6 research outputs found

    Are Online Consumer Reviews Credible? A Predictive Model based on Deep Learning

    Get PDF
    As the importance of online consumer reviews has grown, the concerns about their credibility being damaged by the presence of fake reviews have also grown. Extant literature reveals the importance of online reviews for consumers. Yet, there is a lack of research in the literature that considers consumer perception while developing a predictive model for the credibility of online reviews. This research aims to fill this gap by combining two different streams in the literature namely human-driven and data-driven approaches. To do so, we use two datasets with different labelling approaches to develop a predictive model, the first one is labelled based on the Yelp filtering algorithm and the second one is labelled based on the crowd’s perception towards credibility. Results from our predictive model reveal that it can predict credibility with a performance of 82% AUC, using reviews’ attributes namely, length, subjectivity, readability, extremity, external and internal consistency

    Man vs machine – Detecting deception in online reviews

    Get PDF
    This study focused on three main research objectives: analyzing the methods used to identify deceptive online consumer reviews, evaluating insights provided by multi-method automated approaches based on individual and aggregated review data, and formulating a review interpretation framework for identifying deception. The theoretical framework is based on two critical deception-related models, information manipulation theory and self-presentation theory. The findings confirm the interchangeable characteristics of the various automated text analysis methods in drawing insights about review characteristics and underline their significant complementary aspects. An integrative multi-method model that approaches the data at the individual and aggregate level provides more complex insights regarding the quantity and quality of review information, sentiment, cues about its relevance and contextual information, perceptual aspects, and cognitive material

    A Systematic Literature Review on Cyberbullying in Social Media: Taxonomy, Detection Approaches, Datasets, And Future Research Directions

    Get PDF
    In the area of Natural Language Processing, sentiment analysis, also called opinion mining, aims to extract human thoughts, beliefs, and perceptions from unstructured texts. In the light of social media's rapid growth and the influx of individual comments, reviews and feedback, it has evolved as an attractive, challenging research area. It is one of the most common problems in social media to find toxic textual content.  Anonymity and concealment of identity are common on the Internet for people coming from a wide range of diversity of cultures and beliefs. Having freedom of speech, anonymity, and inadequate social media regulations make cyber toxic environment and cyberbullying significant issues, which require a system of automatic detection and prevention. As far as this is concerned, diverse research is taking place based on different approaches and languages, but a comprehensive analysis to examine them from all angles is lacking. This systematic literature review is therefore conducted with the aim of surveying the research and studies done to date on classification of  cyberbullying based in textual modality by the research community. It states the definition, , taxonomy, properties, outcome of cyberbullying, roles in cyberbullying  along with other forms of bullying and different offensive behavior in social media. This article also shows the latest popular benchmark datasets on cyberbullying, along with their number of classes (Binary/Multiple), reviewing the state-of-the-art methods to detect cyberbullying and abusive content on social media and discuss the factors that drive offenders to indulge in offensive activity, preventive actions to avoid online toxicity, and various cyber laws in different countries. Finally, we identify and discuss the challenges, solutions, additionally future research directions that serve as a reference to overcome cyberbullying in social media

    Fake Opinion Detection: How Similar are Crowdsourced Datasets to Real Data?

    Full text link
    [EN] Identifying deceptive online reviews is a challenging tasks for Natural Language Processing (NLP). Collecting corpora for the task is difficult, because normally it is not possible to know whether reviews are genuine. A common workaround involves collecting (supposedly) truthful reviews online and adding them to a set of deceptive reviews obtained through crowdsourcing services. Models trained this way are generally successful at discriminating between `genuine¿ online reviews and the crowdsourced deceptive reviews. It has been argued that the deceptive reviews obtained via crowdsourcing are very different from real fake reviews, but the claim has never been properly tested. In this paper, we compare (false) crowdsourced reviews with a set of `real¿ fake reviews published on line. We evaluate their degree of similarity and their usefulness in training models for the detection of untrustworthy reviews. We find that the deceptive reviews collected via crowdsourcing are significantly different from the fake reviews published online. In the case of the artificially produced deceptive texts, it turns out that their domain similarity with the targets affects the models¿ performance, much more than their untruthfulness. This suggests that the use of crowdsourced datasets for opinion spam detection may not result in models applicable to the real task of detecting deceptive reviews. As an alternative method to create large-size datasets for the fake reviews detection task, we propose methods based on the probabilistic annotation of unlabeled texts, relying on the use of meta-information generally available on the e-commerce sites. Such methods are independent from the content of the reviews and allow to train reliable models for the detection of fake reviews.Leticia Cagnina thanks CONICET for the continued financial support. This work was funded by MINECO/FEDER (Grant No. SomEMBED TIN2015-71147-C2-1-P). The work of Paolo Rosso was partially funded by the MISMIS-FAKEnHATE Spanish MICINN research project (PGC2018-096212-B-C31). Massimo Poesio was in part supported by the UK Economic and Social Research Council (Grant Number ES/M010236/1).Fornaciari, T.; Cagnina, L.; Rosso, P.; Poesio, M. (2020). Fake Opinion Detection: How Similar are Crowdsourced Datasets to Real Data?. Language Resources and Evaluation. 54(4):1019-1058. https://doi.org/10.1007/s10579-020-09486-5S10191058544Baeza-Yates, R. (2018). Bias on the web. Communications of the ACM, 61(6), 54–61.Banerjee, S., & Chua, A. Y. (2014). Applauses in hotel reviews: Genuine or deceptive? In: Science and Information Conference (SAI), 2014 (pp. 938–942). New York: IEEE.Bhargava, R., Baoni, A., & Sharma, Y. (2018). Composite sequential modeling for identifying fake reviews. Journal of Intelligent Systems,. https://doi.org/10.1515/jisys-2017-0501.Bickel, P. J., & Doksum, K. A. (2015). Mathematical statistics: Basic ideas and selected topics (2nd ed., Vol. 1). Boca Raton: Chapman and Hall/CRC Press.Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993–1022.Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In: Proceedings of the eleventh annual conference on computational learning theory (pp. 92–100). New York: ACM.Cagnina, L. C., & Rosso, P. (2017). Detecting deceptive opinions: Intra and cross-domain classification using an efficient representation. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 25(Suppl. 2), 151–174. https://doi.org/10.1142/S0218488517400165.Cardoso, E. F., Silva, R. M., & Almeida, T. A. (2018). Towards automatic filtering of fake reviews. Neurocomputing, 309, 106–116. https://doi.org/10.1016/j.neucom.2018.04.074.Carpenter, B. (2008). Multilevel bayesian models of categorical data annotation. Retrieved from http://lingpipe.files.wordpress.com/2008/11/carp-bayesian-multilevel-annotation.pdf.Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.Costa, P. T., & MacCrae, R. R. (1992). Revised NEO personality inventory (NEO PI-R) and NEO five-factor inventory (NEO FFI): Professional manual. Psychological Assessment Resources.Dawid, A. P., & Skene, A. M. (1979). Maximum likelihood estimation of observer error-rates using the EM algorithm. Applied Statistics, 28(1), 20–28.Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B (Methodological), 39(1), 1–38.Elkan, C., & Noto, K. (2008). Learning classifiers from only positive and unlabeled data. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 213–220). New York: ACM.Fei, G., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., & Ghosh, R. (2013). Exploiting burstiness in reviews for review spammer detection. In: Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media (Vol. 13, pp. 175–184).Feng, S., Banerjee, R., & Choi, Y. (2012). Syntactic stylometry for deception detection. In: Proceedings of the 50th annual meeting of the association for computational linguistics (Vol. 2: Short Papers, pp. 171–175). Jeju Island: Association for Computational Linguistics.Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289–1305.Fornaciari, T., & Poesio, M. (2013). Automatic deception detection in Italian court cases. Artificial intelligence and law, 21(3), 303–340. https://doi.org/10.1007/s10506-013-9140-4.Fornaciari, T., & Poesio, M. (2014). Identifying fake amazon reviews as learning from crowds. In: Proceedings of the 14th conference of the European chapter of the Association for Computational Linguistics (pp. 279–287). Gothenburg: Association for Computational Linguistics. Retrieved from http://www.aclweb.org/anthology/E14-1030.Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models., Analytical methods for social research Cambridge: Cambridge University Press.Graves, A., Jaitly, N., & Mohamed, A. R. (2013). Hybrid speech recognition with deep bidirectional LSTM. In: 2013 IEEE workshop on automatic speech recognition and understanding (ASRU) (pp. 273–278). New York: IEEE.Hernández-Castañeda, Á., & Calvo, H. (2017). Deceptive text detection using continuous semantic space models. Intelligent Data Analysis, 21(3), 679–695.Hernández Fusilier, D., Guzmán, R., Móntes y Gomez, M., & Rosso, P. (2013). Using pu-learning to detect deceptive opinion spam. In: Proc. of the 4th workshop on computational approaches to subjectivity, sentiment and social media analysis (pp. 38–45).Hernández Fusilier, D., Montes-y Gómez, M., Rosso, P., & Cabrera, R. G. (2015). Detecting positive and negative deceptive opinions using pu-learning. Information Processing & Management, 51(4), 433–443.Hovy, D. (2016). The enemy in your own camp: How well can we detect statistically-generated fake reviews–an adversarial study. In: The 54th annual meeting of the association for computational linguistics (p 351).Jelinek, F., Lafferty, J. D., & Mercer, R. L. (1992). Basic methods of probabilistic context free grammars. Speech recognition and understanding (pp. 345–360). New York: Springer.Jindal, N., & Liu, B. (2008). Opinion spam and analysis. In: Proceedings of the 2008 international conference on web search and data mining (pp. 219–230). New York: ACM.Karatzoglou, A., Meyer, D., & Hornik, K. (2006). Support vector machines in R. Journal of Statistical Software, 15(9), 1–28.Kim, S., Lee, S., Park, D., & Kang, J. (2017). Constructing and evaluating a novel crowdsourcing-based paraphrased opinion spam dataset. In: Proceedings of the 26th international conference on world wide web (pp. 827–836). Geneva: International World Wide Web Conferences Steering Committee.Li, F., Huang, M., Yang, Y., & Zhu, X. (2011). Learning to identify review spam. IJCAI Proceedings-International Joint Conference on Artificial Intelligence, 22(3), 2488–2493.Li, H., Chen, Z., Liu, B., Wei, X., & Shao, J. (2014a). Spotting fake reviews via collective positive-unlabeled learning. In: 2014 IEEE international conference on data mining (ICDM) (pp. 899–904). New York: IEEE.Li, H., Fei, G., Wang, S., Liu, B., Shao, W., Mukherjee, A., & Shao, J. (2017). Bimodal distribution and co-bursting in review spam detection. In: Proceedings of the 26th international conference on world wide web (pp. 1063–1072). Geneva: International World Wide Web Conferences Steering Committee.Li, H., Liu, B., Mukherjee, A., & Shao, J. (2014b). Spotting fake reviews using positive-unlabeled learning. Computación y Sistemas, 18(3), 467–475.Li, J., Ott, M., Cardie, C., & Hovy, E. H. (2014c). Towards a general rule for identifying deceptive opinion spam. In: ACL (Vol. 1, pp. 1566–1576).Lin, C. H., Hsu, P. Y., Cheng, M. S., Lei, H. T., & Hsu, M. C. (2017). Identifying deceptive review comments with rumor and lie theories. In: International conference in swarm intelligence (pp. 412–420). New York: Springer.Liu, B., Dai, Y., Li, X., Lee, W. S., & Yu, P. S. (2003). Building text classifiers using positive and unlabeled examples. In: Third IEEE international conference on data mining (pp. 179–186). New York: IEEE.Liu, B., Lee, W. S., Yu, P. S., & Li, X. (2002). Partially supervised classification of text documents. ICML, 2, 387–394.Martens, D., & Maalej, W. (2019). Towards understanding and detecting fake reviews in app stores. Empirical Software Engineering,. https://doi.org/10.1007/s10664-019-09706-9.Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:13013781.Mukherjee, A., Kumar, A., Liu, B., Wang, J., Hsu, M., Castellanos, M., & Ghosh, R. (2013a). Spotting opinion spammers using behavioral footprints. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 632–640) New York: ACM.Mukherjee, A., Venkataraman, V., Liu, B., & Glance, N. S. (2013b). What yelp fake review filter might be doing? In: Proceedings of the seventh international AAAI conference on weblogs and social media.Negri, M., Bentivogli, L., Mehdad, Y., Giampiccolo, D., & Marchetti, A. (2011). Divide and conquer: Crowdsourcing the creation of cross-lingual textual entailment corpora. In: Proceedings of the conference on empirical methods in natural language processing (pp. 670–679). Stroudsburg: Association for Computational Linguistics.Ott, M., Cardie, C., & Hancock, J. T. (2013). Negative deceptive opinion spam. In: Proceedings of the 2013 conference of the North American chapter of the association for computational linguistics: human language technologies (pp. 497–501).Ott, M., Choi, Y., Cardie, C., & Hancock, J. (2011). Finding deceptive opinion spam by any stretch of the imagination. In: Proceedings of the 49th Annual meeting of the association for computational linguistics: human language technologies (pp. 309–319). Portland, Oregon: Association for Computational Linguistics.Pennebaker, J. W., Francis, M. E., & Booth, R. J. (2001). Linguistic inquiry and word count (LIWC): LIWC2001. Mahwah: Lawrence Erlbaum Associates.Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532–1543).Raykar, V. C., Yu, S., Zhao, L. H., Valadez, G. H., Florin, C., Bogoni, L., et al. (2010). Learning from crowds. Journal of Machine Learning Research, 11, 1297–1322.Ren, Y., & Ji, D. (2017). Neural networks for deceptive opinion spam detection: An empirical study. Information Sciences, 385, 213–224.Rout, J. K., Dalmia, A., Choo, K. K. R., Bakshi, S., & Jena, S. K. (2017). Revisiting semi-supervised learning for online deceptive review detection. IEEE Access, 5(1), 1319–1327.Saini, M., & Sharan, A. (2017). Ensemble learning to find deceptive reviews using personality traits and reviews specific features. Journal of Digital Information Management, 12(2), 84–94.Salloum, W., Edwards, E., Ghaffarzadegan, S., Suendermann-Oeft, D., & Miller, M. (2017). Crowdsourced continuous improvement of medical speech recognition. In: The AAAI-17 workshop on crowdsourcing, deep learning, and artificial intelligence agents.Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In: Proceedings of international conference on new methods in language processing. Retrieved from http://www.ims.uni-stuttgart.de/ftp/pub/corpora/tree-tagger1.pdf.Shehnepoor, S., Salehi, M., Farahbakhsh, R., & Crespi, N. (2017). Netspam: A network-based spam detection framework for reviews in online social media. IEEE Transactions on Information Forensics and Security, 12(7), 1585–1595.Skeppstedt, M., Peldszus, A., & Stede, M. (2018). More or less controlled elicitation of argumentative text: Enlarging a microtext corpus via crowdsourcing. In: Proceedings of the 5th workshop on argument mining (pp. 155–163).Strapparava, C., & Mihalcea, R. (2009). The lie detector: Explorations in the automatic recognition of deceptive language. In: Proceedings of the 47th annual meeting of the association for computational linguistics and the 4th international joint conference on natural language processing.Streitfeld, D. (August 25th25{{\rm th}}, 2012). The best book reviews money can buy. The New York Times.Whitehill, J., Wu, T., Bergsma, F., Movellan, J. R., & Ruvolo, P. L. (2009). Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. Advances in neural information processing systems (pp. 2035–2043). Cambridge: MIT Press.Xie, S., Wang, G., Lin, S., & Yu, P. S. (2012). Review spam detection via temporal pattern discovery. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp 823–831). New York: ACM.Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’99 (pp. 42–49). New York: ACM.Zhang, W., Bu, C., Yoshida, T., & Zhang, S. (2016). Cospa: A co-training approach for spam review identification with support vector machine. Information, 7(1), 12.Zhang, W., Du, Y., Yoshida, T., & Wang, Q. (2018). DRI-RCNN: An approach to deceptive review identification using recurrent convolutional neural network. Information Processing & Management, 54(4), 576–592.Zhou, L., Shi, Y., & Zhang, D. (2008). A Statistical Language Modeling Approach to Online Deception Detection. IEEE Transactions on Knowledge and Data Engineering, 20(8), 1077–1081

    Understanding patient experience from online medium

    Get PDF
    Improving patient experience at hospitals leads to better health outcomes. To improve this, we must first understand and interpret patients' written feedback. Patient-generated texts such as patient reviews found on RateMD, or online health forums found on WebMD are venues where patients post about their experiences. Due to the massive amounts of patient-generated texts that exist online, an automated approach to identifying the topics from patient experience taxonomy is the only realistic option to analyze these texts. However, not only is there a lack of annotated taxonomy on these media, but also word usage is colloquial, making it challenging to apply standardized NLP technique to identify the topics that are present in the patient-generated texts. Furthermore, patients may describe multiple topics in the patient-generated texts which drastically increases the complexity of the task. In this thesis, we address the challenges in comprehensively and automatically understanding the patient experience from patient-generated texts. We first built a set of rich semantic features to represent the corpus which helps capture meanings that may not typically be captured by the bag-of-words (BOW) model. Unlike the BOW model, semantic feature representation captures the context and in-depth meaning behind each word in the corpus. To the best of our knowledge, no existing work in understanding patient experience from patient-generated texts delves into which semantic features help capture the characteristics of the corpus. Furthermore, patients generally talk about multiple topics when they write in patient-generated texts, and these are frequently interdependent of each other. There are two types of topic interdependencies, those that are semantically similar, and those that are not. We built a constraint-based deep neural network classifier to capture the two types of topic interdependencies and empirically show the classification performance improvement over the baseline approaches. Past research has also indicated that patient experiences differ depending on patient segments [1-4]. The segments can be based on demographics, for instance, by race, gender, or geographical location. Similarly, the segments can be based on health status, for example, whether or not the patient is taking medication, whether or not the patient has a particular disease, or whether or not the patient is readmitted to the hospital. To better understand patient experiences, we built an automated approach to identify patient segments with a focus on whether the person has stopped taking the medication or not. The technique used to identify the patient segment is general enough that we envision the approach to be applicable to other types of patient segments. With a comprehensive understanding of patient experiences, we envision an application system where clinicians can directly read the most relevant patient-generated texts that pertain to their interest. The system can capture topics from patient experience taxonomy that is of interest to each clinician or designated expert, and we believe the system is one of many approaches that can ultimately help improve the patient experience
    corecore