A Systematic Literature Review on Cyberbullying in Social Media: Taxonomy, Detection Approaches, Datasets, And Future Research Directions

Abstract

In the area of Natural Language Processing, sentiment analysis, also called opinion mining, aims to extract human thoughts, beliefs, and perceptions from unstructured texts. In the light of social media's rapid growth and the influx of individual comments, reviews and feedback, it has evolved as an attractive, challenging research area. It is one of the most common problems in social media to find toxic textual content.  Anonymity and concealment of identity are common on the Internet for people coming from a wide range of diversity of cultures and beliefs. Having freedom of speech, anonymity, and inadequate social media regulations make cyber toxic environment and cyberbullying significant issues, which require a system of automatic detection and prevention. As far as this is concerned, diverse research is taking place based on different approaches and languages, but a comprehensive analysis to examine them from all angles is lacking. This systematic literature review is therefore conducted with the aim of surveying the research and studies done to date on classification of  cyberbullying based in textual modality by the research community. It states the definition, , taxonomy, properties, outcome of cyberbullying, roles in cyberbullying  along with other forms of bullying and different offensive behavior in social media. This article also shows the latest popular benchmark datasets on cyberbullying, along with their number of classes (Binary/Multiple), reviewing the state-of-the-art methods to detect cyberbullying and abusive content on social media and discuss the factors that drive offenders to indulge in offensive activity, preventive actions to avoid online toxicity, and various cyber laws in different countries. Finally, we identify and discuss the challenges, solutions, additionally future research directions that serve as a reference to overcome cyberbullying in social media

    Similar works