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Abstract  

As the importance of online consumer reviews has grown, the concerns about their credibility being 
damaged by the presence of fake reviews have also grown. Extant literature reveals the importance of 
online reviews for consumers. Yet, there is a lack of research in the literature that considers consumer 
perception while developing a predictive model for the credibility of online reviews. This research aims 
to fill this gap by combining two different streams in the literature namely human-driven and data-
driven approaches. To do so, we use two datasets with different labelling approaches to develop a 
predictive model, the first one is labelled based on the Yelp filtering algorithm and the second one is 
labelled based on the crowd’s perception towards credibility. Results from our predictive model reveal 
that it can predict credibility with a performance of 82% AUC, using reviews’ attributes namely, length, 
subjectivity, readability, extremity, external and internal consistency. 

Keywords Online Consumer Reviews, Review Credibility, Deception Detection, Fake Reviews. 
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1 Introduction 

Online reviews play an important role in consumers’ purchasing decisions about products or services. 
As the importance of online reviews has grown, the concerns about their credibility being damaged by 
the presence of fake reviews have also grown; businesses post promotional reviews for themselves or 
deceptive negative reviews for their competitors (Ansari and Gupta 2021; Luca and Zervas 2016). A 
recent report has shown that more than 200K people are involved in posting fake reviews only on 
Amazon website1. In addition, Yelp itself acknowledged that up to 25% of online reviews on its website 
are at least suspicious2,3. To tackle this problem, prior research (e.g., Ansari and Gupta 2021; Barbado 
et al. 2019; Jindal and Liu 2008; Mukherjee et al. 2013a; Mukherjee et al. 2013b; Ott et al. 2013; Ott et 
al. 2011; Rayana and Akoglu 2015; Salminen et al. 2022; Zhang et al. 2016) has attempted to develop 
models to filter out fake reviews from online review websites, like Amazon, Yelp, Expedia, TripAdvisor, 
and Flipkart. These studies and tools are useful; however, they have their own limitations.  

Firstly, most previous studies have used information about the source of a review (i.e., reviewer) to 
assess the credibility of their written reviews. Although information about the source of a review is found 
to be helpful in detecting fake reviews (Wu et al. 2020), many online review platforms (e.g., Yelp), do 
not allow anyone to collect or process information about their users due to their terms and conditions, 
privacy and ethics issues. More importantly, many online review platforms (e.g., insureye.com, 
ratemds.com) do not capture and accordingly present information about their users. Thus, information 
about the source of a review is not always accessible4. Therefore, it is important to understand to what 
extent we can predict the credibility of online reviews without using information about its source and, 
instead, considering other important information. Particularly, this is vital for small e-commerce 
websites or online review aggregators that do not have any models or tools to assess the credibility of 
their online reviews and do not collect information about their users. Also, there is information such as 
the consistency of a single review with other reviews (i.e., external consistency) and the consistency of 
different elements within a review (i.e., internal consistency) - that have not received enough attention 
from previous studies, which we investigate as a predictor for the credibility of online reviews. 

Secondly, there is a lack of research in the literature that considers consumer perception while 
developing predictive models for the credibility of online reviews and differentiates the characteristics 
of fake and credible reviews using attributes that consumers actually employ while assessing the 
credibility of online reviews. We believe, consumers are the main user of online reviews, and this 
information is written to help consumers make a better purchasing decision about a product or service; 
accordingly, it would not be highly useful to develop a predictive model for consumers without 
considering their perspective. Thus, based on literature, we, first, define credibility as “believability” or 
“the characteristic that makes people trust and believe something or someone”(Cheung et al. 2012); 
then, we answer the following research question to address the above-mentioned limitations in the 
literature: To what extent can we predict the credibility of online reviews without using information 
about its source? 

The contributions in the paper help consumers make better purchasing decisions based on credible 
information by realizing the differences between fake and credible reviews. It also assists e-commerce 
platforms to measure the credibility of their online reviews and provide reliable information for their 
users. Particularly, this is vital for small e-commerce websites or online review aggregators that do not 
have any models or tools to filter out fake/suspicious reviews and do not collect information about their 
users (e.g., insureye.com, ratemds.com). The remainder of this paper is organized as follows. We present 
our literature review around the credibility evaluation of online consumer reviews in the next section. 
This is followed by a discussion about the research methodology of this study to address the research 
question. Next, we present the results of this research including our predictive model. Finally, we explain 
the discussion and contributions of this research. 

2 Research Background 

Evaluating the credibility of online reviews and identifying fake reviews is a particular application of the 
general issue of deception detection (Barbado et al. 2019; Fitzpatrick et al. 2015). According to our 

 

1 https://au.pcmag.com/shopping/87059/database-reveals-over-200k-people-involved-in-posting-fake-reviews-on-amazon 
2 https://fortune.com/2013/09/26/yelps-fake-review-problem/ 
3 https://www.yelp-press.com/company/fast-facts/default.aspx 
4 Although this information might be available for a website administrator, it is not always accessible for a third party like 
researchers. For instance, Yelp platform, which has been used in this work, does not permit us to "record, process, or mine 
information about its users" and has mentioned this in its website. 
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literature review, Jindal and Liu (2007) were the first researchers who tried to assess the credibility of 
online reviews. This work analyzed online reviews on Amazon website and considered duplicates or 
nearly duplicates reviews as fake to develop a model that identifies suspicious reviews. The authors of 
this work argued that fake reviews are much more difficult to identify than other deception detection 
problems on the internet. After this work, several scholars attempted to tackle the problem of fake 
reviews from different perspectives (Wu et al. 2020). Based on our literature analysis, we can classify 
studies regarding the credibility of online reviews into two main categories: (1) studies with human-
driven approaches and (2) studies with data-driven approaches. 

The first stream (i.e., human-driven) is based on developing a theoretical model and carefully exploring 
the attributes that impact the credibility of online reviews by conducting user studies and incorporating 
theories from different domains such as psychology, communication, and information systems to 
support their findings (Abedin et al. 2021). Examples of this stream can be quantitative research (e.g., 
experiment or questionnaire) or qualitative research (e.g., interview). For instance, Cheung et al. (2012) 
investigated the impacts of review sidedness, source credibility, review consistency and argument 
quality on the credibility assessment of online reviews, using the elaboration likelihood model (ELM) as 
their theoretical lens. In another study, Filieri (2016) used a grounded theory method to explore how 
travellers judge online reviews' trustworthiness. This study conducted 38 interviews with travellers on 
TripAdvisor and proposed a theoretical model to explain how these travellers assess review 
trustworthiness. Abedin et al. (2019b) developed a conceptual model and identified several attributes 
(e.g., review length, source credibility and consistency among reviews) that impact the credibility of 
online reviews by conducting 21 interviews with online shoppers and using the Heuristic Systematic 
Model (HSM) as a theoretical lens. 

The second stream (i.e., data-driven) is built on developing machine learning models including 
supervised (Barbado et al. 2019; Kumar et al. 2018; Liu et al. 2019), semi-supervised (Rout et al. 2017a; 
Rout et al. 2017b; Zhang et al. 2017) and unsupervised techniques (Dong et al. 2018) to automate fake 
reviews detection. For example,  Kumar et al. (2018) proposed a hierarchical supervised-learning model 
by considering several users' attributes to improve the likelihood of detecting fake reviews. Using logistic 
regression, they could reach an Area Under the Curve (AUC) score of 0.817. Plotkina et al. (2020) 
explored the characteristics of fake reviews. The authors tried to combine multiple-micro linguistic cues 
to develop an algorithm that can identify fake reviews. Their findings show that fake reviews have fewer 
paragraphs, contain more adjectives than verbs, are structured and easier to understand. Barbado et al. 
(2019) proposed a feature framework to detect fake online reviews that has been evaluated in the 
consumer electronics domain. Using the Ada Boost classifier, they achieved an 82% F-Score on the 
detection of fake reviews. Lu et al. (2013) took a different approach which tried to detect fake reviewers 
and fake reviews at the same time. To do so, the authors proposed a Review Factor Graph model which 
incorporates several review and reviewer attributes. 

As can be seen, the first stream mostly focused on identifying the important attributes from consumers 
perspective that impact the credibility of online reviews; however, these studies have not developed a 
predictive model to explore to what extent we can predict the credibility of online reviews using 
consumers’ perspective. On the other hand, studies in the second stream mainly attempted to develop 
machine learning models to filter out fake reviews and improve the performance of their models. 
Nonetheless, these studies mainly do not consider consumers perspective in the development of their 
models. In this study, we take advantage of both streams and address their limitations by combining 
both approaches, applying attributes that consumers use, studied in the human-driven approach and 
employing predictive models, used in the data-driven approach. In addition, to better incorporate 
human-driven approach into the data-driven approach, on top of the Yelp dataset and using its filtering 
algorithm as the target label, we collect another set of data with a different labelling approach. To do so, 
we consider the crowd’s perception towards the credibility of online reviews as a label and use it in the 
classifier for the credibility prediction of online reviews. In the following section, we explain the research 
method of this study including further explanation of two datasets used in this research. 

3 Research Method 

This section provides details about the steps we carry out in this particular study to develop the 
predictive model for the credibility of online reviews. 

3.1 Attributes Used for the Development of the Predictive Model 

As discussed in the “research background” section, some studies have investigated the credibility of 
online reviews from consumers’ perspective (e.g., Abedin et al. 2019b; Filieri 2016; Luo et al. 2015). 
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Although these studies have identified attributes that consumers use while assessing online reviews, 
they still have not investigated the extent to which we can predict the credibility of online reviews by 
using these attributes. Thus, in this study, we use attributes from these studies that can be used to 
develop a predictive model for the credibility of online reviews. These attributes are: review extremity, 
review length, external consistency, review subjectivity, internal consistency, review readability 
(fluency) and source of a review. However, as discussed in the introduction section, due to privacy, 
ethics, terms and conditions issues, we do not use information about the source of a review in our study. 

Figure below visualizes these attributes and steps we carry out to extract these attributes to develop the 
predictive model. 

 

Figure 1: Attributes Used for the Predictive Model 

The length of each review is calculated, by counting the number of words in its textual content. Review 
extremity is measured as the star rating of the review. A very low rating (i.e., one star) or a very high 
rating (i.e., five stars) indicate extreme reviews and a review with a star rating of 2,3 or 4 reflects a non-
extreme review. Rating inconsistency (external consistency) is calculated as the absolute difference 
between a review’s star rating and the overall average rating for a business (Aghakhani et al. 2020). 

Next, to extract review subjectivity, we use Textblob5 to perform subjectivity analysis on each reviews’ 
textual content. Textblob is a Python Natural Language Processing (NLP) library for processing textual 
data. Subjectivity scores of reviews vary between 0.0 and 1.0, where 0.0 presents a very objective review 
and 1.0 reflects a very subjective one (Loria 2018). Internal consistency refers to the consistency within 
a single review, which is the consistency between the content of a review and its valence (e.g., stars 
rating). Thus, if the content and stars rating are not aligned, the review is internally inconsistent; 
otherwise, the review is consistent. For instance, if the text body of a review shows a positive opinion 
(positive sentiment) but the review has a low star rating (e.g., 1 or 2 out of 5), it shows that this review 
is internally inconsistent. On the other hand, if the text body is written positively and the star rating of 
the review is also high (e.g., 4 or 5 out of 5), it shows that the review is internally consistent (Abedin et 
al. 2019a; Abedin et al. 2020) . In order to extract this attribute, we first conduct the sentiment analysis 
on each review text body, using the Textblob library. Then we compare the sentiment score for each 
review with its stars rating. If the sentiment score and stars rating are opposites and do not match, the 
review is internally inconsistent; otherwise, it is internally consistent. Finally, to extract review 
readability (fluency), we use Textstat6 Python NLP library to calculate the Automated Readability Index 
(ARI) for each review’s textual content. We have chosen ARI index in this study as ARI is one of the main 

 

5 https://textblob.readthedocs.io/en/dev 

6 https://pypi.org/project/textstat 
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readability tests that were used to assess the readability of a text and it is subjected to a lower error rate 
as compared to other readability measures (Hu et al. 2011). 

ARI is calculated using its standard formula (Senter and Smith 1967): 

𝐴𝑅𝐼 𝑆𝑐𝑜𝑟𝑒 = 4.71 (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠
) + 0.5 (

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
) − 21.43 

Table below summarizes descriptions of each attribute along with their possible values. 

Attribute Name Description Possible Values  

Review Credibility Is the review recommended or filtered? 0 = Filtered,  
1 = Recommended 

Review Length Number of words in a review 0 – No upper limit 
Review Extremity Is the review an extreme one? 0 = No, 1 = Yes 
External Rating 
Inconsistency 

|a review’s star rating - overall average rating| 0 - 4 

Review Subjectivity The subjectivity score of a review from Textblob library 0 - 1 
Internal Consistency Does the review have consistency between its star 

ratings and its sentiment score? 
0 = No, 1 = Yes 

Review Readability The readability score of a review from Textstat library No upper or lower limit 

Table 1.  Attributes Description 

3.2 Data Collection 

The aim of this study is to develop a predictive model to measure the credibility of online reviews by 
using attributes that consumer employs (i.e., review extremity, review length, external consistency, 
review subjectivity, internal consistency and review readability/fluency). To do so, we use two datasets 
from Yelp platform to get a better understanding around the importance of these attributes in two 
conditions and realize to what extent these attributes can predict the credibility of online reviews. The 
first dataset is labelled based on Yelp filtering algorithm and the second one is labelled based on the 
crowd’s perception towards the credibility of online reviews. In the followings, we further explain these 
two datasets including the reason behind why we have selected Yelp platform as the case in this study 
and why we use two datasets with different labelling approaches. 

3.2.1 Dataset One (Considering Yelp Filtering Algorithm) 

To create our first dataset, we have collected 12000 reviews of services from the Yelp review dataset 
(Yelp dataset challenge) used by (Barbado et al. 2019; Mukherjee et al. 2013b; Rayana and Akoglu 2015), 
through a random selection to conduct our analyses and develop the predictive model for the credibility 
evaluation of online reviews. We have considered Yelp platform due to the following reasons. First, Yelp 
dataset7 has been widely used by previous researchers (Barbado et al. 2019; Luca and Zervas 2016; 
Mukherjee et al. 2013b; Rayana and Akoglu 2015; Zhang et al. 2016). A key reason for using Yelp is that 
it uses a filtering algorithm that identifies suspicious/fake reviews and puts them into a filtered list. 
According to Yelp’s CEO, its filtering algorithm has evolved over the years to filter out suspicious 
reviews. In addition, its filtering algorithm has been claimed to be highly accurate by previous 
researchers (Barbado et al. 2019; Mukherjee et al. 2013b; Rayana and Akoglu 2015). 

Second, although Yelp does not reveal how its algorithm works, Yelp is confident enough to make both 
suspicious/filtered and recommended reviews public, and as such, it is possible to view the reviews that 
are not currently recommended through a link at the bottom of a business page. With this in hand, we 
are able to analyze the patterns of fake and credible reviews on Yelp (Barbado et al. 2019; Mukherjee et 
al. 2013b; Rayana and Akoglu 2015; Weise 2011). Thus, in this study, we use online consumer reviews 
from Yelp to create our first dataset. 

3.2.2 Dataset Two (Considering Crowds Perception) 

Yelp dataset provides us with online reviews as data. In addition, as mentioned before, it enables us to 
see whether an online review has been filtered or not. However, this labelling process of online reviews 
(i.e., recommended or not) is like a black box as Yelp model/system does not show how this assessment 
of online reviews has been occurred. For instance, it is not clear whether Yelp model is purely computer-

 
7 Sometimes known as Yelp Dataset Challenge. 
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based, human-based or something between. Thus, to further incorporate users’ perspectives towards 
the development of the predictive model for the credibility of online reviews and further validate the 
importance of the attributes namely, review extremity, review length, external consistency, review 
subjectivity, internal consistency and review readability (fluency) in this process, we conduct an online 
user study to employ the crowd’s opinion as the label for the credibility of online reviews. Thus, for the 
second dataset, we randomly select 200 reviews as data from a restaurant on Yelp. 
To label this dataset based on the crowd’s evaluation, in the first step, we shared the experiment's link 
with the potential participants on a social media platform (i.e., Linkedin) and a group of students at a 
university in Australia via their emails. During the data collection process, all the respondents were 
notified that they would receive a 40\$ e-gift voucher for their participation. If they agreed, we provided 
them with the experiment's link. Finally, we asked the participants to recommend other potential 
participants as the snowballing sampling technique. At the end of the data collection process, after 
removing incomplete and partial responses, in total, we collected 9800 judgments for 200 reviews in 
the dataset two; meaning that each review is rated by 49 participants on average. We designed the 
experiment in a way that captures the dependent variable – credibility, for each of the reviews in a Likert 
scale instead of a binary scale. This is because Likert scale provides us with a more granular result as it 
gives participants more degrees of opinions to choose, and make their decisions, rather than confining 
them with only two options. In addition, after collecting all data, the result is a scale mean, which shows 
the collective opinion of crowd towards each review's credibility, which can easily be converted to either 
fake or credible, based on introducing a threshold (Spooren et al. 2007; Wu and Leung 2017). 

Among different Likert scales, we have chosen the Likert scale from 0 (most fake) to 10 (most credible) 
as a natural and easily comprehensible range, recommended by Leung (2011), Hodge and Gillespie 
(2007) and Wu and Leung (2017). As stated by Leung (2011), Likert scale from 1 to 10 "increases 
sensitivity and is closer to interval level of scaling and normality". Thus, in this study, we first use the 
Likert scale from 0-10 to get the opinions of crowds towards the credibility of a given review. Next, we 
aggregate these credibility scores, rated by participants to calculate the mean value for each review. 
Finally, based on the mean value and introducing a cut-off point, we label each review as credible or 
fake. In order to find an appropriate cut-off point, we did the ROC analysis based on the calculated 
average score and the Yelp labels. To do so, we examined different thresholds of: 4.5, 5, 5.5, 6 and 6.5. 
Table 2 present the result of our ROC analysis. 

Test Result 
Variable(s) 

Area Std. Error Asymptotic Sig. 

Cut off point: 4.5 .625 .023 .000 
Cut off point: 5 .865 .023 .000 
Cut off point: 5.5 .840 .026 .000 
Cut off point: 6 .801 .028 .000 
Cut off point: 6.5 .673 .031 .000 

Table 2.  Area Under the ROC Curve for Different Cut-off Points 

As can be seen from Table 2, the cut-off point of 5 has the best performance in terms of the area under 
the ROC. Thus, we labelled those reviews that are below the threshold of 5 as fake (0) and those above 
the threshold as credible (1). 

3.3 Selecting the Predictive Model 

To select an appropriate machine learning model to develop our predictive model, we have tested a 
variety of algorithms including Decision Tree (DT), Random Forest (RF), K Nearest Neighbours (KNN), 
Support Vector Machine (SVM), Logistic Regression (LR) and Artificial Neural Network (ANN) – deep 
learning – to realize which model presents the best performance regarding the credibility prediction of 
online reviews. As will be discussed further in the findings section (Table 4 and Table 5), among all those 
models, deep learning showed the best performance in this research. Thus, we use Artificial Neural 
Network (deep learning) to create our predictive model and evaluate the credibility of a given review. 
Thus, in what follows, we discuss deep learning in further detail. 

3.3.1 Deep Learning 

Deep learning (also known as deep machine learning or deep structured learning) is a branch of machine 
learning, based on a set of dynamic systems. It consists of a set of artificial neurons which are connected 
by a synapse that try to make a linear or non-linear mapping from a group of inputs to target output/s 
(Basheer and Hajmeer 2000; Eslami et al. 2018; LeCun et al. 2015). 
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According to LeCun et al. (2015), “Deep learning allows computational models that are composed of 
multiple processing layers to learn representations of data with multiple levels of abstraction”. Thus, 
this computational power makes it a very practical tool to address a variety of problems, such as object 
detection, speech recognition and many other areas such as genomics and drug discovery 8 (LeCun et al. 
2015). Among all deep learning architectures, multi-layer perceptron model has been chosen and used 
in this research as it is the most prominent one (Bischof et al. 1992; Eslami et al. 2018). 

The first step in creating a deep learning model is to choose the right architecture by finding the 
appropriate number of inputs, hidden layers, outputs and the number of neurons in each layer (Basheer 
and Hajmeer 2000; Eslami et al. 2018; LeCun et al. 2015). We call the first layer as the input layer, the 
last layer as the output layer and finally layer/s between the input and output layers as the hidden 
layer/s. In this study, we used review extremity, review subjectivity, review readability, internal 
consistency, review length, and rating inconsistency (external consistency) to predict the credibility of 
online reviews. Thus, our input layer is made up of six neurons signifying these attributes, also the 
output layer is made up of one neuron signifying the credibility of online reviews. 

Regarding the hidden layer/s, generally, there is no rule to calculate the number of layers or nodes per 
layer; however, there are some rules of thumb to create a model architecture. The first one is to keep the 
architecture as simple as possible (Eslami et al. 2018; Krimpenis et al. 2006; LeCun et al. 2015). 
Secondly, there is a theoretical finding by Goodfellow et al. (2017) and Heaton (2008) that shows two 
hidden layers are adequate for creating a classification model. Thirdly, as suggested by Heaton (2008), 
the number of hidden neurons in each hidden layer should be less than twice the size of the input layer. 
Thus, we use these guidelines and rules of thumb to develop our prediction model in the next section. 

4 Findings 

This section presents the predictive model, its result and its performance for the first and second dataset. 

4.1 Results of The Predictive Model in the First Dataset 

The first dataset contains 12000 online reviews from Yelp, which has been labelled based on its filtering 
algorithm. To develop the predictive model, we first extract the discussed attributes (i.e., review 
extremity, review length, external consistency, review subjectivity, internal consistency and review 
readability/fluency) from this dataset. Summary statistics of these attributes are shown in Table below. 

Attribute Name Mean Median Min Max Standard Deviation 
Review Extremity 0.516 1.000 0.000 1.000 0.500 

Rating Inconsistency (External) 0.926 1.000 0.000 3.500 0.786 

Review Length 123.076 92.000 1.000 966.000 109.439 
Review Subjectivity 0.575 0.566 0.000 1.000 0.115 
Review Readability 20.031 10.400 -7.500 412.500 24.287 

Internal Consistency 0.889 1.000 0.000 1.000 0.314 

Table 3.  Attributes Descriptive Statistics for the First Dataset (n = 12000) 

Next, we use these attributes as the input to the first layer of our deep learning model. Afterwards, 
according to the guidelines and rules of thumb discussed in the research method section regarding how 
to create a multi-layer perceptron model, in the beginning, we started with two hidden layers and then 
we tried to change the number of nodes in each hidden layer to see if the model’s performance improves 
or not. Ultimately, the deep learning model with 4 layers (input layer with 6 nodes, first hidden with 10 
nodes, second hidden layer with 8 nodes, and output layer with one node) was found to have the best 
performance in our dataset. Next, the model was trained using 60% of our data as a training set, leaving 
20% as the validation set and finally 20% as the test set. The training was discontinued when 
performance stopped to improve on the validation set. Finally, we assessed the performance of the 
model on our test set using the AUC as suggested by Norton and Uryasev (2019). Table 4 summarizes 
the performance of our model. As mentioned in the research method section, in addition to the discussed 
deep learning model, we employed a variety of other machine learning models namely: Decision Tree, 
Random Forest, K Nearest Neighbours, Support Vector Machine, and Logistic Regression to investigate 
which model has the best performance in predicting the credibility of a given review. 

 

8 Please refer to LeCun et al. (2015) for more information and a nice overview of deep learning. 
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 Performance (AUC) 

Train Set 0.82 

Validation Set 0.83 

Test Set 0.82 

Table 4.  Our Deep Learning Model Performance 

As shown in Table4 and Table 5, our deep learning shows a better performance in comparison with other 
machine learning models in our research. Thus, in this study, we developed our predictive model based 
on deep learning for the credibility evaluation of a given review. 

Model Performance (AUC) 
Logistic Regression (LR) 0.79 
K Nearest Neighbours (KNN) 0.78 
Decision Tree (DT) 0.67 
Random Forest (RF) 0.78 
Support Vector Machine (SVM) 0.73 

Table 5.  Performance of Other Machine Learning Models 

In order to increase the explainability of our findings, we attempted to present the predicted output of 
our deep learning model in a way that humans can understand, by visualizing the outputs using a pivot 
table-heatmap as illustrated in Figure 2. To do so, first, we checked the prediction power of our input 

 

Figure 2: Our Deep Learning Model Prediction Results 

attributes in our model. Among all the attributes, review length, review subjectivity and rating 
inconsistency (external) were found to be the strongest predictors of the credibility of online reviews 
followed by review extremity, review readability and internal consistency.  Next, to better visualize our 
model output, we selected the top 4 predictors: review length, review subjectivity, rating inconsistency 
(external) and review extremity. Then, we did some classifications for these attributes as follows: 
regarding the review’s length, we classified reviews that placed one standard deviation above or below 
the mean as long and short, respectively, and the rest were classified as medium length. Similarly, we 
did the same classifications for review subjectivity (i.e., subjective, somehow subjective and objective) 
and rating inconsistency (inconsistent, somehow inconsistent and consistent). Thus, it resulted in 
having three conditions for review length (short, medium and long), three conditions for review 
subjectivity (objective, somehow subjective and subjective), three conditions for reviews’ rating 
inconsistency (consistent, somehow inconsistent and inconsistent) and finally two conditions for review 
extremity (extreme and non-extreme), leaving us with 54 different conditions (3* 3 * 3 * 2 = 54). Figure 
2 shows the output of the predictive model for all these 54 conditions. As illustrated in Figure 2, the most 
credible reviews are those that are mainly associated with low subjectivity, long length, low rating 
inconsistency, and generally are among non-extreme reviews. On the other hand, the least credible 
reviews are those that are mostly associated with high subjectivity, low readability score, short length, 
high rating inconsistency, and usually are among extreme reviews.  

4.2 Results of The Predictive Model in the Second Dataset 

To further validate the predictive model and the attributes used as the input in the predictive model, we 
use our second dataset, which contains 200 reviews and has been labelled based on the crowd’s 
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perception towards the credibility of reviews. In this regard, similar to the first dataset, we extract the 
related attributes from the second dataset. Summary statistics of these attributes are shown in Table 6. 

Attribute Name Mean Median Min Max Standard Deviation 
Review Extremity 0.562 1.000 0.000 1.000 0.497 

Rating Inconsistency (External) 1.268 1.000 1.000 3.000 0.598 
Review Length 108.064 78.000 2.000 469.000 95.367 
Review Subjectivity 0.588 0.594 0.000 1.000 0.146 
Review Readability 17.380 9.100 -1.700 120.800 19.794 

Internal Consistency 0.880 1.000 0.000 1.000 0.325 

Table 6.  Attributes Descriptive Statistics for the Second Dataset (n = 200) 

According to the guideline presented in the research method and similar to the first dataset, we 
calculated the performance of the predictive model against the second dataset. Overall, our deep 
learning model presents the AUC between 80-82 for the second dataset, which is very similar to the first 
dataset (although slightly lower). These results validate the predictive model and confirm the 
importance of the attributes (i.e., review extremity, review length, external consistency, review 
subjectivity, internal consistency and review readability) used in the development of the model for the 
credibility evaluation of online reviews. 

5 Discussion 

In this study, we developed a predictive model based on deep learning that can evaluate the credibility 
of online reviews by incorporating consumers perspective and without using information about a source 
of a review to mitigate the problems arising from utilizing users’ information. Instead, we employed 
some other attributes including internal and external consistency that have not received enough 
attention from previous studies in the development of predictive model for online review credibility. To 
build the predictive model, we tried different classifiers including, Deep Leaning, Support Vector 
Machine, Decision Tree, K Nearest Neighbors and Logistic Regression by considering review extremity, 
review length, external consistency, review subjectivity, internal consistency and review readability as 
their inputs. The predictive model based on deep learning could reach the AUC score of 0.82, which 
showed a better performance compared to other classification models in our research. The developed 
model has been tested against two datasets: the first dataset was labelled based on Yelp filtering 
algorithm and the second one was labelled based on the crowd’s perception towards the credibility of 
online reviews. The predictive model shows a good performance in both datasets, which highlights the 
importance and validity of the attributes used in this research to evaluate the credibility of online 
consumer reviews. To the best of our knowledge this is the first study to investigate the credibility of 
online reviews by considering consumers’ perspective in a predictive model (Abedin et al. 2020). 

The finding from this study shows that to develop a predictive model for the credibility of online reviews, 
we need to consider a variety of attributes. It means, no attribute alone can signify the credibility of an 
online review, and instead, several important attributes together (e.g., review external and internal 
consistency, review length, review readability, review extremity, and review objectivity) should be used 
to predict the credibility of a given review.  To discuss this further, we use Figure 2 and provide three 
examples of X, Y and Z in this figure. As can be seen in example X (which is marked in Figure 2), when 
a review is objective, but it is an extreme review, inconsistent and has a medium length, the review does 
not consider to be credible, which shows that objectivity alone cannot signify the credibility of an online 
review. In addition, as shown in example Y - Figure 2, when a review has a long length and is among 
non-extreme ones, but it is subjective and inconsistent with other reviews, it is not found to be credible, 
which shows that considering length and extremity without other attributes cannot signify the credibility 
of a given review. In the example Z - Figure 2, when a review is consistent with other reviews and is 
among non-extreme ones but has a medium length and is written in a subjective language, is not 
considered to be credible. This suggests that consistency and extremity cannot signify the credibility of 
a given review. These findings suggest that users need to make decisions cautiously based on online 
reviews information – for instance, by reading different reviews to realize the convergence among a 
series of views towards a product or service. In the same vein, this study recommends consumers 
consider a variety of different attributes (e.g., the internal and external consistency, objectivity, length, 
readability and extremity) at the same time to make their decisions rather than only relying on one piece 
of information or just considering one criterion like the stars rating of an online review. This highlights 
that no single attribute alone can signify the credibility of online reviews, and in turn, credibility is a 
complex factor that a combination of attributes together should be used for its measurement. 
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The findings from this research make some important contributions. First, this study contributes to the 
state-of-the-art literature around the credibility of online reviews by incorporating consumers’ 
perspective through 1) using the attributes they use while assessing the credibility of online reviews and 
2) using the crowd’s perception for labelling the second dataset. Second, the predictive model can help 
consumers, businesses, and e-commerce platforms to evaluate the credibility of their information and 
filter out fake reviews from their websites. This, especially, is more essential for businesses and 
platforms that do not have any tools or models to monitor the credibility of their online reviews, and in 
particular, do not capture information about their users. Evaluating the credibility of information is an 
important task for businesses and online review platforms because providing consumers with credible 
information could increase consumers’ loyalty, trust and overall satisfaction (Wu et al. 2020). 

As with any other research, this study has some limitations. First, the datasets used in this study to train 
the classifier and test its performance were relatively small. Second, we only focused on Yelp reviews 
because this dataset had labels and therefore it was possible for us to develop the predictive model. Thus, 
the findings of this research and its generalizability should be treated with caution. It is highly 
recommended that future research considers other online review platforms (e.g., TripAdvisor, Amazon, 
etc.), representing different domains to expand the generalizability of the results of this research, which 
will require getting labels for this data to validate the results. For the future work, we plan to extend this 
study by conducting a series of ANOVA (analysis of variance) to investigate the different characteristics 
of fake and credible reviews in both datasets to explore their similarities and differences. 
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