the int

onof Daotabase and Legaay Systems

RoomStatus ={
attribute
HotelName string;
Room string;
Date date;
Status string;
relationship
HotelName Room.HotelName;
Room Room.Number;
key
HotelName+Room+Date;
}
From HotelC
Hotel ={
attribute
Name string;
Address string;
City string;
State string;
Country strinag;
Jestcode Slringg
Phone string;
Fax string;
Rooms numeric;
Description string;
}
Room ={
attribute
HotelName string;
Number string;
Building string;
Floor string;
Class string;
NumberPersons numeric;
Price numeric;
relationship
HotelName Hotel .Name;
}
Status ={
attribute
HotelName string;
Room string;
Date date;
Status string;
relationship
HotelName Room. HotelName;
Room Room.Number;

}

From the above MDDLs from HotelA, the FetchDef(D, O) process also analyses that
there are further user-defined type definitions (address_type and class_type) required
from data sources. Then, QTA sends another request to OWrap.

- 128 -

MeDIint An Approach for the Integration of Dotabase and Legaoy Systams

Address_type={

attribute
Number string;
Street string;
City string;
State string;
Country string;
Postcode string;

}

Class_type ={

attribute
RoomClass string;
NumberPersons numeric;

}

Query Decomposing Process

Now, QTA has enough object schema definitions for decomposing the query by the
Otransform(4, D, O, C) process (See Chapter 6)).

All object and atiribute identifiers defined on tiie users™ gquery are global identifiors
which can be mapped to local identifiers with the assistance of information in
OMMetaData and AMMetaData. From TSMetaD:ata and CVMetaData, attribute

values and contexts will be converted to the corresponding source values and

contexts.

MQL to HotelA

SELECT HotelObj.Name, RoomObj.Class_Type.RoomClass, RoomObj.Price
FROM HotelObj, RoomObj, RoomStatus

IN HotelA

CONDITION (HotelObj.Address.City = ‘Perth’ and
HotelObj.Address.Country = ‘Australia’ and
RoomStatus.Status = ‘Available’ and
RoomStatus.Date = ‘01/03/2003' and
RoomObj.Price < 119.2)

200 (currency = ‘AUD’) is converted with assisting information in CVMetaData to

119.2 corresponding to the currency used in this data source.

- 129 -

MeDint An Agproach for the integration of Dalabase and Legaoy Systems

MQL to HotelB

SELECT Hotellnfo.Name, Room.Class, Room.Price
FROM Hotellnfo, Room, Status

IN HotelB

CONDITION (Hotellnfo.City = ‘Perth’ and
Hotellnfo.Country = ‘Australia’ and
Status.Status ='A’ and
Status.Date ='01/03/2003' and
Room.Price < 200)

MQL to HotelC

SELECT Hotel.Name, Room.Class, Room.Price
FROM Hotel, Room, Status

IN HotelC

CONDITION (Hotel.City = 'Perth’ and
Hotel.Country = '‘Australia’ and
Status. Status = Ay and

Room. Price < 200)

Creating a Pre-defined Template Process

By TemplCreate(4), QTA also prepares a template in MDRS format

(Hotellnfo.Name, Roominfo.Class, Roominfo.Price (currency="AUD’))
Query Translation Processes ;

Each subquery will be sent to the QTP of its associated wrapper for query translation

which is performed by the SOQLGen(y), OQLGen(y), or XQLGen(y).

OQL to HotelA

SELECT HotelObj.Name, RoomObj.Class_Type.RoomClass, RoomObj.Price
FROM HotelObj, RoomObj, RoomStatus

WHERE (HotelObj.Address.City = ‘Perth’ and

HotelObj.Address.Country = ‘Australia’ and
RoomStatus.Status = ‘Available’ and
RoomStatus.Date = ‘01/03/2003’ and
RoomObj.Price < 119.2)

- 130 -

MeDint: An Approach for the Int ation of Dalibase and Legaey Systerms

SQL to HotelB

SELECT Hotellnfo.Name, Room.Price
FROM Hotellnfo, Room, Status
WHERE (Hotellnfo.City = ‘Perth’ and

Hotellnfo.Country = ‘Australia’ and
Status.Status = ‘A’ and

Status.Date ='01/03/2003' and
Room.Price < 200 and

(Hotelinfo.Name = Room.HotelName and
Room.HotelName = Status.HotelName and
Room.Number = Status.Room))

For a pair of related objects declared on a query in a relational data model,

relationship statements have to be included in the condition statement.

XQuery to HotelC

o ;!t)
FOR $h IN document(“http://C.com/HotelFiles/Hotel.xmi")//hotel
FOR $r IN document("http://C.com/HotelFiles/room.xmi")//room[hotelname=Sh/name]
FOR $s IN document(“http://C.com/HotelFiles/status xml")//status[hcteiname=5%r hotelname
and room=$r.number]
WHERE ($h/city = ‘Perth’ and
$h/country = ‘Australia and
$s/status = ‘Av’ and
$s/date = ‘01/03/2003' and
$riprice <200 and)
RETURN
<room>
{$h/name}
{$r/price}
</room>
</result>

Data Translation Processes

The subqueries above will be performed by the query processing of the local
database management systems. Then, the query results will be retummed to wrappers.

The DTPs will translate query results which are in disparate models to MDRS:

HotelA

{(*Sheraton Perth Hotel”, “Deluxe”, 102 (currency=USD))}
HotelB

{(“Novotel Langley Perth”, “Standard”, 140.00 (currency=AUD)),
(“Novotel Langley Perth”, “Apartment”, 170.00 (currency=AUD))}

- 131 -

MeDIint An Auproach for the Integration of Database and Legacy Systerms

HotelC

{(“City Stay Apartments”, “Standard”, 106.00 (currency=AUD))}

However, the results still cannot be integrated because they are still in different

contexts.
Applying MDRS Results to the Pre-defined Template Process

The result from Hotel Chain A still needs the conflict resolving process ApplTemp(p,
7, 6) to be performed by CRA to apply the result corresponding to the predefined

template. CVMetaData provides currency conversion information.

(Hotellnfo.Name, Roominfo.Class, Roominfo.Price (currency="AUD’))

HotelA

{("Sheraton Perth Hotel”, “Deluxe”, 171.14 (currency=AUD))}

Integrating the Mediated Data Representation Structure Process

Now all query result can be integrated by CP using the union operator.

{(“Sheraton Perth Hotel”, “Deluxe”, 171.14 (currency=AUD)),
(“Novotel Langley Perth”, “Standard”, 140.00 (currency=AUD)),
(“Novotel Langley Perth”, “Apartment”, 170.00 (currency=AUD))
(“City Stay Apartments”, “Standard”, 106.00 (currency=AUD))}

Generating the Integrated Result Process

Finally, RA can present the integrated query result to users as shown in Table 8.2.

TABLE 8.2 INTEGRATED RESULT OF TEST PROBLEM 1

Hotellnfo.Name Roominfo.Class Roominfo.Price

(currency="AUD’)
Sheraton Perth Hotel Deluxe 171.14
Novotel Langley Perth Standard 140.00
Novotel Langley Perth Apartment 170.00
City Stay Apartments Standard 106.00

- 132 -

MeDint, An Avproach for the Integration of Doltabase and Legaay Systerns

From this example, the following heterogeneities (Table 8.3) have been resolved:

TABLE 8.3 HETEROGENEITIES IN THE TEST PROBLEM 1

Heterogeneities | Conflicts HotelA HotelB HotelC
Model Relational Object Legacy
Schema Naming RoomStatus, RoomNumber
Structural Address, Location, Class
Semantic Scaling currency="USD’ | currency="AUD’ | currency="AUD’
Representation RoomStatus

8.1.2 Test Problem 2 — University Information System

This sample is a university information system which is composed of a relational
system namely UnivDB (Figure 8.2 and 8.3)and an object-oriented system
CampusDB (Figure 8.4).

Enroll

FIGURE 8.2 THE UNIVDB ENTITY RELATIONSHIP DIAGRAM

- 133 -

MeRint: An Approacth o the Integration of Dalabase and Legacy Systems

om
—
frame
hamo
address
tel_no
=i
.|—I.
FIGURE 8.3 THE UNIVDB'S RELATIONSHIP
Book

FIGURE 8.4 THE CAMPUSDB'S ENTITY RELATIONSHIP DIAGRAM

From this example, all three categories of heterogeneities have occurred.

Firstly, UnivDB is a relational data model, while CampusDB is an object data model
(see Appendix E and F for data definitions); this causes a Data Model
Heterogeneity.

Secondly, there is a Structural conflict in the Schematic Heterogeneity category
which has been caused by using different structures to represent the same real-world

object in both data sources. For example, in UnivDB, Staff and Student objects have

- 134 -

Malinh An Auprocaon for the Integration of Database and Legaoy Svsterns

their own attributes, relationships and key, while in CampusDB, Staff and Student are
subtypes of Person. It means that Staff and Student share some equivalent
characteristics. Lecturer is another object defined in CampusDB as a subtype or a
specialisation of Staff. Furthermore, one to many and many to many relationships are
normally represented differently in a relational model than from an object model
which is able to distinguish between EnrolRec, LoanRec, Prerequisite, Lecture, and
Author in UnivDB, and Student. Enrol, Book.loanby, Course. hasprerequisite,
Lecturer.Lecture, and Book.author in CampusDB. There are also conflicts from
using the structure data type struct in the object data model to amalgamate many
attributes, for example, name has been defined as struct<string fname, string

Iname>. This falls into the Attribute-attribute conflicts in structural conflicts.

Finally, a number of Semantic Heterogeneities occur between both sources. Student
level in UnivDB is represented by {P, U}, but in CampusDB it is represented by
{postgrad, undergrad}; this causes a Representation conflict. Staff salary in UnivDB
is quoted in US dollars, but in CampusDB is quoted in Australian dollars; this causes

a Scaling conflict.

8.2.2.1 Query 1

The first query example is a request for the id and name of postgraduate students
who enrol in ‘CSP1143’ from both DS/ and DS2.

SELECT Student.id, Student.name
FROM Student, Unit
IN DS1, DS2

CONDITION Unit.id = ‘CSP1143" and
Student.level="postgrad”;

- 135 -

MeDint An Agproach for the Integration of Daotabase and Legaay Sy

In this example, the following heterogeneities (Table 8.4) have been resolved:

TABLE 8.4 HETEROGENEITIES IN THE QUERY 1 OF TEST PROBLEM 2

Heterogeneities Conflicte UniDB CampusDB

Model Relational Object

Schema Entity-entity Unit Course
Attribute-attribute Unit.id Course.code
Structural Fname, Iname Name
Specialisation Student.Person

Semantic Naming D(level)={U,P} I D(level)={postgrad, undergrad}

All have been solved by the MeDInt Mediator and wrappers algorithms. The entire
integration process is mostly the same as the previous example problem but only
some details are different because of the distinction of conflict types. The details of

the integration process are presented in Appendix J.

8.2.2.2 Query 2

A user may want to get the id and yearly salary of staff who earns less than 50,000
AUDS from UnivDB(DS1) and CampusDDB(DS2). This query initiates conflicts

which are different from the first query.

Select Staff.id, Staff.salary(currency="AUD”, period="yearly")
From Staff

In DSt1, DS2

Condition Staff.salary(currency="AUD", period="yearly") < 50000;

In this query example, a Scaling conflict is added. The submitted query needs yearly
salary information from UnivDB and CampusDB in Australian dollars, but in the data
sources registered information in DSMetaData, the currency using in CampusDB is
US dollars and salary is quoted on a monthly basis in UnivDB. Therefore, the
condition in the query submitted to CampusDB has to be converted to US dollars and
then after getting the result from CampusDB, again the result in US dollars has to be
converted back into Australian dollars. Moreover, the query submitted to UnivDB
has to be transformed into a monthly basis to compare to data in the source, and the

result has to be converted back into a yearly basis by the query requested.

- 136 -

MeDint: An Alproach for the Integration of Datavase and Legaay Systems

In this example, the following heterogeneities (Table 8.5) have been resolved:

TABLE 8.5 HETEROGENEITIES IN THE QUERY 2 OF TEST PROBLEM 2

Heterogeneities Conflicts UniDB CampusDB
Model Relational Object
Schema Specialisation Staff Staff.Person
Semantic Scaling currency="AUD’ currency="USD’
Abstraction Period="monthly’ period="yearly’

All have been solved by the Mediator and wrappers algorithms. The details of the

integration process are presented in Appendix J.

8.2 Summary

By applying the MeDInt architecture to a number of information systems, the
correctness of the integration results are shown in the previous section. Different sets

of conflicts have been resolved (Table 8.6).

TABLE 8.6 SUMMARY OF THE HETEROGENEITIES RESOLVED BY THE MEDINT ARCHITECTURE IN EACH EXAMP! &=

Heterogeneities Conflicts Test Problem1 Test Problem2
Query 1 Query 2

Model v v
Schema Naming v

Structural v v

Specialisation v v

Relationship v
Semantic Naming v

Scaling v

Abstraction

Representation v

The result from the integration process can be described in terms of conflict

resolutions and functionality as follows:

- 137 -

Mebint An Auproach for the Intsgration of Dolabase and Legaoy Systerms

8.2.1 Conflict Resolution In MeDInt

Conflicts between heterogeneous data sources in this study are classified into three
major types which are Data Model Heterogeneity, Schematic Heterogeneity, and
Semantic Heterogeneity. The previous evaluation shows that these three category

conflicts can be removed successively and correctly.
Data Model Heterogeneity

From the example problems, component data sources of which some are relational
data models, some are object-oriented data modes, and others are legacy file
processing systems pose Data Model Heterogeneities. In MeDint, the Mediated Data
Model (MDM) consisting of the Mediated Data Definition Language (MDDL), the
Mediated Query Language (MQL), and the Mediated Data Representation Structure
(MDRS) have been employed to create a common data model to be used in
communicating between the Me Dint Mediator components and wrappers. The
problems of local data sources using different data definition languages can be
solved by translation into MDDL by wrappers. The mediator components make uses
of MDDL. Similar to the problem of different data manipulation languages, MQL is
used when decomposing a user query into subqueries, before the wrappers translate

these subqueries to the query language used in each data source.
Schematic Heterogeneity

Schema Heterogeneities in the example problems occur when the structures of same
real-world objects have been defined differently in their component data sources.
They are classified into Naming conflicts, Structural conflicts,
Generalisation/Specialisation conflicts, and Relationship conflicts. They are solved
by the assistance of mapping and constraint information defined in OMMetaData and

AMMetaData.
Semantic Heterogeneity

Semantic Heterogeneities occur when the data in component data sources have been

represented differently. These Naming conflicts and Representation conflicts are

- 138 -

MeDint: An Avproach for ihe intsgration of Database and Legaay Systems

solved by TSMetaData. Scaling conflicts and Level of Abstraction conflicts are
solved by the extended dimension of the Mediated Data Model in conjunction with
CVMetaData. Heterogeneities resolved in the example problems are summarised in

Table 8.7.

TABLE 8.7 SUMMARY OF THE HETEROGENEITIES RESOLVED BY THE COMPONENTS OF THE MEDINT

ARCHITECTURE
Resolved Heterogeneities
by Data Model Schema Semantic
MDM v v
OMMetaData v
AMMetaData v
TSMetaData v
CVMetaData ' v

8.2.2 The Integration Functions of the MeDInt Components

In terms of functionality, the MeDInt architecture is mainly separated into two parts
which are facilitation and translation. The function of facilitation is performed by the
MeDint Mediator which has been designed especially for homogenising
heterogeneities both on users’ queries and on query results. Wrappers are created for
the translation purpose including schema definition, query and data translation. The

MeDInt component functionalities are shown in Table 8.8.

TABLE 8.8 SUMMARY OF THE FUNCTIONS OF THE MEDINT COMPONENTS

Functions Mediator Wrapper
RA | QTA | MMD | CRA CP STP | QTP | DTP

Data sources autonomy v Y
information

Data sources’ schema v
definitions translation

Query decomposition and v v
translation

Data Translation v

Conflict Resolution v v

Data Consolidation v

- 139 -

MalInt: An Agproach for the Integration of Dotabose and Legacy Systems

CHAPTER 9 - DISCUSSION AND
CONCLUTION

Many organisations have put much effort to deal with information scattering from
multiple data sources with the aim of providing a unique view of the information. A
number of heterogeneities can arise from platform, database and data levels. At
database and data levels, there are Data Model, Schematic, and Semantic
Heterogeneities that need to be solved. Several integration techniques have been
presented such as global schema, federated database, multidatabase approaches and
so on. However, some of them are suitable for particular data models, some do not

support legacy file repositories, and some generate problems in dynamic systems.

This research introduces a framework called the Mediated Data Integration
(MeDint) architecture based on the mediation approach and incorporating with
wrappers and a semantic-rich data model, the Mediated Data Model (MDM), to
resolve the problems of integrating heterogeneous data sources. MDM enriches the
MeDInt architecture to capture different semantic contexts from data sources. No
pre-integration is required before users issue their queries thus avoiding the problem
of local schema evolution in dynamic systems. Furthermore, instead of schema and
semantic integration, the pre-defined template in collaboration with the mediator
components provides the query result consolidation without global schema

integration.

This chapter presents the discussion of the MeDInt architecture, thesis contribution,

limitations and future research directions.

- 140 -

<

MaDint An Aoproaeh f

or the Integration of Dotabase and Legacy Systems

9.1 Discussion

From the review and extensive investigation, it has been found that heterogeneities,
which are the major problem of heterogeneous data integration, can be classified into
three categories: Data Model Heterogeneities, Schematic Heterogeneities, and

Semantic Heterogeneities.

Data Model Heterogeneities exist when different data models are used to describe
component data sources. This includes the use of different data definition languages
to describe component schemas and the use of different data manipulation languages
to describe user queries. Schematic Heterogeneities can be found at the schema level
of component data sources when different structures are used to represent the same
concept. In addition, they can result from different data model characteristics and/or
design autonomy. Semantic Heterogeneities are found at the data level when the
same set of data is represented in different terminologies or different contexts. A
number of efforts have been introduced to resolve heterogeneities, for example,
mapping techniques, schema translation, meta-data repositories, join methods,
homogenising, the Object Exchange Model (OEM), semantic specification,

superclasses, and so on.

Several integration approaches have been introduced to interoperate heterogeneous
data sources and to resolve the heterogeneities. The global schema approach is a
fully-integrated approach or tightly-coupled approach. The component schemas are
integrated by a single view. The federated database approach can be tightly- or
loosely- coupled. More than one federated schema is created by users or
administrators. The multidatabase approach is more loosely-coupled by providing a
multi-database manipulation language as a query tool to communicate with
component databases. However, each approach has some limitations, for example,
the global schema and multidatabase approaches cannot be served by legacy file
processing systems, the global schema and federated schemas have to be recreated in

dynamic systems when component schemas changed, and so on.

This research investigates the design of an approach to logically integrate database

and legacy file processing systems and to resolve the three previously classified

- 141 -

MeDint: An Agproach for the Integration of Database and Legaay Systerms

heterogeneities. The integration and conflict resolution processes should be
transparent to users when they issue the queries. One of the major concerns is the
component schema evolution should not affect the integration or lead to a large
number of consequent modifications. The research finally introduces the MeDint
architecture based on the mediation approach as a solution to logically integrating
heterogeneous data sources. It is the middle layer between clients and multiple data
sources. It encompasses three major components: the MeDInt Mediator, MDM, and
wrappers. The MeDInt architecture can be explained based on the conceptual level
of the ANSI/SPARC architecture.

The MeDInt Mediator is in-between the clients and the wrappers. It has been
designed to overcome Schema and Semantic Heterogeneity issues. It functions as an
agent homogenising conflicts in both directions. In the client-to-source direction, it
decomposes user queries according to the schemas and semantic contexts of
component data sources. In the source-to-client direction, it homogenises results
which are schematic and semantic differences to have the same structure and context
as the pre-definced template. The MeDInt has »ix components. The Registciiig
Processor (RP) captures component data source, object, attribute and constraint
information to the MeDInt MetaData (MMD). MMD consists of the Object Mapping
MetaData (OMMetaData), the Attribute Mapping MetaData (AMMetaData), the
Thesaurus MetaData (TSMetaData), and the Conversion MetaData (CVMetaData).
The Query Transformation Agent (QTA) decomposes and transforms the query to
subqueries in the same context as the target data sources. The Conflict Resolution
Agent (CRA) resolves the conflicts by homogenising query results corresponding to
the pre-defined template. The Consolidation Processor (CP) merges conflict-resolved
results from multiple data sources. The Rendering Agent (RA) finally generates the

integrated results to display to users.

MDM is developed to be a common data model used in the MeDInt Mediator for
solving Data Model Heterogeneities. MDM characteristics are derived from the
object data model. However, it adds the third dimension to the two dimensions of the
relation data model to represent semantic contexts. Therefore, it is not only a general

data model which just describes the structure of data sources, but it is also capable of

- 142 -

MeDint An Agproach for the Integration of Dotabase ond Legacy Systems

depicting and representing heterogeneous data models schematically and
semantically. MDM consists of the Mediated Data Definition Language (MDDL),
the Mediated Query Language (MQL), and the Mediated Data Representation
Structure (MDRS). The Mediated Data Definition Language (MDDL) is able to
express schemas of different data models semantically. The Mediated Query
language (MQL) is a semantic query language by which users can specify the query
with the context if the data in component sources are represented in different
contexts. The Mediated Data Representation Structure (MDRS) presents data with its

contexts in order to be consolidated correctly.

Wrappers overcome Data Model Heterogeneities including different data definition
language and data manipulation language issues. They function as translators
interpreting different schemas, queries, and data from/to MDM. Component schemas
are translated by Schema Translation Processors (STPs). User queries are translated
by Query Translation Processors (QTPs). Results are translated by Data Translation
Processors (DTPs). In this research, wrappers are prosided for relational data
models, object data iisacls, and legacy file systenis. Cacii of them includes an STP,

QTP, and a DTP.

In summary, Data Model Heterogeneities covering different data definition
languages and data manipulation languages can be overcome by the Mediated Data
Model (MDM) incorporating wrappers. Schema Heterogeneities can be resolved
with the assistance of mapping information and constraint information defined in
OMMetaData and AMMetaData. Semantic Heterogeneities are resolved by
TSMetaData, CVMetaData, and the extended dimension of MDM.

On resolving the Schematic heterogeneities, one of the strengths of the MeDInt
architecture is that on the integration process, it neither tries to force component
schemas to create a global schema, nor integrates them directly, but only query
results are consolidated. This does not violate original schemas. Furthermore, this
avoids pre- and full-integration and therefore can solve the problem of schema
changing in dynamic systems. In addition to the semantic conflict resolution process,

the Semantic Heterogeneities are not solved directly, but each result from the

- 143 -

MeDint An Agpproaeh for the Integration of Daotabase and Legacy Systems

component data sources will be transformed to have the same format as the pre-

defined template.

The MeDint architecture can be described as partial automation. Conflict resolution
processes are transparent to users. Only the pre-registered process needs to be done
at the beginning or when a new data source is added to the integration system. This
task is done by RP in cooperation with MMD. These help users in minimising the
complexity of the query processes by which the users do not have to find out where

data sources are, what conflicts exist, and how to resolve them.

Compared to other dynamic integration systems, in terms of minimisation, this
method is applied to get only query-associated object schema definitions in order to
decompose and transform a query. This shows efficient performance especially in
medium- or large-sized organisations which involve a number of data sources and/or
a large number of entities, because most of the queries just require information from
a small portion of the entire information of an organisation. However, for small-sized
organisations, the method can be changed to get all object schemas once which is

less complicated and is a subset of this architecture.

In relation to usability, MQL, an extension of SQL which is familiar to users, allows
users to specify their own queries. The semantic contexts can be specified on the
projection and restriction parts of MQL. In terms of scalability and flexibility, when
a new data source is added to the integration system and uses the same data model as
the pre-registered data sources, only the registering process is required. However, if a
new data source with data model heterogeneities is added, a new wrapper is also
required. The integration system therefore requires only minimised modifications

with the addition or removal of data sources.

MMD is implemented using the eXtensible Markup Language (XML) which is a
W3C’s standard of representing and exchanging structured data. Two examples of
integration systems in Chapter 8 and Appendix J were tested and evaluated. They

show and prove the validity and effectiveness of the MeDInt architecture.

- 144 -

MeaDint An Acproach for the Integ s Database gnd Le

From the specified research goals which focus on investigating an effective approach

to integrating heterogeneous systems, each goal has been achieved:

e Addressing conflicts among heterogeneous database systems;

e Providing conflict resolution;

e Providing the appropriate architecture for achieving the interoperability or
logically integrating of multiple data sources by which schema evolution will not
affect the integration;

e This research covers legacy file processing systems, the relational data model and

the object-oriented data model.

TABLE 9.1 COMPARISON OF MEDINT WITH OTHER INTEGRATION APPROACHES

Global Schema Federated Multi-database MeDInt
Approach Database Language
Approach Approach
Serving schema No. No. Yes Yes
Evolution .
volto Pre-created global Pre-created
schema requires to federated schemas
be recreated require to be
recreatad
Interr=tinn DBA C7A =rusers. Users Aremation
responsioiiity Depend on tightly or
loosely approach
Conflict resolution DBA DBA or users. Users Automation
responsibility Depend on tightly or
" loosely approach
Schema Complicate. Complicate. No. Automation
integration .
process Especially when
many data sources
are involved.
Semantic Complicate. Complicate. Complicate. Automation
integration
process Have to be done Users need to
together with understand all
schema integration component data
process sources thoroughly.
Structural Yes. Yes. No No.
Integration
9 A global schema is Federated schemas Only results are
created. are created. consolidated.
Transparent to Yes Yes/No. No Yes
users
Depend on tightly or
loosely approach
Scalability No Yes
Support legacy file No No No Yes
systems

- 145 -

pMeDint: An Aoproach for the

integr

s of Dotabase and Legaoy Systems

Finally, Table 9.1 shows the comparison of MeDInt with other integration

approaches. The MeDInt is unique in serving dynamic systems whose component

schemas could be changed dramatically. It is a partial automated integration by

which only pre-registration information is required. Neither database administrators

or users are responsible for the integration process and the conflict resolution

process. Such complex processes are transparent to users. In terms of scalability,

only a wrapper is required to be developed when a new data sources from a different

data model is added to the integration system. Furthermore, legacy file processing

systems can be interoperated in the MeDInt architecture.

TABLE 9.2 COMPARISON OF MEDINT WITH OTHER MODELS OF THE MEDIATION APPROACH

TSIMMIS Context Mediator AURORA MeDIint
Techniques Mediator, Global Mediation, Mediation, Mediator,
employ Schema, Object Conversion, Shared Homogenisation, Wrapper,
Exchange Ontologies Integrated view, Semantically-rich
Wrapper data model,
MetaData
Mediation Mediate the Mediate the Mediate the relation Mediate the
technique differences between differenccs L ing using transformation ; differeno. - ising
the integrated view conversion technique the transl::tion
and the underlying and sooatie
views representation
techniques.
Integration Generate the Terminology Creating an Translating the
technique routines for Mapping integrated view queries into the
combining underlying
information by context
reformulating
queries
Data Modelling Object Exchange Information and its N/A MDRS as a data
Model - Hierarchy data environment model to
representation represent data

and its contexts

Query Issuing

Users issue query

Users can define

User issue the query

Users can define

Environment

based on the query by their own based on the query by their
context of the context integrated view own context
mediated global
schema

Data Model Yes N/A N/A Yes
Heterogeneity
Schematic Yes N/A Yes Yes
Heterogeneity
Semantic N/A Yes N/A Yes
Heterogeneity
Support Static Dynamic Static Dynamic
Static/Dynamic
Integration

The comparison of the MeDInt architecture to other mediation architecture is shown

in Table 9.2

- 146 -

MeDInt: An Agproach for the Integration of Database and Legacy Systems

9.2 Thesis Contribution

The contributions of the work presented from this research are:

e presenting a transparent data integration framework based on the mediation and
wrapper approach to homogenise the heterogeneities and to interoperate database
and legacy systems;

¢ introducing a semantically-rich data model, MDM, which is capable of
describing the Schematic and Semantic Heterogeneities of multiple data models;

o finding the shared characteristics of disparate data sources and giving these
integration tasks to the MeDInt Mediator, while the unshared characteristics of
data sources are pushed to wrappers for efficiency;

¢ initiating the idea of design a database management system for which database
administrators can determine the data semantic context freely. This performs well
especially in medium- or large-sized organisations in both keeping tracks of the
large amount of information to be meaningful and interoperating with other data

sources when neo-ed.

9.3 Limitations

1. This architecture focuses on read-only access to the integration.

2. Only SQL and OQL were considered in query translation as representative of
relational and object-oriented query languages respectively. However, for
other query languages, the appropriate algorithm can be developed using the

same concept.

9.4 Future directions

This section provides some recommendations for future research.

1. One of the weaknesses of no pre-integrated schema is that it requires fetching

the component schemas during the query decomposition process. Therefore,

- 147 -

MeDInt: An Approach for the Integration of Database and Leguaey Sysiems

the research can be extended to cover the query performance with the aim of

enhancing the performance of the entire system.

2. The validity of the conflict resolution process still depends on human to
define the correspondences. To enhance the mapping automation, a rule-
based system can be applied to schematic and semantic mappings to reduce -
the manpower required and human errors in the manual mapping process.

This has the benefit of only re-defining some incorrect cases.

3. Dynamic conversions can be extended, for example the currency conversion
factor can use current information from the Internet to reduce the time spent

on maintenance.

4. The interception of different legacy systems could be investigated to create a
template from their common points for generating wrappers in order to avoid

creating everything from scratch.

5. Because this rescarch: focnses on read-only access fo i

infecration, the
architecture can be extended to read-write access with careful consideration
of the consistency aspect by updating to master data sources and

appropriately propagating to replicating data sources.

6. Interms ofincreasing user friendliness, a graphical user interface could be
developed to draw component schemas and contexts to simplify the query

specification.

9.5 Conclusion

Generally, multiple and heterogeneous data sources are used to serve an organisation
for different operational purposes. Depending on the management perspectives,
related information should be interoperated to provide the unique concept to enhance
decision making. To do this, some critical problems occur, for example, how to
integrate data sources which have different data models, how to solve the problem

when the structure of data sources is designed differently, how to solve the problem

- 148 -

MaDIint A Acproach tor the Integration of Database and Legacy Svstarnms

of different terminologies or different contexts. From the existing integration
approaches, a number of obstacles have been found, for example, the effect from
component schema evolution. The research questions have been directed towards

meeting the integration system requirements.

MeDInt is a mediation-wrapper approach presented as a framework to interoperate
heterogeneous data sources. It has been designed based on the functional, divide and
conquer, top-down approach. The MeDInt Mediator incorporates wrappers and
MDM, a semantic data model, to accomplish the integration requirements and
resolve the heterogeneities which are categorised in this research into Data Model
Heterogeneities, Schematic Heterogeneities, and Semantic Heterogeneities. By the
design, the shared-characteristics of the integration processes are assigned to the
MeDInt Mediator while the unshared-characteristics which are the differences in
data models are assigned to wrappers. The MeDInt Mediator deals with
homogenising tasks including getting component schema definitions into MDDL,
do- snposing and transforming uscr queii s into MQL subqueries o7 ™ oot
cuiicopuilding to the data source coiiexis, upplying MDRS resulis to tic i - -delined
template to resolve Schematic and Semantic Heterogeneities, and finally
consolidating conflict-resolved results. These show that the MeDInt Mediator
principally functions as a conflict-broker of all data sources resolving the three
previously-classified heterogeneities with the assistance of wrappers which are
designed to be translators. Each of them translates schema definitions, query
languages, and results between the data model of a data source and MDM. This
reduces the complexity of dealing with several data models at the same time during
the integration process by taking the advantage of using a unique data model, MDM.
It is capable of describing the component data models schematically and
semantically through the extended third-dimension which is responsible for capturing

semantic contexts.

The information systems including object-oriented data sources, relational data
sources, and legacy file processing data sources have been tested and evaluated. The
results show the validity and effectiveness of the approach. The complex processes

of query decomposition, query transformation, query translation, data translation,

- 149 -

MaDint An Approach for the Integration of Doltabose and Legaoy Svsierms

conflict resolution, and data consolidation have been made transparent to users. The
component schema definitions are gathered after users issue the queries, thus the
problem of schema evolution can be solved. The query therefore gets the latest
component schema update. In addition, no schema is integrated, but only results are
consolidated. Human interaction is required only in the data source registration phase

when a new data source of a different data model is added to the integration system.

- 150 -

MebDInt: An Approach for the Intsgrotion of Database and Legaoy Sysiems

REFERENCES

Abdalla, K. (1998). A new approach to the integration of heterogeneous databases
and information systems. Unpublished doctoral dissertation, University of
Miami, Florida.

Aronica, R. C., & Rimel, D. E. (1996). Wrapper your legacy systems. Datamation,
42(12), 83-88.

Batini, C., Lenzerini, M., & Navathe, S. B. (1986). A comparative analysis of
methodologies for database schema integration. AC M Computing Surveys,
18(4), 323-364.

Ben-Natan, R. (1995). CORBA: a guide to common object request broker
architecture. New York, USA: McGraw-Hill.

Benyon, D. (1997). Information and data modelling (2nd ed.). England: McGraw-
Hill.

Bertino, E., Catania, 3., oo Zaii, G Po(2001). il 0 icclase systems. Brital:
ACM Press.

Blaha, M., & Premerlani, W. (1998). Object-oriented modeling and design for
database applications. New Jersey, USA: Prentice-Hall.

Bolloju, N. (1996). Semantic query transformation: an approach to achieve semantic
interoperability in homogeneous application domains. In T.-Y. Cheung, J.
Fong & B. Siu (Eds.), Database Reengineering and Interoperability. New
York, USA: Plenum Press.

Bouguettaya, A., Benatallah, B., & Elmagarmid, A. (1999). An overview of
multidatabase systems: past and present. In A. Elmagarmid, M. Rusinkiewicz
& A. Sheth (Eds.), Management of heterogeneous and autonomous database
systems (pp. 1-32). San Francisco, California, USA: Morgan Kaufmann
Publishers.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., & Maler, E. (2000, August 14).
Extensible Markup Language (XML) 1.0. Retrieved August 15, 2000, from
http://www.w3.0org/TR/2000/WD-xml-2e-20000814

Bright, M. W., Hurson, A. R., & Pakzad, S. (1994). Automated resolution of
semantic heterogeneity in multidatabases. ACM Transactions on Database
Systems, 19(2), 212-253.

- 1581 -

MeDint An Agprogach for the Integration of Dalabase and Legaoy Systems

Bright, M. W., Hurson, A. R., & Pakzad, S. H. (1992). A taxonomy and current
issues in multidatabase systems. Computer, 25(3), 50-59.

Cattel, R. G. G., & Barry, D. K. (Eds.). (2000). The object data standard: ODMG
3.0. California, USA: Academic Press.

Chang, Y.-H., & Raschid, L. (1996). Using parameterized canonical representations
to resolve conflicts and achieve interoperability between relational and object
databases. In T.-Y. Cheung, J. Fong & B. Siu (Eds.), Database Reengineering
and Interoperability. New York, USA: Plenum Press.

Chirathamjaree, C., & Mukviboonchai, S. (2002a, 8-9 August). A Mediated Data
Model for Heterogeneous Data Integration. Paper presented at the 2nd

Annual International Conference on Computer and Information Science (ICIS
'02), Seoul, Korea.

Chirathamjaree, C., & Mukviboonchai, S. (2002b, 28-31 October). The Mediated
Integration Architecture for Heterogeneous Data Integration. Paper
presented at the 17th IEEE Region 10 International Conference on

Computers, Communications, Control and Power Engineering (IEEE
TENCON'02), Beijing, CHINA.

Codd, E. F. (1970). A relationnl model of data for large sharcdd data hanks.
Communications of the ACAL, 13(6), 377-387.

Codd, E. F. (1979). Extending thc database relational model to capture more
meaning. ACM Transactions on Database Systems, 4(4), 397-434.

ComputerUser.com Inc. (2000). High-tech dictionary. Retrieved May 11, 2000, from
http://www.currents.net/resources/dictionary/noframes/index.html

Conrad, S., Hasselbring, W., Hohenstien, U., Kutsche, R., Roantree, M., Saake, G.,
et al. (1999). Engineering Federated Information Systems (EFIS '99
Workshop Report). SIGMOD Record, 28(3).

Critchlow, T. (1997). Schema coercion: using database meta-information to
facilitate data transfer. Unpublished doctoral dissertation, University of Utah.

Critchlow, T., Ganesh, M., & Musick, R. (1998, August). Meta-data based mediator
generation. Paper presented at the Proceedings of the Third IFCIS

Conference on Cooperative Information Systems (CoopIS'98), New York,
USA.

CrossAccess Corporation. (2001). Completing the enterprise integration strategy:
data integration for e-business in search of speed, scale and sco pe (white
paper). Santa, Clara, California, USA.

Date, C. J. (1990). An introduction to database systems (5th ed. Vol. 1). USA:
Addison-Wesley Publishing.

- 152 -

MebDint An Avproach for the Infegrotion of Dotabase ond Legaoy Systems

Distributed Management Group. (n.d.). Distributed object computing with CORBA.
Retrieved March 22, 2000, from
http://www.infosys.tuwien.ac.at/Research/Corba/

Domenig, R., & Dittrich, K. R. (2000, November). A query based approach for
integrating heterogeneous data sources. Paper presented at the Proceedings

of the Ninth International Conference on Information and Knowledge
Management (CIKM"2000), Washington DC, USA.

Goh, C. H,, Bressan, S., Madnick, S., & Siegel, M. (1999). Context interchange: new
features and formalisms for the intelligent integration. ACM Transactions on
Information Systems, 17(3), 270-293.

Goh, C. H., Madnick, S. E., & Siegal, M. D. (1994, 29 November - 2 December).
Context interchange: overcoming the challenges of large-scale interoperable
database systems in a dynamic environment. Paper presented at the

Proceedings of the Third International Conference on Information and
Knowledge Management (CIKM'94), Gaithersburg, Maryland, USA.

Goldfarb, C. F., & Prescod, P. (2000). The XML handbook (2nd ed.). New Jersey:
Prentice-Hall. '

Grav P. M. D.. Kulkarni, K. G., & Paton. N. W (1992). Object-oriented drtahases:
¢ weinaiic data model approacii. s Prentice-Hall Internation (0w

Hammer, J. (1999). The information integration wizard (IWiz) project (rcport on
work in progress No. TR99-019): Department of Computer and Information
Science & Engineering, University of Florida.

Hammer, M., & McLeod, D. (1981). Database description with SDM: a semantic
database model. ACM Transactions on Database Systems, 6(3), 351-386.

Heiler, S., Miller, R. J., & Ventrone, V. (1996, April). Using metadata to address
problems of semantic interoperability in large object systems. Paper
presented at the Proceedings of the First IEEE Metadata Conference, Silver
Spring, Maryland, USA.

Heimbigner, D., & Mcleod, D. (1989). A federated architecture for information
management. In A. Gupta (Ed.), Integration of information systems: bridging
heterogeneous databases (pp. 46-71). New York, USA: IEEE Press.

Hirschheim, R., Klein, H. K., & Lyytinen, D. (1995). Information systems
development and data modelling: conceptual and philosophical foundations.
Britain: Cambridge University Press.

Holowczak, R. D., & Li, W. S. (1996, April). A survey on attribute correspondence
and heterogeneity metadata representation. Paper presented at the
Proceedings of the First IEEE Metadata Conference, Silver Spring, Maryland,
USA.

- 153 -

MaDint: An Agproaceh for the Integration of Dolabase and Legaay Svysterns

Howe, D. (1999). The free on-line dictionary of computing. Retrieved May 10, 2000,
from http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?IMS

Hughes, J. G. (1991). Object-oriented databases. New York, USA: Prentice-Hall.

Hurson, A. R., & Bright, M. W. (1996). Object-oriented multidatabase systems. In O.
A. Bukhres & A. K. Elmagrarmid (Eds.), Object-oriented multidatabase

systems: a solution for advanced application. New Jersey, USA: Prentice-
Hall.

Internet.com Corp. (2000, Aug. 11, 1997). Webopedia: the number one encyclopedia
dedicated to computer technology. Retrieved 10 May, 2000, from
http://webopedia.internet.com/TERM/e/enterprise.html],

ISO/IEC. (1996). Information technology - Syntactic Metalanguage - Extended BNF,
ISO/IEC 14977, from http://www .cl.cam.ac.uk/~mgk25/iso-14977.pdf

ISO/IEC/TC JTC 1. (2002, 6 September). Information technology - Metadata
registries - part 1. framework. Retrieved October 8, 2002, from
http://www.sdct.itl.nist.gov/~ftp/18/11179/11179-1.htm

Jakobovits, R. (1997). Integrating autonomous heterogeneous data sources (report
No. TR-97-12-05): Department of Comnuter Science Engineering, Universitv
of W't

Kapitskaia, ®., Tomasic, A., & Valduriez, P. (1997). Dealing with discre pancics in
wrapper functionality (Technical Report No. RR-3138): INRIA.

Kim, W. (1995). Modern database systems: the object model, interoperability, and
beyond. New York, USA: ACM Press.

Kim, W, Choi, 1., Gala, I., & Scheevel, M. (1993). On resolving schematic
heterogeneity in multidatabase systems. Journal of Distributed and Parallel
Database, 1(3), 251-279.

Kim, W., & Seo, J. (1991). Classifying schematic and data heterogeneity in
multidatabase systems. Computer, 24(12), 12-18.

Kroenke, D. M. (2002). Database processing: fundamentals, design &
implementation (8th ed.). New Jersey, USA: Prentice Hall.

Li, C., Yerneni, R., Vassalos, V., Garcia-Molina, H., Papakonstantinou, Y., Ullman,
J., et al. (1998, June). Capability based mediation in TSIMMIS. Paper
presented at the Proceedings of ACM SIGMOD International Conference on
Management of Data (SIGMOD'98), Seattle, Washington, USA.

Lu, H. (1998). 4 data mining approach for resolving conflicts during data
integration. Retrieved October 18, 1999, from
http://www.comp.polyu.edu.hk/News/Seminars/sem980917.huml

- 154 -

MebDint: An Avproach for the Infegration of Dotabase gnd Legaoy Systems

Lu, H., Fan, W., Goh, C. H., Madnick, S. E., & Cheung, D. W. (1997, October).
Discovering and reconciling semantic conflicts: a data mining perspective.
Paper presented at the IFIP Working Conference on Data Semantics (DS-7),
Switzerland.

Matena, V., & Hapner, M. (1999, December 17). Enterprise JavaBeans™
specification, vi.1. Retrieved March 28, 2000, from
http://www.javasoft.com/products/ejb/docs.html

McBrien, P., & Poulovassilis, A. (2001, June). 4 semantic approach to integrating
XML and structured data sources. Paper presented at the Proceedings of the .
13th International Conference on Advanced Information Systems
Engineering (CAiSE 2001), Interlaken, Switzerland.

Miller, R. J. (1998, June). Using schematically heterogeneous structures. Paper
presented at the Proceedings of ACM SIGMOD International Conference on
Management of Data (SIGMOD'98), Seattle, Washington, USA.

Morgenstern, M. (1997, September). Metadata for heterogeneous databases. Paper .
presented at the Second TEEE Metadata Conference, Silver Springs,
Maryland, USA.

Morrison, M., Boumph-y, T . & Brownell, D. (2000Y Y] yileashed. Indiana,
USA: Sams uiiis oo

Mowbray, T. J., & Zahavi, R. (1995). The essential C@®31.4. Canada: John Wiley &
Sons.

Mukviboonchai, S., & Chirathamjaree, C. (2001a, 1-5 July). XMint: an mediated
integration model. Paper presented at the Eleventh Annual International
Symposium of the International Council On Systems Engineering (INCOSE
2001), Melbourne, Australia.

Mukviboonchai, S., & Chirathamjaree, C. (2001b, 22-25 July). An XML based
approach for the integration of database and legacy systems. Paper presented

at the Sth World Multi-Conference on Systemics, Cybernetics, and
Informatics (SCI12001), Orlando, FL.

NCITS. (1999). American national standard dictionary for information technology
(ANSDIT). Retrieved March 22, 2000, from
http://www .x3.org/tc home/kShtm/WD.htm

Neild, T. H. (1999). The virtual data integrator: an object-oriented mediator for
heterogeneous database integration. Unpublished doctoral dissertation,
Northwestern University.

Newton, J. (1996, April). Application of metadata standards. Paper presented at the
Proceedings of the First IEEE Metadata Conference, Silver Spring, Maryland,
USA.

- 155 -

MeDint An Approach for the Integration of Dotabase and Legaoy Svstems

OMG. (2001, February). The common object request broker: architecture and
specification. Retrieved June 5, 2001, from
ftp://ftp.omg.org/pub/docs/formal/01-02-01.pdf

Papakonstantinou, Y., Garcia-Molina, H., & Widom, J. (1995, March). Object
exchange across heterogeneous information sources. Paper presented at the

Proceedings of the Eleventh International Conference on Data Engineering
(ICDE'95), Taipei, Taiwan.

Phijaisanit, W. (1997). Dynamic meta-data support for information integration and
sharing across heterogeneous databases (federated database). Unpublished
doctoral dissertation, George Mason University.

Potter, W. D., Trueblood, R. P., & Eastman, C. M. (1989). Hyper-semantic data
modeling. Data & Knowledge Engineering, 4, 69-90.

Rao, B. R. (1994). Object-oriented databases: technology, applications, and
products. Singapore: McGraw-Hill.

Reddy, M. P., Prasad, B. E., & Reddy, P. G. (1989). Query processing in
heterogeneous distribute database management systems. In A. Gupta (Ed.),

Integration of information systems. bridging heterogeneous databases. New
York, USA: TEEE Prec«

Rt M. T., Arya, M., Haas, L., Carov, M., Cody, W., Fagin, R, <t 21 (1996, June).
The Garlic project. Paper presented at the Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data (SIGMOD'96),
Montreal, Quebec, Canada.

Roth, M. T., & Schwarz, P. (1997, August). A wrapper architecture for legacy data
sources. Paper presented at the Proceedings of 23rd International Conference
on Very Large Data Bases (VLDB'97), Athens, Greece.

Rumbaugh, J,, Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991). Object-
oriented modeling and design. New Jersey, USA: Prentice Hall.

Scallan, T. (1999). Assuring reliability of enterprise JavaBean applications.
Retrieved March 15, 2000, from www.segue.com

Schonhoff, M., Stréssler, M., & Dittrich, K. R. (1997, June). Data integration in
engineering environments. Paper presented at the Proceedings of the

International Conference on Advanced information Systems Engineering
(CAiSE'97) Workshop, Barcelona, Spain.

Sciore, E., Siegal, M., & Rosenthal, A. (1994). Using semantic values to facilitate
interoperability among heterogeneous information systems. ACM
Transactions on Database Systems, 19(2), 254-290.

Scowen, R. S. (1998, 17 September). Extended BNF - a generic base standard, from
http://www.cl.cam.ac.uk/~mgk25/iso-14977-paper.pdf

- 156 -

MeDint: Ar Aoproach for the Integiation of Database and Legacy Systems

Segue Software. (n.d.). A CORBA primer. Retrieved March 14, 2000, from
www.omg.org/library/whitepapers.html

Seligman, L., & Rosenthal, A. (1996, April). A metadata resource to promote data
integration. Paper presented at the Proceedings of the First IEEE Metadata
Conference, Silver Spring, Maryland, USA.

Sheth, A. P., & Larson, J. A. (1990). Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Computing
Surveys, 22(3).

Shipman, D. W. (1981). The functional datamodel and the data language DAPLEX.
ACM Transactions on Database Systems, 6(1), 140-173.

Srinivasan, U. (1997). A4 framework for conceptual integration of heterogeneous
databases. Unpublished doctoral dissertation, University of New South
Wales, Sydney, Australia.

Stallings, W. (2001). Operating systems: internals and design principles (4th ed.).
New Jersey, USA: Prentice-Hall.

Strassler, M., & Schonhoff, M. (1998, December). Integrating engineering
d(rmhm(S how does the applrcarmm dnmnm influence the FDBMS
circicoc ire! Paper presented at tic s Dosierie Datenbanken W
Niacdebarg, Benmark.

Thomas, A. (1998, December). Enterpl ise JuvaBeans™ technology: server
component model for the Java" M platform. Retrieved February 25, 2000, from
http://www.javasoft.com/products/ejb/white paper.html

Tomasic, A., Raschid, L., & Valduriez, P. (1995, May). Scaling heterogeneous
databases and the design of Disco. Paper presented at the Proceedings of the
16th International Conference on Distributed Computing Systems, Hong
Kong.

Tun, Z. Z., Goodchild, A., Bird, L., & Sue, H. (1999). Introduction to XML Schema.
Retrieved October 30, 2000, from
http://www.dstc.edu.au/Research/Projects/Titanium/papers/XMLSchema/Intr
0-to-XMLSchema.html

Vogel, A., & Rangarao, M. (1999). Programming with enterprise JavaBeans, JTS
and OTS: building distributed transactions with Java and C++. Canada:
John Wileys & Sons, Inc.

Weiderhold, G. (1995). Mediation and sofiware maintenance. Paper presented at the
OO-ER Conference.

Wiederhold, G. (1992). Mediators in the architecture of future information systems.
IEEE Computer Magazine, 25(3).

- 157 -

MebDint An Adproaoh for the Integratio fDotabase and Legaoy Systems

Wiederhold, G., & Genesereth, M. (1997). The conceptual basis for mediation
services. IEEE Expert, 12(5), 38-47.

Woelk, D., Bohrer, B., Brice, R., Huhns, M., Jacobs, N., Ksieyzk, T., et al. (n.d.).
Carnot. Retrieved April 10, 2000, from
http://www.mcc.com/projects/infosleuth/archives/carnot/

XML query uses cases. (2002, 16 August). Retrieved 23 September, 2002, from
http://www.w3.org/TR/xmlquery-use-cases

XQuery 1.0: an XML query language. (2002, 16 August). Retrieved 23 September,
2002, from http://www.w3c.org/TR/xquery

Yan, L. L., Ozsu, M. T., & Liu, L. (1997, June). Accessing heterogeneous data
through homogenization and integration mediators. Paper presented at the
Second IFCIS Conference on Cooperative Information Systems (CooplS-97),
Charleston, South Carolina, USA.

Yu, T. F. (1997). Information modeling and mediation languages and techniques for -
information sharing among heterogeneous information systems. Unpublished
doctoral dissertation, University of Florida.

Zhou, G., Hull, R _ ® an R. (1996) GenemtmtY Aatq nﬂoﬂmtlon mediators that nen
material o Soaraad of Intelligeni sl cony, 6(2/3), 1997

Zhou, G., Hull, R., King, R., & Franchitte, J. C. (1995). Supporting data integratio:
and warehousing using H20. Data Engincering Bulletin, 18(2).

- 158 -

MeDint: An Approach for the Integration of Datcaoase and Legacy Systams

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |

Appendix J

Appendix K

APPENDICES

Glossary

List of Acronyms

Symbols Used in EBNF

MDM Reserved Words

Data Definition Language in Relational Data Model
Data Definition Language in Object Data Model
Schemas Rerrrsentation in MDDIL

MDDL Implcinciiation by XML

MMD Representation in XML

MeDInt Integration Process of Test Problem 2

Published Papers

- 159 -

MaDint An Avproach for the Infegration of Database and Legaay Systems

Appendix A — Glossary

Agent is a self-contained program capable of controlling its own decision making
and acting, based on its perception of its environment, in pursuit of one or more

objectives (Bertino et al., 2001).

Aggregation is the process of collecting together a number of characteristics of

something and treating it as a single thing (Benyon, 1997).

Classification is the process of recognising that various objects share certain

characteristics and can be treated as a single thing (Benyon, 1997).

Data integration is the method of accessing multiple data sources and receiving

only one unified result to solve the problem of island of information.

Date Moddel Heterogeneity occur vlion data in component data soure s to be

interoperated are in different data modici -,

Dcsign autonomy refers to data sourccs are designed without awarencss of the
existing related data sources. This leads to heterogeneity problem when data

integration is required. .

Directly-associated objects are objects that QTA can determine instantly from
information from the user-requested query. The schemas of these objects are required

to decomposing and transforming the query.

Extended Backus-Naur Form (EBNF) is a syntactic metalanguage which presents
by a notation for defining the linear sequence syntax of a language by use of a

number of rules (1996; Scowen, 1998).

Generalisation is a relationship that an object class is defined as a superset of other

objects.

- 160 -

MebDint An Avproach for the Intsgration of Dotabase and Legaoy Systems

Heterogeneity is the problem when integrating heterogeneous data sources. It has
been defined in this study into three categories: Data Model Heterogeneity,

Schematic Heterogeneity, and Semantic Heterogeneity.

Interoperability is the capability that databases, software and hardware can
communicate, execute programs, exchange services, or transfer data among various

systems (NCITS, 1999).

Legacy system is a critical application system, which has served an organisation for
several years. Although the system is not compatible and hard to modify, it is still
used because an organisation has invested considerably time and money and cost of

replacing is (ComputerUser.com Inc., 2000; Howe, 1999; Internet.com Corp, 2000).

Mediator is a dynamic interface between clients and databases. It provides

communication needed to transform data to information (Wiederhold, 1992).
Metadata is tiie do cription of the structure ol data {{roenke, 2002).

Middleware is a sct ot drivers, APIs, or other .o itwaie that improves conneclin it

between a clicut application and a server (Staliings, 2001).

{
o

Schema is a description of the structure of a database. Such description, generally
stored in a data dictionary, is relevant to the level of (Internet.com Corp, 2000;
NCITS, 1999).

Schematic Heterogeneities are conflicts which results from the use of different

schemas or structures in heterogeneous database systems.

Schema evolution is the process of changing the structure or the behaviour of
persistent classes including creating, dropping, renaming, changing attributes and

methods in the classes (Rao, 1994).

Semantics are the relationships of characters or groups of characters using as

symbols to their meanings (NCITS, 1999).

- 161 -

Mebint An Agproaeh for the Integration of Dotabase and Legaay Sysiams

Semantic Heterogeneities are conflicts which occur when data which have the same

meaning are represented differently by different database systems.

Specialisation is a relationship that an object is defined as a subset of a general

object class.

Structural view focuses on the main objects which are in the system and how those

objects are related (Benyon, 1997).

Transitively-associated objects are objects relating to the query that QTA
determines further from directly-associated object schema definitions that their

schemas are required to decomposing and transforming the query.

Wrapper is an interface between the MeDInt mediator and data sources translating

schema definitions, query languages, and data.

- 162 -

Meblint: An Approach for the Integration of Daotabaose and Legacy Systems

Appendix B — List of Acronyms

AMMetaData
CORBA

Cp

CRA
CVMetaData
DBMS

DDL

DML
DSMetaData
DTD

DTP

EJB

FOBS

TUENTL

Ny,

1SO

JTS

MeDint
MDDL
MDM
MDRS

MMD

MQL
ODMG

ODL

OEM

OIF

oM

OMG
OMMetaData

The Attribute Mapping MetaData
Common Object Request Broker Architecture
The Consolidation Processor

The Conflict Resolution Agent

The Conversion MetaData

Database Management System

Data Definition Language

Data Manipulation Language

The Data Sources MetaData

Document Type Definition

The Data Trdnslation Processor
Enterprise JavaBeans

Federated 17t hase System

Hyper Text Miwrkup Language

Interface Delinition Language
International Standard Organisation
Java Transaction Service

The Mediated Data Integration

The Mediated Data Definition Language
The Mediated Data Model

The Mediated Data Representation Structure
The Mediated MetaData

The Mediated Query Language

Object Database Management Group
Object Definition Language

Object Exchange Model

Object Interchange Format Language
Object Model

Object Management Group

The Object Mapping MetaData

- 163 -

MseDint An Approach for the Integration of Database agnd Legacy Systems

OMT
OQL
ORB
ORDBMS
QTA
QTP

RA
RDBMS
RMDRS
RP
SGML
SQL

STP
TSMetaData
Ww3C
XML

Object Modelling Technique

Object Query Language

Object Request Broker

Object Relational Database Management System
The Query Transformation Agent

The Query Translation Processor

The Rendering Agent

Relational Database Management System
Conflict-Resolved MDRS

The Registering Processor

Standard Generalised Markup Language
Structured Query Language

The Schema Translation Processor

The Thesaurus MetaData

World Wide Web Consortium

Extensible Markup i uage

- 164 -

MeDint: An Approach for the Integration of Dalabgse and Legacy Svsiems

Appendix C — Symbols used in EBNF

Defining-symbol

Terminator-symbol

Repetition-symbol

Definition-separator-symbol

Concatenate-symbol

Except-symbol

{}

Repeated sequence

(]

Optional-sequence

0

Grouped sequence

Quote-symbol

-6 -

MeDint: An Approach for the Integration of Database and Legacy Systems

Appendix D — MDM Reserved Words

attribute and character
condition date float
from in integer
key operation or
relationship select string
subtype user_defined =

> < >=

<= <

- 166 -

MeDint: An Approach for the Integration of Dolabose and Legaay Systems

Appendix E — Data Definition Language in Relational Data
Model

UnivDB

CREATE TABLE Author
(call_no CHAR(10) NOT NULL,
Iname CHAR(30) NOT NULL,
fname CHAR(50) NOT NULL,
PRIMARY KEY (call_no, Iname, fname)
FOREIGN KEY (call_no) REFERENCES Book);

CREATE TABLE Book
(callLno CHAR(10) NOT NULL,
name CHAR(50) NOT NULL,
isbn CHAR(15),
PRIMARY KEY (call_no)):

CREATE TABLE LoanRec
(call_no CHAR(10) NOT NULL,

id CHAR(7) NOT NULL,
from DATE NOT NULL,
to DATE NOT NULL,

PRIMARY KEY (call_no)
FOREIGN KEY (call_no) REFEREMCTS Book):

CRIEATE TABLE Staff
i CHAR(7) NOT NULL,

fname CHAR(30) NOT NULL,
Iname CHAR(30) NOT NULL,
address CHAR(50),
tel_no CHAR(10),
sex CHAR(1),
dob DATE,
salary DECIMAL(S6,2),
type CHAR(1) NOT NULL,
PRIMARY KEY (id));

CREATE TABLE Student

(id CHAR(7) NOT NULL,
fname CHAR(30) NOT NULL,
Iname CHAR(30) NOT NULL,
address CHAR(50),
tel_no CHAR(10),

(1

sex CHAR(1),
dob DATE,
level CHAR(1) NOT NULL,
PRIMARY KEY (id));
CREATE TABLE Unit
(id CHAR(7) NOT NULL,
name CHAR(30) NOT NULL,
PRIMARY KEY (id));
CREATE TABLE Prerequisite
(unit_id CHAR(7) NOT NULL,
unit_pre CHAR(7) NOTNULL,

PRIMARY KEY (unit_id, unit_pre)
FOREIGN KEY (id) REFERENCES Unit);

- 167 -

MebDint: An Avproach for the

s Bolabaose and Legacy Systems

CREATE TABLE Lecture

(

staff_id CHAR(7) NOT NULL,
unit_id CHAR(7) NOT NULL,
PRIMARY KEY (staff_id, unit_id)
FOREIGN KEY (id) REFERENCES Staff,
FOREIGN KEY (id) REFERENCES Unit);

CREATE TABLE EnrolRec

(

student_id CHAR(7) NOT NULL,
unit_id CHAR(7) NOT NULL,
PRIMARY KEY (student_id, unit_id)
FOREIGN KEY (id) REFERENCES Student,
FOREIGN KEY (id) REFERENCES Unit);

- 168 -

‘o the integration of Dotabase ond Legaay Systerms

MeDint: An Aoproact

Appendix F — Data Definition Language in Object Data Model

CampusDB
Interface Person {
attribute string id;
attribute struct<string fname, string Iname> name;
attribute string address;
attribute stning tel_no;
attribute string sex;
attribute date dob;
relationship Book borrow

inverse Book::loanby}

Interface Staff:Person {
attribute float salary;}

Interface Lecturer:Staff (key id) {
relationship set<Unit> lecture
inverse Unit::lecturedby;}

Interface Student:Person (key:id){
attribute <undergrad, postgrad> level,
relationship set<Unit> enrol
inverse Unit::enrolledby;}

Interface Book (key call_no) {

attribute string call_no;

attribute string name,

attribute set<struct<string fname; string Iname>> authcr,
attribute string isbn;

relationship Person loanby

inverse Person::borrow;}

Interface Course (key_code) {

attribute string code;
attribute string name;
relationship Lecturer lecturedby

inverse Lecturer::lecture;

relationship set<Student> enrolledby
inverse Student::enrol;

relationship set<Course> hasprerequisite;}

- 169 -

MaeDint An Approach for the Integrotion of Dotabase and Legaay Systenms

Appendix G — Schemas Representation by MDDL

The Mediated Data Definition Language (MDDL) — CampusDB

Set of Objects = {Person, Staff, Lecturer, Student, Book, Course}
Person = {
attribute
id string
name struct (fname string, lname string)
address string
tel no string
sex character
dob date;
relationship
Borrow set (Book) Book.LoanBy;
operation
age();
}
Staff = {
subtype
Person;
attribute
salary sloat;
key
id;
)
Lecturer = {
subtype
Staff;
relationship
Lecture set (Course) Course.LecturedBy;
key
id;
}
Student = {
subtype
Person;
attribute
level {undergrad, postgrad};
relationship
Enrol set (Course) Course.EnrolledBy;
key
id;
}

MeDint An Approach for the Ints

ation of Rotabase and Legacy Systerms

Book

Course

= {
attribute
call no string
name string
author set (struct (fname string, lname string))
isbn string;
relationship
LoanBy Person Person.Borrow;
operation
new_book ()
loan book(in Person.id);
key
call no;
}
= {
attribute
code string
name string;
relationship
LecturedBy Staff Lecturer.Lecture
EntolledBy Student Student.Enrol
HasPrerequisite set (Course);
operation

new_Course ()

student_enrol (in Student.id);
key

code;

}

- 171 -

MeDint An Approach

for the Integra

tion of Dotabase and Legoey Svsterms

The Mediated Data Definition Language (MDDL) — UnivDB

Set of Objects =

Staff

Student

Book

= {

attribute
id
fname
lname
address
tel no
sex
dob
salary
type

relationship
id
id

key
id;

}

{

attribute
id
fname
lname
address
tel no
sex
dob
level

relationship
id
id

key
id;

}

= {
attribute
call_no
name
isbn
relationship
call no
call no
key
call no;
}

{Staff,
Lecture,

Student, Book, Unit, Prerequisite,
EnrolRec, LoanRec, Author}

string
string
string
string
string
character
date
float
character;

LoanRec. id
Lecture.staff id;

string
string
string
string
string
character
date
character;

LoanRec. id
EnrolRec.student id;

string
string
string;

Author.call_no
LoanRec.call no;

- 172 -

MeDint: A

o Aoproach for

thye

Integration of Dotabase and Legaay Syst

7

s

Unit

Prerequisite

Lecture

EnrolRec

LoanRec

= {
attribute
id
name
relationship
id
id
id
key
id;
}
= {
attribute
unit id
unit pre
relationship
unit id
key

string
string;

Lecture.staff id

EnrolRec.student id
Prerequisite::unit id;

string
string;

Unit.id;

unit_id + unit pre;

}

{
attribute
staff id
unit id
relati~aship
SIS

uniis oid

key

stafi id +
}

= {
attribute

student id

unit_ id
relationship

student id

unit id
key

student id
}
= {
attribute

student_id

unit id
relationship

student_id

unit_id
key

student id
}

string
string;

Staff.id
Unit.id;

unit_id;

string
string;

Student.id
Unit.id;

+ unit_id;

string
string;

Student.id
Unit.id;

+ unit_id;

- 173 -

MebDint An

Agproach for the Infegra

Author

string
string
string;

Book.call no;

call no + lname + fname;

= {

attribute
call no
lname
fname

relationship
call no

key

}

- 174 -

MeDint: An Approach for the Integration of Dalabase and Legaay

Systems

Appendix H—- MDDL implementation by XML

CampusDB

<?xml versior="1.0" standalone="no"?>
<DataSource 1d="00010000000" name="CampusDB">
<ObjectType 1d="000100010000" name="Person'>
<Attribute>
<id id="0001000610001" datatype="string"/>
<name 1c="0001C0010002" datatype="user defined">
<fname id="000100010003" datatype="string"/>
<lname id="C00100010004" datatype="string"/>
</name>
<address id="000100010005" datatype="string"/>
<tel no id="000100010006" datatype="string"/>
<sex 1¢="000100010007" datatype="char"/>
<dob 1g="0001009010008" datatype="date"/>
</Rttribute>
<Relationship>
<pborrow id="000100010009" datatyope="Book'">
<inverse>Book.Loanby</inverse>
</borrow>
</Relationship>

</Cperation>
</CjectType>
<CoijectType 1d="000100020C00" name="Staff">
<Subtype>Person</Subt ype>
<Aftribute>
<salary 1a="000100020001" datatype="float" period="yearly"
currency="UsD" />
</Attribute>
<Key>Person. id</Key>
</OpjectType>
<ObjectType 1d="0001C003000C" name="Lecturer">
<Subtype>Staff</Subtype>
<Relationship>

<inverse>Course.lecturedBy</inverse>
</lecture>
</Relationship>
<Key>Person. id</Key>
</ObjectType>
<ObjectType id="000100040000" name="Student'>
<Subtype>Person</Subtype>
<Attribute>
<Level id="000100040001" datatype="{undergrad|postgrad}"/>
</Attribute>
<Relationship>
<enrol id="000100040002" datatype="Course">
<inverse>Course.EnrolledBy</inverse>
</enrol>

- 175 -

Melint An Agproach for the Integration of Dotabose and Legaoy Sysierms

</Relationship>
<Key>Person. id</Key>
</ObjectType>
<ObjectType 1d="000100050000" name="Book">
<Attribute>
<call no id="000100050001" datatype="string"/>
<name id="000100050002" datatype="string"/>
<author 1d="000100050003" datatype="user defined">
<fname 1d="000100050004" datatype="string"/>
<lname 1d="000100050005" datatype="string"/>
</author>
<isbn id="000100050006" datatype="string"/>
</Attribute>
<Relationship>

<inverse>Person.borrow</inverse>
</ loarby>
</Relationship>
<Operatior>

<datatype>book</datatype>
</new book>
<loan book id="000100050009">
<droperson</in>
</loan book>
</Operation>
11

[="000160060000" name="Cc:

JA="OGO100060001L" datatype="t - iny’, -
<name 1d="003100060002" datatype="string'/ >
</Attribute>
<Relationship>
<lecturedby 1d="000100060003" datatype="Lecturer™>
<inverse>Lecturer.lecture</inverse>
</lecturedoy>
<enrolledby ig="000100060004" datatype="Student">
<inverse>Student.enrol</inverse>
</enrolledoy>
<hasprerequisite 1d="000100060005" datatype="set (Course)"/>
</Relationship>
<QOperation>
<new course id="000100060006">
<datatype>Course</datatype>
</new_course>
<student enrol id="000100060007">
<in>student</in>
</student_enrol>
</Operation>
<Key>code</Key>
</ObjectType>
</DataSource>

- 176 -

MeDint, An Approach for the Integration of Dotabiase and tegucy

Systems

UnivDB

<?xml versior="1.0" standalone="no"?>
<DataSource 1d="00020000000" name="UnivDB">
<CbjectType id="000200010000" name="Staff">

<Attribute>
<id id="000200010001" datatype="string"/>
<fname 1id="000200010002" datatype="string"/>
<lname id="000200010003" datatype="string"/>
<address 1d="000200010004" datatype="string"/>
<tel no id="000200010005" datatype="string"/>
<sex 1d="000200010006" datatype="char"/>
<dob 1d="00020C010007" datatype="date"/>
<salary id="000200010008" datatype="float"/>
<type 1id="000200010009" datatype="char"/>

</Attribute>

<Relationship>
<id id="000200010010">

<inverse>loanrec. id</inverse>
</id>
<id ig="000200010011">
<inverse>lecture.staff id</inverse>

</id>

</Relationship>

<Key>id</Key>

</ChjectType>

<tel no 1d="000200020005" datatype="string"/>
<sex 1G="000200020006" datatype="char"/>
<dob 1d="000200020007" datatype="date"/>
<level 1d="000200020008" datatype="char"/>»
</Attribute>
<Relationship>
<id id="00020001009">
<inverse>loanrec. id</inverse>
</id>
<id id="000200010010">
<inverse>enrolrec.student id</inverse>
</id>
</Relationship>
<Key>id</Key>
</CojectType>
<CbjectType id="000200030000" name="Book">
<Attribute>
<call no id="00020003C001" datatype="string"/>
<name id="000200030002" datatype="string"/>
<isbn id="000200030003" datatype="string"/>
</Attribute>
<Relationship>
<call no id="000200030004">
<inverse>Author.call no</inverse>
</call_no>
<call no id="00020003C005">

- 177 -

MaeDIint An Aoproach for the Int

ton of Database ond Legacy

Sy

sterns

<inverse>LoanRec.call no</inverse>
</call no>
</Relationship>
<Key>call no</Key>
</ObjectType>
<CObjectType 1id="000200040000" name="Unit">
<Attribute>
<id 1d="000200040001" datatype="string"/>
<name id="000200040002" datatype="string”/>
</Attribute>
<Relationship>
<id id="000200040003">
<inverse>lecture.staff id</inverse>
</id>
<id id="000200040004">
<inverse>EnrclRec.student id</inverse>
</id>
<id id="000200C40005">
<inverse>Prerequisite.unit id</inverse>
</id>
</Relationship>
<Key>1d</Key>
</OcjectType>
<ObiectType id="000200050000" name="Prerequisite'>
<Attribute>
<unit id id="00020005C001" datatype="string"/>
<nit 1d="G0 0002 Saratype="string"/>

</OojectType>
<CojectType 1d="0002C0060C0C" name="Lecture'>
<Attribute>
<staff id id="000200060001" datatype="string"/>
<unit id id="000200060002" datatype="string"/>
</Attribute>
<Relationship>
<staff id id="000200060003">
<inverse>Staff.id</inverse>
</staff id>
<unit id id="000200060004">
<inverse>Unit.id</inverse>
</unit_id>
</Relationship>
<Key>staff id+unit id</Key>
</ObjectType>
<CbjectType id="000200070000" name="EnrclRec">
<Attribute>
<student id id="000200070001" datatype="string"/>
<unit id 1d="000200070002" datatype="string"/>
</Attribute>
<Relationship>
<student. id id="000200070003">
<inverse>Student.id</inverse>
</student id>

- 178 -

MeDIint An Auproach for the ints

1ton of Dotabose and Leqo

v Sy
IOV MY

stermns

<unit id id="000200070004">
<inverse>Unit.id</inverse>
</unit id>
</Relationship>
<Key>student id+unit id</Key>
</OojectType>
<OpjectType 1d="000200080000" name="LoanRec">
<Attribute>
<student id id="000200080001" datatype="string"/>
<unit_id id="000200080002" datatype="string"/>
</Bttribute>
<Relationship>
<student id ic="000200080003">
<dinverse>Student . id</inverse>
</student_id>
<unit id id="000200080004">
<inverse>Unit.id</inverse>
<funit id>
</Relationship>
<Key»student idtunit id</Key>

</UojectType>
<ObjectType 1d="000200090C00" name="Author">
<Attribute>

<call no id="000200080001" datatype="string"/>

Feall no
/Pelationship>
<Key>call notlnametfname</Xey>
</OGectType>
</DataScurce>

- 179 -

MeDint

Appendix | — MMD Representations in XML

Test Problem 1 — Hotel Chain Information System

DataSource MetaData (DSMetaData)

1 <?xmi version="1 0" standalone="no"?»
2 "D

»Hotel A's Databases< eiorpliins

ngeat»
>
»Hotel's B detabase<.
name="price">
name="currency">AUD<icomu:t>
<DES assignedname="HotelC">
<DataModsi»legacy <Datshiodal»
«_ocetion»hitp: //C co thHotelFiles<A ocation>
ucel\la-meotelCdSourceNm;:
30
9
<0
<Adtribute name=“price™>
«<cortext name="currency">THB<jcorexi»
46 <fAttribuie»
47 <KConsiraint»
48 <DS>

43 «DHSMetaDsta>

- 180 -

Melint An Approach for the Ints

ion of Dotabaose and Legacy Systerns

TABLE J.5 INTEGRATED RESULT OF THE QUERY 2 OF TEST SAMPLE 2

Staff.id Staff.salary(currency="AUD", period="yearly")
2158015 45000.00
4125101 25500.00
1542545 29803.92
1478523 49019.61

- 28 -

MaeDIint An Approach for the infegration of Datdabase and Legaey Syste

Appendix K - Published Papers

Mukviboonchai, S., & Chirathamjaree, C. (2001, 1-5 July). XMInt: a mediated
integration model. Paper presented at the Eleventh Annual International

Symposium of the International Council On Systems Engineering (INCOSE
2001), Melbourne, Australia.

Mukviboonchai, S., & Chirathamjaree, C. (2001, 22-25 July). An XML based
approach for the integration of database and legacy systems. Paper presented
at the Sth World Multi-Conference on Systemics, Cybernetics, and
Informatics (SCI2001), Orlando, FL.

Chirathamjaree, C., & Mukviboonchai, S. (2002, 8-9 August). 4 Mediated Data
Model for heterogeneous data integration. Paper presented at the 2nd Annual

International Conference on Computer and Information Science (ICIS '02),

Seoul, Korea.

i nnathamjaree, C., & Mukvit e o S.(2002, 28-31 Octor oo ey e Mediated
Integration architecture for heterogeneous data integration. Paper presented
at the 17th IEEE Region 10 International Conference on Computers,

Communications, Control and Power Engineering (IEEE TENCON'02),
Beijing, CHINA.

- 202 -

	The mediated data integration (MeDInt) : An approach to the integration of database and legacy systems
	Recommended Citation

